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Abstract— Currently the false data injection (FDI) attack 

bring direct challenges in synchronized phase measurement unit 
(PMU) based network state estimation in wide-area measurement 
system (WAMS), resulting in degraded system reliability and 
power supply security. This paper assesses the performance of 
state estimation in electric cyber-physical system (ECPS) 
paradigm considering the presence of FDI attacks. The adverse 
impact on network state estimation is evaluated through 
simulations for a range of FDI attack scenarios using IEEE 
14-bus network model. In addition, an algorithmic solution is 
proposed to address the issue of additional PMU installation and 
placement with cyber security consideration and evaluated for a 
set of standard electric transmission networks (IEEE 14-bus, 
30-bus and 57-bus network). The numerical result confirms that 
the FDI attack can significantly degrade the state estimation and 
the cyber security can be improved by an appropriate placement 
of a limited number of additional PMUs.  
 

Index Terms—Phase measurement units, state estimation, 
cyber attack, electric cyber-physical system  

NOMENCLATURE 

z  Measurement vector (i.e. active and reactive power 
flows, active and reactive power injections, voltage 
magnitudes and angles) 

x  System state variable vector (voltage magnitudes and 
angles) 

e  Measurement error vector (the error distribution is 
known) 

( )h x  Nonlinear function between measurement vector and 
the system state variable vector 

W  The weighting matrix 

Jh  Jacobian matrix derived from vector( )h x  
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x̂  Estimated state vector 

iV  Voltage at busi  

i  Phase angle at busi  

ij  Bus phase angle difference (i j  ) 

ij ijG jB  Line admittance between bus i and j  

si sig jb  Admittance of the shunt branch at busi  

i  A set of buses connected to busi  

0X  State estimates under attack-free condition 

X  State estimates under attack condition 

0E  The maximum state estimation deviation with 
available PMU placement 

k  Attack impact coefficient  

E  Estimation deviation metric 

I. INTRODUCTION  

N recent decades, the advances of a number of enabling 
technologies (e.g., sensing, communication, intelligent 

control and decision-making) have driven the transition of the 
conventional electric power system to a smart grid. The 
existing supervisory control and data acquisition (SCADA) 
system can only obtain asynchronous snapshots of power 
system operation due to low sampling rate (with the poling 
cycle in minutes or even hours). Such statistical measurements 
can barely meet the stringent requirement of timely and 
accurate monitoring and control of smart transmission 
networks spanning over a large geographical area [1]. To this 
end, the WAMS is designed to continuously collect the 
network operational states through sophisticated digital 
devices, i.e. Phasor Measurement Units (PMUs), installed at 
specific locations in the transmission network. The PMUs can 
timely record and communicate GPS-synchronized dynamical 
state information with a high sampling rate (6-60 
samples/second). The existing research effort, e.g., the North 
American Synchrophasor Initiative (NASPI) [2] and the 
Western Interconnection Synchrophasor Project (WISP) [3], 
have confirmed its benefit for dynamic health evaluation of 
large-scale power transmission grid. However, the complete 
replacement of SCADA legacy with WAMS is currently 
considered not impractical mainly due to the prohibitive 
reinforcement and maintenance cost. SCADA and WAMS 
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will coexist and complementarily support the wide-area 
monitoring and control in electric transmission networks. 

The development of smart grid makes the electric power 
network and the underlying information and communications 
technology (ICT) system supporting its management 
functionalities highly coupled, which is considered as an 
integrated electric cyber-physical system (EPCS), as shown in 
Fig. 1. In fact, ECPS provides a novel analytical framework to 
investigate a number of key technical issues in electric power 
systems, including network modeling, topological and 
dynamical behavior characterization, cascading failure 
analysis and vulnerability assessment.  

Communication 

networks

Information flow

Power flow

 
Fig 1. Cyber-physical system for electric power grid 

II. RELATED WORK 

Existing studies have highlighted the importance of cyber 
security of ECPS against various forms of attacks from 
different aspects. In this paper, we look into the cyber-attacks 
in ECPS with a focus on the false data injection (FDI) attacks 
on PMU-based state estimation in power distribution networks. 
It is confirmed that the false data injection (FDI) attacks can 
circumvent bad data detection programs (e.g. [30], [31]) and 
inject bias into the values of the estimated state in power 
systems [4]. A number of recent studies have exploited the 
FDI attacks on power system state estimation and defense 
mechanisms, including detection-based methods (e.g. [5-7]) 
and protection-based methods (e.g. [8-16]).  

The FDI attack detection approaches generally analyze the 
obtained measurements and detect the abnormal ones that 
cannot fit the expected distributions of historical 
measurements. A Kullback–Leibler distance (KLD) based 
method was proposed for FDI attack detection by tracking and 
calculating the distance between two probability distributions 
derived from measurement variations [7]. In [8], greedy 
algorithms were developed to strategically place secure PMUs 
at key buses in the power system to defend against data 
injection attacks with improved manageability and reduced 
cost. In [9], the authors exploited the graphical defending 
algorithms against false-data injection attacks through 
protecting the state variables with the minimum number of 

measurements. In [10], a risk mitigation model was presented 
for cyber-attacks to PMU networks through solving a mixed 
integer linear programming (MILP) problem to prevent 
cyber-attack propagation and maintain the observability of the 
power system. A detection and identification of cyber-attacks 
in PMU data based on the expectation-maximization algorithm 
was presented in [11]. The work in [12] designed the defense 
mechanism of FDI attacks on state estimation based on a 
least-budget strategy. In [13], an unobservable FDI attack on 
AC state estimation and its impacts on the physical system 
were studied. In [14], the authors exploited the optimal FDI 
attack strategy to cause the maximum damage and developed 
efficient algorithms to identify the optimal meter set for 
protection. In [15], the work proposed an efficient strategy for 
determining the optimal attacking region that requires reduced 
network information. Multiple robust estimators with different 
robustness properties to improve the overall cyber-security of 
power state estimation were investigated with the 
consideration of investment reduction [16]. 

In addition, solutions (e.g. [17-19]) are available to address 
the issue of optimal PMU placement with different objectives 
and deployment constraints. The optimal PMU placement can 
be obtained through minimizing the cost of overall WAMS 
(PMUs, phasor data concentrators and communication 
infrastructures (CIs)) [17]. An optimization formulation was 
proposed in [18] to improve the measurement redundancy 
with minimum number of PMUs while maintaining full 
system observability. The work in [19] focused on the 
minimization of total realistic cost with considering hidden but 
significant and integral part of PMU installation cost. The 
work in [27] developed a mixed integer programming model 
for optimal PMU deployment and optimal selection of existing 
PMUs to mitigate sparse unobservable attacks. A planning 
approach was developed in [28] for optimal PMU placement 
making the system more resilient to PMU failures. In 
particular, the authors in [29] enhanced the least-effort attack 
model to compute the minimum number of sensors that must 
be compromised to manipulate a given number of states, and 
developed an effective greedy algorithm for optimal PMU 
placement to defend against data integrity attacks. 

Based on the aforementioned insights, this paper takes a 
different perspective to exploit the placement of additional 
PMUs considering the WAMS legacy to obtain different 
degrees of state estimation reliability against FDI attacks in 
the context of ECPS framework. The main technical 
contributions made in this work can be summarized as follows: 
(1) the adverse impact of FDI attacks on network state 
estimation is theoretically analyzed and assessed in a 
quantitative fashion for a range of attack scenarios (different 
attack levels, attack locations and measurement types) based 
on IEEE 14-bus network model; and (2) an algorithmic 
solution is proposed to identify additional placement of PMUs 
to obtain maximum cyber security against FDI attacks and 
validated for a range of standard electric transmission network 
models (IEEE 14-bus, 30-bus, 57-bus and 118-bus network).  
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The rest of this paper is organized as follows: the ECPS 
attacks are briefly overviewed in section III; Section IV 
presents the PMU-based state estimation under FDI attacks; 
Section V carries out the simulation experiments to assess the 
impact of FDI attack and PMU placement solution for 
different transmission network models; finally, the conclusive 
remarks are given in Section VI.  

III.  OVERVIEW OF ECPS ATTACKS 

The coupling of cyber and physical networks as well as the 
operational complexity and temporal-spatial characteristic 
make ECPS be vulnerable to cyber-attacks. Different forms of 
cyber-attacks, e.g. eavesdropping attacks, and malwares 
attacks, can significantly affect the operation of smart grid, 
from smart meters, transmission to distribution substations and 
control center. Theoretical models and tools are needed to 
obtain better insights in ECPS cyber-attacks and prevent, 
mitigate and tolerate cyber-attacks. For example, the authors 
in [20] presented a model of cyber-physical switching attacks 
and confirmed that a coordinated circuit breaker switching 
sequence can be designed to deliberately disrupt the network 
operation. In [21], an unobservable power injection attack 
evading the PMU measurement system was studied and its 
adverse impact on power system operation was analyzed. In 
[22], the authors proposed a sophisticated unique malware 
attack in the smart grid in a CPS framework. The replay attack 
that opponents records a sequence of sensor measurements 
and replays the sequence afterwards was studied in [23]. A 
holistic attack resilient framework is proposed in [24] to 
protect the integrated distributed energy resources (DER) and 
the critical power grid infrastructure from malicious 
cyber-attacks with improved grid reliability and stability.  

In addition, the opponents may have the opportunities to 
inject false data or modify the available operational states at 
different parts of the ECPS, e.g. the real-time electricity 
pricing (RTP) data in advanced metering infrastructure (AMI), 
which can directly mislead the energy dispatch and power 
demand prediction. The cyber attacks on SCADA systems can 
also affect the decision-making process at the control center 
and result in issuing incorrect corrective control to the field 
control and protection devices, which may lead to large-scale 
network cascading failures. The opponents may hack the 
underlying communication infrastructure, including the 
communication protocols and communication devices or 
equipments (e.g. routers and switches). Currently power 
utilities tend to adopt the standard packet-switching based 
protocols (e.g. TCP/IP based protocols) and standard 
information models (e.g. IEC61850 in substations), which 
makes the power utility more vulnerable to the intentional 
attacks in comparison with the private or vendor's protocols. 
In summary, the cyber attacks can bring direct adverse or 
disastrous impacts on the operation of smart energy networks. 
This work focuses on the exploitation of FDI attack in 
PMU-based WAMS of electric transmission network. 

IV.  STATE ESTIMATION AND FDI ATTACKS 

In WAMS, the PMUs are installed at the measurement 
points (buses) with the up-stream phasor data concentrators 
(PDCs), as shown in Fig. 2. The PMU measurements are 
rigorously synchronized through GPS satellite and made 
available to the remote electric transmission network control 
center to support network management functionalities, e.g. 
state estimation, dynamic model identification, model 
correction, transient stability prediction, low frequency 
oscillation analysis, fault location and protection.  
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Fig 2. WAMS and synchronized PMUs in electric transmission network 

A. PMU-based network state estimation  

The state estimation of power system has been studied for 
years and the weighted least squire minimization is the most 
widely adopted method in state estimation programs to 
determine the state variable values [25]. The full non-linear 
power flow equations and a large amount of system data are 
needed to implement the state estimation. The power flows are 
nonlinearly dependent on the voltage magnitudes and angles, 
expressed mathematically as (1): 

( ) z h x e                 (1) 

The state variables can be determined based on the 
weighted least square optimization problem given in (2): 

min F( ) Tx (z -h(x)) W (z -h(x))          (2) 

where the elements ofW correspond to the inverse of the 
accuracy of the individual measurements. The functions in the 
vectorh depend on the type of measurements, i.e., active or 
reactive power flow on lines or as injections, voltage 
magnitudes and angles. 

The iterative normal equation method can be adopted to 
solve (2). The first order optimality condition of this 
unconstrained optimization problem is formulated: 

2 0T
h

F
  

 ˆx=x

(x) ˆ ˆ| J (x)W(z- h(x))
x

       (3) 

The result is a nonlinear equation system which can be 
solved using an iterative process. 

In fact, the faulty measurements can directly lead to 
significant errors in determining the state of a system, hence 
bad data detection schemes are used to detect them. Various 
forms of bad data detection algorithms are available and 
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mostly are based on the residual [25, 30] as follows. 
ˆ(x) r z h                   (4) 

This corresponds to the difference between the received 
measurement and the value for this measurement as a function 
of the estimated state. The FDI can be identified based on the 
largest normalized residual method if (5) is met, where is an 
appropriately predetermined threshold. The study in [25] 
indicated that, using the known error distributions and the 

theory of 2x testing, the value of  can be determined such 
that faulty measurements are identified if they exceed the 
expected probability distributions. 
                       || || r                   (5) 

B. Analysis of FDI on network state estimation 

The FDI on WAMS can directly degrade the accuracy of 
the state estimation or make the network partially 
unobservable. It is indicated in [8] that the false data added to 
the measurement a can pass bad data detection 
if ˆ ˆ( ) ( )  a h x c h x . Here, the FDI attack on network state 

estimation can either manipulate certain system state variables 
or manipulate certain measurements, which can be formulated 
and theoretically analyzed as follows: 

Attack on system state variables: two types of system state 
variables are considered in state estimation, i.e. bus phase 
angle ( ) bus voltage magnitude (V ). Once a specific state 
variable is tampered, the dependent measurements will also be 
affected based on the following equations. 

(1) Real and reactive power injection at busi  

( cos sin )
i

i i j i j ij i j ij
j

P V V G B 


             (6) 

( sin cos )
i

i i j i j ij i j ij
j

Q V V G B 


            (7) 

(2) Real and reactive power flow from bus i to bus j  
2( ) ( cos sin )ij i si ij i j ij ij ij ijP V g g VV g b         (8) 

2( ) ( sin cos )ij i si ij i j ij ij ij ijQ V b b VV g b          (9) 

It can be observed from (6)–(9) that the attack on one state 
variable requires the manipulation of multiple measurements, 
e.g. the change of iV  needs a set of manipulations of iP , iQ , 

ijP and ijQ where ij  . If the FDI attack is carried out for 

multiple system state variables simultaneously, then the 
manipulation of more measurements needs to be implemented.  

Attack on certain measurements: a state measurment is 
determined by the system configuration and at least two 
system variables. Thus, to attack certain measurements, the 
change of least one state variable that controls the targeted 
measurement is required in FDI attacks.  

C. PMU placement considering cyber attacks 

Obviously, sufficient availability of PMUs in transmission 
networks can improve the performance of state estimation 
under FDI attacks due to data redundancy. With the available 
PMUs which obtain the system state observability, the 

proposed solution addresses the placement of additional PMUs 
to obtain the required accuracy of state estimation under 
attacks. The flowchart of the proposed algorithmic solution is 
illustrated in Fig. 3.  
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Fig.3 The flowchart of PMU placement considering FDI attacks 

The key steps of the solution can be summarized as follows: 
(1) the most vulnerable buses which can impose the maximum 
adverse impact to the state estimation under FDI attacks are 
firstly identified; (2) the optimal placement of additional 
PMUs (number of PMUs and their locations) under FDI attack 
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is evaluated and determined through an iterative process; and 
finally, the obtained solution of PMU placement is further 
assessed to ensure the adverse impact on state estimation 
under FDI attack is managed to an acceptable range.  

More specifically, an estimation deviation metric is defined 
to capture the inaccuracy of state estimation, as given in (10) 

 

0
1

0

( ) ( )

( )
=

N

i

X i X i

X i
E

N




 (10) 

whereN is the number of buses;0X andX are the estimated 

network states under attack-free and FDI attack conditions, 
respectively.  

Here, the maximum deviation of state estimation from 
actual network states under same intensity of attack with the 
available PMU placement is denoted as base0E , and the 

impact coefficient due to attacks is set ask ,  0,1k . In 

particular, the security assessment ensures the identified 
number of additional PMUs as well as the installation 
locations can guarantee the state estimation deviation 
within 0 E k  under FDI attacks (k can be pre-defined with 

different values to represent different state estimation accuracy 
requirements). Consequently, the system state observability 
and estimation accuracy under FDI attacks are simultaneously 
considered in the PMU placement. 

V. SIMULATION EXPERIMENTS AND NUMERICAL RESULT 

A. PMU-based state estimation under FDI attacks   

In this work, the impact of FDI attacks on network state 
estimation performance is quantified assuming that the state 
estimation is merely supported by the PMU-based WAMS. 
The performance is evaluated based on the IEEE 14-bus 
transmission network model [26] which requires at least 3 
PMUs to obtain full network observation. Fig. 4 illustrates that 
in total 4 field PMUs are installed at the network buses with 
red circles (i.e. bus No. 2, 6, 8 and 9) to guarantee the system 
observability. Based on the given PMU placement in IEEE 
14-bus network, the PMU measurements of both bus voltage 
and current can be obtained, respectively, as given in Table 1.  

Bus 1

Bus 2
Bus 3

Bus 4

Bus 5

Bus 6

Bus 7Bus 8

Bus 11 Bus 10 Bus 9

Bus13

Bus14

PMU

PMU

PMU PMU

Bus 12

 
Fig 4. IEEE 14-bus transmission network with 4 PMUs 

TABLE 1 BUS VOLTAGE AND CURRENT MEASUREMENTS 

Location PMU measurements Amplitude Phase angle 

Bus No.2 

Voltage Bus No. 2 1.046 -4.922° 

Current 

Bran. 2-1 1.496 -171.82° 
Bran. 2-3 0.708 -9.583° 
Bran. 2-4 0.546 -5.281° 
Bran.2-5 0.398 -9.299° 

Bus No.6 

Voltage Bus No.6 1.064 -14.634° 

Current 

Bran. 6-5 0.432 -164.11° 
Bran. 6-11 0.076 -40.338° 
Bran. 6-12 0.077 -31.387° 
Bran. 6-13 0.177 -36.220° 

Bus No.8 
Voltage Bus No. 8 1.093 -13.470° 
Current Bran. 8-7 0.163 -102.508° 

Bus No.9 

Voltage Bus No. 9 1.050 -15.145° 

Current 

Bran. 9-4 0.166 -165.422° 
Bran. 9-7 0.274 155.797° 
Bran. 9-10 0.062 -53.997° 
Bran. 9-14 0.095 -35.906° 

This section presents a set of numerical result obtained from 
the simulation experiments through a comparative study. The 
network state estimation based on linear weighted least square 
approach is implemented and the network operational states 
can be estimated. Fig. 5 shows the network estimation and the 
exact network states (bus voltage amplitude and phase angle) 
under the attack-free condition, respectively. It can be seen 
that the state estimation algorithm based on the PMU 
measurements can well estimate the network states (the errors 
are within the acceptable range) without any cyber attacks. 
Here, the evaluation of FDI attacks on state estimation is 
carried out for three network scenarios considering the attack 
with different levels (case 1), at different locations (case 2) 
and on different measurement types (case 3), respectively. The 
FDI attacks are implemented through injection of randomly 
altered measurements with different degrees (e.g. 10%~30%), 
as adopted in existing studies (e.g. [7]).   

Case 1: State estimation under different levels of FDI attacks 

It is interesting to assess the adverse impact of data 
tampering at different levels on the network state estimation. 
Fig. 6 presents the estimated states of voltage amplitude and 
phase angle in the case that the PMUs installed at bus No. 2 is 
attacked with the voltage measurement values being randomly 
tampered at the level of 10%, 20%, and 30% compared with 
the exact PMU measurements, respectively. It is clearly 
demonstrated that that such attack can seriously affect the 
accuracy of the measurement of voltage amplitude, but with 
limited impact on the phase angle. With such tampered 
voltage measurement, the estimated network states are 
significantly deviated from the actual network operational 
states, which may eventually mislead the decision-making 
process and potentially the corrective control actions.   

Case 2: State estimation under attacks at different locations  

Due to the topological structure of power transmission 
network, the impact of attacks at different locations can vary. 
Thus, the simulation experiment for cyber-attacks at different 
locations are carried out to assess the impact on network state 
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estimation performance under FDI attacks at buses with PMU 
installations (No.2, 6, 8 and 9), respectively. Here, the PMU 
voltage measurements at the attacked buses are assumed to be 
altered with 10% in respect to their original values. The 
numerical result of state estimation of network states for 
different attack locations are presented against the scenario 
without attacks in Fig.7, respectively. It demonstrates that 
such attacks of information alteration can have great influence 
on the performance of state estimation, in particular the 
voltage amplitude. Further, we examined the estimation 
deviation of the attacks at different locations based on (12), 
and it shows that the most vulnerable location under attack is 
bus No.6, as the highest state estimation deviation 
( 0.0276E  ) is observed. 

Case 3: State estimation under different measurement attacks   

Here, the state estimation performance is assessed 
considering the attacks on specific types of PMU 
measurements, assuming that the attack location and intensity 
remain unchanged. The bus No. 2 is selected as the attack 
location with the PMU measurements are randomly tampered 
to be increased 10% in respect to the actual values, including 
the voltage at bus No.2 and current in branches 2-1, 2-4 and 
2-5. The estimated states of voltage amplitude and phase angle 
are presented in Fig. 8, respectively. It confirms that the 
voltage amplitude changes significantly across the test 
network due to data tampering of measured voltage.  
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Fig.5 State estimation using linear weighted least squares (without cyber-attacks) (a): voltage amplitude and (b) phase angle 
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Fig.6 Network state estimation under FDI attacks at bus No.2. (a): voltage amplitude and (b) phase angle 
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Fig.7 State estimation with different FDI attack locations. (a): voltage amplitude and (b) phase angle 
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Fig. 8 State estimation with FDI attacks on different types of measurements 

B. PMU placement considering FDI attack 

Finally, the proposed algorithmic solution is further 
assessed for PMU placement considering cyber security 
improvement. The simulation experiments are carried out 
based on four standard test networks, i.e. IEEE 14-bus, 30-bus, 
57-bus and 118-bus network [26], as illustrated in Fig. 9. Here, 
the same FDI attack implementations (Section IV-A) are used 
to these simulated test networks. The placement of additional 
PMUs (both number of locations) for these transmission 
networks for different security coefficient values 
( 1 2 / 3k  , 2 1/ 2k  and 3 1/ 3k  ) are calculated based on the 

proposed solution (Section IV-C) and presented in details in 
Table 3. It implies that, given the security requirement in the 
presence of FDI attacks, the solution is able to cost-effectively 
identify the minimum number and optimal locations of 
additional PMU installations. Further, Fig. 10 presents the 
state estimation deviation (error) and the attack impact 
coefficient against the number of PMUs for the simulated test 
networks. It clearly shows that additional PMUs installed at 
appropriate buses can significantly improve the state 
estimation accuracy under FDI attacks. This result can 
effectively guide the power utilities for PMU deployment to 
prevent their assets from various forms of FDI attacks.  
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Fig.9 Three IEEE transmission test networks (a) 30-bus network; (b) 57-bus network; and (c) 118-bus network 
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Fig. 10 The state estimation accuracy and impact coefficient vs. the increased number of PMUs 
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Table 3 PMU placement in IEEE 14-bus, 30-bus, 57-bus and 118-bus network considering FDI attacks  

Test network 
Impact coefficients 

1 k 2/3 2 k 1/2 3 k 1/3 

IEEE 
14-bus 

PMU location {2,6,8,9,12} {2,6,8,9,12,4,14} {2,6,8,9,12,4,14,10,7,5,11} 
No. add. PMUs 1 3 7 

IEEE 
30-bus 

PMU location 
{2,4,6,9,10,12,15,18,25, 

27,22,28,24,8,29} 
{2,4,6,9,10,12,15,18,25, 

27,22,28,24,8,29,17,3,16,7,21} 

{2,4,6,9,10,12,15,18,25, 
27,22,28,24,8,29,17,3,16,7,21,26,14,5,1,23,

30,19,20,11} 

No. add. PMUs 5 10 19 

IEEE 
57-bus 

PMU location 
{1,4,7,9,15,20,24,25,27,32,36,38
,39,41,46,50,53,2,30,11,13,29} 

{1,4,7,9,15,20,24,25,27,32,36,38,39,
41,46,50,53,2,30,11,13,29,21,34,14,3

,16,51,56} 

{1,4,7,9,15,20,24,25,27,32,36,38,39,41,46,
50,53,2,30,11,13,29,21,34,14,3,16,51,56,18
,22,17,26,45,37,40,35,23,33,43,42,48,10,8} 

No. add. PMUs 5 12 27 

IEEE 
118-bus 

PMU location 
{5,56,57,34,52,28,1,72, 9,47,3, 
110,42,118,30,48,18,22,17, 36, 
4,108,58,100,15,68,31,106,98} 

{5,56,57,34,52,28,1,72,9,47,3,110,42
,118,30,48,18,22,17,36,4,108,58,100, 
15,68,31,106,98,114,16,64,94,78, 
103,39,87,54,41,84,44,10,27,46,112, 
33} 

{5,56,57,34,52,28,1,72,9,47,3,110,42, 
118,30,48,18,22,17,36,4,108,58,100,15, 
68,31,106,98,114,16,64,94,78,103,39,87, 
54,41,84,44,10,27,46,112,33,51,20,92,113, 
115,24,91,70,83,61,59,67,116,60,65,6,74} 

No. add. PMUs 16 35 52 

VI.  CONCLUSION AND REMARK 

This paper exploited the cyber security problem of smart 
grid with the particular focus on the FDI attacks on state 
estimation of electric transmission networks. The impact of 
data tempering attacks of PMU measurements on state 
estimation is extensively evaluated through simulation 
experiments based on IEEE 14-bus transmission network 
model. The result clearly confirms our expectation that the 
cyber attacks on PMU measurement can bring significantly 
adverse impact on the state estimation which may result in 
degradation of network control and protection. Also, an 
algorithmic solution is proposed to address the issue of 
additional PMU installation and placement for cyber security 
improvement and analyzed for different standard electric 
transmission networks.  

Two research directions are considered worth further 
research effort in the future work. The impact of different 
forms of cyber-attacks on the state estimation of PMU 
placement strategies in realistic transmission networks needs 
to be further studied and assessed. In addition, as the 
large-scale PMU deployment is often cost prohibitive, current 
wide-area measurement of electric transmission networks are 
often based on a hybrid infrastructure based on PMUs 
(operated in the time scale of millisecond) and SCADA legacy 
(operated in the time scale of seconds or minutes). The cyber 
security assessment needs to be carried out in such hybrid 
wide-area measurement infrastructures.  
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