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Abstract

In recent years, the inevitable need for reliable biometric identity management systems in

applications such as border crossing, welfare distribution, and accessing critical facilities has

drawn researchers’ attention to the area of biometric. The intrinsic limitations of unimodal

biometric systems such as non-universality, sensitivity to noisy sensor data, inter and intra

class variations and spoof attacks have resulted in significant attention toward multimodal

biometric systems. An important aspect of a multimodal biometric system is the fusion of

information from multiple biometric sources. This thesis focuses on using the notion of Re-

semblance Probability Distributions to calculate confidence measures for different biometric

matchers and use these confidence measures in the fusion module to improve the identifica-

tion rate of the system. This thesis approaches the problem of low inter class variation and

low quality data by proposing Rank List Reinforcement and Confidence-based Ranked List

Selection methods.
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Chapter 1

INTRODUCTION

Nowadays, the emerging need for reliable identity management systems has resulted in a

significant attention to this research domain. Identity management systems have been a

crucial component of infrastructures that require prevention of impostors from accessing

classified resources. These systems have a broad range of applications from government

usage, such as border crossing, welfare disbursement, and accessing critical facilities, to

more individual oriented usage, such as accessing social networks, accounts and web-based

services (e.g. on-line banking). The broad range of the applications and the crucial role of

identity management in these practices require identity systems that are able to offer a high

level of security.

The task of identity management systems is to give privileges to users based on com-

paring the information that users provide with the references stored in the database. Over

the years, different practices such as knowledge-based (password) and token-based (access

cards) are developed to register users to an identity management system. Even though these

approaches are easy to implement and have been used in many applications, losing, sharing,

and manipulation of these types of identity representations are probable and can endanger

the system security [1]. The above issues with conventional methods have shifted researchers’

and industry’s attention toward biometric-based security approaches, which cannot be stolen,

lost, manipulated, and shared [1].

Biometrics are human characteristics that are unique among different individuals. Hu-

man’s biometrics can be categorized into physiological and behavioral [6]. Figure 1.1 shows

some examples of physiological biometrics like face, ear, iris, fingerprint, palmprint, and

retina, along with some behavioral biometrics such as voice, signature, and gait. Appli-
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Face Ear Iris

Fingerprint Retina Palmprint

Voice Signature Gait

Physiological Biometric Traits

Behavioral Biometric Traits

Figure 1.1: Different types of physiological and behavioral biometrics. (Images downloaded
from Google image search)

cation domain and scenario determine the choice of proper biometrics. While biometrics

cannot be stolen (like access cards) or forgotten (like passwords), biometric systems exploit

the uniqueness of biometrics to identify users [6]. Moreover, biometric offers negative recog-

nition, which is a process that prohibits an impostor to claim multiple benefits using different

names (such as welfare disbursement) [6].

This thesis addresses the problem of designing a robust biometric security system in the

presence of multiple biometrics and varied quality user data. I develop a multimodal rank

level biometric system with a novel concept of resemblance probability distributions. Fur-

thermore, I validate it on databases with different characteristic to evaluate its performance.
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A summary of the thesis contributions is identified in Section 1.3 of this chapter.

1.1 Biometric Systems

Biometric systems exploit biometrics for user identification/verification. Practically, every

biometric system is comprised of two main modules, namely, enrollment and identifica-

tion/verification modules [7].

The enrollment module collects biometrics from genuine users and extracts representative

features from them. The extracted features accompanied with the identity of the users are

stored in a database as references. The identification/verification module collects biometrics

from individuals requesting access to the system, extracts the same features as enrollment

module and compares them with references in the database to determine their identity or

genuineness.

Biometric systems can be divided into unimodal and multimodal systems based on the

number of different biometrics or modalities they use [1]. Unimodal biometric systems use

one biometric to identify/verify the users of the system. Due to intrinsic limitation of using

a single biometric, these systems are not able to maintain a high performance as a result of

increasing the number of registered individuals. Multimodal biometric systems consolidate

more than one biometric or modality to improve the performance of the system.

Different biometrics or modalities provide the system with more information about the

users. A multimodal biometric system benefits from this extra information to increase its

precision and is expected to have a higher identification rate than unimodal systems based on

each of the modalities [8]. The use of a proper fusion technique is essential in consolidating

multimodal information. The improper selection of the fusion technique can negatively

impact system performance and would result in a low precision, which can be even lower

than each unimodal system. Designing an effective fusion module is one of the challenges in

multimodal biometric systems [1].
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1.2 Key Challenges of Biometric Systems

The introduction of biometric authentication provided the security systems with compelling

advantages over traditional password and token-based systems [6]. Even though biometrics

have been deployed in real world security systems, there are some challenges associated with

such integration, mostly caused by the increase in the number of users, the quality of data,

and the system design. Here, I detail some of the key challenges for these systems:

Noisy data: Noise is unrelated data that is associated with acquired data. It can be as

a result of unmaintained acquisition devices (such as dirt of fingerprint sensor) or environ-

mental conditions (such as poor illumination for capturing face images or noisy environment

for recording voice biometric). Noise can degrade the quality of acquired biometric and as a

result, it can affect the system precision. Noisy data may cause rejection of genuine users [9].

Intra-class variation: The intra-class variation issue is the large variance between the

feature points of one class. This can happen in situations where proper features are not

extracted from the biometric as well as issues with the sensor, the interaction of the user

with the sensor (e.g. tilted head while capturing face biometric), changes in the person’s

biometric over time and environmental conditions such as different lighting or noise. The

intra-class variation can be partially addressed by storing multiple instances of biometrics

for each user and updating the instances frequently [10].

Inter-class similarity: The similarity between extracted features of different users

causes an overlap between their classes. This overlap increases the false recognition rate

of the biometric system. Intra-class similarity can be caused by improper feature selection

or inherent similarity of some biometric classes (for example the face biometric of identical

twins). The number of users registered in the system also affects the inter-class similarity.

Increasing the number of users for the same feature set and system configuration can have

a negative impact on the system precision [11].

Non-universality: Universal biometric is a biometric that can be obtained from a large

4



set of users. Some biometrics such as iris or signature suffer from the non-universality. For

example a blind person cannot register to a biometric system based on iris and also an

illiterate is unable to provide a signature. The non-universality of a biometric increases the

failure to enrollment [11].

Spoof attacks: Spoof attack is the altering of biometrics in order to cause failure in

recognition or creating artificial biometrics of someone’s biometric to maliciously access the

system. Examples of spoof attack are changing someones fingerprint by scratching the finger

to avoid recognition as well as artificially creating a fingerprint sample of a person. Spoof

attack is more probable in behavioral biometrics such as voice or signature, since someone can

imitate the same biometric as somebody else. The spoof attack can be addressed by checking

the aliveness of the subject in case of physical biometric and requiring challenging-responses

for behavioral biometric [7].

Security: Since biometrics are intrinsic characteristics of individuals, the leaking of

biometrics from the system’s database is the violation of users’ privacy. Violation of this

privacy not only endangers the current system, but also endangers all the other accounts of

users that work with the same biometrics and can result in spoof attacks [12].

The aforementioned challenges in biometric systems can be addressed by using multiple

biometrics [1]. The extra information provided by using more than one biometric can com-

pensate for noisy data coming from one of the biometric sources. This extra information

can also improve the intra-class variation and inter-class similarity. Multimodal biometric

systems can also be configured in order to compensate for lack of one biometric to address

the non-universality issue. Using multiple biometrics makes the spoof attack harder since

the impostor needs to provide more than one biometric of a user.
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1.3 Contributions of the Thesis

This thesis focus is on increasing the identification rate in the multimodal biometric system.

The main contributions lie in proposing novel approaches for rank level fusion in biometric

system based on the idea of resemblance probability distributions. A summary of research

contributions in this thesis is as follows:

• Introducing the notion of Resemblance Probability Distribution (RPD) that

can be used as a supplementary information along with the ranked list of each

biometric matcher to improve the recognition rate and accuracy of the system.

• Proposing the concept of ranked list reinforcement in order to utilize the RPDs

in rank level fusion multimodal biometric system (Outcomes appeared in [13]).

• Proposing a novel confidence-based ranked list selection procedure based on

RPDs to address the problem of noisy data and inter-class similarity (Out-

comes appeared in [14]).

• Augmenting the system with the ranked list reinforcement and confidence-

based ranked list selection, which increases the confidence of the lists and

results in a higher accuracy in the final decision.

• Generalizing the notion of RPDs to clusters of users and adapting the ranked

list reinforcement and confidence-based ranked list selection approaches to

operate on clusters.

In addition to the major research contributions, there are the following experimental and

development contributions:

• Investigating the effect of reduction of the number of clusters on the multi-

modal system performance.
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• Studying the effect of correlated biometrics e.g. frontal face, profile face, and

ear and uncorrelated biometrics e.g. frontal face, ear, and iris to evaluate the

performance of the proposed RPD based fusion techniques.

• Implementing and testing unimodal biometrics systems for frontal face, profile

face, ear, and iris.

• Developing and testing an architecture for multimodal rank level fusion system

with three biometric modalities.

A detailed description of methodology to achieve those contributions is presented below:

• Contribution 1. In this thesis, I introduce the notion of Resemblance Prob-

ability Distribution (RPD). RPDs capture the resemblance of different users

based on the distance of their data points in the feature space. RPDs of all

the registered users are a representation of feature points distribution. The in-

formation provided by RPDs can be used as supplementary information along

with ranked list of each matcher to improve the recognition rate and accuracy

of the system. RPDs can be utilized in various ways to provide extra infor-

mation about the underlying data that matchers use to make their decisions.

Here, I use RPDs along with the rank level fusion for multimodal biometric

systems. Rank level fusion is a relatively new trend and has not been studied

as other levels of fusion such as score level and decision level. Unlike score

level, there is no need for normalization in rank level and this can prohibit

the large computational complexity and inaccuracy of final decision due to

improper normalization technique. The rank level is not as abstract as deci-

sion level, which only provides the final decision of matchers. Furthermore,

some off-the-shelf biometric matchers only provide the ranked lists and rank

level fusion is the only feasible consolidation technique for them. Here, I pro-
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pose two approaches, namely ranked list reinforcement and confidence-based

ranked list selection, to use this valuable information in rank level fusion to

improve the final decisions’ accuracy.

• Contribution 2. In order to utilize the RPDs in rank level fusion, I propose the

concept of ranked list reinforcement. In multimodal systems, the improvement

of recognition rate using different modalities is because of using information

about different aspects of the subjects. In the ranked list reinforcement, I

took one step further and re-ordered each ranked list based on information

provided by RPDs and other ranked lists. The correlation analysis between

the RPDs of each user and ranked lists can reveal information about the con-

fidence of ordering in ranked lists. Utilization of RPDs in this manner can

alleviate the misclassification due to low quality data and inter-class similarity

of modalities. In essence, the reinforcement offers a new rank for each identity

in each ranked list by considering its current rank and the confidence of all

the other lists about this identity being the actual user’s identity. The ranked

list reinforcement increases the confidence of the lists and results in a higher

accuracy in the final decision.

• Contribution 3. This thesis also proposes a novel confidence-based ranked

list selection procedure based on RPDs. Different biometrics have different

discrimination ability for recognizing users. This discrimination ability can be

considered as a global factor that describes how each matcher works in total.

Apart from this fact, the discrimination ability of each biometric matcher can

be different for different users. Users with unique biometrics can be recognized

with a higher confidence while users with less unique biometrics might be

misclassified as other users. The novel confidence-based ranked list selection

procedure considers the confidence of each matcher for each test query and
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finds the best set of ranked lists to provide the highest confidence for any

specific test query. This approach selects ranked lists adaptively based on

their performance for each test query so that it utilizes the ranked lists that

possess the maximum discrimination for that specific test query. Confidence-

based ranked list selection procedure is also able to address the problem of

noisy data and inter-class similarity by adaptively ignoring the results from

matchers that produce ranked lists with low confidence values.

• Contribution 4. This thesis also generalizes the idea of resemblance prob-

ability distributions to clusters of users. Users can be clustered based on

the extracted features from their biometrics. Clustering of users provides the

system with faster response time and lower time complexity. The clusters’

resemblance probabilities can be utilized with both ranked list reinforcement

and confidence-based ranked list selection approaches with some minor modi-

fications.

• Contribution 5. The number of clusters is an effective factor for a reasonable

recognition rate. Decreasing the number of clusters results in considering less

information from the distribution of data, while it improves the response time

of the system. This thesis also analyses the trade-off between the response

time and the accuracy of the system. The analysis of this trade-off can provide

insights on the optimum number of clusters depending on the application.

• Contribution 6. Multimodal biometric systems have the highest performance

when there are low correlations between the inputs of the fusion module.

Highly correlated inputs will not provide new insight about the user and it

would work the same as a unimodal system. Here, I studied the effect of

correlated biometrics e.g. frontal face, profile face, and ear and uncorrelated

biometrics e.g. frontal face, ear, and iris to evaluate the performance of RPD-

9



based fusion techniques. This analysis provides insights on how to select a

proper set of biometrics as the input of a multimodal system and it also sheds

light on the effectiveness of RPDs in fusion.

• In addition to above, I have implemented and tested unimodal biometrics

systems for frontal face, profile face, ear, and iris. The soundness of this

individual systems is a key to a successful multimodal system. These unimodal

systems are also important to compare the effectiveness of multimodal systems.

• I have developed and tested an architecture for multimodal rank level fusion

system with three biometric modalities. Testing the system using various

rank level fusion techniques and the approaches based on RPDs shows the

effectiveness of RPDs in rank level fusion.

1.4 Proposed Methodology

The main focus of this thesis is to improve the accuracy of multimodal biometric rank level

fusion system. The system works with three biometrics, namely face, ear, and iris, which are

all captured from the facial area. Face is a common and accepted biometric for identification.

Face is an available and universal biometric that is unique and difficult to circumvent. The

performance of face biometric is another factor that makes it common in biometric systems.

Although acquiring iris images are costly, they provide unique patterns that make them

discriminative to use as a biometric for person recognition. Since ear is also extracted from

the facial region, it makes the system more focused on a same region of the human body

and easier to implement for real world applications. Different matchers are used to classify

these individual biometrics. The result of the biometric matchers are used as inputs to the

RPD-based rank level fusion module. The ranked list reinforcement and confidence-based

ranked list selection approaches and their extension using clustering are the proposed RPD-
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based fusions that help the system to make the final decision with a higher accuracy. These

methods will be extensively tested and proven to be efficient in chapter 5.

1.5 Organization of the Thesis

The thesis has been organized as follows: Chapter 1 provided an introduction on biometric

system design and the challenges in this area. It also mentioned the summary of contributions

and a big idea on the design of the proposed multimodal system.

Chapter 2 covers the background on multimodal biometric systems by comparing two

different objectives of these systems. It explains the advantages of using different modali-

ties/biometrics for a biometric system and then provides information on different levels of

fusion for these modalities. At the end, it looks deeper at the rank level fusion methods,

which are the focus of this thesis.

The architecture of the multimodal biometric system is described in chapter 3. It starts

by explaining the overview of the system and then illustrates the biometric matchers for

frontal face, profile face, ear, and iris. The hierarchical clustering is also described for the

clustering-based RPDs approaches.

The novel notion of resemblance probability distributions is introduced in chapter 4.

Ranked list reinforcement and confidence-based ranked list selection are proposed as two

approaches using RPDs to improve the recognition rate of the system. The notion of RPDs

is also extended to clusters of users in order to provide the system with a lower response

time.

Experimentation has been conducted on proposed methods to show their effectiveness

and their ability to improve the recognition rate of the rank level fusion. The results of this

experimentation and the effect correlation between modalities are illustrated in chapter 5.

Chapter 6 concludes the thesis by providing a summary of the work and the contributions.

It also provides possible future directions for this research.
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Chapter 2

MULTIMODAL BIOMETRIC SYSTEMS

There are several factors needed for a biometric to be considered as optimal. A perfect

biometric is one which is unique among different individuals, universal, so that any individual

can be registered, permanent, collectible and secure [1]. There is no single biometric that

can satisfy all these properties. Multimodal biometric systems are used to alleviate this

issue. In such systems, more than one biometric is used to authenticate the users. Using

multiple biometrics creates a more unique pattern for each user and makes the system more

secure. Due to the advantages provided by multimodal biometric systems, they have been

considered as a replacement for unimodal ones.

This chapter explains the basics of biometric systems and the advantages of multimodal

biometric systems. It will explain also different scenarios in a multimodal biometric system

from the information source point of view. Then, different levels of fusion are discussed and

post-mapping fusions are explained in more details. At the end of the chapter, well-known

rank level fusion approaches that are going to be used for the experimentation are covered.

2.1 Biometric Systems

Biometrics is the science of recognizing humans based on their measurable unique char-

acteristics [15]. Computer systems have been adapted to measure and analyze biometric

characteristics to address the problem of identity establishment. These biometric systems

comprise four building blocks, which are sensor, feature extraction, matching, and decision

modules [6], as depicted in Figure 2.1.

The sensor module is responsible for acquiring biometric information. It can be a camera

capturing face pictures, or a microphone that records voice samples of human. The input to
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the feature extraction module is the acquired biometric from the sensor module. This module

is responsible to extract representative and discriminative features from the input data.

A good feature extraction module is the one that does not differentiate between different

samples of the same user (high intra-class similarity) and perfectly separates different users

(high inter-class variance). The extracted features are stored in a database as templates.

The sensor module and feature extraction together form the enrollment section of a biometric

system. The matching module is responsible for comparing extracted features from new test

queries with the templates in the database to determine the degree of their similarity. Based

on the similarity metrics from the matching module, the decision module takes the final

authentication decision. Some biometric systems also utilize a quality assessment module

after the sensor module in order to ensure that the acquired biometric sample is following

the required standards. [6].

Biometric systems can be used for the purpose of verification and identification. In

verification, the system is required to answer “Am I the person I am claiming?”. In this

case, the test template of the person is compared with the stored template of the identity

that is claimed [1]. Based on the similarity between these two, the system decides to accept

or deny the test template. In the verification process, the test query is compared with only

one template in the database [6]. The action of verification is done in daily life for the

purpose of accessing back account, accessing email, etc.

In identification, the system answers to “Who is the person that provided this biometric?”

question. In this process, the test query of a person is compared to all the registered users in

the database. The identification can be a closed-set or open-set. In closed-set identification,

the system considers that the person providing the biometric is indeed in the database

and then tries to identify [16]. In open-set identification, the task is twofold. The system

requires to figure out whether the person is registered to the system and then identifies

him/her. Open-set identification is also known as “watch-list” [16]. Figure 2.1 demonstrates
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the enrollment, verification and identification process in a biometric system.

In this thesis, the designed system is a closed-set identification system that works with

face, ear and iris biometrics.

2.2 Advantages of Multimodal Biometric Systems

Usage of multiple modalities to recognize the identity of users provides the system with

several advantages. Improving the recognition rate, decreasing the number of errors in en-

rollment of users, and enhancing the system security can be considered as the most important

benefits of using multimodal biometric systems [17].

Utilizing multiple biometrics provides more information about the identity of users and

this information can be used in order to make a more reliable decision on the identity of the

user. For example, it is quite possible to have two individuals in the system with similar

faces, which makes the identity recognition hard for a unimodal system. It is quite unlikely

that people with similar faces also have similar fingerprints. This extra information helps

the system to enhance the recognition rate. On the other hand, the effect of noise and low

quality biometrics on the final recognition result can be decreased by using more than one

biometric.

By using multimodal biometrics, it is possible to address the problem of biometric non-

universality. The non-universality is the fact that some individuals in the population cannot

provide certain biometrics or their biometrics are not suitable for recognition [18]. For

example, some blind individuals cannot provide iris biometric. Many multimodal biometric

systems are able to work in case one of the biometrics is missing and use the other biometrics

to recognize the identity of the user.

In order to pass the identification layer, an impostor should provide the multimodal

biometric system with more than one biometric simultaneously. Using multiple biometrics

makes the penetration of the system harder and yields to a higher security level. Some
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Figure 2.1: The enrollment, verification and identification process in a biometric system [1].
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multimodal biometric systems take a step further and try to challenge the user by asking

different subsets of biometrics at the identification time [1].

2.3 Information Sources for Multimodal Biometric Systems

Multimodal biometric systems utilize multiple sources of information to identify individuals

[19]. The two important design considerations in a multimodal biometric system are the

decision on the information sources and the fusion method to consolidate the information [1].

In this section different information sources are introduced and the different fusion methods

are covered in the following sections. Based on the information sources, there are six different

architectures for multimodal biometric systems [1]. These configurations are as follows [1]:

Multiple sensors - one biometric: These systems capture information about a

single biometric using different sensors to get different representations of the biometric. For

example, capturing the biometric with 2D, 3D, and X-ray cameras. If a user lacks that

specific biometric (non-universality), this type of system would not be usable.

Multiple instances - one biometric: In this category, biometric systems use multiple

instances of one biometric to make a recognition decision. For example, the image of retina

from both right and left eyes are captured. These systems are efficient since they only need

one type of sensor and feature extraction algorithm, while they still suffer from the same

issues of correlated biometrics and non-universality.

Multiple algorithms - one biometric: These systems use multiple algorithms to

extract features and match one biometric. For example, face matching using eigenfaces,

geometry-based methods and dynamic link architecture. These systems can address the

issue of correlated biometrics by selection algorithms which produce uncorrelated feature

spaces. These systems still suffer from the non-universality issue.

Multiple samples with single sensor - one biometric: These systems capture

multiple samples of a single biometric using the same sensor. For example, taking pictures
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of face with different facial expressions and then using them to create a composite face image.

Multiple biometric: These systems utilize multiple biometrics to recognize users. For

example, the proposed system in this thesis uses three different biometrics, namely, face, iris,

and ear. These systems are more difficult and expensive to deploy, since they need different

sensors for each biometric and also different algorithms to match those biometrics [20]. On

the other hand, these systems are able to provide a higher recognition rate and address the

non-universality issue.

Hybrid systems: These systems make use of more than one of the mentioned architec-

tures to provide a robust identification. For example, a multimodal system may uses three

different biometrics and for each biometric, it may use multiple algorithms for matching.

2.4 Fusion for Multimodal Biometric Systems

Fusion is defined as [21]: “An information process that associates, correlates and combines

data and information from single or multiple sensors or sources to achieve refined estimates

of parameters, characteristics, events and behaviors”. A fusion method should be able to

recognize the part of information that is reliable [22]. Different disciplines such as signal and

image processing [23], data mining [24], Forex trading [25], etc. use fusion techniques, so

that information fusion is now recognized as a stand alone research area.

Multimodal biometric systems also require the fusion of information provided from dif-

ferent sources. Fusion approaches can be categorized into pre-mapping and post-mapping

techniques [26]. As Figure 2.2 demonstrates, sensor level and feature level fusions are the

two subcategories of the pre-mapping, while match score, rank, and decision level fusions

are subcategories of post-mapping.
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Figure 2.2: Multimodal biometric fusions classification [2].

2.4.1 Pre-Mapping Fusion

In pre-mapping, fusion occurs before matching the data from multiple sources. The data at

this stage are rich in information, since no feature extraction or dimensionality reduction have

been applied to them. On the other hand, there are some implementation problems, such as

complex feature extraction and matcher design, that are associated with this category [27].

Sensor and feature level fusions are in this category.

Sensor Level Fusion

In sensor level fusion, raw data from sensors consolidate together before applying any feature

extraction [1]. In one research [28], 2D face images and 3D face range data (different sensors)

are consolidated to create a new 3D representation of the face. They used a probabilistic

graphical model for the classification. Another project [29], combined multiple faces captured

from a single camera using a mosaic method in order to enhance the recognition rate. In

another research [30], the sensor data from the face and palm-print was fused by particle

swarm optimization. The Kernel Direct Discriminant Analysis features were extracted from

the fused data and the nearest neighbour classifier was used for their classification. In this
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research, the recognition performance was tested against score level fusion and also using

different optimizations like genetic algorithm.

Feature Level Fusion

Feature level fusion consolidates the extracted feature points to create an extended feature

points representation. This level of fusion still contains rich amount of information about

the acquired data from the sensors and they are expected to provide better results [1]. For

example, the hand geometry features are consolidated with PCA features from face and

created a new feature space with higher number of dimensions [31].

In research by Feng et al. [32], face and palm-print were fused at the feature level us-

ing PCA and ICA features. Their results in a validation framework were an indicator of

superiority of ICA in feature level fusion. In 2010, Rattani et al. [33] concatenated normal-

ized features from face and fingerprint and then used dimensionality reduction techniques

to address the problem of high dimensional feature space. They compared the recognition

accuracy against match score level fusion. In recent research [34], face and iris were fused at

the feature level using a new method based on minimum spanning tree. The comparison of

their proposed method with traditional feature extractions like PCA, 2DPCA, and KPCA

was an indicator of a better recognition result.

There are several drawbacks in using this level of fusion. First, the high-dimensional

feature space created by fusing all the feature spaces will cause the “curse of dimensionality”

problem. Second, since the features are coming from different feature spaces, normaliza-

tion is required to alleviate the effect of significant range difference between feature spaces.

Third, most commercial biometric systems do not allow access to features, which makes the

deployment of this level of fusion impossible [31].
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2.4.2 Post-Mapping Fusion

Post-mapping fusions refer to those fusion techniques that fuse the results obtained by dif-

ferent matchers. For each test query, biometric matchers provide a list of identities based on

their similarity to the test query. Based on the nature of the list provided by the matcher,

there are three different levels of fusion, namely, score level, rank level, and decision level.

From score level to decision level, the amount of information reaching the fusion module

decreases. In this section, I introduce these levels of fusion.

Match Score Level Fusion

In score level, each matcher provides a list of match scores associated with each identity,

which represent the similarity of identities to the test query. This list is called the score list.

Match score fusions do not restrict the scenario of multibiometric systems, for example, it

can be used in case of multiple instances of a biometric or different biometrics from different

sensors [19].

Match score fusion can be done by applying mathematical operations like summation or

multiplication on the scores from different matchers. Since scores are generated from different

modalities or different matchers, normalization of scores is an essential step before fusion.

The normalization is time consuming and at the same time, the inappropriate selection of

normalization would result in non-acceptable recognition results [1].

Hong and Jian [19], used face and fingerprint data in a match score fusion scenario.

Their experiment on a public domain face database and the MSU fingerprint database [35]

illustrated the superiority of score level fusion to using single biometrics.

Jian et al. [36] used different score level fusion techniques for fusing face, fingerprint and

hand geometry. They normalized the scores from biometric matchers using seven different

techniques and tested the sum-rule, max-rule, and min-rule score fusion methods. In all

the cases the score level fusion resulted in a better performance except MAD normalization

method.
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In 2010, He et al. [37] evaluated the performance of sum-rule and Support Vector Ma-

chine (SVM) in the score fusion of fingerprint, face, and finger vein. They noticed that the

performance of sum-rule is highly dependent on the selected normalization method.

Decision Level Fusion

The decision level fusion approaches are used in cases that each matcher only provides

the final result. In the verification mode the final result is either accept or reject and

in identification is the most similar identity to the query. Logical operators like “AND”

and “OR” rules, decision table, Bayesian decision, and majority voting can be used to

fuse matchers results and make the final decision [1]. Since “AND” and “OR” rules fusion

methods have high False Reject Rate (FRR) and False Accept Rate (FAR), they are rarely

used in real applications. The two common approaches for decision level fusion are majority

voting and weighted majority voting, which are more reliable [1]. Chatzis et al. [38] proposed

a clustering algorithm based on fuzzy k-mean, fuzzy vector quantization, and median radial

basis function network for decision level fusion of voice and face. The comparison of their

proposed methods with OR, AND, and k-mean showed that median radial basis function

network performs better in decision level fusion, especially when the number of modalities

is two.

Rank Level Fusion

Rank level fusion is used when the output of each biometric matcher is a ranking of identities

in the database [1]. This list of identities, which is sorted based on their similarity to the

test query, is called ranked list. The highest rank is associated with the identity that is

the most similar to the test query. There are some biometric matchers that only provide a

ranking of identities as the output [39]. Additionally, sometimes scores provided by different

multimodal systems are not suitable for fusion and converting the scores to ranked lists and

applying rank level fusion is more suitable [39]. The rank fusion approaches take the ranked

lists from different biometric matchers and create a single ranked list by consolidating those.
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Rank fusion has been used in different research areas such as social voting theory [40],

collaborative filtering [41], bioinformatics [42], information retrieval [43], and documents

ranking [44]. Recently, rank fusion has drawn researchers’ attention to its application in

multimodal biometrics [8, 45,46].

In research in 2010 [39], palmprint from two different biometrics databases were used for

multimodal rank fusion. The authors applied Borda count, logistic regression, maximum

rank and nonlinear weighted ranking for the rank fusion of biometrics matchers outcome.

Their experimental results revealed that the nonlinear weighted ranking method has a better

capacity in improving the recognition performance.

Monwar et al. [47] suggested using a fuzzy rule inference system to multimodal rank fu-

sion. They compared the proposed fuzzy rank fusion system with other rank level approaches

as well as score level and decision level methods. Their experimental outcome showed not

only a better recognition result, but also a better system response time.

In 2009, Abaza and Ross [48] introduced an approach for quality based rank level fusion.

Their approach enhanced the system performance in case of low quality data and weak

classifiers. Their experimental results showed a notable performance improvement with the

proposed fusion approach. Marasco et al. [49] did an analysis of stability of rank level

fusion in the presence of low quality biometric data. Their study with rank and score level

fusion of low quality face data and synthetically degraded fingerprints showed that rank

level fusion has a better performance in case of small degradations, while both rank and

score will not perform well with a great amount of degradations. Alam et al. [50] proposed

a quality measure that does not require previous modeling of environmental noise. Their

method used the deviation of score data from their mean to calculate a confidence measure

and then they used this confidence measure in the rank fusion of face and voice biometrics.

Their method showed a better performance in comparison with Borda count and highest

rank fusion methods. Since in some situation in rank fusion, the score data is not available,
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their method is not applicable to all the rank level fusion systems.

Rank level fusion is still a new approach for multimodal biometric systems. Previous

researches on rank level fusion have not approached the problem of finding the best biometric

matchers for each specific test query. Moreover, improvement of biometric systems to achieve

higher recognition rates is an important priority for high security applications. This thesis

addresses these issues by the means of fusion techniques based on resemblance probability

distributions.

2.5 Description of Well-known Rank Level Fusion Methods

The concentration of this thesis is on the rank level fusion. The reason behind this concen-

tration is that in most biometric systems the match score is not available [39] and they only

provide rank information. On the other hand, the match score provided by biometric match-

ers are not always suitable for fusion [1]. The rank level methods are also not as abstract as

decision level approaches and they have more information available for fusion. Rank level

fusion is a relatively new multimodal biometric fusion approach that still has the capacity

for more research.

Three of the well-known rank level fusion approaches are highest rank, Borda count, and

logistic regression [1]. This thesis uses these fusion methods as the basis for fusion. This

section describes these methods.

Suppose X as the test query that its identity is going to be recognized between n identities

{id1, id2, ..., idn} registered in the system. There are nb different biometrics (matchers) and

the fusion module should fuse the results of matchers.

2.5.1 Highest Rank

In highest rank fusion, each identity is assigned the highest rank (minimum of the rank)

among different ranked lists, a.k.a. biometric matchers. The fusion rank for identity i using
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highest rank method is calculated as [1]:

si =
nb

min
j=1

rj,i (2.1)

where rj,i is the rank of user i in the ranked list of biometric j and si is the consolidation

rank from different ranked lists for identity i. The fusion ranked list is created by sorting of

si increasingly. If ties happen between the ranks of identities, they will be randomly broken

to create a linear ordering of identities. This fusion method is suitable for scenarios that the

number of ranked lists are few and the number of identities is large. Highest rank fusion

utilizes the strength of each biometric matcher [51].

2.5.2 Borda Count

The Borda count sums over the rank of each identity in all the ranked lists. The rank of

identity i is calculated as [1]:

si =

nb∑
j=1

rj,i (2.2)

where rj,i is the rank of user i in the ranked list of biometric j and si is the consolidation

rank from different ranked lists for identity i. The final ranked list is created by sorting

si , i = 1, ..., n in an increasing order. Borda count is known as an unsupervised voting

method, which means it does not consider the performance of the matchers and treats them

all equally.

2.5.3 Logistic Regression

In Borda count, all ranked lists from matchers are treated equally for the fusion. Although,

in reality all the matchers do not have the same discrimination ability. Logistic regression

is basically the generalized version of the Borda count method. It does a weighted sum over

the ranks from different matchers. For the user i, the fusion rank using logistic regression is
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calculated as [1]:

si =

nb∑
j=1

wjrj,i (2.3)

The weight wj is a measure of matcher j performance. Determining the value of weights

requires a training phase in advance.

2.6 Motivations

The need for higher security has always been a concern for society. Higher security for

biometric systems can be provided by higher recognition rate. This goal can be achieved by

designing better unimodal biometric matchers and also better performing fusion modules.

The dynamic quality assessment of matchers has been done based on the score information

previously. The score information is not always available and some biometric matchers only

provide rank information. It is important to devise methods to find the quality of matchers

based on rank information.

Finding the best performing biometrics for each individual query is an important factor

in identification rate of the biometric system. For example, it is known that face is a

better performing biometric than ear in general cases. For distinguishing identical twins,

the ear might be a better biometric though. The similarity between biometrics of different

individuals is common and it is important to find best performing biometrics for each query

to the system.

This thesis addresses these needs by incorporating information from distribution of users’

biometric in the feature space, using this information to improve the ranked lists confidence

and fusing the best performing biometrics for each test query.
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2.7 Chapter Summary

This chapter explained biometric systems and their components. Multimodal biometric

systems were introduced to enhance the recognition rate and the security of unimodal systems

as well as addressing the non-universality problem. Information fusion is an important part

of a multimodal biometric system. Different levels of information fusion were presented

and post-mapping fusions were explained in more details by providing a review of previous

researches in this field.
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Chapter 3

ARCHITECTURE DEVELOPMENT OF THE

MULTIMODAL BIOMETRIC SYSTEM

In this chapter, the proposed architecture of the multimodal biometric system based on

resemblance probability distributions is introduced. The developed system utilizes frontal

face, ear, and iris as biometrics and then applies the rank level fusion for decision making.

Profile face is also used instead of ear to examine the effect of correlating the biometrics

(frontal and profile face) on the system’s performance. This chapter starts with an overview

of the proposed multimodal biometric system and continues by introducing biometric algo-

rithms for matching faces (frontal/profile), ears, and irises. At the end, an introduction to

the concept of Resemblance Probability Distributions (RPD) is given.

The proper selection of biometrics is an essential task in any multimodal biometric sys-

tem. There is no single biometric which is the best for all the applications and requirements.

The selection of biometrics should be based on the type of the system operation (identifica-

tion/verification), perceived risks, types of users, and specific requirements for security [52].

Since each biometric has its own advantages and disadvantages, a single biometric is not

always able to satisfy all the requirements [52].

One of objectives of this thesis is to study the effect of resemblance probability distribu-

tions utilization for rank level fusion. For this purpose, the frontal face, the ear, and the iris

are selected as main biometrics. Profile face is also used for observing the effect of correlation

between the biometrics. All these biometrics are from the facial area of the human body

which is easy and convenient for data acquisition [19]. Also, there are effective indexing and

comparison methods for these biometrics, that is why I have chosen them for my multimodal

biometric system.

27



Although rank level fusion has been extensively studied in other fields, such as voting

theory, distributed database, collaborative filtering, and bioinformatics [53] [54] [41] [42],

there are few works that studied it in the context of the multimodal biometric systems [8]

[45] [48]. In identification systems where the only output of unimodal biometric matcher is

a relative ranking of identities, rank level fusion is the only feasible option for consolidation

of biometric information.

In my research, I have introduced Resemblance Probability Distributions (RPD) as a

representation of the users’ distribution in the feature space. I have developed two meth-

ods, namely Ranked List Reinforcement (RLR) and Confidence-Based Ranked List Selection

(CBRLS), to utilize resemblance probability distributions to improve the recognition rate of

a rank level fusion method. The main benefit of the proposed methods based on resemblance

probability distribution is that they can recover the information about the performance of

individual biometric matchers, which is usually lost due to the relative ranking of identities

in a typical rank level system.

This chapter starts with an overview of the multimodal biometric system for rank level

fusion that deploys resemblance probability distributions. Then, it looks closely at conven-

tional unimodal biometric matchers for face (frontal/profile), ear, and iris as the building

blocks of a multimodal system. It continues by providing an overview of a unimodal matcher

that extracts resemblance probability distribution from the feature space of a biometric.

3.1 System Overview for Rank Level Fusion

Every multimodal biometric system that operates in identification mode consists of three

important modules: enrollment, identification, and system database. These three modules

are demonstrated in Figure 3.1 for the proposed multimodal biometric system based on

resemblance probability distributions. This multimodal biometric system works with three

biometrics, but in general it can operate with more biometrics.
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Figure 3.1: The proposed multimodal biometric system based on resemblance probability
distributions for rank level fusion.
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In Figure 3.1, during the enrollment, specific biometric samples of users are presented to

the system as images. The biometrics that are used for this system are face, ear, and iris,

but the system can operate with any other biometric as long as a proper feature extraction

module is utilized. For better validation, we also utilized profile face as an alternative to

ear to test the effect of correlated biometrics. The acquired biometric samples pass through

some preprocessing (if needed) for illumination correlation and localization (for example, iris

localization using Hough transform). Enrollment module extracts representative features

from these images in order to make it possible to compare them against each other. The

extracted features create a D-dimensional feature space, where every biometric sample resides

as a point. Resemblance probability distributions capture the resemblance of each user’s

biometric samples to all the other users’ samples in this feature space. All the resemblance

probability distributions for each biometric can represent the distribution of users in the

feature space. Figure 3.2 represents the distribution of users’ faces in the feature space using

the first three Fisherfaces.

Fisher image projection is used for extraction of features from face (frontal / profile)

and ear. It creates a more compact representation of images, and thus we are able to

discriminate better between different users’ biometric samples. It is robust to illumination

change, occlusion of biometric samples (for example, hair occluding ear), shifting, background

noise and image scaling [55]. Iris code is extracted from the iris by utilizing 2D Gabor

filter [56] as a comparable template for comparing irises with each other.

The extracted features from the samples and the resemblance probability distributions of

each user’s biometrics are stored in a database alongside with the identity of the user they

belong to. This database is the reference for the identification module to compare queries

with the registered users and determine their identity.

The identification module extracts the same features as the enrollment module from each

test query. It compares the extracted features of the test query to all the registered users in
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Figure 3.2: Demonstration of feature space for 113 faces of FERET database [3] using the
first three Fisherfaces. Each color represents a user.

the database. This comparison can be done in different forms depending on the biometric

and the type of extracted features. For measuring the similarity of extracted features for

the face (frontal / profile) and the ear, the Euclidean distance between the features of the

test query and registered users is used. For iris, the Hamming distance [57] between the

generated iris codes is used. For each biometric, the feature matching provides a list of users

that are ranked according to their similarity to the test query. These lists are called ranked

lists. Figure 3.3 (a) represents a ranked list for n users.

Unlike conventional multimodal systems, the proposed system uses the resemblance prob-

ability distribution to modify the ranked lists. The modification reinforces the ranks by the

similarity of different biometric ranked list and resemblance probability distributions of each

user. After the ranked list modification, any rank level fusion algorithm can be used to fuse

the list of different biometrics and find the final decision about the identity of the test query.

Figure 3.3 (b) represents a modified ranked list for n users.
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Rank List   Modified Rank List 

Rank Identity  

 

Modified 

Rank 

Identity 

1 User 12  0.586 User 12 

2 User 45  0.591 User 45 

3 User 32  0.592 User 32 

4 User 254  3.69 User 254 

5 User 3  5.96 User 3 

6 User 143  12.67 User 143 

… …  … … 

n User 67  59.46 User 67 

(a)  (b) 

 

Figure 3.3: ranked list (a) and modified ranked list (b) for a test image of a biometric with
n users. Unlike modified ranked list, the ranked list considers that the distance between
each user and its immediate neighbor is one. This abstraction hides the actual distribution
of users.

Although the system in Figure 3.1 responds in real time for each test query, in order

to accelerate the system response time, another architecture is detailed in Figure 3.4. It

has been observed that users who are in close distance in the feature space possess similar

resemblance probability distributions. This architecture benefits from this similarity and

clusters the users. Each cluster consists of users who have similar resemblance probability

distributions. For each cluster, only a single resemblance probability distribution is stored

in the database and during the identification, a fewer number of resemblance probability

distributions are used for ranked list modification. The response time of the architecture in

Figure 3.4 is thus decreased by using clustering.

The next section walks through the conventional unimodal biometric matchers for the

face (frontal / profile), the ear and the iris. The feature extraction and similarity measure

between the extracted features are detailed in that section.
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Figure 3.4: The proposed multimodal biometric system based on clustered resemblance
probability distributions for rank level fusion.
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3.2 Unimodal Matchers

A multimodal biometric system is basically a combination of some unimodal biometric

matchers. The unimodal matchers’ performance has a substantial effect on the whole perfor-

mance of the multimodal system. In this section, each of the unimodal matchers for the face

(frontal / profile), the ear, and the iris are described. Fisher’s linear discriminant analysis is

used for feature extraction of the face and ear. The Euclidean distance is used to compare

features of the face and the ear biometric. The iris code is used as a feature for iris samples

and Hamming distance between them is used as a similarity measure. Although unimodal

biometric matchers introduced here do not extract Resemblance Probability Distributions

(RPD), it is important to introduce them as the building blocks, so that the RPD module

will be added to them later. At the end of this chapter, the overview of a single biometric

matcher that uses RPDs is discussed and its implementation is detailed in the next chapter.

3.2.1 Frontal Face Matcher

The face matcher responsibility is to recognize users based on their faces. First, the face

matcher is trained by different face image samples for each user. At the identification stage,

a test face query image is presented to the face matcher and it provides a list of users sorted

based on their similarity to the test query. The face matcher needs to extract some features

from face images in order to compare faces. There are two major approaches for feature

extraction from intensity face images [58]. The feature-based (structural) face recognition

methods consider the relative distance of facial elements and extract local features from

them. Examples of feature-based methods are geometry-based methods [59] [60], dynamic

link architecture [61] [62], and Convolution Neural Network [63]. The second approach is

based on holistic methods. This approach takes the whole face image as their input and

extracts some representative features from the whole face image. Successful examples of

holistic approach are Eigenfaces [64] and Fisherface [55] methods.
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Among different feature extraction methods, Fisherface is the most popular due to its

robustness to background noise, scaling, occlusion, illumination changes, and various facial

expressions [55]. Fisherface is a combination of Principal Component Analysis (PCA) [65]

and Linear Discriminant Analysis (LDA) [66]. The idea behind PCA is to create a transfor-

mation matrix to transform the data to a subspace which compresses the data with minimum

loss in the standard deviation. PCA maintains the standard deviation of data points by con-

sidering the spread of data in feature space and finding new dimensions that the data has the

highest standard deviation along them. In other words, PCA maximizes the scatter matrix

for training face images. The drawback of PCA is that it does not consider the class of data

points while maximizing the scatter matrix for them.

Fisherface is a combination of PCA and LDA which is also called Fisher LDA or FLDA.

It benefits form the available class labels to provide a better discrimination between different

users. Unlike PCA, FLDA attempts to find a projection that maximizes the scatter between

different users while minimizing the scatter between the sample faces of each user. In the

FLDA feature space, samples of each user are close to each other while different users are

apart. The FLDA transformation matrix is calculated using standard methods [64] and [55],

which is summarized in the rest of this subsection.

The FLDA transformation matrix is calculated based on the training data. Each training

face image is converted to a vector as illustrated in Figure 3.5. Training face matrix that

consists of multiple face vectors for each user is formed as [55]:

Training matrix = [su11 ...s
u1
mu1

su21 ...s
u2
mu2

...... sun1 ...s
un
mun

] (3.1)

where suij is a vector representation of jth face sample of user ui. mui is the number of

training samples for user ui and n is the total number of users.

The between-class scatter matrix SB and within-class scatter matrix SW are defined

as [55]:
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…

...

Figure 3.5: The vectorization process of face images. Columns of the face image stacks over
each other to create a vector.

SB =
n∑
i=1

mui(Ψi −Ψ)(Ψi −Ψ)T (3.2)

SW =
n∑
i=1

Si (3.3)

where Ψ is the arithmetic average of all the face vectors in the training set and Ψi is the

average of each user’s face vectors. The average value of each user’s face vectors is used for

inner class variation calculation to understand how much faces of a specific user can vary.

SB represents an average deviation of each user’s average face vector from the average of all

the users’. Si which is the scatter of user i is defined as [55]:

Si =

mui∑
j=1

(suij −Ψi)(s
ui
j −Ψi)

T (3.4)

The within-class scatter SW shows an average deviation of all the users’ face vectors from

their own average face vectors. The deviation of all the face vectors from the average face

vector of all users is called the total scatter matrix, which is defined as [55]:
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ST =
n∑
i=1

mui∑
j=1

(suij −Ψ)(suij −Ψ)T (3.5)

Fisher’s Linear Discriminant Analysis (FLDA) tries to project the data to a subspace

that increases the between-class scatter and decreases the within-class scatter. To obtain

this objective, the projection that maximizes the fraction of between-class scatter to within-

class scatter is needed. Mathematically speaking, the optimal projection Wopt is defined

as [55]:

Wopt = arg max
W

J(W ) (3.6)

The discriminant power J(W ) is defined as [55]:

J(W ) =

∣∣∣∣WT .SB.W

WT .SW .W

∣∣∣∣ (3.7)

Maximizing the discriminant power J with respect to W will lead to finding a projection

Wopt that satisfies the maximization and minimization of between-class and within-class

scatters respectively. Combining equation 3.6 and 3.7 leads to the full description of the

function that is needed to be optimized [55]:

Wopt = arg max
W

∣∣∣∣WT .SB.W

WT .SW .W

∣∣∣∣ = [w1 w2 ... wp] (3.8)

where {w1, w2, ..., wp} is the set of eigenvectors of SW and SB corresponding to p largest

eigenvalues {λ1, λ2, ..., λp}. The optimization can be solved by the solution for the generalized

eigenvalue problem [55]:

SBwi = λiSWwi, i = 1, ..., p (3.9)

The maximum number of non-zero eigenvalues is n-1 where n is the number of users. So

the maximum value for p is n-1.
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Figure 3.6: Fisherfaces based on some images from FERET database [3].

After solving the generalized eigenvalue equation 3.9, Wopt = [wopt1, wopt2, ..., woptp] will

be the transformation matrix for FLDA space. The transformation of face vectors to the

FLDA space can be done by [55]:

pr(Φui
j ) = W T

opt.Φ
ui
j (3.10)

where Φi is the difference of face vector suij and all the users’ average face vector Ψ as

follows [55]:

Φui
j = suij −Ψ (3.11)

The projected faces to the FLDA space are called Fisherfaces and have lower number of

dimensions in comparison with the original face vectors. The training of the face matcher

is done by projecting all the sample images of each user to the FLDA space. Figure 3.6

presents Fisherfaces created based on some images from FERET database [3].

The identification module of the face matcher requires to determine a list of identities

based on their similarities to a new test face query. To fulfill this goal, the test query image

needs to be converted to a vector and then projected to the FLDA space using the Wopt

projection matrix. At first, the test face query vector facet is subtracted from the average

face vector of training set using equation 3.11 to obtain Φt. For the mean subtracted test
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Figure 3.7: Flowchart of the face matcher based on FLDA (Adapted from [2]).

face query vector Φt the projection is calculated as follows [55]:

pr(Φt) = W T
opt.Φt (3.12)

The similarity of the projected test face query to the training faces in the FLDA space

is calculated using the Euclidean distance. The distance of the test face query from each

user’s faces in the training set is calculated as:

D(facet, ui) =

√√√√mui∑
j=1

[pr(Φt)− pr(Φui
j ))(pr(Φt)− pr(Φui

j ))T (3.13)

The ranked list is created by ascending sorting of the identities based on their distances to

the queried face. Figure 3.7 presents the flowchart of the face matcher based on Fisherface.
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3.2.2 Profile Face Matcher

The only difference between the profile and the frontal face is the angle of image acquisition.

The profile face matcher is essentially the same as the frontal face matcher. For the profile

face, first the image is localized and then the transformation matrix is created. All the profile

face images are transformed into the FLDA space. During the identification, a ranked list

of users based on their similarity to the queried test profile face is created using the same

approach that is explained for the frontal face.

3.2.3 Ear Matcher

Human ear contains a rich structure that makes it a good choice for identification. Despite

the fact that humans are not capable of distinguishing between ears [67], studies on PCA

based face and ear recognition showed that the ear has the same discriminative capability

as the face [68].

Ear databases that are selected for testing the proposed multimodal biometric system are

not acquired in same illumination. The Fisher’s linear discriminant analysis [55] is robust

to illumination change. Some research [2] suggested using the same approach as Fisherface

for the ear biometric, which is called Fisherear. In this approach, ears are projected into the

FLDA space and the Euclidean distance is used to find the similarity of the two Fisherears.

The first step is the conversion of ear images to ear vectors, which can be done using

the same approach that is demonstrated in Figure 3.5 for faces. After this conversion, the

within-class scatter SB, the between-class scatter SB, and the total scatter ST matrices are

created based on the training matrix for the ears. The optimum transformation matrix Wopt

is calculated by solving the generalized eigenvalue problem for equation 3.8 [2].

All training ear vectors are projected into the FLDA space using equation 3.10 and

3.11. Figure 3.8 shows some samples of ear from USTB database [4] and the corresponding

Fisherears are shown in Figure 3.9.
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Figure 3.8: Examples of ears from USTB database [4].

Each Fisherear is a point in the FLDA space and their similarities are computable using

Euclidean distance. For any test ear image, first the image is converted to a vector and then

it is projected into FLDA space using equation 3.12. The distance from the test ear to each

class in the FLDA space is calculated using equation 3.13. The ranked list is created by

ascending sorting of identities based on their distance to the test ear.

3.2.4 Iris Matcher

Iris is a muscular part of the eye that controls the amount of light entering the pupil [69].

Because of its detailed structure, it has very distinctive features, such as ridges, rings, arching

ligaments, and a zigzag collarette, for human identification [69]. Iris is a planar surface that is

robust to viewing angle and change of view only causes affine transformation to its structure.

The non-affine transformation caused by dilation of the iris is also reversible.

The first step for creating an iris matcher is the iris localization in an eye image. Since

iris has a circular shape, its location and boundary can be localized using circle Hough

transform [70]. The circle Hough transform uses a voting scheme to detect circles in images.

The robustness of Hough transform to partial occlusion makes it ideal for iris localization,

since some part of iris might be occluded by eyelid. Figure 3.10 describes the process of iris
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Figure 3.9: Fisherears corresponding to ear in figure 3.8.

localization that is suggested by Wildes [71]. In order to apply circle Hough transform, eye

image needs to be converted to an edge map. In Figure 3.10, the eyelid and the pupil edges

are the strongest edges in the horizontal edge map of the image. Applying the circle Hough

transform on this horizontal edge map results in localization of eyelids and the pupil. The

vertical edge map contains the edges of the outer boundary of the iris. The area of the iris

that is occluded by eyelid is considered as noise and a noise mask is created to exclude this

part.

The homogeneous rubber sheet model is used for transforming pixels from an iris region

to a polar coordinate [5]. Figure 3.11 illustrates the process of homogeneous rubber sheet

model where each pixel from the Cartesian location (x, y) is transformed to (r, θ), where r

is in the range of [0, 1] and θ is in [0, 2π]. This mapping is done as [72]:

I(x(r, θ), y(r, θ)) −→ I(r, θ) (3.14)

with,

x(r, θ) = (l − r)xp(θ) + rxi(θ) (3.15)
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Figure 3.10: The process of iris localization using edge maps and circle Hough transform.

r

θ 

θ 

r
10

Figure 3.11: The homogeneous rubber sheet model [5].

y(r, θ) = (l − r)yp(θ) + ryi(θ) (3.16)

where for the iris region I(x, y) the coordinates (x, y) and (r, θ) are the Cartesian pixel

coordinates and corresponding normalized polar coordinates. (xp, yp) and (xi, yi) are the

center location of pupil and iris circles along θ direction.

The iris code is the extracted features from the iris normalized rubber sheet, which is

calculated using a 2-D Gabor filter as follows [69]:
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Figure 3.12: The process of iris code generation [2].

h{Re,Im} = sgn{Re,Im}

∫
ρ

∫
φ

I(ρ, φ)e−iω(θ0,φ)e−(r0−ρ)
2/α2

e−(θ0−φ)
2/β2

ρdρdφ (3.17)

where I(ρ, φ) is the iris in polar coordinate, α and β are effective width and length of the

Gabor wavelet, ω is the Gabor wavelet frequency and r0 and θ0 are the center coordinate of

the region that equation 3.17 calculates. h{Re,Im} is a binary complex number that the value

of its real and imaginary parts can be either 0 or 1. These values are determined by the sign

of the two dimensional integral over ρ and φ in equation 3.17. Figure 3.12 summarizes the

process of iris code generation.

The iris code consists of binary numbers. The distance between two binary numbers can

be calculated using Hamming distance (HD) [57]. The distance between two iris codes is

calculated as follows [69]:
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HD =
‖ CA ⊕ CB ∩MA ∩MB ‖

‖MA ⊕MB ‖
(3.18)

where CA and CB are iris codes for image A and B and MA and MB are their corresponding

noise masks. The ⊕ and ∩ are XOR and AND operators. ‖ x ‖ means the number of

non-zero bits in the bit vector x.

Based on the Hamming distance, every test iris image can be compared against other

users in the database and the ranked list of identities can be created in the same way as the

face and ear biometric.

3.3 Biometric Matcher with Resemblance Probability Distribution

The main contribution of this thesis is the introduction of resemblance probability distribu-

tions and deploying them for rank level fusion in multimodal biometric systems. For the sake

of simplicity, there were no module for resemblance probability extraction in the biometric

matchers introduced for the face, the ear, and the iris. This section introduces the architec-

ture of a single matcher with resemblance probability distribution and the next chapter will

provide more details on its realization.

Resemblance probability distribution (RPD) for each user represents the similarity of

that user to all the other users. This information can be extracted from the feature space of

the training data. Figure 3.13 illustrates the architecture of a single biometric matcher with

the RPDs extraction module. After creating the feature space from the training data, the

RPD module uses that information for creating the RPDs for all users in the training set.

The RPDs are stored in the database alongside the extracted features. During the ranked

list creation, the system solely uses the extracted features and does not use RPDs. RPDs

are used after the creation of ranked lists by all the unimodal matchers to modify the ranked

lists to improve the recognition.

The details of the RPDs extraction and its utilization for ranked list modification is
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Figure 3.13: Architecture of a unimodal biometric matcher with resemblance probability
distribution modules.

explained in the next chapter.

3.4 Chapter Summary

This chapter introduced the overall architecture of the multimodal biometric system using

the novel concept of resemblance probability distributions. The resemblance probability dis-

tribution is able to recover information about the performance of each biometric matcher

for each test query. The chapter also introduced the novel approach to cluster the users

in order to benefit from the similarities of resemblance probability distributions for a faster

response time. It provided reasons behind selection of face (frontal / profile), ear, and iris
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for this system. The conventional unimodal matchers for face, ear, and iris were designed.

For face and ear, Fisherface and Fisherear approaches were used for feature extraction and

Euclidean distance was used for comparing different faces and ears. For iris, Hough trans-

form was used for localization and Gabor filter for feature extraction. Hamming distance was

used as a distance measure between different irises. At the end, the architecture for conven-

tional unimodal matchers was extended to contain the module for resemblance probability

distribution.
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Chapter 4

PROPOSED CONFIDENCE-BASED RANK LEVEL

FUSION

In biometric systems, after registering the users using the training data, the system is ready

to specify the identity of new samples of the registered users. These new samples are called

test queries. The goal of the biometric system is to recognize the user to whom the test

query belongs. In multimodal biometric systems that operate using the rank level fusion

model, each biometric matcher creates a ranked list of users identity for each test query. A

ranked list is a relative ordering of possible users identity based on the similarity to the test

query [1]. In the ranked list, the probability of each identity being the identity of the test

query is not specified. The only available information is the ranking, i.e. 1, 2, 3, 4 and so

on. In the ranked list, the identity with the rank r has a higher probability to be the actual

identity of the test query than the identity with the rank r+1. Since ranked list only contains

the ranking of identities, the information about the probability of each identity being the

actual identity of the test query is abstracted as ranking. This abstraction of probabilities

conceals the accuracy of the matchers for each test query. In this thesis, I proposed an

approach to improve the confidence of rank list based on information from the distribution

of users’ biometrics in the feature space. Figure 4.1 demonstrates the general overview of

this system.

This chapter introduces the notion of Resemblance Probability Distribution (RPD) to

retain the lost information due to the abstraction probabilities in the ranked lists and uses

this information to obtain a higher recognition rate. Ranked list reinforcement (RLR) and

confidence-based ranked list selection (CBRLS) are two new rank fusion methods based on

the idea of resemblance probability distributions. At the end of this chapter, the notion of
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Figure 4.1: Overview of the system to improve the confidence of ranked lists. The confidence
improvement is a layer between the biometric matchers and the fusion module takes ranked
lists as inputs and provide more confidence ranked lists as the output.

RPD is generalized to clusters of users in order to accelerate the fusion module’s decision

making process.

4.1 Resemblance Probability Distributions

A Resemblance Probability Distribution (RPD) essentially represents the probability of each

user being classified as all enrolled users to the system. The resemblance probability distri-

butions provide the system with an insight on how probable is the misclassification of each

user’s biometrics with other users’ biometrics and also how probable is the correct classifica-

tion of each user. RPDs are beneficial for rank level fusion, since for each test query, RPDs

49



dynamically retain the information about the performance of each matcher. The utilization

of these performance measures helps the fusion module to consolidate the ranked lists with

a higher confidence and results in a more accurate recognition of the test query’s identity.

In order to formally introduce the resemblance probability distribution, it is essential

to provide a definition for the distance from one user to another. Suppose that there are

n registered users U = {u1, ..., un} and the multimodal biometric system works with nb

biometrics, namely B = {b1, ..., bnb
}. For any biometric bj of user ui, consider there are m

(m > 1) training samples Sui,bj = {sui,bj1 , ..., s
ui,bj
m }. Feature points extracted from Sui,bj are

FSui,bj = {f
s
ui,bj
1

, ..., f
s
ui,bj
m
}. I define the distance from the user ui to ui′ for biometric bj as

follows:

Dbj(ui, ui′ ) =


1/m

∑m
k=1 minl∈{1,...,m} ‖(fsui,bjk

− f
s
u
i
′ ,bj

l

)‖, if i 6= i
′

1/m
∑m

k=1 minl∈{1,...,m}−{k} ‖(fsui,bjk

− f
s
u
i
′ ,bj

l

)‖, if i = i
′

(4.1)

where ‖(f
s
ui,bj
k

− f
s
u
i
′ ,bj

l

)‖ is the magnitude of the difference vector (f
s
ui,bj
k

− f
s
u
i
′ ,bj

l

). The

first part of equation 4.1 defines the distance of the user ui from the user ui′ (i 6= i
′
) as an

average of the minimum distances from samples feature points of ui to ui′ . As figure 4.2

demonstrates, the distance from user ui to user ui′ (i 6= i
′
) is calculated by considering the

feature point of each biometric sample of user ui and finding the feature point of the user ui′

that is in the closest distance to it. The average of all these minimum distances is the distance

from ui to ui′ . As it can be inferred from the definition, the distance from user ui to ui′ is not

necessarily the same as the distance from user ui′ to ui. Figure 4.3 elaborates the underlying

reason for this dissimilarity. In figure 4.3, the user ui has a dense distribution of feature

points with a small variance, while user ui′ feature points are more sparsely distributed

and they have an overlap with user ui. As it is obvious from the distributions, it is more

probable to misclassify user ui as user ui′ while there is a lower probability for user ui′ to be

misclassified as user ui. The second part of equation 4.1 defines the distance of user ui from
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User ui samples User ui' samples

Figure 4.2: The lines represent the distances of user ui feature points from user ui′ ’s. The
solid lines are the shortest distance to reach user ui′ from user ui feature points. Distance
from user ui to user ui′ is the average of these minimum distances.

itself as the average of distances from each sample’s feature point of user ui to the closest

sample’s feature point of the same user.

Suppose Dui,bj is a vector representing the distances from user ui for biometric bj to all

the users (including itself). Dui,bj can be transformed to a similarity measure by subtracting

all the distances from the maximum value in the vector Dui,bj . I define the resemblance

probability distribution of user ui as follows:

PRD(ui) =
max (Dui,bj)×~1n −Dui,bj

‖max (Dui,bj)×~1n −Dui,bj‖
(4.2)

where ~1n is a vector of ones with size n and ‖max (Dui,bj) × ~1n − Dui,bj‖ is the magnitude

of (max (Dui,bj)× ~1n −Dui,bj). Formula 4.2 calculates the normalized similarity of ui to all

the users (including itself). The resemblance probability distribution of each user shows the

distribution of all the users in relation to that user. Algorithm 1 demonstrates the process

of creating RPDs for all users. For each biometric, the algorithm iterates through all users,

calculates the distance of that user to all the users, and finally calculates the resemblance

probability distribution of that user. RPDs for all the users represent the distribution of the
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User ui samples User ui’ samples

Figure 4.3: An example of densely distributed feature points for user ui beside a more
spread distribution of feature points for user ui′ for the same biometric. It is more probable to
misclassify user ui with user ui′ while there is a less probability for user ui′ to be misclassified
as user ui. This example illustrates the reason behind the dissimilarity of distance from user
ui to ui′ and user ui′ to ui.

users in the feature space. Figure 4.4 demonstrates the resemblance probability distributions

for three biometrics of three users. For each biometric, the resemblance probability distri-

butions of different users are not identical, which demonstrates the fact that different users’

feature points reside in various locations in the feature space. Across different biometrics of

the same user, each resemblance probability distribution has its own characteristics, which

demonstrates the independence of different biometrics. The only similarity of resemblance

probability distributions of the same user is that for all the biometrics the highest value is

for that user, which is the indicator of the high similarity of the user to itself.

Algorithm 1 Calculation of resemblance probability distributions for all the users. Range
of i and j are the natural numbers in [1, n] and [1, nb].

for each biometric bj do
for each user ui do

for each user ui′ do
Calculate Dbj(ui, ui′ ) using equation 4.1

end
Calculate the resemblance probability of ui using equation 4.2

end

end
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Figure 4.4: Resemblance probability distributions (RPDs) for three biometrics of three users.
Each sub-figure represents the resemblance probability distribution of a specific biometric
for a specific user. The horizontal axis of each sub-figure represents all the registered users
in the system and the vertical axis shows the similarity of that user to the user that the
resemblance probability distribution belongs to.
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The resemblance probability is able to capture the valuable information about the dis-

tribution of the users in the feature space, and inform the other modules of a multimodal

biometric system about it. This information creates a model of the users’ neighborhood in

the feature space. The neighborhood information is important since each user might be

misclassified as one of its immediate neighbors during the identification process. The ad-

vance knowledge about the probable misclassification of each user’s biometrics will provide

the system with more evidences about the actual identity of the user. In the next section,

two possible utilizations of resemblance probability distributions for rank level fusion are

introduced.

4.2 Proposed Resemblance Probability Distribution-Based Fusion Methods

The resemblance probability distributions capture the valuable information about the neigh-

borhood of each user and provide this information to the rank fusion module. The input

for the rank fusion module is the relative ranking of identities, that is based on the decision

of matchers about the actual identity of the test query. A ranked list considers that the

distance between consecutive identities is one. This abstraction hides the actual distribu-

tion of identities in the ranked list and might lead to a lower fusion’s accuracy (chapter 3,

figure 3.3). The resemblance probability distributions provide the neighborhood information

to the ranked lists, which results in a better recognition rate. In this section, two fusion

methods based on resemblance probability distributions, namely Ranked List Reinforcement

(RLR) and Confidence-Based Ranked List Selection (CBRLS), are proposed. Then, the re-

semblance probability distribution is generalized for clusters of users to accelerate the two

proposed fusion methods.
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4.2.1 Ranked List Reinforcement Method for Rank Fusion

It is probable that in a ranked list, the matcher ranks the neighbors of the actual identity of

a test query in the feature space higher than the actual identity. This problem occurs mostly

when there is a large inter-class similarity between users. In the case of high inter-class

similarity, the similarity of neighbor users to each other is high. Since the ranked list does

not provide the actual similarity of users to the test query, it is not possible to detect the

misclassifications due to high inter-class similarity.

Resemblance probability distribution can be added to the multimodal biometric system to

address the issue of large inter-class similarity. The ranked list reinforcement is a reordering

of the ranked list based on the similarity of resemblance probability distributions with the

ranked lists. Figure 4.5 demonstrates an overview of the fusion system that uses the ranked

list reinforcement prior to fusion. The idea behind ranked list reinforcement is based on a

high similarity of all the resemblance probabilities of the actual identity of the test query with

their corresponding ranked lists. The similarity value is used to boost the actual identity’s

rank and lower the other identities’ in the ranked list. The reinforced ranked lists then can

be fused using any rank level fusion method to obtain a higher recognition rate.

Since the standard deviations of ranked lists and resemblance probability distributions are

finite and non zeros (considering that extracted features are distinctive), Pearson correlation

[73] can be considered as a similarity measure of ranked lists and resemblance probability

distributions. Suppose that RLbj is a vector, which contains a ranking of users sorted based

on their identities for the biometric bj and RPD
bj
ui is the resemblance probability distribution

of user ui for the same biometric bj. RL
bj(uk) and RPD

bj
ui(uk), where k = 1, 2, ..., n, are the

rank of user uk in the ranked list RLbj and the resemblance probability of user ui to user uk

respectively. Since in the ranked list the lower the value of the rank, the higher its similarity

to the actual identity, the RPD is subtracted from 1 to make it compatible for correlation

analysis with the ranked list. The Pearson correlation between RLbj and (~1n −RPD
bj
ui) can
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Figure 4.5: Flowchart of ranked list reinforcement (RLR) using resemblance probability
distributions (RPDs).

be estimated using sample correlation coefficient as follows [73]:

corr(RLbj , (~1n−RPDbj
ui

)) =

n∑
k=1

((RLbj(uk)−RLbj)((~1n −RPD
bj
ui(uk))− (~1n −RPD

bj
ui))√

n∑
k=1

(RLbj(uk)−RLbj)
n∑
k=1

((~1n −RPD
bj
ui(uk))− (~1n −RPD

bj
ui))

(4.3)

where RLbj and (~1n −RPD
bj
ui) are average values of the ranked list RLbj and (~1n−RPD

bj
ui).

The value of Pearson correlation is in range [−1, 1]. The value is 1 when both the ranked list

and (~1n − RPD) are correlated. It is -1 when they are inversely correlated and zero when

there is no correlation between them. The value of correlation can be any other real number

in range [−1, 1] based on the degree of correlation between the ranked list and (~1n−RPD).

Since both resemblance probability distributions and ranked lists are calculated from the

same feature space, the ranked list of each user should be similar to the (~1n−RPD) of that

user and its neighbors in the feature space. In case of uncorrelated biometrics, the neighbors
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Algorithm 2 ranked list reinforcement for a multimodal system with nb different biometrics.

for each ranked list RLbj do
for each user ui do

RRLbj(ui) = RLbj(ui)×
nb∑
k=1

(~1n − corr(LRbk , (~1n −RPDbk
ui

)))

end

end

of each user are not the same across different biometrics. In an ideal case, the correlation

between the ranked lists of different biometric and (~1n −RPD) of the actual identity of the

test query should be close to 1. Since the neighbors of each user are not the same across

different biometrics, if there is a high correlation between the (~1n − RPD) of the actual

identity’s neighbor and the one of the ranked lists, the correlation is expected to be small

for other ranked lists.

Based on this idea, algorithm 2 reinforces the rank of each identity (user) for each bio-

metric by considering the Pearson correlation between that user’s resemblance probability

distributions and the ranked lists of all biometrics. The reinforced rank of each identity

(user) for each biometric is calculated by considering its current rank and the similarity of

that user’s RPDs with ranked lists of corresponding biometrics.

Figure 4.6 provides an example of three 2D feature spaces for three biometrics of five

users. In this figure, the samples for user u2 are close to samples of other users. The system

is asked to determine the identity of the test query T of user u2, which is demonstrated with

a red circle in the three biometrics’ feature spaces. Figure 4.7 shows the result of Borda

count rank fusion for the ranked lists created for the test query T . In the result of the Borda

count, the lowest rank is 7 for both users 2 and 5. The Borda count rank level fusion is not

able to distinguish between these two users. Figure 4.8 demonstrates the result of ranked

list reinforcement for the same ranked lists. The reinforced ranked list for each biometric is

more accurate and user u2 is the first rank in all of them. The fusion of reinforced ranked

lists using Borda count has user u2 with a lowest rank. Moreover, the gap between the first
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Figure 4.6: Example of a 2D feature space for three biometrics of five users. For each user,
there are two training samples per each biometric, which are represented by blue circles. A
test query T of user u2 is also represented by a red circle among the training samples.
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lowest rank (rank 3 for user u2) and the second lowest rank (rank 8 for user u5) is large,

which represents a large confidence margin.

ranked list reinforcement exploits the information from all the biometrics’ ranked lists to

provide a higher accuracy for each ranked list. Any rank level fusion can be used to fuse the

reinforced ranked lists. In chapter 6, reinforced ranked lists are fused using three different

rank level fusions to show the advantage of reinforcement.

4.2.2 Confidence-Based Ranked List Selection

The second proposed approach that uses resemblance probability distributions in the rank

fusion is the confidence-based ranked list selection (CBRLS). It would be beneficial for a

fusion module to know about the performance of each matcher in order to use the results

from the well performing matchers. This task can be done in a global or a local manner.

The global approaches, such as logistic regression [1], test each biometric matcher prior to

the real world implementation to come with a measure of their performance. They use

this performance measure as a factor in the fusion methods to put more attention toward

biometric matchers with higher recognition rates.

The fact that a biometric matcher does not perform the same for all the users draws

my attention toward considering a local performance measurement. The assumption here is

that a biometric has different discriminability for different users registered in the system. For

example, consider a case when a person has a unique face, so that its feature points are at a

far distance from the whole population in the database. The face matcher is able to recognize

this person with a very high confidence. For identical twins, however, the face matcher is

likely to misclassify their faces. This will result in a low recognition rate for identical twins.

Figure 4.9 provides an example for this fact. This figure shows two eigenvectors with the

largest eigenvalues of the extracted features from faces and ears of 20 users. Ear biometric

cannot distinguish between user 8, 13, and 5 with a high confidence, while face can provide a

higher confidence in their recognition. On the other hand, face biometric has a low confidence
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to distinguish user 3 from 19 while in ear biometric user 3 is perfectly separated from the

rest of the population.

Although it is possible to come up with a prior local measure of matcher’s performance

for each individual user, it is impossible to use this measure at the time of identification,

since the identity is not known yet. My focus is to introduce a measure of confidence for

ranked lists provided by each matcher, that is adaptive to the test query. For each query,

a series of ranked lists are adaptively selected to provide the highest confidence in the final

decision.

In the next subsections, I will talk about the confidence of a matcher that works on score

level, then propose an approach to convert a ranked list to a pseudo-score list and finally

introduce the novel confidence-based ranked list selection approach.

Confidence of a Matcher

This section proposes an approach to measure the confidence of a matcher that outputs the

similarity of the test query to users (identities) as scores. Before going further, it is essential

to define the meaning of confidence in this context. Here, confidence is defined as the ability

of a matcher to distinguish between all the possible identities for a test query. The confidence

of a matcher for each test query provides a measurement of how probable is that the current

test query will be misclassified with other identities rather than its actual identity. More

formally, if the resulted score list from a matcher was normalized to a probability distribution

P , the confidence of the discrete probability distribution P is defined as:

CM(P ) =
n−1∑
i=1

e
−(i−1)2

n (SortedP j
i − SortedP

j
i+1) (4.4)

where n is the number of registered users in the systems and SortedP is the descending

sorted discrete probability distribution P . The distance between each normalized score and

its consecutive normalized score in the sorted normalized score list is called the confidence

margin. Formula 4.4 follows my definition of confidence and measures a weighted average of

confidence margins. The confidence margins are weighted using a Gaussian function. The
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(a) Ear biometric feature space
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(b) Face biometric feature space

Figure 4.9: Discriminability of features extracted from face and ear of 20 users based on
their two eigenvectors with the largest eigenvalues. Each circle represents a training sample
of users. The number beside each circle is the user’s identity that each sample belongs to.
The samples in solid rectangles are the samples of users that cannot be distinguished with
a high confidence. The dashed rectangles represents the same users in the feature space of
another biometric, which can be distinguished with a high confidence.

reason behind using a Gaussian function is that it is more important to have a large margin

between identities at the begining of the sorted normalized score list because they have a

higher probability to be the actual identity of the test query.

The normalized score list has its highest confidence in the case that one identity has the

probability of 1 and the rest have the probability of 0. In this case, the confidence based

on formula 4.4 is 1. If the probability distribution has the same value for all the identities,

it means that the matcher cannot distinguish between different identities. In the case of a
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uniform distribution, the confidence value is 0 and it shows the inability of the matcher to

make a correct decision.

Ranked List Conversion to Pseudo-Score List

Using ranked list to calculate the confidence will result in the same confidence value for

all the matchers, since the differences of consecutive ranks (confidence margins) are always

one. In order to facilitate the calculation of confidence, there is a need to retrieve the score

information.

Algorithm 3 demonstrates the process of pseudo-score retrieval. The pseudo-score of each

user (identity) is calculated by multiplying the rank of the user (identity) by the correlation

between that user’s (~1n − RPD) and the ranked list. The resulting pseudo-scores are real

numbers that have information about the distribution of users in the feature space and the

matcher’s ranking of identities for the test query. In the case that two users are really close

in the feature space, they should have a close rank. On the other hand, since the two users

are close in the feature space, their resemblance probability distributions should be similar

as well. The correlation of the RPDs of those users and the ranked list results in close

correlation values. As the result of close ranks and correlation values, the pseudo-scores of

those users will have values with a small confidence margin, which is an indicator of the

matcher’s inability to distinguish between them.

Algorithm 3 The process of creating the pseudo-score list from ranked list containing N
users using resemblance probability distributions.

for each ranked list RLbj do
for each user ui do

PseudoScorebj(ui) = (N −RLbj(ui) + 1)× (corr(LRbj , (~1n −RPD
bj
ui)))

end

end
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Cascade of Ranked Lists

The confidence of matchers provides a criteria to adaptively select ranked lists based on their

performance for each query. It is important to use the outcome of all the matchers and at

the same time, accent matchers that perform better for each specific query.

Cascade of Ranked Lists is the novel approach to utilize the confidence in order to select a

set of well-performed matchers that work in sequence and result in the ranked lists with high

confidence values. Figure 4.10 demonstrates the flowchart of the confidence-based ranked list

selection for rank fusion. In this flowchart, it is considered that the number of biometrics is

three, although there is no limitation on more biometrics. The process starts with converting

the ranked list of each biometric to pseudo-scores using algorithm 3. The pseudo-scores are

sorted in a descending order so that the high score identities are at the top of the list and low

scores are at the bottom. In order to calculate the confidence, I need to convert pseudo-score

lists to discrete probability distributions. This can be done as:

NPseudoScorebj =
PseudoScorebj −min(PseudoScorebj)×~1n
‖PseudoScorebj −min(PseudoScorebj)×~1n‖

(4.5)

The confidence of each normalized sorted pseudo-score list can be calculated using equa-

tion 4.4. For each pseudo-score list, the k first high score users are selected based on the

confidence value of that list as follows:

k = max{(1− CM)(Nl − 1) + 1, kmin} (4.6)

where CM is the confidence of the list and kmin is the minimum required number of users

in each list. In the case that confidence of the list is zero and it cannot distinguish between

users, k will be equal to Nl, which is the total number of users that are in the current state

of the list. In case that the value calculated by (1 − CM)(Nl − 1) + 1 is less than kmin, k

will be equal to kmin to insure that the list size will not drop below a certain threshold. The

reason behind using kmin is to preserve a minimum list size in order to avoid any users lost
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Figure 4.10: Flowchart of the confidence-based ranked list selection (CBRLS) approach.

due to inaccuracy of confidence calculation. The k first high score users of each list form

another list, which is called the restricted list.

For each restricted list, the system searches to find the matcher that provides the highest

confidence for the remaining identities in the list. To accomplish this task, for any restricted

list Lbj , the pseudo-scores for the identities in Lbj are selected from all the other lists Lb
j
′

and the confidence value is calculated for them to find the matcher that provides the highest

confidence for the identities in the restricted list Lbj . The pseudo-scores from the matcher

that has the highest confidence for the identities in restricted list Lbj are replaced with the
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original pseudo scores.

This process continues for all the matchers, until there are no other changes in the

restricted lists. In this state, all the lists have reached their highest confidence. In order to

fuse these restricted lists, it is required to convert them back to ranked lists by assigning

ranks based on the pseudo-score values. Fusion also requires that all the ranked lists have the

ranking for same identities. Due to elimination of some users in the process of restricted list

creation, the users in the lists are not identical. To address this problem, the list alignment

is preformed to add the missing users to each list. The added users will have the rank equal

to the size of the initial list plus one.

Figure 4.11 provides an example of three 2D feature spaces for three biometrics of five

users. In this figure, the samples for user u1 are close to samples of other users in the feature

spaces for biometrics b1 and b2. The samples of user u1 are perfectly separated from the

other users’ samples in feature space of biometric b3. The system is asked to determine the

identity of the test query T of user u1, which is demonstrated with a red circle in the three

biometrics’ feature spaces. Figure 4.12 shows the Borda count rank fusion for the ranked lists

created for the test query T . In the result of the Borda count, the lowest rank is 7 for both

users u1 and u2. The Borda count rank level fusion is not able to distinguish between these

two users. Figure 4.13 demonstrates the result of confidence-based ranked list selection for

the same ranked lists. After conversion of ranked lists to pseudo-score lists, the confidence

measures show that biometrics b1 and b2 are not as confident as biometric b3 in the ranking

of users. After creating the restricted lists based on the value of k for each pseudo-score list,

the matcher that provides the highest confidence for each restricted list is selected. In this

example, the matcher for biometric b3 provides the highest confidence for all the restricted

lists. So the values of the pseudo-scores in each restricted list are replaced by values suggested

by pseudo-scores of biometric b3. The confidence measure for each modified pseudo-score

list is calculated and the number of remaining users in the restricted lists is determined. In
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this example, after this stage, all the restricted lists have reached their highest confidence.

In order to fuse these restricted lists, it is required to convert them back to ranked list by

assigning ranks based on the scores. Since the users in all the lists are not identical, the list

alignment is preformed to add the missing users to each list. The reinforced ranked list for

each biometric is more accurate and user u2 is given the first rank in all of them. The fusion

of reinforced ranked lists using Borda count rank level fusion method has user u2 with a

lowest rank. Moreover, the gap with the first lowest rank (rank 3 for user u2) and the second

lowest rank (rank 8 for user u5) is large, which represents a large confidence margin.

4.2.3 Clustering of Users for Confidence-Based Rank Fusion

Rank reinforcement and confidence-based ranked list selection both utilize resemblance prob-

ability distributions to enhance the recognition rate. The fact that resemblance probability

distributions of neighbor users possess a high degree of similarity is neglected by both of

these methods. The similarity between neighboring users can be utilized to reduce the com-

putational complexity of the system and enhance its response time. In this section, the novel

idea of clustering of the users based on the similarity of their resemblance probability distri-

butions and adaptation of rank reinforcement and confidence-based ranked list selection for

clusters of users are introduced.

User Clustering Based on Resemblance Probability Distributions

Clustering is defined as “partitioning a set of objects into relatively homogeneous subsets

based on inter-objects similarities” [74]. Based on the definition, there are two fundamental

steps in clustering: Defining the similarity measure and choosing a clustering (partitioning)

approach.

The clustering of users should be based on how informative their resemblance probability

distributions are with respect to others. Pearson correlation coefficient [73] can be used to

find the similarity of resemblance probability distributions. The higher the correlation value
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Figure 4.11: Example of a 2D feature space for three biometrics of five users. For each user,
there are two training samples per each biometric, which are represented by blue circles. A
test query T of user u2 is also represented by a red circle among the training samples.
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ranked lists of the test query in figure 4.11. The fusion based on CBRLS is able to correctly
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between two distributions, the more redundancy between them and they relatively provide

the same information. The correlation between the two resemblance probability distribution

RPD
bj
ui and RPD

bj
u
i
′ is defined as [73]:

corr(RPDbj
ui
, RPDbj

u
i
′ ) =

n∑
k=1

((RPD
bj
ui(uk)−RPD

bj
ui)(RPD

bj
u
i
′ (uk)−RPD

bj
u
i
′ )√

n∑
k=1

(RPD
bj
ui(uk)−RPD

bj
ui)

n∑
k=1

(RPD
bj
u
i
′ (uk)−RPD

bj
u
i
′ )

(4.7)

This correlation value is considered as the similarity measure between RPDs.

Clustering algorithms can be divided into two main categories: hierarchical and parti-

tional. A complete review of different clustering algorithms can be found in [75]. In contrast

to hierarchical clustering, partitional clustering algorithms require the specification of the

number of clusters [75], which is not available in this application. In partitional clustering,

a criterion is optimized to find the optimum grouping of objects. Since the combinatorial

search of the all possible assignments is computationally expensive, in practice, a local opti-

mization is performed several times with different initial settings and the best result is kept

as the final clustering. Since hierarchical clustering does not require to know the number of

clusters in advance and also provides a more robust output than the partitional approach,

it is selected for clustering the users.

The pseudo-code for agglomerative hierarchical clustering [75] is given in algorithm 4.

At the beginning, the algorithm assigns each data point to a singleton cluster. The distance

between each pair of clusters is calculated and the two clusters that have the least distance

are merged and form a new cluster. This process continues until all the clusters merge and

form a single cluster containing all the data points. The process of hierarchical clustering

can be shown using a dendrogram as an interpretable visual representation. Figure 4.14

demonstrates ten hypothetical data points in a 2D feature space and the dendrogram of

their hierarchical clustering. Each level in the dendrogram is a clustering of data points.

The clusters in the lower levels of dendrogram have the most similarity between their data
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Algorithm 4 Agglomerative hierarchical clustering [75].

Consider each data point as a singleton cluster.
while there is more that one cluster do

Calculate the distance between each pair of clusters.
Merge the pair that has the lowest distance.

end

points.

In the hierarchical clustering, the measurement of distance between two clusters can

be calculated using three major approaches: single-linkage, complete-linkage, and group-

average [75]. In single-linkage, the distance between two clusters G and H is [75]:

dsl = mini∈G,j∈Hdi,j (4.8)

where di,j is the distance between two data points i and j. Single-linkage make the chaining

effect which results in early merging of clusters. Complete-linkage distance of two clusters

G and H is calculated as [75]:

dcl = maxi∈G,j∈Hdi,j (4.9)

Complete linkage creates dense clusters, although it might result in late merging of clus-

ters due to outliers. Group-average distance is defined as [75]:

dga =
1

NGNH

∑
i∈G,j∈H

di,j (4.10)

where NG and NH are the cardinality of clusters G and H. Group average is a compromise

between the complete-linkage and single-linkage.

Since hierarchical clustering with group average distance prevents from chaining and late

merging and also provide relatively dense clusters, for each biometric, the users are clustered

using this clustering approach.

Clustering of users reduces the system capability to distinguish between users in the

same cluster, especially when there is a high correlation between biometrics, which results in
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Figure 4.14: Example of clustering ten hypothetical data points in a 2D feature space using
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resulting dendrogram.
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similar clusters of users for different biometrics. The fewer number of clusters will decrease

the time complexity of fusion, although it can reduce the recognition rate at the same time.

In this case, there is a trade-off between the recognition rate and the time complexity of

the system. The optimum number of clusters should be selected based on the application

and the importance of recognition rate and the response time. The experimental results in

chapter 5 will elaborate more about this trade-off.

Resemblance Probability Distributions for Clusters

As a result of hierarchical clustering, users will be grouped into non-overlapping clusters.

Since users in each cluster have similar resemblance probability distributions, a single dis-

tribution can be used for all the users in a cluster. The resemblance probability distribution

for each cluster shows the probability of classification of that cluster as all clusters.

It can be considered that each cluster is a super-user that contains users with similar

RPDs. The distance from super-user sui to sui′ is calculated using the following formula,

which is similar to the distance between the ordinary users in formula 4.1:

Dbj(sui, sui′ ) =


1/mi

∑mi

k=1 minl∈{1,...,m
i
′ } ‖(fssui,bjk

− f
s
su

i
′ ,bj

l

)‖, if i 6= i
′

1/mi

∑mi

k=1 minl∈{1,...,m
i
′ }−{k} ‖(fssui,bjk

− f
s
su

i
′ ,bj

l

‖, if i = i
′

(4.11)

wheremi andmi′ are the number of samples in super-users sui and sui′ and ‖(f
s
ui,bj
k

− f
s
u
i
′ ,bj

l

)‖

is the magnitude of the difference feature vector (f
s
ui,bj
k

− f
s
u
i
′ ,bj

l

). In this formula, for all the

samples of all the users in a super-user, the average of minimum distances to the samples in

all the super-user is calculated.

The resemblance probability distribution for all super-user can be calculated using algo-

rithm 5. The difference between Algorithm 1 and 5 is that Algorithm 5 iterates through the

samples in super-users and use the distance measure of super-users.
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Algorithm 5 Calculation of resemblance probability distributions for the super-users. i
varies between 1 and number of super-users and j is in the range of [1, nb].

for each biometric bj do
for each super-user ui do

for each super-user ui′ do
Calculate Dbj(sui, sui′ ) using equation 4.11

end
Calculate the resemblance probability of sui using equation 4.2

end

end

Confidence-Based Rank Fusion Using Clusters

The most important part in adaptation of both rank reinforcement and confidence-based

ranked list selection is the calculation of correlation between ranked lists and super-users’

resemblance probability distributions. The issue is that ranked lists and super-users’ resem-

blance probability distributions do not have the same dimensions and it is not possible to

calculate the correlation between them. To fix this, the ranked list of users needs to be

converted to the ranked list of super-users. The rank of a super-user sui for biometric bj is

calculated as follows:

RLSUbj(sui) =
∑
u∈sui

RLbj(u) (4.12)

In formula 4.12, the rank of users that are in the same cluster are summed to form

a rank for the super-user. Now the super-users’ ranked list and resemblance probability

distributions have the same dimensions.

Both ranked list rank reinforcement and confidence-based ranked list selection methods

requires the calculation of the Pearson correlation. In the clustering approach, the correlation

for all the super-users’ resemblance probability distributions and all the super-users’ ranked

lists can be calculated once. Then, a hash table is created that maps each user to the

correlation value of its super-user. In this case, there is no need to do the calculation for

each individual users. Therefore, this reduction of calculation can considerably enhance the
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response time of the system.

The other parts of algorithms for ranked list reinforcement and confidence-based ranked

list selection stay the same.

4.3 Chapter Summary

In this chapter, the notion of resemblance probability distribution is introduced as a way

to represent the distribution of users in the feature space. The ranked list reinforcement

and confidence-based ranked list selection are proposed as two fusion methods based on

resemblance probability distributions. These two methods are discussed by providing de-

tailed examples of their procedures. The ranked list reinforcement exploits the underlying

distribution of users to address the problem of inter-class similarity and decrease the mis-

classification in ranked lists. The confidence-based ranked list selection also uses the users’

distribution to calculate the matchers’ confidence and then utilizes them to create high con-

fidence ranked lists. These two methods are able to significantly increase the recognition

rate of rank level fusion systems. At last, the idea of resemblance probability distribution is

extended to clusters of users (super-user) to enhance the response time of algorithms that

are based on resemblance probability distributions. These methods will be extensively tested

and proven to be efficient in the next chapter.
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Chapter 5

EXPERIMENTATION AND RESULTS

This chapter covers the implementation overview of the proposed multimodal system, the

databases used for system performance validation and the experimental results for different

scenarios. Four multimodal databases are used for the validation. The first two multimodal

databases contain faces, ears, and irises from widely used databases for biometric, in order to

evaluate the performance of the proposed system in general. The third multimodal database

consists of frontal face, profile face, and iris in order to test the system performance in the

case of correlated biometrics. The fourth database consists of users with similar biometrics

to evaluate identification rate in this scenario and also show how confidence-based ranked

list selection approach can handle this situation.

5.1 Implementation Overview

The proposed system is implemented in MATLAB R2014a on an Intel(R) Core(TM)2 Duo

machine running Windows 7. The implemented system has a graphical user interface to se-

lect different databases for each biometric. Each database is divided into enrollment data and

identification data to facilitate the process of training and testing. After database selection,

the system creates a multimodal database using the selected biometric databases. For enroll-

ment, the proper feature extractions are utilized for each biometric to obtain representative

features from the training portion of the databases. Resemblance Probability Distributions

(RPDs) are calculated using the similarity of extracted features for each user. The extracted

features accompanied with resemblance probability distributions for each user are stored in

the system’s database. After enrollment, the system operates solely based on the extracted

features and resemblance probability distributions calculated during the enrollment.
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For testing the system performance, the identification portion of the data is used. The

same features as enrollment are extracted from the identification data and the ranked lists

are created. The system provides a drop-down menu to select between different rank level

fusion approaches. After selecting the desired fusion approach, the recognition results are

created as comma separated values (CSV) files in the “results” directory.

5.2 Experimental Data

Due to the effort required to create a multimodal biometric database, most multimodal bio-

metric systems use virtual databases for their performance evaluation. A virtual multimodal

database for three biometrics is created by selecting three users from each biometric database

and considering this triple as a virtual user [1]. The assumption behind the virtual database

creation is that different biometrics of a person are not dependent [76].

For iris, the CASIA Iris Image Database V4.0 (CASIA-IrisV4) is used [77]. This database

consists of six subsets. In this thesis, two of these subsets are deployed for creating multi-

modal databases. The other four subsets are for far distance iris recognition and deformation

of the iris due to pupil dilation, which are beyond the scope of this thesis. CASIA-Iris-Interval

subset is captured by a close-up iris camera, which contains an array of NIR LED. This sub-

set provides a detailed texture of irises for 249 users. CASIA-Iris-Syn contains 10,000 iris

images of 1,000 subjects. The irises in this subset are synthesized from CASIA Iris Image

Database V1.0 [78]. The iris images in CASIA-Iris-Syn look completely realistic and the

statistics show the same performance for synthetic and genuine iris databases [78].

For ear, the USTB database from Ear Recognition Laboratory at University of Science

and Technology Beijing is used [4]. This database contains 1276 ear images of 216 subjects,

which are captured in different illuminations and orientations. All the subjects’ heads had a

two-meter distance from the camera during the acquisition. In order to reduce the effect of

illumination and orientation, a normalization technique is utilized [79]. In order to test the
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capability of the system, another ear database provided by Indian Institute of Technology

(IIT) Delhi, which contains 793 images of 221 subjects is used [79]. This database is acquired

from students and staff at IIT Delhi in an indoor environment.

Face images from the widely used Facial Recognition Technology (FERET) database [3]

are utilized. In this database, there are 14,051 face images in 24 categories of 1199 subjects

captured in different orientations and illumination conditions. Among the orientations, the

frontal and profile faces are used for creation of multimodal databases. Another database

used from the University of Essex, UK [80]. There are 3,059 face images of 153 subjects in

front of a green curtain, which 20 of them are females and the rest are males. Images of each

subject have a considerable expression change, which makes a high intra-class variation.

In order to completely test the system from different aspects, four multimodal databases

are created. The first and second multimodal databases are created by using FERET (frontal

faces) and Essex face recognition data for face, USTB and IIT for ear, and CASIA-Iris-

Interval and CASIA-Iris-Syn for iris respectively. These two databases are created from

widely used databases to test the system performance in general. The first and second

multimodal databases contain 216 and 153 subjects and 17,280 and 9,792 test queries re-

spectively. Figure 5.1 and 5.2 show snapshots of these multimodal databases. The third

database uses frontal and profile faces from FERET for the first and second unimodal bio-

metrics and CASIA-Iris-Interval for the third one. This database is created with the aim

of testing the effect of correlated biometrics on the final identification rate of the system.

The third multimodal database contains 249 subjects with 19,920 test queries. Figure 5.3

provides a snapshot of this database. The fourth database is created to test the capability

of confidence-based ranked list selection approach in handling users with similar biometrics.

The same unimodal databases as the first multimodal database are used in the creation of

this one. In this database, the users are paired and then for each pair, one of their biometric

is randomly (uniformly) selected. The extracted features of the selected biometric of the first
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Figure 5.1: First multimodal database created from face images from FERET, ear from
USTB, and iris from CASIA-Iris-Interval. The database contains 216 users and 17,280 test
queries.

user in the pair are cloned for the second user, so that both of them have the same data for

that biometric. This database has 216 subjects and there are 17,280 test queries to test the

performance of fusion methods. A snapshot of this database is provided in figure 5.4. Table

5.1 shows the unimodal databases used in each of the four multimodal database.

Table 5.1: The four multimodal databases used for testing the system.

FERET
(frontal)

FERET
(profile)

Essex USTB IIT CASIA
Internal

CASIA
Syn

1st multimodal database X X X
2nd multimodal database X X X
3rd multimodal database X X X
4th multimodal database X X X

5.3 Experimental Results

The goal of the experiment is to test the superiority of proposed approaches for biomet-

ric rank fusion. This section first analyzes the correlation of different unimodal biometric
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Figure 5.2: Second multimodal database created from face images from Essex face recognition
data, ear from IIT database, and iris from CASIA-Iris-Syn. The database contains 153 users
and 9,792 test queries.

Figure 5.3: Third multimodal database created from frontal and profile face images from
FERET and irises from CASIA-Iris-Interval. The database contains 249 users and 19,920
test queries.
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Figure 5.4: Fourth multimodal database created from face images from FERET, ear from
USTB, and iris from CASIA-Iris-Interval. In this database each subject shares the same
biometric with another subject. The database contains 216 users and 17,280 test queries.

databases that are used in the creation of multimodal databases. Then, it continues by

testing the hypothesis that ranked list reinforcement and confidence-based ranked list selec-

tion methods are built upon. In order to verify the performance of the proposed methods

from different aspects, the identification rate of the system is tested using four multimodal

biometric databases.

5.3.1 Correlation Analysis of Unimodal Biometric Databases

The ability of a multimodal biometric system in providing a high identification rate is depen-

dent on the correlation between unimodal biometrics. Uncorrelated biometrics will provide

the multimodal system with information that can be inferred to obtain a higher identifi-

cation rate. Table 5.2 demonstrates the correlation between unimodal biometrics that are

used in the four multimodal databases. The correlation value can vary between 1 and -1.

The higher the correlation value is, the more correlated the two databases are. The high-

est correlation among unimodal databases is between frontal and profile faces from FERET
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database, which is 0.6678. This high correlation value was expected, since the frontal and

profile faces in FERET are captured from the same users. CASIA Internal also has a high

correlation with FERET (both frontal and profile). The correlation values between the other

databases are small.

Table 5.2: The average Pearson correlation between ranked lists created from the test queries
of unimodal biometric databases. The value only provided for unimodal databases that are
used together in a multimodal database.

FERET
(frontal)

FERET
(profile)

Essex USTB IIT CASIA
Internal

CASIA
Syn

FERET (frontal) 1
FERET (profile) 0.6678 1
Essex - - 1
USTB 0.0128 - -0.0036 1
IIT - - 0.0244 0.1029 1
CASIA Internal 0.3143 0.3275 -0.0434 0.2951 0.2172 1
CASIA Syn - - 0.0152 0.1081 0.0984 0.0864 1

5.3.2 Correlation Analysis of Ranked Lists and Resemblance Probability Distributions

The performance of the ranked list reinforcement method is dependent on the correlation of

the ranked lists and the resemblance probability distributions (RPD) of the actual identity of

the test query. If the correlation between the ranked list and ~1n−RPD of the actual identity

of the test query is high for all the biometrics, then the actual identity has a better chance

to move higher in the reinforced ranked lists. Table 5.3 shows the average correlation value

between the ranked lists created for all test queries and ~1n − RPDs of the actual identity

of each test query. As table 5.3 demonstrates, in most cases the correlation value is higher

than 0.9, which is an indicator of a high similarity between the ranked lists and ~1n − RPD

of the actual identity of the test queries.
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Table 5.3: The average Pearson correlation of ranked lists created for test queries of databases
and ~1n −RPDs of the actual identities of the test queries.

Biometrics
Databases Face (frontal) Face (profile) Ear Iris

First multimodal database 0.9127 - 0.9382 0.9462
Second multimodal database 0.8936 - 0.9268 0.9396
Third multimodal database 0.9254 0.9246 - 0.9431
fourth multimodal database 0.9185 - 0.9197 0.9361

5.3.3 Similarity of Pseudo-Scores to Match Scores

The performance of the confidence-based ranked list selection approach is highly dependent

on the pseudo-scores. The high similarity of the pseudo-scores to the underlying match scores

that ranked list is created upon results in a better confidence measure and performance

for the ranked list selection. In order to verify the similarity of pseudo-scores and actual

match scores, normalized root-mean-square deviation (NRMSD) is used [81]. NRMSD is

a measure that shows the difference between predicted values and actual values of a signal

and it varies between 0 and 1. Table 5.4 shows the average of NRMSD for the test queries

of different biometrics in multimodal databases. In all cases, the average value of NRMSD

is less than 0.015, which shows a high similarity between the pseudo-scores and the actual

match scores.

Table 5.4: The average of normalized root-mean-square deviation between pseudo-scores and
normalized match scores for queries of each biometric in databases.

Biometrics
Databases Face (frontal) Face (profile) Ear Iris

First multimodal database 0.0144 - 0.0096 0.0127
Second multimodal database 0.0093 - 0.0112 0.0098
Third multimodal database 0.0096 0.0081 - 0.0115
fourth multimodal database 0.01391 - 0.0099 0.0109
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5.3.4 Identification Rate Analysis of RLR and CBRLS

In order to evaluate the identification rate of the fusion methods, Cumulative Match Charac-

teristic (CMC) curve [82] is employed. The CMC curve summarizes the identification rate of

the system at different ranks. Rank x identification rate in CMC curve shows the proportion

of times that the true identities of test queries were in the first n-top ranks of the fusion

results.

The identification rate of each individual biometric is an important factor in the per-

formance of the multimodal system. Moreover, it helps to grasp the effect of fusion on the

identification rate. Figure 5.5 plotted the CMC curve for unimodal biometrics that are used

in each multimodal database. Among the six unimodal biometric databases, CASIA-Iris-

Syn has the highest first rank identification rate of 0.8980. The first rank identification rate

for Essex face recognition data, CASIA Interval, FERET frontal, FERET profile, IIT, and

USTB are 0.0.8881, 0.8843, 0.8754, 0.8581, 0.8456, and 0.8165, respectively.

Figure 5.6 demonstrates the identification rates of highest rank, Borda count, and logis-

tic regression with and without using ranked list reinforcement (RLR) and confidence-based

ranked list selection (CBRLS) by CMC curves for the first multimodal database. Ranked

list reinforcement and confidence-based ranked list selection were able to increase the iden-

tification rates for all the tested fusion methods. In general, the confidence-based ranked

list selection performed better. The reason is the attention to the performance of individual

matchers for each test query and using the most confident ranked lists. The highest first rank

identification rate (0.9881) is obtained by logistic regression with CBRLS. The second highest

identification rate (0.9772) was for logistic regression with ranked list reinforcement. Borda

count with CBRLS, Borda count with RLR, logistic regression, highest rank with CBRLS,

highest rank with RLR, Borda count, and highest rank fusion were respectively the third to

ninth place in the first rank identification rates. The reason behind the lower identification

rate using highest rank and Borda count is that the unimodal biometrics in this multimodal
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Figure 5.5: CMC curves for unimodal biometrics used in creation of the multimodal
databases.
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database do not have the same identification rate. The inattention to the performance of

each unimodal biometric matcher, resulted in a lower identification rate by highest rank and

Borda count fusion. Moreover, CBRLS and RLR with logistic regression were able to reach

100% identification rate at rank 6 and 8 respectively, while logistic regression alone reached

that point at rank 16.

In order to validate the ability of proposed methods to increase the identification rate, the

second multimodal database, which consists of well-known unimodal databases, is used. Fig-

ure 5.7 demonstrates the CMC curves for highest rank (HR), Borda count (BC), and logistic

regression (LR) with and without using ranked list reinforcement (RLR) and confidence-

based ranked list selection (CBRLS). Similar to the results from the first database, the

logistic regression with CBRLS provided the highest identification rate for all the ranks.

Using RLR and CBRLS with highest rank, Borda count and logistic regression were able

to increase the identification rate in all the cases. Comparing the CMC curves for different

fusion methods demonstrates the ability of both RLR and CBRLS in improving the iden-

tification rate. The highest difference between the first rank identification rate of a fusion

method with and without RLR and CBRLS are 0.0113 and 0.0181, which are for logistic

regression fusion method. In addition, CBRLS and RLR with logistic regression were able

to reach 100% identification rate at rank 7 and 8 respectively, while logistic regression alone

reached that point at rank 13. The results from both figures 5.6 and 5.7 are an indicator of

superiority of fusion using RLR and CBRLS.

Multimodal biometric systems are not able to obtain a high identification rate in the

presence of correlated biometrics. The third multimodal database is selected in a way to

have the highest correlation between its unimodal biometrics. As indicated in table 5.2,

the correlation between FERET frontal and profile faces, FERET frontal face and CASIA

Interval, and FERET profile and CASIA Interval are 0.6678, 0.3143, and 0.3275 respectively,

which are the highest correlations among the unimodal databases in this experiment. Figure
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Figure 5.6: CMC curves for highest rank, Borda count, and logistic regression fusion with and
without ranked list reinforcement (RLR) and confidence-based classifier selection (CBRLS)
on the first multimodal database.
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Figure 5.7: CMC curves for highest rank, Borda count, and logistic regression fusion with and
without ranked list reinforcement (RLR) and confidence-based classifier selection (CBRLS)
on the second multimodal database.

90



5.8 demonstrates the identification rates using CMC curves for highest rank, Borda count,

and logistic regression with and without using RLR and CBRLS. The CMC curves show

that in the presence of correlated biometrics, the multimodal system is not able to provide

a high identification rate. Even though the identification rate for fusion methods are low,

RLR and CBRLS are still able to provide a higher identification rate. The highest first rank

identification rate obtained is 0.9559 for linear regression with CBRLS.

Confident-based ranked list selection (CBRLS) is superior in identifying the matchers

which work better for each test query. To validate this superiority, the fourth database is

used, which contains pairs of users with the same biometrics. Figure 5.9 demonstrates the

identification rates for different ranks using CMC curves for highest rank, Borda count, and

logistic regression fusions with and without using RLR and CBRLS. The results show that

despite the difficulty of this database, fusion methods with CBRLS were able to maintain a

high identification rate, while methods without CBRLS have lower first rank identification

rates. The high gap between the identification rates of methods with CBRLS and others is

due to a dynamic selection of ranked lists based on their confidence using CBRLS method.

The highest obtained rank was for logistic regression with CBRLS, which is 0.95206. CBRLS

with logistic regression increased the identification rate of the multimodal biometric system

by 5.8% in cases of users with similar biometrics.

5.3.5 Analysis of RLR and CBRLS with Clustering

Clustering of users accelerates the identification process for fusion methods that use RLR

and CBRLS. The cluster size is an important factor in this acceleration. Figure 5.10 shows

the average identification response time of the fusion methods with RLR and CBRLS for

different levels of cut in the dendrogram (different cluster sizes). First, second, and the

third levels cut of the dendrogram provide the most reduction in the response time of the

system. This reduction is due to the increase in the cluster sizes and decrease in the number

of clusters.
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Figure 5.8: CMC curves for highest rank, Borda count, and logistic regression fusion with and
without ranked list reinforcement (RLR) and confidence-based classifier selection (CBRLS)
on the third multimodal database.
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Figure 5.9: CMC curves for highest rank, Borda count, and logistic regression fusion with and
without ranked list reinforcement (RLR) and confidence-based classifier selection (CBRLS)
on the fourth multimodal database.
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Figure 5.11: First rank identification rate for cuts at different levels of dendrogram.
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On the other hand, clustering of users decreases the system’s ability to distinguish be-

tween users and it will cause a lower identification rate for large cluster sizes. Figure 5.11

shows this trade-off by demonstrating the first rank identification rates of fusions with RLR

and CBRLS for the four databases for cuts at different levels of dendrogram. The value

for the level zero is equal to first rank identification rate of fusion methods with RLR and

CBRLS without clustering (cluster size of 1). The last level of cut in the dendrogram is

considering all the users in one cluster. It basically is equal to not using RLR and CBRLS,

which results in the same identification rate as fusion methods without RLR and CBRLS.

Depending on the application and the required response time, and acceptable identification

rate, the system administrator is able to decide on the proper clustering of the users.

5.4 Chapter Summary

This chapter provided different experimentation for analyzing the performance of ranked list

reinforcement (RLR) and confidence-based ranked list selection approaches for multimodal

biometric rank level fusion. Four different multimodal biometric databases were utilized

to evaluate the system from different aspects. The first two multimodal databases were

composed of well-known face, iris, and ear biometrics to test the system in general. The

proposed fusion methods that used RLR and CBRLS produced higher identification rates.

The third multimodal database was created from unimodal databases that had the highest

correlation values. The identification rates of fusion methods for this database were lower

than the others, although employing RLR and CBRLS helped the fusion methods to obtain

higher identification rates. The fourth database contained users with the same biometric

for one of their modalities. This database showed the superiority of CBRLS to handle the

situations that two people have similar biometrics. In total, employment of RPDs in fusion

was able to increase the identification rate of the multimodal biometric system by 2.9% in

general cases and 5.8% in cases of users with similar biometrics.
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Chapter 6

CONCLUSION AND FUTURE WORK

This chapter concludes this master thesis by providing the thesis summary, a summary of

contribution attained in this research, conclusions and the possible direction for extending

the contributions of this thesis and improvement of multimodal biometric systems.

6.1 Thesis Summary

Chapter 1 started with an introduction to biometric and its important in the current so-

ciety. The key challenges in the design of a biometric system were discussed and then the

contributions of this thesis alongside a brief methodology to address these challenges were

presented.

Chapter 2 provided an overview of the biometric system and the advantages of using

a multimodal biometric system. Different types of multimodal biometric systems were dis-

cussed. Then, information fusion was introduced as an important part of a multimodal

biometric system. Advantages of different levels of fusion with a review of previous re-

searches with emphasis on post-mapping fusions were provided. At the end of this chapter,

highest rank, Borda count, and logistic regression were covered in more detail as well-known

rank level fusion methods.

In Chapter 3, an overview of the multimodal biometric system for rank level fusion that

deploys resemblance probability distributions were provided. Then, the chapter looked in

detail to the conventional unimodal biometric matchers for face (frontal/profile), ear, and iris

as the building blocks of a multimodal system. An overview of unimodal biometric matchers

with ability to extract resemblance probability distribution were discussed.

Chapter 4 covered the proposed methodologies for confidence-based rank fusion. This
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chapter introduced the notion of Resemblance Probability Distribution (RPD) to retain

the lost information due to abstraction in the ranked lists and used this information to

obtain a higher recognition rate. Ranked List Reinforcement (RLR) and Confidence-Based

Ranked List Selection (CBRLS) were the two new rank fusion methods based on the idea of

resemblance probability distributions. In order to accelerate the fusion module, the notion

of RPD was generalized to clusters of users.

Chapter 5 provided the implementation overview of the proposed multimodal system. It

introduced different databases used for system performance validation in order to cover differ-

ent scenarios for the system and then provided the experimental results for these databases.

Four multimodal databases were used for the validation. The first two multimodal databases

contained faces, ears, and irises from widely used databases for biometric, in order to eval-

uate the performance of the proposed system in general. The third multimodal database

consisted of frontal face, profile face, and iris in order to test the system performance in the

case of correlated biometrics. The fourth database consisted of users with similar biometrics

to evaluate the recognition rate in this scenario and also showed how confidence-based ranked

list selection approach can handle this situation. The experimental results for clustering of

the users and its effect of the system response time and recognition rate were also provided

at the end of this chapter.

6.2 Summary of Contributions

This section summarizes the contribution of this research to rank level fusion in multimodal

biometric systems. The contributions of this thesis are as follows:

• This thesis introduced the notion of Resemblance Probability Distribution

(RPD) as a supplementary information along with the ranked list of each

biometric matcher to capture the distribution of users in the feature space.

RPDs can be used to improve the recognition rate and accuracy of the system.
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• The RPD was used in the new concept of ranked list reinforcement (RLR) for

rank level fusion in multimodal biometric system. RLR is the reordering of

rank list based on the information provided by RPD in order to result a rank

list with a higher confidence level.

• The novel confidence-based ranked list selection (CBRLS) was also proposed

based on RPDs. CBRLS is able to select biometric matchers dynamically

based on their performance for any test query. CBRLS is able to address the

problem of noisy data and inter-class similarity.

• This thesis also generalized the notion of RPDs to clusters of users and adapted

the ranked list reinforcement and confidence-based ranked list selection ap-

proaches to operate on clusters. The clustering of users helped to accelerate

the system response time.

This thesis also had the following experimental and development contributions:

• The effect of cluster size on the identification rate and also enhancement of

the system’s response time was evaluated.

• The effect of correlated biometrics e.g., frontal face, profile face, and ear and

uncorrelated biometrics e.g. frontal face, ear, and iris has been studied to

evaluate the performance of the proposed RPD based fusion techniques in this

situation. The system also tested on database of users with similar biometrics

to evaluate the ability of the proposed methods in recognizing the proper

matchers for fusion.

• Unimodal biometric systems for frontal face, profile face, ear, and iris were

developed.
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• A multimodal biometric system with rank level fusion and the ability to use

RPDs for ranked list reinforcement and confidence-based ranked list selection

was developed.

6.3 Conclusions

In this master thesis, a new multimodal biometric system based on face, ear, and iris (all

from facial area) was presented. In order to consolidate the recognition results from differ-

ent matchers, two different fusion approaches were proposed. Both of the proposed fusion

approaches were based on the idea of resemblance probability distribution, which is also

a contribution of this thesis. The resemblance probability distribution is the distribution

of users’ biometrics in the feature space and this information can be used in order to im-

prove the fusion process in multimodal systems. The rank list reinforcement method was

introduced to enhance the rank lists from biometric matchers. It reorders the rank of users

in the ranked list by the means of resemblance probability distributions. Confidence-based

rank list selection (CBRLS) is another method proposed based on resemblance probability

distributions. CBRLS is able to dynamically select ranked lists for different test queries

based on the confidence level calculated using resemblance probability distributions. This

thesis also generalized the notion of resemblance probability distributions to the clusters

of users to enhance the response time of the multimodal biometric systems. The proposed

approaches were tested using four different multimodal biometric databases. Both RLR and

CBRLS provided high recognition rates on general biometric databases. In the presence

of correlated biometrics, RLR and CBRLS was still able to improve the recognition rate.

For the fourth database, which contained users with similar biometrics, CBRLS provided

far better results than any other fusion methods. The outcomes of this research have been

presented and published in high quality conferences, such as International Conference on

Computational Science (ICCS), the IEEE international conference on Identity, Security and
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Behavior Analysis (ISBA), and international conference of Computer Analysis of Images and

Pattern (CAIP).

6.4 Future Work

In this work, I employed the RPDs to the multimodal biometric domain. However, RPDs can

be used to improve the identification rate of any pattern recognition systems that consolidate

information from different sources.

Testing the proposed system on a real multimodal biometric system is essential for the

real world deployment of the system as a security application. The system’s performance

can be tested on a multimodal database, that all the modalities are collected from users in

one session.

More research can be done in utilization of RPDs to increase the identification rate of

biometric systems that works solely based on one biometric. These unimodal systems can

then be used in a multimodal system to provide a higher identification rate.

Rank list reinforcement and confidence based rank list selection were two of the possible

techniques for utilization of RPDs. Further research can be done on finding new approaches

to utilize RPDs in fusion of information.

Finally, this research only investigated the utilization of resemblance probability distri-

bution on rank level fusion. The effect of RPDs employment on other post-mapping fusion

levels can be investigated.
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