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Systematic Classification of Side-Channel Attacks:
A Case Study for Mobile Devices

Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard

Abstract—Side-channel attacks on mobile devices have gained
increasing attention since their introduction in 2007. While
traditional side-channel attacks, such as power analysis attacks
and electromagnetic analysis attacks, required physical presence
of the attacker as well as expensive equipment, an (unprivileged)
application is all it takes to exploit the leaking information
on modern mobile devices. Given the vast amount of sensitive
information that are stored on smartphones, the ramifications of
side-channel attacks affect both the security and privacy of users
and their devices.

In this paper, we propose a new categorization system for side-
channel attacks, which is necessary as side-channel attacks have
evolved significantly since their scientific investigations during
the smart card era in the 1990s. Our proposed classification
system allows to analyze side-channel attacks systematically, and
facilitates the development of novel countermeasures. Besides this
new categorization system, the extensive survey of existing attacks
and attack strategies provides valuable insights into the evolving
field of side-channel attacks, especially when focusing on mobile
devices. We conclude by discussing open issues and challenges in
this context and outline possible future research directions.

Index Terms—Side-channel attacks, information leakage, clas-
sification, smartphones, mobile devices, survey, Android.

I. INTRODUCTION

S IDE-channel attacks exploit (unintended) information
leakage of computing devices or implementations to infer

sensitive information. Starting with the seminal works of
Kocher [1], Kocher et al. [2], Quisquater and Samyde [3],
as well as Mangard et al. [4], many follow-up papers con-
sidered attacks against cryptographic implementations to ex-
filtrate key material from smart cards by means of timing
information, power consumption, or electromagnetic (EM)
emanation. These “traditional” side-channel attacks required
the attacker to be in physical possession of the device to be
able to observe and learn the leaking information, yet different
attacks assumed different types of attackers and different levels
of invasiveness. More specifically, in order to systematically
analyze side-channel attacks, they have been categorized along
the following two orthogonal axes:

1) Active vs passive: Depending on whether the attacker
actively influences the behavior of the device or only
passively observes leaking information.

2) Invasive vs semi-invasive vs non-invasive: Depending on
whether or not the attacker removes the passivation layer
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of the chip, depackages the chip, or does not manipulate
the packaging at all.

However, with the era of cloud computing, the scope and
the scale of side-channel attacks have changed significantly in
the early 2000s. While early attacks required attackers to be in
physical possession of the device, newer side-channel attacks
such as cache-timing attacks [5]–[7] or DRAM row buffer
attacks [8] are conducted remotely by executing malicious
software in the targeted cloud environment. With the advent of
mobile devices, and in particular the plethora of embedded fea-
tures and sensors, even more sophisticated side-channel attacks
targeting smartphones have been proposed since around the
year 2010. For example, attacks allow to infer keyboard input
on touchscreens via sensor readings from native apps [9]–[11]
and websites [12], to deduce a user’s location via the power
consumption available from the proc filesystem (procfs) [13],
and also to infer a user’s identity, location, and diseases [14]
via the procfs.

Clearly, side-channel attacks have a long history and have
evolved significantly from attacks on specialized computing
devices in the smart card era, to attacks on general-purpose
computing platforms in desktop computers and cloud comput-
ing infrastructures, and finally to attacks on mobile devices.
Although side-channel attacks and platform security are al-
ready well-studied topics, it must be noted that smartphone
security and associated privacy aspects differ from platform
security in the context of smart cards, desktop computers, and
cloud computing. Especially the following key enablers enable
more devastating attacks on mobile devices.

1) Always-on and portability: First and foremost, mobile
devices are always turned on and due to their mobility
they are carried around at all times. Thus, they are tightly
integrated into our everyday lives.

2) Bring your own device (BYOD): To decrease the number
of devices carried around, employees use personal de-
vices to process corporate data and to access corporate
infrastructure, which clearly indicates the importance of
secure mobile devices.

3) Ease of software installation: Due to the appification [15]
of mobile devices, i.e., where there is an app for almost
everything, additional software can be installed easily by
means of established app markets. Hence, malicious apps
can also be spread at a fast pace.

4) OS based on Linux kernel: Modern mobile operating
systems (OS), for example, Android, are based on the
Linux kernel. The Linux kernel, however, has initially
been designed for desktop machines and information or
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features that are considered harmless on these platforms
turn out to be an immense security and/or privacy threat
on mobile devices (cf. [16]).

5) Features and sensors: Last but not least, these devices
include many features and sensors, which are not present
on traditional platforms. Due to the inherent nature of
mobile devices (always-on and carried around, connec-
tivity, inherent input methods, etc.), such features often
enable devastating side-channel attacks. Besides, these
sensors have also been used to attack external hardware,
such as keyboards and computer hard drives [17]–[19],
to infer videos played on TVs [20], and even to attack
3D printers [21], [22], which clearly demonstrates the
immense power of mobile devices.

Due to the above mentioned key enablers, a new area of
side-channel attacks has evolved and the majority of more
recent side-channel attacks are strictly non-invasive and rely
on the execution of malicious software in the targeted envi-
ronment. Considering these developments, we observe that the
classification system that has been established to analyze side-
channel attacks on smart cards does not meet these new attack
settings and strategies anymore. Hence, the existing classifi-
cation system does not allow a systematic categorization of
modern side-channel attacks, including side-channel attacks
on mobile devices.

In this work, we close this gap by establishing a new
categorization system for modern side-channel attacks on
mobile devices. Therefore, we survey existing side-channel
attacks and identify commonalities between them. The gained
insights allow researchers to identify future research directions
and to cope with these attacks on a larger scale.

A. Motivation and High-Level Categorization
It is important to note that side-channel attacks against

smartphones can be launched by attackers who are in physical
possession of the devices and also by remote attackers who
managed to spread a seemingly innocuous application via an
existing app store. In some cases such side-channel attacks
can even be launched via websites and, thus, without relying
on the user to install an app. Nevertheless, in today’s appi-
fied software platforms where apps are distributed easily via
available app markets, an attack scenario requiring the user to
install a seemingly harmless game is entirely practical.

Interestingly, side-channel attacks on smartphones exploit
physical properties as well as software properties. A malicious
application can exploit the accelerometer sensor [9], [10] (a
physical property) in order to attack the user input, which is
due to the inherent input method relying on touchscreens. In
addition, attacks can also be conducted by exploiting software
features (a logical property) provided by the Android API or
the mobile OS itself (cf. [13], [14]). This clearly indicates
that smartphones significantly broaden the scope as well as
the scale of attacks. Especially the appification [15] of mobile
platforms—i.e., where there is an app for everything—allows
to easily target devices and users at an unprecedented scale
compared to the smart card and the cloud setting.

Figure 1 illustrates a high-level categorization system for
side-channel attacks. We indicate the type of information that

WHAT?
Hardware (physical)

Software (logical)

HOW?
Physical
presence

(local)

Software
only

(remote)

Smart cards
Cloud
Smartphones

Fig. 1. Scope of attacks for smart cards, cloud infrastructures, and smart-
phones.

is exploited (WHAT?) and how the adversary learns the leaking
information (HOW?) on the y-axis and x-axis, respectively.
Furthermore, we indicate how existing side-channel attacks
against smart cards, cloud computing infrastructures, and
smartphones relate to it, i.e., where existing attacks on the
respective platforms are located in this new categorization
system. For example, attackers exploit hardware-based infor-
mation leakage (physical properties) [4] of smart cards by
measuring the power consumption with an oscilloscope. In this
case, the attacker must be in possession of the device under
attack, which is indicated by the red cross-hatched area.

In contrast, side-channel attacks against cloud-computing
infrastructures do not (necessarily) require the attacker to
be physically present—unless we consider a malicious cloud
provider—as the attacker is able to remotely execute software.
Usually, these attacks exploit microarchitectural behavior
(such as cache attacks [5]–[7], [23]) or software features (such
as page deduplication [24]) in order to infer secret information
from co-located processes. Hence, the green dashed area in
Figure 1 is shifted to the right as these attacks mostly rely on
software execution, and it is also shifted to the area below the
x-axis as these attacks also target software features.

Even more manifold and diverse side-channel attacks have
been proposed for smartphones, which is indicated by the
larger area in Figure 1. These manifold side-channel attacks
mainly result from the five aforementioned key enablers. More
specifically, this area indicates that on smartphones we have to
deal with local attackers that exploit physical properties, but
also with attackers that execute software on the smartphone in
order to exploit both physical properties as well as software
features (logical properties, such as the memory footprint [25]
or the data-usage statistics [14], [26]). In the remainder of this
paper we will refine this high-level categorization system in
order to systematically analyze modern side-channel attacks.

Although we do not explicitly focus on Android in this
paper, the majority of the existing papers deal with the Android
operating system. This reflects the trend that the research
community focuses mostly on Android because of its openness
and also because it has the biggest market share among all
mobile operating systems. Gartner [27] reports that Android
sales (86% in Q1 2017) clearly outperform Apple iOS sales
(14% in Q1 2017).
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B. Outline

The remainder of this paper is organized as follows. Sec-
tion II introduces background information in terms of mobile
operating systems, the basic notion of side-channel attacks,
and related work. In Section III, we discuss different types
of information leaks and provide a definition for software-
only side-channel attacks. Furthermore, we introduce our new
categorization system for modern side-channel attacks. We
survey existing attacks in Sections IV, V, and VI, and we
classify existing attacks according to our newly introduced
classification system in Section VII. We discuss existing
countermeasures in Section VIII. Finally, we discuss open
issues, challenges, and future research directions in Section IX
and conclude in Section X.

II. BACKGROUND

In this section, we introduce the basics of mobile security,
define the general notion of side-channel attacks, and we
establish the boundaries between side-channel attacks and
other attacks on mobile devices. We stress that side-channel
attacks do not exploit specific software vulnerabilities of
the OS or any specific library, but instead exploit available
information that either leaks unintentionally or that is (in some
cases) published for benign reasons in order to infer sensitive
information indirectly. Finally, we also discuss related work.

A. A Primer on Smartphone Security

Mobile devices, such as tablet computers and smartphones,
are powerful multi-purpose computing platforms that enable
many different application scenarios. Third-party applications
can be easily installed in order to extend the basic functionality
of these devices. Examples include gaming applications that
make use of the many different sensors, office applications,
banking applications, and many more. These examples clearly
demonstrate that mobile devices are already tightly integrated
into our everyday lives, which leads to sensitive data and
information being stored and processed on these devices.

In order to protect this information properly, modern mobile
operating systems rely on two fundamental security concepts,
i.e., the concept of application sandboxing and the concept of
permission systems. For instance, on Android the underlying
Linux kernel ensures the concept of sandboxed applications.
Each application is assigned a user ID (UID), which allows
the kernel to prevent applications from accessing resources of
other applications. The permission system on the other hand
allows applications to request access to specific resources out-
side of its sandbox, which typically includes resources that are
considered as being sensitive or privacy relevant. Android also
categorizes permissions depending on so-called protection lev-
els. The two important categories of Android permissions are
normal permissions and dangerous permissions, respectively.
While normal permissions are granted automatically during
the installation procedure, dangerous permissions must be
explicitly granted by the user. Other mobile operating systems
such as Apple’s iOS rely on similar protection mechanisms.

Encryption
Plaintext

Key
Ciphertext

Ideal world

Time
Power Heat

...

Fig. 2. An implementation produces unintended output as a byproduct.

Besides these basic security concepts on the OS level,
applications themselves rely on cryptographic primitives, cryp-
tographic protocols, and dedicated security mechanisms to
protect sensitive resources. For instance, applications rely on
encryption primitives to protect sensitive information being
stored on the device or when transmitting data over the
Internet. Another example of a dedicated security mechanism
is a personal identification number (PIN) required to access a
specific service such as a banking application.

B. Side-Channel Attacks

Although the above mentioned concepts are secure (or are
typically considered as being secure) in theory, a specific
implementation of such a mechanism is not necessarily secure
in practice. Since side-channel attacks have been extensively
used to attack cryptographic implementations, let us consider
the following illustrative example. In an ideal world, an imple-
mentation of a cryptographic algorithm takes a specific input
and produces a specific (intended) output. For example, an en-
cryption algorithm takes the plaintext as well as cryptographic
key material to produce the ciphertext. However, in practice,
an implementation of an encryption algorithm usually also
“outputs” unintended information as a byproduct of the actual
computations. Such unintended information leakage might be
a different power consumption or a different execution time
due to instructions being conditionally executed depending
on the processed data (cf. Figure 2). Attacks exploiting such
unintended information leaks are denoted as side-channel
attacks and have been impressively used to bypass or break
protection mechanisms such as encryption algorithms.

Subsequently, we discuss the general notion of side-channel
attacks. We distinguish between passive side-channel attacks,
as in the example above, and active side-channel attacks.

Passive Side-Channel Attacks. The general notion of a
passive side-channel attack can be described by means of
three main components, i.e., target, side channel, and attacker.
A target represents anything of interest to possible attackers.
During the computation or operation of the target, it influences
a side channel (physical or logical properties) and thereby
emits potential sensitive information. An attacker who is
able to observe these side channels potentially learns useful
information related to the actual computations or operations
performed by the target. Therefore, an attacker models possible
effects of specific causes. Later on, careful investigations of
observed effects can then be used to learn information about
possible causes.
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Target
(e.g., crypto,

keyboard,
behavior)

Side channel
(i.e., physical or

logical properties)

(1) influences

(4) influences

Attacker
(e.g., device, chip,

wire, software)

(2) is observed

(3) modifies/influences

Fig. 3. General notion of passive (−→) and active (L99) side-channel attacks.

Active Side-Channel Attacks. An active attacker tampers
with the device or modifies/influences the targeted device
via a side channel, e.g., via an external interface or en-
vironmental conditions. Thereby, the attacker influences the
computation/operation performed by the device in a way that
allows to bypass specific security mechanisms directly or that
leads to malfunctioning, which in turn enables possible attacks,
e.g., indirectly via the leaking side-channel information or
directly via the (erroneous) output of the targeted device.

Figure 3 depicts the general notion of side-channel attacks.
A target emits sensitive information as it influences specific
side channels. For example, physically operating a smartphone
via the touchscreen, i.e., the touchscreen input represents the
target, causes the smartphone to undergo specific movements
and accelerations in all three dimensions. In this case, one
possible side channel is the acceleration of the device (a
physical property), which can be observed via the embedded
accelerometer sensor and accessed by an app via the official
Sensor API.

The relations defined via the solid arrows, i.e., target −→
side channel −→ attacker, represent passive side-channel
attacks. The relations defined via the dashed arrows, i.e., target
L99 side channel L99 attacker, represent active side-channel
attacks where the attacker actively influences/manipulates the
target via a side channel. Thereby, the attacker either tries (i)
to enforce behavior that allows to bypass security mechanisms
directly, or (ii) to observe leaking side-channel information
or the (sometimes erroneous) output of the targeted device.
Hence, a passive side-channel attack consists of steps (1) and
(2), whereas an active side-channel attack also includes steps
(3) and (4).

Differentiation From Other Attacks. Irrespective of
whether an attacker is passive or active, we only consider side-
channel attacks. Side-channel attacks do not exploit software
bugs or anomalies within the OS or apps that, for example,
allow to access the main communication channel directly. For
example, buffer overflow attacks allow to access the main
communication channel directly (i.e., the main memory) and,
thus, do not represent side-channel attacks.

Similarly, we also do not consider other attacks that learn
information that is available from the main channel. For
example, Luzio et al. [28] exploited Wi-Fi probe-requests,
which contain the service set identifier (SSID) of preferred Wi-
Fi hotspots in clear. These probe-requests allow mobile devices
to determine nearby Wi-Fi hotspots in order to preferably
connect to already known hotspots. These attacks do not
represent side-channel attacks as the learned information is
directly available from the main channel.

Furthermore, we also do not survey covert channels where
two entities (e.g., processes) communicate over a channel that
is not explicitly provided by the platform or the operating
system. Although identified side channels can in general also
be used as a covert channel, i.e., as a means to stealthily
communicate between two processes whereby one process
influences the side channel and the other one observes it, we
do not explicitly survey covert channels such as [29] in this
paper. Nevertheless, our newly introduced classification system
can also be used to classify covert channels.

C. Related Surveys
In this section, we discuss surveys on mobile security,

as well as side-channel attacks on smart cards, PCs, cloud
infrastructures, and smartphones.

Surveys on Mobile Security. Most surveys on mobile
security primarily focused on malware in general, and many of
these surveys only mention side-channel attacks as a side node.
Enck [30] surveyed possible protection mechanisms beyond
the standard protection mechanisms provided by Android.
These include tools that analyze permissions and action strings
(within the Android Manifest) to assess the risk of Android
apps, policy-based approaches that allow a more fine-grained
protection of Android apps, as well as static and dynamic code
analysis tools to perform application analysis, which in turn
allows to detect malware.

La Polla et al. [31] surveyed threats and vulnerabilities (i.e.,
botnets, Trojans, viruses, and worms) with a focus on work
published from 2004 until 2011. Suarez-Tangil et al. [32] and
Faruki et al. [33] continued this line of research for the period
from 2010 until 2013, and from 2010 until 2014, respectively.

Rashidi and Fung [34] surveyed techniques (e.g., based on
static and dynamic code analysis) to cope with malware on
mobile devices and Sadeghi et al. [35] surveyed tools and
analysis techniques to identify malware. In addition, Sadeghi et
al. provided a “survey of surveys” discussing surveys and their
main contributions in more detail. We refer to their work for
a more detailed investigation of malware analysis techniques
and further literature on this topic. Tam et al. [36] surveyed
mobile malware analysis techniques (static, dynamic, hybrid)
as well as malware tactics to hinder analysis (obfuscation).

Surveys on Side-Channel Attacks. The survey of Tun-
stall [37] focused on smart card security, in particular side-
channel attacks against cryptographic algorithms.

Zander et al. [38] surveyed covert channels via computer
network protocols, and Biswas et al. [39] conducted an in-
depth study on network timing channels (remote timing side
channels) as well as in-system timing channels (focusing on
hardware-based timing channels such as cache attacks) on
commodity PCs. They surveyed timing channels according to
their suitability for covert channels, timing side channels, and
network flow watermarking (e.g., to de-anonymize Tor).

Regarding cloud computing platforms, Ge et al. [7] and
Szefer [40] surveyed microarchitectural attacks with a focus
on cache attacks. Ullrich et al. [41] focused on network-
based covert channels and network-based side channels in
cloud settings. Betz et al. [42] focused on covert channels
and mentioned a few side-channel attacks in the cloud setting.
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TABLE I
EXISTING SURVEYS AND WHAT THEY FOCUS ON. UPPER PART: SURVEYS ON MOBILE SECURITY. LOWER PART: SURVEYS ON SIDE-CHANNEL ATTACKS.

Year Survey Platform Topic
2011 Enck [30] Smartphone Malware/app analysis and protection mechanisms
2013 La Polla et al. [31] Smartphone Threats and vulnerabilities, focusing on the period 2004–2011
2014 Suarez-Tangil et al. [32] Smartphone Threats and vulnerabilities, focusing on the period 2010–2013
2015 Faruki et al. [33] Smartphone Threats and vulnerabilities, focusing on the period 2010–2014
2015 Rashidi and Fung [34] Smartphone Analysis techniques to cope with malware
2016 Sadeghi et al. [35] Smartphone Tools and techniques to identify malware
2017 Tam et al. [36] Smartphone Analysis techniques to identify malware
2014 Tunstall [37] Smart card Side-channel attacks on cryptographic algorithms
2007 Zander et al. [38] PC Covert channels via computer network protocols
2017 Biswas et al. [39] PC Timing channels, focusing on microarchitectural attacks
2016 Ge et al. [7] Cloud Microarchitectural attacks
2016 Szefer [40] Cloud Microarchitectural attacks
2017 Ullrich et al. [41] Cloud Network-based side channels (and communication channels)
2017 Betz et al. [42] Cloud Communication channels
2016 Xu et al. [43] Smartphone Attacks & defense measures
2016 Hussain et al. [44] Smartphone Sensor-based keylogging attacks
2016 Nahapetian [45] Smartphone Sensor-based keylogging attacks

The focus of our paper is on side-channel attacks against
mobile devices. Surveys about this topic are quite scarce and
consider specific types of side-channel attacks only. Xu et
al. [43] surveyed attacks and defenses on Android at a
broader scale and thereby provide a comprehensive overview
of the research landscape. They considered system privilege
escalation, issues in the permission model, side channels and
covert channels (a high-level overview of exploits considering
the accelerometer, the CPU cache, and the procfs), feature
abuses, malware detection, and app repackaging. Hussain et
al. [44] and Nahapetian [45] surveyed sensor-based keylogging
attacks. However, a systematic survey and classification of all
existing categories of side-channel attacks on mobile devices
does not exist so far. Hence, we close this gap in this paper.

Table I summarizes the main focus of the above discussed
surveys and provides references for the interested reader.

III. TAXONOMY OF SIDE CHANNELS

In this section, we discuss the different types of information
leaks, how the key enablers presented in Section I enable so-
called software-only attacks on today’s smartphones, and the
generic adversary model followed by software-only attacks.
Finally, we present our new categorization system.

A. Types of Information Leaks

Considering side-channel attacks on mobile devices, we
identify two types of information leaks, namely unintended
information leaks and information published on purpose. Fig-
ure 4 depicts these two types of information leaks. Informally,
side-channel attacks exploiting unintended information leaks
can be considered as “traditional” side-channel attacks since
this category has already been extensively analyzed during the
smart card era [4]. For example, unintended information leaks
include the execution time, the power consumption, or the
electromagnetic emanation of a computing device. This type
of information leak is considered as unintended because smart
card designers and developers did not plan to leak the timing
information or power consumption of computing devices on
purpose.

Side-channel information leaks

Unintended
information leaks

Information published
on purpose

Execution time

Power consumption

EM emanation

Memory footprint

Sensor information

Data consumption

Fig. 4. Types of side-channel information leaks.

The second category of information leaks (referred to as
information published on purpose) is mainly a result of
the ever-increasing number of features provided by today’s
smartphones. In contrast to unintended information leaks, the
exploited information is published on purpose and for benign
reasons. For instance, specific features require the device to
share (seemingly harmless) information and resources with
apps running in parallel on the system. This information is
either shared by the OS directly (e.g., via the procfs) or
through the official Android API.1 Although this information
is extensively used by many legitimate applications for benign
purposes, it sometimes turns out to leak sensitive information
and, thus, leads to devastating side-channel attacks.

Many investigations impressively demonstrated that seem-
ingly harmless information allows to infer sensitive infor-
mation that is protected by dedicated security mechanisms,
such as permissions. Examples of such seemingly harmless
information are the memory footprint of an application as
well as the data-usage statistics that keep track of the amount
of incoming and outgoing network traffic. Both, the memory
footprint [25] as well as the data-usage statistics [26], allow
to infer a user’s visited websites. The fundamental design
weakness of assuming information as being innocuous (e.g.,
the memory footprint or the data-usage statistics) means that
it is not protected by dedicated permissions.

1In the literature, some of the information leaks through the procfs are also
denoted as storage side channels [46].
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Furthermore, the second category seems to be more dan-
gerous in the context of smartphones as new features are
frequently added and new software interfaces allow to access
an unlimited number of unprotected resources. Even devel-
opers taking care of secure implementations in the sense of
unintended information leaks, e.g., by providing constant-time
crypto implementations and taking care of possible software
vulnerabilities such as buffer overflow attacks, inevitably leak
sensitive information due to shared resources, the OS, or
the Android API. Additionally, the provided software inter-
faces to access information and shared resources enable so-
called software-only attacks, i.e., side-channel attacks that
only require the execution of software. This clearly represents
an immense threat as these attacks (1) do not exploit any
obvious software vulnerabilities, (2) do not rely on specific
privileges or permissions, and (3) can be conducted remotely
via seemingly harmless apps or even websites.

B. Software-only Side-Channel Attacks

Irrespective of whether a physical property (e.g., execution
time [6] and power consumption [13]) or a logical property
(e.g., memory footprint [25] and data-usage statistics [14],
[26]) are exploited, many of these information leaks can be
exploited by means of software-only attacks. More specifically,
software-only attacks exploit leaking information without ad-
ditional equipment, which was required for traditional side-
channel attacks. For example, an oscilloscope is necessary to
measure the power consumption of a smart card during its
execution, or an EM probe is necessary to measure the EM em-
anation. In contrast, today’s smartphones allow an impressive
number of side-channel leaks to be exploited via software-only
attacks. Besides, an attack scenario that requires the user to
install an (unprivileged) application—i.e., an addictive game—
is entirely reasonable in an appified ecosystem.

For side-channel attacks in general, it does not matter
whether the leaking information is collected via dedicated
equipment or whether an unprivileged app collects the leaking
information directly on the device under attack (software-only
attacks). Interestingly, however, the immense amount of infor-
mation published on purpose also allows to observe physical
properties of the device as well as physical interactions with
the device. Consequently, software-only side channel attacks
have gained increasing attention in the last few years and
impressive attacks are being continuously published.

Runtime-Information Gathering Attacks. Zhang et
al. [16] coined the term runtime-information gathering (RIG)
attack, which refers to attacks that require a malicious app
to run side-by-side with a victim app on the same device in
order to collect runtime information of the victim. According
to Zhang et al. [16, p. 1] “(RIG) here refers to any mali-
cious activities that involve collecting the data produced or
received by an app during its execution, in an attempt to
directly steal or indirectly infer sensitive user information”.
The crucial point in their definition is the distinction between
directly stealing and indirectly inferring sensitive information.
Inferring sensitive information indirectly is done by means
of side-channel attacks. Hence, this generic class of attacks

RIG
attacks

Physical
attacks

Logical
attacks

SW-only side-channel attacks

Fig. 5. SW-only side-channel attacks allow to exploit physical as well as
logical properties.

also includes a subset of side-channel attacks, especially side-
channel attacks that can be launched via software-only attacks.
However, RIG attacks also include attacks that we do not
consider as side-channel attacks, i.e., attacks that directly steal
sensitive information. For example, RIG attacks also include
attacks where apps request permissions which are exploited
for (more obvious) attacks such as requesting the permission
to access the microphone in order to eavesdrop on phone
conversations.

Screenmilker [47]—an attack exploiting ADB2 capabilities
to take screenshots programmatically—is also considered be-
ing a RIG attack. We do not consider such attacks as side-
channel attacks because these attacks exploit implementation
flaws, i.e., the exploited screenshot tool does not implement
any authentication mechanism and hence any application can
take screenshots programmatically. Similarly, we do not con-
sider buffer overflow attacks as side-channel attacks because
buffer overflow attacks represent a software vulnerability and
allow to access the main channel directly, for example, by
reading the main memory directly. Side-channel attacks, how-
ever, attack targets that are secure from a software perspective
and still leak information unintentionally.

Figure 5 illustrates the new type of software-only side-
channel attacks that allow to exploit both, physical proper-
ties as well as software features (logical properties), without
additional equipment. Attacks exploiting information leaks
resulting from hardware components, e.g., the power consump-
tion, are classified as (physical) attacks exploiting physical
properties. Attacks exploiting information leaks resulting from
software components, e.g., statistics about network traffic, are
classified as (logical) attacks exploiting logical properties.

As software-only attacks also rely on software being exe-
cuted side-by-side with the victim application, software-only
attacks are a sub-category of RIG attacks. It should be noted
that physical attacks on smartphones might still rely on dedi-
cated hardware and some logical attacks can also be conducted
without running software on the device under attack. Such
attacks are covered by the non-overlapping areas of “physical
attacks” and “logical attacks” in Figure 5. However, physical
attacks that cannot be conducted by running software on the
device are more targeted attacks as they require attackers to
be in physical presence of the device.

2The Android Debug Bridge (ADB) is a command line tool that allows to
execute privileged commands on devices where USB debugging is activated.
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Fig. 6. Proposed classification system for side-channel attacks: (1) passive vs active, (2) physical properties vs logical properties, (3) local attackers vs vicinity
attackers vs remote attackers.

C. Adversary Model and Attack Scenario

In contrast to traditional attacks that require an attacker to
have the device under physical control or to be physically
present with the victim, the adversary model for most (ex-
isting) side-channel attacks on smartphones shifted the scope
to remote software execution by means of apps or websites.
This also increases the scale of these attacks. While traditional
side-channel attacks targeted only a few devices, modern side-
channel attacks target possibly millions of devices or users at
the same time. With this general overview of the adversary
model in mind, most software-only attacks usually consider
the following two-phase attack scenario for passive attacks.

Training Phase. In the training phase, the attacker “pro-
files” actions or events of interest, either during an online
phase on the attacked device or during an offline phase in ded-
icated environments. Sometimes the training phase includes
the training of a machine-learning model such as a supervised
classifier. More abstractly, the attacker builds “templates”
based on events of interest. In addition, the attacker crafts an
app (or website) that ideally does not require any permissions
or privileges in order to avoid raising the user’s suspicion. This
app is used in the attack phase to gather leaking information.

Attack Phase. The attack phase usually consists of three
steps. (1) A malicious application—that is hidden inside a pop-
ular app—is spread via existing app markets. After installation,
this malicious app waits in the background until the targeted
app/action/event starts and then (2) it observes the leaking
side-channel information. Based on the gathered information,
(3) it employs the previously established model or templates
to infer secret information. Depending on the complexity of
the inference mechanism, e.g., the complexity of the machine-
learning classifier, the gathered side-channel information could
also be sent to a remote server, which then performs the heavy
computations to infer the secret information.

D. A New Categorization System

Based on our observations we propose a new categorization
system as depicted in Figure 6. More specifically, we classify
side-channel attacks along three axes.

1) Passive vs active: This category distinguishes between
attackers who passively observe leaking side-channel
information and attackers who also actively influence the
target via any side channel. For instance, an attacker can
manipulate the target, its input, or its environment via
any side channel in order to subsequently observe leaking
information via abnormal behavior of the target (cf. [4])
or to bypass security mechanisms.

2) Physical properties vs logical properties: This category
classifies side-channel attacks according to the exploited
information, i.e., depending on whether the attack ex-
ploits physical properties (hardware) or logical properties
(software features). Physical properties include the power
consumption, the electromagnetic emanation, or the phys-
ical movements of a smartphone during the operation.
Logical properties include usage statistics provided by
the operating system, such as the data-usage statistics or
the memory footprint of an application.

3) Local attackers vs vicinity attackers vs remote attackers:
Side-channel attacks are classified depending on whether
or not the attacker must be in physical proximity/vicinity
of the target. Local attackers clearly must be in (tem-
porary) possession of the device or at least in close
proximity. Depending on whether the adversary also
needs to remove the package in order to access the chip,
we classify local attackers into attackers that need access
to the chip or only the device itself. Vicinity attackers are
able to wiretap or eavesdrop the network communication
of the target or to be somewhere in the vicinity of the
target. Remote attackers only rely on software execution
on the targeted device, e.g., either by means of executing
software on the targeted device or by means of websites.
Clearly, the scale increases significantly for these three
attackers as a local attacker relies on stronger assumptions
than a remote attacker. Especially the immense number of
software-only attacks (that allow to conduct side-channel
attacks remotely) stress the need for this category.

Subsequently, we briefly survey existing attacks according
to our new classification system. Although the focus of this
paper is on side-channel attacks against mobile devices, we
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also discuss attacks that have been applied in the smart card or
desktop/cloud setting, as today’s smartphones are vulnerable to
(all or most of the) existing side-channel attacks against these
platforms as well. As mentioned before, we do not explicitly
focus on Android devices, but the majority of existing papers
investigate side-channel attacks on Android.

We start with local side-channel attacks in Section IV,
continue with vicinity side-channel attacks in Section V, and
finally we discuss remote side-channel attacks in Section VI.
Each of these sections is further divided into passive at-
tacks and active attacks. Note that this structure reflects
our proposed classification system. However, for the sake of
readability the structure of the subsections does not reflect the
categorization of physical properties and logical properties.

IV. LOCAL SIDE-CHANNEL ATTACKS

In this section, we survey side-channel attacks that require
a local adversary. Some of these attacks will show that the
transition between local attacks and vicinity attacks is seamless
as the distance between the victim (device) and the attacker
can be increased, especially in case of some passive attacks.

A. Passive Attacks

We start with traditional side-channel attacks that aim to
break insecure cryptographic implementations (of mathemati-
cally secure primitives). Besides, we discuss attacks that target
the user’s interaction with the device as well as the user’s input
on the touchscreen, i.e., attacks that result from the inherent
nature of mobile devices.

Power Analysis Attacks. The actual power consumption
of a computing device or implementation depends on the
processed data and the executed instructions. Power analysis
attacks exploit this information leak to infer sensitive informa-
tion. As the name suggests, the power consumption, typically
measured as the voltage drop across a resistor inserted in
the supply line, serves as the side channel. State-of-the-art
printed circuit board designs (PCB-designs), including multi-
layer routing as well as surface mounted devices (SMD), and
packaging techniques (e.g., ball-grid array) make it hard to ac-
cess the appropriate power supply lines in modern smartphones
without permanent modifications. Therefore, in contrast to
smart cards, measuring the power consumption became less
relevant for side-channel attacks targeting smartphones.

Depending on whether a single measurement trace or mul-
tiple traces are required, we distinguish between simple power
analysis (SPA) attacks and differential power analysis (DPA)
attacks, as defined by Kocher et al. [2]. SPA attacks rely on the
interpretation of power traces in order to reveal, for example,
the sequence of executed instructions, which allows to break
implementations where the executed instructions depend on
secret data. However, the power consumption also depends on
the processed data, although the variations are smaller. There-
fore, DPA attacks rely on statistical investigations of multiple
traces in order to infer information about the processed data.

Attacks. Messerges and Dabbish [48] exploited the power
consumption of a smart card to attack the Data Encryption

Standard (DES) algorithm. Hardly any side-channel attacks
using a similar setup for measuring the power consumption
targeting smartphones are published. Nevertheless, a coarse-
grained power-consumption monitoring of smartphones allows
to identify running apps, as demonstrated by Yan et al. [49].

Electromagnetic Analysis Attacks. Another way to at-
tack the leaking power consumption of computing devices
is to exploit electromagnetic emanations, which are usually
easier to obtain since the power line cannot be accessed
directly in general. Irrespective of whether the power trace
is obtained directly via the power line or via electromagnetic
emanations, these attacks are usually denoted as differential
power analysis attacks. In this context it is also worth to
mention that depending on the used equipment (EM probes for
capturing the electromagnetic emanation), targeting a specific
location above the chip can improve the signal-to-noise ratio
of the measurements. As a result of taking advantage of
spatial information, the number of required measurements for
a successful attack can be decreased.

Attacks. Traditional side-channel attacks exploiting the elec-
tromagnetic emanations of smart cards have also been applied
on mobile devices. Gebotys et al. [50] demonstrated attacks
on software implementations of the Advanced Encryption
Standard (AES) and Elliptic Curve Cryptography (ECC) on
Java-based PDAs. Later on, Nakano et al. [51] attacked ECC
and RSA implementations of the default crypto provider (JCE)
on Android smartphones, Goller and Sigl [52] attacked RSA
implementations on Android, and Belgarric et al. [53] attacked
the Elliptic Curve Digital Signature Algorithm (ECDSA) im-
plementation of Android’s Bouncy Castle. In a similar manner,
Genkin et al. [54] attacked the OpenSSL implementation of
ECDSA on Android and the CommonCrypto implementation
of ECDSA on iOS, respectively.

Differential Computation Analysis. The basic idea of
white-box crypto implementations is to embed the secret key
into the software implementation in a way that prevents an
attacker from extracting the key, even in case the adversary
has access to the source code itself. Therefore, the key and
the algorithm itself are merged such that the key is hidden
inside the code and cannot be easily separated. The white-box
attack model assumes that the adversary has full control over
the device and the execution environment.

Attacks. Bos et al. [55] showed that binary instrumentation
can be used to observe and control the intermediate state
of white-box crypto implementations. Thereby, the instru-
mentation allows to precisely monitor the execution of the
program and the observation of, e.g., the intermediate state
and read/write accesses to memory, allow to profile program
behavior. Based on the similarity to DPA attacks, Bos et
al. denoted these attacks as differential computation analysis
(DCA) attacks. Nevertheless, in contrast to DPA attacks, DCA
attacks do not need to deal with any measurement noise.

Although attacks against white-box crypto implementations
have not been applied on mobile devices so far, such an attack
scenario works for these devices as well.

Smudge Attacks. The most common input method on
mobile devices is the touchscreen, i.e., users tap and swipe
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on the screen with their fingers. Due to the inherent nature
of touchscreens, users always leave residues in the form of
fingerprints and smudges on the screen.

Attacks. Aviv et al. [56] pointed out that side-channel
attacks can be launched due to specific interactions with the
smartphone or touchscreen-based devices in general. More
specifically, forensic investigations of smudges (oily residues
from the user’s fingers) on the touchscreen allow to infer
unlock patterns. Even after cleaning the phone or placing the
phone into the pocket, smudges seem to remain most of the
time. Hence, smudges are quite persistent which increases
the threat of smudge attacks. Follow-up work considering
an attacker who employs fingerprint powder to infer keypad
inputs has been presented by Zhang et al. [57] and also
an investigation of the heat traces—left on the screen due
to finger touches—by means of thermal cameras has been
performed [58].

Shoulder Surfing and Reflections. Touchscreens of mo-
bile devices optically/visually emanate the displayed content.
Often these visual emanations are reflected by objects in the
environment, such as sunglasses and tea pots [59], [60].

Attacks. Maggi et al. [61] observed that touchscreen input
can be recovered by monitoring the visual feedback (pop-up
characters) on soft keyboards during the user input. Therefore,
they rely on cameras that are pointed directly on the targeted
screen. Raguram et al. [62], [63] observed that reflections,
e.g., on the user’s sunglasses, can also be used to recover
input typed on touchscreens. However, the attacker needs to
point the camera, used to capture the reflections, directly
on the targeted user. Subsequently, they rely on computer
vision techniques and machine learning techniques to infer
the user input from the captured video stream. Xu et al. [64]
extended the range of reflection-based attacks by considering
reflections of reflections. Although, they do not rely on the
visual feedback of the soft keyboard but instead track the user’s
fingers on the smartphone while interacting with the device.

By increasing the distance between the attacker and the
victim, e.g., by relying on more expensive and sophisticated
cameras, some of these attacks might as well be considered
as vicinity attacks.

Hand/Device Movements. Many input methods on various
devices rely on the user operating the device with her hands
and fingers. For instance, users tend to hold the device in their
hands while operating it with their fingers.

Attacks. Similar to reflections, Shukla et al. [65] proposed
to monitor hand movements as well as finger movements—
without directly pointing the camera at the targeted screen—in
order to infer entered PIN inputs. Sun et al. [66] monitored
the backside of tablets during user input and detected subtle
motions that can be used to infer keystrokes, while Yue et
al. [67] proposed an attack where the input on touch-enabled
devices can be estimated from a video of a victim tapping on
a touch screen.

Again, by increasing the distance between the attacker and
the victim, these attacks might also be considered as vicinity
attacks, which demonstrates the seamless transition from local
attacks to vicinity attacks for these types of attacks.

B. Active Attacks
An active attacker also manipulates the target, its input,

or its environment in order to subsequently observe leaking
information via abnormal behavior of the target or to bypass
security mechanisms directly. While the transition between
local and vicinity attackers is seamless in case of passive
attacks, active attacks always assume that the attacker is in
possession of the device (at least temporary).

Active attacks against cryptographic implementations date
back to the works of Boneh et al. [68] (a.k.a. Bellcore attack)
who attacked RSA crypto systems, especially implementations
based on the Chinese Remainder Theorem (CRT), by relying
on random hardware faults that result in the output of an
erroneous signature. Later, Biham and Shamir [69] coined the
term differential fault analysis (DFA) attacks and demonstrated
that the introduction of faults and observing differences in the
output ciphertext allow to recover the secret key of symmetric
primitives. The basic idea of these attacks is to solve algebraic
equations based on erroneous outputs (and valid outputs).

Clock/Power Glitching. Variations of the clock signal, e.g.,
overclocking, have been shown to be an effective method for
fault injection on embedded devices in the past. One prereq-
uisite for this attack is an external clock source. Microcon-
trollers applied in smartphones typically have an internal clock
generator, making clock tampering difficult. Besides clock
tampering, intended variations of the power supply represent
an additional method for fault injection. With minor hardware
modifications, power-supply tampering can be applied on most
microcontroller platforms.

Attacks. In [70] it is shown how to disturb the program exe-
cution of an ARM CPU on a Raspberry PI by underpowering,
i.e., the supply voltage is set to ground (GND) for a short
time. Due to the relatively easy application on modern micro-
controllers, voltage-glitching attacks pose a serious threat for
smartphones if attackers have physical access to the device.
For instance, O’Flynn [71] demonstrated that by shorting the
power supply of an off-the-shelf Android smartphone, a fault
can be introduced that leads to an incorrect loop count.

Electromagnetic Fault Injection (EMFI). Transistors
placed on microchips can be influenced by electromagnetic
emanation. EMFI attacks take advantage of this fact. These
attacks use short (in the range of nanoseconds), high-energy
EM pulses to, e.g., change the state of memory cells, resulting
in erroneous calculations. In contrast to voltage glitching,
where the injected fault is typically global, EMFI allows to
target specific regions of a microchip by precisely placing the
EM probe, e.g., on the instruction memory, the data memory,
or CPU registers. Compared to optical fault injection, EMFI
attacks do not necessarily require a decapsulation of the chip,
which makes them more practical.

Attacks. Ordas et al. [72] reported successful EMFI at-
tacks targeting the AES hardware module of a 32 bit ARM
processor. Rivière et al. [73] used EMFI attacks to force in-
struction skips and instruction replacements on modern ARM
microcontollers. Considering the fact that ARM processors
are applied in modern smartphones, EMFI attacks represent
a serious threat for such devices.
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TABLE II
OVERVIEW OF LOCAL SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. 3 AND 7 INDICATE WHETHER OR NOT A SPECIFIC ATTACK HAS BEEN

PERFORMED ON THE CORRESPONDING TARGET.

Attack Active/passive Property Targets
Crypto, program flow Application inference User input

Power analysis attacks Passive Physical 3 [48] 3 [49] 7
Electromagnetic analysis attacks Passive Physical 3 [50]–[54] 7 7
Differential computation analysis Active/passive Logical 3 [55], [74] 7 7
Smudge attacks Passive Physical 7 7 3 [56]–[58]
Shoulder surfing and reflections Passive Physical 7 7 3 [61]–[64]
Hand/device movements Passive Physical 7 7 3 [65]–[67]
Clock/power glitching Active Physical 3 [70], [71] 7 7
Electromagnetic fault injection Active Physical 3 [72], [73] 7 7
Laser/optical faults Active Physical 3 [75]–[77] 7 7
Temperature variation Active Physical 3 [78], [79] 7 7
NAND mirroring Active Physical 3 [80] 7 7

Laser/Optical Faults. Optical fault attacks using a laser
beam are among the most-effective fault-injection techniques.
These attacks take advantage of the fact that a focused laser
beam can change the state of a transistor on a microcontroller,
resulting in, e.g., bit flips in memory cells. Compared to other
fault-injection techniques (voltage glitching, EMFI), the effort
for optical fault injection is high. First, decapsulation of the
chip is a prerequisite in order to access the silicon with the
laser beam. Second, finding the correct location for the laser
beam to produce exploitable faults is also not a trivial task.

Attacks. First optical fault-injection attacks targeting an 8-
bit microcontroller have been published by Skorobogatov and
Anderson [75] in 2002. Inspired by their work, several optical
fault-injection attacks have been published in the following
years, most of them targeting smart cards or low-resource
embedded devices (e.g., [76], [77]). The increasing number
of metal layers on top of the silicon, decreasing feature size
(small process technology), and the high decapsulation effort
make optical fault injection difficult to apply on modern
microprocessors used in smartphones.

Temperature Variation. Operating a device outside of its
specified temperature range allows to cause faulty behavior.
Heating up a device above the maximum specified temperature
can cause faults in memory cells. Cooling down the device has
an effect on the speed RAM content fades away after power
off (remanence effect of RAM).

Attacks. Hutter and Schmidt [78] presented heating fault
attacks targeting an AVR microcontroller. They prove the
practicability of this approach by successfully attacking an
RSA implementation on named microcontroller. FROST [79],
on the other hand, is a tool to recover disc encryption keys
from RAM on Android devices by means of cold-boot attacks.
Here the authors take advantage of the increased time data in
RAM remains valid after power off due to low temperature.

Differential Computation Analysis. As already mentioned
above, the white-box model assumes that the attacker has
full control over the execution environment. This also means
that the attacker can produce erroneous or faulty outputs by
manipulating intermediate values during the computation.

Attacks. Sanfelix et al. [74] demonstrated that attackers in
the white-box model can also perform fault injection attacks.
As the attacker has full control over the execution environment

and the executed binary, she can also manipulate data during
the program execution or manipulate the control flow of the
execution. Similar to other fault attacks, the idea is to observe
differences between normal outputs and erroneous outputs of
the binary in order to break the cryptographic implementations.

NAND Mirroring. Data mirroring refers to the replication
of data storage between different locations. Such techniques
are used to recover critical data after disasters but also allow
to restore a previous system state.

Attacks. The Apple iPhone protects a user’s privacy by
encrypting the data. Therefore, a passcode and a hardware-
based key are used to derive various keys that can be used
to protect the data on the device. As a dedicated hardware-
based key is used to derive these keys, brute-force attempts
must be done on the attacked device. Furthermore, brute-force
attempts are discouraged by gradually increasing the waiting
time between wrongly entered passcodes up to the point where
the phone is wiped. In response to the Apple vs FBI case,
Skorobogatov [80] demonstrated that NAND mirroring can be
used to reset the phone state and, thus, can be used to brute-
force the passcode. Clearly, this approach also represents an
active attack as the attacker actively influences (resets) the
state of the device.

C. Overview

Table II summarizes the discussed attack categories and
the targeted information. In terms of targets, we identified
cryptographic implementations (crypto), the program flow of
applications (which sometimes also allows to attack crypto
because different branches might be executed depending on
specific key bits), application inference (inference of the
executed application), and user input. An attack category not
targeting specific information (yet), which is indicated by an 7,
represents a possible gap that might be investigated in future
research. For example, power analysis attacks might allow to
target user input, such as keystrokes or even actual characters,
and shoulder surfing and reflection attacks might well allow
to infer running applications. However, for some attacks it is
(highly) unlikely that they will work against specific targets.
For example, attacking cryptographic algorithms by means of
smudge attacks is unlikely to work.
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TABLE III
OVERVIEW OF VICINITY SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. 3 AND 7 INDICATE WHETHER OR NOT A SPECIFIC ATTACK HAS BEEN

PERFORMED ON THE CORRESPONDING TARGET.

Attack Active/passive Property Targets
Visited websites Application/action inference Identify users/devices User input

Network traffic analysis Active/passive Physical/logical 3 [81]–[86] 3 [87] 3 [88] 7
USB power analysis Passive Physical 3 [89] 7 3 [90] 7
Wi-Fi signal monitoring Passive Physical 7 7 7 3 [91], [92]

V. VICINITY SIDE-CHANNEL ATTACKS

In this section, we survey attacks where the attacker must be
in the vicinity of the targeted user/device, i.e., attacks where
the attacker compromises, for example, any infrastructure
facility within the user’s environment.

A. Passive Attacks

Network Traffic Analysis. In general, the encryption of
messages transmitted between two parties only hides the actual
content, while specific meta data such as the overall amount of
data is not protected. This meta data allows to infer sensitive
information about the content and the communicating parties.

Attacks. Network traffic analysis has been extensively stud-
ied in the context of website fingerprinting attacks. These
attacks [82]–[86] wiretap network connections and observe
traffic signatures, e.g., unique packet lengths, inter-packet
timings, etc., to infer visited websites and even work in
case the traffic is routed through Tor. While most of these
attacks target the network communication in general, attacks
explicitly targeting mobile devices also exist. For instance,
Stöber et al. [88] assumed that an adversary eavesdrops on
the UMTS transmission and showed that smartphones can
be fingerprinted based on the background traffic of installed
apps. Conti et al. [87] considered an adversary who controls
Wi-Fi access points near the targeted device, which allows
to infer specific app actions such as posting Facebook status
messages. In similar settings, traffic analysis techniques allow
to fingerprint specific apps as well as actions performed in
specific apps [93]–[98].

While the above presented attacks exploit logical properties,
i.e., the fact that encrypted packets do not hide meta data,
Schulz et al. [99] exploited the EM emanation of Ethernet
cables (hardware properties), which allowed them to observe
parts of the transmitted Ethernet frames.

USB Power Analysis. Due to the inherent usage patterns of
mobile devices, users are constantly in the need to charge their
devices, which is why public USB charging stations have been
set up. Similar to power analysis attacks, modified charging
stations can be used to collect power traces that allow to infer
sensitive information about users and mobile devices.

Attacks. The identification (or localization) of specific users
is considered a privacy risk due to the possibility of tracking
individuals. Conti et al. [90] demonstrated that wall-socket
smart meters that capture the power consumption of plugged
devices can be used to identify users/notebooks. Although they
demonstrated their attack on notebooks, it is likely that the
same attack works for smartphones as well. In a similar setting,
Yang et al. [89] demonstrated that visited websites can be

inferred by power traces collected via USB charging stations.
Such attacks even work if dedicated protection mechanisms,
e.g., adapters that block data pins on USB cables, are in place.

Wi-Fi Signal Monitoring. Wi-Fi devices continuously
monitor the wireless channel (channel state information (CSI))
to effectively transmit data. This is necessary as environmental
changes cause the CSI values to change.

Attacks. Ali et al. [100] observed that even finger motions
impact wireless signals and cause unique patterns in the time-
series of CSI values. In a setting with a sender (notebook) and
a receiver (Wi-Fi router), they showed that keystrokes on an
external keyboard cause distortions in the Wi-Fi signal. They
infer entered keys by monitoring these changes of the CSI
values. Later on, Zhang et al. [91] inferred unlock patterns on
smartphones via a notebook that is connected to the wireless
hotspot provided by the smartphone. Li et al. [92] further
improved these attacks by considering an attacker controlling
only a Wi-Fi access point. They infer the PIN input on
smartphones and also analyze network packets to determine
when the sensitive input starts.

B. Active Attacks
Besides passively observing leaking information, vicinity

attacks can be improved by considering active attackers as
demonstrated by the following example.

Network Traffic Analysis. Network traffic analysis has al-
ready been discussed in the context of passive side-channel at-
tacks. Active attackers learn additional information by actively
influencing transmitted packets, e.g., by delaying packets.

Attacks. He et al. [81] demonstrated that an active attacker,
e.g., represented by an Internet Service Provider (ISP), could
delay HTTP requests from Tor users in order to increase the
performance of website fingerprinting attacks. The idea is that
instead of observing the generated traffic for all resources on
a webpage in parallel, i.e., the response packets from multiple
requests in parallel overlap, an attacker delays the packet
requesting a resource until the response from the previous
request has been fully retrieved.

C. Overview
Table III summarizes the discussed attack categories and the

targeted information. The identified targets are the inference
of visited websites, application inference (or specific actions
within applications), identification of users and devices, and
user input. Again an attack category not targeting specific
information (indicated by an 7) represents a possible gap that
might be closed in future research. For example, USB power
analysis attacks might allow to target user input.
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VI. REMOTE SIDE-CHANNEL ATTACKS

The attacks presented in this section can be categorized
as software-only attacks. In contrast to the local side-channel
attacks as well as the vicinity side-channel attacks presented in
the previous sections, these attacks neither require the attacker
to be in the proximity nor in the vicinity of the targeted user.
Hence, these attacks can be executed remotely and target a
much larger scale since the victim user installed a malicious
application on her device.

A. Passive Attacks

Linux-inherited procfs Leaks. Linux releases “accounting”
information that is considered as being harmless via the procfs.
This includes, for example, the memory footprint (total virtual
memory size and total physical memory size) of each applica-
tion via /proc/[pid]/statm, the CPU utilization times
via /proc/[pid]/stat, the number of context switches
via /proc/[pid]/status, but also system-wide informa-
tion such as interrupt counters via /proc/interrupts and
context switches via /proc/stat.

Attacks. Jana and Shmatikov [25] observed that the memory
footprint of the browser correlates with the rendered website.
Thus, by monitoring the memory footprint they inferred a
user’s browsing behavior (browser history), which represents
sensitive information and is normally protected by a dedicated
permission. Later on, Chen et al. [101] exploited this informa-
tion to detect Activity transitions within Android apps. They
observed that the shared memory size increases by the size
of the graphics buffer in both processes, i.e., the app process
and the window compositor process (SurfaceFlinger). These
increases occur due to the inter-process communication (IPC)
between the app and the window manager. Besides, they also
considered CPU utilization and network activity in order to
infer the exact activity later on.

Similar to the memory footprint of applications, the procfs
also provides system-wide information about the number of
interrupts and context switches. Again, this information is con-
sidered as being innocuous and is, thus, published on purpose
and is accessible without any permission. Simon et al. [11]
exploited this information to infer text entered via swipe input
methods. More specifically, they observed that the number
of interrupts and context switches correlates with the user’s
finger movements across the keyboard when transitioning from
letter to letter. Diao et al. [102] presented two attacks to infer
unlock patterns and the app running in the foreground. The
information leaks exploited were gathered from interrupt time
series of the device’s touchscreen controller. Besides, also the
power consumption is released via the procfs. Yan et al. [49]
showed that the power consumption allows to infer the number
of entered characters on the soft keyboard.

Data-Usage Statistics. Android keeps track of the amount
of incoming and outgoing network traffic on a per-application
basis. These statistics allow users to keep an eye on the data
consumption of any app and can be accessed without any
permission.

Attacks. Data-usage statistics are captured with a fine-
grained granularity, i.e., packet lengths of single TCP packets

can be observed, and have already been successfully exploited.
Zhou et al. [14] demonstrated that by monitoring the data-
usage statistics an adversary can infer sensitive information
of specific apps. They were able to infer disease conditions
accessed via WebMD, and the financial portfolio via Yahoo!
Finance. In addition, they also showed how to infer a user’s
identity by observing the data-usage statistics of the Twitter
app and exploiting the publicly available Twitter API.

Later, it has been shown that the data-usage statistics can
also be exploited to infer a user’s browsing behavior [26].
The fine-grained statistics of incoming and outgoing network
packets allow to fingerprint websites, which even works in
case the traffic is routed through the anonymity network Tor.

Page Deduplication. To reduce the overall memory foot-
print of a system, (some) operating systems3 search for iden-
tical pages within the physical memory and merge them—
even across different processes—which is called page dedu-
plication. As soon as one process intends to write onto such
a deduplicated page, a copy-on-write fault occurs and the
process gets its own copy of this memory region again.

Attacks. Such copy-on-write faults have been exploited by
Suzaki et al. [103] to detected applications on Linux and
Windows as well as file downloads. Recently, Gruss et al. [24]
demonstrated the possibility to measure the timing differences
between normal write accesses and copy-on-write faults from
within JavaScript code. Based on these precise timings they
suggest to fingerprint visited websites by allocating memory
that stores images found on popular websites. If the user
browses the website with the corresponding image, then at
some point the OS detects the identical content in the pages
and deduplicates these pages. By continuously writing to the
allocated memory, the attacker might observe a copy-on-write
fault in which case the attacker knows that the user currently
browses the corresponding website.

Microarchitectural Attacks. Modern computer architec-
tures include many components to improve the overall effec-
tiveness and performance. For instance, CPU caches represent
an important component within the memory hierarchy of
modern computer architectures. Multiple cache levels bridge
the gap between the latency of main memory accesses and the
fast CPU clock frequencies. Microarchitectural attacks exploit
specific effects like the timing behavior of these components,
e.g., branch prediction units and CPU caches, in order to
learn sensitive information about executed instructions, code
paths, etc. More specifically, by measuring execution times and
memory accesses, an attacker can infer sensitive information
from processes running in parallel on the same device. As
CPU caches have been shown to represent a powerful source
of information leaks, we focus on cache attacks.

Attacks. Cache-timing attacks against AES have already
been investigated on Android-based mobile devices. For
instance, Bernstein’s cache-timing attack [104] has been
launched on development boards [105]–[107] and on Android
smartphones [108], [109] in order to reduce the effective
key size of AES. Besides, similar cache attacks have been

3For example, CyanogenMod OS allows to enable page deduplication.
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launched on embedded devices [110] and more fine-grained
attacks [5] against AES have also been applied on smart-
phones [111]. These attacks relied on privileged access to
precise timing measurements, but as stated by Oren et al. [112]
cache attacks can also be exploited via JavaScript and, thus,
do not require native code execution anymore. They even
demonstrated the possibility to track user behavior including
mouse movements as well as browsed websites via JavaScript-
based cache attacks. A recent paper by Lipp et al. [113]
demonstrates that all existing cache attacks, including the
effective Flush+Reload attack [6], can be applied on modern
Android smartphones without any privileges. While early
attacks on smartphones exclusively targeted cryptographic
implementations, their work also shows that user interactions
(touch actions and swipe actions) can be inferred through this
side channel. Similar investigations of Flush+Reload on ARM
have also been conducted by Zhang et al. [114].

As some of these attacks actively influence the behavior of
the victim, e.g., the execution time, some microarchitectural
attacks can also be considered as active attacks. For a more
detailed survey about microarchitectural attacks in general, we
refer to the survey papers by Ge et al. [7] and Szefer [40].

Sensor-based Keyloggers. Cai et al. [115] and Raij et
al. [116] were one of the first to discuss privacy implica-
tions resulting from mobile devices equipped with cameras,
microphones, GPS sensors, and motion sensors in general.
Nevertheless, a category of attacks that received significant
attention are sensor-based keyloggers. These attacks are based
on two observations. First, smartphones are equipped with lots
of sensors—both motion sensors as well as ambient sensors—
that can be accessed without any permission, and second,
these devices are operated with fingers while being held in
the users’ hands. Hence, the following attacks are all based on
the observation that users tap/touch/swipe the touchscreen and
that the device is slightly tilt and turned during the operation.

Attacks. In 2011, Cai and Chen [9] were the first to
observe a correlation between entered digits on touchscreens
and the readings from the accelerometer sensor that can be
exploited for motion-based keylogging attacks. Following this
work, Owusu et al. [117] extended the attack to infer single
characters, and Aviv [118] and Aviv et al. [10] investigated
the accelerometer to attack PIN and pattern inputs. Subsequent
publications [119]–[121] also considered the combination of
the accelerometer and the gyroscope in order to improve the
performance as well as to infer even longer text inputs [122].

Since the W3C specifications allow access to the motion and
orientation sensors from JavaScript, motion-based keylogging
attacks have even been performed via websites [12], [123].
Even worse, some browsers continue to execute JavaScript,
although the user closed the browser or turned off the screen.

While the above summarized attacks exploit different mo-
tion sensors, e.g., accelerometer and gyroscope, ambient sen-
sors can also be used for keylogging attacks. Spreitzer [124]
presented an attack that exploits an ambient sensor, namely
the ambient-light sensor, in order to infer a user’s PIN input
on touchscreens. Minor tilts and turns during keyboard input
lead to variations of the ambient-light sensor readings, which

are then correlated with keyboard input on the touchscreen.
As demonstrated by Simon and Anderson [125], PIN inputs

on smartphones can also be inferred by continuously taking
pictures via the front camera. Afterwards, PIN digits can be
inferred by image analysis and by investigating the relative
changes of objects in subsequent pictures that correlate with
the entered digits. Fiebig et al. [126] demonstrated that the
front camera can be used to capture the screen reflections in the
user’s eyeballs, which allows to infer user input. In a similar
manner, Narain et al. [127] and Gupta et al. [128] showed
that tap sounds (inaudible to the human ear) recorded via
smartphone stereo-microphones can be used to infer typed text
on the touchscreen. However, these attacks require dedicated
permissions to access the camera and the microphone, which
might raise the user’s suspicion. In contrast, the motion and
ambient sensors can be accessed without any permission.

For a more complete overview of sensor-based keylogging
attacks, we refer to the survey papers by Hussain et al. [44] and
Nahapetian [45]. Considering the significant number of papers
that have been published in this context, user awareness about
such attacks should be raised. Especially since Mehrnezhad et
al. [123] found that the perceived risk of motion sensors,
especially ambient sensors, among users is very low.

Fingerprinting Devices/Users. The identification of smart-
phones (and users) without a user’s awareness is considered a
privacy risk. While obvious identification mechanisms such as
device IDs and web cookies can be thwarted, imperfections
of hardware components, e.g., sensors, as well as specific
software features can also be employed to stealthily fingerprint
and identify devices and users, respectively.

Attacks. Bojinov et al. [129] and Dey et al. [130] ob-
served that unique variations of sensor readings (e.g., of
the accelerometer) can be used to fingerprint devices. These
variations are a result of the manufacturing process and are
persistent throughout the life of the sensor/device. As these
sensors can be accessed via JavaScript, it is possible to finger-
print devices via websites [131]. Similarly, such imperfections
also affect the microphones and speakers [132], [133], which
also allow to fingerprint devices. In addition, by combining
multiple sensors, even higher accuracies can be achieved [134].

Kurtz et al. [135] demonstrated how to fingerprint mobile
device configurations, e.g., device names, language settings,
installed apps, etc. Hence, their fingerprinting approach ex-
ploits software properties (i.e., software configurations) only.
Hupperich et al. [136] proposed to combine hardware features
as well as software features to fingerprint mobile devices.

Location Inference. As smartphones are always carried
around, information about a phone’s location inevitably reveals
the user’s location. Hence, resources that obviously can be
used to determine a user’s location, e.g., the GPS sensor, are
considered as privacy relevant and, thus, require a dedicated
permission. Yet, even without permissions, side-channel at-
tacks can be used to infer precise location information about
users.

Attacks. Han et al. [141], Nawaz et al. [142], and Narain et
al. [143] demonstrated that the accelerometer and the gy-
roscope can be used to infer car driving routes. Similarly,
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TABLE IV
OVERVIEW OF REMOTE SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. 3 AND 7 INDICATE WHETHER OR NOT A SPECIFIC ATTACK HAS BEEN

PERFORMED ON THE CORRESPONDING TARGET.

Attack Active/passive Property
Targets

Visited Application/action Identify User input Crypto Location Privilege
websites inference users/devices inference escalation

procfs leaks Passive Physical/logical 3 [25], [26] 3 [101], [102] 3 [14] 3 [11], [49], [102] 7 3 [13] 7
Data-usage statistics Passive Logical 3 [26] 3 [14] 3 [14] 7 7 7 7
Page deduplication Passive Logical 3 [24] 3 [103] 7 7 7 7 7
Microarchitectural attacks Active/passive Physical 3 [112] 3 [112], [113] 7 3 [113] 3 [108]–[111], [113] 7 7
Sensors Passive Physical 7 3 3 [129]–[131] 3 [9], [10], [12], [117]–[124], [137] 7 3 [138] 7
Microphone Passive Physical 7 7 3 [132], [133] 3 [127], [128], [139] 7 7 7
Speakers Passive Physical 7 7 3 [132], [133] 7 7 7 7
Camera Passive Physical 7 7 7 3 [125], [126] 7 7 7
Device configurations Passive Logical 7 7 3 [135] 7 7 7 7
Rowhammer Active Physical 7 7 7 7 7 7 3 [140]

Hemminki et al. [144] inferred the transportation mode, e.g.,
train, bus, metro, etc., via the accelerometer readings. Besides
the accelerometer and the gyroscope, ambient sensors can also
be used to infer driving routes. Ho et al. [138] exploited the
correlation between sensor readings of the barometer sensor
and the geographic elevation to infer driving routes.

Even less obvious side-channels that allow to infer driving
routes and locations are the speaker status information (e.g.,
speaker on/off) and the power consumption (available via the
procfs). More specifically, Zhou et al. [14] observed that the
Android API allows to query whether or not the speaker
is currently active, i.e., boolean information that indicates
whether or not any app is playing sound on the speakers.
They exploit this information to attack the turn-by-turn voice
guidance of navigation systems. By continuously querying
this API, they determine how long the speaker is active.
This information allows to infer the speech length of voice
direction elements, e.g., the length of “Turn right onto East
Main Street”. As driving routes consist of many such turn-by-
turn voice guidances, fingerprinting driving routes is possible.

Michalevsky et al. [13] observed that the power consump-
tion (available in the procfs) is related to the strength of the
cellular signal, which depends on the distance to the base
station. Given this information, they inferred a user’s location.

Speech Recognition. Eavesdropping conversations repre-
sents a severe privacy threat. Thus, a dedicated permission
protects the access to the microphone. However, acoustic
signals, such as human speech, in the vicinity of a mobile
device also influence the gyroscope measurements.

Attacks. Michalevsky et al. [137] exploited the gyroscope
sensor to measure acoustic signals in the vicinity of the
phone and to recover speech information. Although they only
consider a small set of vocabulary, i.e., digits only, their work
demonstrates the immense power of gyroscope sensors in
today’s smartphones. By exploiting the gyroscope sensor to
eavesdrop on a user’s conversations they are able to bypass
the permission required to access the microphone.

Soundcomber. Customer service departments often rely on
automated menu services to interact with customers over the
phone. A well-known example are the interactive voice re-
sponse systems supported by telephone services that use dual-
tone multi-frequency (DTMF) signaling to transmit entered
numbers, i.e., an audio signal is transmitted for each key.

Attacks. As DTMF tones are also played locally, Schlegel et
al. [139] showed that by requesting permission to access the

microphone, these tones can be recorded and used to infer
sensitive input provided to these automated menu services.
More specifically, they exploit this information to infer credit
card numbers entered while interacting with such interactive
voice response systems of credit card companies.

B. Active Attacks

An area of research that gains increasing attention among
the scientific community are active side-channel attacks that
can be exploited via software execution only. The most promi-
nent example is the so-called Rowhammer attack that exploits
DRAM disturbance errors to conduct software-induced fault
attacks.

Rowhammer. The increasing density of memory cells
within the DRAM requires the size of these cells to decrease,
which in turn decreases the charging of single cells but also
causes electromagnetic coupling effects between cells.

Attacks. Kim et al. [145] demonstrated that these obser-
vations can be used to induce hardware faults, i.e., bit flips
in neighboring cells, via frequent memory accesses to the
main memory. Thereby, they showed that frequent memory
accesses in the attacker’s memory allow to induce faults (bit
flips) in the victim’s memory. Seaborn and Dullien [146]
demonstrated how to possibly exploit these bit flips from
native code and Gruss et al. [147] showed that such bit flips
can even be induced via JavaScript code. A recent paper [140]
demonstrates the exploitation of the Rowhammer bug to gain
root privileges on Android smartphones by inducing bit flips
from an unprivileged application.

C. Overview

Table IV summarizes the discussed attack categories and the
targeted information. The target “application/action inference”
also refers to sensitive information that can be inferred from
specific actions. For example, diseases conditions, stock port-
folios, etc. can be inferred from data-usage statistics (cf. [14]).
The target “user input” refers to PIN and pattern inputs on
the screen, inter-keystroke timing information, and also the
DTMF tone exploitation [139]. Again an attack category not
targeting specific information (yet), which is indicated by an
7, represents a possible gap that might be closed in future
research.
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Fig. 7. Overview of side-channel attacks: (1) active vs passive, (2) logical properties vs physical properties, (3) local vs vicinity vs remote.

VII. TREND ANALYSIS

In Figure 7 we classify the attacks surveyed in Sections IV–
VI according to our new classification system. We distinguish
between active and passive attackers along the (right) y-axis.
Passive attacks are classified above the x-axis and active
attacks are classified below the x-axis. The (left) y-axis dis-
tinguishes between the exploitation of physical properties and
logical properties. As both of these categories can be exploited
by passive as well as active attackers, these two categories
are mirrored along the x-axis. The x-axis categorizes side-
channel attacks according to the attacker’s proximity to the
targeted device. For instance, some attacks require an attacker
to have access to the targeted device or even to have access to
components within the device, e.g., the attacker might remove
the back cover in order to measure the EM emanation of the
chip. Stronger adversaries (with weaker assumptions) might
rely on wiretapping techniques. The strongest adversaries rely
on unprivileged applications being executed on the targeted

device or even only that the victim visits a malicious website.
Based on this classification system we observe specific

trends in modern side-channel attacks that will be discussed
within the following paragraphs. This trend analysis also
includes pointers for possible research directions.

From Local to Remote Attacks. The first trend that can be
observed is that, in contrast to the smart card era, the smart-
phone era faces a shift towards remote side-channel attacks
that focus on both hardware properties and software features.
The shift from local attacks (during the smart card era) towards
remote attacks (on mobile devices) can be addressed to the
fact that the attack scenario as well as the attacker have
changed significantly. More specifically, side-channel attacks
against smart cards have been conducted to reveal sensitive
information that should be protected from being accessed by
benign users. For example, in case of pay-TV cards the secret
keys must be protected against benign users, i.e., users who
bought these pay-TV cards in the first place. The attacker in
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this case might be willing to invest in equipment in order to
reveal the secret key as this key could be sold later on.

In contrast, today’s smartphones are used to store and
process sensitive information, and attackers interested in this
information are usually not the users themselves but rather
criminals, imposters, and other malicious entities that aim
to steal this sensitive information from users. Especially the
appification of the mobile ecosystem provides tremendous op-
portunities for attackers to exploit identified side-channel leaks
via software-only attacks. Hence, this shift also significantly
increases the scale at which attacks are conducted. While
local attacks only target a few devices, remote attacks can
be conducted on millions of devices at the same time by
distributing software via available app markets.

From Active to Passive Attacks. The second trend that
can be observed is that fault injection attacks have been quite
popular on smart cards, whereas such (local) fault attacks are
not that widely investigated on smartphones, at least at the
moment. Consequently, we also observe that the variety of
fault attacks conducted in the smart card era has decreased
significantly in the smartphone era, which can be addressed
to the following observations. First, the targeted device itself,
e.g., a smartphone, is far more expensive than a smart card
and, hence, fault attacks that potentially permanently break
the device are only acceptable for very targeted attacks. Even
in case of highly targeted attacks (cf. Apple vs FBI dispute),
zero-day vulnerabilities might be chosen instead of local fault
attacks.4 Second, remote fault attacks seem to be harder to
conduct as such faults are harder to induce via software
execution. Currently, the only remote fault attack (also known
as software-induced fault attack) is the Rowhammer attack,
which however gets increasing attention among the scientific
community and has already been exploited to gain root access
on Android devices [140]. Although software-induced fault
attacks have not been investigated extensively in the past, we
expect further research to be conducted in this context.

Some microarchitectural attacks can also be considered as
active attacks because the attacker influences the behavior of
the targeted program (victim). For example, cache attacks can
be used to slow down the execution of the victim due to cache
contention. However, this does not introduce a fault in the
computation and, hence, Rowhammer currently represents the
only software-induced fault attack.

Exploiting Physical and Logical Properties. In contrast to
physical properties, logical properties (software features) do
not result from any physical interaction with the device, but
due to dedicated features provided via software. While tra-
ditional side-channel attacks mostly exploited physical prop-
erties and required dedicated equipment, more recent side-
channel attacks exploit physical properties as well as logical
properties. Interestingly, the immense number of sensors in
smartphones also allows to exploit physical properties by
means of software-only attacks, which was not possible on
smart cards. Although the majority of attacks on mobile

4However, in September 2016 Skorobogatov [80] demonstrated that NAND
mirroring allows to bypass the PIN entry limit on the iPhone 5c.

devices still exploits physical properties, the exploitation of
logical properties also receives increasing attention. Especially
the procfs seems to provide an almost inexhaustible source
for possible information leaks. For example, the memory
footprint released via the procfs has been used to infer visited
websites [25], or the number of context switches has been used
to infer swipe input [11]. Besides, information that is available
via official APIs is in some cases also available via the procfs
such as the data-usage statistics that have been exploited to
infer a user’s identity [14] and to infer visited websites [26].

Empty Areas. As can be observed, a few areas in this cate-
gorization system (cf. Figure 7) are not (yet) covered or are not
covered that densely. For instance, there is currently no active
side-channel attack that can be executed remotely and that ex-
ploits logical properties (software features) to induce faults or
to actively influence the targeted program (victim). However,
by considering existing passive attacks, one could come up
with more advanced attacks by introducing an active attacker.
Such an active attacker might, for example, block/influence
a shared resource in order to cause malfunctioning of the
target. For instance, considering the passive attack exploiting
the speaker status (on/off) to infer a user’s driving routes [14],
one could easily influence the victim application by playing
inaudible sounds in the right moment in order to prevent
the turn-by-turn voice guidance from accessing the speaker.
Thereby, the active attacker prevents the target (victim) from
accessing the shared resource, i.e., the speaker, and based
on this induced behavior an active attacker might gain an
advantage compared to a passive attacker. We expect advances
in this (yet) uncovered area of active side-channel attacks that
target software features.

Tabular Summary of Surveyed Attacks. Table V provides
a tabular summary for the categorization of the surveyed
attacks. For some attacks we observe that active as well as
passive modes of attack have already been considered, e.g.,
differential computation analysis and network traffic analysis
attacks. Some attacks can also be conducted by exploiting
physical properties as well as logical properties, e.g., the
fingerprinting of devices and network traffic analysis attacks.

VIII. DISCUSSION OF COUNTERMEASURES

In this section, we discuss existing countermeasures against
the most prominent attacks. Overall we aim to shed light onto
possible pitfalls of existing countermeasures and to stimulate
future research to come up with more generic countermeasures
against side-channel attacks.

A. Local Side-Channel Attacks

Protecting Cryptographic Implementations. Crypto-
graphic implementations represent a prominent target of side-
channel attacks as a successful attack allows to recover sensi-
tive data and to break mechanisms building upon these prim-
itives. Therefore, countermeasures to protect cryptographic
implementations have already been proposed for the smart
card world. These countermeasures can be applied to protect
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TABLE V
SUMMARY OF SURVEYED ATTACKS.

Mode of attack Exploited information Location of attacker
Attack Active Passive Physical properties Logical properties Local Vicinity Remote
Power analysis 3 3 3
EM analysis 3 3 3 3
NAND mirroring 3 3 3
Laser/optical 3 3 3
Clock/power glitch 3 3 3
Temperature variation 3 3 3
EMFI 3 3 3
Differential computation analysis 3 3 3 3
Reflections/hands 3 3 3 3
Smudges 3 3 3
Network traffic analysis 3 3 3 3 3
USB power analysis 3 3 3
Wi-Fi signal monitoring 3 3 3
Fingerprinting devices 3 3 3 3
Data-usage statistics 3 3 3
Page deduplication 3 3 3
procfs leaks 3 3 3 3
Microarchitectural attacks 3 3 3 3
Location inference 3 3 3
Speech recognition 3 3 3
Soundcomber 3 3 3
Sensor-based keyloggers 3 3 3
Rowhammer 3 3 3

cryptographic implementations on smartphones as well. For
example, masking of sensitive values such as the randomiza-
tion of key-dependent values during cryptographic operations,
or execution randomization are countermeasures for hardening
the implementation against passive attacks such as power
analysis or EM analysis [4]. Executing critical calculations
twice allows to detect faults that are injected during an active
side-channel attack [148].

Protecting User Input. Mitigation techniques to prevent
attackers from inferring user input on touchscreens by means
of smudge attacks or shoulder surfing attacks are not that
thoroughly investigated yet. Nevertheless, proposed counter-
measures include, for example, randomly starting the vibrator
to prevent attacks that monitor the backside of the device [66],
or to randomize the layout of the soft keyboard each time the
user provides input to prevent smudge attacks [118] as well
as attacks that monitor the hand movement [65]. Aviv [118]
also proposed to align PIN digits in the middle of the screen
and after each authentication the user needs to swipe down
across all digits in order to hide smudges. Besides, Kwon and
Na [149] introduced a new authentication mechanism denoted
as TinyLock that should prevent smudge attacks against pattern
unlock mechanisms. Krombholz et al. [150] proposed an
authentication mechanism for devices with pressure-sensitive
screens that should prevent smudge attacks and shoulder
surfing attacks. Raguram et al. [62], [63] suggested to decrease
the screen brightness, to disable visual feedback (e.g., pop-up
characters) on soft keyboards, and to use anti-reflective coating
in eyeglasses to prevent attackers from exploiting reflections.

B. Vicinity Side-Channel Attacks

Preventing Network Traffic Analysis. Countermeasures
to prevent attackers from applying traffic analysis techniques
on wiretapped network connections have been extensively

considered in the context of website fingerprinting attacks.
The main idea of these obfuscation techniques is to hide
information that allows attackers to uniquely identify com-
munication partners or transmitted content such as visited
websites. Proposed countermeasures [151]–[155], however,
require the application, e.g., the browser application, as well
as the remote server to cooperate. Furthermore, it has already
been pointed out in [26] that these countermeasures add
overhead in terms of bandwidth and data consumption which
might not be acceptable in case of mobile devices with limited
data plans.

C. Remote Side-Channel Attacks

Permissions. The most straight-forward approach always
discussed as a viable means to prevent specific types of
software-only side-channel attacks is to protect the exploited
information or resource by means of dedicated permissions.
However, there is a study [156] that showed that permission-
based approaches are not quite convincing. Some users do
not understand the exact meaning of specific permissions, and
others do not care about requested permissions. Acar et al. [15]
even attested that the Android permission system “has failed
in practice”. Despite these problems it seems to be nearly
impossible to add dedicated permissions for every exploited
information.

Keyboard Layout Randomization. In order to prevent
sensor-based keylogging attacks that exploit the correlation
between user input and the device movements observed
via sensor readings, the keyboard layout of soft keyboards
could be randomized [117]. For instance, the Android-based
CyanogenMod OS allows to enable such a feature for PIN
inputs optionally. However, it remains an open question how
this would affect usability in case of QWERTY keyboards and,
intuitively, it might make keyboard input nearly impossible.
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Limiting Access or Sampling Frequency. It has also been
suggested to disable access to sensor readings during sensitive
input or to reduce the sampling frequency of sensors. This,
however, would hinder applications that heavily rely on sensor
readings such as pedometers.

Side-channel attacks like Soundcomber might be prevented
by AuDroid [157], which is an extension to the SELinux
reference monitor that has been integrated into Android to
control access to system audio resources. As pointed out by the
authors, there is no security mechanism in place for the host
OS to control access to mobile device speakers, thus allowing
untrusted apps to exploit this communication channel. AuDroid
enforces security policies that prevent data in system apps and
services from being leaked to (or used by) untrusted parties.

Noise Injection. Randomly starting the phone vibrator has
been suggested by Owusu et al. [117] to prevent sensor-based
keyloggers that exploit the accelerometer sensor. However,
Shrestha et al. [158] showed that random vibrations do not
provide protection. As an alternative, Shrestha et al. proposed
a tool named Slogger that introduces noise into sensor readings
as soon as the soft keyboard is running. In order to do so,
Slogger relies on a tool that needs to be started via the ADB
shell (in order to be executed with ADB capabilities). Slogger
injects events into the files corresponding to the accelerometer
and the gyroscope located in /dev/input/, which is why
ADB privileges are required for this defense mechanism. The
authors even evaluated the effectiveness of Slogger against
two sensor-based keyloggers and found that the accuracy of
sensor-based keyloggers can be reduced significantly. Das et
al. [131] also suggested to add noise to sensor readings in order
to prevent device fingerprinting via hardware imperfections of
sensors. A more general approach that targets the injection of
noise into the information provided via the procfs has been
proposed by Xiao et al. [46].

Preventing Microarchitectural Attacks. The inherent na-
ture of modern computer architectures enables sophisticated
attacks due to shared resources and especially due to dedicated
performance optimization techniques. A famous and popular
example is the memory hierarchy that introduces significant
performance gains but also enables microarchitectural attacks
such as cache attacks. Although specific cryptographic im-
plementations can be protected against such attacks, e.g., bit-
sliced implementations [159], [160] or dedicated hardware in-
structions can be used to protect AES implementations, generic
countermeasures against cache attacks represent a non-trivial
challenge. However, we consider it of utmost importance
to spur further research in the context of countermeasures,
especially since cache attacks do not only pose a risk for cryp-
tographic algorithms, but also for other sensitive information
such as keystrokes [23], [113].

App Guardian. Most of the above presented countermea-
sures aim to prevent very specific attacks only, but cannot
be applied to prevent attacks within a specific category of
our classification system, e.g., software-only attacks located
in the upper right of our new classification system (cf. Fig-
ure 7). At least some of these attacks, however, have been

addressed by App Guardian [16], which represents a more
general approach to defend against software-only attacks. App
Guardian is a third-party application that runs in user mode
and employs side-channel information to detect RIG attacks
(including software-only side-channel attacks). The basic idea
of App Guardian is to stop the malicious application while
the principal (the app to be protected) is being executed and
to resume the (potentially malicious) application later on.
Although App Guardian still faces challenges, it is a novel
idea to cope with such side-channel attacks in general. More
specifically, it tries to cope with all passive attacks that require
the attacker to execute software on the targeted device.

App Guardian seems to be a promising research project
to cope with side-channel attacks on smartphones at a larger
scale. However, an unsolved issue of App Guardian is the
problem that it still struggles with the proper identification
of applications to be protected. Furthermore, App Guardian
relies on side-channel information—to detect ongoing side-
channel attacks—that has been removed in Android 7. Hence,
App Guardian needs to be updated in order to also work on
recent Android versions and its effectiveness should be further
evaluated against existing side-channel attacks. Furthermore,
it might be interesting to extend its current framework to cope
with side-channel attacks conducted from within the browser,
i.e., to mitigate side-channel attacks via JavaScript.

D. Summary

Although local attacks target only a few devices or users, we
also observe that we require a much broader range of coun-
termeasures because also the attack methodologies of local
attacks are much broader. For instance, we have to deal with
attackers that measure the power consumption of the device
in order to break cryptographic implementations, we have
to deal with fault attacks such as clock/power glitching and
temperature variations, and at the same time we have to deal
with attackers that exploit smudges left on the touchscreen.

In contrast, the commonality of all remote attacks is that
they require software execution on the targeted device. Al-
though this means that remote attacks target devices and users
at a much broader scale, more generic countermeasures such
as App Guardian seem to be the most promising approach to
cope with these attacks in the future.

IX. ISSUES, CHALLENGES, AND FUTURE RESEARCH

In this section we discuss open issues and challenges that
need to be addressed in future research. Hence, this section is
not meant to provide solutions to existing problems. Instead,
with the presented classification system for modern side-
channel attacks we aim to shed light onto this vivid research
area and, thereby, to point out high-level research directions.
Overall, the ultimate goal is to spur further research in the
context of side-channel attacks and countermeasures and, as a
result, to pave the way for a more secure computing platform
for smart and mobile devices.

Countermeasures. Side-channel attacks are published at
an unprecedented pace and appropriate defense mechanisms
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are often either not (yet) available or cannot be deployed
easily. Especially the five key enablers identified in this paper
enable devastating side-channel attacks that can be conducted
remotely and, thus, target an immense number of devices
and users at the same time. Although countermeasures are
being researched, we observe a cat and mouse game between
attackers and system engineers trying to make systems secure
from a side-channel perspective. Besides, even if effective
countermeasures were readily available, the mobile ecosystem
of Android would impede a large-scale deployment of many
of these defense mechanisms. The main problem is that even
in case Google would apply defense mechanisms and patch
these information leaks, multiple device manufacturers as
well as carriers also need to apply these patches to deploy
countermeasures in practice. Hence, chances are that such
countermeasures will never be deployed, especially not in case
of outdated operating systems. We hope to stimulate research
to come up with viable countermeasures in order to prevent
such attacks at a larger scale, i.e., by considering larger areas
within the new categorization system, while also considering
the challenges faced by the mobile ecosystem. For instance,
App Guardian [16] follows the right direction by trying to
cope with attacks at a larger scale, while at the same time it
can be deployed as a third-party application.

Reproducibility and Responsible Disclosure. In order to
foster research in the context of countermeasures, it would
be helpful to publish the corresponding frameworks used to
conduct side-channel attacks. While this might also address
the long-standing problem of reproducibility of experiments
in computer science in general, this would enable a more
efficient evaluation of developed countermeasures. At the same
time, however, responsible disclosure must be upheld, which
sometimes turns out to be a difficult balancing act. On the
one hand, researchers want to publish their findings as soon
as possible and on the other hand, putting countermeasures to
practice might take some time.

Different Mobile Operating Systems and Cross-Platform
Development. Research should not only focus on one partic-
ular OS exclusively, i.e., especially Android seems to attract
the most attention. Instead, the applicability of side-channel
attacks should be investigated on multiple platforms, as many
(or most) of the existing attacks work on other platforms as
well. This is due to the fact that different platforms and devices
from different vendors aim to provide the same features such
as sensors and software interfaces, and rely on similar security
concepts like permission systems and application sandboxing.

In addition, the increasing trend to develop applications
for multiple platforms (cross-platform development) also in-
creases the possibility to target multiple platforms at the same
time. For example, the increasing popularity of HTML5 apps
and the increasing availability of web APIs to access native
resources from JavaScript significantly increases the scale of
side-channel attacks as specific attacks possibly target multiple
platforms at the same time.

Wearables. Although we put a strong focus on smartphones
in this paper, we stress that wearables in general must be

considered in future research. For example, smartwatches have
already been employed to attack user input on POS terminals
and hardware QWERTY keyboards [161]–[164]. Besides, it
has also been demonstrated that smartwatches can be used
to infer input on smartphones [165], [166] as well as text
written on whiteboards [167]. With the ever increasing number
of smart devices connected to our everyday lives, the threat
of side-channel attacks increases. We are likely to see higher
accuracies when these attacks are performed across multiple
devices, e.g., when combining data from smartwatches and
smartphones. Furthermore, Farshteindiker et al. [168] also
demonstrated how hardware implants (bugs)—possibly used
by intelligence agencies—can be used to exfiltrate data by
communicating with a smartphone. The communication chan-
nel is based on inaudible sounds emitted from the implant
which are captured by the gyroscope of the smartphone. This
interconnection clearly demonstrates the potential of attacks
when multiple wearable devices are combined.

Internet of Things. Another area of research which is
rapidly growing is the Internet of Things (IoT). As all devices
in the IoT network are inter-connected and accessible via the
Internet, we foresee that attackers will exploit side-channel
leaks to target different kinds of IoT appliances. In fact such an
attack has already been carried out by Zhang et al. [16]. They
investigated an Android-based Wi-Fi camera and observed that
a particular side-channel leak on Android can be exploited
to infer whether or not the user is at home. This example
demonstrates that side-channel leaks do not only pose a threat
to a user’s privacy and security from a system security point
of view, but also pose a threat to smart home appliances
and security systems, such as smart thermostats, cameras,
and alarm systems. Although this sounds utopian at first, the
above example clearly demonstrates that side-channel leaks
(on smartphones) also pose a threat to these IoT appliances
and puts even users’ physical possessions at risk.

Combination of Multiple Information Leaks. In order
to improve the accuracy of existing attacks or to come up
with more sophisticated attack scenarios, multiple side-channel
leaks can also be combined. For instance, the combination
of cache attacks and sensor-based keyloggers as mentioned
in [113] could be used to improve keylogging attacks. First,
cache attacks can be used to determine the exact time when
a key is entered and, second, sensor-based keyloggers can be
used to infer the actual key. Furthermore, website fingerprint-
ing attacks could be combined with sensor-based keyloggers as
mentioned in [26], which would allow to steal login credentials
for specific websites.

In addition, side-channel attacks can also be used to improve
attacks that exploit software vulnerabilities. For example,
although Screenmilker [47] does not represent a side-channel
attack—because a software vulnerability is exploited—it relies
on side-channel information in order to exploit this vulnera-
bility in the right moment. Lin et al. [47] suggested to rely on
CPU utilization, memory consumption, and network activities
in order to determine whether the targeted app is executed and,
thus, were able to take screenshots in the right moment.

Code Analysis Tools. The appification of mobile devices
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enables an easy installation of apps from the app markets.
However, these apps can be implemented by anyone who has
a developer account and, thus, the code needs to be checked
and verified appropriately, i.e., for presence of malicious
behavior and side channels. While the app vetting processes
of app stores, e.g., Google Play, already check for presence of
malicious behavior, dedicated technologies, such as static and
dynamic code analysis, should also be employed in order to
prevent apps prone to side-channel attacks and apps exploiting
side-channel information leaks from being distributed via app
markets. This, however, does not seem to be a trivial task since
most side-channel attacks exploit information or resources that
can be accessed without any specific privileges or permissions.

Static and dynamic code analysis tools could also help to
fix implementation flaws that lead to side-channel attacks.
Some implementation flaws exist for many years without being
noticed as has been demonstrated in [169] for the OpenSSL
implementation of the digital signature algorithm. Fostering
the development and application of tools to find and detect
such flaws during the software development process could help
to prevent vulnerable code from being deployed.

A possible starting point for the investigation and extension
of code analysis tools that might allow to scan applications
for possible side-channel attacks would be one of the survey
papers discussed in Section II-C.

X. CONCLUSION

Considering the immense threat arising from side-channel
attacks on mobile devices, a thorough understanding of infor-
mation leaks and possible exploitation techniques is necessary.
Based on this open issue, we surveyed existing side-channel
attacks and identified commonalities between these attacks in
order to systematically categorize all existing attacks. With the
presented classification system we aim to provide a thorough
understanding of information leaks and hope to spur further
research in the context of side-channel attacks as well as
countermeasures and, thereby, to pave the way for secure
computing platforms.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 research

and innovation programme
under grant agreement No
644052 (HECTOR), and
the European Research
Council (ERC) under
the European Union’s
Horizon 2020 research

and innovation programme (grant agreement No 681402).
Veelasha Moonsamy has been supported by the Technology
Foundation STW (project 13499 - TYPHOON & ASPASIA)
from the Dutch government. Further, we would like to
thank Florian Mendel for helpful discussions about active
side-channel attacks as well as Cristofaro Mune and Nikita
Abdullin for pointing out a missing attack category.

REFERENCES

[1] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Advances in Cryptology – CRYPTO
1996, ser. LNCS, vol. 1109. Springer, 1996, pp. 104–113.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
in Advances in Cryptology – CRYPTO 1999, ser. LNCS, vol. 1666.
Springer, 1999, pp. 388–397.

[3] J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards,” in Smart Card
Programming and Security – E-smart 2001, ser. LNCS, vol. 2140.
Springer, 2001, pp. 200–210.

[4] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

[5] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on
AES, and Countermeasures,” J. Cryptology, vol. 23, pp. 37–71, 2010.

[6] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in USENIX Security
Symposium 2014. USENIX Association, 2014, pp. 719–732.

[7] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” Journal of Cryptographic Engineering, pp. 1–27, 2016.

[8] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” in
USENIX Security Symposium 2016. USENIX Association, 2016, pp.
565–581.

[9] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in USENIX Workshop on Hot Topics
in Security – HotSec. USENIX Association, 2011.

[10] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
Accelerometer Side Channels on Smartphones,” in Annual Computer
Security Applications Conference – ACSAC 2012. ACM, 2012, pp.
41–50.

[11] L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me While I
Type: Inferring Text Entered Through Gesture Typing on Android
Keyboards,” PoPETs, vol. 2016, pp. 136–154, 2016.

[12] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “TouchSig-
natures: Identification of User Touch Actions and PINs Based on
Mobile Sensor Data via JavaScript,” J. Inf. Sec. Appl., vol. 26, pp.
23–38, 2016.

[13] Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and
G. Nakibly, “PowerSpy: Location Tracking Using Mobile Device
Power Analysis,” in USENIX Security Symposium 2015. USENIX
Association, 2015, pp. 785–800.

[14] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, Location, Disease and More:
Inferring Your Secrets From Android Public Resources,” in Conference
on Computer and Communications Security – CCS 2013. ACM, 2013,
pp. 1017–1028.

[15] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. D. McDaniel, and M. Smith,
“SoK: Lessons Learned from Android Security Research for Appified
Software Platforms,” in IEEE Symposium on Security and Privacy –
S&P 2016. IEEE, 2016, pp. 433–451.

[16] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave Me
Alone: App-Level Protection against Runtime Information Gathering
on Android,” in IEEE Symposium on Security and Privacy – S&P 2015.
IEEE Computer Society, 2015, pp. 915–930.

[17] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone:
Decoding Vibrations From Nearby Keyboards Using Mobile Phone
Accelerometers,” in Conference on Computer and Communications
Security – CCS 2011. ACM, 2011, pp. 551–562.

[18] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free Attacks Using
Keyboard Acoustic Emanations,” in Conference on Computer and
Communications Security – CCS 2014. ACM, 2014, pp. 453–464.

[19] S. Biedermann, S. Katzenbeisser, and J. Szefer, “Hard Drive Side-
Channel Attacks Using Smartphone Magnetic Field Sensors,” in Fi-
nancial Cryptography – FC 2015, ser. LNCS, vol. 8975. Springer,
2015, pp. 489–496.

[20] L. Schwittmann, V. Matkovic, M. Wander, and T. Weis, “Video
Recognition Using Ambient Light Sensors,” in Pervasive Computing
and Communication Workshops – PerCom 2016. IEEE Computer
Society, 2016, pp. 1–9.

[21] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu, “My Smartphone
Knows What You Print: Exploring Smartphone-based Side-channel
Attacks Against 3D Printers,” in Conference on Computer and Com-
munications Security – CCS 2016. ACM, 2016, pp. 895–907.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. Z, MONTH YYYY 21

[22] A. Hojjati, A. Adhikari, K. Struckmann, E. Chou, T. N. T. Nguyen,
K. Madan, M. S. Winslett, C. A. Gunter, and W. P. King, “Leave Your
Phone at the Door: Side Channels that Reveal Factory Floor Secrets,”
in Conference on Computer and Communications Security – CCS 2016.
ACM, 2016, pp. 883–894.

[23] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches,” in USENIX
Security Symposium 2015. USENIX Association, 2015, pp. 897–912.

[24] D. Gruss, D. Bidner, and S. Mangard, “Practical Memory Dedupli-
cation Attacks in Sandboxed Javascript,” in European Symposium on
Research in Computer Security – ESORICS 2015, ser. LNCS, vol. 9327.
Springer, 2015, pp. 108–122.

[25] S. Jana and V. Shmatikov, “Memento: Learning Secrets from Process
Footprints,” in IEEE Symposium on Security and Privacy – S&P 2012.
IEEE Computer Society, 2012, pp. 143–157.

[26] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting
Data-Usage Statistics for Website Fingerprinting Attacks on Android,”
in Security and Privacy in Wireless and Mobile Networks – WISEC
2016. ACM, 2016, pp. 49–60.

[27] Gartner, “Global Market Share Held by the Leading Smartphone
Operating Systems in Sales to End Users From 1st Quarter
2009 to 1st Quarter 2017,” https://www.statista.com/statistics/
266136/global-market-share-held-by-smartphone-operating-systems/,
accessed: 2017-06-13.

[28] A. D. Luzio, A. Mei, and J. Stefa, “Mind Your Probes: De-
Anonymization of Large Crowds Through Smartphone WiFi Probe
Requests,” in IEEE INFOCOM 2016. IEEE, 2016, pp. 1–9.

[29] R. Spolaor, L. Abudahi, V. Moonsamy, M. Conti, and R. Poovendran,
“No Free Charge Theorem: A Covert Channel via USB Charging Cable
on Mobile Devices,” in Applied Cryptography and Network Security –
ACNS 2017. Springer, 2017, in press.

[30] W. Enck, “Defending Users Against Smartphone Apps: Techniques and
Future Directions,” in Information Systems Security – ICISS 2011, ser.
LNCS, vol. 7093. Springer, 2011, pp. 49–70.

[31] M. L. Polla, F. Martinelli, and D. Sgandurra, “A Survey on Security
for Mobile Devices,” IEEE Communications Surveys and Tutorials,
vol. 15, pp. 446–471, 2013.

[32] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, Detection and Analysis of Malware for Smart Devices,”
IEEE Communications Surveys and Tutorials, vol. 16, pp. 961–987,
2014.

[33] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and M. Rajarajan, “Android Security: A Survey of Issues, Malware
Penetration, and Defenses,” IEEE Communications Surveys and Tuto-
rials, vol. 17, pp. 998–1022, 2015.

[34] B. Rashidi and C. J. Fung, “A Survey of Android Security Threats and
Defenses,” JoWUA, vol. 6, pp. 3–35, 2015.

[35] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A Taxonomy and
Qualitative Comparison of Program Analysis Techniques for Security
Assessment of Android Software,” IEEE Transactions on Software
Engineering, vol. PP, no. 99, pp. 1–48, 2017.

[36] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
Evolution of Android Malware and Android Analysis Techniques,”
ACM Comput. Surv., vol. 49, pp. 76:1–76:41, 2017.

[37] M. Tunstall, Smart Card Security. Cham: Springer International
Publishing, 2017, pp. 217–251.

[38] S. Zander, G. J. Armitage, and P. Branch, “A Survey of Covert
Channels and Countermeasures in Computer Network Protocols,” IEEE
Communications Surveys and Tutorials, vol. 9, pp. 44–57, 2007.

[39] A. K. Biswas, D. Ghosal, and S. Nagaraja, “A Survey of Timing
Channels and Countermeasures,” ACM Comput. Surv., vol. 50, pp. 6:1–
6:39, 2017.

[40] J. Szefer, “Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses,” IACR Cryptology ePrint Archive, Report
2016/479, 2016.

[41] J. Ullrich, T. Zseby, J. Fabini, and E. R. Weippl, “Network-Based Secret
Communication in Clouds: A Survey,” IEEE Communications Surveys
and Tutorials, vol. 19, pp. 1112–1144, 2017.

[42] J. Betz, D. Westhoff, and G. Müller, “Survey on Covert Channels in
Virtual Machines and Cloud Computing,” Trans. Emerging Telecom-
munications Technologies, vol. 28, 2017.

[43] M. Xu, C. Song, Y. Ji, M. Shih, K. Lu, C. Zheng, R. Duan, Y. Jang,
B. Lee, C. Qian, S. Lee, and T. Kim, “Toward Engineering a Secure
Android Ecosystem: A Survey of Existing Techniques,” ACM Comput.
Surv., vol. 49, pp. 38:1–38:47, 2016.

[44] M. Hussain, A. Al-Haiqi, A. A. Zaidan, B. B. Zaidan, M. L. M.
Kiah, N. B. Anuar, and M. Abdulnabi, “The Rise of Keyloggers on

Smartphones: A Survey and Insight Into Motion-Based Tap Inference
Attacks,” Pervasive and Mobile Computing, vol. 25, pp. 1–25, 2016.

[45] A. Nahapetian, “Side-Channel Attacks on Mobile and Wearable Sys-
tems,” in Consumer Communications & Networking Conference –
CCNC 2016. IEEE, 2016, pp. 243–247.

[46] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating Storage Side
Channels Using Statistical Privacy Mechanisms,” in Conference on
Computer and Communications Security – CCS 2015. ACM, 2015,
pp. 1582–1594.

[47] C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to Milk
Your Android Screen for Secrets,” in Network and Distributed System
Security Symposium – NDSS 2014. The Internet Society, 2014.

[48] T. S. Messerges and E. A. Dabbish, “Investigations of Power Analysis
Attacks on Smartcards,” in Workshop on Smartcard Technology –
Smartcard 1999. USENIX Association, 1999.

[49] L. Yan, Y. Guo, X. Chen, and H. Mei, “A Study on Power Side Chan-
nels on Mobile Devices,” in Symposium of Internetware – Internetware
2015. ACM, 2015, pp. 30–38.

[50] C. H. Gebotys, S. Ho, and C. C. Tiu, “EM Analysis of Rijndael and
ECC on a Wireless Java-Based PDA,” in Cryptographic Hardware and
Embedded Systems – CHES 2005, ser. LNCS, vol. 3659. Springer,
2005, pp. 250–264.

[51] Y. Nakano, Y. Souissi, R. Nguyen, L. Sauvage, J. Danger, S. Guilley,
S. Kiyomoto, and Y. Miyake, “A Pre-processing Composition for
Secret Key Recovery on Android Smartphone,” in Information Security
Theory and Practice – WISTP 2014, ser. LNCS, vol. 8501. Springer,
2014, pp. 76–91.

[52] G. Goller and G. Sigl, “Side Channel Attacks on Smartphones and
Embedded Devices Using Standard Radio Equipment,” in Constructive
Side-Channel Analysis and Secure Design – COSADE 2015, ser. LNCS,
vol. 9064. Springer, 2015, pp. 255–270.

[53] P. Belgarric, P. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
Channel Analysis of Weierstrass and Koblitz Curve ECDSA on An-
droid Smartphones,” in Topics in Cryptology – CT-RSA 2016, ser.
LNCS, vol. 9610. Springer, 2016, pp. 236–252.

[54] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA Key Extraction from Mobile Devices via Nonintrusive Phys-
ical Side Channels,” in Conference on Computer and Communications
Security – CCS 2016. ACM, 2016, pp. 1626–1638.

[55] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential Com-
putation Analysis: Hiding Your White-Box Designs is Not Enough,” in
Cryptographic Hardware and Embedded Systems – CHES 2016, ser.
LNCS, vol. 9813. Springer, 2016, pp. 215–236.

[56] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge Attacks on Smartphone Touch Screens,” in Workshop on
Offensive Technologies – WOOT 2010. USENIX Association, 2010.

[57] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint
Attack Against Touch-Enabled Devices,” in Security and Privacy in
Smartphones & Mobile Devices – SPSM@CCS. ACM, 2012, pp.
57–68.

[58] P. Andriotis, T. Tryfonas, G. C. Oikonomou, and C. Yildiz, “A Pilot
Study on the Security of Pattern Screen-Lock Methods and Soft Side
Channel Attacks,” in Security and Privacy in Wireless and Mobile
Networks – WISEC 2013. ACM, 2013, pp. 1–6.
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