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Abstract
Enabling new applications for mobile devices often requires the use
of specialized hardware to reduce power consumption. Because of
time-to-market pressure, current design methodologies for embed-
ded applications require an early partitioning of the design, allow-
ing the hardware and software to be developed simultaneously, each
adhering to a rigid interface contract. This approach is problematic
for two reasons: (1) a detailed hardware-software interface is dif-
ficult to specify until one is deep into the design process, and (2)
it prevents the later migration of functionality across the interface
motivated by efficiency concerns or the addition of features. We ad-
dress this problem using the Bluespec Codesign Language (BCL)
which permits the designer to specify the hardware-software parti-
tion in the source code, allowing the compiler to synthesize efficient
software and hardware along with transactors for communication
between the partitions. The movement of functionality across the
hardware-software boundary is accomplished by simply specifying
a new partitioning, and since the compiler automatically generates
the desired interface specifications, it eliminates yet another error-
prone design task. In this paper we present BCL, an extension of a
commercially available hardware design language (Bluespec Sys-
temVerilog), a new software compiling scheme, and preliminary
results generated using our compiler for various hardware-software
decompositions of an Ogg Vorbis audio decoder, and a ray-tracing
application.

Categories and Subject Descriptors B.6.3 [LOGIC DESIGN]:
Hardware description languages; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Real-time and embedded sys-
tems; D.3.3 [PROGRAMMING LANGUAGES]: Language Con-
structs and Features

General Terms Design, Performance

Keywords Hardware/Software Codesign

1. Introduction
Modern mobile devices provide a large and increasing range of
functionality, from high-resolution cameras, video and audio de-
coders, to wireless basebands that can work with a variety of pro-
tocols. For power and performance reasons much of this function-
ality relies on specialized hardware. Often designers start with a
pure software (SW) implementation of an algorithm written in C (or
Matlab), and identify computationally intensive parts which need to
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be implemented in hardware in order to meet the design constraints.
Hardware (HW) accelerators come in three different forms. Hard-
ware can be synthesized as an ASIC for the application at hand, in
which case the problem reduces to whether the source description
is amenable to generation of good quality hardware. The accelera-
tor may also be available in the form of a standardized IP block, like
FFT, to be called from the application code. Lastly, the accelerator
could be in the form of a programmable processor like a DSP with
its own tool chain and distinct programming model. In all three
cases, the designer must modify some parts of the application code
to make use of the accelerator.

Regardless of what kind of accelerator is eventually used, some
software is always required to drive it. Since the time to market is
of paramount importance, the hardware and the associated software
driver are almost always developed in parallel by two separate de-
sign teams. The two teams agree upon a hardware-software decom-
position and the associated interface early on to make the final inte-
gration as seamless as possible. However, in practice the interface
rarely matches the specification precisely. This happens because
the early hardware specifications are often incomplete, and either
leave room for misinterpretation, or are simply unimplementable.
This integration problem has a large negative impact on the time-
to-market. Worse, by prematurely restricting the design, lower-cost
or higher-performance alternatives may be ignored.

In our approach, the complete module, as well as the parti-
tion boundaries, are specified in the Bluespec Codesign Language
(BCL), which is suitable for both hardware and low-level soft-
ware design. BCL is a semantic extension of Bluespec SystemVer-
ilog (BSV) [1], a commercial language for hardware synthesis. The
BCL compiler uses the BSV compiler to generate the special pur-
pose hardware (Verilog) for the hardware partition and it compiles
the software partition into C++. It also generates the infrastruc-
ture code for communication between the partitions. Crucially, the
generated implementations can interoperate with any other imple-
mentation which conforms to the generated interface. Our approach
therefore supports the following design methodologies:

• Fully Automatic: The system implementers use the automati-
cally generated implementations directly for both the hardware
and software partitions. A major advantage of this approach is
that the hardware and software decompositions can be redone
with little or no effort to meet changing system requirements as
the system design evolves.

• Partially Automatic: The system implementers use the auto-
matically generated implementations for either the hardware or
software components, choosing some other approach for the re-
maining parts. While this approach limits the ability to change
the partition late in the design process, it does provide imple-
menters with a reference design they can use during testing and
development.

• Interface Only: The system implementors develop both the
hardware and software pieces using alternative approaches, but
use the communication infrastructure code generated by the



BCL compiler to define the HW/SW interface. Because the inter-
faces are backed by fully functional reference implementations,
there is no need to build simulators for testing and development
purposes.

The primary contributions of this paper are (1) the BCL language,
including a method of specifying hardware-software partition at
the source level; (2) a compilation strategy for generating efficient
code for software partitions; (3) the specification of transactors
needed to communicate with the hardware partitions; and (4) a
demonstration of the viability of our approach by applying it to
concrete examples. We think this is the first demonstration of multi-
ple versions of a hardware-software codesign from the same source
code working on an FPGA.

Paper organization: In Section 2 we illustrate HW/SW design
complications with an example. After a discussion of related work
in Section 3, we give an introduction to BCL in Section 4, using
Vorbis as a running example. In Section 5 we discuss the opera-
tional semantics of the kernel of BCL informally. In Sections 6 we
present our compilation strategy, and conclude with a presentation
of the experimental results in Section 7.

2. A Motivating Example
Ogg Vorbis is an open-source psychoacoustically-aware audio
CODEC aimed at simple low-complexity decoding (see Figure 1).
We have chosen this example for its relative simplicity, but the anal-
ysis we do applies equally to video CODECs and radio baseband
processing [2] which are much more complex.
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Figure 1. Ogg Vorbis pipeline diagram. The HW accelerator is
delimited by the dotted line, and the original SW is shaded

The front end of the pipeline consists of a stream parser and
various decoders though which the audio frequency spectra are re-
constructed. Due to the compression schema, these modules have
complex control, but are relatively lightweight from a computa-
tional standpoint. We will assume the front end of the pipeline
generates frames, which are then sent to the back-end by invok-
ing the back-end method with a pointer to the frame and the frame
size as arguments. The back-end of the pipeline transforms the
signal from the frequency to the time domain through the use of
an IMDCT which internally uses the computationally intensive
IFFT. The frames in the final output are overlapped using a sliding
window function to compensate for spectral leakage at the frame
boundaries, after which the PCM frames are sent directly to the
speaker through memory-mapped IO. The C++ pseudocode for the
back-end is shown in Figure 2.

To accelerate this application, it is quite clear that the back-end
will require some HW acceleration. However, it is not clear if the
entire back-end or just the IFFT should end up in hardware.

2.1 Restructuring Software to Interact with the Accelerator
Let us assume that we are able to implement an efficient IFFT HW
accelerator which has an input port and an output port which trans-
fer serialized frames one word at a time. The HW implementation
keeps track of the number of words that have been received, and
once a full frame is present, it computes the IFFT and subsequently

void backend(int* frame, int N){
int a[2*N], b[2*N], *tmp, i;
for(i = 0; i < N; i++){
a[i] = imdctPreLo(i,N,frame[i]);
a[i+N] = imdctPreHi(i,N,frame[i]);}

swIFFT.ifft(2*N, a, a);
for(i = 0; i < N; i++)
b[bitReverse(i)] = imdctPost(i,N,a[i]);

tmp = swWindow.nextFrame(b,2*N);
for(i = 0; i < N; i++)
memcpy(AUDIO DEV, tmp[i], 4);}

Figure 2. Vorbis back-end in C++

makes the data available on the output port. Let us also assume that
the bus protocol permits blocking reads and blocking writes, so if
we attempt to read a word from the output port before the answer
has been computed, the SW will block. Likewise if we attempt to
write a word to the input port before the prior word has been con-
sumed, the write will also block. The invocation of the IFFT in
Figure 2 (swIFFT.ifft(2*N, a, a)) can be replaced by the
code shown in Figure 3 to exploit such HW.

...
hwIFFT.setSize(2*N);
for(i = 0; i < 2*N; i++)
hwIFFT.put(a[i]);

for(i = 0; i < 2*N; i++)
a[i] = hwIFFT.get();

...

Figure 3. Acceleration using blocking HW

Given the latency introduced by transferring the data to and
from the accelerator over the bus, it is highly unlikely that the
overall algorithm will be sped up by using the accelerator in this
manner. In almost all such HW designs where significant data
transfer is involved, it is important to find ways to speed up the
communication, it is often not possible to change the latency of
communication because it is tied to system components like BUS
and networks which are typically fixed. Several potential solutions
exist to hide this latency:

Communication Granularity: Transferring data one word at a
time is inefficient, given the overhead of a bus transaction. This
cost can be amortized by transferring larger blocks of data directly
into the accelerator memory. At the BUS protocol level, this means
exploiting burst transfers. The two loops in Figure 3 which invoke
hwIFFT.put() and hwIFFT.get() respectively will be re-
placed by two invocations to a burst transfer (see Figure 4). Many
systems have dedicated DMA hardware which efficiently imple-
ments the desired behavior. Another way to halve the BUS traffic
would be to implement the windowing function in the same accel-
erator and connect the accelerator directly to the speaker.

Pipelining: Often the use of DMA can saturate the BUS band-
width, and when this happens, the accelerator can become the bot-
tleneck. Pipelining the accelerator hardware can further improve
the throughput, and we exploit this concurrency through the use of
multithreading, as shown in Figure 4. Though the putFrame() and
getFrame() calls to the HW are still blocking, the pipelined HW
implementation can now begin receiving new frames even though
it may not have completed the transformation of the previous ones.
A separate thread is started at the beginning of time which invokes
backend complete() in a while(true) loop to drain the
HW accelerator and drive the final audio pipeline stages. When run-
ning under a traditional OS, this code is actually quite convenient
to write, though many embedded operating systems do not support
multithreading, requiring the application to simulate this behavior
manually.



void backend(int* frame, int N){
int a[2*N], i;
for(i = 0; i < N; i++){

a[i] = imdctPreLo(i,N,frame[i]);
a[i+N] = imdctPreHi(i,N,frame[i]);}

hwIFFT.setSize(2*N);
hwIFFT.putFrame(a,2*N);
}
void backend complete(int N){
int a*, b[2*N], i, *tmp;
a = hwIFFT.getFrame(2*N);
for(i = 0; i < N; i++)

b[bitReverse(i)] = imdctPost(i,N,a[i]);
tmp = swWindow.nextFrame(b,2*N);
for(i = 0; i < N; i++)

memcpy(AUDIO DEV, tmp[i], 4);}

Figure 4. Multithreaded use of pipelined HW
(backend complete() is repeatedly invoked by a sepa-
rate thread)

Nonblocking Interface: Suppose that the accelerator is not pipelined,
we can still improve the overall efficiency by doing useful work
while waiting for the accelerator to complete its work. This re-
quires making the IFFT interface non-blocking, as shown in Fig-
ure 5. Nonblocking interfaces require exposing some internal de-
tails of the accelerator, e.g., the status of internal state machines
or memory buffers. For example, a protocol might require the HW
to first indicate that it has enough buffering to receive an entire
frame, so that individual puts will never block waiting for space
to become available. This information invariably percolates up to
the front of the audio pipeline, since we now need to change the
interface type of backend to return bool (see Figure 5). Related,
but more complicated issues arise when an accelerator is shared
among several threads.

volatile int* hw status, *hw fbuff, *hw sz;
bool backend(int* frame, int N){
if(*hw status == RDY){return false;}
...
*hw size = (2*N);
memcpy(*hw fbuff, a, 2*N*4);
*hw status = GO;
while(*hw status != RDY){;}
memcpy(a, *hw fbuff, 2*N*4);
...
return true;}

Figure 5. Acceleration using non-blocking hardware

The software now has much greater control over the hardware,
but as a result, the clean get/put interface has now been polluted
by implementation detail. Exposing this level of details violates the
important design principle of isolation; now if the HW needs to
be refined, the SW must be re-validated since it can observe the
internal state of the HW.

2.2 Synthesis of the Accelerator
It should be clear from the previous discussions that several dif-
ferent hardware designs – pipelined versus non-pipelined, blocking
versus nonblocking – are possible for the IFFT accelerator. Given
the state of the art in hardware synthesis, it is not possible to gen-
erate efficient hardware from typical software codes written in C
or C++. The designer must describe the architecture for the accel-
erator in some HDL like Verilog. To anyone who is familiar with
HDL’s, it should be clear that this is a radical change in the way
one thinks about programming. Furthermore, any verification ef-
fort performed on the original implementation must be repeated in
a new language with completely different semantics, and since the
IFFT interface has changed, the SW partition will need to be mod-
ified and re-verified as well.

2.3 Data Format Issues
Mismatch of data representation is one of the more common source
of errors in HW/SW codesign. The objects generated by the ap-
plication must be correctly converted to the bit representation ex-
pected by the accelerator. This problem is compounded by the fact
that the C++ compiler and the Verilog compiler may have com-
pletely different layouts for the “same” data structure:
C++:
template<typename F, typename I>
struct FixPt{ F fract; I integer; };
template<typename T>
struct Complex{T rel; T img;};

Verilog:
typedef struct {bit[31:0] fract; bit[31:0] int;} FixPt;
typedef struct {FixPt rel; FixPt img;}; Complex FixPt;

The two languages may have different endian conventions, and
even two compilers for the same language can use different con-
ventions depending on the targeted substrate. Many SW represen-
tations do not even have a natural HW analog. In general, keeping
HW and SW representations of shared data structures is both te-
dious and error prone.

2.4 A Language-Based Solution
A fundamental difficulty of hardware-software codesign stems
from the fact that the software and hardware continue to be de-
veloped in two separate languages, each with its own semantics
and programming idioms. We believe that what is needed instead
is a common language for hardware-software codesign with the
following properties:

1. Fine-grain parallelism: Hardware is inherently parallel and any
codesign language must be flexible enough to express meaning-
ful hardware structures. Low-level software which drives the
hardware does so via highly concurrent untimed transactions,
which must also be expressible in the language.

2. Easy specification of partitions: In complex designs it is impor-
tant for the designer to retain a measure of control in expressing
his insights about the partitioning between hardware and soft-
ware. Doing so within suitable algorithmic parameters should
not require any major changes in code structure.

3. Generation of high-quality hardware: Digital hardware designs
are usually expressed in RTL languages like Verilog from which
low-level hardware implementations can be automatically gen-
erated using a number of widely available commercial tools.
(Even for FPGAs it is practically impossible to completely
avoid RTL). The codesign language must compile into efficient
RTL code.

4. Generation of efficient sequential code: Since the source code
is likely to contain fine-grain transactions, it is important to
be able to interleave partially executed transactions without
introducing deadlocks while waiting for external events.

5. Shared communication channels: Often the communication be-
tween a hardware device and a processor is accomplished via
a shared bus. The high-level concurrency model of the code-
sign language should permit sharing of such channels without
introducing deadlocks.

The design of BCL was motivated by these goals, and in BCL it is
possible to describe any subset of the Vorbis pipeline in such a way
that efficient hardware may be synthesized. Different microarchi-
tectures for implementing [say] IFFT can also be described by writ-
ing different BCL programs [2], and at the same time, the whole
design can be compiled into sequential software. What makes BCL
unique is that by using the idea of computational domains (Sec-
tion 4.2), it is possible to specify which part of the BCL program



should be run in HW (i.e., compiled to Verilog) and which in SW
(i.e., compiled to C++). Thus, moving any code across the HW/SW
boundary is as simple as specifying a different partition, a feature
that is especially useful when experimenting with how much of the
code surrounding IFFT in the back-end should be implemented as
hardware. The use of a single language automatically avoids the
data formatting issues mentioned previously, and the code gener-
ated by compiling BCL can interface both with other system hard-
ware such as the audio device, and software up the stack starting
from the Ogg Vorbis front end.

The computational domains specified in BCL let the compiler
automatically deduce the communication between hardware and
software. If the accelerator is connected to the microprocessor by a
BUS, the compiler will use this underlying substrate through low-
level library elements. Note that the interface given for the back-
end of the pipeline (behind which all HW/SW codesign exploration
takes place) is a much more stable interface than any traditional
BUS-based interface used by device drivers.

3. Related Work
We are not aware of any language which satisfies all the goals
enumerated in Section 2, however there is a substantial body of
work, both academic and commercial, relevant to various aspects
of hardware-software codesign.

Implementation-agnostic parallel models: There are several par-
allel computation models whose semantics are agnostic to imple-
mentation in hardware or software. In principle, any of these can
provide a basis for hardware-software codesign.

Threads and locks are used extensively in parallel program-
ming and also form the basis of SystemC [3] – a popular C++
class library for modeling embedded systems. While these libraries
provide great flexibility in specifying modules, the language itself
lacks proper compositional semantics, producing unpredictable be-
haviors when connecting modules. Synthesis of high-quality hard-
ware from SystemC remains a challenge.

Dataflow models, both at macro-levels (Kahn [4]) and fine-
grained levels (Dennis [5], Arvind [6]), provide many attractive
properties but abstract away important resource-level issues that are
necessary for expressing efficient hardware or software. Neverthe-
less dataflow models where the rates at which each node works are
specified statically have been used successfully in signal processing
applications [7, 8].

Synchronous dataflow is a clean model of concurrency based
on synchronous clocks, and forms the basis of many programming
languages (e.g., Esterel [9], Lustre [10], Signal [11], Rapide [12],
Shim [13], Polysynchrony [14]). Scade [15], a commercial tool for
designing safety-critical applications, is also based on this model.

We have chosen guarded atomic actions (or rules) as the basis
for BCL. All legal behaviors in this model can be understood as a
series of atomic actions on a state. This model was used by Chandy
and Misra in Unity [16] to describe software, and then by Hoe
and Arvind to generate hardware [17]. Dijsktra’s Guarded Com-
mands [18] and Lynch’s IO Automata [19] are also closely related.
BCL extends the idea of multiple clock domains [20] from Blue-
spec SystemVerilog (BSV) [21] to specify how a design should be
split between hardware and software. Hardware compilation from
BCL is a straightforward translation into BSV, whose subsequent
compilation to Verilog is a mature and proven technology [17, 21].
Guarded atomic actions also provide a good foundation to build
analysis and verification tools [22].

Generation of software from hardware descriptions: Hardware
description languages (HDLs) like Verilog and VHDL provide ex-
tremely fine-grain parallelism but lack an understandable semantic
model [23] and are also impractical for writing software. Neverthe-
less, these languages can compile to a software simulator, which

can be viewed as a software implementation. Popular commer-
cial products like Verilator [24] and Carbon [25] show significant
speedup in the performance of these simulators, though the require-
ment to maintain cycle-level accuracy (at a gate-level) is a funda-
mental barrier; the performance is often several factors slower than
natural software implementations of the same algorithm.

The Chinook [26, 27] compiler addressed an important aspect
of the hardware/software interface problem, by automating the task
of generating a software interface from the RTL description and the
timing information of the hardware blocks.

Lastly, Bluespec’s Bluesim [21] can exploit the fact that the
cycle-level computation can be represented as a sequence of atomic
actions. This permits dramatic improvement in performance but the
underlying cost of cycle-accuracy remains.

Generation of hardware from sequential software specifica-
tions: To avoid the burden of using low-level HDLs, the idea
of extracting a hardware design from a familiar software lan-
guage, e.g., C, Java, or Haskell, has great appeal. Liao et al. [28]
present one of the earliest solutions to mitigate the difficulty of the
hardware-software interface problem by describing the interface in
C++ and generating an implementation using hand coded libraries
that interact with automatically synthesized hardware. Many sys-
tems like CatapultC [29], Pico Platform [30], or AutoPilot have
been effective at generating some forms of hardware from C code.
However, constructing efficient designs with dynamic control can
be very hard, if not impossible, using such tools [31].

A related effort is the Liquid Metal project [32] which compiles
an extension of Java into hardware. It lets the programmer specify
parts of the program in a manner which eases the analysis required
for efficient hardware generation. In contrast to BCL which relies
on explicit state and guarded atomic actions, Liquid Metal exploits
particular extensions to the Java type system.

Frameworks for simulating heterogeneous systems: There are
numerous systems that allow co-simulation of hardware and soft-
ware modules. Such systems, which often suffer from both low
simulation speeds and improperly specified semantics, are typically
not used for direct hardware or software synthesis.

Ptolemy [33] is a prime example of a heterogeneous model-
ing framework, which concentrates more on providing an infras-
tructure for modeling and verification, and less on the generation
of efficient software; it does not address the synthesis of hard-
ware at all. Metropolis [34], while related, has a radically differ-
ent computational model and has been used quite effectively for
hardware/software codesign, though primarily for validation and
verification rather than the synthesis of efficient hardware.

Matlab and Simulink generate production code for embedded
processors as well as VHDL from a single algorithmic description.
Simulink employs a customizable set of block libraries which allow
the user to describe an algorithm by specifying the component
interactions. Simulink does allow the user to specify modules,
though the nature of the Matlab language is such that efficient
synthesis of hardware would be susceptible to the same pitfalls as
C-based tools. A weakness of any library-based approach is the
difficulty for users to specify new library modules.

In summary, while all these frameworks may be effective for
modeling systems, we do not believe they solve the general prob-
lem of generating efficient implementations.

Algorithmic approaches to hardware/software partitioning:
There is an extensive body of work which views hardware-software
partitioning as an optimization problem, similar to the way one
might look at a graph partitioning problem to minimize commu-
nication [35, 36]. The success of such approaches depends upon
the quality of estimates for various cost functions as well as the
practical relevance of the optimization function. Since these ap-
proaches do not generate a working hardware/software design,



they need to make high-level approximations, often making use
of domain-specific knowledge to improve accuracy. Such analysis
is complementary to real hardware-software codesign approaches.

4. Introduction to BCL via Vorbis
BCL is a modern statically-typed language with the flexibility to
target either hardware or software. It contains higher-order func-
tions and the rich data structures required to express fine-grain par-
allelism. Any language with hardware as a target must be restricted
so that it is compilable into efficient FSMs. Consequently BCL can
be used for writing only the type of software which does not re-
quire dynamic heap storage allocation and where the stack depth
is known at compile-time. In fact, in a BCL program all state must
be declared explicitly, and the type system prohibits dynamic al-
location of objects. Because BCL’s intended use is for describing
software primarily at the bottom of the stack, this restriction is not
burdensome.

BCL is an extension of Bluespec SystemVerilog (BSV) and
borrows BSV’s syntax and its powerful Haskell inspired meta-
programming features. In the rest of this section we will explain
BCL using the Vorbis pipeline and its partitioning between hard-
ware and software.

4.1 The Vorbis Pipeline
Below we have given a simplified version of the code implementing
the back-end of the Vorbis pipeline. The reader will notice that the
high-level organization is very similar to the code example given in
Figure 2:
module mkVorbisBackEnd(VorbisBackEnd#(k,t))
IFFT#(2*k, Complex#(t)) ifft <- mkIFFT;
Window#(2*k, t) window <- mkWindow;
method Action input(Vector#(k,Complex#(t)) vx)
Vector#(2*k,Complex#(t)) v;
for(int i = 0; i < k; i++)

v[i] = preTable1[i]*vx[i];
v[K+i] = preTable2[i]*vx[i];

ifft.input(v);
rule xfer
let x = ifft.output() in (ifft.deq();
Vector#(2*k,t) v;
for(int i = 0; i < 2*k; i++)

v[i] = x[bitReverse(i)].real;
window.input(v))

rule output
let rv = window.output();
window.deq(); AUDIO DEV.output(rv)

A BCL program consists of a hierarchy of modules, and as with
any object-oriented language, all interactions with modules occur
through their interface methods. The mkVorbisBackend mod-
ule definition instantiates two sub-modules: ifft and window.
Each module is potentially stateful, but ultimately all state is built
up from primitive elements called registers. It is important not to
confuse the state elements with ordinary variables such as “x” or
“v”, which are just names. Like functional languages, “x = exp”
simply assigns the name x to the expression exp.

Module interfaces are declared separately from the implemen-
tation to encourage reuse; the following code defines the polymor-
phic IFFT interface, parametrized by the type variable t, where t
is used to indicate the type of components (e.g.,Fix32, Fix16,
Float63) used to construct the complex numbers:
interface IFFT#(numeric type k, type t)

method Action input(Vector#(k,Complex#(t)) x)
method Vector#(k,Complex#(t))) output()
method Action deq()

In BCL, state change is indicated by the Action type. The
input method is of type Action and takes as arguments an
input frame of size k. This was declared under the assumption that
any implementation of this interface will store the frame in some
internal buffering, changing its state and necessitating the Action

type. Methods such as outputwhich are not of type Actionmay
only read state and compute the return value with a pure function.

The VorbisBackend interface (not shown) contains a single
action method, input. (This interface has no output because the
final effect of inputting a frame is the transmission of PCM packets
to the audio device.) In contrast to other object-oriented languages,
in BCL every method has an associated guard, which indicates
whether that method is ready to be called. An action method whose
guard is false will have no effect, and a value method whose
guard is false produces values which cannot be used in further
computation; any computation which calls an unready method is
itself not valid to be executed. The generation of control logic in
the HW implementations is directly based on guard composability.

In our example, the input method is only ready to be called
once ifft is ready to accept the next frame, that is when the inter-
nal guard of ifft.in is true. We refer to this style of guard as im-
plicit, though it is also possible to introduce guards explicitly with
the when keyword. There is no semantic distinction between im-
plicit and explicit guards. Since we cannot determine from outside
a module when a particular method will be ready, guarded meth-
ods provide a natural abstraction for refining the timing of internal
modules.

In addition to the interface methods, the behavior of a module
can also be affected by its rules. The module mkVorbisBackEnd
contains two such rules, one to transfer data between the ifft
and window modules, and another to transmit PCM packets to
the audio device. The invocation of a rule is a guarded atomic
action and is the only way to modify program state. Just as with
action methods, every rule produces a side-effect (state change)
which is applied only when the rule’s guard evaluates to true.
As will become clear in the next section, the rule’s guard is the
conjunction of all the explicit and implicit guards contained within
the constituent actions and expressions.

Rules also provide a natural way to express concurrency. For ex-
ample the rules xfer and output may both be executable simul-
taneously, that is their guards both evaluate to true. Ultimately, all
observed behaviors of the rule-based system must be understand-
able in terms of the execution procedure shown below:

Repeatedly:

1. Choose a rule to execute.

2. Compute the set of state updates and the value of the rule’s guard.

3. If the guard is true, apply the updates.

Every rule modifies the state deterministically; non-determinism is
introduced through the choice of which rule to fire. This makes
a BCL program more like a design specification, and how we re-
solve this nondeterminism is very important for the quality of the
implementation. For example, in hardware we often execute many
enabled rules concurrently as long as one-rule-at-a-time semantics
are not violated. In sequential SW, on the other hand, we want to
compose long sequences of rules in order to exploit data locality.
BCL also has the power to let the user specify any level of schedul-
ing constraints [37], but experience shows that designers tend to
leave all scheduling decisions to the compiler, except in extremely
performance-critical modules.

4.2 Computational Domains
Computational domains, a part of the type system, is the mecha-
nism by which we partition BCL designs between hardware and
software. Domains are enforced by annotating every method with
a domain name; each rule (or method) can refer to methods in only
one domain. If a rule refers to methods from domain D, we can say
that the rule belongs to domain D, and a simple type invariant can
determine if the domain annotations are consistent.

This one-domain-per-rule restriction would seem to preclude
inter-domain communication since all data flow occurs through



rules. To enable inter-domain communication, primitive modules
called synchronizers, which have methods in more than one do-
main, are provided. Inter-domain communication is possible only
through synchronizers, thereby ensuring the absence of inadvertent
inter-domain communication (a common pitfall in HW/SW code-
sign). As we show below, inserting synchronizers is the mechanism
we provide to specify a program partition. The correct use of syn-
chronizers allows the compiler to automatically infer the domain
types on all rules and methods and safely partition a design, while
an incorrect use will fail to type check, causing a compilation error.

Suppose we want to implement the IFFT in hardware and the
remainder of the Vorbis backend in software. The input and output
methods of IFFT must be in the hardware domain (HW) but all
other methods must be in the software domain (SW). This can
be specified by introducing two synchronizing FIFOs with the
following interfaces:
interface SyncHtoS#(type t)
(HW) Action enq(t val)
(SW) Action deq()
(SW) t first()

interface SyncStoH#(type t)
(SW) Action enq(t val)
(HW) Action deq()
(HW) t first()

These synchronizing FIFOs are inserted in the original Vorbis code,
and two new rules are introduced in the HW domain to transmit
data to and from the IFFT as shown below:
module mkPartitionedVorbisBackEnd(VorbisBackEnd#(t))
IFFT#(Complex#(t)) ifft <- mkIFFT();
Window#(t) window <- mkWindow();
SyncS2H#(Vector#(2*MAX, Complex#(t)))inSync<-mkSyncS2H;
SyncH2S#(Vector#(2*MAX, Complex#(t)))outSync<-mkSyncH2S;
method Action input(vx)

Vector#(2*K,Complex#(t)) v;
for(int i = 0; i < K; i++)

v[i] = preTable1[i]*vx[i];
v[K+i] = preTable2[i]*vx[i];

inSync.in(2*K,v)
rule feedIFFT

let rv = inSync.first(); inSync.deq();
ifft.input(rv);

rule drainIFFT
let rv = ifft.output(); ifft.deq();
outSync.enq(rv);

rule xfer
let x = outSync.first(); outSync.deq();
Vector#(2*K,t) v;
for(int i = 0; i < 2*K; i++)

v[i] = x[bitReverse(i)].real;
window.input(v);

rule output
let rv = window.output(); window.deq();
AUDIO DEV.output(rv);

Though moving the design from a single domain to multiple do-
mains required modifying only a few lines to code, we have intro-
duced buffering along the HW/SW cut. In general such buffering
can change the behavior of the design. However if we restrict such
changes to interfaces that are latency-insensitive, then such changes
are correct by construction. This property of interfaces also enables
modular refinement of a design; moving a module from hardware
to software is modular refinement [38]. A method to automatically
verify these types of refinements is discussed by Dave et al [22].

Domain Polymorphism: BCL also allows domain names to be
passed as (type) parameters. This permits us to write very general
partitioned codes where a domain can be moved from software
to hardware or vise versa without changing the source code. We
illustrate this next.
interface Sync#(type t, domain a, domain b)
(a) Action enq(t val)
(b) t first()
(b) Action deq()

We can then declare the internal synchronizers in the following
manner, where a is a free type variable:
Sync#(Vector#(2*MAX, Complex#(t)), a, HW)

inSync <- mkSync();
Sync#(Vector#(2*MAX, Complex#(t)), HW, a)

outSync <- mkSync();

The resulting Vorbis module is fully polymorphic in its domain
type. If the parameter a is instantiated to HW, the compiler will re-
place the synchronizers with lightweight FIFOs since no actual syn-
chronization is necessary. If the domain type variable a is instanti-
ated as “SW” then the synchronizers would become mkSyncHtoS
and mkSyncStoH respectively. In other words, a very general par-
titioned code may insert more synchronizers than necessary for a
specific partition, but these can be optimized by the compiler in a
straightforward manner.

4.3 Generating Partitions
We can extract the code for a particular domain D by removing
all the rules not annotated with D from the partitioned code once
type checking has completed. As shown in Figure 6, the hardware
partition of the mkPartitionedVorbisBackEnd module will contain
the rules feedIFFT, and drainIFFT, and the software parti-
tion will contain the rest. Once separated, each partition can now
be treated as an distinct BCL program, which communicates with
other partitions using synchronizer primitives. The overall seman-
tics of the original (un-partitioned) program will preserved, since
the synchronizers enforce the property of latency-insensitivity. We
refer to the data-flow graphs describing such partitioned programs
as LIBDNs (Latency-Insensitive Bounded Dataflow Graphs)[39]. If
used correctly, the Sync FIFOS in the BCL programs are equivalent
to LIBDN FIFOs.

IFFTwin
drainIFFT

feedIFFT
input

output xfer
inSync

outSync

SW (C++) HW (Verilog)Sync FIFOS
feedIFFT

inSync inSync

outSync outSync

arb
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Figure 6. Each BCL program compiles into three partitions:
HW,SW,and Interface. Each synchronizer is “split” between hard-
ware and software, and arbitration, marshaling, and de-marshaling
logic is generated to connect the two over the physical channel.

4.4 Mapping Synchronizers
In addition to the generation of the HW and SW partitions as shown
in Figure 6, the compiler must generate code to connect the two on
a particular platform. A partitioned code often requires more syn-
chronizers than the number of physical channels available in a sys-
tem (typically one, in the form of a bus). In addition to arbitration
of the physical communication substrate among multiple LIBDN
FIFOs, the compiler handles the problem of marshaling and de-
marshaling messages. For example, in our program we specified
atomic transfers at the audio-frame granularity, but the transmis-
sion of these “messages” occurs at a granularity which is dictated
by the physical substrate. Through analysis, the compiler is some-
times able to transform the marshaling and demarshaling loops into
more efficient burst transfers.

The low-level details of bus transactions or on-chip networks are
tedious and ever-changing. For each “supported” platform, these
must be manually abstracted as simple get/put interfaces. Using
such interfaces, the BCL compiler synthesizes the appropriate hard-
ware and software to map the LIBDN FIFOs onto the available



physical channels. With the use of sufficient buffering and virtual
channels representing each LIBDN FIFO, we can guarantee that
no new deadlocks or head-of-line blocking will be introduced. Our
compiler generates the necessary software and hardware infrastruc-
tures, assuming that the HW partition fits on a single FPGA. Flem-
ing et al. have synthesized a a similar communication infrastruc-
ture for multiple FPGA platforms [40]. It is possible to generalize
either scheme to handle multiple computational domains for arbi-
trary physical topologies.

4.5 Implementing the IFFT Module in BCL
Our partitioned example now assumes that the IFFT functionality
will run in hardware, but we have not yet shown how BCL can be
used to design efficient HW. There is substantial literature on this
topic, but here we provide a short discussion in terms of IFFT which
also illustrates the tradeoffs between hardware and software quality.
Though the IFFT interface was specified to operate on dynamic
sizes, the resulting mechanism needlessly obscures the discussion.
Therefore, we present the subsequent designs assuming a fixed
frame size of sixty-four, though the reasoning applies equally to
the fully flexible design.

Unpipelined: Perhaps the most natural description of the IFFT is
the nested for loop contained within a single rule, shown below:
module mkIFFTComb(IFFT#(k, t))

FIFO#(Vector#(k, t)) inQ <- mkFIFO()
FIFO#(Vector#(k, t)) outQ <- mkFIFO()
method Action input(Vector#(k,t) x)
inQ.enq(x)

rule doIFFT
let x = inQ.first(); inQ.deq();
for(int stage = 0; stage < 3; stage++)

for(int pos = 0; pos < 16; pos++)
x = applyRadix(stage, pos, x);

outQ.enq(x);
method Vector#(k,t)) output()
return outQ.first();
method Action deq()
outQ.deq();

In this module, all the computation is done by the doIFFT rule,
but to correctly implement the asynchronous interface, two FIFOs
are used to buffer values. In software, the rule will compile into
efficient loops, while in hardware they will be fully unrolled into
a single block of combinational logic. Anyone with experience in
hardware design will recognize that this circuit will produce an
extremely long combinational path which will need to be clocked
very slowly.

Pipelined: A better implementation would compute each stage of
the IFFT in separate cycles. This cuts the critical path in hardware
and introduces interesting pipelining opportunities. To do this we
need to add some extra buffering in the form of additional FIFOs:
module mkIFFTPipe(IFFT#(k, t))

Vector#(4,FIFO#(Vector#(k, t))) buff <- replM(mkFIFO);
method Action input(Vector#(k,t) x)
buff[0].enq(x);

for(stage = 0; stage < 3; stage++) // gen. the rules
rule stageN

let x = buff[stage].first(); buff[stage].deq();
for(int pos = 0; pos < 16; pos++)

x = applyRadix(0, pos, x);
buff[stage+1].enq(x);

method Vector#(k,t) output()
return buff[3].first();
method Action deq()
buff[3].deq();

The for-loop which encloses the rule stageN is meta-syntax for
writing three rules manually. These rules are generated by unfold-
ing the loop. Consequently, in this module each stage is represented
by a single rule which can fire independently. The implicit condi-
tions (formed by the internal conditions on the FIFOs) in each stage

rule enforces the necessary data dependencies to guarantee correct
results are generated.

When compiling mkIFFTPipe to software we want to exploit
data locality and process a single frame at a time, a task which
can be accomplished by executing each IFFT stage in data-flow
order. This reconstruction of the original outer-level loop and has
the effect of “passing the algorithm over the data”. In hardware,
on the other hand, we want to exploit pipeline parallelism and in
each clock cycle run each rule once on different data, an approach
which can be characterized as “passing the data through the algo-
rithm”. There are a host of other variations on this pipeline which
are easily specified in BCL which we do not discuss for the sake
of brevity. It should be noted that as the implementations become
more “hardware-friendly” the task of synthesizing efficient soft-
ware often becomes increasingly challenging.

5. Kernel of BCL
The kernel of BCL that we describe in this section consists of
the language once type checking has been performed, all modules
have been instantiated, and all meta-linguistic features have been
eliminated by a compiler phase known as static elaboration. We
explain the main features of kernel BCL intuitively; an SOS-style
semantics of kernel BCL can be found in [37].

BCL Grammar: The grammar for BCL is given in Figure 7. A
BCL module consists of 3 major parts: a set of state element vari-
ables (i.e.,registers or other module instantiations), a set of guarded
atomic actions or rules which describe the internal state changes,
and a set of methods which implement the interface through which
the rest of the design interacts with this module. The Module defi-
nition includes a constructor argument list [t], and each module in-
stantiation Inst contains a list of values [v] to be passed to the mod-
ule constructor when building a module hierarchy. A BCL program
consists of a list of module definitions with one module specified
as the root or the main program. Instantiating the root recursively
instantiates the entire program state.

m ::= Module mn [t] // Name, Argument list
[Inst mn n [c]] // Instantiate state
[Rule n a] // Rules
[ActMeth n λt.a] // Action methods
[ValMeth n λt.e] // Value methods

v ::= c // Constant Value
‖ t // Variable Reference

a ::= r := e // Register update
‖ if e then a // Conditional action
‖ a | a // Parallel composition
‖ a ; a // Sequential composition
‖ a when e // Guarded action
‖ (t = e in a) // Let action
‖ loop e a // Loop action
‖ localGuard a // Local guard action
‖ m.g(e) // Action method call g of m

e ::= r // Register Read
‖ c // Constant Value
‖ t // Variable Reference
‖ e op e // Primitive Operation
‖ e ? e : e // Conditional Expression
‖ e when e // Guarded Expression
‖ (t = e in e) // Let Expression
‖ m.f(e) // Value method call f of m

op ::= && | || | ... // Primitive operations
pr ::= [m] (mn,[c]) // BTRS program

Figure 7. BCL Grammar

Rules: A rule in BCL is a guarded atomic action, and whenever a
rule is evaluated it yields a Boolean guard value and a set of state
(register) updates. If the guard is true then the system is allowed



A.1 (a1 when p) | a2 ≡ (a1 | a2) when p
A.2 a1 | (a2 when p) ≡ (a1 | a2) when p
A.3 (a1 when p) ; a2 ≡ (a1 ; a2) when p
A.4 if (e when p) then a ≡ (if e then a) when p
A.5 if e then (a when p) ≡ (if e then a) when (p ∨ ¬e)
A.6 (a when p) when q ≡ a when (p ∧ q)
A.7 r := (e when p) ≡ (r := e) when p
A.8 m.h(e when p) ≡ m.h(e) when p
A.9 Rule n if p then a ≡ Rule n (a when p)

Figure 8. When-Related Axioms on Actions

to make a transition to the new state, i.e., update the state. If the
guard is false then the rule has no effect. As discussed in Section
4, a scheduler selects a rule to execute. Since several different rules
can have their guards true in a given state, the choice of which rule
to execute can lead to different execution paths. This source of non-
determinism is an important aspect of BCL.

Actions: The primitive action in BCL is the assignment of a value
to a register, written as “r := e”. Since expressions are guarded,
it is possible that in a given state, e’s guard may be false, that is, e
is not ready to be evaluated. By the axioms described in Figure 8,
the guard on entire assignment action is false, and the value stored
in r is not updated.

Two actions can be composed either in parallel or in sequence
to form a bigger atomic action. If A1|A2 are composed in par-
allel both observe the same initial state and do not observe each
other’s updates. Thus the action r1:=r2 | r2:=r1 swaps the val-
ues in registers r1 and r2. If both A1 and A2 try to update the
same register, the parallel action is illegal and generates a DOU-
BLE WRITE ERROR. Sequential composition is more in line with
other languages with atomic actions. The action A1;A2 represents
the execution of A1 followed by A2. A2 observes the full effect
of A1. No other action observes A1’s updates without also observ-
ing A2’s updates. In both cases, a guard failure in the evaluation of
either action invalidates the composed action.

Conditional versus Guarded Actions: BCL has both conditional
actions (ifs) as well as guarded actions (whens). These are similar
as they both restrict the evaluation of an action based on some con-
dition. The difference is their scope of effect: conditional actions
have only a local effect whereas guarded actions have a global ef-
fect. If an if’s predicate evaluates to false, then that action doesn’t
happen (produces no updates). If a when’s predicate is false, the
subaction (and as a result the whole atomic action that contains it)
is invalid. One of the best ways to understand the differences be-
tween ifs and whens is to examine the axioms in Figure 8.

Axioms A.1 and A.2 collectively state that a guard on one action
in a parallel composition affects all the other actions. Axiom A.3
deals with a particular sequential composition. Axioms A.4 and
A.5 state that guards in conditional actions are reflected only when
the condition is true, but guards in the predicate of a condition
are always evaluated. A.6 deals with merging when clauses. A.7
and A.8 translate expression when-clauses to action when-clauses.
Axiom A.9 states that top-level whens in a rule can be treated as an
if and vice versa.

localGuard(a), instead of propagating a guard failure in ac-
tion a to the enclosing rule, effectively converts a to noAction.
This gives the programmer the power to indirectly predicate be-
havior upon implicit guard failures and can be used to construct a
dynamic-length sequence of atomic actions. For example, we might
want to implement a “non-atomic atomic loop”, in which the loop
body itself is atomic, but loop termination is triggered by the final
guard failure as shown below:
cond reg := true;
loop (cond reg = true)
cond reg := false;
localGuard {<loop body> | cond reg := true}

Expressions: The only thing special about expressions in BCL
is guards. However guards in expressions can be lifted to the top
expression using axioms which are similar to the when-axioms for
actions in Figure 8. After when lifting, we end up with “e when
g” where both e and g are free of guards.

Module boundaries represent a slight complication in lifting
guards. It is best of think of every method call f(e) as a pair of
unguarded method calls fb(e) and fg(e) containing the method
body and guard respectively. Any invocation of f(e) can be re-
placed with the expression “fb(e) when fg(e)”.

Strict Method Calls and Non-Strict Lets: BCL has non-strict
(sometimes called lazy) lets and procedure calls. Consequently spu-
rious let bindings have no effect and we have more powerful alge-
braic laws for program transformation. However, BCL has strict
method calls because each method represents a concrete resource,
a port, in our implementation. Thus we expect the semantics of the
program to be affected if a module is merged with the surrounding
module.

6. Implementing BCL
We have implemented a compiler which generates a C++ imple-
mentation of the software partition of a BCL specification. This is
then compiled, along with some libraries, into an executable pro-
gram. For hardware partitions, our compiler generates BSV, which
is compiled into Verilog using BSC from Bluespec Inc. We dis-
cuss software generation at length but describe hardware generation
only briefly because it has been published elsewhere.

6.1 Shadowing State
At a high level, the software implementation of BCL can be ex-
plained by pointing out the differences between rule-based systems
and Transactional Memory. Both these systems have the lineariz-
ability property, that is, the semantics of the system are under-
standable by executing rules (transactions) in some sequential or-
der. However, the implementation techniques for the two systems
are quite different. In TM systems, multiple transactions are exe-
cuted eagerly, and all except one are aborted if a conflict is detected.
Upon failure, TM systems transfer control back to the transaction’s
boundary, and the transaction is re-executed. In TM systems, con-
flicts are typically defined in terms of read/write conflicts, though
more sophisticated schemes exist. The challenge in the implemen-
tation of TM systems is to find low-cost mechanisms for detecting
conflicting transactions and rolling back the computation in case
of an aborted transaction. The possibility of a rollback invariably
requires shadow states or check-points.

The implementation of rule-based systems such as BSV and
BCL, on the other hand, pre-schedule rules in such a way that
conflicting rules are never executed simultaneously. Thus, there is
no need for dynamic conflict detection. Typically, many rule guards
are evaluated in parallel, and among the rules whose guards are
true, all non-conflicting rules are scheduled simultaneously. The
compiler does pair-wise static analysis to conservatively estimate
conflicts between rules. Thus, compilers for rule-based systems
construct a scheduler for each design using the static conflicts, as
well as dynamic information about which rules are ready to fire.

Even though we never simultaneously schedule conflicting
rules, our implementation still requires shadow states. In simple
designs all guards can be lifted out of the rule, and the scheduler
executes a rule only when its guard is true. In complex rules, not all
guards can be lifted, which leaves the possibility of internal guard
failure. It is this possibility of failure which necessitates shadows
in our system.

Parallel Composition: There is a complication which arises from
the fact that GAAs might contain internal concurrency (due to the
use of parallel action composition). In general, “A1 | A2” will



require creating two shadows of the incoming state to execute
A1 and A2 in isolation. After the execution of A1 and A2, the
copies will have to be merged into a single shadow. This merge
may produce a dynamic error if A1 and A2 modify the same state
element; such actions are illegal. The following example illustrates
this, where c1 and c2 are dynamic boolean expressions, f is a fifo,
and a and b are registers:
(if (c1) then a := f.first(); f.deq()) |
(if (c2) then b := f.first(); f.deq())

If c1 and c2 both evaluate to true and f is not empty then both the
sub-actions will attempt to dequeue the same element, which is an
error. Even if there is no danger of parallel merge errors, shadow
state is required, as illustrated by the following simple example,
which swaps the values of two registers: “a := b | b := a”.

6.2 Control Transfer
The C++ implementation of BCL programs can be described infor-
mally as follows: Each BCL module is implemented as a C++ class
definition. The user-specified rules and methods are implemented
as class member functions, and the sub-modules are implemented
as member variables. Each class definition is augmented with a
number of additional member functions and variables, which to-
gether constitute light-weight transactional run-time, and execution
strategy.

A copy of the original state is allocated at program start-up time,
and is referred to as the persistent shadow. This shadow is popu-
lated (in a change-log manner) as the rule executes. When a rule
executes to completion, the shadow state is committed to the origi-
nal program state. Consistency with the original state is maintained
by executing a rollback if a rule fails. Unlike the shadows for rule
execution, those required for parallel action execution are allocated
and de-allocated dynamically. We chose this approach because af-
ter optimizations, parallel compositions are relatively infrequent.

Because of the need for compositional method invocations,
guard failure is implemented using the C++ throw command,
which is always caught by the rule in which the action is being
executed. Hence, the structure of rule bodies is always a try/catch
block, with commit routines at the end of the try block and the nec-
essary rollback code in the catch block. The localGuard construct
also requires dynamic shadow creation and because it doesn’t prop-
agate rule failures, the C++ implementation of this construct also
uses try/catch blocks.

6.3 Code Transformation: Reducing the Cost
In this section, we discuss some simple transformations which can
drastically improve the code quality.

Lifting Guards: When executing a rule whose guard might fail,
it is preferable that it happen as early in the execution as possible,
since early failure avoids the useless execution of the remainder
of the rule body. Consider the following transformation of a BCL
expression:

(A1 when A1g | A2 when A2g)⇒
(A1 | A2) when (A1g ∧A2g)

By rules given in [37], it is possible to lift most guards to the top
level. In some cases, we can transform rules to the form “A when
E” where A and E are themselves guard-free. In this form, we
can guarantee that if E evaluates to ’True’, A will execute without
any guard failures. With this knowledge, we can avoid the cost
of using a try/catch block to detect guard failures in sub-module
method invocations, and also perform the computation in situ to
avoid the cost of commit entirely. The when-axioms (Figure 8) state
that guards cannot be lifted through the sequential composition
of actions or loops, which is why we cannot do away with state
shadowing all together.

Avoiding Try/Catch: Even when guards cannot be lifted com-
pletely, we can still improve the quality of code when all meth-
ods in a rule are inlined, or at least determine through static anal-
ysis that those remaining (methods on primitive modules) will not
fail. In this case, we can dispense with the top-level try/catch block
and instead handle all constituent when clauses explicitly, branch-
ing directly to the rollback code. Try/catch blocks in C++ are not
cheap, and this analysis proves to be quite effective. To illustrate
this optimization, consider the BCL rule “Rule foo {a := 1;
f.enq(a); a := 0}”. The code generated without method in-
lining is give in Figure 9, while the (far more efficient) code gener-
ated after method inlining is given in Figure 10.

void foo(){
try{
a s.write(0);
f s.enq(a s.read());
a s.write(1);
f.commit(f s);
a.commit(a s);

}catch{
a s.rollback(a);
f s.rollback(f);

}
}

Figure 9. without inlining

void foo(){
a s.write(0);
if(f s.can enq()){
f s.enq(a s.read());

else
goto rollback;

a s.write(1);
f.commit(f s);
a.commit(a s);

rollback:
a s.rollback(a);

}

Figure 10. with inlining

Sequentialization of Parallel Actions: The cost of shadowing for
parallel actions can be reduced by transforming them into an equiv-
alent sequential composition of actions. For example, (A | B) is
equivalent to (A ; B) if the intersection of the write-set of action A
and the read-set of action B is empty. The equivalence of (A | B)
and (B | A) gives us even more flexibility in finding an equivalent
sequential form. In addition, action methods invoked on the same
module but in parallel branches can be invoked in sequence if they
modify disjoint internal states. In both cases, since the two actions
were originally composed in parallel, their respective guards may
be lifted, giving us a sequential composition and the ability to guar-
antee that the second action will complete without a guard failure.
Since parallel composition is most naturally expressed in hardware
and sequential composition in software, recognizing these patterns
is important when implementing a “hardware” module in software.
Sometimes sequentialization of parallel actions is made possible by
introducing some shadow state (consider the swap example). Even
this turns out to be a win because static allocation of state is more
efficient than dynamic allocation.

Partial Shadowing: When we must create shadow state for an ac-
tion, we need not shadow the entire module: only those state el-
ements which can actually be modified by the action need to be
shadowed. This selective shadowing provides substantial savings
in many cases, and opportunities for these savings increase if we
inline methods or perform some static analysis. Loops and local-
Guard provide additional opportunities for partial shadowing.

Scheduling: In both hardware and software, the execution strategy
has a great impact on performance. The most important concern
in scheduling software is to choose a rule which will not fail,
since partial execution of any rule is wasted work (the cost of
partial execution and rollback). We are investigating the use of user-
provided scheduling annotations to improve compiler analysis, but
do not discuss it in this paper.

Parts of programs are sometimes identifiable as synchronous re-
gions in which case well-known static scheduling techniques are
applied [7]. When available, these synchronous guarantees can lead
to very efficient code generation in both hardware and software
implementations. Even without such synchronous guarantees, the
compiler can exploit data-flow analysis which may reveal that the



execution of one rule may enable another, permitting the construc-
tion of longer sequences of rule invocations which successfully ex-
ecute without guard failures, an important element in efficient soft-
ware. This strategy is most effective when the program data-flow
graph is sparse.

To illustrate the scheduling challenge, consider the following
rule, which transfers a single audio frame between a producer
module (p) and consumer module (c) non-atomically. If p empties
or c is full before the complete frame has been transferred, the
scheduler will attempt to complete the transfer during a subsequent
rule invocation:
rule xferSW when(True)
cond reg := true;
loop (cond reg = true && cnt < frameSz)
cond reg := false;
localGuard

cond reg := true ; cnt := cnt+1;
let w = p.output(); p.deq(); c.input(w)

The sequential composition inherent in loops is not directly imple-
mentable in HW. For a hardware implementation, we might instead
use a rule which transmits one word at a time, and rely on the sched-
uler to attempt to execute it once every HW clock cycle. The effects
of the resulting non-atomic transfer of a single frame is identical,
though the schedules are completely different:
rule xferHW when(cnt < frameSz)
let w = p.output(); p.deq();
c.input(w); cnt := cnt+1

Since one of our goals is to write code which can be moved be-
tween HW and SW with minimal changes, we need some way of
resolving these two very different idioms. In essence, we would
like to transfer a frame from p to c using xferHW with the same
efficiency as if we had used xferSW. If the SW scheduler invokes
xferHW in a loop, the overall performance of the transfer will not
suffer. If the rules in c require a complete frame before they are
enabled, any attempts to execute those rules by the scheduler be-
fore xferHW has been invoked ‘frameSZ’ times will be wasted
effort. By employing completely different schedules, we are able to
generate both efficient HW and SW from the same rules.

Finally, the software implementation presented in this paper is
single-threaded: an obvious scheduling improvement would be to
use multithreading to exploit rule-level parallelism. Work on this
front is ongoing, but beyond the scope of this paper.

6.4 HW Generation
Techniques for hardware generation from rules are well understood
and used successfully in the BSV compiler. The initial implemen-
tation of this tool was done by Lennart Augustsson, and was then
commercialized by Bluespec Inc. With the exception of loops and
sequential composition, BCL can be translated to legal BSV, which
is then compiled to Verilog using the BSV compiler. We give a
short sketch of the BSV compiler, and leave the reader to follow
the references for further details.

To implement a rule directly in hardware, we require some
notion of shadow state so that we can unwind a computation if
we encounter a guard failure in the evaluation. These shadows
can require a substantial hardware cost if they are implemented
via stateful constructs. However, if we store them ephemerally
in wires, they become cheap. The guard drives a multiplexer on
the registers holding the module state, which updates them only
if the guard evaluates to true. In synchronous hardware, we can
guarantee that all shadows are implementable in wires as long as
each rule is executed in a single clock cycle. This is the primary
optimization which enables the compilation of guarded atomic
actions into efficient synchronous circuits [17, 41, 42].

Since, loops with dynamic bounds can’t be executed in a single
cycle, such loops are not directly supported in BSV. A technique

has been proposed to introduce rules which can be executed over
multiple cycles [43] which provides a solution to this limitation.

7. Experiment and Results
The compiler we have implemented takes a BCL program as input,
partitions the design based on the use of synchronizer modules, and
outputs the following three components: (1) a C++ implementation
of the SW partition, complete with a concrete rule schedule and
a driver, (2) a BSV implementation of the HW partition, and (3)
infrastructural code to connect the two partitions on supported
platforms.

Mobile devices use ASIC implementations for HW accelera-
tion, and our compiler generates Verilog from which such ASIC
implementations can be synthesized. Since we do not synthesize
ASICs, HW/SW co-simulation is required to test our designs. This
type of simulation is very slow, so instead we have chosen an FPGA
platform on which to demonstrate our techniques. The conclusions
about the quality of the partitions are slightly skewed by the inferior
performance of an FPGA when compared to ASIC, but the goal of
this paper is not necessarily to determine the best partition for these
examples, but rather to demonstrate a technique. In spite of this, the
relative performance of modules running on the FPGA versus the
microprocessor gives us valuable insight.

We explored six different HW/SW partitions of the Vorbis de-
coder, as well as four different partitions of a realistic ray-tracer,
both implemented entirely in BCL. The performance numbers were
generated in the fully automatic mode to demonstrate the efficiency
of all components. We show that not only does the relative perfor-
mance of the various decompositions match our intuition, but that
the absolute performance of the full-software partition is competi-
tive with hand-written software. The performance of the generated
hardware has already been shown to be as good as hand-written
versions [2]. The quality of these results demonstrate the suitability
of BCL for all the use cases discussed in Section 1.

Experimental Platform: Our experimental setup is shown in Fig-
ure 11. The synchronizer modules operate on the PCI Express bus
as well as the internal Xilinx bus connecting the PPC440 to the
FPGA, and we ran the experiments in both contexts. Since the per-
formance characteristics of the embedded configuration are more
closely aligned with mobile platforms, we use it to generate all the
results reported in this section.

Desktop PC
PCIE XC5VFX70 FPGA

256MBDDR2

PPC440
mem
ctrl.

LL
ifc.

Xilinx M
L507

Figure 11. Experimental Setup

The software running on the microprocessor communicates di-
rectly to the hardware running on the FPGA through the LocalL-
ink™ interface using embedded HDMA engines. The synchroniz-
ers themselves form a thin layer on top of this link to provide a
FIFO abstraction. Through the synchronizers, we achieve a round-
trip latency of approximately 100 FPGA cycles, and are able to
stream up to 400 megabytes per second from DDR2 memory to the
FPGA modules. For these tests, we clock the PPC440 at 400 Mhz
and the FPGA at 100 Mhz.

7.1 Ogg Vorbis
The different HW/SW partitions are shown in Figure 12. The initial
stages of the Vorbis pipelined were written manually in C++, and
the back-end was specified in BCL. Once the code was written and
tested, the specification of the partitions and generation of results
required only a few hours.
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Figure 12. Ogg Vorbis partitions. (SW modules are shaded). The
output from the windowing function is always in SW (not shown)

We constructed a test bench consisting of 10000 Vorbis audio
frames, and all computation was done using 32-bit fixed point val-
ues with 24-bits of fractional precision. The performance results are
shown in Figure 13. This graph shows us is that moving computa-
tion to the hardware does not always speed up the execution; the
slowest partition is not the one which computes everything in SW
(F). In fact, partitions A and C are both slightly slower than F. We
know that each link between the HW and SW partitions has a cost,
and in order for the net speedup from moving a module from SW
to HW to be positive, the speedup observed in the module itself
must outweigh the cost of the communication. The performance
numbers show that moving the windowing function to HW is not
worth the communication overhead. Additionally, notice that the
effect of moving only the IFFT to HW is marginal. This is because
IMDCT FSMs invoke IFFT repeatedly to compute a single out-
put, and transferring this quantity of data between HW and SW is
costly. It should be noted that if the audio output could be driven
directly from a HW partition, the implementation of windowing in
HW would always improve performance. These are by no means
unexpected results; the novelty is that we are able to generate these
numbers with such ease.

Figure 13. Execution times of OggVorbis (left) and RayTrace
(right) partitions listed in FPGA cycles. SW implementations F1
and F2 are hand-coded SystemC and C++ respectively

To compare the performance of our language to more conven-
tional methods of HW/SW codesign, we implemented the pure
software partition (F) in SystemC and manually in C++. We chose
SystemC to establish an upper bound since it is widely used in
HW/SW codesign (though generally in the modeling of systems),
and the performance is considered by some to be realistic enough
to drive design decisions. We chose manual C++ as a lower bound,
since this is how embedded devices are commonly written. The
SystemC implementation is roughly 3x slower due to the required
overhead of modeling all the simulation events. The manual C++
version is slightly faster than the generated one, as it avoids all dis-
carded work or need for shadow state.

7.2 Ray Tracing
A realistic ray tracer was chosen as an additional application with
which to evaluate the use of BCL. Since scene geometries can be
quite large, memory bandwidth is often as important a concern as
the actual compute required to detect ray/geometry intersections.
Figure 14 shows the microarchitectural detail, as well as the four
HW/SW decompositions considered in this experiment

Once the geometry has been loaded to memory, the module la-
beled “BVH Ctor” performs an initial pass to construct a bounding
volume hierarchy (BVH). With the scene in this form, we can per-
form log(n) intersection tests instead of n in the number of scene
primitives. The module labeled “Ray Gen” constitutes the first step
of the pipeline, computing rays which originate at the camera posi-
tion and pass through each point in the field of view at a specified
granularity. The module labeled “BVH Trav” implements the core
of the ray tracing pipeline. As the algorithm traces a ray through the
scene, it traverses the BVH by repeatedly testing for intersection
with the sub-volumes, and finally with the geometry primitives at
the leaves of the tree. After a fixed number of reflections/refractions
are calculated, the final color is stored in a bitmap. Unlike the Vor-
bis example, which is amenable to pipeline parallelism, efficient
ray tracing requires us to exploit data parallelism.
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Figure 14. Ray tracing partitions with SW modules shaded

The performance numbers for ray tracing (Figure 13) were gen-
erated using a small benchmark consisting of 1024 geometry primi-
tives. This application provides a multitude of different partitioning
options, and we chose four which illustrate important properties of
the program’s data flow. The fastest partitioning given (C) has the
ray/geometry intersection engine implemented in hardware, and the
scene geometry stored in low-latency-access on-chip block RAMs.
Collision testing requires a substantial amount of arithmetic, which
we are able to accelerate through aggressive pipelining. Of course,
if the number of geometry primitives falls below some threshold,
a full SW implementation might be faster. Configurations B and
D, though they both use HW acceleration, are slower than the pure
software implementation because the savings in computation are
outweighed by the incurred cost of communication.

8. Conclusion
In this paper we have explored a new method for HW/SW codesign,
where instead of requiring precise interface specification a priori,
the user specifies the entire design, including the HW/SW decom-
position, in a single language. The resulting specification can be
used to generate precise implementations which encapsulate low-
level properties of the communication substrate inside the synchro-
nizer modules. We have implemented a complete system, including
a compiler and run-time, and have illustrated our approach using
examples written in BCL. We have shown that partitioning designs
in BCL is natural and easy and that the reduced effort of partition-
ing allows the programmer to concentrate exclusively on the per-
formance implications of the partitioning choices. BCL concedes
nothing in the quality of hardware or software that is generated.
The same exercise using conventional multi-language methodolo-
gies would require far greater effort.



Future work includes applying BCL to exploit multiple software
threads and multiple hardware substrates, the improvement of gen-
erated software through more complex analysis, the investigation
of additional HW/SW codesign platforms for exploring HW/SW
tradeoffs, and gaining more insight into which BCL patterns are
best suited for generating both efficient HW and SW.
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