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ABSTRACT
The recent rise in multimedia technology has made it easier
to perform a number of tasks. One of these tasks is moni-
toring where cheap cameras are producing large amount of
video data. This video data is then processed for object clas-
sification to extract useful information. However, the video
data obtained by these cheap cameras is often of low quality
and results in blur video content. Moreover, various illu-
mination effects caused by lightning conditions also degrade
the video quality. These effects present severe challenges for
object classification. We present a cloud-based blur and il-
lumination invariant approach for object classification from
images and video data. The bi-dimensional empirical mode
decomposition (BEMD) has been adopted to decompose a
video frame into intrinsic mode functions (IMFs). These
IMFs further undergo to first order Reisz transform to gen-
erate monogenic video frames. The analysis of each IMF has
been carried out by observing its local properties (amplitude,
phase and orientation) generated from each monogenic video
frame. We propose a stack based hierarchy of local pattern
features generated from the amplitudes of each IMF which
results in blur and illumination invariant object classifica-
tion. The extensive experimentation on video streams as
well as publically available image datasets reveals that our
system achieves high accuracy from 0.97 to 0.91 for increas-
ing Gaussian blur ranging from 0.5 to 5 and outperforms
state of the art techniques under uncontrolled conditions.
The system also proved to be scalable with high through-
put when tested on a number of video streams using cloud
infrastructure.
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1. INTRODUCTION
With the advancements in multimedia technology, it is

now becoming easier to offer large scale monitoring of criti-
cal events. The monitoring cameras are capable of recording
and storing activities within these events. The video data
generated by these monitoring cameras is processed man-
ually and automatically to extract useful information such
as person identification and tracking. However, most of the
cameras used for monitoring are cheap off the shelf cameras
because of budget constraints. The video streams generated
by these cameras often contain blur frames due to motion,
lack of focus, or atmospheric turbulence. Since these cam-
eras work under uncontrolled lighting conditions they are
also prone to illumination effects. Rotation angle of the
objects being monitored is also another challenge posed by
these cameras.
The accuracy of any object classification system is highly de-
pendent on how these challenges are tackled. A good coun-
termeasure to these challenges can lead to highly accurate
results. However, video de-blurring and de-illumination are
resource and time consuming tasks and often bring in new
artifacts [1]. It is therefore desirable to perform classifica-
tion with a process that is invariant to blur and illumina-
tion. Various approaches have been proposed in the past
to tackle these problems. The most prominent among these
approaches are built on top of insensitive moments [2], color
constancy [3] and Fourier phase. However, these approaches
are designed to perform classification globally and do not
take into account local properties of objects. Various so-
lutions based on the magnitude, phase and spectral infor-
mation [4] have also been designed, however, these methods
focused on texture analysis whereas blur and illumination
invariance was not considered as a design criterion.
One of the successful approaches to address these challenges
is to perform analysis of image or video frames by shifting
them from spatial domain to spatial-frequency domain. In
spatial domain, processing of video frames is performed by
directly using the gray values of pixels. Spatial frequency
domain allows the processing of video frames by projecting
them on a set of basis functions which are defined by the
method itself. This phenomenon expands the video frame
into frequency components with both high and low magni-
tudes. Variety of methods exist for the conversion of spatial
domain signal to spatial frequency domain. These methods
include Fourier Transform [5], Wavelet Transform [6], and
Wigner distribution [7]. However, these methods are not



adaptive.
Huang et al. [8] proposed a method known as Empirical
Mode Decomposition (EMD) for image analysis. EMD ex-
pands a signal into its frequency components adaptively.
These frequency components are termed as Intrinsic Mode
Functions (IMFs). EMD tries to extract highest frequency
components from the original input signal in each mode.
It separates the locally highest frequencies and stores them
into an IMF. The rest of the IMFs contain the remaining
frequencies in the lowest order which ends up in a residual
part. In order to apply empirical mode decomposition on
the images, two dimensional empirical mode decomposition
(2DEMD) or Bi-dimensional empirical mode decomposition
(BEMD) was introduced [9].
We have used Bi-dimensional empirical mode decomposi-
tion to decompose a video frame into Intrinsic Mode Func-
tions in this paper. A video frame is first extracted from
video stream and the BEMD is applied to decompose it into
IMFs. BEMD provides several advantages over spatial do-
main analysis. Features can be extracted easily according
to the distribution of local phase or energy. Each IMF is
analyzed independently and in parallel using Reisz trans-
form to extract local properties (amplitude, orientation, and
phase) of a video frame. These local properties are further
examined to perform classification tasks using local pattern
features. As the process is data intensive, a cloud infrastruc-
ture has been utilized to meet the challenges of scalability
and performance and to process the data quickly and effi-
ciently.
The main contributions of this paper are: Firstly, we pio-
neer the use of EMD on video streams in a cloud based dis-
tributed environment. We have shown that only first three
IMFs are sufficient to perform classification under challeng-
ing conditions with a high accuracy rate. This is advan-
tageous in two ways: I) Reduced feature extraction time
as compared to other methods. II) Illumination and blur
invariance, since only lower IMFs are sensitive to variation
effects. Secondly, we utilized the amplitude property derived
from each IMF using first order Reisz transform and showed
that it provides high accuracy than the phase or orientation
properties. Thirdly, we propose a stack based hierarchy of
local pattern features generated from the amplitude of each
IMF for highly accurate classification.
The organization of rest of the paper is as follows: Section
II provides the review of state of the art techniques that
have been used recently for object classification. Section
III explains the approach and implementation of our object
classification system. The experimental setup is described
in Section IV. The experimental results and their analysis
are detailed in Section V. Section VI concludes the paper
with a glimpse of the future work.

2. RELATED WORK
Object classification has been the focus of many stud-

ies for the last several decades. However, classifying ob-
jects from video streams under uncontrolled conditions poses
many challenges and is now acquiring much attention from
the research community. We provide a brief review of the
recent approaches proposed in this domain and identify the
research gaps.
A number of authors have used color information to develop
blur and illumination robust descriptors. A robust descrip-
tor has been proposed by Joost et al. [3]. They used ratios

of image derivatives to develop a descriptor for color con-
stant ratios that is invariant to blur and illuminant color.
A similar kind of approach based on color information has
been proposed by Ballard et al. [10]. They made use of
color histograms to perform recognition of objects. Another
approach based on color histograms is proposed by Funt et
al. [11]. They utilized color constant derivatives to repre-
sent an object for recognition. However, these approaches
could not perform well against variations in illuminant color
especially with a change in the camera viewpoint or object
orientation and are also dependent on lightening geometry.
The moment invariants have also been used in the past as
blur invariant features. Flusser et al. [12] pioneered the use
of moment invariants developed on top of geometric mo-
ments. They also utilized central moments to provide in-
variance to translation. Moment invariants have also been
the part of various applications such as template matching
[13], recognition of defocused objects and X-ray imaging.
Complex moments were also proposed [14] for blur, rotation
and scale invariance. Despite their wide usage in various
applications, moment invariants remained sensitive to noise
and background clutter.
Invariants based on the phase of frequency spectrum ob-
tained by Fourier transform are investigated by [15]. These
invariants are also insensitive to the shift of the image. Ville
et al. [16] proposed a centrally symmetric blur invariant
descriptor based on phase-only spectrum of an image. The
phase-only spectrum was normalized so it became insensi-
tive to linear brightness changes as well. A similar kind of
approach is adopted by Ville et al. [17] in which the phase
information was calculated within a local window for every
image position. The quantization of the phase of discrete
Fourier transform and de-correlation of low frequency com-
ponents was performed in an eight dimensional subspace. A
histogram of the resulting features was used for classifica-
tion of blurred texture images. However, these invariants
are limited to image shifts. Also, invariance to translation
has not been considered in phase based frequency spectrum
invariants. We propose a blur and illumination invariant
feature descriptor which provides invariance to higher blur
radius and high PSNR values. Interestingly, our feature de-
scriptor also provides good results for sharp video frames
that are not blurred.

3. VIDEO ANALYSIS APPROACH
We present here the approach behind our object classifi-

cation system. The video streams are first acquired by the
video capturing cameras and are then stored in cloud stor-
age. The cloud manager fetches these video streams from
the cloud storage and distributes them among various cloud
nodes. The cloud manager is solely in-charge of the alloca-
tion of video streams to each cloud node and manages work-
load distribution among cloud nodes. The video streams
are decoded to extract individual video frames. These video
frames are artificially blurred with varying radius. Noise has
also been added to the objects with different PSNR values.
These objects are then classified by blur and illumination
invariant feature descriptor. Figure 1 shows the approach
of our blur and illumination invariant object classification
system.

3.1 Decomposition of Video Frame
Each decoded video frame is decomposed into its frequency
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Figure 1: Video Analysis Approach

components through Two Dimensional Empirical Mode De-
composition (2DEMD) [9] which is a fully unsupervised ap-
proach. It defines its basis functions directly from the data
and is not dependent on other methods. 2DEMD expands a
video frame into its frequency components adaptively. These
frequency components are termed as Intrinsic Mode Func-
tions (IMFs) and are defined by the video frame itself. Sift-
ing process [18] is used to extract these IMFs from the video
frame. This algorithm tries to extract highest frequency
components from the original input video frame in each
mode. It separates the local high frequencies and stores
them in to an IMF.
The rest of the IMFs contain the remaining frequencies in
the lowest order. This ends up into the residue which con-
tains remaining lowest frequencies. By combining all the
IMFs and the residue, original signal can be obtained. EMD
allows visualizing spatial-frequency characteristics signal by
expanding the parent signal into IMFs as shown in figure 2.
The sifting algorithm is defined as follows:

• Extrema Identification
Determine the extrema points (maxima points and
minima points) of the input video frame I(x, y), where
I is the 2D video frame with x = 1 to M and y = 1 to
N.

• Envelop Calculation
Connect the extrema points (all the maxima points
and the minima points respectively) using radial basis
function to form lower and upper 2D envelops denoted
by emax(x, y) and emin(x, y).

• Mean Envelop Calculation

Average the two envelops i.e. maxima envelop and
minima envelop to generate the local mean envelop
m1.

m1(x, y) = (emax(x, y) + emin(x, y))/2 (1)

• ProtoIMF Generation
Subtract out the local mean from the image to generate
hl.

hlk = I(x, y)−m1(x, y) (2)

Repeat the entire process until h1 is a 2IMF. The pro-
cess terminates when the mean envelop is very close to
zero.

Depending upon the stopping criterion, it is arbitrated
that whether the mean envelop is close to zero or not. The
whole procedure is reiterated if the mean envelop is not close
enough to zero. The reiteration is performed a number of
times until the stopping criterion is satisfied. The fulfilment
of stopping criterion results in the final IMF.

C1(x, y) = hlk(x, y) (3)

The residual is defined by subtracting the original input
video frame from the Cl(x,y)

R1(x, y) = I(x, y)− C1(x, y) (4)

The next IMF is obtained by repeating the entire proce-
dure on the residual by considering it as an input image.



Figure 2: Averaged extrema surfaces along with
their visual representation

Figure 3: Orientation, Phase and Amplitude of first
three IMFs

I(x, y) = R1(x, y) (5)

For all the subsequent residuals, the process is repeated
to obtain various IMFs in the descending order of their fre-
quencies. The procedure is normally stopped when there are
no more extrema points in the residual frame. A video frame
can be expressed as the sum of all IMFs with a residual given
below:

I(x, y) = R1(x, y) +

L∑
i=1

Ci(x, y) (6)

3.2 Amplitude, Phase and Orientation Spec-
trum

Riesz Transform [19] is applied on the IMFs afterwards
to obtain monogenic data which helps to study the local
properties of video frames. Monogenic data is a local quan-
titative and qualitative measure of the video frame. Local
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Figure 4: Generation of LTP and its split-up into
positive and negative LBP codes

amplitude, phase and direction can be calculated from the
monogenic signal of each IMF as shown in figure 3.

The Riesz transformed signal in the frequency domain can
be expressed as;

FR(v) = i
v

v
× F (v) = h2(v)× F (v) (7)

Where h2 is the transfer function and the generalization
of Hilbert transform.

The corresponding spatial domain representation can be
given as;

FR(x) = i
x

2π
x3 × F (x) = h2(x)× F (x) (8)

The 2D analytical or monogenic signal which is consti-
tuted by the original signal and its Riesz transform is given
as;

FM (x) = F (x)− (i, j)× FR(x) (9)

3.3 Local Pattern Features
We propose the use of local ternary patterns to analyze

and classify objects from the video streams. Local Ternary
Pattern is used as a descriptor to extract local features from
intrinsic mode functions. It is an extension of local binary
pattern histogram, however, it is more robust to noise as it
codes the input video frames into ternary patterns instead
of binary patterns like in LBP. Local ternary patterns use a
threshold value to threshold the pixels into a ternary code.
The pixels in the range of ’t’ are set to zero, the pixels above
this range are set to positive 1 (+1) and the values below
the range are set to negative 1 (-1) as shown in figure 4.

If ’k’ is considered as threshold constant, c is taken as the
value of center pixel and ’p’ be the neighboring pixel then
the local ternary pattern can be given as;

⎧⎪⎨
⎪⎩

1, if p > (c+ k)

0, if p > (c− k) and p < (c+ k)

−1, if p < (c− k)



Figure 5: Local Ternary Patterns of the Amplitudes
of first three IMFs

Each threshold pixel will therefore be comprised of one of
the three values. The neighboring pixels after the threshold
are grouped into a three value pattern called ternary pat-
tern. The histogram is then computed from these ternary
patterns. Since the histogram results in a large range, the
ternary pattern is split into two binary patterns. The re-
sultant histogram which represents the feature descriptor is
the concatenated histograms of the two binary patterns and
hence the double of size of LBP.
We have calculated the local ternary patterns of the ampli-
tudes of first three IMFs. These patterns are then arranged
in a hierarchical fashion to generate feature vector. A visual
representation of these LTPs is shown in figure 5.

3.4 Stack based Hierarchy of Features
We propose a stack based hierarchical approach of the lo-

cal ternary patterns to represent the input video frames as
a feature descriptor. The local ternary patterns generated
from the amplitude spectrum of each IMF are stacked to-
gether in a hierarchical fashion such that the pixels of each
IMF are adjacent to each other. All the adjacent pixels are
then summed together to form an integrated local ternary
pattern of the whole video frame. This represents a feature
vector of the whole video frame.
LTP histogram generation is performed for all the video
frames and the image which is to be matched for similar-
ity. Matching is performed by comparing the LTP histogram
of the marked object frame with all the frames of a video
stream. The histogram intersection is used as a distance
measure to calculate the similarity between two frames. Af-
ter the face of a person is authenticated correctly, the match-
ing score associated to it is stored in a database as depicted
in Figure 6.

4. EXPERIMENTAL SETUP
This section details the experimental setup and the pa-

rameters used to evaluate the proposed system. The re-
ported results mainly focus on the accuracy with blurred
content, accuracy under various illumination conditions, and
the scalability i) video stream decoding time, ii) video data
transfer time to the cloud, iii) video data analysis time on
the cloud nodes.
The proposed system is evaluated on an OpenStack based
cloud resource. The cloud consists of six server machine.

Start Decoded Frame Amplitude 
Spectrum

Generate Local 
Ternary Patterns

Stack of LTPs

Generate Intrinsic 
Mode Functions

Integrate LTPsCalculate Similarity 
Measure

Stop Store Results

Storage 
Database

HiPi Image Bundle

Figure 6: Workflow of the proposed system

Each machine has 12 cores with two 6-core Intel Xeon pro-
cessors running at 2.4 GHz with 32GB RAM and 2 Ter-
abyte storage capacity. Each cloud instance has 72 process-
ing cores with 192GB of RAM and 12TB of storage capacity.
The experimental results reported in this paper are obtained
from a 4 node cloud deployment. Each cloud node has 4 VC-
PUs, 8 GB RAM and data storage of 100 GB per node. Each
vCPU is running at 2.4GHz.
In order to evaluate the proposed system in the cloud, Hadoop
MapReduce framework [21] inspired by [26][27][28] is utilized
as shown in figure 7. The empirical mode decomposition
is implemented in JAVA. OpenCV [22] with JNI wrappers
for the native C++ library is used as image/video process-
ing library. Hadoop comes with Yarn which is responsible
for resource management and job scheduling. The Hadoop
MapReduce framework has a NameNode responsible for load
balancing among the nodes. The Data/Compute Nodes are
used for storing and processing the data.
The decoded frames are first bundled using the HIPI Im-
age Bundle [23] and are then processed by map-reduce jobs.
The map tasks perform the EMD and object classification
while the reduce tasks collect the results. The map-reduce
jobs use the configured chunk size of 128MB to define the
number of input splits from the HIPI ImageBundle (HIB).
Figure 7 depicts the process of video streams analysis on the
cloud.

The video dataset on which empirical mode decomposition
is applied is self-generated at University of Derby consisting
videos of different subjects. Each video stream in the video
dataset has time duration of around 120 seconds. The video
streams are H.264 encoded with a resolution of 704x528 and
a frame rate of 25fps. This makes a total of 3000 video
frames in each video stream. The data rate and bit rate of
each video stream are 421 kbps and 461 kbps.
The BioID[24] and Yale[25] Face Database are used to mea-
sure the efficiency of proposed approach. During the record-
ing of BioID Face Database, special importance has been
given to real world situations. Therefore, this database con-
tains a diversity of face sizes, background conditions and
illumination effects. The database comprises of 1521 gray
level images captured at resolution of 384x286 pixels. For
testing purposes, the images are artificially blurred by using
a Gaussian blur mask with various sigma values (0, 0.25 . .
.). Figure 8 shows some example images from BioID Face
Database.



Figure 7: Video Stream Analysis on the Cloud

Figure 8: Example images from BioID Face
Database with increasing artificial blur

The Yale Face Database contains images from various sub-
jects with different poses and illumination conditions. All
the images are manually aligned and cropped having a res-
olution of 168x192 pixels. Every subject demonstrates varia-
tions in illumination conditions (left-right, center-right, right-
right) and facial expressions (normal, sad, happy, sleepy).
Figure 9 shows some example images from the Yale Face
Database.

5. RESULTS AND DISCUSSION
The results obtained from the configurations described in

experimental setup section are described in this section. The
main focus of these results is to evaluate the system for clas-
sification accuracy with blurred content and with various
varying illumination conditions. The execution of the sys-
tem on the cloud evaluates the scalability and robustness
of the proposed system by analyzing various components of
the system such as image bundle creation time, video data
transfer time to the cloud, and video data analysis time on
the cloud nodes.

5.1 Accuracy with blurred content
The performance of the proposed system was evaluated

with the artificially caused blurred images in the first ex-
periment. The widely used BioID Face Database was used
for this purpose. The BioID Face Database contains images
which have variation in pose and expressions. These images

Figure 9: Example images from Yale Face Database
with various illumination conditions

were further artificially blurred by performing a convolution
with the Gaussian blur mask. The values of the mask ranges
from 0 to 5 with zero being no blur and 5 as the maximum
blur. It was therefore possible to observe the joint effect
of pose, expressions and blur. The mean recognition rates
of the proposed system and the widely used state of the
art techniques including LBP, LTP and LPQ are plotted
in figure 10. It can be observed that the proposed system
performs better than the existing techniques even with the
minimum blur to maximum blur. The existing approaches
tolerate slight blur but as the value of sigma increases, the
accuracy rate falls down rapidly. On the other hand, the pro-
posed system handles increasing blur expressively well. This
is because of the fact, that blur effect mostly resides in the
low frequency band. Since we are dealing with only high-
est three IMFs, the remaining low frequency components
and the residue are automatically discarded. This helps to
achieve high accuracy even with high sigma value.

5.2 Accuracy under various illumination con-
ditions

The performance of the proposed system was evaluated
with varying illumination conditions in the second experi-
ment. The widely used Yale Face Database was used for
this purpose. The Yale Face Database contains images which
have variation in pose, expressions and illumination condi-
tions. It contains images with lightning effects from dif-
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Figure 11: Mean recognition rates for various illu-
mination conditions

ferent angles such as left-right, center-right and right-right.
In-addition, the facial expressions vary with normal, happy,
sad and sleepy. The mean recognition rates of the proposed
system and the existing techniques are plotted in figure 11.
It can be seen that the proposed system tackles various illu-
mination conditions better than the existing techniques and
maintains a smooth accuracy plot.

5.3 Video data analysis on the cloud nodes
In order to process the video frames in parallel, we have

utilized the Hadoop MapReduce framework. The input data
which is to be processed is first transferred to Hadoop file
storage (HDFS). The results generated by the framework
are stored in the database. The cloud nodes are responsible
to execute analysis tasks . The map task in our system is re-
sponsible to execute empirical mode decomposition and the
stack based local ternary patterns approach. The reducer is
responsible for collecting the data and write it to the out-
put file. The MapReduce job splits the input hipi image
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Figure 12: HIPI Image Bundle Creation Time

bundle into various data chunks. These data chunks then
become input to the map tasks. The reducer gathers the
processed data from the map tasks which are then stored in
the database.

5.3.1 Creating Hipi Image Bundle from Recorded Video
Streams:

The recorded video streams are H.264 encoded for faster
transmission and efficient use of storage space. The video
streams are first fetched from the video storage and are de-
coded to extract video frames from the input videos. The
video decoding is performed by using the FFMPEG library.
These decoded video frames are stored as PNGs. Each video
stream is recorded at 25 frames per second. There are 3000
(=120*25) video frames for a video stream of 120 seconds
length. The numbers of decoded video frames is dependent
upon the length of a video stream being analyzed.
The individual frames are not suitable for further processing
on the compute nodes. This is because of the fact that the
MapReduce framework is developed to process large scale
data and processing a small file will decrease the overall per-
formance. These small files also necessitate lots of disk seeks
and hopping time from node to node. Therefore, the de-
coded frames are first bundled using the HIPI Image Bundle
[28] and are then processed by the map-reduce framework.

5.3.2 Hipi Image Bundle Creation Time with Varying
Data Sets:

In order to measure the Hipi Image Bundle creation time,
we have varied the datasets from 1GB to 7GB. These data
sets with varying sizes assisted in evaluating different fea-
tures of the system. These data sets are converted into
one hipi image bundle before passing on to the map re-
duce framework. The hipi image bundle creation time var-
ied between 13.18 seconds to 147.26 seconds for 1GB to 7GB
datasets respectively. Figure 12 shows the time required to
transform various input datasets into an image bundle. It
can be noted that the time needed to create an image bundle
increases with the increasing size of the data set.

We have also measured the time required to transfer the
decoded video streams to the cloud nodes. After transferring
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Figure 13: Date Transfer Time to Cloud Nodes

the video streams to the cloud nodes, the hipi image bundle
is created. The transfer time of a dataset to the cloud nodes
is dependent on the network bandwidth and the cloud data
storage block size. For the datasets in our experiments (1GB
- 7GB), the data transfer time varied from 4.8 minutes to
36.5 minutes. Figure 13 shows the data transfer time for
varying data sizes.

5.3.3 Analysing Video Streams on Cloud Nodes:
The scalability of the proposed system is evaluated by ex-

ecuting it on the cloud nodes. We have analyzed datasets
ranging from 1GB to 7GB on the cloud nodes. The time re-
quired to analyze datasets on the cloud nodes is measured to
evaluate the performance of the system. It is observed that
with an increase in the dataset size, an increasing trend is
observed in the execution time (Figure 14). The number
of spawned map tasks has a heavy impact on the perfor-
mance of the overall system. The numbers of map tasks
are dependent on the amount of data and the correspond-
ing input split size. The maximum number of map tasks on
a compute node depends on the input data set, the cloud
data storage block size and the available hardware specifica-
tions of the node. The results show that performance of the
system increases by distributing and parallelizing the work
across multiple compute nodes. In this particular setup the
default input split size of 128 MB is used.
As the number of nodes decreases, the amount of analysis

tasks on each node increases which ultimately reduces the
performance of the overall system. The degradation in the
performance occurs because each task waits for longer pe-
riod of time to get scheduled on the compute nodes. The
analysis task has a minimum execution time and it is not
possible to minimize the time beyond a certain limit. This
is because of the inter process communication and the data
read and write operation for the cloud storage. The pro-
posed approach on a single node takes 163 hours to analyze
a dataset of 7GB, while the same dataset is analyzed in 41
hours with 4 nodes. So a decreasing trend is observed in the
execution time with an increasing number of nodes.

6. CONCLUSION AND FUTURE WORK
A cloud based blur and illumination invariant object clas-
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sification system is presented and evaluated in this paper.
The proposed system overcomes the challenges of blur and
illumination by employing a stack based hierarchy of local
ternary patterns generated from the amplitude spectrum of
intrinsic mode functions of each input frame. The accuracy
of the proposed system is demonstrated by experimentations
on video data as well as publically available image datasets.
The system proved to outperform state of the art approaches
under controlled conditions. In order to demonstrate the
scalability of the system, it is deployed on a cloud based
infrastructure. The system proved to scale with increasing
volumes of data on an increasing number of nodes. The
larger volumes of data require more analysis time. However,
the analysis time would decrease with the addition of more
nodes to the cloud.
In future, we aim to extend the approach to cope with rota-
tion and translation challenges. We would also experiment
the system on a much bigger dataset with large number of
cloud nodes. The integration of proposed system with deep
learning approaches will also be the part of our future work.
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