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Abstract—Currently, there is no any effective security solution 

which can detect cyber-attacks against 5G networks where 

multitenancy and user mobility are some unique characteristics 

that impose significant challenges over such security solutions. 

This paper focuses on addressing a transversal detection system to 

be able to protect at the same time, infrastructures, tenants and 

5G users in both edge and core network segments of the 5G multi-

tenant infrastructures. A novel approach which significantly 

extends the capabilities of a commonly used IDS, to accurately 

identify attacking nodes in a 5G network, regardless of multiple 

network traffic encapsulations, has been proposed in this paper. 

The proposed approach is suitable to be deployed in almost all 5G 

network segments including the Mobile Edge Computing. Both 

architectural design and data models are described in this 

contribution. Empirical experiments have been carried out a 

realistic 5G multi-tenant infrastructures to intensively validate the 

design of the proposed approach regarding scalability and 

flexibility. 

 
Index Terms— DDoS Attack, Multi-tenant, 5G Network, 

Security, Intrusion Detection System 

I. INTRODUCTION 

ifth-generation (5G) networks target a variety of new use 

cases, such as ultra-high definition video, self-driving cars, 

smart cities (internet-of-things), and remote telesurgery, all of 

them with a variety of specific requirements such as reliable 

communications, high data rates and low latency [1]. The novel 

5G architecture should provide new capabilities not limited to 

voice and data but also for those new use cases mentioned and 

beyond. The natural movement towards the digitalisation of the 

society and the usage of 5G in critical applications like 

healthcare, transportation and industry has exacerbated the 

importance of the security of the underlying networks which 

empowers 5G. The Next Generation Mobile Network Alliance 

(consortium of over 80 mobile operators, vendors, and research 

institutes) explicitly highlighted the importance of security of 

5G network “enhanced performance is expected to be provided 

along with the capability to control a highly heterogeneous 

environment, and with the capability to, among others, ensure 

security and trust, identity, and privacy” [2].  

The protection of the network against any forms of cyber-

attacks is of paramount importance [3], as they can cripple 

critical services – the recent attacks to UK’s National Health 

Service [4] and telecommunication service provider [5] are 

clear evidence of this fact. During the last years, Distributed 

Denial-of-Service (DDoS) attacks have made their mark. In 

2015, 50% of the companies surveyed by Kaspersky 

experienced some level of disruption due to a DDoS attack [6]. 

In 2016, the volume of DDoS attack traffic increased to around 

600Gps, according to the worldwide infrastructure security 

report (WISR) [7]. With technological advancement, cyber 

attacks are becoming sophisticated and elusive. Recently, a 

DDoS attack called Mirai leveraged insecure IoT services to 

trigger a massive DNS DDoS attack that affected Dyn [8]. Such 

attack caused major Internet platforms and services in Europe 

and US to be unavailable. Since DDoS attacks are becoming 

subtle, it is getting more and more difficult to detect them, and 

even more difficult to be mitigated [9]. In this sense, when 

designing 5G networks, architectural considerations should go 

together with security considerations. Likewise, security 

considerations are expected to influence architectural decisions. 

5G networks will increase both the capacity and speed, so it will 

increase the demand for traffic, consequently leading to more 

wide and intense security threats [10].  

In this context, softwarisation is a key innovation coming 

with the 5G architecture where the different architectural 

elements of the 5G architectures can be running in software to 

enhance the flexibility of the 5G architecture. This new 

paradigm allows network operators the use of cloud 

infrastructures and mobile edge computing reducing both 

capital and operational costs by sharing resources between 

different network operators. Software-defined networking 

(SDN) and virtualisation technologies provide to network 

operators the capabilities to flexibly manage their hardware 

allowing them to create different isolated overlay networks with 

security boundaries between them for effective and secure 

sharing of physical resources. This capability of creating 

different isolated overlay networks which are sharing the same 

networking devices to implements multi-tenancy security in 

cloud infrastructures is mainly achieved by employing different 

encapsulation protocols. Currently, Virtual Extensible Local 

Area Network (VxLAN) and Generic Routing Encapsulation 

(GRE) protocols are two widely used alternatives. VxLAN [11] 

provides an overlays Layer 2 network according to the OSI 

reference model; whereas, GRE [11] provides an overlay Layer 

3 network. Both make use of a tunnel identification which is 

used to identify the owner of the overlay network, allowing 

effective management and isolation of the traffic. Mobile 
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networks also make use of encapsulation protocols to allow fast 

user’s mobility between antennas [12]. 5G networks are not an 

exception, and as is considered an evolution of 4G Long Term 

Evolution (LTE) networks, the tunnelling protocol used for this 

purpose is expected to be the General Packet Radio Service 

(GPRS) Tunnelling Protocol (GTP) [13].  

 Fig. 1 shows a simplified representation of different network 

segments of a 5G network. Radio Access Network (RAN) is 

typically associated with the deployment of Antennas and 

Remote Radio Heads (RRH) on top of buildings. Mobile Edge 

Computing Network is typically associated to the last mile 

where traditional Cost-of-the-Sell (COST) computers are 

allocated to process data close to the final user and where 

architectural elements such as Base Band Units (BBUs) are 

allocated, especially when a Cloud-RAN deployment is carried 

out. Core Network is where all the centralised parts of the 5G 

infrastructure are deployed to get access to users to other 

networks.  

Fig. 2 represents a more detailed illustration of Fig. 1, where 

the reader can see the typically key architectural elements 

deployed in the core segment of the network. Authentication 

Server Function (AUSF) and User Data Management (UDM) 

are traditionally associated with Home Service Subscriber in 

4G networks. Access and Mobility Function (AMF) and 

Session Mobile Function (SMF) are usually associated to 

Mobile Management Entity (MME) in 4G networks; whereas, 

User Plane Forwarding (UPF) is traditionally associated to 

Service Gateway (SGW) in 4G networks. All of these 

aforementioned architectural elements will be allocated in this 

5G multi-tenant network segment. Also, the Multi-Domain 

Network segment is where the network operators are inter-

connected to other network operators. In case, the reader is 

interested in a complete description of each of the roles of the 

different architectural elements envisioned in the 5G 

architecture, in [14] Kim et. Al. provides a very comprehensive 

description. 

A typical 5G scenario is composed of tenants/operators 

sharing infrastructures where their traffic is completely 

isolated, and their respective 5G users are provided with 

mobility thanks to the encapsulation protocols. Fig. 2 presents 

such 5G scenario where there are physical resources that are 

shared by mean of the usage of a virtual layer and where the 

main architectural elements of the 5G architecture are depicted. 

When a User Equipment (UE) is connected to an antenna, 

which belongs to operator A, this user is identified in the 5G 

networks by their TEID (tunnel endpoint identification) of their 

associated GTP tunnels, being inserted by the BBU/UPF 

element in the data path. Also, some architectural elements of 

the 5G network are associated to a given tenant/operator, which 

is identified with its unique virtual ID (VNID) given by the 

VxLAN encapsulation, mainly being inserted/removed by the 

virtual switches as shown in the Fig. 2.  It means that each 

packet sent from one user to another user allocated in a different 

antenna must be encapsulated at least twice in the network 

segment between the edge and the core of the network. In a first 

stage VxLAN isolates the tenant traffic, and in a second stage, 

GTP provides user mobility. 

In this new 5G mobile edge infrastructure, there are several 

actors involved over the same infrastructure such as 

infrastructure owner/provider, different network operators 

/tenants sharing the usage of such infrastructure and different 

5G users subscribed to each of the network operators. 

A flow is defined as a set of packets or frames passing an 

observation point in the network during a certain time interval 

[15]. An example of this flow structure bypassing the 5G 

mobile edge network between edge and core is shown in Fig. 3 
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Fig. 1. 5G multi-tenant network segment 

Fig. 2. Abstract architecture of a 5G multi-tenant infrastructure. 
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Fig. 3 Double-encapsulated 5G frame between edge and core. 

 

A combination of Network Intrusion Detection Systems 

(NIDS) which could trigger alerts in case of an attack, together 

with other metrics related with the status of the network, such 

as packet loss and congestion, are traditionally used to detect 

DDoS attacks in 5G networks to provide efficient counter-

measures. Traditionally, NIDS tools have been classified into 

two paradigms [16], namely anomaly-based and signature-

based detection. The anomaly-based detection methods 

compare the network behaviour with a network behaviour 

model, already created. On the other hand, signature-based 

detection methods are based on matching of known attack 

signatures with the incoming patterns. Both have their 

advantages and disadvantages, but they share a clear limitation.  

Traditional signature-based NIDS such as Snort [17] and 

anomaly-based NIDS such as Bro [18], to name a few, are 

mainly designed to provide detection capabilities to traditional 

IP networks. Thus, they do not provide support to detect 

transversal overlay networks being encapsulated over such IP 

networks.  Snort provides essential support for both GRE and 

GTP overlay networks. However, GRE or GTP Snort’s pre-

processors must be considered to either detect attacks inside of 

such overlay networks or in the traditional IP traffic, but not 

both simultaneous. Thus, Snort lacks to provide transversal 

detection capabilities to protect both IP networks and 

encapsulated networks at same time. Also, only one of these 

encapsulations can be enabled at the same time, and to the best 

of our knowledge, no IDS support VxLAN encapsulation which 

is needed for the tenant-isolation of traffic allowing L2 overlay 

networks. Also, even the most advanced IDS published up to 

date does not provide any support for double encapsulated 

traffic (nested encapsulation) which is exactly the main 

requirement imposed by the 5G multi-tenant architectures.  

This lack of support for transversal detection and nested 

encapsulation makes traditional IDS tools unsuitable for the 

new network traffic patterns imposed by 5G architecture, and it 

has been the main motivation of this research work. With this 

novel capability, the NIDS should be able to detect 

simultaneously attacks being addressed over a 5G user, a tenant 

or the entire infrastructure. The main contribution of this paper 

is the first NIDS with transversal protection capabilities and 

support for nested overlay networks to detect attacks against the 

mobile edge 5G multi-tenant network. The architecture 

presented in this contribution provides a significant set of 

innovations:  

• The extension of the traditional alerts information that 

used to provide only information about the IP traffic to 

provide now more metadata information about the 

flow structure involved in the attack, including tenant 

and subscriber identification information. It allows the 

system to provide metadata about the network to 

accurately identify the origin of the attack to be able to 

react very selectively against such attack without 

affecting other traffic within the same network 

segment.  

• The extension of a well-known NIDS, such as Snort, 

to be able to provide transversal detection capabilities 

to protect simultaneously, the 5G users, the tenant 

infrastructure, and the infrastructure provider.  

• To allow the dynamic creation of overlays network 

while maintaining the detection over such newly 

created networks. The proposed system is not 

restrained by several encapsulations applied to 5G 

traffic and support any nested encapsulation. 

• To allow a flexible allocation of the protection system. 

The proposed NIDS can be now deployed in almost all 

5G network segments including the Mobile Edge 

Computing   segment (see point A in Fig. 1), Core 

segment and Multi-domain segments (see point B in 

Fig. 1), against traditional NIDS where they will not 

work efficiently in almost any of these network 

segments. Thus, it is a significant advantage for 

Mobile Edge Security.   

The proposed architecture has been empirically validated. 

Different experiments have been carried out to test the 

scalability of the architecture. The influence of different 

network conditions on the performance of the system has also 

been analysed to prove the flexibility over several types and 

levels of encapsulations. Also, different attacks conditions have 

been analysed regarding attack bandwidth and packet rate. The 

extensive validation has shown very good scalability results 

allowing to provide the transversal detection capabilities in a 

5G multi-tenant network in less than 5 ms overhead of response 

time in average when compared against traditional NIDS 

solutions with no support for this type of detection.  

 The proposed architecture makes following significant 

contributions to Mobile Edge 5G Network security:  

• Diverse types of traffic tagging and encapsulation 

protocols are supported such as VxLAN, GTP, GRE 

and tagging protocols such as MPLS and VLAN 

allowing the usage of the NIDS in the edge and other 

network segments, unlike traditional NIDS solutions. 

• This approach accomplishes one of the most important 

requirements of 5G Network protection systems, 

which is being tenant-aware, but also 5G user-aware. 

The rest of the paper is organised as: Section II presents the 

related work with different approaches to network security 

problem in a 5G network. Section III describes the design and 

architecture of the proposed system. Section IV shows the 

extended data model used to provide the underlying network 

information. Section V presents the performance evaluation of 

the proposed system. Section VI concludes the paper along with 

future work. 

II. STATE OF THE ART 

Despite the considerable number of available NIDS tools, 

there is no NIDS which supports a complete transversal defence 

for mobile edge 5G multi-tenant networks. Mainly, because 
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conventional NIDS does not provide support for the nested 

encapsulation demanded in such kind of architectures. For 

instance, Snort IDS incorporates a GTP pre-processor, so in the 

presence of a packet with just GTP encapsulation, it can match 

rules with the inner information of the packet. It enables 

matches of gtp_version, gtp_type and gtp_info. However, it 

does not work with a double encapsulated packet. Then, on the 

edge of a 5G network, Snort will not be able to provide any 

further information against attacks on 5G users. On the other 

hand, Snort also supports GRE encapsulation so that it can 

match its rules with the inner information of the packet. 

However, as occurred with GTP it does not work with double 

encapsulated packets. Finally, Snort does not support VxLAN 

encapsulation. 

Novel defence mechanisms within a 5G network 

environment should consider the technological advancement of 

this new paradigm. There are three features mainly highlighted 

by the 5G PPP working group that would be included in those 

novel defence mechanisms [19]. First, multi-tenancy should be 

supported. Secondly, the novel mechanisms should be able to 

self-adapt to any change that could occur in the network 

topology. Moreover, lately, the overhead of the detection and 

mitigation system should not affect the overall performance of 

the network. A very small computation but also communication 

overhead should be added. Otherwise, the system would not be 

practical and scalable. Many works have been published 

addressing security threats in SDN, cloud computing and the 

more recent ones facing mobile edge 5G networks.  Li and 

Wang [20] recently proposed a cooperative defence (CODE) 

framework against DDoS attacks for mobile edge computing by 

using NFV and SDN architectures. In this work, the approach 

is to provide an elastic and efficient resource defence usage to 

avoid that some nodes with an IPS get overwhelmed and lose 

their defence capacity, by requesting other IPS nodes their spare 

resources. Vidal et. Al. [21] proposed a new strategy for 

detection and mitigation of DDoS flooding attacks towards a 

self-managed 5G network. Inspired by biological defences 

mechanisms of human beings combined with strategies for 

DDoS detection based on the study of variations of the entropy 

of the network traffic. The traffic used for the validation process 

is created with hping3 tool, using different protocols and 

considering different network topologies. The traffic used in 

this work is pure IP, and the topology changes considered in the 

study are based on link distribution per node and number of 

nodes, but there is any reference to overlay networks and 

multitenancy. Maimó et al. [22] have recently presented a deep-

learning based system to analyse network traffic by extracting 

features from network flows to identify cyber threats in 5G 

mobile networks. This solution is claimed to be self-adaptable 

to the volume of the network flows in real time. The validation 

of the solution is made with a well know dataset, the CTU 

dataset, which comprises scenarios with different numbers of 

infected computers and botnets families. Ros et al., [23] 

demonstrated an extensible IDS management architecture, 

where different IDS are installed in virtual machines, for 

different kinds of users and requirements in a cloud computing 

environment. It is claimed that the proposed management 

system could handle most of the VM-based IDSs. Pandeeswari 

and Kumar [24] proposed a novel IDS framework deployed at 

the VMM (Virtual Machine Monitor) in the cloud. It uses a 

fuzzy-cMean clustering mechanism with ANN (Artificial 

Neural Network) to learn attacks patterns to be detected in 

future. This framework is designed to be used in a network with 

a cloud topology that differs from a 5G network topology, 

where tenant isolation is not considered. Also, the dataset used 

for the experiments is a dataset of 1999 (DARPA’s KDD cup 

dataset) which does not contain any mobile edge, cloud or 5G 

traffic.  

Francois and Festor [25] proposed a tracebacking anomaly 

approach relying on OpenFlow switches. They defined a graph-

based model to identify potential paths of the anomaly, locating 

the entry points of a DDoS attack in the network, but the exact 

origin of the attack is not provided. They tested their solution 

with two concrete topologies; however, no details were 

provided about the efficacy of the system beyond those two 

topologies, and no overlay networks were considered in their 

study. 

Modi et al., [26] combined Snort and a decision tree classifier 

to detect known and unknown attacks. This solution is deployed 

behind virtual termination point to enable the detection of 

external and internal attacks. Although the system 

demonstrated good detection results, these results do not 

consider the possible encapsulation of the traffic – thus cannot 

be adopted for 5G networks to provide transversal security.   

Wamg et al., [27] proposed a DDoS attack mitigation 

solution for SDN-based cloud computing, called DaMask. It is 

divided into two separated modules, DaMask-D for detection 

and DaMask-M for mitigation. In the detection module, they 

embed Snort along with Snort.AD, an anomaly-based detection 

plugin for Snort. This solution can adapt to frequent topological 

changes of the network regarding Virtual Machines allocations. 

However, their solution is dependent on cloud providers. 

Besides, it is not defined where the suspicious traffic is hosted 

after being detected. Although authors are considering multi-

tenancy, their solution is not working with 5G traffic. Thus they 

are not considering every domain of a 5G network. 

Liang et. at., [28] proposed a solution based on an 

architecture with four layers: data layer, control layer, security 

layer, and application layer. Also, a local control agent is 

introduced on the switch to enable performing localised actions 

ordered by the control layer. The work proposed by Giotis et 

al., [29] use OpenFlow middleboxes to stop malicious flows of 

a DDoS attack in legacy networks. This work handle traffic on 

a per-flow level within an NFV context.  In this work, after a 

deep analysis of the challenges of the new SDN environment in 

the face of DDoS attack, a detection and mitigation system in 

the NFV context is proposed. A combination of anomaly-based 

detection and victim identification is used. However, this 

framework does not allow to identify the complete path of the 

attack within a 5G network.  

Shamsolmoali et al., [30] used a statistically based filtering 

system, first removing the header field of every incoming 

packet and checking its Time to Live (TTL) value, and then 

comparing its header with a database based on Jensen-Shanon 
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divergence. Within this approach, just the headers of IP traffic 

are compared, so it would not be effective for a 5G network 

environment.  

Liyanage et al., [31] proposed SIGMONA security 

architecture, a multi-tier security approach with four 

component: Secure Communication Component, Policy-Based 

Communication (PBC) Component, Security Management and 

Monitoring Component and Synchronized Network Security 

and Traffic Component. Within the PBC Component, there are 

included TCP-Splicing mechanisms with a bot detection 

scheme, for mitigating DDoS attacks targeted against the 

control plane. Although this work claims to secure 5G software 

defined mobile networks and both protect users and the network 

itself, it does not prove a complete transversal defence where 

both tenants and users are considered.  

Ding et. at., [32] proposed an approach to attack detection by 

recognising flow patterns. In this work, the information coming 

from Snort IDS is correlated with network flows obtained by 

aggregated packets. If one flow is not correlated with any alert, 

then is labelled as a benign activity. Otherwise, it is labelled as 

an attack. Those labelled flows are then used to develop several 

learning classifiers to classify unlabelled traffic. A similar 

approach to this work is being used in our contribution 

regarding header analysis; however, this work only covers IP 

traffic, and our work has been significantly extended to detect 

attacks in mobile edge 5G multi-tenant networks.  

Fan and Liu [33] use SVM (Support Vector Machines) and 

K-means to classify SDN traffic to address the new 5G 

networks paradigm. Ten types of traffic are considered, one of 

them is an attack.  A self-collected dataset is used in this work 

due to the lack of publicly available 5G traffic datasets. They 

describe all the features used for the classification related to 

flows. Within the information of the flows used as features for 

the classification, there is no information related to 

encapsulation; either regarding the 5G user or the tenant 

information. It means that the traceback of a real 5G double 

encapsulated traffic in case of an attack will not be possible with 

this solution despite their claims.  

A summary of all these previous works is shown in Table 1. 

In this table, the column IDS point out which type or types of 

IDS are used in the work if any. Column “F.A.”, flow-aware, 

indicates whether the traffic analysis is handled per flow or not, 

i.e. only at global traffic patterns. Column “U.A.”, indicates 

whether the system is user-aware or not, it means that if the 

detection system has any information regarding the user as an 

entry point of the attack. Likewise, the column “T.A.” indicates 

whether the system is tenant-aware or not, which means if the 

detection system has gathered any information regarding the 

tenant as an entry point of the attack. From Table 1, none of the 

related works presented has managed to accomplish flow-

aware, user-aware and tenant-aware, at the same time. None of 

them has considered nested encapsulation to be able to allocate 

their NIDS in the edge of the network. To the best of our 

knowledge, this contribution is the first one to be able to provide 

these capabilities simultaneously and to detect this kind of 

complex attacks in the edge of the 5G network due to the 

advanced transversal detection capabilities supported. 

 

 
TABLE I. RELATED WORKS 

Ref Description IDS F.A. U.A T.A N. E. 

[20] Cooperative defence framework 

against DDoS Attacks for 5G 

MEC leveraging NFV and SDN 
for effective use of the defence 

resource in each IPS. 

- - - - - 

[21] Artificial Immune Systems to 

mitigate DDoS attacks 
AI NO NO NO NO 

[22] Anomaly detection based on 
deep-learning for 5G networks 

AI YES NO NO NO 

[23] IDS architecture for distributed 

cloud infrastructures 
** NO NO NO NO 

[24] Anomaly detection system ate 

the hypervisor layer 
AI NO NO NO NO 

[25] Traceback of DDoS attack in 

SDN carried out in each switch 

where the attack has been 

detected. Need to know the 

topology. 

- YES NO NO NO 

[26] Detect anomalies between VMs Snort YES NO NO NO 

[27] Virtualization of the network to 

mitigate DDoS over three 

strategies for making the scheme 

effective, inexpensive and with 
small overhead. 

SB+A

B 
YES NO YES NO 

[28] 

 

 

 

SDNM mechanism to protect the 
control layer against DoS 

attacks. 

- NO NO NO NO 

[29] Control and filter of malicious 

traffic flows by deploying on-

demand VNFs 

AB YES NO NO NO 

[30] A statistical-based filtering 

system that compares packet 
header in a second stage of the 

filtering. 

AB NO NO NO NO 

[31] Architecture that manages to 

mitigate DoS and DDoS attacks 

thanks to the security gateways 
proposed that hide controller 

from the outside. 

- NO NO NO NO 

[32] Packet aggregation to obtain 

flows definition to be labelled 

based o Snort output and then 
being used in a classifier 

Snort 

+ ML 
YES NO NO NO 

[33] Two machine learning 

approaches for SDN traffic flow 

classifications 

ML YES NO NO NO 

 
Our contribution - Snort 

Monitoring Agent (SMA)  
Snort YES YES YES YES 

A.I= Artificial Intelligence , AB. = Anomaly Based Detection, SB Signature 

Based Detection, ** several IDS’s, - not indicated in the paper 

 F.A. = Flow Aware, U.A. = User Aware, T.A. = Tenant aware, N.E. = Nested 

Encapsulation 

III. SYSTEM DESIGN 

A novel approach is proposed to address the gap of defence 

mechanisms for mobile edge 5G multi-tenant infrastructure. 

Within this approach, a signature-based IDS is combined with 

a 5G traffic classifier to obtain the information to provide 

concrete and effective mitigation actions. This solution aims to 

be the first step towards a self-managed defence network 

system due to the extended metadata information provided as 

part of the detection of the attack. The architecture provided has 
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been coined as Snort Monitoring Agent (SMA) as it has been 

built as an agent extending Snort IDS capabilities.  

A. Architecture overview and proposal description 

 
Fig. 4 System design. 

The proposed system is composed of three main components, 

as shown in Fig. 4.  

1) NIDS Reports Reader (see 1 in Fig. 4) its role is to 

retrieve events and statistics coming from the NIDS1. A plug-in 

based approach has been designed to enable our architecture to 

work with different NIDS. Each of the plugins oversees 

detecting the proper execution of the NIDS and parsing its log 

file where NIDS is dumping all the information on the events 

that are detected. NIDS Report Reader takes the log file tailing 

any new event logged by NIDS in Unified2 format. Unified2 

[34] is a common output open format for network intrusion 

detection tools such as Snort, Suricata and Bro. Unified2 has 

been the chosen output format because it allows NIDS to 

operate faster and minimise the packet loss. Unified2 is also 

used by other tools such as Barnyard2 or Pigsty in production 

environments [35]. On the other side, the SMA reads the 

statistics report of NIDS with the same frequency that indicated 

in the NIDS configuration files.  

Fig. 5 shows the capture of a packet with nested VxLAN and 

GTP encapsulations. An alert triggered by this packet is like the 

one shown in Fig. 6. For this example such alert has been 

converted from binary with the tool provided with Snort 

sources, u2spewfoo. It is important to emphasise that the 

information provided by the current alert does not allow to 

perform the identification of the malicious flow of the 5G user. 

Instead, only provides information about the first IP header 

which encapsulated all the traffic of all the users of all the 

tenants and thus it does not provide enough accuracy to be able 

to produce an alert associated to a specific 5G user.  

                                                           
1 Although Snort was used in the validation process of the proposed solution, 

any IDS reporting in unified2 format could be used instead. The proposed 
system is independent of any specific IDS.  

 
Fig. 5. Example of a capture of a packet with double encapsulation. The 
extended fields show the VNI and TEID identifiers corresponding to a tenant 

and a user. 

 
Fig. 6. Example of a Snort alert triggered by the packet shown in Fig.5. This 

caption is an extract of a Snort log processed with the tool u2spewfoo. 

2) SMA Flow Classifier (see 2 in Fig. 4) its role is to extract 

all the required information from the flow. The flow headers are 

included in the Unified2 format, and thus a custom parser for 

all the encapsulations previously described has been 

implemented. All values are stored in network byte order, so all 

the information is parsed into the SMA data model (described 

in Section IV). After being parsed, a Deep Packet Inspector 

(DPI) Flow classifier extracts all the information needed in the 

reaction/mitigation stage about the flow layers involved in each 

of the existing overlay networks. In Fig. 7 it is depicted a brief 

scheme of the sequencing process carried out by this DPI Flow 

classifier for a UDP packet similar to the one shown in Fig. 5 

and for different levels of encapsulations. The IP Flow 

sequence (see 1 in Fig 7) shows the process followed for an IP 

flow with no encapsulation. The LTE Flow sequence 

corresponds with an LTE flow with GTP encapsulation (see 2 

in Fig 7), the Multi-Tenant Flow sequence would match a multi-

tenant flow with VxLAN encapsulation (see 3 in Fig 7) and the 

5G Multi-Tenant Flow sequence corresponds to the one 

followed by the DPI Flow classifier with a packet like the one 

shown in Fig. 5 where there is multi-tenant isolation in 5G 

infrastructures (see 4 in Fig 7). The DPI flow classifier includes 

the definition of different patterns to match different network 

protocols, at any level of the OSI model. 
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Fig. 7. Brief scheme of the parsing process of the DPI Flow Classifier for a UDP flow with different levels of encapsulations.  

 

The last sequence is the more complex one since it 

corresponds with a 5G multi-tenant flow like the one depicted 

in Fig. 5 which has nested encapsulation. Thus, the parsing 

process match all the headers shown in the Wireshark capture: 

Ethernet/ IP/ UDP/ VxLAN/ Ethernet/ IP/ UDP/ 

GTP/IP/UDP/HTTP.  

A sequence like this one is treated by Snort as traditional IP 

traffic (i.e. such us the first sequence) despite being a much 

complex flow. This fact is the reason why the information 

provided by the Snort alert depicted in Fig. 6 is only the one 

regarding the outer header. This lead to a lack of accuracy in 

the identification of the malicious 5G Flow and the 

enhancement of such accuracy is mainly provided by the novel 

classifier proposed.  

The use of the DPI Flow classifier makes it possible to find 

and classify specific data contained in the packet, beyond the 

outer header and regarding the flow. Thus, it is possible to get 

transversal information from all the overlay layers of the 

packet, including user IDs, Tenant IDs, IP addresses involved 

and ports. This approach is a data-driven classification so that 

all the information provided in the output, is the complete 

information related to a flow. This architectural element of the 

system design allows the transversal detection of attacks since 

it dissects any overlay network extracting all the metadata along 

the parsing path to keep all the metadata associated. This 

component also allows the detection of attacks in all the 

network segments of the 5G mobile edge architecture mainly 

due to the support for nested encapsulation and of all the 

protocols being used in the traffic patterns between edge and 

core.  

3) SMA Reporter (see 3 in Fig. 4) its role is to build JSON 

messages and report them. These messages are either new alerts 

or statistics. Within this JSON it is included information about 

the flows, about all the overlay networks, about the attack type 

detected, and other the place where the attack has been detected. 

The JSON of the alerts contains all the information related to 

the 5G multi-tenant traffic which generated the alert. The JSON 

of statistics is used as a set of metrics to extend the alert 

information and providing a further context in case of having to 

 

 

 
Listing 1. Example of a report sent by the SMA 

take a decision. When taking a flow as the basic unit, a typical 

countermeasure is to drop the malicious flow [36]. 

{"Alert": { 

  "alertType": "7", 

  "alertRuleId": "10000003", 

  "alertImpact": 2, 

  "alertTime": 1530028986945, 

  "reportedTime": 1530037043509 },  

 "Metadata": [{  

      "flowId": "48A07435", 

      "encapsulationLayer": 0, 

      "macSrc": "52:54:00:E3:95:AD", 

      "macDst": "52:54:00:A4:A7:95", 

      "srcIP": "10.10.12.100", 

      "dstIP": "10.10.12.200", 

      "l4Proto": "17", 

      "srcPort": "40880", 

      "dstPort": "4789", 

      "l7Proto": "vxlan" }, 

    {  

      "flowId": "90D8AC34", 

      "encapsulationLayer": 1, 

      "encapsulationID1": "0000285C", 

      "encapsulationType1": "vxlan", 

      "firstPacketSeen": 1530037043509, 

      "macSrc": "42:A5:CD:62:51:0D", 

      "macDst": "06:64:51:A1:59:42", 

      "l3Proto": "2048", 

      "srcIP": "192.12.0.1", 

      "dstIP": "192.12.0.2", 

      "outSrcIP": "10.10.12.100", 

      "outDstIP": "10.10.12.200", 

      "l4Proto": "17", 

      "srcPort": "2152", 

      "dstPort": "2152", 

      "l7Proto": "gtp-u"}, 

    { 

      "flowId": "5BF5DE57", 

      "encapsulationLayer": 2, 

      "encapsulationID2": "000084D1", 

      "encapsulationType2": "gtp", 

      "srcIP": "11.0.0.1", 

      "dstIP": "11.0.0.2", 

      "outSrcIP": "10.10.12.100", 

      "outDstIP": "10.10.12.200", 

      "l4Proto": "17", 

      "srcPort": "35534", 

      "dstPort": "80", 

      "l7Proto": "http" } ]} 
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Within a 5G multi-tenant network in the context of the 

communication between edge and core, it is important to be 

able to choose the proper action to mitigate the attack. For 

instance, 1) to drop all the traffic from a user, 2) to drop all the 

traffic from a tenant, 3) to drop just the malicious flows coming 

from a user; 4) to drop all the traffic coming to that interface; 5) 

to drop all the traffic coming to the physical computer. The 

metadata provided in the JSON format allows performing any 

of these diverse types of fine-gain dropping actions.  

An example of this JSON report is shown in Listing 1. In such 

report, it can be seen information that is already provided by 

Snort but also the extended information provided by the SMA 

metadata as a result of the new packet classification. Within this 

metadata, it can be found information about each of the 

encapsulation layers of the flow involved in the alert. In this 

example, an encapsulationLayer 0 provides information about 

the IP frame, an ecapsulationLayer 1 provides information 

about the VxLAN encapsulation, including the VNID identifier 

(Tenant identifier), and finally an encapsulationLayer 2 

provides information regarding the GTP encapsulation, 

including the TEID identifier (5G User identifier). This 

information allows uniquely identifying the flows of each of the 

mobile users of the different mobile infrastructures that are 

deployed in the different tenants deployed in the infrastructure. 

B.  Design principles and limitations 

To develop the proposed solution the following design 

principles have been followed: 

• Modular design. A low coupling modular design has 

been approached to make the solution open future 

extensions.  Thus, if a new alert format needs to be 

supported, a new extension of the NIDS Reports 

Reader module has to be added, without affecting the 

rest of the modules. The current version already 

supports different NIDS tools due to the use of 

unified2 as the first input format considered, used by 

Snort, Suricata and Bro. Likewise, new classifications 

could be added by just modifying the SMA Flow 

Classifier module. In the same way, if another reported 

method is required, just a new extension of the SMA 

Reporter has to be added.  

• Extensible data model. A common data model has 

been designed to be used by the three modules that 

compose the SMA. This transversal module has been 

designed following the Data Access Object (DAO) 

pattern, providing an abstract interface to the modules. 

If a module needs to be extended it just have to satisfy 

the public interface of the DAO so that it can interact 

with the rest of the modules.  

The limitations of the proposed solution are the following ones: 

• A NIDS tool has to be installed, configured and run to 

make the SMA working. Also, the SMA has to be 

configured accordingly. 

• Currently, the SMA only supports Unified2 alerts 

format. The NIDS Reports Reader module has to be 

extended to support another format. 

• Since the SMA has been designed as an extension of a 

NIDS tool, it inherits the limitations of this NIDS 

regarding performance. For example, any limitation of 

the NIDS regarding bandwidth, delay or resource 

consumption is inherited by the SMA software.  

• Some very specific communication protocols are not 

supported by the Flow Classifier yet. In this case, an 

extension of the Flow Classifier will be enough to 

satisfy the requirement of a new communication 

protocol, without having to modify the rest of the 

components or interfaces. 

IV. DATA MODEL 

Fig. 8 shows both Snort and the SMA data model regarding 

alerts. The output of Snort does not include any information 

about the encapsulation layers as pointed before and showed in 

Fig. 6. The data model defined in the SMA is using the same 

alert identifier and replicating some of the information provided 

by Snort and extending this information with the one obtained 

by the classifier about the packet. Among this information, it is 

worth to mention the “encapsulationID” for each overlay 

network. For instance, this field contains the TEID related to 

the GTP tunnel and the unique VNID of the VxLAN 

encapsulation protocol. The packet included in the alert will 

belong to a flow that identifies the origin of the attacker. This 

attacker is connected to an RRH that is connected to a BBU. In 

a scenario where all the UE users are infected by the Command 

& Control (CAC), we could get this same alert repeated for each 

user. The number of alerts per user will depend on the way rules 

have been configured, if these users are connected to different 

RRH and BBU’s and belong to different tenants. All this 

information is needed to trace back the alert to its source, and 

this information is provided by the SMA. Therefore, in an alert 

scenario, the defence/mitigation system connected to the SMA 

could trace back the origin entry points and the origin of the 

attack, which makes it possible to mitigate the attack through 

proper location, without affecting other users, tenants or 

infrastructures. 

 

However, only with the output provided by NIDS (Snort), it 

will be impossible to extract the information related to users or 

tenants. Thus, it will not be possible to enforced actions by a 

defence/mitigation system related to the dropping of this kind 

Fig. 8. a) Snort output data model ; b) SMA output data model 
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of overlay flows, being forced to drop all the traffic passing 

through the corresponding BBU from the same port of the alert.  

That means that every user connected to that BBU would lose 

connectivity and consequently its access to 5G services would 

be restrained. Thus, our system design provides a significant 

step forward by enabling the definition of very fine-grain 

mitigation rules for malicious traffic.  

V. EMPIRICAL RESULTS 

In this section, the use case prototyped for the empirical 

validation of the architecture is described in the next subsection. 

A well-known attack, UDP flooding attack, in a realistic 

scenario has been prototyped. Besides this, the testbed used in 

the validation process is also explained. Finally, the validation 

and scalability tests are presented with the obtained results.   

A. Use Case Addressed 

A User Datagram Protocol (UDP) flooding attack [37], by 

definition, is a DDoS attack that floods a target with UDP 

packets. The goal of the attack is to flood random ports on a 

remote host. This attack causes the host to check for the 

application listening on that port repeatedly and, when no 

application is found, reply with an ICMP ‘Destination 

Unreachable’ packet. This process weakens host resources, 

which can ultimately lead to inaccessibility of services. For 

empirical evaluation of the proposed system, UDP flooding 

attack within 5G multi-tenant networks has been chosen. For 

the simulation of a DDoS attack, Bonesi [38] has been used. 

Bonesi generates ICMP, UDP, and TCP flooding attacks from 

a given botnet size, by defining an IP range. In this case, the 

simulation has been made from just one IP address since the 

botnet is already represented by the number of UEs of our 

scenarios. Bonesi is configurable regarding rates and data 

volume. Therefore, Bonesi has been used to generate flooding 

traffic with different packet rates and payload size 

configurations. By combining both payload and packet rate, it 

is possible to obtain attacks of different bandwidth.  

In order to measure the scalability of the SMA, UDP payload 

size between 0 and 1368 has been used, and bandwidth between 

12.5 and 100 Mbps has been tested. Notice that this range of 

bandwidth is a very realistic one for a number of UE 

subscriptions in an LTE/5G network nowadays. Bonesi 

generates just IP traffic, so, to achieve 5G multi-tenant traffic, 

a real LTE/5G multi-tenant infrastructure deployed in our 

premises has been used to gather a PCAP file to be later used to 

scale up a DDoS attack. This infrastructure encapsulates the 

traffic from Bonesi using VxLAN for tenant isolation using 

OpenStack [39]. The tenant has inside a set of virtual machines 

using OpenAirInterface [40] that are used to allow the computer 

with Bonesi to connect to our LTE/5G antenna using an 

LTE/5G Dongle. Then, BBU encapsulated traffic in GTP to be 

sent to the SGW. Then, the traffic has been captured at the edge 

of the network to be able to intercept the communication 

between edge and core. Both encapsulations provide the 

infrastructure with tenant isolation and user mobility 

respectively, a key requirement for a 5G infrastructure. With 

the infrastructure available, different scripts of Bonesi has been 

executed to send traffic at different packet sizes and 

bandwidths. The sniffing of the PCAP has been performed at 

different physical and logical interfaces to be able to extract 

different encapsulation PCAPs. 

Thus, depending on an experiment, a different PCAP has 

been used as base PCAP, regarding packet rate, bandwidth and 

number of encapsulations. For a specific experiment, as many 

as PCAPs are generated by rewriting the base PCAP, as it is the 

number of attackers. Therefore, the source and destination IPs 

had to correspond to the ones defined for each attacker and 

victim. Also, MAC addresses have been modified to have a 

correct routing adapted to the scenario. Also, destination ports 

have been changed to simulate a UDP flooding attack as well 

as the VNID to simulate a multitenancy environment.  

B. Testbed 

In order to emulate different real 5G scenarios, the Common 

Open Research Emulator (CORE) [41] has been used to 

emulate a DDoS attack. CORE is an open-source tool that is 

widely used for both research and military purposes. In contrast 

with network simulators, CORE as an Infrastructure-as-a-

Service stack that allows the deployment of real x86-64 PC 

architectures using Linux containers and then creating virtual 

infrastructures by connected such containers within a network 

topology in real-time. CORE creates a Linux namespace for 

each of the emulated nodes to allow a complete container to act 

as a real node, creating a completely functional emulator. 

Different scenarios, like the one shown in Fig. 10 have been 

generated and executed, to test the scalability of the architecture 

presented herein. All the scenarios share a common deployment 

scheme which is a realistic 5G multi-tenant infrastructure. This 

deployment schema is shown in Fig. 9. The deployment scheme 

virtualises a 5G/LTE network; thus, it has considered mobility 

between antennas for users. From left to right in Fig. 9, the first 

nodes drawn are the mobile User Equipment (UE), which will 

act as the attacker(s).  

 
Fig. 9. A common scheme of the scenarios used for the experiments. 

There are always at least two attackers, which are mobile 

users connected to an RRH. The BBU is shared by different 

RRHs. After that, it comes the core network whose links are 

configured to have a 1Gbps bandwidth in every link. On the 

other side of the network, there are the victims of the attacks, 

represented as servers. All the traffic that passes through the 

network is mirrored to the SMA node, in the centre of Fig. 9 , 

to intercept and analyse the traffic between edge and core 

network segments. Thus, Snort is configuring to trigger an alert 

in case of an attack and then processed by the SMA.  
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Fig. 10. Screenshot of the CORE Emulator for one of the scenarios executed. 

 

This deployment scheme is replicated for different scenarios, 

varying the number of attackers, RRHs, BBUs, switches, and 

routers from the core network, the number of victims. Table II 

shows the ranges values for each of the scenarios executed.  

 
TABLE II. Scenarios executed 

VARIABLE min max Step 

Number of UEs per 

RRH 

1 16 Xn=Xn-1*2 

Number RRHs per 

BBUs 

1 4 Xn=Xn-1*2 

Number BBUs per 

switch 

1 4 Xn=Xn-1*2 

Number of switches 1 16 Xn=Xn-1*2 

Number of victims 1 128 Xn=Xn-1*2 

 

Fig. 10 shows an example of a 5G multi-tenant scenario used 

for the experiments, created with the CORE. In this case, a 

DDoS attack with 64 attackers and one victim has been 

emulated. The nodes that work as an attacker are mobile 

subscribers labelled as UE. The nodes that work as a victim are 

labelled as SERVER. A key requirement for 5G networks is the 

connected mobility [42]. Thus, UE nodes have mobility, so that 

they change between antennas, and therefore end up connected 

to different BBUs. All the traffic passing through the named 

nodes CEDGER, is mirrored to the SMA node using iptables 

rules, so all the traffic passing form attackers to victims can be 

sniffed from there.  

With all the different scenarios analysed, the aim is to test the 

flexibility of the SMA to topology changes as well as the 

scalability. At the same time, those different combinations 

allow testing different attacks regarding the number of victims, 

packet size, bandwidth, and packet rate. So, there could be 

attacks where every UE is attacking the same victim, or in the 

other extreme, each UE is attacking a different victim.  The 

scenarios have been executed in an Intel Core i7 CPU 4.20 

GHz, 32GB RAM hosting a Virtual machine with 16GB RAM 

and 4 cores. The overhead added has been measured in different 

scenarios in order to evaluate the system. For that purpose, the 

delay in milliseconds has been measured from the moment 

when Snort triggers the alert to the moment the SMA reports 

the extended alert. All the results have been executed with the 

same Snort configuration, which means, same rules and 

threshold configurations. 

C. Validation Test 

To validate the effectiveness of the usage of the SMA 

prototype in a 5G multi-tenant network, three key features have 

to be validated: first, to support multi-tenancy and 5G; second, 

self-adapt to any change which could occur in a network 

topology; and third to add an acceptable overhead, negligible 

for the whole system.  

The first and the second features together, make possible to 
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protect at the same time, infrastructure, tenants and 5G users in 

both edge and core network segments of the 5G multi-tenant 

infrastructure. This capability is mainly possible thanks to the 

innovations presented in this contribution to be able to 

accurately identify the attacking nodes within the 5G network, 

in contrast to traditional NIDS’s that only fit for traditional IP 

traffic. This capability has already been proved and discussed 

in this work, in Section III. An example of a 5G frame is 

depicted in the Wireshark capture shown in Fig. 5. That capture 

shows the headers of the encapsulation protocols, VxLAN and 

GTP. Also, the identifier of the tenant and the subscriber can be 

found in these headers respectively. Those identifiers are 

VNI=10332 and TEID=84D1. Both encapsulation layers and 

identifiers are crucial for accurate identification of the attacker 

node. Fig. 6 shows an extract of a Snort log with the alert 

triggered by the last packet where this information is clearly 

missing. In a later stage of this example, it has been depicted 

the output of the SMA for that same alert. This output, depicted 

in the SMA report of Listing 1, shows all the needed 

information to detect any flow of the 5G infrastructure thanks 

to the novel DPI Flow Classifier prototyped. This fact confirms 

the capability of the SMA to accurately identify the attacker 

node. 

For the third feature to be validated, different experiments have 

been addressed to measure the overhead of the SMA.  

The first group of experiments aimed to check the influence of 

various levels of encapsulations on the performance of the 

SMA. The more the levels of encapsulation, the greater is the 

size of the packet. The classifier module of the SMA extract 

information which is proportional to the number of layers of 

encapsulation applied to a flow. Fig. 11 shows the overhead 

introduced by the SMA when detecting attacks at various levels 

of encapsulations. In Fig. 11, presents attackers in a range of 2 

to 256 UEs. The greater the number of attackers there are, the 

more flows must be processed by the SMA. The number of 

alerts received by the SMA and therefore the number of packets 

to process also depends on the configuration of the IDS, which 

is Snort in this validation process. Listing 2 shows an extract of 

a Snort rules definition file with the rule used for the validation 

experiments. This rule with signature id (sid) 10000003, defines 

the signature of a packet of the launched attack. It matches a 

UDP flooding attack where the IP source is equal to the variable 

$EXTERNAL_NET (defined as “any” in the Snort 

configuration file), any source port, a destination IP address 

equals the variable $HOME_NET (defined with the IP address 

of the victim in the Snort configuration file), destination port 

4789 and a payload that contents “00000000”.  

 

To reduce the noise related to the number of logged alerts rules, 

Snort includes a rule thresholding feature. It allows limiting the 

number of times a particular event is logged during a specific 

time interval. The definition of the thresholding used for the 

Snort rule of Listing 2 is shown in Listing 3. This thresholding 

definition means that the threshold will be tracked by IP 

destination (distributed attack) and that this rule with sid 

10000003 logs every 500th event on this sid during one second. 

If less than 500 occur in 1 second, nothing gets logged. Once an 

event is logged, a new time period starts. That means that for an 

attack with a packet rate of 1000 packets per second, the NIDS 

logs approximately 2 events per second, which are then 

processed by the SMA. A higher or lower logging rate could be 

managed by varying the parameters of the threshold 

configuration file for this rule. However, the approach in these 

validation experiments has been to use different packet rate in 

the creation of the attack, as can be seen in the next section. 

Thus, in the previous example, to increase the periodicity of the 

events to approximately 4 events per second the packet rate 

should be of 2000 packets per second.  

 

In this experiment, all attackers are attacking the same victim. 

This experiment has been executed with four different PCAPs, 

each of them with a different encapsulation structure. The 

experiment has been executed for IP traffic, GTP over IP traffic, 

VXLAN over IP traffic and finally, VXLAN over GTP over IP 

traffic, which corresponds to the four parsing sequences 

depicted in Fig. 7 . The attack used for this experiment has 25 

Mbps of bandwidth and a payload of 400 bytes, which is a 

packet rate of 5875 packets per second. In Fig. 11, it is shown 

how the system adds an overhead of just 3 ms of difference in 

the worst-case scenario between all the different encapsulation 

scenarios. These 3 ms are added to 10 ms delay taken by Snort 

to report the attack with a very tiny difference among the 

different numbers of encapsulations.  

 
Fig. 11. Overhead introduced for a different number of attackers with different 

levels of encapsulations. 

 

These results show a very little overhead to be able to have the 

alert udp $EXTERNAL_NET any -> $HOME_NET 4789 

(msg:"Attempted DDOS UDP attack *00000000* message 

detected"; content:"|00 00 00 00|"; 

classtype:attempted-dos; sid:10000003; rev:001;) 

event_filter gen_id 1, sig_id 10000003, type 

threshold, track by_dst, count 500, seconds 1 

Listing 2. Example of the Snort rule defined to trigger alerts matching the 
launched attack of the experiments. 

Listing 3. Extract of the threshold. conf file with the configuration of 

threshold for the rule used in the experiments. 
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IDS detecting attacks in the edge of the network for 5G multi-

tenant infrastructures. It validates the effectiveness of the 

proposed solution.  

For a better understanding of all the subprocesses included in 

the entire use case, they are depicted in Fig. 12. The timeline 

shows every action point, and subprocess that happens since the 

attack is triggered until the SMA reports the event. The 

overhead measured in all the experiments presented in this 

section is the time invested by the SMA, which is the time 

lapsed from step 3 to step 6 shown in of Fig. 12.  

 
Fig. 12. Detached sub-processes of the use case. 

Fig. 13 shows the absolute times of the entire process for the 

detection of a DDoS Attack using a Multi-Tenant 5G Flow. In 

this case, the experiment has been repeated 5 times on each of 

the two different NIDS´s supported in our prototype: Snort and 

Suricata. The same rule and threshold configuration have been 

used for both NIDS´s, obtaining the same alerts processed by 

the SMA in unified2 format. Snort version 2.9.9.0 and Suricata 

version 3.2 have been used in this testbed. The processing times 

gathered for both NIDS´s is insignificant as depicted in Fig. 13, 

being Snort 0.5 milliseconds slower than Suricata for the worst 

case. This little better behaviour of Suricata could be due to the 

multithreading supported by this tool, being this study out of 

the scope of this work. The processing times regarding the SMA 

are not affected by the NIDS replacements.  

 
 

Fig. 13. Absolute times from attack sending time until SMA reporting time. 

The first blocks of the stacked bar represent the time that 

passes since the attack is sent until the NIDS detects and reports 

the attack. The second block represents the time that passes 

from that Snort detection until the SMA start to process it. The 

third block corresponds to the time that the SMA spends in 

processing the event, that is interpreting the Unified2 and 

mapping into the objects of the SMA data model. The fourth 

block is the time spent in the classification of the flow, 

extracting all the overlays information. Moreover, the last block 

is the time spent in building the JSON to be reported.  Notice 

that none of the results provided in this section has been 

compared with any other available research work, mainly 

because the functionality provided in this research work is, to 

the best of our knowledge, the first-of-its-kind to be published 

and thus there is not any other work to compare with.  

 

 
Fig. 14. Overhead introduced for a different number of attackers for different 

attack bandwidth. 

E. Attack Behaviour Test 

Fig. 15 shows the overhead introduced by the SMA for different 

packet rates. Two types of attacks shown in the figure: “one-to-

one” which means that each UE attacks to a different victim; 

and “all-to-one” which means that every UE attacks to the same 

victim. These experiments have been executed for 128 attackers 

and a fixed bandwidth of 50Mb, which is a realistic scenario for 

a current mobile broadband user.  

 
Fig. 15. Overhead introduced for different packet rates for the same number of 

attackers (128) and same bandwidth (50Mb). The results show two types of 

attack one-to-one (one UE attacks one victim) and all-to-one (every UE 

attacks to the same victim). 
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The payload size of the packets sent in the attacks has been 

ranged from the minimum possible (~0 bytes) to the maximum 

(1368 bytes). This payload range implies to have a packet rate 

ranged between 1466 packets per second (pps) and 47348pps 

for an attack of 50Mb of bandwidth. The higher is the packet 

rate, the more alerts will be triggered by the NIDS. 

Fig. 15 shows a very stable behaviour of the system on 

average, although the standard deviation tends to increase with 

the packet rates. Fig. 15 also shows that the overhead is greater 

on average for the attack type “one-to-one” than it is for the 

attack “all-to-one”. However, it is still below 70 ms for the 

worst case, where the attack is composed of packets with the 

minimum payload possible and a packet rate of 47348 pps. 

These set of results indicates that the proposed SMA is suitable 

to protect both edge and core network segment of the novel 5G 

multi-tenant infrastructures.  

Different experiments have been executed in order to test the 

scalability of the system and the performance against different 

levels of encapsulations. The scalability test has proved SMA 

can amicably handle the different scale of attacks regarding the 

number of attackers, the bandwidth of the attack and packet 

rates. For the overlying support pcaps with different 

encapsulations has been used. According to the results shown, 

it can be claimed that the SMA has successfully achieved the 

targets of tenant aware, topologically flexible and scalability 

with very acceptable overheads for detecting DDoS attacks in 

5G networks. The control messages sent by the SMA could be 

received in the control plane by a manager to take a proper 

decision to mitigate the attack on time, having all the 

information required to enforce such decision. 

VI. CONCLUSION 

A novel system to efficiently protect against DDoS attacks in 

5G multi-tenant networks has been proposed, implemented, and 

empirically validated. The proposed system efficiently protects 

tenants, infrastructure, the provider of the infrastructure and 

final-users in the 5G network simultaneously. This proposed 

system can be allocated to almost all the 5G network segments 

which is a significant advantage for Mobile Edge Security. The 

system has been validated against UDP flooding DDoS attack 

as realistic use case where more than 256 simultaneous 

attackers are injecting malicious traffic at 100Mb/s to a 5G 

network. The proposed system is based on the extension of a 

well-known IDS called Snort, but the system is extensible and 

thus valid for any other IDS that report events in Unified2 

format. All the previous claims have been achieved without 

adding significant overhead to the system, which means that 

there are no significant delays in the reception of alerts 

comparing with the times provided by the IDS. It has been 

proved the scalability of the system, showing an almost 

constant behaviour even for the worst cases regarding the 

number of attackers or type of attack. 

Future work will investigate the usage of this framework in 

a mitigation system, to mitigate the attack in the proper place. 

This combination of detection and mitigation will help in the 

closing of the cognitive management loop envisioned for the 

novel 5G infrastructures.  
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