
GIScience 2016 Workshop    

      

 

Rethinking the ABCs: Agent-Based Models 

and Complexity Science in the age of Big 

Data, CyberGIS, and Sensor Networks 

 

September 27th, 2016 

Montreal, Canada 

 

Edited by 

Daniel G. Brown 

Eun-Kyeong Kim 

Liliana Perez 

Raja Sengupta 



2 

 

Table of Content 

About the Workshop ............................................................................................... 3 

Workshop Organizers ............................................................................................. 4 

Extended Abstracts ................................................................................................. 5 

An Adaptive Agent-Based Model of Homing Pigeons: A Genetic 

Algorithm Approach (Francis Oloo and Gudrun Wallentin) ........................... 6 

Developing High Fidelity, Data Driven, Verified Agent Based Models of 

Coupled Socio-Ecological Systems of Alaska Fisheries (Martin Cenek and 

Maxwell Franklin) ........................................................................................... 11 

Extracting and Visualizing Geo-Social Semantics from the User Mention 

Network on Twitter (Caglar Koylu) .............................................................. 16 

Geospatial Agent-Based Approach for Modelling Biological Control 

Dynamics of Forest Insect Infestation (Taylor M. Anderson and Suzana 

Dragićević) ....................................................................................................... 23 

Short Abstracts ...................................................................................................... 28 

A Complex-Network Perspective on Alexander’s Wholeness (Bin Jiang)  29 

Leveraging Coupled Agent-Based Models to Explore the Resilience of 

Tightly-Coupled Land Use Systems (Patrick Bitterman and David A. 

Bennett) ............................................................................................................ 30 

Migrant Routing in the U.S. Urban System (Xi Liu and Clio Andris) ........ 31 

MIRACLE: A Prototype Cloud-Based Reproducible Data Analysis and 

Visualization Platform for Outputs of Agent-Based Models (Xiongbing Jin, 

Kirsten Robinson, Allen Lee, Gary Polhill, Calvin Pritchard, and Dawn 

Parker) .............................................................................................................. 32 

Spatial Informants of Modeled Phenomena: A Geospatial Analysis of Civil 

Violence during the Egyptian Revolution of 2011 (T. Martin Smyth) ........ 33 

 



 
3 

 

About the Workshop 

A broad scope of concepts and methodologies from complexity science – including 

Agent-Based Models, Cellular Automata, network theory, chaos theory, and 

scaling relations – has contributed to a better understanding of spatial/temporal 

dynamics of complex geographic patterns and process. 

Recent advances in computational technologies such as Big Data, Cloud 

Computing and CyberGIS platforms, and Sensor Networks (i.e. the Internet of 

Things) provides both new opportunities and raises new challenges for ABM and 

complexity theory research within GIScience.  Challenges include 

parameterization of complex models with volumes of georeferenced data being 

generated, scale model applications to realistic simulations over broader geographic 

extents, explore the challenges in their deployment across large networks to take 

advantage of increased computational power, and validate their output using real-

time data, as well as measure the impact of the simulation on knowledge, 

information and decision-making both locally and globally via the world wide web. 

The scope of this workshop is to explore novel complexity science approaches to 

dynamic geographic phenomena and their applications, addressing challenges and 

enriching research methodologies in geography in a Big Data Era. The topics 

include: 

1. Multisensor Data Fusion for parameterizing complex models 

a. Handling the 5Vs (Volume, Velocity, Variety, Value, and Veracity) 

b. Multi-scale interactions in geographic complex phenomena 

c. Semantic interoperability 

2. Integrating theory with practice: 

a. Big data analytics integrated with complexity theories 

b. Spatiotemporal analysis in complexity theories 

c. Dynamic geo-social network analysis 

d. Observer-Expectancy effect of real-time simulations 

e. Scaling relations (power laws) in geography 

f. Game theoretic approach to geographic problems 
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3. Output Validation: 

a. Can modeled pattern or process outputs be validated with real-time data? 

b. How can complex models output be visualized and communicated? 

c. How can increased use of massive sensitivity analyses improve process 

validation? 

d. Observer-Expectancy effect of real-time models’ simulations 

 

Workshop Organizers 

Co-Chairs 

Daniel G. Brown, University of Michigan, USA.  

Eun-Kyeong Kim, The Pennsylvania State University, USA.  

Liliana Perez, Université de Montréal, Canada.  

Raja Sengupta, McGill University, Canada.  

 

Program Committee 

Clio Andris, The Pennsylvania State University, USA.  

David A. Bennett, University of Iowa, USA.   

Christopher Bone, University of Oregon, USA.  

Andrew Crooks, George Mason University, USA.  

Suzana Dragicevic, Simon Fraser University, Canada.  

Petter Holme, Sungkyunkwan University, Korea.  

Bin Jiang, University of Gävle, Sweden.  

Alan M. MacEachren, The Pennsylvania State University, USA.  

Huina Mao, Oak Ridge National Laboratory, USA.  

Danielle Marceau, University of Calgary, Canada.  

Mir-Abolfazl Mostafavi, Universite Laval, Canada.  

Atsushi Nara, San Diego State University, USA.  

David O’sullivan, University of California, Berkeley, USA.  

Shaowen Wang, University of Illinois at Urbana–Champaign, USA.  

Taha Yessari, Oxford Internet Institute, University of Oxford, UK.  



 
5 

 

 

 

 

 

 

Extended Abstracts 

  



6 

 

An Adaptive Agent-Based Model of Homing Pigeons: A 

Genetic Algorithm Approach 

Francis Oloo1 and Gudrun Wallentin1 

1 University of Salzburg, Interfaculty Department of Geoinformatics (ZGIS), Schillerstrasse 30-

5020 Salzburg, Austria 

{francisomondi.oloo,gudrun.wallentin}@sbg.ac.at 

Abstract. Conventional ABMs are formalized from well established theory of the 

systems of interest. Simulation outcomes are then used to valid of the conceptual 

understanding. Integration of real-time sensor data streams into modelling workflows 

opens up the possibility to simulate on the go where calibration and validation 

procedures are automated processes and are executed during simulation runs. Real-

time simulation models result in surprising patterns and increasingly well calibrated 

parameters and rule sets. Which raises question on the epistemological implications 

of data-driven modelling to traditional system analysis and modelling approaches? In 

this contribution, we explore this question by implementing a flocking model that 

evolves in real-time. Specifically, genetic algorithm is used to simulate optimum 

parameters to describe trajectories of homing pigeons based on emulated GPS-sensor 

stream that updates the model continuously. Validity of the approach is compared to 

the conventional approach and results are discussed in the light of calibration 

uncertainty, repeatability, and transferability. 

1 Introduction 

Traditionally, models have been built from well-established theory of the underlying 

systems and empirical data is introduced at later stages for calibration and validation in an 

iterative process of exploration, resulting in a set of parameters that produce the optimal 

representation of the underlying system. Recent developments in data capture and 

transmission, specifically in sensor technology invite the incorporation of the rich data 

emanating from such platforms into modelling and simulation environments. The 

emergence of miniaturized sensors and intelligent sensor networks to monitor real-world 

phenomena provides an opportunity of using sensor data streams to investigate, understand 

and represent local level behaviour of system entities and the influence of such behaviour 

on overall system outcomes. That sensors can dynamically capture and transmit spatio-

temporal characteristics in real-time also raises the question on the suitability of traditional 

methods of model specification, calibration, and validation. 



 
7 

 

In this contribution, we implement an agent-based model (ABM) of adaptive rule sets 

of homing pigeons during their flight from a release site to a home loft. It is our view that 

concepts of adaptation and emergence which are inherent in ABMs [1] can provide the entry 

point for incorporation of sensor observations into ABMs by facilitating automation of 

model calibration and implementation of adaptive rule sets of agent behaviours. 

Furthermore, sensor streams can potentially influence model specifications by providing 

continuous feedback on aspects of the systems of interest and thus provide information on 

the adaptation among the agents represented in the model [2]. Adaptive rule sets are 

important in understanding emergence in complex systems and have been applied to study 

movement patterns of fish [3] and to model the influence of feeding, growth and survival 

probabilities in habitat selection among salmonids [4]. 

Adaptation within ABMs is hinged on the ability of agents to sense their environments, 

learn about possible actions to take in different circumstances and respond to stimuli from 

other agents or from the environment [5]. Learning within ABM has been achieved through 

reinforcement learning [6], evolutionary (genetic) algorithms and through machine learning 

methods [7]. However, the implementations of these methods have been through theory 

driven approaches to modelling. Spatial learning is the precursor to successful adaptation 

and has been identified as one of the challenges to representation of spatially aware agents 

[6]. We thus hypothesize that real-time high resolution spatio-temporal data streams can 

facilitate the implementation of spatial learning and help in understanding and 

representation of local spatial-temporal behaviour of agents. In this task, we use genetic 

algorithms to model the navigation of homing pigeons from a release site to a known loft. 

2 Methods 

GPS trajectories in this study were sourced from an experimental research on leadership 

among homing pigeons in Seuzach Switzerland [8]. The data, contained information on five 

separate homing flights with each flight capturing the coordinates; speed and flight height 

of at least 7 pigeons at a time interval of 0.25 seconds.  

A flocking and navigation model of the pigeons from the release site to the home loft 

was implemented in Netlogo. The purpose of this model was to identify the optimal 

parameters for simulation of navigation of homing pigeons which are represented as 

autonomous agents. Agents can sense other agents in their vicinity and the environment and 

make independent decisions with the goal of flying home in a flock and by following 

realistic flight paths. Two sets of pigeon agents are represented in the model; “real” birds 

that use the empirical data from the emulated GPS trajectories to navigate and simulated 

birds that learn from the real birds and use flocking and navigation rules to arrive at the 

homing loft. At each time step, step distance, relative turn-angle, sinuosity of flight path 

and the mean distance between flock mates is evaluated. Additionally, during the learning 

runs of the model, a measure of fitness is calculated for the simulated birds. 

Simulated flights of the birds are controlled by flocking and navigation rules. Flocking 

rules are modified from Reynolds flocking model [9] and are guided by alignment, 
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coherence and separation procedures which are achieved through maximum alignment 

turns, maximum cohere turns, maximum separation turns and minimum separation distance. 

Navigation behaviour is guided by an elevation turn angles which allows agents to fly along 

a topographic isoline and loft-turn which is an angle that specifies the general direction 

towards the home loft. Additionally, visible distance and the maximum view angle of the 

agents are specified by corresponding parameters.  

Initial calibration resulted in a set of suitable parameters for simulation of flocking and 

navigation behaviour of the simulated agents without learning from the emulated GPS 

tracks. These set of parameters which included maximum alignment turn, maximum 

coherence turn, maximum separation turn, maximum loft turn, maximum elevation turn, 

vision distance, maximum view angle, minimum and maximum step distance provided the 

elements for encoding a chromosome of candidate navigation parameters. A disturbance 

was introduced to the elements of individual agent chromosomes adding a random value 

from a normal distribution with a mean of 0.0 and standard deviation of 0.1. Genetic 

algorithm creates a generic range of optimal parameters to simulate the flight behaviour of 

homing pigeons from the release sites to the homing loft. Student’s t-test at 95% confidence 

interval was used to compare the simulated and observed flight trajectories. 

3 Results 

The resulting model was executed 50 times, in each run, chromosomes of the final 

generation of agents and the fitness values were recorded. Model runs resulting in negative 

fitness values at the end of the simulation were excluded in subsequent analysis. Density 

charts of optimal range and distribution of the nine model parameters are shown in Fig. 1. 

A random normal distribution with a mean and standard deviation of each of the 

respective simulated parameters was used to encode the corresponding elements of a 

chromosome for subsequent verification and validation. Flight 5 from the data was used for 

validation. Fig. 2 shows the density distribution of relative turn angles and the average step 

distances from observed and simulated flight paths. In both cases the state variables are 

normally distributed. Furthermore, results of Student’s T-test showed that the mean value 

of relative turn angles from the validation data was 0.02 while the corresponding value for 

the simulated data was -0.08 (p-value >0.05). However, in the case of step distance, the 

average value from the validation data and the corresponding value from the simulated data 

were equal, each at 4.5m (p-value <0.05). 
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Fig. 1. Density distribution of the simulated model parameters 

  

Fig. 2. Density chart of relative turn angle and average step distance of observed and simulated (dotted 

lines) pigeon flight paths 
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4 Conclusion 

Whereas agents presented herewith were not trained to remember all the possible states of 

their environment, parameters resulting from the genetic algorithm were able to 

successfully simulate the core state variables including relative turn-angle and step-distance 

which are vital in describing animal movement trajectories. Imitated data streams 

successfully represented dynamic spatial and temporal characteristics of autonomous 

pigeon agents thus providing a basis on which to compare the simulated state variables 

against corresponding empirical values during the life of a model, thus giving credence to 

the hypothesis that dynamic data streams from sensor observations can be incorporated into 

agent based models to improve the understanding of moving organisms. More importantly, 

availability of dynamic and high resolution data streams makes it possible to develop 

models without over-reliance on the theories and assumptions hence a data-driven approach 

to modelling. Additionally, by providing instantaneous calibration and verification of 

models during the model run results in robust parameters and hence improving their 

transferability to other settings and scenarios. Finally, genetic algorithm ensures an 

evolution of optimal solutions and parameters and thus making a strong case its 

consideration in data-driven hypothesis generation and knowledge discovery.  
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Developing High Fidelity, Data Driven, Verified Agent 

Based Models of Coupled Socio-Ecological Systems of 

Alaska Fisheries 

Martin Cenek1, Maxwell Franklin1 

1 University of Alaska Anchorage, Anchorage AK 99508, USA 

mcenek@uaa.alaska.edu,mefranklin@alaska.edu 

1 Extended Abstract 

Alaska salmon fisheries are a source of commercial revenue, renewable subsistence 

resource, cultural identity, and recreational destination for Alaskans, native populations, 

and out of state eco-tourists alike. We constructed a high fidelity, adaptable, data-driven 

agent based model that generalizes the socio-ecological dynamics of Kenai River, Alaska. 

Interactions among the model’s agents can be altered to study the impact of fishing 

regulation changes or salmon run-timing dynamics. Agents are driven by stochastic 

principles derived from 35 years of integrated data including salmon runs, municipality 

management reports, and Alaska Department of Fish and Game management reports. 

Longitudinal and seasonal correlations between the model’s simulation outputs and the 

reported system measurements are used to validate the model.  

To model accurate salmon agents counts, we reconstructed the temporal distribution of 

the salmon run by taking 35 years of reported sonar counts as the baseline and adding the 

harvest of the major stakeholder groups. The genetic sampling of randomly selected salmon 

caught by the drift gillnet, set gillnet, as well as test fisheries at the mouth of Upper Cook 

Inlet is used to determine how much salmon caught by the off-shore fishermen were 

returning to the Kenai River watershed instead of the rest of the inlet tributaries [2]. Time 

frames of these harvests are reported alongside estimated harvest from genetic sampling by 

gear type.  

Salmon runs were grouped into four categories by their overall characteristics of run-

timing dynamics. We used the sonar records to categorize the run-timing patterns using 

feature-scaling to filter daily sockeye counts with values x’ ≥ 0.5 (Equation 1). The 

temporally aligned and weekly binned series of filtered sonar data for 35 years were 

mutually compared. The distributions with high similarity were grouped into the four 

resulting prototype categories. Averaging the series in each prototype category produced 

the generalized baseline time-series distribution of the salmon runs with variance margins 

(Fig. 1). 

x’ = (x − min(x))/(max(x) − min(x))     (1) 
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(a)        (b) 

 
(c)        (d) 

 

Fig. 3. The feature scaling with x’ ≥ 0.5 classification of each sockeye salmon run-timing dynamics 

for 35 years of reported sonar data into one of four characteristic classes. Each plot shows the averaged 

run distribution and the standard error. The run types III, IV, and III-IV are named after the peak 

location in the returning salmon run in week 3, 4, 3 − 4 of the season respectively. The type III-IV-V 

has multiple peaks in weeks 3, 4, and 5 of the season. 

Salmon harvest represents the coupling between the fishermen effort to catch fish and 

the salmon run, in addition to other factors such as gear choice, fishing location, and fishing 

efficiency. The harvest reports are the aggregate socioecological metrics used to express the 

interaction dynamics between the social and ecological systems. Catch Per Unit of Effort 

(CPUE) is one such measure. CPUE can be used as an index of both stock abundance [4, 5] 

and stakeholder effort [1]. We decoupled the temporal CPUE distributions into the 

constituent system dynamics and using the previously reconstructed salmon run-timing 

distributions, we were able to infer the social behavior that was not previously measured or 

reported. Building the interaction dynamics of the model’s fishermen agents is a reverse 

inference process. The agents have to have the same behavior as the social behavior inferred 

from CPUE and when the model’s fishermen agents interact with salmon agents, the 

correlation between the model’s CPUE output and the measured CPUE must be high. 



 
13 

 

The model is validated by calculating the mutual correlations between the reported data 

by the management agencies (ADFG, Kenai Borough) and the measured distributions from 

the model’s output. The sonar instrumented salmon counts are used to verify the cumulative 

impact of commercial set and drift gillnet fleet combined with the dipnet harvest. Fig. 2 (a) 

and (b) show the validation of the individual stakeholder group behaviors and salmon 

behaviors in the context of dipnet effort and harvest by correlating measured data and the 

model’s output within each system of the coupled systems dynamics. For each year, the 

model was seeded with the appropriate number of stakeholders and returning run dynamics 

to assess the model’s accuracy at capturing observed social system dynamics and ecological 

dynamics. Fig. 2 (a) and (b) show both intra-system dynamics metrics with correlation 

values R2 ≥ 0.83. 

 

 

(a)        (b) 

 
(c)        (d) 

Fig. 4. Validating Social System Dynamics of (a) dipnet effort and (b) dipnet harvest. Seasonal effort 

and harvest data from the model output and historical records were cross-correlated to validate the 

social dynamics of the model. Ecological System Dynamics are also reflected in dipnet harvest (b). 

Sub-figures (c) and (d) show validation of the coupled system dynamics using (c) dipnet CPUE from 

data and (d) the model’s output. The seasonal data of CPUE used permit days fished versus harvest. 
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Measuring model outcomes with simple metrics loses the information about how the 

goal was met, or how the nature of interactions between the model’s agents changed to 

produce the system-wide (outcomes) dynamics. Visually inspecting each model behavior is 

infeasible for the combinatorial parameter space. We developed a statistical based toolbox 

called Geometry of Behavioral Spaces that records agents’ behaviors independent of the 

knowledge of the parameter space that drives the model and produces a state-space 

transition network that characterizes the agent behaviors [3]. 

We described a construction of a high fidelity ABM from data sources with high 

diversity, unknown accuracy, and various reporting frequencies. We constructed collections 

of temporal distributions that described the individual social and ecological system 

dynamics as well as the coupled system dynamics. The regressions between the data 

collections representing instrumented measurements and the model’s outputs measure the 

accuracy of the model’s construction in generalizing the socio-ecological systems. The data 

collections from instrumented measurements often contained multiple distributions 

describing the same observed phenomena. By cross-correlating these equivalency 

distributions, we performed manual ensemble learning to establish trustworthiness of each 

source distribution. 

Future research includes implementing plausible future scenarios identified in a series 

of participatory stakeholder engagement meetings to understand how the coupled system 

dynamics will change in each scenario. The social scenarios include using dipnetters as a 

means for managing escapement, alteration of commercial gillnet fishing gear for reducing 

non-target species by-catch, and using sports fishermen as a means for controlling 

escapement. The ecological scenarios include compressing the salmon run duration by two 

weeks while maintaining the abundance and inversely keeping the overall dynamics while 

reducing the overall salmon abundance. Finally, we will use the statistical toolbox 

(Geometry of Behavioral Spaces Framework) to analyze agent behavior to understand 

system outcomes and model changes in terms of agent behaviors. 
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Extracting and Visualizing Geo-Social Semantics from the 

User Mention Network on Twitter 

Caglar Koylu1 

1 Department of Geographical and Sustainability Sciences, University of Iowa, 316 Jessup Hall, 

Iowa City, IA 52242, USA 

caglar-koylu@uiowa.edu 

Abstract. This paper introduces an approach for extracting and visualizing geo-social 

semantics of user mentions on Twitter. The approach consists of three steps. First,  

data filtering and processing is performed to construct a directed area-to-area mention 

network in which tweets are aggregated into flow bins between geographic areas. 

Second, using flow bins as documents, a probabilistic topic model is employed to 

detect a collection of topics, and classify each area-to-area flow into a mixture of 

topics with differing probabilities. Third, for each topic, a modularity graph of 

mentions is obtained and visualized using a flow map and a topic cloud to infer 

semantics from the set of frequently co-occurring words for each topic. To 

demonstrate, a dataset of 19 million geo-tagged mentions during the primary elections 

(Feb-Jun, 2016) in the U.S. were analyzed. The results highlight changing patterns of 

symmetry, distance and clustering of flows by the topic of content.  

1 Introduction 

Previous studies have utilized user generated textual content such as geo-tagged tweets and 

messages exchanged in location-based social networks (LBSN) to study the effect of 

geographic proximity on social interactions [1-3]; the influence of information diffusion 

and social networks on real-world geographic events, such as demonstrations, protests, and 

group activities [4]; and the structural and geographic characteristics of the communication 

network [5-7]. Such studies use information flows to model social interactions, but often 

ignore the content of the information exchanged between the individuals of the network.  

A variety of computational and semantic analysis techniques have been developed to 

infer human behavior, ideological and attitudinal similarity between individuals [8], 

common topics and way of speaking [9], group identities [10], demographic and socio-

economic characteristics [11] from large volumes of user-generated textual data. Latent 

Dirichlet Allocation (LDA) [12, 13] has been successfully employed to detect geographic 

events, and recommend places and friends based on user location and similarity of shared 

content between users in LBSNs. Despite these efforts, there has been little work that 

mailto:caglar-koylu@uiowa.edu
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focuses on understanding of geographic patterns of interpersonal communication and how 

the common topics of information vary based on the geographic distance and characteristics 

of locations [14].  

We introduce an approach for extracting and visualizing geo-social semantics from the 

big data of user mentions on Twitter. The approach consists of three steps. First, data 

filtering and processing is performed and a bi-directional area-to-area mention network is 

constructed. In an area-to-area mention network, the original locations of tweets are 

aggregated into a small set of areas (e.g., counties) and mentions are combined into flow 

bins between these geographical areas. Second, flow bins are used to train a probabilistic 

topic model which generates a collection of topics and classify each flow bin into a mixture 

of topics with differing probabilities. Third, for each topic, a modularity graph of mentions 

is obtained and visualized using a flow map and a topic cloud to infer semantics from the 

set of frequently co-occurring words for each topic. To demonstrate, geo-tagged tweets 

within the Contiguous U.S. during presidential primaries and caucuses between February 1, 

2016 and June 14, 2016 were collected through Twitter’s streaming API. 

2 Data processing and filtering 

The data consisted of 284,868,345 tweets, and 4,571,070 million distinct users. We 

removed tweets from non-personal accounts (e.g., weather, emergency, and job ads), and 

external sources such as pictures and check-ins (e.g., Instagram, Foursquare); users with 

more than 3000 followers; and users whose velocities (i.e., equals to the distance divided 

by time between two consecutive tweets) are above (1,000km/h) which would indicate spam 

users and bots. After the initial filtering, the number of tweets decreased to 75.0% 

(213,649,745) and the users to 88% (4,050,523).  

A Twitter user can reply or mention other users by including their @username in her 

tweet. When a user A (sender) mentions user B (recipient), the tweet include only the 

location of the sender. The location of the recipient in a mention can be derived only if the 

recipient has a geo-tagged tweet in the sample. Among the filtered tweets, 45% 

(95,855,784) include a user mention, and 65.0% (2,632,840) of the users mentioned another 

user in a tweet at least once. The recipient’s location was successfully extracted in 19.80% 

(19,046,949) of all mention tweets to form a network of geo-tagged user mentions. 

3 Topic Modeling 

Given a collection of textual documents (e.g., books, articles, emails), LDA models a 

collection of k topics as a multinomial distribution over words within these documents.  

 

𝑃(𝑍|𝑊, 𝐷) =  
𝑊𝑍+𝛽𝑤  

𝑡𝑜𝑡𝑎𝑙 𝑡𝑜𝑘𝑒𝑛𝑠 𝑖𝑛 𝑍 +  𝛽
∗ 𝐷𝑍+ ∝  
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The probability that word W came from topic Z, is calculated as the normalized product 

of the frequency of W in Z (𝑊𝑍+𝛽𝑤 ) and the number of other words in document D that 

already belong to Z (𝐷𝑍+ ∝). β and βw are hyper-parameters that represent the chance that 

word W belongs to topic Z even if it is nowhere else associated with Z.  

Training a topic model with short documents (i.e., individual tweets) results in unstable 

classifications with increased uncertainty due to the severe data sparsity [15]. To alleviate 

the problem, previous work combined tweets into temporal [16], spatio-temporal [17], and 

user bins [18]. We combine tweets into area-to-area (i.e., county-to-county) flow bins to 

capture interpersonal conversations between geographic areas. Each user is assigned to a 

home county, and mention tweets are added into a flow bin based on the home counties of 

the recipient and sender of each mention. Each tweet is added to an origin-destination flow 

bin only once to avoid duplicate content when a tweet includes multiple mentions between 

the same county pair.  

The density of geo-tagged mentions by distance (Fig. 1) support the findings of previous 

research that the probability of a user mention is high between users with closer geographic 

proximity [19]. 46% of the geo-tagged mentions had both the recipient and sender within 

the same county, 70% were within the same state, and only 30% were between states.  

 

 

Fig. 5. Density of geo-tagged user mentions by distance (in km) 

Great variation in volume between flow bins within states and between states distort the 

results of LDA and undermine the topical heterogeneity of the model. Thus, we separated 

the flow bins into two groups: within state, and between state; and constructed a separate 

LDA model for each. In this paper, we report the results of our analysis on user mentions 

in which the recipient and sender are from different states, in order to capture the 

geographical variation of the topical content among long-distance interpersonal 

communication.  

In order to alleviate the bias from small bins, we further filtered out the flow bins that 

have less than 100 tweets and 10 users before training the topic model. While the number 
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of flow bins (or county pairs) decreased from 350,295 to 49,436; the volume of mentions 

was reduced by only 13%. We used the Mallet toolkit [20] to implement the LDA model 

and trained a set of topic models with differing number of topics (20, 50, and 100), number 

of iterations (2000), and evaluated the topical overlap using cosine similarity. We selected 

50 topics as it produced the less overlapping topics than 100, and more distinct topics than 

20.  

4 Mapping Modularity Flows 

The topic model classifies each flow bin with a mixture of topics with differing probabilities. 

For example, a flow from county A to county B may be comprised of 50% topic 5, 30% 

topic 2, 10% topic 32, and 10% in other topics. Among a set of fuzzy classification of flow 

bins, one may isolate each topic to create a separate graph and estimate the weight of a link 

by multiplying the probability of isolated topic by the volume of user mentions on that link.  

Although the number of mentions have been significantly reduced after excluding 

within-state mentions, county-to-county pairs still form a complex graph with a large 

number of links that requires further simplification. One can reduce the graph by graph 

partitioning and regionalization [21, 22] which combines unit areas into a smaller set of 

natural regions where there are more flows within regions than across regions. In order to 

ease the interpretation of our results, and reveal user mention patterns at the state level, we 

aggregate county pairs into state-to-state user mention flows for each topic and calculate a 

modularity measure to select the flows that are above expectation [22]. Expected number 

of mentions on a link is calculated as: 

 

EM (O, D) = FO FD f (O, D) / (FS 2 -  ∑ 𝐹𝑖
2𝑛

𝑖=0
) 

where FO is the number of mentions originated from state O, FD is the number of times that 

state D is mentioned, f (O,D) is the number of mentions from state O to state D, FS is the 

number of mentions between all states, and ∑ 𝐹𝑖
2𝑛

𝑖=0
 is used to remove within-state 

expectations. Finally, modularity of a link O-D for topic Z is calculated as: 

 

MODZ (O, D) = PZ (AM - EM) 

where PZ is the probability of topic Z, AM is actual number of mentions, and EM is expected 

number of mentions on the link O-D. 

5 Results 

Fig. 2 illustrates modularity flows of two topic graphs: (a) NBA finals (b) democratic 

primaries. The mentions on NBA finals have symmetrical flows which suggest on-going 

conversations between pairs of states. A distinct asymmetrical flow is observed from Ohio 
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to Florida, which suggests Cleveland fans mentioning Heat fans, but their tweets are not 

replied. On the other hand, the mentions on democratic primaries are dominated by 

asymmetrical flows of mentions. The three big states CA, NY and TX receive more 

mentions than expected. One distinct difference between the two topics is that mentions on 

democratic primaries reach out to longer distance states without reciprocating conversations, 

whereas NBA is being discussed between close by states with on-going conversations. 
 

   (a) 

 

 

 

  (b)  

 

 

Fig. 6. State-to-state modularity flows of user mentions for two distinct topics: (a) NBA Finals (Prob: 

0.12) (b) primaries and caucuses (Prob: 0.15). The width and color value of each flow is proportional 

to its modularity value. Node size illustrates the total modularity; and blue circles depict negative net 

flow whereas red circles depict positive net flows. Word clouds illustrate the set of frequently co-

occurring words for each topic where the size of each word is proportional to its probability of co-

occurrence or popularity within that topic.  
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6 Conclusion and Future Work 

We introduced a novel approach for extracting and visualizing geo-social semantics from 

the bi-directional user mention network on Twitter. The results highlighted distinct 

geographic patterns of symmetry, distance and clustering for user mentions. A major 

limitation of this study is that the temporal variation in topics is ignored. Future work is 

needed to incorporate temporal flow binning, and train the topic model to extract temporally 

varying patterns of mention topics between origin-destination pairs.   
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Control Dynamics of Forest Insect Infestation  
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Abstract. Geospatial agent-based models (ABM) can be designed to explore 

scenarios related to propagation of various spatio-temporal phenomena including 

forest insect infestation and related management strategies. The main objective of this 

study is to develop an ABM to represent dynamics between the two forest insects, the 

emerald ash borer (EAB) Agrilus planipennis and the Tetrastichus planipennisi (TP), 

a stingless wasp used as a biological control larval parasitoid for EAB. The model is 

implemented on real geospatial datasets from the City of Oakville, Canada, a region 

much affected with EAB infestation. For that purpose, an EAB-TP ABM is developed 

in order to simulate spatio-temporal dynamics and the biological control of EAB 

infestation using TP. Results indicate that ABM makes a suitable approach for the 

representation of EAB-TP dynamics for the simulation of EAB biological control, 

useful in forest and pest management. 

1 Introduction 

The eradication of the emerald ash borer (EAB) an invasive wood-boring beetle native to 

Asia is of primary focus for forest management in southwestern Ontario, Canada, to prevent 

further decline of North American ash trees. Since visible symptoms of infested trees are 

limited, preventing direct management via insecticides, and native predators are lacking, 

eradication measures have been extended to biological control, a strategy that uses natural 

enemies to control pest populations. Pest-parasitoid interactions between the Tetrastichus 

planipennisi (TP) and EAB result in the parasitism and death of EAB larvae by TP larvae, 

resulting in a 1-2% reduction of EAB within one year and up to 30% after four years (Duan 

et al. 2013).  

In the biological control of any forest insect infestation, it is important to understand the 

spatial patterns of insects’ dispersal, interactions, and dynamics, but this information can be 

difficult to obtain from the field. Alternatively, an agent-based model (ABM) can be used 

as a virtual laboratory to simulate these patterns and better understand complexity of the 
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infestation dynamics and its control with natural predators. Existing EAB models use 

differential equations (Barlow et al. 2014) and diffusion models (Muirhead et al. 2006), 

however are limited in their representation of spatio-temporal complexity inherent to insect 

infestation processes (With 2002). Specifically, EAB infestation can be conceptualized as 

a complex system, whereby heterogeneous individuals interact at local level and across a 

varying spatial environment and generate large scale patterns of infestation (BenDor et al, 

2006; Anderson and Dragicevic, 2016a).  

In order to extend existing modelling efforts and address the complexity of EAB 

infestation, Anderson and Dragicevic (2015) developed an ABM of EAB infestation that is 

capable of capturing the complexity inherent to insect infestation processes by representing 

heterogeneous individuals or agents that interact within a geospatial environment from 

which patterns of infestation emerge. ABMs can be used for scenario development, for 

example, optimizing release strategies of TP for the control of EAB. However no such 

modelling approaches can be found in the literature that represents the pest-parasitoid 

interactions and spatio-temporal dynamics of both EAB and TP insects. Therefore, the main 

objective of this study is to develop the geospatial ABM to simulate spatio-temporal 

dynamics and the biological control of EAB infestation using TP. 

2 Methods 

2.1 Data Sets, Study Site, and Model Overview 

The developed ABM modeling approach is implemented on geospatial datasets 

representing the Town of Oakville, Ontario, Canada, a leader in EAB infestation data 

collection, management, and eradication. The epicenter of EAB infestation in Oakville, first 

discovered in 2008, lies in the North Iroquois Ridge community. The Town of Oakville 

developed GIS datasets containing ash tree inventory with location and attributes for tree 

species and the delimitation of EAB infestations for the Town of Oakville observed in 2009, 

providing the actual EAB spread rate of 1.977 km/year. 

The EAB-TP ABM has been developed representing two years of insect dispersal in the 

Town of Oakville (2008-2009) and to measure the effects of the TP interactions on the 

population of EAB. This model implements the release of 600 TP agents, the minimum 

number of TP required for release reported in the literature (Gould et al. 2016), at the 

epicenter of EAB infestation, in June 2009, one year after EAB infestation begins in the 

region. In order to compare and optimize the biological control, an EAB-Baseline ABM has 

been developed to represent EAB infestation only. The model expands from the existing 

ABM of EAB infestation (Anderson and Dragicevic 2015), and was tested against real 

datasets delimiting EAB extent and validated with 72% accuracy in simulating the location 

of EAB infestation. Fifty simulation runs have been executed for both developed models 

and the simulation results are combined in order to determine where the spatial extent of 

EAB and TP spread occurs on average. The averaged simulation results from each model 

are compared in order to determine the simulated impact of TP on EAB populations. 
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2.2 Agents, State Variables, and Model Processes 

The ABM includes agents that represent EAB insects, EAB larvae, TP insects, TP larvae, 

and ash trees. Agents are programmed to behave as their real world counterparts by 

incorporating biological information documented in the literature into the agents design in 

the form of state variables and parameters. State variables describe the state of the agent at 

a given point in time i.e. age, location. Parameters describe the capabilities of a particular 

agent over its life time i.e. maximum flight distance/day, chance of fertility, maximum 

number of offspring.  

Dispersal of both EAB and TP agents is governed by their preferences for specific host 

tree characteristics (size, type, health) and spatial distributions. Population dynamics 

emerge from the local interactions between EAB and TP larvae agents. For example, for 

every one EAB larvae, 5-122 TP larvae will feed on it, killing it, and collectively reducing 

the EAB population (Duan et al. 2013). This interaction is simulated in the model where the 

number of TP larvae agents it will take to kill an EAB agent is generated randomly from 5-

122 and once this threshold has been reached, the EAB agent is removed from the 

simulation.  

3 Results 

The simulation results and parasitism of EAB larvae by TP larvae over time are presented 

in Fig. 1. The comparison of number of larvae between the simulation results obtained from 

EAB-TP and EAB-Baseline agent-based models indicates a parasitism rate of 1.8% 

following the first year of TP release. The simulation result is consistent with the parasitism 

rate recorded in the literature of 1-2% (Duan et al. 2013).  

4 Conclusions  

Representation of insect infestation as a complex system using ABM can help to understand 

and analyze implications of biological control, specifically in understanding how 

interactions at a small scale generate emergent parasitoid-pest dynamics. The results 

indicate that an ABM is a suitable approach for capturing the EAB-TP interaction dynamics. 

Currently, biological control strategies using TP for EAB management are non-specific. 

The further development of several scenarios to simulate how the EAB population will 

respond to variations TP release densities, number of TP release points, and timing of 

release using the proposed EAB-TP ABM would be beneficial for planning by forest pest 

managers when time and resources for data collection are limited (Anderson and 

Dragicevic, 2016b).     
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Fig. 7. The spatial patters of EAB and TP spread for (A) June 2009, (B) September 2009 and (C) 

parasitism of EAB by TP over time. 
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A Complex-Network Perspective on Alexander’s Wholeness* 

Bin Jiang1 
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“Nature, of course, has its own geometry. But this is not Euclid’s or 

Descartes’ geometry. Rather, this geometry follows the rules, constraints, 

and contingent conditions that are, inevitably, encountered in the real 

world.” 

Christopher Alexander et al. (2012) 

Abstract. The wholeness, conceived and developed by Christopher Alexander, is 

what exists to some degree or other in space and matter, and can be described by 

precise mathematical language. However, it remains somehow mysterious and 

elusive, and therefore hard to grasp. This paper develops a complex network 

perspective on the wholeness to better understand the nature of order or beauty for 

sustainable design. I bring together a set of complexity-science subjects such as 

complex networks, fractal geometry, and in particular underlying scaling hierarchy 

derived by head/tail breaks – a classification scheme and a visualization tool for data 

with a heavy-tailed distribution, in order to make Alexander’s profound thoughts more 

accessible to design practitioners and complexity-science researchers. Through 

several case studies (some of which Alexander studied), I demonstrate that the 

complex-network perspective helps reduce the mystery of wholeness and brings new 

insights to Alexander’s thoughts on the concept of wholeness or objective beauty that 

exists in fine and deep structure. The complex-network perspective enables us to see 

things in their wholeness, and to better understand how the kind of structural beauty 

emerges from local actions guided by the 15 fundamental properties, and in particular 

by differentiation and adaptation processes. The wholeness goes beyond current 

complex network theory towards design or creation of living structures.    

Keywords: theory of centers, living geometry, Christopher Alexander, head/tail 

breaks, and beauty 

                                                           
* This abstract is that of the newly published paper: Jiang B. (2016), A complex-network 

perspective on Alexander's wholeness, Physica A, 463, 475-484, and I may add something new into 

the presentation from this more recent pre-print: http://arxiv.org/abs/1607.07169 
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Leveraging Coupled Agent-Based Models to Explore the 

Resilience of Tightly-Coupled Land Use Systems 
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Abstract. This paper argues that agent-based models (ABMs) possess an inherent 

advantage for modeling and exploring the specified resilience of social-ecological 

systems. Coupled systems are often complex adaptive systems, and the ability of 

ABMs to integrate heterogeneous actors, dynamic couplings, and processes across 

spatiotemporal scales is vital to understanding resilience in the context of complexity 

theory. To that end, we present the results of a preliminary stylized model designed to 

explore resilience concepts in an agricultural land use system. We then identify 

strengths and opportunities for further ABM development, and outline future work to 

integrate empirically-parameterized agent behavioral rules with robust biophysical 

models to explore resilience and complexity. 

Keywords: resilience, agent-based modeling, complexity, adaptive capacity 
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Abstract. In this article, we create directional networks of U.S. core-based statistical 

areas where the number of nodes is equal to the number of links (edges = nodes = n) 

in each network. Cities link to the most popular destination city of its out-migrants for 

a given year. This destination city is called its cityfriend or best friend, and does not 

depend on migrant volume. Data is sourced from the U.S. Internal Revenue Service. 

The resultant networks are not fully connected but instead join cities into graph motifs 

or “constellations” within the galaxy of cities. We visualize these networks and create 

subnetworks based on wealth discrepancies. We find that the network of poorer 

migrants reveals a chain of local movements, which is substantially different than that 

of wealthy migrants, who flock to hub cities. 

Keywords: migration, networks, complexity, cities, mobility 
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MIRACLE: A Prototype Cloud-Based Reproducible Data 

Analysis and Visualization Platform for Outputs of Agent-

Based Models  
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Abstract. Since the agent-based models we design have stochastic elements and many 

potential parameter combinations, multiple model runs that sweep parameters are 

conducted, creating large quantities of computationally generated, hyper-dimensional, 

“big data”. Understanding the models’ implications requires structured exploration of 

these complex output data. In response to this need, the MIRACLE team has 

developed a cloud-based community platform for the management, analysis and 

visualization of such data, as well as the sharing of associated analysis/visualization 

methods and results. We anticipate that the platform will facilitate improved 

communication within research groups, as well as increasing access and transparency 

for external communities. This paper provides contextual background and a case study 

to the MIRACLE data storage and analysis web tool. 

Keywords: reproducibility, agent-based models, big data 
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Spatial Informants of Modeled Phenomena: A Geospatial 

Analysis of Civil Violence during the Egyptian Revolution of 

2011  

T. Martin Smyth1 
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Abstract. This paper seeks to model the spatial distribution of civil violence 

associated with political protest demonstrations during the initial period of the 

Egyptian revolution of 2011. A spatially constructed index of protest event visibility 

is introduced and a simple logistic regression analysis applied to assess its efficacy as 

a predictor of civil violence incidence. Agent-based models of political phenomena 

have been largely agnostic as to the spatial informants of modeled phenomena. The 

method developed in this paper is intended as an important first step toward modeling 

the influence of an urbanized topography as a spatial informant of political outcomes. 

Keywords: protest, violence, location analytics, Egypt, Arab spring 

 
 

 


