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Abstract 
This tesis reports on research carried out and published during the last twenty years on 
different problems of Music Information Retrieval (MIR). We organize the text as a 
personal account and critical reflection along four hypothesized ages that have shaped the 
evolution of MIR. In the age of feature extractors, we present work on features to describe 
sounds and music, especially timbre and tonal aspects. In the age of semantic descriptors 
work on describing music with high-level concepts, such as mood, instruments, 
similarities, cover versions or genres, usually inferred with machine learning from 
annotated collections is reported. In the age of context-aware systems we report on user 
models for recommendation and for avatar generation, in addition to factors that influence 
music listening decisions. We finally discuss the possibility of a more recent age of 
creative systems where MIR features, classifiers, models and evaluation methodologies 
aid to enhance or expand music creation.  

Resum 

Aquesta tesi informa sobre recerca realitzada i publicada durant els últims vint anys en 
diferents problemes de Recuperació d'Informació Musical (MIR). Organitzem el text com 
a visió personal i reflexió crítica i utilitzant quatre hipotètiques edats que han configurat 
l'evolució del MIR. A l'edat dels extractors de característiques, presentem treballs sobre 
trets per a descriure sons i música, especialment timbre i aspectes tonals. A l'edat dels 
descriptors semàntics es treballa en la descripció de música amb conceptes d'alt nivell, 
com l'estat d'ànim, els instruments, les similituds, les versions musicals o els gèneres, 
generalment deduïts amb l'aprenentatge automàtic a partir de col·leccions anotades. En 
l'era dels sistemes sensibles al context, informem sobre models d'usuaris amb l’objectiu 
de fer recomanacions musicals i generació d'avatars, a més de factors que influeixen en 
les decisions d'escoltar música. S’esmenta, finalmente, una posible i més recent edat dels 
sistemes creatius on els descriptors, classificadors, models i metodologies d'avaluació de 
MIR ajuden a potenciar o ampliar la creació musical. 
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1. THE THREE AGES OF MIR
Music Information Retrieval or, as some of us prefer, Music Information Research, is a 
multidisciplinary field shaped during the last two decades and which is still struggling to 
find its place in the world. According to some authors, “MIR is a multidisciplinary 
research endeavour that strives to develop innovative content-based searching schemes, 
novel interfaces, and evolving networked delivery mechanisms in an effort to make the 
world’s vast store of music accessible to all” (Downie, 2004) and “is concerned with the 
extraction, analysis, and usage of information about any kind of music entity (for 
example, a song or a music artist) on any representation level (for example, audio signal, 
symbolic MIDI representation of a piece of music, or name of a music artist) (Schedl, 
2008). My own definition, during many years was that it dealt with “understanding music 
understanding”1 (Herrera et al., 2009).  
I keep in my memory the excitement and feelings of “doing the right thing” when I made 
my mind up to write a paper for the then-called “First Symposium on Music Information 
Retrieval” held in Plymouth, Massachussetts in October 2000. I was then working in 
automatic audio music analysis (a topic that, surprisingly to todays’ criteria, was not so 
popular then), in collaboration with Geoffroy Peeters in the IRCAM, and the context of 
music information retrieval perfectly matched our own goals. My intuition was, therefore, 
that the conference should not be missed, as it could change my life. I guess this was 
somehow what happened then. The paper was accepted (Herrera, Amatriain, Batlle, & 
Serra, 2000) and, after some time, it was reworked, expanded and updated as a journal 
paper (Herrera, Peeters, & Dubnov, 2003) and it became my most-cited journal article 
until very recently. But that was just one early landmark in this history. 
The work presented in this thesis is then a personal account of my research in this field 
during a long lapse of time. To organize the content of this thesis, different options were 
considered, worked and discarded; I have finally kept the “temporal” metaphor of the 
ages in the development of a community of common research interests and practices (a 
research field, in other words). It should be noted that my perspective here is not that of 
an historian: this is not a history of MIR nor even of my research; it is just a personal 
interpretation or organization of problems, papers and research reports in which I felt 
deeply involved, in a way that might make sense (hopefully to other people different than 
me). Contrasting to most of the theses in the field, I will not talk about cutting-edge, state-
of-the-art systems, I will not try to sell any system or algorithm. Some of those ideas, 
algorithms and systems reported here were, at its time, in such category and this feature 
will, indeed, be mentioned.  
The “three ages of MIR” concept refers to the hypothesis that the evolution of the 
discipline, up until now, might be characterized as evolving through (or maybe revolving 
around?) three different stages: the age of extractors, the age of semantic descriptors and 
the age of context-awareness. This way of viewing the evolution of the field is a direct 
derivation of what was proposed long ago for digital media (Nack, 2004) but in this 
elaboration I am also getting some inspiration (surprisingly) from a taxonomy of 
intellectual behaviour levels used by educational psychologists2 (Bloom et al., 1956; 

1  This concept is taken from Fiske (2008), who uses it in a different way and context. 
2 A figure with such taxonomy can be found here 
https://meestervormgever.wordpress.com/2015/02/05/revised-blooms-taxonomy-center-for-excellence-in-

https://meestervormgever.wordpress.com/2015/02/05/revised-blooms-taxonomy-center-for-excellence-in-learning-and-teaching/
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Anderson & Krathwohl, 2001), as if the evolution of the discipline passed through similar 
stages as an educational process. The age of extractors was driven by the need to list, 
recognize and identify audio and music descriptors, and to develop audio and music 
algorithms to convert the signal into, mostly, numerical features. The drive of the age of 
semantics was the need to address summarization, clarification and prediction, leading 
the research efforts towards connecting the signal with users’ mental representations of 
its content. Symbolic representations (categories and tags, for example, became part of 
the research topics then). Bringing “context” into the picture opened the possibility of 
integrating, differentiating or judging music and hence, in the age of context-awareness, 
researchers’ attention turned on many aspects (environmental variables, cultural data 
sources, personal biographies, etc.) that were previously overlooked, ignored, or that were 
not addressable before, because of technological limitations or because of conceptual 
biases. The many different “contexts” could be found surrounding the user or listener, 
surrounding the music object that was on the focus of his/her interest, or framing his/her 
cultural believes and practices. A possible fourth age, not anticipated by Nack (2004), 
will be hypothesised as we reach the final chapters of the thesis. This one would be driven 
by operations such as generation and creation, meaning that users, content and metadata 
interact and influence one to another one, thanks to systems that go beyond the multi-
level and multi-dimensional user-centred and contextualized analyses of music, which 
were achieved in the previous stages. These new systems will apply all that wealth of 
knowledge in music creation scenarios like digital audio workstations, DJ decks, sound 
installations or live concerts.  
The observations, speculations and summaries on the MIR evolution that are contained 
here can be viewed as a continuation of other publications that I decided to be left out for 
conciseness: “The Discipline formerly known as MIR”, presented in a special session on 
“The Future of MIR” carried out in ISMIR 2009 (Herrera et al., 2009), and “MIRrors: 
Music Information Research reflects on its future” (Herrera & Gouyon, 2013), written as 
the editorial of a special issue on that was published by the Journal of Intelligent 
Information Systems on the occasion of a special session in ISMIR 2012. Contrasting to 
such partial and subjective views, comprehensive technical introductions to MIR can be 
found in some good books on the topic (Lerch, 2012; Müller, 2105; Knees & Schedl, 
2016; Weihs et al., 2016).  
The core of all the forthcoming chapters in this thesis is formed by a selection of papers 
that I co-authored, and in which I played different roles (supervisor, idea generator, co-
writer, statistics advisor, software tester/designer, or principal writer). Because my most 
important role was that of research supervisor, any error or mistake should be attributed 
to me in the first place instead of blaming any other person. There follow three chapters, 
each one centred on one of the above-mentioned “ages of MIR”, then a fourth one where 
we discuss on the possibility that a new age could be happening and how this one would 
be characterized, and a final one containing closing thoughts. Each chapter (leaving aside 
the last one) starts with a short introduction to its topic, continues with the list of selected 
papers, and closes with a summary of the contributions made in the reported research. To 
provide a visual tool for getting some “big picture”, figures 1.1, 1.2. and 1.3 show the 

                                                 
learning-and-teaching/. It has not been included in the text as it only provides a loose conection with the 
main concepts of the chapter. 
 

https://meestervormgever.wordpress.com/2015/02/05/revised-blooms-taxonomy-center-for-excellence-in-learning-and-teaching/
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selected papers on a timeline where other landmarks (mostly projects framing the reported 
research) have been included. 
 
  

 
Figure 1.1 Timeline with the articles included in the age of feature extractors 

 

 

 

 

 

Figure 1.2 Timeline with articles in the age of semantic descriptors. 
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Figure 1.3. Timeline with articles in the age of context-aware systems 
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2. THE AGE OF FEATURE EXTRACTORS

“That crystalline sound”, Jim [Morrison] jumped in. “I like the sound of 
broken glass falling from the void into creation.” “Which sound was that?” 
said Paul Beaver. “A couple back from where you are now,” Rothchild said. 
“It reminded me of the Kabbalah,” said Jim. “Kether the I AM, creating 
duality out of the one. All crystalline… and pure. You know, that sound.” 
“Did I make a sound like that?” “Sure,” Jim said. “A couple back.” And 
Paul Beaver began to unplug and replug patch cords, and twist little knobs, 
and strike the keyboard, which emitted strange and arcane and utterly 
unearthly tones that sounded nothing like the Kabbalah or Kether; the crown 
of the Sefiroth. None of the sounds he was creating sounded pure and 
crystalline. And then we realized...he couldn't get back. 

Ray Manzarek, Light My Fire: My Life with The Doors. 
New York: Putnam, 1998, pp. 257. 

It’s more fun to compute (x2) 

Ralf Hütter / Florian Schneider-Esleben / Karl Bartos 

2.1. Introduction 
It should not be surprising that the building blocks of MIR are features describing signal 
properties, close to what Nack (2004) termed “the physical surface” of the audio file or 
stream. Because of that proximity to the physical encoding these descriptors have been 
frequently considered “low-level features”. MIR would be unfeasible without the 
existence of music descriptors or features that grant decisions on differences or 
similarities between two or more music entities (audio excerpts, scores, etc.), or that allow 
such entities to be sorted or ranked. Signal processing techniques make feature extraction 
feasible and provide a solid ground for defining and developing a wealth of different 
algorithms that are capable of multi-featured descriptions (of properties related to 
amplitude, to frequency, to the spectral shape, to temporal changes, etc.) (Klapuri & 
Davy, 2006). Examples of such features can be the representation of a spectral envelope 
as a frequency bin vector output from an DFT, the representation of the energy by means 
of the Root Mean Square value, noisiness, fundamental frequency, or the almost 
ubiquitous Mel-frequency cepstral coefficients. In this chapter we provide an account of 
our ideas and some contributions that were aligned or shaped what we (following Nack, 
2004) have called “the age of feature extractors”. Good summaries of features used for 
music content analysis can be found in recent textbooks (Lerch, 2012; Müller, 2105), in 
addition to the “classic” early account on them (Peeters, 2004). 
As the creation of music has usually social functions and becomes the result of 
coordinated combination of different performers, a natural approach to the description of 
their recordings has involved source separation (Plumbley et al., 2002). Considering that 
human brains do not really “separate” sources into representations alike to those of a 
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multitrack recorder3 (Bregman, 1990; Woods & McDermott, 2015; Puvvada & Simon, 
2017; Hausfeld et al., 2018), and taking into account the complexities and errors of most 
of the source separation approaches, at least in the beginning of this age, we opted, from 
the very beginning for an approach termed understanding without separation (Martin et 
al., 1998)4. Under our view, features should be extracted from the raw audio without any 
previous attempt to separate instruments, melodic lines or noises and harmonics. In our 
long-term research program there was an explicit assumption that there is a lot of 
information available in the waveform and its low-level representations, and that this 
should make possible to compute relevant descriptors of what is going on there. Finding 
or inventing usable (and, indeed, computable) features, even if they were just rough 
approximations to musicians’ or listeners’ concepts, was the main goal during this age of 
feature extractors. 
Most of the early research reported in this chapter was also motivated by our involvement 
in the development of a doomed standardization initiative that was named MPEG-75 and 
that attracted many people from companies and universities mostly between 1999 and 
2001. Aligned with the age of feature extractors, MPEG-7 aimed to devise a way to 
automatically (or semi-automatically) describe any kind of multimedia content (more 
formally, a “Multimedia Content Description Interface”)6. Audio and music description 
schemes were devised, discussed and adopted in meetings that were closer to business 
pitching than to scientific debating, and that were mostly driven by big companies’ 
interests, instead of true and realistic considerations and requirements from potential users 
of those systems to be built upon such features and description schemes.  
A third crucial aspect in the age of feature extractors is the shaping of a research field 
around the so-called “ISMIR”7 conferences. I was lucky to get a paper accepted in the 
first of such conferences (Herrera et al., 2000), something that, at that time, I suspected it 
could change my research trajectory (as I think it did). That paper evolved into a journal 
article and was expanded to become one of those included in this chapter. ISMIR 
conferences have made possible, for the good and for the bad, to define methodological 
practices and research agendas, which is what characterizes a research community. In the 
beginning of the age of feature extractors special attention was devoted to defining figures 
of merit to objectively evaluate algorithms, or to creating the first annotated collections 
that facilitated such systematic evaluation. A practical consequence of that was the 
institution of the MIREX (Music Information Retrieval Evaluation eXchange)8, a yearly 
tournament where algorithms using cutting-edge features and processing architectures to 
solve specific problems such as chord detection, structural segmentation, tempo 

3 As literatura suggests, the typical representation is alike to figure plus background, though in cases of 
specific auditory training a bit more sophisticated multi-streaming can be observed. 
4 We just need to see what can be achieved with convolutional networks and other deep learning 
techniques (Uhlich et al., 2017; Ward et al., 2018) and with software such as Izotope RX or Celemony’s 
Melodyne to realize how the topic and the technologies have progressed/improved in recent years. 
5 http://mpeg7.org/mpeg-7-standard/ 
6 The number seven indicated a leap from the previous successful MPEG low bitrate coding of audio and 
video standards, known as MPEG-1 (where the, in another time ubiquitous, MP3 format was defined), 
MPEG-2, and MPEG-4. 
7 Originally “International Symposium on Music Information Retrieval”, it soon became the 
“International Society for Music Information Retrieval” conference, reflecting the consolidation of a 
community of practitioners, with specific problem agendas and techniques on its own. 
8 http://www.music-ir.org/mirex/wiki/MIREX_HOME 

http://mpeg7.org/mpeg-7-standard/
http://www.music-ir.org/mirex/wiki/MIREX_HOME


7 

estimation or drum transcription are compared and evaluated. The International Society 
of Music Information Retrieval9 has been, since 2008, the formal representation of such 
growing community of multidisciplinary researchers with a common interest in music 
information retrieval. 
A fourth factor defining the age of extractors were, probably, some of the music and 
computing research projects that the (then) European Commission funded. CUIDAD10 
and CUIDADO11 (Content-based Unified Interfaces and Descriptors for Audio/music 
Databases available Online) were projects led by IRCAM between 1999 and 2003. These 
projects became the framework in which we developed our first set of descriptors to 
provide functionalities for an application called “The Sound Palette” (Vinet et al., 2002), 
which was intended to be a tool for metadata generation/annotation, in parallel with the 
generation of content. Some of those descriptors and ideas on how to organize flexible 
but powerful data structures to allow for music and audio queries became part of the 
above-mentioned MPEG-7 standard (Peeters, 2004; Peeters, et al., 2000; Herrera et al., 
1999a; Herrera et al, 1999b). For historical rigour, it must be acknowledged that they 
were not the only European projects pushing in the direction of feature extraction at that 
time. Another remarkable influence was the work on machine listening that, in the decade 
surrounding the year 2000, was done in the MIT under the supervision of Barry Vercoe 
(Ellis, 1996; Casey, 1998; Martin, 1999; Scheirer, 2000; Smaragdis, 2001; Kim, 2003; 
Chai, 2005; Whitman, 2005; Jehan, 2005). 
As we will discuss in the next chapter, low-level features are, nevertheless, not enough to 
allow the operations and functionalities required by the diverse research and application 
scenarios that MIR has progressively tackled (e.g., structural segmentation, classification, 
recommendation, transcription or creative transformation). Some of these applications 
have demanded new features and, consequently, the age of extractors has been 
overlapping with other ages in recent times. We are in fact still living in an age of 
extractors: even though they have been the initial quest of MIR researchers, and even 
though their sophistication, coverage and effectiveness has increased along the two 
decades here contemplated, they are still a fertile ground for research (Peeters et al., 
2015). Proposals such as I-Vectors (Eghbal-zadeh, Lehner et al., 2015, Eghbal-zadeh, 
Schedl et al., 2015), which adapt to music a state-of-the-art technique for speaker 
verification, are getting increasing attention (Park et al., 2018). Features inspired in 
auditory perception seem to be still a fruitful path too (Richard et al., 2013; Hemery & 
Aucouturier, 2015). Finally, features extracted from hidden layers of deep networks, as 
naturally as with convolutional neural networks (LeCun et al., 1998; Humphrey, Bello 
and LeCun, 2013; Pons et al., 2017), or using other architectures and data interpretation 
techniques (Lee et al., 2009; Hamel & Eck, 2010; Schmidt & Kim, 2013; Dieleman & 
Schrauwen, 2014; Kereliuk & Sturm, 2015), are the most promising path to break the 
glass-ceiling reported in most of the typical music description problems (Aucouturier & 
Pachet, 2004; Pampalk, Flexer and Widmer, 2005). These abstract features show also 
properties that grant transfer learning (i.e., to be directly applied to different conceptual 
problems other that the one in which they have been created) (Choi et al., 2017b). 

9 https://www.ismir.net/ 
10 https://cordis.europa.eu/result/rcn/26464_en.html 
11 https://cordis.europa.eu/project/rcn/57197_en.html 

https://www.ismir.net/
https://cordis.europa.eu/result/rcn/26464_en.html
https://cordis.europa.eu/project/rcn/57197_en.html
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2.2. Papers included in this chapter12 
Herrera, P. & Bonada, J. (1998). Vibrato extraction and parameterization in the spectral 
modelling synthesis framework. Proceedings of the Digital Audio Effects Workshop 
(DAFX98), Barcelon, Spain. (paper cited 74 times) 
Herrera, P., Yeterian, A., Gouyon, F. (2002). Automatic classification of drum sounds: 
a comparison of feature selection methods and classification techniques. In C. 
Anagnostopoulou et al. (Eds), "Music and Artificial Intelligence". Lecture Notes in 
Computer Science V. 2445. Berlin: Springer-Verlag. (Series IF: 0.8; Q2 in Computer 
Science journals; paper cited 148 times) 
Herrera, P., Peeters, G., Dubnov, S. (2003). Automatic Classification of Musical 
Instrument Sounds. Journal of New Music Research. 32(1), pp. 3-21. (Journal h-index: 
22; Journal IF 2016: 1.122; Q1 in music-related journals; paper cited 231 times) 
Gómez, E. & Herrera, P. (2008).  Comparative Analysis of Music Recordings from 
Western and Non-Western traditions by Automatic Tonal Feature Extraction. Empirical 
Musicology Review, 3(3), pp. 140-156. (paper cited 33 times) 
Bogdanov, D., Wack, N., Gómez, E., Gulati S., Herrera, P., Mayor, O., Roma, G., 
Salamon, J., Zapata, J. & Serra, X. (2014). ESSENTIA: an open source library for audio 
analysis. ACM SIGMM Records. 6(1).  (Winner of ACM MM 2013 Open Source 
competition; 5 citations, but a longer report of Essentia (Bogdanov et al., 2013a), not from 
a journal, has been cited 204 times) 

2.3. Contributions in the selected papers 
Since 1998, I have been contributing to develop, test and disseminate acoustic features 
that are specifically tuned to music description problems. Even though it is not a journal 
paper, I have included here, because it is still frequently cited, our early and therefore 
somehow pioneer paper “Vibrato extraction and parameterization in the spectral 
modelling synthesis framework” (presented in the very first DAFX conference, in which 
organization I also collaborated). In that paper we proposed a couple of strategies for 
detecting expressive frequency modulations (i.e., vibrato) in monophonic audio. As a 
property of fundamental frequency, vibrato could be detected, characterized (rate and 
depth) and even suppressed (up to a certain point) by means of either low-pass filtering 
the F0 envelope or by applying an IFFT to it, once the time-varying F0 was extracted 
using a “harmonic plus noise” (Serra, 1989; Serra et al., 1997) decomposition. 
Surprisingly to our current standards, but being the norm in those early days, the proposed 
approaches were justified by discussing just a few of positive examples (and sometimes 
using some failures or errors as a source for discussion or indicating further required 
work). Annotated collections and large-scale evaluations, including statistics and figures 
of merit, were still outside the common practices in the dawn of the age of feature 
extractors.  

12 Citation count retrieved from Google Scholar, on September 10th, 2018, for all the selected papers in 
this thesis. 
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In “Automatic classification of drum sounds: a comparison of feature selection methods 
and classification techniques” (Herrera et al. 2002) we studied classifiers and features that 
discriminated well the isolated sounds of a drum kit. This was, to my knowledge, one of 
the earliest papers using Weka13 for building music-related classification models. At that 
time, addressing music description problems with machine learning was not that usual as 
it has been since then. As far as I know, the paper contained the first proposal of a generic 
method for the automatic classification of isolated drum sounds (i.e., telling apart snares 
from toms, from bass drums, from hi-hats, etc.) using features computed from the audio, 
and also explored the differences between flat classification and hierarchical 
classification involving first the determination of the subfamily of the instrument (i.e., 
membranes versus plates). We kept on working on this topic for some time, using 
different approaches and application scenarios (Herrera et al., 2003; Sandvold et al., 2004; 
Pampalk et al., 2004; Herrera et al., 2004; Pampalk et al., 2008; Haro & Herrera, 2009; 
Gómez-Marín et al., 2017). 
In "Automatic Classification of Musical Instrument Sounds" (Herrera et al., 2003) we 
further elaborated what had been our contribution to the first ISMIR conference (Herrera 
et al., 2000). This has been my most cited work until recently, probably because of its 
tutorial tone, as it basically summarizes the state of the art (at that time) on the topic of 
sound descriptors and sound classification (as a matter of curiosity, it was one of the 
earliest papers remarking the potential of Support Vector Machines for classification, 
when very few papers on music audio analysis were using them)14. Although other feature 
taxonomies were proposed in that period and have probably become more successful 
(Lessafre et al., 2003; Peeters, 2004a; Lessafre, 2006), we proposed a classification of 
features according to four points of view: 
1. The temporal dynamics of the computed feature, i.e. the fact that the features represent

a value extracted from the signal at a given time (instant, static), or a parameter from
a model of the signal behaviour along time (mean, standard deviation, derivative or
Markov model of a parameter);

2. The temporal scope of the description provided by the features: some descriptors
apply to only part of the object (e.g. description of the attack of the sound), whereas
other ones apply to the whole signal (e.g. loudness). To this respect, (Snyder, 2000)
discusses three different time levels of musical experience in human listeners: event
fusion happens at the shortest level (less than 30 milliseconds); melodic and rhythmic
grouping happens between 0.03 and 8 seconds; finally, form elements require more
than 8 seconds. Considering neurophysiologic evidence, it seems that feature
extraction (pitch height and chroma, intensity, roughness, timbre…) takes not more
than 200ms, melodic, rhythmic and tonal analysis takes not more than 400ms,
meaning is available after 500ms of processing, and basic structural building and
reanalysis takes up to 900ms (Koelsch & Siebel, 2005). Even though these time

13 Weka (Witten et al., 2016) was one of the most popular machine learning toolboxes during the first 
decade of the 21st Century, and it is still frequently used as proved by the recent current fourth edition of 
the textbook associated to it. 
14 A somehow “companion” to that paper, also with a tutorial-like organization, was the book chapter 
“Automatic classification of pitched musical instrument sounds” (Herrera, et al., 2006). 
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constraints are not closely followed by our artificial systems, the order and magnitude 
of the corresponding computational complexity can be considered as equivalent. 

3. The “abstractness”, i.e. what the feature represents (e.g. cepstrum and linear
prediction are two different representation and extraction techniques for representing
spectral envelope, but probably the former one can be considered as more abstract
than the latter, as the numbers that are computed do not have a direct interpretation);

4. The extraction process of the feature. According to this point of view, we could
further distinguish:
• Features directly computed on the waveform data as, for example, zero-crossing

rate (the rate that the waveform changes from positive to negative values),
temporal centroid, log-attack time, or amplitude RMS;

• Features extracted after performing a transform of the signal (FFT, wavelet…) as,
for example, spectral centroid (i.e., the “gravity centre” of the spectrum), spectral
flatness, or the harmonic pitch class profile (HPCP);

• Features that relate to a signal model, as for example the sinusoidal model or the
source/filter model or the coefficients of a Mel-cepstral transform;

• Features that try to mimic the output of the ear system (Bark or ERB filter
outputs).

• Features that require the application of a class model (i.e., genre, instrumentation,
etc.), usually becoming “semantic” features (see next chapter).

In "Comparative Analysis of Music Recordings from Western and Non-Western 
traditions by Automatic Tonal Feature Extraction" we raised an early warning of the need 
to address the study of music cultures that, in the history of computer music in general, 
and in the early years of MIR were totally overlooked. As many musical cultures in the 
world do not use any kind of notation to preserve and transmit their heritage, audio 
features seemed the right vehicle to study their similarities and differences, if only with a 
very broad, generic, naïve and even simplistic perspective. In this article we wondered if 
we could use some of our available descriptors to compare music from different cultures. 
We analysed which descriptors were the most relevant to distinguish between music from 
broadly defined cultures (i.e, Africa, Java, Japan, India…), represented by a collection of 
over 1500 audio files, and observed that such discrimination could be on the basis of the 
shapes in the data distributions of certain features (such as tuning, deviations from equal 
temperament, statistics of low-level tonal descriptors, dissonance or timbre-related 
descriptors), achieving accuracies above 85%. Some years later, the most ambitious MIR 
project to bring important musical traditions to the focus of MIR researchers, 
COMPMUSIC, was launched in our group15 (Serra, 2011). I dare to speculate here that 
the work done for our paper was among the inspirational sources that led to the 
COMPMUSIC project proposal. 
Wrapping up more than a decade of working on feature extraction, “ESSENTIA: an open 
source library for audio analysis” (Bogdanov et al., 2014) reports on the library that has 
been developed and used in many research projects carried out in the MTG and all over 
the world (see also Bogdanov et al., 2013a and Bogdanov et al., 2013b). The library runs 
in the three main computing platforms and makes possible the computation of timbre, 
loudness, pitch, rhythm, tonal and morphological descriptors, in addition to their 

15 http://compmusic.upf.edu/ 

http://compmusic.upf.edu/
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statistical moments. It also includes Python bindings and Vamp16 plugins for easy 
extension, integration and prototyping. The impact that Essentia created (and is still 
creating) on the research community, can be somehow tracked in a page17 that lists the 
papers using it. Many of them have not been done inside or in connection with the MTG 
and, because of such wide adoption, the library is still maintained and periodically 
updated.  
As mentioned before, the age of feature extraction coexists with other ages, because no 
initial problem can be considered “solved” yet, and newer features have not exhaustively 
covered the huge space of perspectives that can be adopted when describing waveforms 
and its content. A new turn of the road has been witnessed, for example, since the 
introduction of deep learning algorithms. Now, researchers seem to be confident on the 
computing capabilities of hidden-layered networks to “discover” the right features to 
effectively model a problem (Choi et al., 2017a; Choi et al., 2017b; Han et al., 2017; Lee 
& Nam, 2017; Pons et al., 2017). Although the promise of automatic feature discovery 
can be traced back to a system such as Pachet’s Extractor Discovery System (Zils & 
Pachet, 2004), there is an important tradeoff involved in it: interpretability. There are 
indeed many scenarios were interpretability is not important, provided that the system 
performs top-notch. But domain knowledge brought in by humans, even in such 
situations, can be a bonus to properly crafting such systems, not to mention the Occam’s 
razor or parsimony principle that has guided human research as we have known in the 
past centuries (i.e., an algorithm that is orders of magnitude more complex than another 
one should provide a performance that is orders of magnitude better than the simpler one). 

16 https://www.vamp-plugins.org/ 
17 http://essentia.upf.edu/documentation/research_papers.html 

https://www.vamp-plugins.org/
http://essentia.upf.edu/documentation/research_papers.html
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Abstract

Periodic or quasi-periodic low-frequency components (i.e. vibrato and tremolo) are present in steady-
state portions of sustained instrumental sounds. If we are interested both in studying its expressive
meaning, or in building a hierarchical multi-level representation of sound in order to manipulate it and
transform it with musical purposes those components should be isolated and separated from the
amplitude and frequency envelopes. Within the SMS analysis framework it is now feasible to extract
high level time-evolving attributes starting from basic analysis data. In the case of frequency envelopes
we can apply STFTs to them, then check if there is a prominent peak in the vibrato/tremolo range and,
if it is true, we can smooth it away in the frequency domain; finally, we can apply an IFFT to each
frame in order to re-construct an envelope that has been cleaned of those quasi-periodic low-frequency
components. Two important problems nevertheless have to be tackled, and ways of overcoming them
will be discussed in this paper: first, the periodicity of vibrato and tremolo, that  is quite exact only
when the performers are professional musicians; second: the interactions between formants and
fundamental frequency trajectories, that blur the real tremolo component and difficult its analysis.

1 Introduction

Long sustained notes become boring and
uninteresting if their steady states have a strictly
constant fundamental frequency. Because of that and
other musical reasons to be found in music
performance  treatises, good performers invest a lot of
time to developing proficiency in techniques for the
continuous modulation of frequency and/or
amplitude. This kind of modulations are respectively
called vibrato and tremolo and its feasibility for every
instrument depends on its sound generation
mechanisms (for example, string instruments favor
vibrato and otherwise reeds favor tremolo). The
scientific study of vibrato can be traced backwards to
the work by Seashore [1] who, notwithstanding his
technological limitations, yielded a rough but valid
characterization of that phenomenon. More recent
studies ([2], [3], [4], [5]) have been developed with
the help of modern analysis techniques and devices
but we can conclude that, although we understand the
basic facts about vibrato in different musical
instruments,  more research is needed on vibrato as a
physical phenomenon (not to mention as a musical
resource, indeed), specially on its temporal evolution
and its way of change between consecutive notes.
Anyway, if it is parametrically and/or procedurally
possible to describe vibrato, it should be possible to
manipulate it for musical, engineering, or acoustical
purposes.

As Desain and Hoenig [6] noted, the shape of
musically modulated signals is quite complex to be
extracted without a solid model of analysis. One of
those models could be the Spectral Modeling
Synthesis (SMS) developed by Serra [7]. Recent
software developments inside that framework ([8],
[9], [10]) have made possible to segment a continuous
signal such as a musical phrase or a long note into
different regions that have different basic features or
parameters both static and evolving along time (i.e.
mean fundamental frequency, mean amplitude,
amplitude tendency, noise profile, amplitude and
fundamental frequency envelope, etc.); once those
parameters have been extracted, it is possible to
manipulate them separately in order to achieve
delicate sound transformations during  the re-
synthesis stage. Consequently there are certain
situations in which it could be useful to separate the
contribution of modulation processes over a stable set
of parameters  in order to achieve a greater flexibility
and better quality of synthesis and transformation.

The vibrato problem can be decomposed into three
subproblems to be tackled: 1) Identification (or
Detection and Parameterization); 2) Extraction; and
3) Re-synthesis. Considering that our target system is
an off-line (non real-time) one in this paper we will
focus on the first two points (see [11] for a synthesis
oriented paper).
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2 Frequency –domain strategy

From the frequency-domain point of view, vibrato
detection in an off-line system assumes that a steady
state has been correctly delimitated and parameterized
in a previous stage of the analysis; that is to say that
we have obtained a fundamental frequency track
whose frequency is constrained in a range of less than
a whole tone around an ideal “mean” (although the
usual vibrato depth reported by different studies
carried away with professional musicians is lesser
than half a tone, it should be noted that not so well
trained performers generate larger excursions from
the nominal fundamental frequency). The
fundamental frequency track obtained in SMS
analysis is an envelope of data representing Hertzs
along time, and has a number of values equal to the
frame rate of analysis (typically we use 345 points per
second so that each one of our envelope frames
integrates information for such a temporal lapse);
thus, that envelope will be the starting data for the
process (for details see [9]).

Figure 1. Two fundamental frequency tracks: a)
from a steady state portion of sound without
vibrato; b) from a steady state portion of a
sound with vibrato.

The vibrato detection proceeds as follows: the
discrete fundamental frequency track is first
transformed into a 0-centered track by computing the
global mean and subtracting it from every
fundamental frequency value in the original track.
This smoothed and 0-centered track is then
windowed. A window size of 128 points or 0.37
seconds (more than 2 times the lowest period that is

expected to be found for a vibrato) with a 50% of
window overlap has been proved suitable for our
purposes. Different kind of windows (Blackman-
Harris, Kaiser, Hamming) have been tested yielding
no significative differences. For each window its FFT
is then computed and spectral peaks are calculated
with parabolic interpolation. In case the analyzed
region has vibrato we get  a prominent peak around
5/6 Hz (in fact it is the most prominent peak
detected). As expected, such a clear and stable peak
is not present when the region has no vibrato. The
vibrato detection process concludes with the
extraction and storage of the rate and the depth of
vibrato as high-level parameters of the analyzed frame
(in fact, they will be later pooled with the values for
all the envelope frames and global mean values will
be extracted for a whole region).

At this point, the vibrato extraction proceeds.
Different algorithms could be implemented, as for
example a similar one to the SMS low-level analysis
(i.e. by additive synthesis and subtraction of the
harmonic part), but it is more economic and easy to
“crop” the prominent peak (and sometimes the second
one) of every envelope. Then the IFFT of the altered
spectrum is computed so that we get a signal without
the modulation components, that is, more stationary
than the original one.

Figure 2. Comparison of a fundamental
frequency track of a steady state portion of
sound: a) with its original  vibrato; b) the same
fundamental track after vibrato extraction in the
frequency-domain.
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3 Time-domain strategy

In the time-domain there are several robust techniques
for fundamental frequency estimation [12] that could
be suitable for vibrato extraction. Besides that, time-
domain strategies offer important advantages such as
the option of using shorter windows. In such a
scenario, we could find practical situations that only
demand to get rid of vibrato, but not necessarily to
characterize it in full detail. Given that constraint, a
filtering strategy seems quite suitable to be
approached (on the other hand, see [13] for a time-
domain -although not real-time- complete solution
without using filters).

In order to design an appropriate filtering algorithm
for this task we have to take into account the fact that
the value to be given to the filter at every point of
time should be centered around a conventional 0 (in
this case the mean fundamental frequency). For an
off-line system such a central value could be the mean
frequency of the steady state, but in a real-time system
that center must be approximated  from the past
behaviour of the fundamental frequency track. If
much previous information is used in computing such
an approximation then we will lose the temporal
trends for the pitch, but if only very recent values are
taken into account then we will lose the low
frequency modulations that we are addressing to (in
fact this is something like a paradox, because losing
low frequency modulations is what we are trying to
achieve!). An acceptable solution should be a number
of points spanning more than a common vibrato cycle,
and at least one of the shortest vibrato cycle we could
find. After some trial and error we settled into a filter
buffer that takes into account the preceding 80
envelope points (about one vibrato cycle of 4.5 Hz)
and does not blur the mid-term variations of the
fundamental. If the system does not yet have 80 data
points it uses the mean of the available points.  We
feel, nevertheless, that this mechanism should be
exhaustively refined in order to obtain better results
as we can see from Figure 3.

After we get the discussed mean value, we can apply
a filter to the incoming data. Because both the vibrato
rate and depth will be constrained, we have
implemented a 6-order Butterworth high-pass filter
that effectively eliminates frequencies lower than 10
Hz from the fundamental frequency track. The
selection of the filter was done with the help of
MATLAB, and finally we opted for a filter defined
along the following parameters: (passband=.25
radians (approx. 21Hz.), stopband=.11 radians
(approx. 9 Hz), passband ripple = 3 dB, stopband
attenuation = 40 dB).

Although this strategy does not allow to characterize
vibrato at the filtering stage, the blackboard-like

model implemented in the SMS analysis framework
facilitates that vibrato parameters can be extracted
later on by picking the relevant information from
other concurrent analysis modules (of course there is
an arguable time-resolution payoff).

Figure 3. Comparison of an original
fundamental track of a steady state portion of
sound: a) with original vibrato; b) after time-
domain vibrato extraction.

4 Interaction between vibrato and
spectral shape

If we examine the amplitude track of a region with
vibrato it seems that there also are cyclic modulations
around an ideal “mean value”. Although if could be
tempting to consider them as examples of a
concomitant “tremolo” and therefore to proceed with
that track as we did with the frequency, we should be
warned that superficially similar expressive resources
as vibrato and tremolo could have different musical
meanings and uses, and do not need to be associated.
It should also be noted that (at least in human singing)
amplitude variations follow a pattern not as regular as
frequency does. In fact the main factor for the
observed variations in amplitude are, other than a
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tremolo process, the interaction between the vibrato
process and the resonances of the vocal tract [14],
[15]. Therefore, our strategy for eliminating those
amplitude modulations goes as follows: in the
frequency-domain case, an spectral envelope for the
steady region is computed; then, we proceed by re-
calculating the “right” amplitude value for every track
(or partial) frame by frame. By “right amplitude” we
mean the amplitude that the track should have,
considering the trajectory correction induced by the
vibrato-suppression procedure (for example, let’s
suppose that  the original fundamental frequency track
entered a resonance region; after vibrato suppression
its amplitude would be still reflecting its presence in
such a resonance region, but in fact the track is not
there anymore, so we will interpolate –from the
spectral envelope- the amplitude corresponding to the
current spectral location for that track).

On the other hand, in the time-domain case we are
just starting to implement an “incremental-resolution
spectral envelope extracting algorithm” much in the
vein of the spectral tracings used by [11], and similar
to the one apparently used by humans [16]. Such an
algorithm, whereby the correction of  the amplitudes
is done frame by frame (as explained before),
computes a spectral envelope that gets increasing
resolution as we get more frames from the basic
analysis.

5 Conclusions

In this paper we have presented a two-fold approach
for managing vibrato inside an specific
analysis/synthesis framework like SMS. Although the
higher level attributes extracted in the analysis
process allow both the satisfactory characterization of
vibrato and also its removal from a steady state
portion of a sound in the frequency domain, there will
be practical situations in which only removal will be
mandatory and then we can apply a simpler time-
domain strategy.  Nonetheless more research is
needed, and it shall be pursued for us, in order to
refine the current algorithms, and, afterwards, achieve
a flexible and acceptable synthesis of vibrato notes.

Sound examples related to this paper can be found at:
http://www.iua.upf.es/~perfe/papers/dafx98poster-
soundexamples.html.
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Abstract. We present a comparative evaluation of automatic classification of a 
sound database containing more than six hundred drum sounds (kick, snare, 
hihat, toms and cymbals). A preliminary set of fifty descriptors has been refined 
with the help of different techniques and some final reduced sets including 
around twenty features have been selected as the most relevant. We have then 
tested different classification techniques (instance-based, statistical-based, and 
tree-based) using ten-fold cross-validation. Three levels of taxonomic 
classification have been tested: membranes versus plates (super-category level), 
kick vs. snare vs. hihat vs. toms vs. cymbals (basic level), and some basic 
classes (kick and snare) plus some sub-classes –i.e. ride, crash, open-hihat, 
closed hihat, high-tom, medium-tom, low-tom- (sub-category level). Very high 
hit-rates have been achieved (99%, 97%, and 90% respectively) with several of 
the tested techniques.  

1. INTRODUCTION
Classification is one of the processes involved in audio content description. Audio 
signals can be classified according to miscellaneous criteria. A broad partition into 
speech, music, sound effects (or noises), and their binary and ternary combinations is 
used for video soundtrack descriptions. Sound category classification schemes for this 
type of materials have been recently developed [1], and facilities for describing sound 
effects have even been provided in the MPEG-7 standard [2]. Usually, music streams 
are broadly classified according to genre, player, mood, or instrumentation. In this 
paper, we do not deal with describing which instruments appear in a musical mixture. 
Our interest is much more modest as we focus only in deriving models for 
discrimination between different classes of isolated percussive sounds and, more 
specifically in this paper, of acoustic “standard” drum kit sounds (i.e. not electronic, 
not Latin, not brushed, etc.). Automatic labelling of instrument sounds has some 
obvious applications for enhancing sampling and synthesis devices’ operating systems 
in order to help sound designers to categorize (or suggesting names for) new patches 
and samples. Additionally, we assume that some outcomes of research on this subject 
will be used for the more ambitious task of describing the instrumentation in a 
musical recording, at least of the “rhythm loop” type.  
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Previous research in automatic classification of sound from music instruments has 
focused in instruments with definite pitch. Classification of string and wind 
instrument sounds has been attempted using different techniques and features yielding 
to varying degrees of success (see [3] for an exhaustive review). Classification of 
percussive instruments, on the other hand, has attracted little interest from 
researchers. In one of those above cited studies with pitched sounds, Kaminskyj [4] 
included three pitched percussive categories (glockenspiel, xylophone and marimba) 
and obtained good classification results (ranging from 75% to 100%) with a K-NN 
algorithm.  Schloss [5] classified the stroke type of congas using relative energy from 
selected portions of the spectrum. He was able to differentiate between high-low 
sounds and open, muffled, slap and bass sounds. Using a K-means clustering 
algorithm, Bilmes [6] also was able to differentiate between sounds of three different 
congas. McDonald [7] used spectral centroid trajectories as classificatory features of 
sounds from percussive instruments. Sillanpää [8] used a representation of spectral 
shape for identification of the basic five categories of a drum kit: bass drum, snares, 
toms, hihats, and cymbals. His research was oriented towards transcription of rhythm 
tracks and therefore he additionally considered the case of identification of several 
simultaneous sounds. A database of 128 sounds was identified with 87% of accuracy 
for the case of isolated sounds. Performance dramatically dropped when there were 
two or three simultaneous sounds (respectively 49% and 8% for complete 
identification, though at least one of the sounds in the mixture was correctly identified 
all the times). In a subsequent study [9], the classification method used energy, Bark-
frequency and log-time resolution spectrograms, and a fuzzy-c clustering of the 
original feature vectors into four clusters for each sound class. Weighted RMS-error 
fitting and an iterative spectral subtraction of models was used to match the test 
sounds against learnt models. Unfortunately, no systematic evaluation was presented 
this time. Goto and Murakoa [10] also studied drum sound classification in the 
context of source separation and beat tracking [11]. They implemented an “energy 
profile”-based snare-kick discriminator, though no effectiveness evaluation was 
provided. As a general criticism, in the previous research there is a lack of systematic 
evaluation of the different factors involved in automatic classification, and the 
databases are small to draw robust conclusions. A more recent study on this subject in 
the context of basic rhythmic pulse extraction [12] intended to be systematic, but also 
used a small database and a reduced set of descriptors.  

Research on perceptual similarity of sounds is another area that provides useful 
information for addressing the problem of automatic classification of drum sounds. In 
perceptual studies, dis-similarity judgments between pairs of sounds are elicited from 
human subjects. With multidimensional scaling techniques, researchers find the 
dimensions that underlie to dis-similarity judgments. Even further, with proper 
comparison between those dimensions and physical features of sounds, it is possible 
to discover the links between perceptual and physical dimensions of sounds [13], 
[14], [15], [16]. A three dimensional perceptual space for percussive instruments (not 
including bells) has been hypothesized by Lakatos [17] (but also see [18]). This 
percussive perceptual space spans three related physical dimensions: log-attack time, 
spectral centroid and temporal centroid. Additional evidence supporting them has 
been gathered during the multimedia content description format standardization 
process (MPEG-7) and, consequently, they have been included in MPEG-7 as 

20



descriptors for timbres [19]. Graphical interactive testing environments that are linked 
to specific synthesis techniques [20] seem to be a promising way for building higher-
dimensional perceptual spaces. 

From another area of studies, those focusing on characteristics of beaten objects, it 
seems that information about the way an object is hit is conveyed by the attack 
segment, whereas the decay or release segment conveys information about the shape 
and material of the beaten object [21]. Repp [22] found that different hand-clapping 
styles (palm-to-palm versus fingers-to-palm) correlated with different spectral 
envelope profiles. Freed [23] observed that the attack segment conveyed enough 
information for the subjects to evaluate the hardness of a mallet hit.  Four features 
were identified as relevant for this information: energy, spectral slope, spectral 
centroid and the time-weighted average centroid of the spectrum. Kaltzky et al. [24] 
have got experimental results supporting the main importance of the decay part 
(specifically the decay rate) of a contact sound in order to identify the material of the 
beaten object. 

In the next sections we will present the method and results of our study on automatic 
identification of drum sounds. First we will discuss the features we initially selected 
for the task and the ways for using the smallest set without compromising 
classification effectiveness. Some techniques consider relevance of descriptors 
without considering the classification algorithm in which they are being issued, but 
there are also attribute selection techniques that are linked to specific classification 
algorithms. We will compare both approaches with three different classification 
approaches: instance-based, statistical-based, and tree-based. Classification results for 
three taxonomic levels (super-category, basic level classes, and sub-categories) of 
drum-kit instruments will then be presented and discussed. 

2. METHOD

2.1 Selection of sounds
A database containing 634 sounds was set up for doing this study. Distribution of 
sounds into categories is shown in Table 1. Sounds were drawn from different 
commercial sample CD’s and CD-ROMs. The main selection criteria were that they 
belonged to acoustic drums with as little reverberation as possible, and without any 
other effect applied to them. Also different dynamics and different physical 
instruments were looked for. Specific playing techniques yielding dramatic timbral 
deviations from a  “standard sound” such as brushed hits or rim-shots were discarded. 
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Table 1. Categories used and number of sounds (inside parentheses) included in each 
category 

Super-category Basic-level  Sub-category 
Kick (115) Kick (115) 
Snare (150) Snare (150) 

Low (42) 
Medium (44) 

Membranes (380) 

Tom (115) 

High (29) 
Open (70) Hihat (142) 
Closed (72) 
Ride (46) 

Plates (263) 

Cymbal (121) 
Crash (75) 

2.2 Descriptors 
We considered descriptors or features belonging to different categories: attack-related 
descriptors, decay-related descriptors, relative energies for selected bands and, finally, 
Mel-Frequency Cepstral Coefficients and variances. An amplitude-based segmentator 
was implemented in order to get an estimation of the attack-decay boundary position, 
for then computing those descriptors that used this distinction. Analysis window size 
for the computation of descriptors was estimated after computation of Zero-Crossing 
Rate. 

2.2.1 Attack-related descriptors 
Attack Energy (1), Temporal Centroid (2), which is the temporal centre of gravity of 
the amplitude envelope, Log Attack-Time (3), which is the logarithm of the length of 
the attack, Attack Zero-Crossing Rate (4), and TC/EA (5), which is the ratio of the 
Temporal Centroid to the length of the attack. 

2.2.2 Decay-related descriptors 
Decay Spectral Flatness (6) is the ratio between the geometrical mean and the 
arithmetical mean (this gives an idea of the shape of the spectrum, if it’s flat, the 
sound is more “white-noise”-like; if flatness is low, it will be more “musical”); Decay 
Spectral Centroid (7), which is the centre of gravity of the spectrum; Decay Strong 
Peak (8), intended to reveal whether the spectrum presents a very pronounced peak 
(the thinner and the higher the maximum of the spectrum is, the higher value takes 
this parameter); Decay Spectral Kurtosis (9), the 4th order central moment (it gives 
clues about the shape of the spectrum: “peaky” spectra have larger kurtosis than 
scattered or outlier-prone spectra.), Decay Zero-Crossing Rate (10); “Strong Decay” 
(11), a feature built from the non-linear combination of the energy and temporal 
centroid of a frame (a frame containing a temporal centroid near its left boundary and 
strong energy is said to have a “strong decay”); Decay Spectral Centroid Variance 
(12); Decay Zero-Crossing Rate Variance (13); and Decay Skewness (14), the 3rd 
order central moment (it gives indication about the shape of the spectrum in the sense 
that asymmetrical spectra tend to have large skewness values). 
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2.2.3 Relative energy descriptors 
By dividing the spectrum of the decay part into 8 bands of frequency, the energy lying 
in them was calculated, and then the relative energy percent for each band was 
computed. These bands were basically chosen empirically, according to the 
observations of several spectra from relevant instruments. The boundaries were fixed 
after several trials in order to get significant results, and were the following: 40-70 
Hz. (15), 70-110 Hz. (16), 130-145 Hz. (17), 160-190 Hz. (18), 300-400 Hz. (19), 5-7 
KHz. (20), 7-10 KHz. (21), and 10-15 KHz. (22).  

2.2.4 Mel-Frequency Cepstrum Coefficients 
MFCC’s have been usually used for speech processing applications, though they have 
shown usefulness in music applications too [25]. As they can be used as a compact 
representation of the spectral envelope, their variance was also recorded in order to 
keep some time-varying information. 13 MFCC’s were computed over the whole 
signal, and their means and variances were used as descriptors. In order to interpret 
the selected sets of features in section 3, we will use the numeric ID’s 23-35 for the 
MFCC means, and 36-48 for the MFCC variances. 

2.3 Classification techniques 
We have selected three different families of techniques to be compared1: instance-
based algorithms, statistical modelling with linear functions, and decision tree 
building algorithms. The K-Nearest Neighbors (K-NN) technique is one of the most 
popular for instance-based learning and there are several papers on musical 
instrument sound classification using K-NN [26], [27], [28] [4].  As a novelty in this 
research context, we have also tested another instance-based algorithm called K* 
(pronounced “K-star”), which classifies novel examples by retrieving the nearest 
stored example using an entropy measure instead of an Euclidean distance. 
Systematic evaluations of this technique using standard test datasets [29] showed a 
significant improvement of performance over the traditional K-NN algorithm. 

Canonical discriminant analysis is a statistical modelling technique that classifies 
new examples after deriving a set of orthogonal linear functions that partition the 
observation space into regions with the class centroids separated as far as possible, 
but keeping the variance of the classes as low as possible. It can be considered like an 
ANOVA (or MANOVA) that instead of continuous to-be-predicted variables uses 
discrete (categorical) variables. After a successful discriminant function analysis, 
"important" variables can be detected. Discriminant analysis has been successfully 
used by [30] for classification of wind and string instruments. 

C4.5 [31] is a decision tree technique that tries to focus on relevant features and 
ignores irrelevant ones for partitioning the original set of instances into subsets with a 

1 The discriminant analysis was run with SYSTAT (http://www.spssscience.com/SYSTAT/), 
and the rest of analyses with the WEKA environment (www.cs.waikato.ac.nz/~ml/).  
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strong majority of one of the classes. Decision trees, in general, have been pervasively 
used for different machine learning and classification tasks. Jensen and Arnspang [32] 
or Wieczorkowska [33] have used decision trees for musical instrument classification. 
An interesting variant of C4.5, that we have also tested, is PART (partial decision 
trees). It yields association rules between descriptors and classes by recursively 
selecting a class and finding a rule that "covers" as many instances as possible of it. 

 

2.4 Cross-validation 
For the forthcoming experiments the usual ten-fold procedure was followed: 10 
subsets containing a 90% randomly selected sample of the sounds were selected for 
learning or building the models, and the remaining 10% was kept for testing them. 
Hit-rates presented below have been computed as the average value for the ten runs. 
 

3. RESULTS 

3.1 Selection of relevant descriptors 
Two algorithm-independent methods for evaluating the relevance of the descriptors in 
the original set have been used: Correlation-based Feature Selection (hence CFS) and 
ReliefF. CFS evaluates subsets of attributes instead of evaluating individual attributes. 
A “merit” heuristic is computed for every possible subset, consisting of a ratio 
between how predictive a group of features is and how much redundancy or inter-
correlation there is among those features [34]. Table 2 shows the CFS-selected 
features in the three different contexts of classification we are dealing with. Note that 
a reduction of more than fifty percent can be achieved in the most difficult case, and 
that the selected sets for basic level and for sub-category classification show an 
important overlap.  

 
Table 2. Features selected by the CFS method 

Super-category [21, 4, 22] 
Basic-level [2, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 20, 

21, 22, 26, 27, 30, 39] 

Sub-category [1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 26, 30, 39] 

ReliefF evaluates the worth of an attribute by repeatedly sampling an instance and 
considering the value of the given attribute for the nearest instance of the same and 
for the nearest different class [34]. Table 3 shows the ReliefF-selected features in the 
three different contexts. Note that the list is a ranked one –from most to least relevant- 
and that we have matched the cardinality of this list to the one yielded by the previous 
method, in order to facilitate their comparisons.  
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Table 3. Features selected by the ReliefF method 

Super-category [9, 14, 7] 
Basic-level [9, 14, 7, 19, 10, 17, 4, 25, 18, 6, 15, 21, 20, 

16, 24, 26, 30, 31, 13] 
Sub-category [9, 14, 19, 7, 17, 10, 4, 25, 16, 15, 18, 6, 21, 

20, 24, 30, 26, 31, 13, 28, 2] 

Comparing the two methods it can be seen that all selected subsets for basic-level or 
for sub-category share more than 60% of features (but surprisingly they do not 
coincide at all when the target is the super-category). It is also evident that they 
include quite a heterogeneous selection of descriptors (some MFCC’s, some energy 
bands, some temporal descriptors, some spectral descriptors…). 

Contrasting with the previous “filtering” approaches, we also tested a “wrapping” 
approach for feature selection [35]. This means that features are selected in 
connection with a given classification technique which acts as a wrapper for the 
selection. Canonical Discriminant Analysis provides numerical indexes in order to 
decide about the relevance of a feature (but after analysis, not prior to it) as for 
example the F-to-remove value, or the descriptor’s coefficients inside the canonical 
functions. For feature selection inside CDA it is usual to follow a stepwise (usually 
backwards) procedure. This strategy, however, only grants a locally optimal solution, 
so that an exhaustive (but sometimes impractical) search of all the combinations is 
recommended [36]. In our case, we have proceeded with a combination of backward 
stepwise plus some heuristic search. Table 4 shows the selected subsets, with the 
features ranked according the F-to-remove value (the most relevant first). A 
difference related to the filtering approaches is that with CDA the selected sets are 
usually larger. A large proportion of the selected features, otherwise, match those 
selected with the other methods. 

Table 4. Features selected after Canonical Discriminant Analyses 

Super-category [4, 13, 19, 20, 37, 39] 
Basic-level [15, 9, 4, 20, 14, 2, 13, 26, 27, 3, 19, 

8, 21, 39, 6, 11, 38] 
Sub-category [16, 15, 3, 9, 2, 17, 20, 13, 14, 19, 27, 

26, 39, 7, 12, 10, 8, 37, 38, 4, 21, 22, 
25, 33, 30, 29, 5, 24, 28, 45, 36, 34] 

3.1 Classification results 
We tested the three algorithms using the different subsets discussed in the previous 
section. Three different levels of classification were tested: super-category (plates 
versus membranes), basic-level (the five instruments) and sub-category (kick and 
snare plus some variations of the other three instruments: open and closed hihat, low, 
mid and high tom, crash and ride cymbal). Tables 5, 6 and 7 summarize the main 
results regarding hit rates for the three different classification schemes we have tested. 
Rows contain the different algorithms and columns contain the results using the 
different sets of features that were presented in the previous section. For the C4.5, the 
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number of leaves appears inside parentheses. For PART, the number of rules appears 
inside parentheses.  The best method for each feature set has been indicated with bold 
type and the best overall result appears with grey background. 

Table 5. Super-category classification hit rates for the different techniques and feature 
selection methods  

All features CFS ReliefF CDA
K-NN (k=1) 99.2 97.9 93.7 96.7
K* 98.6 97.8 94.8 96.7
C4.5 97.2 (8) 98.6 (8) 94.8 (12) 95.1(14)
PART 98.4 (5) 98.2 (6) 94.4 (6) 95.1(9)
CDA 99.1 94.7 88.1 99.3

Table 6. Basic-level classification hit rates for the different techniques and feature 
selection methods 

All features CFS ReliefF CDA
K-NN (k=1) 96.4 95 95.6 95.3
K* 97 96.1 97.4 95.8
C4.5 93 (20) 93.3(21) 92.2(23) 94.2(18)
PART 93.3 (12) 93.(11) 93.1(11) 93.6(12)
CDA 92 93 91 95.7

Table 7. Sub-category classification hit rates for the different techniques and feature 
selection methods 

All features CFS ReliefF CDA
K-NN (k=1) 89.9 87.7 89.4 87.9
K* 89.9 89.1 90.1 90.7
C4.5 82.6 (40) 83 (38) 81 (45) 85(43)
PART 83.3 (24) 84.1(27) 81.9 (29) 84.3(27)
CDA 82.8 86 82 86.6

A clear interaction effect between feature selection strategy and algorithm family can 
be observed: for instance-based algorithms ReliefF provides the best results while for 
the decision-trees the best results have been obtained with CFS. In the case of 
decision trees, selecting features with CFS is good not only for improving hit-rates 
but also for getting more compact trees,  (i.e. with a small number of leaves and 
therefore smaller in size).  As expected, the CDA-selected features have yielded the 
best hit-rates for the CDA, but surprisingly they have also yielded the best hit-rates 
for most of the decision-trees.  

It is interesting to compare the results obtained using feature selection with those 
obtained with the whole set of features. For the super-category classification it seems 
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that all the selection procedures have operated an excessive deletion and performance 
has degraded up to 4% when using a selected subset. Note however that in this 
classification test the best overall result (CDA features with CDA classification) 
outperforms any of the figures obtained with the whole subset. For the basic-level and 
sub-category tests, the reduction of features degrades the performance of instance-
based methods (but less than 1%), whereas it improves the performance of the rest. 

After comparing families of algorithms it is clear that differences between them 
increase as the task difficulty increases. It is also evident that the best performance is 
usually found in instance-based ones (and specifically K* yields slightly better results 
than a simple K-NN), whereas tree-based yield the worst figures and CDA lies in 
between. Although decision trees do not provide the best overall performance, they 
have an inherent advantage over instance-based: expressing relationships between 
features and classes in terms of conditional rules. Table 8 exemplifies the type of rules 
that we get after PART derivation. 

Table 8. Some of the PART rules for classification at the "basic-level". Correctly and 
wrongly classified instances are shown inside parentheses. We have left out some less 

general rules for clarity 
SKEWNESS > 4.619122 AND 
B40HZ70HZ > 7.784892 AND 
MFCC3 <= 1.213368: Kick (105.0/0.0) 

KURTOSIS > 26.140138 AND 
TEMPORALCE <= 0.361035 AND 
ATTZCR > 1.478743: Tom (103.0/0.0) 

B710KHZ <= 0.948147 AND 
KURTOSIS <= 26.140138 AND 
ATTZCR <= 22.661397: Snare (133.0/0.0) 

SPECCENTROID > 11.491498 AND 
B1015KHZ > 0.791702: HH (100.0/2.0) 

SKEWNESS <= 4.485531 AND 
B160HZ190HZ <= 5.446338 AND 
MFCC3VAR > 0.212043 AND 
MFCC4 > -0.435871: Cymbal (110.0/3.0) 

Regarding CDA, an examination of the canonical scores plots provides some 
graphical hints about the performance of the four canonical discriminant functions 
needed for the basic-level case: the first one separates toms+kicks from 
hihats+cymbals, the second one separates the snare from the rest, the third one 
separates cymbals from hihats, and the fourth one separates toms from kicks. It should 
be noted that in the other cases it is more difficult to assign them a clear role. 

Inspecting the confusion matrix for the instrument test, most of the errors consist in 
confusing cymbals with hihat, and tom with kick (and their inverse confusions, 
though with a lesser incidence).  For the sub-instrument test, 60% of the 
misclassifications appear to be intra-category (i.e. between crash and ride, between 
open and closed hihat, etc.), and they are evenly distributed.   

4. DISCUSSION
We have achieved very high hit rates for the automatic classification of standard drum 
sounds into three different classification schemes. The fact that, in spite of using three 
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very different classification techniques, we have obtained quite similar results could 
mean that the task is quite an easy one. It is true that the number of categories we 
have used has been small even for the most complex classification scheme. But it 
should also be noted that there are some categories that, at least from a purely 
perceptual point of view, do not seem to be easily separated (for example, low-toms 
from some kicks, or some snares from mid-toms or from some crash cymbals). 
Therefore, a contrasting additional interpretation for this good performance is to 
consider that our initial selection of descriptors was good. This statement gets support 
by the fact that the all-feature results are not much worse than results after feature 
selection. In the case of having a bad initial set, those bad features would have 
contributed to worsen the performance. As it has not been the case, we can conclude 
that from a good set of initial features, some near-optimal sets have been identified 
with the help of filtering or wrapping techniques. Most of the best features found can 
be considered as spectral descriptors: skewness, kurtosis, centroid, MFCC’s. We 
included a very limited number of temporal descriptors, but, as expected, apart from 
ZCR, they do not seem to be needed for precise instrument classification.  

In the section of improvements for subsequent research we may list the following: (1) 
A more systematic approach to description in terms of energy bands (for example, 
using Bark measures); (2) Evaluation of whole-sound descriptors against attack-decay 
decomposed descriptors (i.e. the ZCR); (3) Non-linear scaling of some feature 
dimensions; (4) Justified deletion of some observations (after analyzing the models, it 
seems that some outliers that contribute to the increment of the confusion rates should 
be considered as “bad” examples for the model because of audio quality or wrong 
class adscription). 

5. CONCLUSIONS
In this study, we have performed a systematic study of the classification of standard 
drum sounds. After careful selection of descriptors and its refinement with different 
techniques, we have achieved very high hit-rates in three different classification tasks: 
super-category, basic-level category, and sub-category. In general, the most relevant 
descriptors for them seem to be ZCR, kurtosis, skewness, centroid, relative energy in 
specific bands, and some low-order MFCC’s. Performance measures classification 
techniques have not yielded dramatic differences between classification techniques 
and therefore selecting one or another is clearly an application-dependent issue. We 
believe, though, that relevant performance differences will arise when more classes 
are included in the test, as we have planned for a forthcoming study. Regarding 
classification of mixtures of sounds, even if it is not yet clear if the present results will 
be useful, we have gathered interesting and relevant data in order to characterize 
different classes of drum sounds. 
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Abstract

We present an exhaustive review of research on automatic
classification of sounds from musical instruments. Two dif-
ferent but complementary approaches are examined, the per-
ceptual approach and the taxonomic approach. The former is
targeted to derive perceptual similarity functions in order to
use them for timbre clustering and for searching and retriev-
ing sounds by timbral similarity. The latter is targeted to
derive indexes for labeling sounds after culture- or user-
biased taxonomies. We review the relevant features that have
been used in the two areas and then we present and discuss
different techniques for similarity-based clustering of 
sounds and for classification into pre-defined instrumental
categories.

1. Introduction

The need for automatic classification of sounds arises in dif-
ferent contexts: biology (e.g., for identifying animals belong-
ing to a given species, or for cataloguing communicative
resources) (Fristrup & Watkins, 1995; Mills, 1995; Potter,
Mellinger, & Clark, 1994) medical diagnosis (e.g., for detect-
ing abnormal conditions of vital organs) (Shiyong, Zehan,
Fei, Li, & Shouzong, 1998; Buller & Lutman, 1998; Schön,
Puppe, & Manteuffel, 2001) surveillance (e.g., for recogniz-
ing machine-failure conditions) (McLaughling, Owsley, &
Atlas, 1997) military operations (e.g., for detecting an enemy
engine approaching or for weapon identification) (Gorman &
Sejnowski, 1988; Antonic & Zagar, 2000; Dubnov & Tishby,
1997) and multimedia content description (e.g., for helping
video scene classification or object detection) (Liu, Wang, &
Chen, 1998; Pfeiffer, Lienhart, & Effelsberg, 1998). Speech,
sound effects, and music are the three main sonic categories
that are combined in multimedia databases. Describing 

multimedia sound therefore means describing each one of
those categories. In the case of speech, the main description
concerns speaker identification and speech transcription.
Describing sound effects means determining the apparent
sound source, or clustering similar sounds even though they
have been generated by different sources. In the case of
music, description calls for deriving indexes in order to
locate melodic patterns, harmonic or rhythmic structures,
musical instrument sets, usage of expressivity resources, 
etc. As we are not concerned here with discrimination
between speech, music and sound effects, we recommend
interested readers consult the work by Zhang and Kuo
(1998b; 1999a).

Provided that we are interested in a music-only stream of
audio data, one of the most important description problems
is the correct identification of the musical instruments
present in the stream. This is a very difficult task that is far
from being solved. The practical utility for musical instru-
ment classification is twofold:

– First, to provide labels for monophonic recordings, for
“sound samples” inside sample libraries, or for new
patches created with a given synthesizer;

– Second, to provide indexes for locating the main instru-
ments that are included in a musical mixture (for example,
one might want to locate a saxophone “solo” in the middle
of a song);

The first problem is easier to solve than the second one, and
it seems clearly solvable given the current state of the art, as
we will see later in this paper. The second is tougher, and it is
not clear if research done on solving the first one may help.

Common sense dictates that a reasonable approach to the
second problem would be the initial separation of the sounds
corresponding to the different sound sources, followed by the
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4 Perfecto Herrera-Boyer et al.

segmentation1 and classification2 on those separated tracks.
Techniques for source separation cannot yet provide satis-
factory solutions although some promising approaches have
been developed (Casey & Westner, 2001; Ellis, 1996; Bell &
Sejnowski, 1995; Varga & Moore, 1990). As a consequence,
research on classification has concentrated on working with
isolated sounds under the assumption that separation and
segmentation have been previously performed. This implies
the use of a sound sample collection (usually isolated 
notes) consisting of different instrument families and classes.
The general classification procedure can be described as
follows:

– Lists of features are selected to describe the samples.
– Values for these features are computed.
– A learning algorithm that uses the selected features to

discriminate between instrument families or classes is
applied.

– The performance of the learning procedure is evaluated by
classifying new sound samples (cross-validation).

Note that there is a very important tradeoff in endorsing this
isolated-notes strategy: we gain simplicity and tractability,
but we lose contextual and time-dependent cues that can be
exploited as relevant features for classifying musical sounds
in complex mixtures. It is also important to note that the
implicit assumption that solutions for isolated sounds can be
extrapolated to complex mixtures should not be taken for
granted, as we will discuss in the final section. Another
implicit assumption that should not be taken for granted is
that the arbitrary taxonomy that we use is optimal or, at least,
good for the task (see Kartomi, 1990, for issues regarding
arbitrary taxonomies of musical instruments).

An alternative approach to the whole problem is to shift
focus from the traditional transcription concern to that of
description or understanding (Scheirer, 2000). This is what
some Computational Auditory Scene Analysis systems have
addressed (Ellis, 1996; Kashino & Murase, 1997a). We will
return to this distinction later but for the moment a clarify-
ing practical example of this different focus can be provided
with an “instrument browser” as the one depicted in Figure
1. In order to develop this kind of application, we only need
to detect the instrument boundaries. The boundaries can
surround individual instruments or classes of instruments
(Aucouturier & Sandler, 2001). For example, note how the
“soprano singer” instrument has been drawn separately
whereas the other instruments are grouped into classes. In
Figure 1, the string section subsumes the phrases played by
violins, violas and cellos. The goal of this approach is not to
separate into distinct tracks each of the instrumental voices
but, rather, to label their locations within the context of the

1 Segmentation can be defined as the process of breaking up an
audio stream into temporal segments by means of applying a bound-
ary detection criterion as, for example, texture, note, instrument,
rhythm pattern, overall structure, etc. The same audio stream can 
be segmented in different ways by recurrently applying different 
criteria.
2 Once an audio stream has been segmented, labels have to be
attached to the segments. Two different families of algorithms can
be used for learning labels: in the case we know in advance the
labels to be used, pattern recognition, discrimination, or supervised
learning techniques are the logical choice; when we do not know
beforehand the labels and they will have to be inferred from the
data, then the right choice is some unsupervised learning or clus-
tering technique. See {Michie, Spiegelhalter, et al., 1994 109 /id}
for more details.

Fig. 1. An imaginary instrument browser adapted from Smoliar and Wilcox (Smoliar & Wilcox, 1997).
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musical work. Thus, the user, when clicking on one of the
labels would not hear an isolated instrument; instead, the user
would be taken to part of the piece where the desired instru-
ment or instrument family can be clearly heard. Manipulat-
ing the source file to bring to the foreground the selected
instrument(s) is a possible enhancement of this boundary-
based approach. In order to develop that kind of application
we only need to detect the instrument boundaries.

A very different type of classification arises when our
target is not an instrument class but a cluster of sounds that
can be judged to be perceptually similar. In that case, classi-
fication does not rely on culturally shared labels but on
timbre similarity measures and distance functions derived
from psychoacoustical studies (Grey, 1977; Krumhansl,
1989; McAdams, Winsberg, de Soete, & Krimphoff, 1995;
Lakatos, 2000). This type of perceptual classification or clus-
tering is addressed to provide indexes for retrieving sounds
by similarity, using a query by example strategy.

In the following sections we review the different features
(perceptual-based or taxonomic-based) that have been used
for musical sound classification, and then the techniques that
have been tested for classification and clustering of isolated
sounds. We have purposely refrained from writing mathe-
matical formulae in order to facilitate the basic understand-
ing to casual readers. It is our hope that the comprehensive
list of references at the end of the chapter will compensate
this lack, and will help in finding the complementary tech-
nical information that a thorough comprehension requires.

2. Perceptual description versus
taxonomic classification

Perceptual description departs from taxonomic classification
in that it tries to find features that explain human perception
of sounds, while the latter is interested in assigning to sounds
some label from a previously established taxonomy (family
of musical instruments, instruments names, sound effects
category . . .). Therefore, the latter may be considered deter-
ministic while the former is derived from experimental
results using human subjects or artificial systems that simu-
late some of their perceptual processes.

Perception of sounds has been studied systematically
since Helmholtz. It is now well accepted that sounds can 
be described in terms of their pitch, loudness, subjective
duration, and something called “timbre.” According to the
ANSI definition (American National Standards Institute,
1973) timbre refers to the features that allow one to distin-
guish two sounds that are equal in pitch, loudness, and sub-
jective duration. The underlying perceptual mechanisms are
rather complex but they involve taking into account several
perceptual dimensions at the same time in a possibly complex
way. Timbre is thus a multi-dimensional sensation that relies
among others, on spectral envelope, temporal envelope, and
on variations of each of them. In order to understand better
what the timbre feature refers to, numerous experiments have

been performed (Plomp, 1970; Plomp, 1976; Wedin &
Goude, 1972; Wessel, 1979; Grey, 1977; Krumhansl, 1989;
McAdams, Winsberg, de Soete, & Krimphoff, 1995;
Lakatos, 2000). In all of these experiments, people were
asked for a dis-similarity judgment on pairs of sounds. Mul-
tidimensional Scaling (MDS) analysis3 was used to process
the judgments, and to represent the sound stimuli in a low-
dimensional space revealing the underlying attributes used
by listeners when making the judgments. Researchers often
refer to this low-dimensional representation as a “Timbre
Space” (see Fig. 2).

Grey (1977) performed one of the first experiments under
this paradigm. Using 16 instrument sounds from the orches-
tra (string and wind instruments) he derived from MDS a
timbre space with 3 dimensions corresponding to the main
perceptual axes. A qualitative description of these axes
allowed him to assign one dimension to the spectral energy
distribution, another to the amount of synchronicity of the
transients and amount of spectral fluctuation, and the last one
to the temporal attribute of the beginning of the sound.

Wessel’s experiments (Wessel, 1979) used the 16 sounds
from Grey (1977) plus 8 hybrid sounds (in order to use 
non-existing sounds that avoided the class recognition effects
and also for getting intermediate “timbral steps” between
sounds). This research yielded a 2-dimensional space with
one dimension assigned to the “brightness” of the sustained
part of the sound, and the other to the steepness of the attack
and the offset between the beginnings of the high frequency
harmonics to the low frequency ones.

Krumhansl (1989) used 21 FM-synthesis sounds from
Wessel, Bristow, and Settel (1987) mainly sustained har-
monic sounds. She found the same results as Grey, but
assigned the third dimension to something called “spectral
flux” that was supposed to be related to the variations of the
spectral content along time. McAdams et al. (1995) also used
these 21 FM-synthesis sounds in a new experiment and 
tested a new MDS technique that estimates the latent classes
of subjects, instrument specificity values, and separate
weights for each class. Compared to Krumhansl’s results,
they confirmed the assignment of one dimension to the
attack-time, another to the spectral centroid, but they did not
confirm the “spectral flux” for the last dimension.

Lakatos’ experiment (2000) used 36 natural sounds from
the McGill University sound library, both wind and string
(17) and percussive (18) sounds. The goal of this experiment
was to extend the timbre space to percussive and mixed
percussive/sustained sounds. This yields a two dimensional
space and a three dimensional space. The conclusion of the
experiment is that, except for spectral centroid and rise time,
additional perceptual dimensions exist but their precise

3 Multidimensional Scaling is a technique for discovering the
number of underlying dimensions appropriate for a set of multidi-
mensional data and for locating the observations in a low-
dimensional space (Wish & Carroll, 1982).
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acoustic correlates are context dependent and therefore less
prominent.

An interesting practical application of this similarity-
based research is that of setting up a given orchestration with
some set of reference sound samples and then substituting
some of them without radically changing the orchestration.
Practical reasons for doing query-by-similarity of sound
samples could include performance rights or copyrights
issues, sample format compatibility, etc. Working examples
of the timbre similarity approach are, for example, the
Soundfisher system developed by Musclefish4, and the 
Studio On Line developed by IRCAM5 . Soundfisher, recently
incorporated as a plug-in into a commercial video-logger
called Virage, is designed to perform the classification,
indexing and search of sounds in general, though it can be
used in a music context. The initial versions of Soundfisher6

(Keislar, Blum, Wheaton, & Wold, 1995) did not yield an
explicit class decision but, rather, generated a list of mathe-
matically similar sounds. Some kind of class decision pro-
cedure, however, seems to have been recently implemented
(Keislar, Blum, Wheaton, & Wold, 1999). The Soundfisher
system implicitly implements the assumption that what is
mathematically similar can be also considered perceptually

similar; in other words, that the computed features accurately
represent perceptual dimensions, an assumption that contra-
dicts most empirical studies. In contrast, Studio On Line
computes similarity by using features that have been
extracted under the paradigm of the above-cited perceptual
similarity psychoacoustical experiments. The interested
reader can find in Peeters, McAdams, and Herrera (2000) a
recent validation of the psychoacoustical approach in the
context of MPEG-7.

3. Relevant features for classification

3.1 Types of features

The term feature denotes a quantity or a quality7 describing
an object of the world. In the realm of signal processing and
pattern recognition, objects are usually described by using
vectors or lists of features. Features are also known as attrib-
utes or descriptors. Audio signal features are usually com-
puted directly from the signal, or from the output yielded by
transformations such as the Fast Fourier Transform or the
Wavelet Transform. These audio signal features are usually
computed every few milliseconds, for a very short segment
of audio samples, in order to grasp their micro-temporal evo-
lution. Macro-temporal evolution features can also be com-

Fig. 2. Timbre Space coming from McAdams et al. (1995) experiment. It was derived from dissimilarity ratings on 18 timbres by 88 sub-
jects with specificities and five latent subject classes. Acoustic correlates of the three dimensions: rise time, spectral centroid, spectral flux
(reproduced here with permission).

4 http://www.musclefish.com
5 http://www.ircam.fr/produits/technologies/sol/index-e.html
6 http://www.soundfisher.com 7 In this paper we will only consider the quantitative approach.
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puted by using a longer segment of samples (e.g., attack time,
vibrato rate . . .) or by summarizing micro-temporal values
(e.g., averages, variances . . .).

A systematic taxonomy of features is outside the scope of
this paper; nevertheless we could distinguish features at least
according to four points of view:

1. The steadiness or dynamicity of the feature, i.e., the fact
that the features represent a value extracted from the
signal at a given time, or a parameter from a model of
the signal behavior along time (mean, standard deviation,
derivative or Markov model of a parameter);

2. The time extent of the description provided by the fea-
tures: some description applies to only part of the object
(e.g., description of the attack of the sound) whereas other
apply to the whole signal (e.g., loudness);

3. The “abstractness”, i.e., what the feature represents (e.g.,
cepstrum and linear prediction are two different
representation and extraction techniques for representing
spectral envelope, but probably the former one can be
considered as more abstract than the latter);

4. The extraction process of the feature. According to this
point of view, we could further distinguish:
– Features that are directly computed on the waveform

data as, for example, zero-crossing rate (the rate that the
waveform changes from positive to negative values);

– Features that are extracted after performing a transform
of the signal (FFT, wavelet . . .) as, for example, spec-
tral centroid (the “gravity center” of the spectrum);

– Features that relate to a signal model, as for example
the sinusoidal model or the source/filter model;

– Features that try to mimic the output of the ear system
(bark or erb bank filter output).

3.2 Relevant features for perceptual classification

For each of the “timbre” experiments, people have tried to
qualify the dimensions of these timbre spaces, the perceptual
axes, in terms of “brightness,” “attack,” etc. Only recently
attempts have been made to quantitatively describe these 
perceptual axes, i.e., relate the perceptual axes to variables
or descriptors directly derived from the signal (Grey, 1978;
Krimphoff, McAdams, & Winsberg, 1994; Misdariis, Smith,
Pressnitzer, Susini, & McAdams, 1998).

This quantitative description is done by finding the signal
features that best explain the dis-similarity judgment. This is
usually done using regression or multiple-regression between
feature values and sound positions in the “timbre” space, and
keeping only the features that yield the largest correlation.
This makes the perceptual description framework different
from taxonomic classification, since in the latter we’re 
not looking at features that “best explain” but at features 
that allow to “best discriminate” (between the considered
classes).

In the Grey and Gordon (1978) experiment, only one
dimension correlated significantly with a perceptual dimen-

sion of their “timbre” space: the spectral centroid. Krimphoff
et al. (1994) worked with Krumhansl’s space (1989) trying
to find the quantitative parameters corresponding to its qual-
itative features and found, as Grey did, significant correla-
tions with the spectral centroid, but also with the logarithm
of the attack time and what they called the “spectral 
irregularity,” which is the average departure of the spectral
harmonic amplitudes from a global spectral envelope.
Krumhansl (1989) had labelled this dimension as “spectral
flux.” Misdariis, Smith, Pressnitzer, Susini, and McAdams
(1998) combined results coming from the Krumhansl (1989)
and McAdams et al. (1995) experiments. They found the
same features as Krimphoff did plus a new one that explained
one dimension of McAdams et al. (1995) experiment: spec-
tral flux defined here as the average of the correlation
between amplitude spectra in adjacent time windows.

Peeters et al. (2000) considered also the two above-cited
experiments by Krumhansl and McAdams et al., called here
“sustained harmonic sound space” as opposed to the “per-
cussive sound space” coming from Lakatos (2000) experi-
ment. Two methods were used for the selection of the
features, a “position” method, which tries to explain from the
feature values the position of the sound in the timbre space,
and a “distance” method, which tries to explain directly the
perceived distance between sounds from a difference of
feature values. From this study the following features, now
part of the MPEG-7 standard, have been derived to describe
the perceived similarity. For the “harmonic sustained
sounds”: log-attack time, harmonic spectral centroid, har-
monic spectral spread (the extent of the spectrum’s energy
around the spectral centroid) harmonic spectral variation (the
amount of variation of the spectrum energy distribution
along time) and harmonic spectral deviation (the deviation
of the spectrum harmonic from a global envelope). For the
“percussive sounds”: log-attack time, temporal centroid (the
temporal centre of gravity of the signal energy) and spectral
centroid (the centre of gravity of the power spectrum of the
whole sound).

Another approach is the one taken by the company Muscle
Fish in the development of the Soundfisher system (Wold,
Blum, Keislar, & Wheaton, 1966). In this case the selected
features are not derived from experiments but they constitute
a set that is similar to the one discussed above: loudness (rms
value in dB) pitch, brightness (spectral centroid) bandwidth
(spread of the spectrum around the spectral centroid) har-
monicity (amount of energy of the signal explained by a peri-
odic signal model) . . . In order to capture the temporal trend
of the features, it is proposed to store their average, variance
and auto-correlation values along time.

3.3 Relevant features for taxonomic classification

Mel-Frequency Cepstrum Coefficients (hence MFCCs) are
features that have proved useful for such speech processing
tasks as, for example, speaker identification and speaker
recognition (Rabiner & Juang, 1993). MFCCs are computed
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by taking the log of the power spectrum of a windowed
signal, then non-linearly mapping the spectrum coefficients
in a perceptually-oriented way (inspired by the Mel scale).
This mapping is intended to emphasize perceptually mean-
ingful frequencies. The Mel-weighted log-spectrum is then
compacted into cepstral coefficients through the use of a 
discrete cosine transform. This transformation reduces the
dimensionality of the representation without losing informa-
tion (typically, the power spectrum may contain 256 values,
whereas the MFCCs are usually less than 15). MFCCs
provide a rather compact representation of the spectral 
envelope and are probably more musically meaningful than
other common representations like Linear Predictive Coding
coefficients or curve-fitting approximations to spectrum.
Despite these strengths, MFCCs by themselves can only
convey information about static behavior and, as a conse-
quence, temporal dynamics cannot be considered. Another
important drawback is that MFCCs do not have an obvious
direct interpretation, though they seem to be related (in an
abstract way) with the resonances of instruments. Despite
these shortcomings Marques (1999) used MFCCs in a broad
series of classification studies. Eronen and Klapuri (2000)
used Cepstral Coefficients (without the Mel scaling) and
combined these features with a long list (up to 43) of com-
plementary descriptors. Their list included, among others,
centroid, rise and decay time, FM/AM rate and width, fun-
damental frequency and fundamental-variation-related fea-
tures for onset and for the remainder of the note. In a more
recent study, using a very large set of features (Eronen,
2001), the most important ones seemed to be the MFCCs,
their standard deviations, and their deltas (differences
between contiguous frames) the spectral centroid and related
features, onset duration, and crest factor (specially for
instrument family discrimination). There are ways, however,
for adding temporal information into a MFCCS classification
schema. For example, Cosi, De Poli, and Prandoni (1994)
created a Kohonen Feature Map8 (Kohonen, 1995) using both
note durations and the feature coefficients. The network then
clustered and mapped the right temporal sequence into a bi-
dimensional space. As a result, sounds were clustered in a
human perceptual-like way (i.e., not into taxonomic classes
but into timbrically similar conglomerates). Brown (1999)
used cepstral coefficients from constant-Q transforms instead
of taking them after FFT-transforms; she also clustered
feature vectors in a way that the resulting clusters seemed to
be coding some temporal dynamics.

One of the most commonly used descriptors for musical,
as well as non-musical, sound classification is energy. In

Kaminskyj and Materka (1995) Root Mean Square (RMS)
energy was used for classifying 4 different types of instru-
ments with a neural network. In an additional, but apparently
unfinished extension of this work (Kaminskyj & Voumard,
1996) the authors also included brightness, spectral onset
asynchrony, harmonicity and MFCCs. In a more recent and
comprehensive work (Kaminskyj, 2001) the main author
used the RMS envelope, the Constant-Q frequency spectrum,
and a set of spectral features derived from Principal Com-
ponent Analysis (PCA from now on). PCA is commonly used
to reduce dimensionality of complex data sets with a
minimum loss of information. In PCA data is projected into
abstract dimensions that are contributed with different – but
partially related – variables. Then PCA calculates which pro-
jections, amongst all possible, are the best for representing
the structure of data. The projections are chosen so that the
maximum variability of the data is represented using the
smallest number of dimensions. In this specific research, 
the 177 spectral bins of the Constant-Q were reduced, after
PCA, to 53 “abstract” features without any significant loss
in discriminative power.

Martin and Kim (1998) exemplified the idea of testing
very long lists of features and then selecting only those
shown to be most relevant for performing classifications.
Martin and Kim worked with log-lag correlograms to better
approximate the way our hearing system processes sonic
information. They examined 31 features to classify a corpus
of 14 orchestral wind and string instruments. They found the
following features to be the most useful: vibrato and tremolo
strength and frequency, onset harmonic skew (i.e., the time
difference of the harmonics to arise in the attack portion)
centroid related measures (e.g., average, variance, ratio along
note segments, modulation) onset duration, and select pitch
related measures (e.g., value, variance). The authors noted
that the features they studied exhibited non-uniform influ-
ences, that is, some features were better at classifying some
instruments and instrument families and not others. In other
words, features could be both relevant and non-relevant
depending on the context. The influence of non-relevant fea-
tures degraded the classification success rates between 7%
and 14%. This degradation is an important theoretical issue
(Blum & Langley, 1997) that unfortunately has been over-
looked by the majority of studies we have reviewed. It should
be noted that there are some classification techniques that
also provide some indication about the relevance of the
involved features. This is the case with Discriminant Analy-
sis (see section 4.2.3). Using this technique “backward” dele-
tion and “forward” addition of features can be used in order
to settle into a good (though sometimes suboptimal) set.
Agostini, Longari, and Pollastri (2001) have used this method
for reducing their original set of eighteen features to the eight
ones that best separate the groups. The best features were:
inharmonicity mean, centroid mean and standard deviation,
harmonicity energy mean, zero-crossing rate, bandwidth
mean and standard deviation, and standard deviation of har-
monic skewness.

8 A Kohonen or Self Organized Feature Map is a type of neural
network that uses a single layer of interconnected units in order to
learn a compact representation (i.e., with reduced features) of
similar instances. It is very useful to cluster objects or instances that
share some type of similarity because it preserves the inner space
topology.

38



Automatic classification of sounds 9

Spectral flatness is a feature that has been recently used
in the context of MPEG-7 (Herre, Allamanche, & Hellmuth,
2001) for robust retrieval of song archives. It is a “new-
comer” in musical instrument classification but can be quite
useful because it indicates how flat (i.e., “white-noisy”) the
spectrum of a sound is. Our current work indicates that it can
also be a good descriptor for percussive sound classification
(Herrera, Yeterian, & Gouyon, 2002).

Jensen and Arnspang (1999) used amplitude, brightness,
tristimulus, amplitude of odd partials, irregularity of spectral
envelope, shimmer and jitter measures, and inharmonicity,
for studying the classification of 1500 sounds from 7 instru-
ments. Jensen (1999) using PCA, had earlier identified these
features as the most relevant from an initial set of 20 and
indicated 3 relevant dimensions that could summarize the
most important features. He labeled these, in decreasing
order of importance, “spectral envelope,” “(temporal) enve-
lope,” and “noise.” Kashino and Murase (1997b) applied
PCA to the instrument classification problem: 41 features
were reduced to 11. PCA, in the context of sound classifica-
tion, can be also found in the works of Sandell and Martens
(1995) and Rochebois and Charbonneau, (1997). Less
compact representations for temporal or spectral envelopes
can be found in Fragoulis, Avaritsiotis, and Papaodysseus
(1999) who used the slope of the first five partials, the time
delay in the onset of these partials, and the high-frequency
energy. Cemgil and Gürgen (1997) also used a set of har-
monics (the first twelve) as discriminative features in their
neural networks study.

Apart from PCA, another useful method for reducing the
dimensions of the feature selection problem is the applica-
tion of Genetic Algorithms (GAs). GAs are modeled on the
processes that drive the evolution of gene populations (e.g.,
crossover, mutation, evaluation of fitness, and selection of the
best adapted). GAs have a property called implicit search,
which means that near-optimal combinations of genes can be
found without explicitly evaluating all possible combina-
tions. GAs have been used in other musical contexts (e.g.,
sound synthesis and music composition) but the only known
application to sound classification has been that of Fujinaga,
Moore, and Sullivan (1998) where GAs were used to discover
the best feature set. From an initial set of 352 features, their
GA determined that the centroid, fundamental frequency,
energy, standard deviation and skewness of spectrum, and the
amplitudes of the first two harmonics were the best features
to achieve a successful classification rate. In a more recent
work (Fujinaga & MacMillan, 2000) two additional signifi-
cant features were reported: spectral irregularity and a mod-
ified version of tristimulus. Unfortunately, the selection of
best features was heavily instrument-dependent. This prob-
lematic dependence has been also noted by other studies.

The intensive study of feature selection performed by
Kostek (1998) represents another interesting approach.
Kostek thoroughly examined approximately a dozen features.
Examined features include, for example, energy of funda-
mental and of sets of partials, brightness, odd/even partials

ratio, tristimulus, and time delays of partials with respect to
the fundamental. Kostek also explored, in other studies, the
use of features derived from Wavelet Transforms instead of
FFT-derived features. She found that the latter provided
slightly better results than the former.

One of the more interesting aspects of Kostek’s work is
her use of rough sets (Pawlak, 1982; Pawlak, 1991). Rough
sets are a technique that was developed in the realm of
knowledge-based discovery systems and data mining. Rough
sets are implemented with the aim of classifying objects and
then evaluating the relevance of the features used in the clas-
sification process. An elementary introduction to rough sets
can be found in (Pawlak, 1998). We will return later with a
fuller explication of rough sets.

Applications of the rough sets technique to different prob-
lems, including those of signal processing, can be found in
(Czyzewski, 1998). Polkowski and Skowron (1998) present
a thoughtful discussion of software tools implementing this
kind of formalisms. Several studies by Kostek and her col-
laborators (Kostek, 1995; Kostek, 1998; Kostek, 1999;
Kostek & Czyzewski, 2001) and by Wieckzorkowska (Wiec-
zorkowska, 1999b) used rough sets for reducing a large
initial set of features for instrument classification. Wieck-
zorkowska’s study provides the clearest example of set reduc-
tion using rough sets. She found that a starting set of
sixty-two spectral and temporal features describing attack,
steady state, and release of sounds could be further reduced
to a set of sixteen features. Examples of the more significant
features include: tristimulus, energy of 5th, 6th and 7th har-
monics, energy of even partials, energy of odd partials, the
most deviating of the lower partials, mean frequency devia-
tion for low partials, brightness, and energy of high partials.

Temporal differences between values of the same feature
have been rarely used in the reviewed studies. Soundfisher,
the commercial system mentioned earlier, incorporates tem-
poral differences alongside such basic features as loudness,
pitch, brightness, bandwidth, and MFCCs (Wold, Blum,
Keislar, & Wheaton, 1999). The Fujinaga or Eronen studies
(cited above) have also incorporated temporal differences. To
summarize this section, there are two inter-related factors
that influence the success of feature-based identification and
classification tasks. First, one must determine, and then
select, the most discriminatory features from a seemingly
infinite number of candidates. Second, one must reduce the
number of applied features in order to make the resultant cal-
culations tractable. We might intuitively conclude that using
more than fifteen or twenty features seems to be a non-
optimal strategy for attempting automatic classification of
musical instruments. In order to settle into a short feature list,
reliable data reduction techniques should be used. PCA and
some types of Discriminant Analysis (both explained below)
are robust and relatively easy to compute. Other techniques
such as Kohonen maps, Genetic Algorithms, Rough Sets,
etc., might yield better results when appropriate parameters
and data are selected, but are inherently more complex. It is
also clear that there are some features that are discriminative
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only for certain types of instruments, and that not only tem-
poral and spectral features, but also their temporal evolution,
should be considered.

4. Techniques for sound classification

4.1 Perceptual-based clustering and classification

Retrieving sounds from a database by directly selecting
signal features as those cited in the previous section is not 
a friendly task. As a consequence, exploiting relationships
between them and high-level descriptions such as class or
property (roughness, brightness) is required. A different way
of retrieving sounds is by providing examples that are similar
to what we are searching for; this is known as “query by
example.” A specific kind of “query by example” is the one
based on similarity of perception of sounds, instead of being
based on sound categories. Leaving pitch, loudness and dura-
tion apart, this points directly to the notion of timbre and
therefore to “timbre similarity.”

Several authors have proposed a measure of timbre 
similarity that has been derived from psycho-acoustical
experiments (see section 2). This measure allows one to
approximate the average judgment of perceived similarity
obtained from people’s dissimilarity judgments between
pairs of sounds. In order to do that, features or combinations
of them, are used, with a possible weighting, to position the
sound into a multi-dimensional space. Giving two sounds, a
measure of timbre similarity can be approximated. Therefore,
for a given target sound, it is possible to find in a database
the one that “sounds” the closest to the target.

Misdariis et al. (1998) derived such a similarity measure
approximation from Krumhansl (1989) and McAdams et al.
(1995) experiments. Its formulation uses four features: 
log-attack-time, spectral centroid, spectral irregularity and
spectral flux. Use of the similarity measure proposed by Mis-
dariis et al. (1998) can be found, for example, in the search
engine of IRCAM’s “Studio On Line” sound database.
Peeters et al. (2000) proposed a new approximation adding
the new feature “spectral spread.” They also proposed an
equivalent approximation for percussive sounds derived from
the Lakatos (2000) experiment. This latter uses the log-attack
time, the spectral centroid and the temporal centroid.

A still remaining problem concerns the applicability of
such a timbre similarity measure for sounds belonging to 
different families (as for example comparing a sustained 
harmonic sound – i.e. an oboe sound- with a percussive sound
– i.e., a snare sound-). Current research is trying to construct
a meta-timbre-space allowing such comparison between
sounds belonging to different sound classes. Another kind of
approach is that of Feiten and Günzel (1994), Cosi, De Poli,
and Lauzzana (1994), or Spevak and Polfreman (2000).
Signal features used in these works try to take into account
the properties of human perception: MFCCs, Loudness 
critical-band rate time patterns, Lyon’s cochlear model,
Gammatone filter banks, etc. These features are then used in

order to construct, automatically, what is called a “physical
timbre space.” The “physical timbre space” aims at being the
equivalent to usual timbre spaces but derived from signal 
features instead of from dissimilarity judgments yielded by
human subjects in experimental conditions.

A “physical timbre space” can be derived from signal 
features using various techniques: Hierarchical Clustering,
Multi-Dimensional Scaling analysis (see section 2) Kohonen
Feature Maps (a.k.a. Self Organizing Maps, see note 8) or
Principal Component Analysis (see section 3.3). Prandoni
(1994) and De Poli and Prandoni (1997) used a combination
of MFCCs, Self-Organized Maps, and PCA analysis. The
authors applied this framework to the sounds of Wessel et al.
(1987) and found that brightness and spectral slope are the
features that best explain two of its “physical timbre space”
axes. Prandoni (1994) used the barycentre of the representa-
tion of each sound family in a feature (MFCCs) space. Using
MDS and Herarchical Clustering analysis he found similar
results than Grey did, and assigned the first two axes of his
space to brightness and to something called “presence,”
which is a measure of the energy inside the 800Hz. region.
In these two studies the obtained spaces were compared to
usual timbre spaces coming from human experiments such
as the above cited (sections 2 and 3.2). In Feiten and Günzer
(1994) and Spevak and Polfreman 2000) the obtained spaces
are used to make a temporal model of the sound evolution.
The former authors define two sound feature maps (SFM).
The first SFM is derived directly from a Kohonen Feature
Map training using the MFCCs. This SFM, called the Steady
State SFM, represents the steady parts of the sounds. Each
sound is then represented by a trajectory between the states
of the Steady State SFM. A Dynamic State SFM is then 
computed from these trajectories. The latter authors, on the
other hand, make a comparison between different feature sets
(Lyon’s cochlear model, Gammatone filterbank and MFCCs)
considering their abilities to represent clear and separated
trajectories in the SFM. They conclude that the best feature
set is the Gammatone filterbank combined with Meddis’s
inner hair cell model.

4.2 Taxonomic classification

In this section we are going to present different techniques
that have been used for learning to classify isolated musical
notes into instrument or music family categories. Although
we have focused on the testing phase success rate as a way
for evaluating them, we have to be cautious because other
factors (number of instances used in the learning phase,
number of instances used in the testing phase, testing proce-
dure, number of classes to be learned, etc.) may have a large
impact on the results.

K-Nearest Neighbours

The K-Nearest Neighbours (K-NN) algorithm is one of the
most popular algorithms for instance-based learning. It first
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stores the feature vectors of all the training examples and
then, for classifying a new instance, it finds a set of k nearest
training examples in the feature space, and assigns the new
example to the class that has more examples in the set. 
Traditionally, the Euclidean distance measure is used to
determine similarity. Although it is an easy algorithm to
implement, the K-NN technique has several significant 
drawbacks:

– As it is a lazy algorithm (Mitchell, 1997), it requires
having all the training instances in memory in order to
yield a decision for classifying a new instance.

– It does not provide a generalization mechanism (because
it is only based on local information).

– It is highly sensitive to irrelevant features that can
dominate the distance metrics.

– It may require a significant computational load each time
a new query is processed.

A k-NN algorithm classified 4 instruments with almost 
complete accuracy in Kaminskyj and Materka (1995) but the
small size of the database (with restricted note range to one
octave, although including different dynamics) was a 
drawback for taking this result as robust. In recent years
Kaminskyj (2001) has reported hit rates of 82% for a data-
base of 517 sounds and 19 instrumental categories. Some
interesting features of this study are the use of PCA for
reduction of data obtained after applying a Constant Q 
Transform and the use of a “reliability” estimation that can
be extracted from confusion matrices. Martin and Kim
(1998) developed a classification system that used a k-NN
on a database of 1023 sounds with 31 features extracted from
cochleagrams (see also Martin, 1999). Their study included
a hierarchical procedure consisting of:

– An initial discrimination of pizzicati from continuous
notes.

– A discrimination between different “families” (e.g.,
sustained sounds further divided into strings, woodwind,
and brass)

– A final classification of sounds into instrument categories.

When no hierarchy was used, Martin and Kim achieved a
87% classification success rate at the family level and a 61%
rate at the instrument level. Use of the hierarchical procedure
increased the accuracy at the instrument level to 79% but it
degraded the performance at the family level to 79%. In the
case of not including the hierarchical procedure, perfor-
mance figures were lower than the ones they obtained with a
Bayesian classifier. Similar results (65% for 27 instrument
classes; 77% for a two-level 6-element hierarchy) were
reported by Agostini et al. (2001). In this report, the k-NN
technique compared unfavorably against Discriminant 
Functions and also against Support Vector Machines.

Eronen and Klapuri (2000) used a combination of k-NN
and a Gaussian classifier (which was only used for rough dis-
crimination between pizzicati and sustained sounds) for clas-
sifying 1498 samples into specific instrumental families or

specific instrument labels. Using a system architecture very
similar to Martin and Kim’s hierarchy – wherein sounds are
first classified in broad categories and then the classification
is refined inside that category – they reported success rates
of 75% in individual instrument classification and 94% for
family classification. They also reported a small accuracy
improvement by only using the best features for each instru-
ment and no hierarchy at all (80%). A quite surprising result
is the extreme degradation of performance results (35%) that
has been reported in a more recent paper (Eronen, 2001). The
explanation may be found in several facts: they used a larger
and more varied database (5286 sounds coming from dif-
ferent collections) and more restrictive cross-validation
methods (the test phase used sounds that were completely
excluded from the learning set).

A possible enhancement of the K-NN technique, which
includes the weighting of each feature according to its 
particular relevance for the task, has been used by the 
Fujinaga team (Fujinaga et al., 1998; Fujinaga, 1998; Fraser
& Fujinaga, 1999; Fujinaga & MacMillan, 2000). In a series
of three experiments using over 1200 notes from 39 differ-
ent instruments, the initial success rate of 50%, observed
when only the spectral shape of steady-state notes was used,
increased to 68% when tristimulus, attack position, and 
features of the dynamically changing spectrum envelope
(i.e., the change rate of the centroid) were added. In their last
paper, a real-time version of this system was reported.

The k-NN literature – including the works of such
research leaders as Martin and Fujinaga – consistently
reports accuracy rates around 80%. Provided that the feature
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Fig. 3. An illustration of the K-NN technique. The point marked
with a star would be classified as belonging to category “B” when
K = 3 (as two out of its 3 neighbours are from class “B”; but note
that in case of using K = 5 the point would be classified as “A”
because there are 3 nearest neighbours belonging to this category
and only 2 belonging to “B.”
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selection has been optimized with genetic or other optimiza-
tion techniques, one can thus interpret the 80% accuracy
value as an estimation of the limitations of the K-NN 
algorithm. Therefore, more powerful techniques should be
explored.

Naïve Bayesian Classifiers

A Naïve Bayesian Classifier (NBC) incorporates a learning
step in which the probabilities for the classes and the condi-
tional probabilities for a given feature and a given class are
estimated. Probability estimates for each of these are based
on their frequencies as found in a collection of training 
data. The set of these estimates corresponds to the learned
hypothesis, which is formed by simply counting the occur-
rences of various data combinations within the training
examples. Each new instance is classified based upon the
conditional probabilities calculated during the learning
phase. This type of classifier is called naïve because it
assumes the independence of the features.

Brown (1999) used the NBC technique in conjunction
with 18 Cepstral Coefficients computed after a constant Q
transform. After clustering the feature vectors with a K-
means algorithm, a Gaussian mixture model from their
means and variances was built. This model was used to esti-
mate the probabilities for a Bayesian classifier. It then clas-
sified 30 short sounds of oboe and sax with an accuracy rate
of 85%. In a more recent paper (Brown, Houix, & McAdams,
2001) she and her collaborators reported similar hit rates for
four classes of instruments (oboe, sax, clarinet and flute);
these good results were replicated for different types of
descriptors (cepstral coefficients, bin-to-bin differences of
the constant-Q spectrum, and autocorrelation coefficients).

Martin (1999) enhanced a similar Bayesian classifier with
context-dependent feature selection procedures, rule-one-out
category decisions, beam search, and Fisher discriminant
analysis, to estimate the maximum a priori probabilities. In
(Martin & Kim, 1998) performance of this system was better
than that of a K-NN algorithm at the instrument level with a
71% accuracy rate and equivalent to it at the family level with
85% accuracy rate.

Kashino and his team (1995) have also used a Bayesian
classifier in their CASA system. Their implementation is
reported to be able to classify, and even separate, five differ-
ent instruments: clarinet, flute, piano, trumpet and violin.
Unfortunately, no specific performance data are provided in
their paper.

Discriminant Analysis

Classification using categories or labels that have been 
previously defined can be done with the help of Discriminant
Analysis (DA) a technique that is related to multivariate
analysis of variance (MANOVA) and multiple regression.
DA attempts to minimize the ratio of within-class scatter to
the between-class scatter and builds a definite decision region

between the classes. It provides linear, quadratic or logistic
functions of the variables that “best” separate cases into two
or more predefined groups. DA is also useful for determin-
ing which are the most discriminative features and the most
similar/dissimilar groups. Surprisingly there have been very
few studies using these techniques. Martin and Kim (1998)
made limited use of this method when they used a linear DA
to estimate the mean and variance of the Gaussian distribu-
tions of each class to be fed into an enhanced naive Bayesian
classifier.

More recently Agostini et al. (2001) have found that a 
set of quadratic discriminant functions outperformed even
Support Vector Machines (93% versus 70% hit rates) in 
classifying 1007 tones from 27 musical instruments with a
very small set of descriptors. In our laboratory we carried
out, some time ago, an unpublished study with 120 sounds
from 8 classes and 3 families in which we got a 75% accu-
racy using also quadratic linear discriminant functions in two
steps (sounds were first assigned to a family, and then they
were specifically classified). As the features we used were not
optimized for instrument classification but for perceptual
similarity classification, it would be reasonable to expect still
better results when including other more task-specific fea-
tures. In a more recent work (Herrera et al., 2002) that used
a database of 464 drum sounds (kick, snare, hihat, tom,
cymbals) and an initial set of more than thirty different fea-
tures, we got hit rates higher than 94% with four canonical
Discriminant functions9 that combined 18 features compris-
ing some MFCCs, attack and decay descriptors, and relative
energies in some selected bands.

Higher Order Statistics

When signals have Gaussian density distributions, we can
describe them thoroughly with such second order measures as
the autocorrelation function or the spectrum. In the case of
noisy signals such as engine noises of sound effects, the 
variations in the spectral envelope do not allow a good signal
characterisation and matching. A method to match signals
using a variant of matched filter using polyspectral matching
was presented in (Dubnov & Tishby, 1997), and it could be
specifically useful for the classification of sounds from 
percussive instruments. There are some authors who claim
that musical signals, because they have been generated
through non-linear processes, do not fit a Gaussian distribu-
tion. In that case, using higher order statistics or polyspectra,
as for example skewness of bispectrum and kurtosis of trispec-
trum, it is possible to capture all information that could be lost
if using a simpler Gaussian model. With these techniques, and
using a Maximum Likelihood classifier, Dubnov, Tishby, and
Cohen (1997) have showed that discrimination between 18

9 A canonical Discriminant function uses standardized values and
Mahalannobis distances instead of raw values and Euclidean 
distances.
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instruments from string, woodwind and brass families is pos-
sible. Unfortunately the detailed data that is presented there
come from a classification experiment that used machine and
other types of non-instrumental sounds. Acoustic justification
for differences in kurtosis among families of instruments 
was provided in Dubnov and Rodet (1997). The measure of 
kurtosis was shown to correspond to the phenomenon of 
phase coupling, which implies coherence in phase fluctuations
among the partials.

Binary trees

Binary Trees, in different formulations, are pervasively used
for different machine learning and classification tasks. They
are constructed top-down, beginning with the feature that
seems to be the most informative one, that is, the one that
maximally reduces entropy. Branches are then created from
each one of the different values of this descriptor. In the case
of non-binary valued descriptors, a procedure for dichotomic
partitioning of the value range must be defined. The training
examples are sorted to the appropriate descendant node, and
the entire process is then repeated recursively using the
examples of one of the descendant nodes, then with the other.
Once the tree has been built, it can be pruned to avoid over-
fitting and to remove secondary features. Although building
a binary tree is a recursive procedure, it is order of times
faster than, for example, training a neural network.

Binary trees are best suited for approximating discrete-
valued target functions but they can be adapted to real-valued
features. Jensen and Arnspang’s binary decision tree (1999)
exemplifies this approach to instrument classification. In
their system, the trees are constructed by asking a large
number of questions designed in each case to divide the data
into two sets (e.g., “Is attack time longer than 60ms?”).
Goodness of split (e.g., average entropy) is calculated and the
question that renders the best goodness is chosen. Once the
tree has been built using the learning set, it can be used for
classifying new sounds because each leaf corresponds to one
specific class. The tree can also be used for making explicit
rules about which features better discriminate one instrument

from another. Unfortunately, detailed results regarding the
classification of new sounds have not yet been published.
Consult Jensen’s thesis (1999), however, for his discussion of
log-likelihood classification functions.

Wieczorkowska (1999a) used a binary tree approach,
called the C4.5 algorithm (Quinlan, 1993), to classify a 
database of 18 classes and 62 features. Accuracy rates varied
between 64% and 68% depending on the test procedure
applied. In our above-mentioned drum sounds classification
study (Herrera et al., 2002) we obtained slightly better figures
(83% of hit rates) using the C4.5 algorithm for classifying
nine different classes of instruments.

A final example of a binary tree for audio classification,
although not specifically tested with musical sounds, is that
of Foote (1997). His tree-based approach uses MFCCs and
supervised vector quantization to partition the feature space
into a number of discrete regions. Each split decision in the
tree involves comparing one element of the vector with a
fixed threshold that is chosen to maximize the mutual infor-
mation between the data and the associated human-applied
class labels. Once the tree is built, it can be used as a classi-
fier by computing histograms of frequencies of classes in
each leaf of the tree; histograms are similarly generated for
the test sounds then compared with tree-derived histograms.

Artificial Neural Networks

An Artificial Neural Network (ANN) is an information 
processing structure that is composed of a large number of
highly interconnected processing elements – called neurons
or units – working in unison to solve specific problems.
Neurons are grouped into layers (usually called input, output,
and hidden) that can be interconnected through different 
connectivity patterns. An ANN learns complex mappings
between input and output vectors by changing the weights
that interconnect neurons. These changes may proceed either
supervised or unsupervised. In the supervised case, a teach-
ing instance is presented to the ANN, it is asked to generate
an output, this out is then compared with an expected
“correct” output, and the weights are consequently changed
in order to minimize future errors. In the unsupervised case,
the weights “settle” into a pattern that represents the collec-
tion of input stimulus.

A very simple feedforward network with a backpropaga-
tion training algorithm was used in Kaminskyj and Materka
(1995). The network (a system with 3 input units, 5 hidden
units, and 4 output units) learned to classify sounds from 4
very different instruments – piano, marimba, accordion and
guitar – with an accuracy rate as high as 97%. Slightly better
results were obtained, however, using a simpler K-NN 
algorithm. A three-way evaluative investigation involving a 
multilayer network, a time-delayed network, and a hybrid
self-organizing network/radial basis function (see note 8) can
be found in Cemgil and Gürgen (1997). Although very high
success rates were found (e.g., 97% for the multilayer
network, 100% for the time-delay network, and 94% for the

Fig. 4. An imaginary binary tree for classification of sounds into
4 different classes.
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self-organizing network) it should be noted that the experi-
ments used only 40 sounds from 10 different classes with the
pitch range limited to one octave.

Implementations of self-organizing maps (Kohonen,
1995) can be found in Feiten and Günzel (1994); Cosi, De
Poli, and Lauzzana (1994); Cosi et al. (1994); Toiviainen et
al. (1998). All these studies used some kind of human audi-
tory preprocessing simulation to derive the features that were
fed to the network. Each then built a map and evaluated 
its quality by comparing the network clustering results to
those human-based sound similarity judgments (Grey, 1977;
Wessel, 1979). From their maps and their comparisons they
advance timbral spaces to be explored, or confirm/reject the-
oretical models that explain the data. We must note, however,
that the classification we get from self-organizing maps has
not traditionally been directly usable for instrument recogni-
tion, as the maps are not provided with any a priori label to
be learned (i.e., no instrument names). Nevertheless, there
are several promising mechanisms being explored for asso-
ciating the output clusters to specific labels (e.g., the radial
basis function used by Cemgil, (see above). The ARTMAP
architecture (Carpenter, Grossberg, & Reynolds, 1991) is
another means to implement this strategy. ARTMAP has a
very complex topology including a couple of associative
memory subsystems and also an “attentional” subsystem.
Fragoulis et al. (1999) successfully used an ARTMAP for the
classification of 5 instruments with the help of only ten fea-
tures: slopes of the first five partials, time delays of the first
4 partials relative to the fundamental, and high frequency
energy. The small 2% error rate reported was attributed to
neglecting different playing dynamics in the training phase.

Kostek’s (1999) is the most exhaustive study on instru-
ment classification using neural networks. Kostkek’s team
has carried out several studies (Kostek & Krolikowski, 1997;
Kostek & Czyzewski, 2000; Kostek & Czyzewski, 2001) on
network architecture, training procedures, and number and
type of features, although the number of classes to be clas-
sified has been always too small. They have used a feedfor-
ward NN with one hidden layer. Initially their classes were
instruments with somewhat similar sounds: trombone, bass
trombone, English horn and contrabassoon. Lastly, papers
with more categories (double bass, cello, viola, violin,
trumpet, flute, clarinet . . .) have been added to the tests.
Accuracy rates higher than 90% were achieved for different
sets of four classes, although the results varied depending on
the types of training and descriptors used.

Some ANN architectures are capable of approximating
any function. This attribute makes neural networks a good
choice when the function to be learned is not known in
advance, or it is suspected to be non-linear. ANN’s do have
some important drawbacks, however, that must be considered
before they are implemented: the computation time for the
learning phase is very long, adjustment of parameters can be
tedious and prohibitively time consuming, and data over-
fitting can degrade their generalization capabilities. It is still
an open question whether ANN’s can outperform simpler

classification approaches. They do, however, exhibit one
strong attribute that recommends their use: once the learning
phase is completed, the classification decision is very fast
when compared to other popular methods such as k-NN.

Support Vector Machines

SVMs are based on statistical learning theory (Vapnik,
1998). The basic training principle underlying SVMs is
finding the optimal linear hyperplane such that the expected
classification error for unseen test samples is minimized (i.e.,
they look for good generalization performance). According
to the structural risk minimization inductive principle, a
function that classifies the training data accurately, and which
belongs to a set of functions with the lowest complexity, will
generalize best regardless of the dimensionality of the input
space. Based on this principle, a SVM uses a systematic
approach to find a linear function with the lowest complex-
ity. For linearly non-separable data, SVMs can (non-linearly)
map the input to a high dimensional feature space where a
linear hyperplane can be found. This mapping is done by
means of a so-called kernel function (denoted by f in 
Fig. 5).

Although there is no guarantee that a linear solution will
always exist in the high dimensional space, in practice it is
quite feasible to construct a working solution. In other words,
it can be said that training a SVM is equivalent to solving a
quadratic programming with linear constraints and as many
variables as data points. Anyway, SVM present also some
drawbacks: first, there is a risk of selecting a non-optimal
kernel function; second, when there are more than two cate-
gories to classify, the usual way to proceed is to perform a
concatenation of two-class learning procedures; and third, the
procedure is computationally intensive.

Marques (1999) used an SVM for the classification of 8
solo instruments playing musical scores from well-known
composers. The best accuracy rate was 70% using 16 MFCCs
and 0.2 second sound segments. When she attempted classi-
fication on longer segments an improvement was observed
(83%). There were, however, two instruments found to be
very difficult to classify: trombone and harpsichord. Another
noteworthy feature of this study was the use of truly inde-

Fig. 5. In SVM’s the Kernel function f maps the input space
(where discrimination of the two classes of instances is not easy to
be defined) into a so-called feature space, where a linear boundary
can be set between the two classes.
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pendent sets for the learning and for the testing consisting
mainly of “solo” phrases from commercial recordings.

Agostini et al. have reported quite surprising results
(Agostini et al., 2001). In their study an SVM performed
marginally better than (Linear) Canonical Discriminant 
functions and also better than k-NN’s, but not nearly as good
as a set of Quadratic Discriminant Functions (see section
4.2.3). Some promising applications of SVM that are related
to music classification but are not specific to music instru-
ment labelling can be found in Li and Guo (2000); Whitman,
Flake; and Lawrence (2001); Moreno and Rifkin (2000); or
Guo, Zhang, and Li (2001).

Rough Sets

Rough sets are a novel technique for evaluating the relevance
of the features used for description and classification. These
are similar to, but should not be confused with, fuzzy sets. In
rough set theory, any set of similar or indiscernible objects
is called an elementary set and forms a basic granule of
knowledge about the universe; on the other hand, the set of
discernible objects are considered rough (i.e., imprecise or
vague). Vague concepts cannot be characterized in terms of
information about their elements; however, they may be
replaced by two precise concepts, respectively called the
lower approximation and the upper approximation of the
vague concept (see Fig. 6 for a graphical illustration of these
ideas). The lower approximation consists of all objects that
surely belong to the concept whereas the upper approxima-
tion contains all objects that could possibly belong to the
concept. The difference between both approximations is
called the boundary region of the concept.

The assignment of an object to a set is made through a
membership function that has a probabilistic flavour. Once
data are conveniently organized into information tables, this
technique is used to assess the degree of vagueness of the

concepts and the interdependency of attributes; it therefore
is useful for reducing complexity in the table without reduc-
ing the information it provides. Information tables regarding
cases and features can be interpreted as conditional decision
rules of the form IF {feature x} is observed, THEN
{is_a_Y_object}, and consequently they can be used as clas-
sifiers. When applied to instrument classification, Kostek
(1998) reports accuracy rates higher than 80% for classifica-
tion of the same 4 instruments mentioned in the ANN’s
section. While both useful and powerful, the use of rough sets
does entail some significant costs. The need for feature value
quantization is the principal and non-trivial cost associated
with rough sets. Furthermore, the choice of quantization
method can affect output results. In the context of instrument
classification, different quantization methods have been 
discussed in Kostek and Wieczorkowska (1997), Kostek
(1998), and Wieczorkowska (1999b). When compared to
neural networks or fuzzy sets rules, rough sets are computa-
tionally less expensive while at the same time yielding results
similar to those obtained with the other two techniques.

Hidden Markov Models

Hidden Markov Models (HMMs) as the name implies,
contain two components: a set of hidden variables that 
can not be observed directly from the data, and a Markov
property that is usually related to some dynamical behaviour
of the hidden variables.

A HMM is a generative model that assumes that a
sequence of measurements or observations is produced
through another sequence of hidden states s1, . . . , sT, so that
the model generates, in each state, a random measurement
drawn from a different (finite or continuous) distribution.
Thus, given a sequence of measurements and assuming a
certain sequence of hidden states, the HMM model specifies
a joint probability distribution.

Fig. 6. An illustration of rough sets concepts.
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The HMM paradigm is used to solve three main tasks: clas-
sification, segmentation and learning. Learning is the first
problem that needs to be solved in order to use a HMM
model, unless the parameters of the model are externally
specified. It means estimating the parameters of the models,
usually iteratively done by the EM algorithm (Dempster,
Laird, & Rubin, 1977). The tasks of segmentation and 
classification are accomplished via forward-backward recur-
sions, which propagate information across the Markov state
transition graph. The segmentation problem means finding
the most likely sequence of the hidden states given an obser-
vation x1 . . . xT. Given several candidate HMM models that
represent different acoustic sources (musical instruments in
our case) the classification problem computes the probabil-
ity that the observations came from these models. The model
that gives the highest probability is chosen as the likely
source of the observation.

HMMs have been used to address musical segmentation
problems by several researchers (Raphael, 1999; Aucouturier
& Sandler, 2001). These works dealt with segmentation of a
sound into large-scale entities such as complete notes or 
sections of musical recordings, with the purpose of per-
forming tasks such as score following or identification of
texture changes in a musical piece.

Works that address the classification problem usually take
a simpler view that discards the Markovian dynamics. Based
on a work by Reynolds on speaker identification (Reynolds
& Rose, 1995) several researchers considered a Gaussian
Mixture Model (GMM) for computer identification of
musical instruments (Brown, 1999; Marques, 1999). GMMs
consider a continuous probability density of the observation,
and model it as a weighted sum of several Gaussian densi-
ties. The hidden parameters in GMM are the mean vector,
covariance matrix and mixture weight of the component den-
sities. Parameter estimation is performed using an EM pro-
cedure or k-means. Using a GMM in an eight-instrument
classification task, Marques reported an overall error rate of
5% for 32 Gaussians with MCCs as features. Brown per-
formed a two-instrument classification experiment where she
compared machine classification results with human percep-
tion for a set oboe and saxophone sounds. She reported a
lower error rate for the computer than humans for oboe
samples and roughly the same for the sax samples. Eronen
and Klapuri (2000) also compare a GMM classifier to other
classifiers for various features.

In the HMM model for sound clips presented by Zhang
and Kuo (1998a; 1999b) they use a continuous observation
density probability distribution function (pdf) with various
architectures of the Markov transition graphs. They also
incorporate an explicit State Duration model (semi-markov
model, (Rabiner, 1989) for modelling the possibility that d
consecutive observations belong to the same state. Denote a
complete parameter set of HMM as l = (A, B, D, p), with A
for the transition probability, B for the GMM parameters, D

p s s x x p s p x s p s s p x sT T t t t
t

T

1 1 1 1 1 1 1
2

. . . , . . .( ) = ( ) ( ) ( ) ( )-
=

’
for duration pdf parameters and p for initial state distribu-
tion. In this model, two types of information are represented
in the HMM: timbre and rhythm. Each kind of timbre is mod-
elled by a state, and rhythm information is denoted by tran-
sition and duration parameters. The authors arrive at a three
step learning procedure that first uses GMM for estimating
B, then A is calculated from statistics of the state transitions
and eventually D is estimated state by state, assuming a
Gaussian density for the durations. This simplified procedure
is not a strict HMM learning process and it is used to 
simplify the computational load of the learning stage. They
report over 80% accurate classification rate for 50 sound
clips, with misclassifications reportedly happening with
classes of perceptually similar sounds, such as applause, rain,
river and windstorm. The timbre of sound is described pri-
marily by the frequency energy distribution that is extracted
from short time spectrum. In their experiments, Zhang and
Kuo employ a rather naive feature set for description of the
timbre, that consist of log amplitude from a 128-point FFT
vector (thus obtaining a 65 dimensional feature vector) cal-
culated at approximately 9msec intervals. Depending on the
type of sound that is analyzed, a partial or complete HMM
models is employed. The simplest ones are single state
sounds, and sounds that omit duration and transition infor-
mation. These are used when every timbral state in the model
can occur anywhere in time and for any duration. Second
model includes transition probabilities, but without dura-
tions. The third (complete case) includes sounds such as 
footsteps and clock ticks, which carry both transition and
duration information. An improvement to the timbral
description was recently suggested by Casey and Westner
(2001). Instead of using magnitude FFT, they suggest
reduced rank spectra as a feature set for HMM classifier.
After FFT analysis, singular value decomposition (SVD) is
used to estimate a new basis for the data and, by discarding
basis vectors with low eigenvalues, a data-reduction step is
performed. Then the results are passed to independent com-
ponent analysis (ICA10) which imposes additional constraints

10 Independent component analysis (ICA) tries to improve upon the
more traditional Principal Component Analysis (PCA) method of
feature extraction by performing an additional linear transformation
(rotating and scaling) of the PCA features so as to obtain maximal
statistical independence between the feature vectors. One must note
that PCA arrives at uncorrelated features, which are independent
only when the signal statistics are Gaussian. It is claimed by several
researchers that both in vision and sound the more “natural” fea-
tures are the ICA vectors. The motivation for this claim is that ICA
features are better localized in time (or space, in the case of vision)
[Bell & Sejnowsky, 1996, 1997], and arrive at a more sparse rep-
resentation of sound, that is, requiring less features, at every given
instant of time (or space) in order to describe the signal. (One should
note, though, that the total number of features needed to describe
the whole signal is not changed). A serious study of the utility of
ICA for sound recognition still needs to be carried out, especially
in view of the computational overhead that needs to be “paid” for
ICA processing, vs. the improvement in recognition rates.
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on the output features. The resulting representation consists
of a projection of a data into a lower-dimensional space with
marginal distributions being approximately independent.
They report a success rate of 92.65% for reduced-rank versus
60.61% for the full-rank spectra HMM classifier.

Another variant of Markov modelling, but this time 
using explicit (not hidden) observations with arbitrary length
Markov modelling was used by Dubnov and Rodet (1998).
In this work a universal classifier is constructed using a dis-
crete set of features. The features were obtained by cluster-
ing (vector quantization of) cepstral and cepstral derivative
coefficients. The motivation for this model is a universal
sequence classification method of Ziv-Merhav (Ziv &
Merhav, 1993) that performs matching of arbitrary sequences
with no prior knowledge of the source statistics and having
an asymptotic performance as good as any Markov or finite-
state model. Two types of information are modelled in their
work: timbre information and local sound dynamics, which
are represented by cepstral and cepstral derivative features
(observables). The long-term temporal behaviour is captured
by modelling innovation statistics of the sequence, i.e., a
probability to see a new symbol given the history of that
sequence (for all possible length prefixes). By clever sam-
pling of the sequence history, only most significant prefixes
are used for prediction and clustering. The clustering method
was tested on a set of 20 examples from 4 musical instru-
ments, giving a 100% correct clustering.

5. Conclusions

We have examined the techniques that have been used for
classification of isolated sounds and the features that have
been found as more relevant for the task. We have also
reviewed the perceptual features that account for clustering
of sounds based on timbral similarity. Regarding the percep-
tual approach, we have presented empirical data for defining
timbral spaces that are spanned by a small number of per-
ceptual dimensions. Theses timbral spaces may help users of
a music content-processing system to navigate through col-
lections of sounds, to suggest perceptually based labels, and
to perform groupings of sounds that capture similarity con-
cepts. Regarding the taxonomic classification, we have dis-
cussed a variety of techniques and features that have provided
different degrees of success when classifying isolated instru-
mental sounds. All of them show advantages and disadvan-
tages that should be balanced according to the specifics of
the classification task (database size, real-time constraints,
learning phase complexity, etc.).

An approach yet to be tested is the combination of per-
ceptual and taxonomic data in order to propose mixtures 
of perceptual and taxonomic labels (i.e., bright snare-like
tom or nasal violin-like flute). It remains unclear, however,
whether taxonomic classification techniques and features 
can be applied directly and successfully to the task of
complex mixtures’ segmenting-by-instrument. Additionally,
because many of these techniques assume a priori isolation

of input sounds, they would not accomplish the requirements
outlined by Martin (1999) for real-world sound-source recog-
nition systems. Anyway, we have been lately focusing in a
special type of sound mixtures, so-called “drum loops,”
where some dual and ternary combinations of sounds can be
found, and we have obtained very good classification results
adopting the isolated sounds approach (Herrera, Yeterian, &
Gouyon, 2002). We have elsewhere (Herrera, Amatriain,
Batlle, & Serra, 2000) suggested some strategies for over-
coming this limitation and for guiding some forthcoming
research.
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ABSTRACT: The automatic analysis of large musical corpora by means of 
computational models overcomes some limitations of manual analysis, and the 
unavailability of scores for most existing music makes necessary to work with audio 
recordings.  Until now, research on this area has focused on music from the Western 
tradition. Nevertheless, we might ask if the available methods are suitable when 
analyzing music from other cultures. We present an empirical approach to the 
comparative analysis of audio recordings, focusing on tonal features and data mining 
techniques. Tonal features are related to the pitch class distribution, pitch range and 
employed scale, gamut and tuning system. We provide our initial but promising results
obtained when trying to automatically distinguish music from Western and non-
Western traditions; we analyze which descriptors are most relevant and study their 
distribution over 1500 pieces from different traditions and styles. As a result, some 
feature distributions differ for Western and non-Western music, and the obtained 
classification accuracy is higher than 80% for different classification algorithms and an 
independent test set. These results show that automatic description of audio signals 
together with data mining techniques provide means to characterize huge music 
collections from different traditions and complement musicological manual analyses. 
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INTRODUCTION 

Goals and motivation 

THERE is a wealth of literature on music research that focuses on the comparative study of different 
musical genres, styles and traditions. According to Toiviainen and Eerola (2006, p. 1), “typical research 
questions in this area of inquiry involve the evolution of a musical style, typical musical features in the 
works a composer, or similarities and differences across music traditions from various geographical 
regions”. Traditional research methods have been mainly based on either manual analysis of notated scores 
or aural analysis of music recordings. Although these manual analyses provide very accurate and expert 
information, they might have two potential limitations, as pointed out in the work by Toiviainen and Eerola 
(2006). First, manual annotation is a time consuming task, and this makes these studies to be based on a 
relatively small music collection that might not be then representative, in a statistical sense, of the corpora 
in study. Second, manual annotations might be subjective or prone to errors, especially if they are generated 
by different people with slightly different criteria without a common methodology (Lesaffre et al., 2004).  

One way to overcome these limitations is to introduce the use of computational methods, which 
allows automating (in different degrees) the analysis of large musical collections. Many recent studies have 
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been devoted to apply computational models to comparative music research. Toiviainen and Eerola (2006) 
provide a very good overview of computational approaches to comparative music research, including issues 
related to music representation, musical feature extraction and data mining techniques. They also provide 
some examples of visualization of large musical collections based on these techniques, focusing on the 
analysis of MIDI representations.  

Some studies in the field of Music Information Retrieval (MIR) have been also devoted to apply 
these methods to the analysis of audio recordings, mainly in some applied contexts such as music genre 
classification or artist identification (e.g. Tzanetakis & Cook, 2002). Extracted features are related to 
different musical facets and a varied set of data mining techniques are afterward applied to this set of 
descriptors. Timbre and rhythmic features are the most commonly used ones. They provide a way to 
characterize differences in instrumentation and meter, which are usually enough to discriminate diverse 
musical styles. Timbre is usually characterized by a group of descriptors directly computed from the signal 
spectrum (Tzanetakis & Cook, 2002), and common rhythmic features are tempo and Inter-Onset-Intervals 
(IOIs) histograms, which represent the predominant pulses (Gouyon & Dixon, 2005).  

These methods are also considered when trying to measure the similarity between two musical 
pieces based on different criteria (used instruments, rhythmic pattern or harmonic progression). The 
definition of a music similarity measure is a very complex and somehow subjective task.  

Until now, MIR research has mainly focused on the analysis of music from the so-called “Western 
tradition”, given that most of MIR systems are targeted toward this kind of music. Nevertheless, we might 
ask if the available descriptors and techniques are suitable when analyzing music from different traditions. 
The term Western is generally employed to denote most of the cultures of European origin and most of 
their descendants, and it is often used in contrast to other cultures including Asians, Africans, Native 
Americans, Aboriginals, Arabs, and prehistoric tribes. Tzanetakis et al. (2007) have recently introduced the 
concept of Computational Ethnomusicology to refer to the use of computer tools to assist in 
ethnomusicological research, providing some guidelines and specific example of this type of 
multidisciplinary research. In this context, we present here an example of the use of audio analysis tools for 
comparative analysis of music from different traditions and genres. 

The goal of the present study is to provide an empirical approach to the comparative analysis of 
music audio recordings, focusing on tonal features and a music collection from different traditions and 
musical styles. These descriptors are related to the pitch class distribution of a piece, its pitch range or 
tessitura and the employed scale and tuning system, being the feature extraction process derived from 
mathematical models of Western musical scales and consonance. We provide our initial but promising 
results obtained when trying to automatically distinguish or classify music from Western and non-Western 
traditions by means of automatic audio feature extraction and data mining techniques. Having in mind this 
goal, we analyze which features might be relevant to this task and study their distribution over a large 
music collection. We then apply some data mining techniques intended to provide an automatic 
classification of a music recording into Western and non-Western categories. From an applied point of 
view, we investigate if it is possible to automatically classify music into Western and non-Western by just 
analyzing audio data.  

Musical scales in Western and non-Western music 

As mentioned above, we hypothesize that tonal descriptors related to the pitch class distribution of a piece, 
pitch range and employed scale and gamut may be useful to differentiate music from different traditions 
and styles.  

A scale is a small set of notes in ascending or descending order (usually within an octave), being a 
sequence long enough to define a mode, tonality or another linear construction which starts and ends on its 
main note. These scales establish the basis for melodic construction. On the other side, the gamut is defined 
as the full range of pitches in a musical system, appearing when all possible variants of all possible scales 
are combined.  

Scales in traditional Western music generally consist of seven notes (i.e. scale degrees), repeat at 
the octave, and are separated by whole and half step intervals of tones and semitones. Western music in the 
Medieval and Renaissance periods (1100-1600) tends to use the diatonic scale C-D-E-F-G-A-B, with rare 
and unsystematic presence of accidentals. Music of the common practice period (1600-1900) uses three 
types of scales: the diatonic scale and the melodic and harmonic minor scales, having 7 notes. In the 19th 
and 20th centuries, additional types of scale are explored, as the chromatic (12 notes), the whole tone (6 
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notes), the pentatonic (5 notes), the octatonic or diminished scales (Drabkin, 2008). As a general 
observation, in traditional Western music, scale notes are most often separated by equally-tempered tones 
or semitones, creating a gamut of 12 pitches per octave, so that the frequency ratio between consecutive 
semitones is equal to , i.e. the interval value in the logarithm ‘cent’ metric is equal to 100 cents.  

Many other musical traditions employ scales that include other intervals or a different number of 
pitches. According to Burns (1998, p. 217), the use of discrete pitch relationships is largely universal, pitch 
glides (as glissandos or portamentos) are used as embellishment and ornamentation in most musical 
cultures, and the concept of octave equivalence, although far from universal in early and structurally 
simpler music, seems to be common to more advanced musical systems.  

For instance, gamelan music uses a small variety of scales including Pélog and Sléndro, not 
including equally tempered intervals (Carterette & Kendall, 1994). Ragas in Indian classical music often 
employ intervals smaller than a semitone, as both musical systems of India (Hindustani and Karnatic) are 
based on 22 possible intervals per octave and are not equal interval.  Arabic music may use quarter tone 
intervals. According to Burns (1998), there are different theories as to the number of used intervals 
(ranging from 15 to 24) and some controversy as to where they are true quarter tones or merely microtonal 
variations of certain intervals.  

Central and southern African music is characterized by the dominance of rhythmic and percussive 
devices, and the scales of musical instruments do not seem to be an approximation of the Western tempered 
scale (Merriam, 1959; VV.AA, 1973). Chinese and Japanese tuning also differ from equal-tempered scale 
(Piggott, 1891-1892). 

In addition to the mentioned musical traditions, there are also other musical genres (apart from 
classical Western music) that may employ scale intervals smaller than a semitone. For instance, the blue 
note is an interval that is neither major nor minor, but in between, giving it a characteristic flavor. In blues, 
a pentatonic scale is often used, and in jazz many different modes and scales are found (being chromatic 
scales commonly used), often in the same piece.  
 

MUSIC COLLECTION 
 

A relevant step for a comparative study of music material is the definition of a proper audio collection. This 
collection should be representative of the different styles present in music from Western and non-Western 
tradition, which is an arduous task, given the variety of both categories.  

We have tried to cope with the variety of both classes of music, gathering a music made of 500 
audio recordings from non-Western music (distributed by region: Africa, Java, Arabic, Japan, China, India 
and Central Asia). These samples consist of recordings of traditional music from different areas, and we 
discarded those having some Western influence (equal-tempered instruments as the piano, for instance).  

We also considered 1000 recordings from Western music, gathered from commercial CDs and 
distributed across the musical genres presented in Figure 1. 

 
Fig. 1.  Distribution of musical genres within the music collection 
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Non-Western music was chosen to be representative of the musical tradition of each geographical 
region, and Western music was chosen to cover a set of varied musical genres, which might be more 
representative of the different types of music than geographical ordering. The “Western” collection that 
was chosen has been widely used in automatic genre recognition (Tzanetakis, 2001; Holzapfel, 2007; 
Rentfrow, 2003).  

AUDIO FEATURE EXTRACTION 

Another relevant task is the definition and computation of a representative set of musical features for the 
studied problem. These features should be automatically extractable from audio recordings.  

Based on previous studies, we hypothesize that features derived from a tonal analysis of the piece 
might be relevant for comparative analysis and music similarity in this particular context, as they represent 
the pitch class distribution of the piece and they are not influenced by instrumentation or tempo (Toiviainen 
& Eerola, 2006; Gómez, 2006, p. 153-183).  

We compute these features over the first 30 seconds of each musical piece, for two different 
reasons. First, 30 seconds are being considered enough in the MIR community to recognize a certain 
musical style and a musical key. According to Gómez (2006, p. 134), the accuracy rate of a key estimation 
algorithm is similar if we only consider the beginning of a piece (from 15 seconds) than the whole piece. 
Second, and from a practical point of view, the computation speed is reduced. We then assume that 
analyzing the first 30 seconds of a musical recording should be enough to classify if the piece belongs or 
not to the Western music tradition. In order to check this fact, we listened to the starting segments of all the 
pieces and discarded few non representative parts (containing silences or ambiguous introductions). We 
present here the set of audio features that has been considered in this study.  

Tuning frequency 

One of the features that we consider relevant for this task is the frequency used to tune a musical piece, 
which is close to 440 Hz in the Western tradition. We estimate the tuning frequency (i.e. its difference with 
440 Hz) as the value that minimizes the deviation of the main spectral peaks from an equal-tempered scale. 
These spectral peaks are obtained after frequency analysis of the audio signal through the Discrete Fourier 
Transform (DFT). An estimation of the tuning frequency is computed in a frame basis (frames have a 100 
ms duration and are 50% overlapped), and a global estimate is derived from the frame values by means of a 
histogram. A more detailed description of the algorithm is presented in (Gómez, 2006, p. 71-76). An 
example is provided in Figure 2.  

Fig. 2.  Frequency deviation with respect to 440 Hz (in cents) vs. frame index, computed for a piece tuned 
to 440 Hz (up), with a deviation of 20 cents (middle) and 60 cents (down). 
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High-resolution pitch class distributions 

Pitch-class distributions from symbolic data are already considered in Toiviainen and Eerola (2006) for the 
comparative analysis of symbolic data from different geographical regions. We extend this idea to the 
analysis of audio recordings by computing pitch class distributions from audio signals.  

We call the obtained features the Harmonic Pitch Class Profile (HPCP), and the procedure for its 
computation is presented in detail in Gómez (2006) and illustrated in Figure 3. The HPCP is computed in a 
frame basis, considering 100 ms overlapped frames. We perform a spectral analysis of each audio frame 
followed by a peak estimation procedure. The peak frequencies are then mapped into pitch-class values 
according to the tuning frequency value previously estimated. The HPCP vector is computed using an 
interval resolution of 10 cents per semitone, so that the vector size is equal to 120 points (10 values per 
semitone). This resolution is chosen in order to achieve a more detailed representation of the pitch class 
distribution of the piece and to cope with the small pitch variations obtained through different tuning 
systems and scales. Finally, we consider the HPCP average of the frames belonging to the considered audio 
excerpt (30 first seconds). 

Fig. 3.  Block diagram for HPCP computation. 

We also compute a “transposed” version of the HPCP, called the THPCP, by ring-shifting the HPCP vector 
according to the position of the maximum value (shift): 

€

THCP[n] = HPCP[mod(n − shift,size)] n =1, ... size.

This feature can be considered to be invariant to transposition, i.e. a piece which is transposed to a 
different key will have different HPCP but same THPCP values. In this sense, pieces are considered to be 
similar if they share the same tonal profile regardless of its absolute position. 

Figure 4 shows an example of HPCP for an audio excerpt from Burkina Faso (labeled as African) 
including percussion and singing voice. We observed that the local maxima are not located on the exact 
positions of the tempered semitones. Figure 5 shows a comparison of high-resolution HPCP for a Western 
and non-Western musical excerpt. We also observe that the local maxima are not located on the exact 
positions of the tempered semitones for the Chinese piece, as it in fact happens for the Beethoven excerpt. 
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Fig. 4.  Example of HPCP evolution for an African audio excerpt. Audio signal vs. time (top), high 
resolution HPCP vs. time (mid) and average HPCP (bottom, green line). The red line at the bottom shows a 

short-tem average of HPCP. 

Fig. 5.  HPCP for a Western and non-Western musical excerpt (Left: Beethoven 9th symphony. Right: 
Chinese folk instrumental piece). Audio signal vs. time (top), and global HPCP (bottom, green line).  

The red line at the bottom shows a short-tem average of HPCP, while the blue plot indicates an 
instantaneous value. 
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Features derived from pitch class distributions 

We also compute two features from the ones described above. They are intended to distinguish between 
music composed using equal-tempered and non-equal tempered scales, as it is a relevant aspect to 
distinguish music from Western tradition.   

EQUAL-TEMPERED DEVIATION 

The equal-tempered deviation measures the deviation of the HPCP local maxima from equal-tempered 
bins. In order to compute this descriptor, we first extract a set of local maxima from the HPCP, {k}, 
k=1…K, and we then compute their deviations from closest equal-tempered bins, weighted by their 
magnitude and normalized by the sum of peak magnitudes: 

€

Etd =

HPCP[k] ⋅ abs(k − etk )
k=1

K

∑

HPCP[k]
k=1

K

∑
where  represents the closest equal-tempered bin from HPCP bin k. 

NON-TEMPERED ENERGY RATIO 

Non-tempered energy ratio represents the ratio between the amplitude of non-tempered HPCP bins and the 
total amplitude:  

€

ER =1−
HPCP[posi]

i=1

12

∑

HPCP[i]
i=1

size

∑
where size = 120 (size of the HPCP vector) and  are given by the HPCP positions related to 

the equal-tempered pitch classes.  

DIATONIC STRENGTH 

This descriptor represents the maximum correlation of the HPCP vector and a diatonic major profile ring-
shifted in all possible positions. This diatonic major profile is represented in Figure 6.  

Fig. 6.  Diatonic major profile represented as the presence (1 or 0) 
of each of the 12 semitones of the chromatic scale. 
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We hypothesize that this correlation should be higher for a piece using a diatonic major scale, 
which is characteristic of Western music.  
 
Octave centroid  
 
HPCP and related descriptors do not consider the absolute pitch height of the analyzed piece, as these 
descriptors map all the pitch class values to a single octave. This means that two pieces having the same 
pitch-class distribution but played in different octaves will have similar values for the extracted features. In 
order to take into account the octave location of the played piece, and to analyze its distribution over 
different musical pieces, we have defined a feature called octave centroid, which represents the geometry 
centre of the played pitches.  

In order to estimate this descriptor, we first perform a spectral analysis and apply a multipitch 
estimation method based on Klapuri (2004). This method outputs an estimation of the predominant pitches 
found in the analyzed spectrum. A centroid feature is then computed from this representation on a frame 
basis. We finally consider different statistics of frame values (mean, median, standard deviation, inter-
quartile range, kurtosis, skewness) as global descriptors for the analyzed piece.  

 
Roughness  
 
Complementary to pitch-class distribution and derived features, we also compute a roughness descriptor, as 
a measure of sensory dissonance. Roughness is a perceptual sensation arising from the presence of energy 
in very close frequencies, as it happens in the case that 2 instruments are less-than perfectly tuned. In order 
to experience roughness the frequency differences between partials has to be larger than 10 Hz (Zwicker 
and Fastl, 1999). Roughness can be typically experienced when listening to gamelan music, as the involved 
instruments are slightly mistuned on purpose (Tenzer, 1998).  

We have used the roughness estimation model proposed in Vassilakis (2001, 2005). We compute a 
roughness value for each analysis frame, by summing the roughness of all pairs of components in the 
spectrum. We consider as the main frequency components of the spectrum those with spectral magnitudes 
higher than the 14% of the maximum spectral amplitude, as indicated in Vassilakis (2001, 2005). Then, a 
global roughness value is computed as the median of instantaneous values. We finally consider different 
statistics of frame values (mean, median, standard deviation, inter-quartile range, kurtosis, skewness) as 
global roughness descriptors for the analyzed piece. 
 

DISTRIBUTION OF FEATURES 
 

Once the set of features used to characterize the target collection has been defined and computed, we can 
study their distribution through the different types of music within the test collection, in order to have a 
preliminary idea of their usefulness for comparative analysis and classification. We present here some 
results on statistical analysis of the audio features for different group of pieces, in order to illustrate the 
differences between musical genres and origins.  

Figure 7 shows the distribution of the tuning descriptor for Western and non-Western music. As 
expected, the distribution of tuning deviation with respect to 440 Hz is centered on 0 cents for Western 
music. On the other hand, it appears to be equal distributed between -50 and 50 cents for non-Western 
pieces. This is confirmed by a goodness-of-fit chi-square statistical test, where a p-value=0.061indicates 
that the distribution of tuning frequencies for the non-Western pieces roughly follows a uniform 
distribution. On the other hand, the distribution for the Western pieces does not follow such a distribution. 
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Fig. 7.  Distribution of tuning deviation (in cents) for Western and non-Western music. 

We also find some differences in the main transposed HPCP features, which represents the 
intensity of the different degrees of a diatonic major scale. For the main degrees, we find larger values for 
Western than for non-Western music. Figure 7 shows the distribution of THPCP3, which represents the 
intensity of the second degree of a diatonic scale. According to the distribution, it appears to be lower for 
non-Western music than for Western music, and differently distributed. In fact, a goodness-of-fit chi-square 
statistical test yields a p-value=0.132, indicating the correspondence between THPCP3 distribution of non-
Western pieces and a Gompertz distribution (with parameters b = 3.2 and c = 2.62). The same statistical test 
yields a p-value=0 for the same distribution considering Western pieces. 

Fig. 8.  Distribution of THPCP3 for Western and non-Western music. 

The THPCP6 feature represents the intensity of the fourth (sub-dominant) degree of a diatonic 
scale. This feature also shows lower values for non-Western music than for Western music and they are 
differently distributed, as shown in figure 9. 
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Fig. 9.  Distribution of THPCP6 for Western and non-Western music. 

THPCP8 represents the intensity of the fifth (dominant) degree of a diatonic scale. As for the 
previous descriptors, it seems to be lower for non-Western music than for Western music and differently 
distributed, as shown figure 10. In fact, a goodness-of-fit chi-square statistical test yields a p-value=0.652, 
indicating the correspondence between THPCP8 distribution from non-Western pieces and a Logit Normal 
distribution (with parameters µ=-0.206171 σ=1.293628). The same statistical test yields a p-value=0 for the 
same distribution considering Western pieces. 

Fig. 10.  Distribution of THPCP8 for Western and non-Western music. 

Regarding descriptors derived from HPCP, the equal-tempered deviation, representing the 
deviation from an equal-tempered scale, also appears to be lower for Western than for non-Western music, 
as shown in figure 11. In fact, a goodness-of-fit chi-square statistical test yields a p-value=0.652, indicating 
the correspondence between the equal-tempered deviation distribution from non-Western pieces and a 
Weibull distribution (scale=0.185 and shape=2.156). The same statistical test yields a p-value=0 for the 
same distribution considering Western pieces. 
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Fig. 11.  Distribution of equal-tempered deviation for Western and non-Western music. 

 
AUTOMATIC CLASSIFICATION 

 
After this preliminary statistical analysis of the computed features, we present here some results of 
automatic classification based on the extracted descriptors. Our goal here is to have a classifier that 
automatically assigns the label “Western” or “non-Western” to any audio file that is input and analyzed 
according to the procedure explained in the previous sections.  

We have used different machine learning techniques implemented in the WEKA machine learning 
software, a collection of classification algorithms for machine learning tasks (Witten & Frank, 2005b). 
Weka contains tools for data pre-processing, classification, regression, clustering, association rules and 
visualization. The algorithms are applied directly to our dataset. 

 
Evaluation results using different machine learning techniques 
 
We adopt an evaluation procedure based on 10-fold cross-validation over equally-distributed classes. In 10-
fold cross-validation, the data is divided into 10 subsets of approximately equal number of examples, and 
the different machine learning algorithms are trained 10 times, each time leaving out one of the subsets 
from training, but using only the omitted subset for accuracy estimation, this way we test the learnt model 
using previously “unseen” examples. We do this train-test cycle ten times in order to provide a better 
estimate of the generalization error. In other words, we try to get a good estimation of the errors the system 
will yield when classifying examples that do not belong to our current collection. 

We have approached several classification methods but, for the sake of clarity and conciseness we only 
present two of them, which are explained in detail in (Witten & Frank, 2005a). One of these approaches 
(decision trees) provides a clearly understandable output that has allowed identifying the most relevant 
features for classification. In addition, decision trees are easy to implement as a collection of “if-then” rules 
in any programming environment. The other approach we have explored (support vector machine) is 
considered as one of the best-performing learning algorithms currently available.  

 
• Decision trees are massively used for different machine learning and classification tasks. One of the 

main reasons for their acceptance lies in the fact that their output is a model that can be interpreted as a 
series of {if a descriptor has a value bigger or smaller than x then classify the observation as C} 
clauses. Decision trees are constructed top-down, beginning with the feature that seems to be the most 
informative one, that is, the one that maximally reduces entropy. Branches are then created from each 
one of the different values of this feature. The training examples are sorted to the appropriate 
descendant node, and the entire process is then repeated recursively using the examples of one of the 
descendant nodes, then those of the other. An in-depth treatment of decision trees can be found in 
(Mitchell, 1997). As shown in Figure 12, which depicts the decision tree computed to model our data, 
the test at a node compares the descriptor with a constant value. Leaf nodes give a classification that 
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applies to all instances that reach the leaf. There are different algorithms to build decision trees. The 
one we have used, called J4.8 in Weka is an implementation of the version 8 of the so-called C4.5 
(Quinlan, 1993; Witten & Frank, 2005a, p. 189-200), which is probably the most often decision tree 
used in the scientific community. We have also tested different values for the parameter minObj, which 
specifies the minimum number of objects (or instances) allowed at a leaf. This allows getting very 
compact trees without sacrificing precision as figure 12 illustrates. 

Fig. 12.  Example of a Decision tree (J48 with a minimum of 40 examples per leaf) with 6 leaves. 
Parentheses indicate the number of correctly/incorrectly classified files for each branch.  

The overall classification accuracy for this tree is provided in Table 1. 

• Support Vector Machines (SVM) are classifiers based on statistical learning theory (Vapnik, 1998).
The basic training principle underlying SVMs is finding the optimal linear hyperplane that separates
two classes, such that the expected classification error for unseen test samples is minimized (i.e., they
look for good generalization performance). This hyperplane can be delimited by a subset of the
available instances, which define the “support vectors” for it. Based on this principle, a SVM uses a
systematic approach to find a linear function with the lowest complexity. For linearly non-separable
data, SVMs can (non-linearly) map the input to a high dimensional feature space where a linear
hyperplane can be found. This mapping is done by means of a so-called kernel function. Although
there is no guarantee that a linear solution will always exist in the high dimensional space, in practice it
is quite feasible to construct a working solution. In other words, it can be said that training a SVM is
equivalent to solving a quadratic programming with linear constraints and as many variables as data
points. Weka implements support vector machines using the SMO (Sequential minimal optimization)
algorithm (Witten & Frank, 2005a, p. 214-235; Platt, 1998). It is advisable to tune certain parameters
of this algorithm, as its complexity parameter and the exponent for the used polynomial kernel, in
order to decrease its classification error.

For the Western versus non-Western categories, and using these different techniques, we achieve the
classification results summarized in Table 1. F-measure is a common measure to evaluate the performance 
of information retrieval systems, and it is defined as the weighted harmonic mean of precision and recall: 

node 

leaf 
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F-measure = 2·(precision · recall)/(precision + recall)

where precision is the fraction of the retrieved instances that belong to the correct category and 
recall is the fraction of the documents that belong to the correct category which are successfully retrieved. 

Method Global 
accuracy 

Accuracy per class 

Classification 
algorithm 

WEKA 
Parameters 

Correctly 
Classified 
Instances 

F-Measure
Western

F-Measure
non-Western

30 minObj 80.41 % 0.808 0.8 
40 minObj 82.38 % 0.827 0.82 

Decision Trees 
(J48) 

50 minObj 79.63 % 0.795 0.797 
Complexity = 
1, Exponent = 

1.5 

86.12 % 0.865 0.857 Support Vector 
Machine 

(Binary SMO 
Classifier) Complexity = 

1.5, Exponent 
= 1.5 

86.51 % 0.869 0.861 

Table 1.  Classification results for different machine learning techniques provided by WEKA. 

As a general conclusion, we observed that the classification accuracy is higher than 80% for all the 
machine learning techniques used. It could be argued that the Western-non Western distinction that we are 
aimed at is an artificial and biased one. If that was the case, an analysis that would not superimpose those 
two categories as an “a priori” could yield different groupings of the data. Cluster analysis allows for that 
kind of unsupervised, emergent type of data arrangement. K-means clustering is one of the most usual 
clustering techniques (Witten & Frank, 2005a), and it tries to group data into homogeneous clusters, and, at 
the same time, to separate heterogeneous data into different clusters. The homogeneity criterion is defined 
by means of a Euclidean distance, which the algorithm tries to minimize for the examples that are clustered 
together and maximized among different clusters. 

In our experiment, we have clustered the data asking for the algorithm to find 2 clusters. We 
performed 10 runs of the algorithm and cross-tabulated the cluster assignment against the Western/non-
Western distinction, observing that the error varied from 29.677% to 29.9817%, which indicates an 
extremely robust solution: the two clusters found in a non-supervised way coincide, to a large extent, with 
the two categories used in the supervised experiments. In addition, clustering solutions using more than 2 
groups yielded larger errors than the 2-clusters solution. It could, then, be the case that the distinction is not 
so artificial, and that it emerges when we consider music according to the tonality-related descriptors that 
we have computed.   

Feature selection 

The classifiers used in the experiments presented above are designed to detect the most appropriate 
descriptors and even the most appropriate instances for optimizing their decisions. However, there are some 
automatic methods that specifically give some hints on the usefulness of the available features.  

We have tested an attribute evaluation method for attribute selection, correlation-based feature 
selection (CFS) (Hall, 2000). This algorithm selects a near-optimal subset of features that have minimal
correlation between them, and maximal correlation with the to-be-predicted classes. In the set of 
descriptors selected by this algorithm we observed that the most relevant descriptors are THPCP3, 
THPCP8, THPCP10, tuning, equal tempered deviation, roughness (mainly its median and standard 
deviation along the considered excerpt) and octave centroid (average along the audio excerpt).  

The relevance of these features has already been noticed when performing an analysis of their 
value distributions and they also coincide with the descriptors found on the generated decision trees, as 
shown in the previous section.  
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Classification accuracy for different musical genres and traditions 

It is very informative to study the distribution of classification errors, in order to have some insights about 
the limitations of the method. For instance, we observed in Table 1 that the accuracy (F-measure) for 
Western and non-Western categories has no significant differences.   

In order to study the accuracy distribution over musical genres, we have built the decision tree 
shown in Figure 12, which provides a classification accuracy of 82.38% over the music collection under 
study. Figure 13 shows the distribution of correct classification for different Western musical genres and 
non-Western traditions (grouped by region).  

Fig. 13.  Percentage of correctly classified instances distributed among genres using the Decision Tree from 
Figure 12. The classification accuracy for this tree is provided in Table 1. 

We observed that electronica is the most misclassified Western style, and it is usually labeled as 
non-Western. We can justify this by the fact that the excerpts under electronic music usually include non-
quantized pitched sounds, as well as non-pitched sounds that can increase the values of features such as 
equal tempered deviation or tuning, which have been found to be high for non-Western music. This is also 
the case for the few items under the alternative category. In the case of the 10 folk examples, 40% of them 
are misclassified due to a low value of THPCP6, related to the relative intensity of the fourth degree of the 
scale. 

Regarding non-Western material, Arabic music is sometimes labeled as Western. This can be due 
to the tonal similarity between some of the audio excerpts under this category and the Western musical 
tradition, including some tempered instruments and scale degrees. An analysis of the misclassified 
instances revealed high values for the descriptors THPCP8 (related to the fifth), THPCP6 (related to the 
fourth) and THPCP3 (related to the second) in 81.82% of the misclassified instances, and high values for 
THPCP8 and THPCP6 together with small equal tempered deviation for the rest.  

Classification accuracy for an independent test set 

In order to test the generalization power of the classification algorithm, we have performed an evaluation 
using an independent test set from the collection used for training the models. The chosen independent set 
is the NASA Voyager Golden Record [1]. NASA placed aboard the Voyager spacecraft a time capsule 
intended to represent the history of our world to extraterrestrials. This capsule contains a record with sound 
and images of Earth, selected by a committee chaired by Carl Sagan of Cornell University and including 27 
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musical pieces from Eastern and Western classics and a variety of ethnic music (Sagan, 1984). These 27 
pieces were manually classified by us into 12 Western and 17 non-Western pieces, and then analyzed in 
order to obtain the set of descriptors from the 30 first seconds of each piece. These data were then used as 
an independent test set for the selected classifiers obtaining the classification results shown in Table 2. 

Method Global 
accuracy 

Accuracy per class 

Classification 
algorithm 

Parameters Correctly 
Classified 
Instances 

F-Measure
Western

F-Measure
non-Western

30 minObj 70.34 % 0.667 0.733 
40 minObj 85.18 % 0.818 0.875 

Decision Trees 
(J48) 

50 minObj 85.18 % 0.818 0.875 
Complexity = 
1, Exponent = 

1 

81.48 % 0.737 0.857 

Complexity = 
1, Exponent = 

1.5 

74.07 % 0.632 0.8 

Binary SMO 
Classifier 

Complexity = 
1.5, Exponent 

= 1.5 

74.07 % 0.632 0.8 

Table 2.  Classification results for different machine learning techniques provided by WEKA, 
using an independent test set from the Voyager Golden Record. 

We observed that 85.18% of the pieces were correctly classified by the system, even if the 
obtained performance slightly varied for the two classification algorithms. The best results were obtained 
by using decision trees with different configuration parameters. The classifier reaches nearly the same 
performance with these “unseen” files than in the train-test cycle, which demonstrates the generalization 
ability of the proposed models.  

CONCLUSIONS AND FUTURE WORK 

In this study we provided an empirical approach to the comparative analysis of music audio recordings, 
focusing on tonal features and a music collection from different traditions and musical styles. We presented 
some encouraging results obtained when trying to automatically distinguish or classify music from Western 
and non-Western traditions by means of automatically audio feature extraction and data mining techniques. 
We obtained a high rate of classification accuracy of 80% for a music collection of 1500 pieces from 
different musical traditions using a restricted set of tonal features. From this, we can argue that it can be 
possible to automatically classify music into western and non-western by just analyzing audio data. 

We are aware that there are larger issues involved in the determination of musical genres. We are 
also aware of the limitations of the concept of Western as opposed to non-Western music.  Ideally we 
should be able to define and formalize stylistic features proper to different kinds of music or “stylistic 
areas” and approach genres not just geographically but as a set of traits and then refine our descriptors 
accordingly. 

Future work will then be devoted to different issues. One important aspect that we would like to 
achieve is to contrast and complement this group of descriptions from an ethnomusicology perspective, 
analyzing in detail some of the used excerpts. We will also investigate the main variations inside Western 
and non-Western styles by comparing in details the different musical genres and musical traditions. We 
also plan to analyze how automatically-extracted audio features related to timbre and rhythmic aspects 
(which were out of our scope in this paper) can improve the classification and complement the current 
feature set.  

The present work shows that automatic audio description tools, together with data mining 
techniques can help to characterize huge music collections and complement musicological manual 
analyses. It also confirms that tonal features extracted from audio data are representative of the pitch class 
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distribution, scale, gamut and tuning system of the analyzed piece, and that they provide means of 
characterizing different traditions and styles. We believe that audio description tools have a great potential 
to assist in ethnomusicological research and we hope that our work will contribute to the understanding of 
the world’s musical heritage by means of computational modeling. 
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modeling of sound and music, and develop methods
and technologies that can be used to process audio
in order to extract acoustically and musically relevant
data and make use of this information. Audio analysis
techniques are instrumental in the development of new
audio-related products and services, because these
techniques allow novel ways of interaction with sound
and music.

Essentia is an open-source C++ library for audio
analysis and audio-based music information
retrieval released under the Affero GPLv3 license (also
available under proprietary license upon request). It
contains an extensive collection of reusable algorithms
which implement audio input/output functionality,
standard digital signal processing blocks, statistical
characterization of data, and a large set of spectral,
temporal, tonal and high-level music descriptors that
can be computed from audio. In addition, Essentia can
be complemented with Gaia, a C++ library with python
bindings which allows searching in a descriptor space
using different similarity measures and classifying the
results of audio analysis (same license terms apply).
Gaia can be used to generate classification models that
Essentia can use to compute high-level description of
music.

Essentia is not a framework, but rather a collection
of algorithms wrapped in a library. It doesn’t enforce
common high-level logic for descriptor computation (so
you aren’t locked into a certain way of doing things).
It rather focuses on the robustness, performance and
optimality of the provided algorithms, as well as ease
of use. The flow of the analysis is decided and
implemented by the user, while Essentia is taking care of
the implementation details of the algorithms being used.
A number of examples are provided with the library,
however they should not be considered as the only
correct way of doing things.

The library includes Python bindings as well as a
number of predefined executable extractors for the
available music descriptors, which facilitates its use
for fast prototyping and allows setting up research
experiments very rapidly. The extractors cover a
number of common use-cases for researchers, for
example, computing all available music descriptors for
an audio track, extracting only spectral, rhythmic, or
tonal descriptors, computing predominant melody and
beat positions, and returning the results in yaml/json
data formats. Furthermore, it includes a Vamp plugin
to be used for visualization of music descriptors using
hosts such as Sonic Visualiser.

The library is cross-platform and supports Linux, Mac
OS X and Windows systems. Essentia is designed
with a focus on the robustness of the provided
music descriptors and is optimized in terms of the
computational cost of the algorithms. The provided
functionality, specifically the music descriptors included
out-of-the-box and signal processing algorithms, is
easily expandable and allows for both research
experiments and development of large-scale industrial
applications.

Essentia has been in development for more than 7 years
incorporating the work of more than 20 researchers and
developers through its history. The 2.0 version marked
the first release to be publicly available as free software
released under AGPLv3.

Algorithms

Essentia currently features the following algorithms
(among others):

• Audio file input/output: ability to read and write
nearly all audio file formats (wav, mp3, ogg, flac, etc.)

• Standard signal processing blocks: FFT, DCT,
frame cutter, windowing, envelope, smoothing

• Filters (FIR & IIR): low/high/band pass, band reject,
DC removal, equal loudness

• Statistical descriptors: median, mean, variance,
power means, raw and central moments, spread,
kurtosis, skewness, flatness

• Time-domain descriptors: duration, loudness,
LARM, Leq, Vickers’ loudness, zero-crossing-rate, log
attack time and other signal envelope descriptors

• Spectral descriptors: Bark/Mel/ERB bands, MFCC,
GFCC, LPC, spectral peaks, complexity, rolloff,
contrast, HFC, inharmonicity and dissonance

• Tonal descriptors: Pitch salience function,
predominant melody and pitch, HPCP (chroma)
related features, chords, key and scale, tuning
frequency

• Rhythm descriptors: beat detection, BPM, onset
detection, rhythm transform, beat loudness

• Other high-level descriptors: danceability,
dynamic complexity, audio segmentation, semantic
annotations based on SVM classifiers

The complete list of algorithms is available online in the
official documentation.

Architecture

The main purpose of Essentia is to serve as a library
of signal-processing blocks. As such, it is intended to
provide as many algorithms as possible, while trying to
be as little intrusive as possible. Each processing block
is called an Algorithm, and it has three different types
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of attributes: inputs, outputs and parameters. Algorithms
can be combined into more complex ones, which are
also instances of the base Algorithm class and behave
in the same way. An example of such a composite
algorithm is presented in the figure below. It shows a
composite tonal key/scale extractor, which combines
the algorithms for frame cutting, windowing, spectrum
computation, spectral peaks detection, chroma features
(HPCP) computation and finally the algorithm for key/
scale estimation from the HPCP (itself a composite
algorithm).

The algorithms can be used in two different modes:
standard and streaming. The standard mode is
imperative while the streaming mode is declarative. The
standard mode requires to specifying the inputs and
outputs for each algorithm and calling their processing
function explicitly. If the user wants to run a network
of connected algorithms, he/she will need to manually
run each algorithm. The advantage of this mode is
that it allows very rapid prototyping (especially when
the python bindings are coupled with a scientific
environment in python, such as ipython, numpy, and
matplotlib).

The streaming mode, on the other hand, allows to
define a network of connected algorithms, and then an
internal scheduler takes care of passing data between
the algorithms inputs and outputs and calling the
algorithms in the appropriate order. The scheduler
available in Essentia is optimized for analysis tasks, and
does not take into account the latency of the network.
For real-time applications, one could easily replace this
scheduler with another one that favors latency over
throughput. The advantage of this mode is that it results
in simpler and safer code (as the user only needs to
create algorithms and connect them, there is no room
for him to make mistakes in the execution order of
the algorithms), and in lower memory consumption in
general, as the data is streamed through the network
instead of being loaded entirely in memory (which is the
usual case when working with the standard mode). Even
though most of the algorithms are available for both the
standard and streaming mode, the code that implements
them is not duplicated as either the streaming version
of an algorithm is deduced/wrapped from its standard
implementation, or vice versa.

Applications

Essentia has served in a large number of research
activities conducted at Music Technology Group since

2006. It has been used for music classification, semantic
autotagging, music similarity and recommendation,
visualization and interaction with music, sound indexing,
musical instruments detection, cover detection, beat
detection, and acoustic analysis of stimuli for
neuroimaging studies. Essentia and Gaia have been
used extensively in a number of research projects and
industrial applications. As an example, both libraries
are employed for large-scale indexing and content-
based search of sound recordings within Freesound,
a popular repository of Creative Commons licensed
audio samples. In particular, Freesound uses audio
based similarity to recommend sounds similar to user
queries. Dunya is a web-based software application
using Essentia that lets users interact with an audio
music collection through the use of musical concepts
that are derived from a specific musical culture, in this
case Carnatic music.

Examples

Essentia can be easily used via its python bindings.
Below is a quick illustration of Essentia’s possibilities for
example on detecting beat positions of music track and
its predominant melody in a few lines of python code
using the standard mode:

from essentia.standard import *;

audio = MonoLoader(filename =

'audio.mp3')(); beats, bconfidence =
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BeatTrackerMultiFeature()(audio); print

beats; audio = EqualLoudness()

(audio); melody, mconfidence

= PredominantMelody(guessUnvoiced=True,

frameSize=2048, hopSize=128)(audio);

print melody

Another python example for computation of MFCC
features using the streaming mode:
from essentia.streaming import * loader

= MonoLoader(filename = 'audio.mp3')

frameCutter = FrameCutter(frameSize =

1024, hopSize = 512) w = Windowing(type

= 'hann') spectrum = Spectrum() mfcc =

MFCC() pool = essentia.Pool() # connect

all algorithms into a network loader.audio

>> frameCutter.signal frameCutter.frame

>> w.frame >> spectrum.frame

spectrum.spectrum >> mfcc.spectrum

mfcc.mfcc >> (pool, 'mfcc') mfcc.bands

>> (pool, 'mfcc_bands') # compute network

essentia.run(loader) print pool['mfcc']

print pool['mfcc_bands']

Vamp plugin provided with Essentia allows to use many
of its algorithms via the graphical interface of Sonic
Visualiser. In this example, positions of onsets are
computed for a music piece (marked in red):

An interested reader is referred to the documention
online for more example applications built on top of
Essentia.

Getting Essentia

The detailed information about Essentia is available
online on the official web page: http://essentia.upf.edu.
It contains the complete documentation for the project,
compilation instructions for Debian/Ubuntu, Mac OS X
and Windows, as well as precompiled packages. The
source code is available at the official Github repository:
http://github.com/MTG/essentia. In our current work we
are focused on expanding the library and the community
of users, and all active Essentia users are encouraged
to contribute to the library.
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Award Description

This award will be presented at most once per year to a
researcher whose PhD thesis has the potential of very
high impact in multimedia computing, communication
and applications, or gives direct evidence of such
impact. A selection committee will evaluate contributions
towards advances in multimedia including multimedia
processing, multimedia systems, multimedia network
services, multimedia applications and interfaces. The
award will recognize members of the SIGMM community
and their research contributions in their PhD theses as
well as the potential of impact of their PhD theses in
multimedia area. The selection committee will focus on
candidates’ contributions as judged by innovative ideas
and potential impact resulting from their PhD work.

The award includes a US$500 honorarium, an award
certificate of recognition, and an invitation for the
recipient to receive the award at a current year’s
SIGMM-sponsored conference, the ACM International
Conference on Multimedia (ACM Multimedia). A public
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3. THE AGE OF SEMANTIC DESCRIPTORS
There are four kinds of sounds of water: the sounds of cataracts, of gushing 
springs, of rapids, and of gullets. There are three kinds of sounds of wind: the 
sounds of "pine waves," of autumn leaves, and of storm upon the water. There 
are two kinds of sounds of rain: the sounds of raindrops upon the leaves of 
wu'tung and lotus, and the sounds of rain water coming down from the eaves 
into bamboo pails. 

Lin Yutang, The importance of living (1937), p. 322. 

los animales se dividen en (a) pertenecientes al Emperador, (b) embalsamados, 
(c) amaestrados, (d) lechones, (e) sirenas, (f) fabulosos, (g) perros sueltos, (h)
incluidos en esta clasificación, (i) que se agitan como locos, (j) innumerables, (k)
dibujados con un pincel finísimo de pelo de camello, (l) etcétera, (m) que acaban
de romper el jarrón, (n) que de lejos parecen moscas.

Jorge Luis Borges, El idioma analítico de John Wilkins, 
Otras Inquisiciones (1937-1952) 

3.1. Introduction 
The age of semantic descriptors started when researchers realized that low-level features, 
computed bottom-up (directly from the raw audio file or by means of some front-end, 
without any or very shallow domain knowledge included in the computation) do not 
yielded the relationships, similarities, rankings or partitions that humans tend to perceive 
between objects. Similarity, one of the keystones in content analysis of multimedia, 
becomes brittle when only signal-based basic features are used to compute it. Moreover, 
humans tend to find similarities not only by differentially attending on specific perceptual 
dimensions or features but also by simplifying and compacting the surface features, by 
means of “categories” or “concepts” (Goldstone et al., 2017), and the concepts can be 
extremely diverse and inconsistent (Aucouturier & Pachet, 2002). Added to this picture 
is the fact that listeners tend to activate semantic associations when listening to music 
(Koelsch et al., 2004), so this will influence the type of concepts they use when describing 
music or searching for it. To deal with categories created and manipulated by humans 
implies addressing “meaning” or “semantics”. Semantic descriptors, also named “high-
level descriptors” convey a defined meaning that is not necessarily directly associated 
with the signal properties, but with properties of subjective feelings and interpretations 
(from music theory, cognitive theory, or subjective/naïve theories about whatever 
knowledge domain, music in our case). Nack (2004) provides a complementary (though 
incomplete) summary of the problem: “the major problem with this static approach to 
metadata [that is, the approach based on low-level features] is that it doesn’t reflect the 
continuous process of interpreting and understanding a media item’s syntactic and 
semantic concepts. Media items continue to be produced mainly for a particular purpose. 
A video sequence of a heart operation, for example, might be produced for an educational 
multimedia project. Yet, what hinders us from letting the same sequence feature 
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prominently in a soap opera, for example, where it might create a cliffhanger ending to 
an episode and inspire viewers to watch the next episode, too? The answer is nothing—
aside from current technology, which prevents us from representing this change in a 
media item’s behavior. To support such flexibility schemata developers and users must 
agree upon semantic-based and machine-processable metadata collections during 
established media workflow practices.” 
Semantic descriptions must deal, then, with the so-called “semantic gap”, which is the 
cleft separating low-level features and the concepts humans use when dealing with audio 
and music (Celma et al., 2006). Machine learning provides many tools and techniques to 
bridge the semantic gap by means of mapping feature-based descriptions of music with 
categories or meanings given to them by humans. As some of these techniques call for 
sampling the ways humans categorize music, annotating collections of music is another 
activity that characterizes this age18. Annotated collections or “ground-truths” to be used 
to train machine learning models will pose many problems: the difficulty of doing open 
and replicable research when essential materials are subject to copyrights that prevent 
their redistribution or sharing, the number of annotations required (a time-consuming, 
error-prone task), and the reliability of such annotations (asking for several annotators 
working on the same material and checking for their consistency or inter-rater agreement). 
It is not surprising, then, to notice that some of the most used collections during this age 
contain questionable data (Sturm, 2012). If features (and not classification algorithms, as 
the myriad of papers “comparing classifiers” could make think to a naïve observer) are 
one of the building blocks of any serious research on MIR, the second building block is 
made of, for sure, well-annotated data. Several techniques have been proposed to ensure, 
increase or optimize data quality, or to reduce the required effort (Lessafre, 2006; Sordo 
et al., 2007; Humphrey et al., 2012; Peeters & Fort, 2012; Urbano & Schedl, 2013; 
Schlüter & Grill, 2015; McFee et al, 2015). 
The list of semantic descriptors of music is long, though there are recurrent ones, coming 
from music theory and practice (tempo, meter, downbeat, chord, key, mode, swing, 
chorus, intro…) and from the emotional assessment of music (happy, sad, etc.). Lyrics 
would also be increasingly used since then (Logan et al., 2004; Laurier et al., 2008). 
Looking at the ways listeners tag music, their mental representations of music can be 
traced and mapped (if only in a rough and approximate way), and more “exotic” features 
can be hinted (some of them cannot be computed from the audio as “seen live”, “fun” or 
“bitch”, but many others like “warm”, “hollow”, “female vocal”, “metallic”, 
“melancholic”, “scenic”, and most of the genres and subgenre labels that are used all over 
the world, have acoustic correlates that can be formally computed and modelled). Papers 
selected for this chapter do not cover all the semantic fields addressed in our research,  
but I would like to leave a passing mention of at least an early work done on meter (i.e., 
double/triple meter detection) (Gouyon & Herrera, 2003), on tonality (Gómez & Herrera, 
2004), on morphological descriptors (descriptors on the “shapes” and microfeatural 
changes of sounds, inspired by Pierre Schaeffer (1966)) (Ricard & Herrera, 2003; Ricard 
& Herrera, 2004; Cano et al., 2004a; Cano et al., 2004b)19, on subjective intensity 
categories (Sandvold & Herrera, 2005), on complexity (Streich & Herrera, 2006), 
danceability (Streich & Herrera, 2005), or on singing voice presence (Rocamora & 

18 see Murthy & Koolagudi (2018) for an almost exhaustive list of those collections, and see also 
http://ismir.net/datasets.php. 
19 See Peeters & Deruty (2010) for a thoroughful development of such descriptors. 

http://ismir.net/datasets.php
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Herrera, 2007)20. Some of the descriptors proposed in the previous papers were included 
in the Essentia library that was reported in the previous chapter. 
Similarity has a special status as a kind of semantic representation in MIR.  Long ago, 
Downie (2003) wrote: “the creation of rigorous and practicable theories concerning the 
nature of experiential similarity and relevance is the single most important challenge 
facing MIR researchers today” (p. 306). The assumption that we like, prefer, tend to, or 
know how to search for music using notions of similarity has frequently been taken for 
granted in many papers (Aucouturier & Pachet, 2002; Berenzweig, Logan, Ellis, & 
Whitman, 2004; Casey, 2002; Pampalk, 2006; Pohle et al., 2009). The assumption that, 
because two tracks or excerpts belong to the same artist or are linked by the same 
emotional category they must share similarity is another example of risky deduction. To 
conclude, the assumption that similarity happens out of any context may plague many 
similarity ratings taken at ground-truth value21

Similarity (though not “music similarity”) has also a special status and a long tradition of 
research in psychology and cognitive science. Because of that, it is surprising that during 
the age of semantic descriptors we were not able to take advantage of the techniques and 
models that those disciplines could provide, to advance in the understanding of music 
similarity, specially of audio music similarity. In the end we have, of course, developed 
techniques to model such similarity in a way that satisfies users’ needs on music search, 
listening and visualization (thanks to taking advantage of mining the way it is used in 
playlists, blogs, etc., i.e., thanks to considering “context”, as we will see in the next 
chapter) (McFee, 2012; Knees & Schedl, 2013; Schedl et al., 2014), and this functional 
apparent success has decreased its presence as a research topic. I am afraid though, that 
some basic research opportunities this topic could foster, taking advantage of the legacy 
we have in the experimental psychology literature (Goodman, 1972; Tversky, 1977; 
Garner, 1974; Kubovy, 1981; Smith, 1989; Medin et al., 1993; Goldstone, 1994, 1999; 
Fisher & Sloutsky, 2005), remain unexplored. The disappearing of the audio similarity 
task from recent MIREX editions should not be taken as a sign that the problem has been 
solved, but as an indicator that it is somehow stagnated. 

3.2. Papers included in this chapter 
Bogdanov, D., Serrà J., Wack N., Herrera P., & Serra X.  (2011). Unifying Low-level 
and High-level Music Similarity Measures.  IEEE Transactions on Multimedia. 4, 687-
701. (Journal h-index: 101; Journal IF 2016: 3.509; Q1 in Computer Science Applications
journals; 72 citations)
Cano, P., Koppenberger, M., Le Groux, S., Ricard, J., Wack, N., Herrera, P. (2005). 
Nearest-neighbor sound annotation with a Wordnet taxonomy. Journal of Intelligent 
Information Systems, 24 (2), pp. 99-111. (Journal h-index: 47; Journal IF 2016; 1.107; Q2 
in Information Systems journals; 20 citations) 

20 See Lee et al. (2018) for a recent review and state of the art approach. 
21 Fortunately, there is research cautiously enough on the pitfalls and requirements of research on music 
similarity (e.g., Chupchik, Rickert, & Mendelson, 1982; Lamont & Dibben, 2001; Pampalk, 2006; Jones 
et al., 2007; Urbano, 2013; Foster et al., 2014; Knees & Schedl, 2016). 
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Serrà, J., Gómez, E., Herrera, P., Serra, X.  (2008). Chroma binary similarity and local 
alignment applied to cover song identification. IEEE Transactions on Audio, Speech, and 
Language Processing, 16(6), pp. 1138-1151. (Journal h-index: 91; Journal IF 2016: 
2.491; Q1 in Acoustics and Ultrasonics journals; 245 citations) 
Laurier, C., Meyers, O., Serrà, J., Blech, M., Herrera, P., Serra, X. (2010). Indexing 
Music by Mood: Design and Integration of an Automatic Content-based Annotator. 
Multimedia Tools and Applications. 48(1), 161-184. (Journal h-index: 45; Journal IF 
2016: 1.541; Q2 in Computer Networks and Communications journals; 40 citations) 
Koelsch, S., Skouras S., Fritz T., Herrera, P., Bonhage, C., Küssner, M. B. & Jacobs, 
A.M. (2013). The roles of superficial amygdala and auditory cortex in music-evoked fear
and joy. NeuroImage. 81(1), 49-60. (Journal h-index: 307; Journal IF 2017; 5.426; Q1 in
Cognitive Neuroscience journals; 79 citations)

3.3. Contributions in the selected papers 
The age of semantic descriptors was framed, in my case, by an European project called 
SIMAC (Semantic Interaction with Music Audio Content)22 that was an outstanding 
collaboration between Fabien Gouyon, Emilia Gómez, Xavier Serra and me in their 
conception, and then including the also outstanding partners from OFAI and QMUL 
(Herrera et al., 2005). This project was the first European project led by the MTG and I 
somehow played there the role of scientific director. Some papers included here or in the 
previous chapter were conceived or written out of that context or as refinements of that 
research effort. Of course, other research institutions and projects should be credited here 
as significantly pushing forward this quest for the semantics of music interaction, but this 
is left to proper historians of Science. 
In “Unifying Low-level and High-level Music Similarity Measures” (Bogdanov et al., 
2011) we presented improvements in our way to compute song similarity by means of 
obtaining a suitable distance measurement between songs represented on a rich featural 
space. In this paper, we proposed three of such distance measures based on the audio 
content: first, a low-level measure based on tempo-related description; second, a high-
level semantic measure based on the inference of different musical dimensions by support 
vector machines. These dimensions include genre, culture, moods, instruments, rhythm, 
and tempo annotations. The third distance measure is a hybrid measure, which combines 
the above-mentioned distance measures with two existing low-level measures: a 
Euclidean distance based on principal component analysis of timbral, temporal, and tonal 
descriptors, and a timbral distance based on single Gaussian Mel-frequency cepstral 
coefficient (MFCC) modelling. We evaluated our proposed measures against several 
baseline measures. We did this objectively (using a comprehensive set of music 
collections) and subjectively (by means of listeners’ ratings). Results showed that the 
proposed methods achieved accuracies comparable to the baseline approaches in the case 
of the tempo and classifier-based measures. The highest accuracies, though, were 
obtained by the hybrid distance. Furthermore, the proposed classifier-based approach 

22 http://mtg.upf.edu/simac/, https://cordis.europa.eu/project/rcn/71237_en.html 

http://mtg.upf.edu/simac/
https://cordis.europa.eu/project/rcn/71237_en.html
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opened up the possibility to explore distance measures that are based on semantic notions 
and that would be further exploited in MIREX 200923, where the hybrid algorithm scored 
the third best (though there were no statistically significant differences between the best 
three submissions) and in MIREX 2010 (Wack et al., 2010), again with results at the top 
of the list. 
In “Nearest-neighbor sound annotation with a Wordnet taxonomy” (Cano et al., 2005) we 
presented a system allowing the semi-automatic annotation of sound effects. In this 
domain most of the annotation was done manually (a human editor created the appropriate 
taxonomy and assigned the tags to each file automatically, and therefore every sound 
content provider used a different taxonomy, with different tags). Automatic annotation 
can only work for reduced domains such as musical instruments, or car sounds, for 
example, as the number of potential categories to be labelled is so big (on the range of 
tens of thousands) that automatic classifiers could not cope with that, at the time of the 
reported research. We approached this scenario considering that a sound 
annotation/recognition tool would require, first, a taxonomy representing the complete 
sonic world and, then, a nearest-neighbour-based strategy for labelling sounds. To help 
with the annotation process (manual or automatic), we took advantage of Wordnet24, a 
semantic network or English lexical database, that organized real world knowledge 
(Miller, 1995). With Wordnet, relationships between concepts (and their tags) could be 
exploited to assign to each sound a rich semantic description, and to make possible 
efficient tag propagation between annotated and to-be-annotated sounds. In the reported 
evaluation a 30% of correct prediction was achieved on a database of over 50000 sounds, 
and more than 1600 concepts. It is worth to note that, in the times our paper was published, 
evaluations with such a big amount of sounds and categories were not frequent (or 
perhaps inexistent). Research here was motivated by our development of an industry-
scale annotator to be used as the backbone for a huge collection of sound effects to be 
managed by “The Tape Gallery”25, at that time one of the leading companies in web-
accessible sound effects. Wordnet was also used for the first time in MIR, as far as I know, 
and it has been further used for getting semantic similarity in different retrieval contexts 
(Davies & Plumbley, 2007; Mesaros et al., 2013, Mechtley, 2013). Another remarkable 
contribution is the knowledge we gained during the reported research, helping us to build 
search functions for Freesound26, the open database of sound recordings developed in the 
MTG. 
One of the most difficult problems to be tackled in MIR is that of detecting versions or 
covers, a task whose popularity in the MIR community increased during the age of 
semantic descriptors, as it provides a direct and objective way to evaluate music similarity 
algorithms, and challenges our assumptions on what is the essence of music and what is 
an original work of art. The concept of cover is a sloppy one, as it can be a faithful copy 
almost identical to the original, or a musical creation that only preserves a hook, or a 
characteristic rhythm pattern. In fact, in the digital domain the concept of “original” 
virtually does not make sense (unless a trustable timestamp or watermark can be 
associated to it, copies cannot be distinguished from originals). The concept of invariance 

23 http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results 
24 http://wordnet.princeton.edu 
25 https://www.mixonline.com/technology/tape-gallery-sound-effects-librarycom-371389, note that the 
article is dated before our partnership with them. 
26 http://www.freesound.org 

http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://wordnet.princeton.edu/
https://www.mixonline.com/technology/tape-gallery-sound-effects-librarycom-371389
http://www.freesound.org/
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is very pertinent here as in many cases artists respect some invariant musical aspect 
(usually tonal, sometimes rhythmic, timbral, textual, etc.) in order their cover to qualify 
as such. Understanding the way listeners decide that something is a version of another 
musical excerpt, made possible to focus on a series of invariances (mostly tempo and 
tonality related) that some of our cover detection algorithms took advantage of. In 
“Chroma binary similarity and local alignment applied to cover song identification” 
(Serrà et al., 2008), we presented an innovative technique for audio signal comparison 
based on tonal subsequence alignment and we discussed and evaluated its application to 
detect cover versions (i.e., different performances of the same underlying musical piece), 
a topic that, as far as we know, we opened to the MIR community in 2006 (Gómez & 
Herrera, 2006). The selected paper, that two years ago became my most-cited one27, first 
presents a series of experiments carried out with two state-of-the-art methods for cover 
song identification. We studied several components of these (such as chroma resolution 
and similarity, transposition, beat tracking or Dynamic Time Warping constraints), to 
discover which characteristics would be desirable for a competitive cover song identifier. 
After analysing many cross-validated results, the importance of these characteristics was 
discussed, and the best-performing ones were finally applied to the newly proposed 
method. Multiple evaluations of this newly proposed method confirmed a large increase 
in identification accuracy when comparing it with alternative state-of-the-art approaches. 
The presented technique got the best results in the MIREX 2008 and 2009 campaigns, 
and it was later outperformed by another one which took advantage of complex networks 
techniques (Serrà et al., 2012). 
A method for creating automatic music mood annotations was presented in “Indexing 
Music by Mood: Design and Integration of an Automatic Content-based Annotator” 
(Laurier et al., 2010). In addition to a complete evaluation of a music mood classifier that 
decided if the music transmitted happiness, sadness, angriness or relax, we reported on 
the integration and subjective evaluation of a fast and scalable version of it in a large-
scale annotator that was used as demonstrator of the European Project PHAROS28. The 
mood annotation method that we presented was inspired on results from psychological 
studies on emotion categorization and characterization, and was framed into a supervised 
learning approach using musical features automatically extracted from the raw audio 
signal. We discussed some of the most relevant audio features to solve this problem 
which, surprisingly, in some cases (angriness, relax) were supported by timbre features 
and not by musically sophisticated concepts such as tonality. A ground truth, used for 
training, was created using both social network information systems (wisdom of crowds) 
and individual experts (wisdom of the few). At the experimental level, we evaluated our 
approach on a database of 1000 songs. Tests of different classification methods, 
configurations and optimizations were carried on, showing that Support Vector Machines 
provided the best classification model for the task at hand. Moreover, we evaluated the 
algorithm robustness against different audio compression schemes. This fact, often 
neglected, is fundamental to build a system that is usable in real conditions, as it was one 
of the requirements of the industrial partners of the project. In connection with this 
research, the Moodcloud demonstrator (Laurier & Herrera, 2008) was an original 
graphical tool showing how the emotions communicated by music changed as the music 

27 248 citations, according to Google Scholar, retrieved on September, 21st, 2018. 
28 https://cordis.europa.eu/result/rcn/193196_en.html 
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was being played. Mood classification models were used with very good results in 
MIREX 2007 (2nd out of 9 participants) and MIREX 2009 (4th out of more than 30 
participants). 
Semantic descriptors can be useful outside the typical scenarios in MIR (tag-based 
retrieval, similarity, recommendation, transcription…). Neuroscientists devoted to 
understanding our musical brain must use music stimuli that belong to certain categories, 
to study how the brain areas are activated by them, or how specific electrical currents 
change accordingly. While it can be quite unequivocal to decide if a music excerpt 
contains a vocal sound, or a major chord, or a deceptive cadence, it becomes trickier when 
“aggressive”, “sad” or “beautiful” music must be selected as stimulus. In that context, our 
contribution to “The roles of superficial amygdala and auditory cortex in music-evoked 
fear and joy” (Koelsch et al., 2013) was the validation, by means of the mood models 
reported in Laurier et al. (2010), of the used stimuli (i.e., to provide support on the sad or 
happy nature of the excerpts neuroscientists had selected as such), and the analysis of 
acoustic and musical features that correlated with such categories. The neuroscience 
findings of that paper are, of course, not relevant here. The paper though, motivates 
reflections on how the lack of normative collections or ground-truths affects not only MIR 
but other disciplines. It is surprising that music psychologists/neuroscientists have only 
recently created a “normative” collection of music (i.e., validated and carefully crafted to 
be taken as representative of certain features for a large population of subjects) to study 
music-related emotions (Imbir & Golab, 2016; but see also Anjalaki et al., 2017 for an 
alternative). A normative collection could be considered as a high-quality ground-truth 
collection, which has been validated with specific techniques and figures of merit that 
ensure it can be used as a reliable measurement device (of emotions communicated by 
music, for example). Because of the strict care and control put in its construction it is used 
routinely by many researchers when addressing the problem for which it is devised. 
Normative collections do not exist for frequently-used semantic descriptors, though they 
do for research on topics29 such as objects in images (Brodeur et al., 2010) or emotional 
content of sounds (Bradley & Lang, 2007). Synergies between MIR researchers, 
psychologists and neuroscientists could make such normative collections possible. 
Unfortunately, this has never happened yet, to my knowledge.  
Even though semantic descriptors made possible to detect and model essential concepts 
in music experiencing, bridging the semantic gap required something more than intensive 
statistical modelling or machine learning applied on feature-plenty descriptions of music 
items. As it happened in the age of feature extractors, shortcomings and glass-ceiling 
effects were evident as the techniques, user requirements and commercial successes 
pushed forward the available knowledge. The perspectives taken in the age of semantic 
descriptors overlooked the context where a person interacts with music contents, as the 
context may change the semantics involved. As a matter of example, music 
recommendation became a challenging topic that, only with the consideration of 
contextual factors could be tackled, if not effectively, at least promisingly. The age of 
context-aware systems was, then, ready to start. 

29 See, for example, http://www.psychwiki.com/wiki/Archives_of_data_and_stimuli, and 
https://www.cogsci.nl/stimulus-sets, although not many of the sets are truly normalized. For MIR 
purposes, very diverse sets can be found here: https://www.audiocontentanalysis.org/data-sets/ and here: 
https://www.ismir.net/resources.html 

http://www.psychwiki.com/wiki/Archives_of_data_and_stimuli
https://www.cogsci.nl/stimulus-sets
https://www.audiocontentanalysis.org/data-sets/
https://www.ismir.net/resources.html
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Unifying Low-Level and High-Level
Music Similarity Measures

Dmitry Bogdanov, Joan Serrà, Nicolas Wack, Perfecto Herrera, and Xavier Serra

Abstract—Measuring music similarity is essential for multi-
media retrieval. For music items, this task can be regarded as
obtaining a suitable distance measurement between songs de-
fined on a certain feature space. In this paper, we propose three
of such distance measures based on the audio content: first, a
low-level measure based on tempo-related description; second, a
high-level semantic measure based on the inference of different
musical dimensions by support vector machines. These dimen-
sions include genre, culture, moods, instruments, rhythm, and
tempo annotations. Third, a hybrid measure which combines the
above-mentioned distance measures with two existing low-level
measures: a Euclidean distance based on principal component
analysis of timbral, temporal, and tonal descriptors, and a timbral
distance based on single Gaussian Mel-frequency cepstral coef-
ficient (MFCC) modeling. We evaluate our proposed measures
against a number of baseline measures. We do this objectively
based on a comprehensive set of music collections, and subjec-
tively based on listeners’ ratings. Results show that the proposed
methods achieve accuracies comparable to the baseline approaches
in the case of the tempo and classifier-based measures. The highest
accuracies are obtained by the hybrid distance. Furthermore, the
proposed classifier-based approach opens up the possibility to
explore distance measures that are based on semantic notions.

Index Terms—Distance measurement, information retrieval,
knowledge acquisition, multimedia computing, multimedia
databases, music.

I. INTRODUCTION

R APID development of digital technologies, the Internet,
and the multimedia industry have provoked a huge ex-

cess of information. An increasingly growing amount of mul-
timedia data complicates search, retrieval, and recommenda-
tion of relevant information. For example, in the digital music
industry, major Internet stores such as the iTunes Store con-
tain up to 14 million songs,1 adding thousands of new songs
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every month. In such circumstances, fast and efficient retrieval
approaches operating on large-scale multimedia databases are
necessary [1]. Specifically, similarity search is a challenging
scientific problem, which helps to facilitate advances in mul-
timedia knowledge, organization, and recommendation. There-
fore, it can serve the user’s needs and satisfaction within educa-
tive, explorative, social, and entertainment multimedia applica-
tions.

Studying the ways to search and recommend music to a user
is a central task within the music information retrieval (MIR)
community [2]. From a simplistic point of view, this task can
be regarded as obtaining a suitable distance2 measurement be-
tween a query song and a set of potential candidates. This way,
one maps these songs to a certain feature space where a dis-
similarity measure can be computed. Currently, researchers and
practitioners fill in this feature space with information extracted
from the audio content,3 context, or both. Contextual informa-
tion, in the form of user ratings [3] and social tags [4], is a
powerful source for measuring music similarity. However, it be-
comes problematic to obtain such data in a long-tail [5]. General
lack of user ratings and social tags for unpopular multimedia
items complicate their sufficient characterization, as multimedia
consumption is biased towards popular items. Alternatively, in-
formation extracted from the audio content can help to over-
come this problem [6].

The present work deals with content-based approaches
to music similarity. We organize this paper into three parts,
dealing with the state-of-the-art, the proposal of two simple dis-
tance measurements, and the proposal of a hybrid (non-simple)
distance measurement, respectively.

In the first part (Section II), we review related state-of-the-art,
including current approaches to music similarity (Section II-A)
and low-level audio descriptors available to our research
(Section II-B). Furthermore, we briefly explain a number of
existing simple approaches, which we use as a baseline for
evaluating our proposed methods. Throughout the paper, we
assume simple approaches to be those which are not consti-
tuted by a number of distances.4 More concretely, as baseline
approaches, we consider Euclidean distances defined on sets
of timbral, rhythmic, and tonal descriptors (Sections II-CI and
Section II-C-I) and Kullback-Leibler divergence defined on
Gaussian mixture models (GMMs) of Mel-frequency cepstral
coefficients (MFCCs, Section II-CIII).

2We here pragmatically use the term “distance” to refer to any dissimilarity
measurement between songs.

3We pragmatically use the term “content” to refer to any information extracted
from the audio signal.

4We have opted for the term “simple” instead of other appropriate terms, such
as “non-hybrid” and “homogeneous”.

1520-9210/$26.00 © 2011 IEEE
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In the second part, which we partially presented in [7], we
compare the aforementioned baseline approaches against two
novel distance measures (Section III). The first idea we explore
consists of the use of tempo-related musical aspects. We propose
a distance based on two low-level rhythmic descriptors, namely
beats per minute and onset rate (Section III-A). The second idea
we explore shifts the problem to a more high-level (semantic)
domain as we propose to use high-level semantic dimensions,
including information about genre and musical culture, moods
and instruments, and rhythm and tempo. With regard to this
aspect, we continue the research of [8]–[10] but, more in the
line of [10], we investigate the possibility of benefiting from
results obtained in different classification tasks and transfer-
ring this acquired knowledge to the context of music similarity
(Section III-B). More specifically, as our first main technical
contribution, we infer different groups of musical dimensions
by using support vector machines and use a high-level modular
distance which combines these dimensions. Among the qualities
of this classifier-based distance, we strive for high modularity,
being able to easily append additional dimensions. Moreover,
we strive for descriptiveness, being able to explain similarity to
a user.

We evaluate all the considered simple approaches with a
uniform methodological basis, including an objective evalua-
tion on several comprehensive ground truth music collections
(Section IV-A) and a subjective evaluation based on ratings
given by real listeners (Section IV-C). We show that, in spite
of being conceptually different, the proposed methods achieve
comparable or even higher accuracies than the considered
baseline approaches (Sections IV-B and Section IV-D). Finally,
we illustrate the benefits of the proposed classifier-based dis-
tance for music similarity justification to a user (Section V).
In addition, we demonstrate an example of possible semantic
explanation of similarity between songs.

In the third part, we explore the possibility of creating a hy-
brid approach, based on the considered simple approaches as
potential components. As our second main technical contribu-
tion, we propose a new distance measure that combines a low-
level Euclidean distance based on principal component anal-
ysis (PCA), a timbral distance based on single Gaussian MFCC
modeling, and our proposed tempo-based and semantic classi-
fier-based distances (Section VI). These choices are motivated
by the results obtained in the subjective evaluation of simple ap-
proaches performed in the second part of the paper. We hypothe-
size that such combination of conceptually different approaches,
covering timbral, rhythmic, and semantic aspects of music sim-
ilarity, is more appropriate from the point of view of music cog-
nition [11] and, thus, it could lead to a better performance from
the point of view of the listener. Indeed, a number of works sup-
port this idea though being limited by combining only timbral
and rhythmic aspects into a hybrid distance [12]–[17], and, al-
ternatively, timbral and tonal, or timbral and semantic ones [18].
To the best of the authors’ knowledge, more extended combina-
tions of timbral, rhythmic, tonal, and semantic dimensions, pro-
viding a single hybrid distance, have not yet been studied.

We evaluate the hybrid approach against its compo-
nent approaches objectively, performing a cross-collection
out-of-sample test on two large-scale music collections

(Section VII-A), and subjectively, based on ratings of 21 real
listeners (Section VII-C). We find that the proposed hybrid
method reaches a better performance than all considered ap-
proaches, both objectively (Section VII-B) and subjectively
(Section VII-D). We subjectively evaluate our classifier-based
and hybrid approaches against a number of state-of-the-art
distance measures within the bounds of an international
evaluation framework (Section VIII-A). Notably, our hybrid
approach is found to be one of the best performing participants
(Section VIII-B). We finally state general conclusions and
discuss the possibility of further improvements (Section IX).

II. SCIENTIFIC BACKGROUND

A. Music Similarity

Focusing on audio content-based similarity, there exist a wide
variety of approaches for providing a distance measurement be-
tween songs. These approaches comprise both the selection of
audio descriptors and the choice of an appropriate distance func-
tion. Representing the songs as points in a feature space with an

metric is a straightforward approach. Cano et al. [19] demon-
strate such an approach using a Euclidean metric after a PCA
transformation of a preliminary selected combination of timbral,
temporal, and tonal descriptors. Similarly, Slaney et al. [20]
apply a Euclidean metric on loudness and temporal descriptors,
and use a number of algorithms to improve performance. These
algorithms include whitening transformation, linear discrimi-
nant analysis (LDA), relevant component analysis (RCA) [21],
neighborhood components analysis, and large-margin nearest
neighbor classification [22].

As well, specific timbral representations exist, the most
prominent one being modeling the songs as clouds of vectors of
MFCCs, calculated on a frame basis. Logan and Salomon [23]
represent such clouds as cluster models, comparing them with
the Earth mover’s distance. Mandel and Ellis [24] compare
means and covariances of MFCCs applying the Mahalanobis
distance. Furthermore, GMMs can be used to represent the
clouds as probability distributions, and then these distributions
can be compared by the symmetrized Kullback-Leibler diver-
gence. However, in practice, approximations are required for
the case of several Gaussian components in a mixture. To this
end, Aucouturier et al. [25], [26] compare GMMs by means of
Monte Carlo sampling. In contrast, Mandel and Ellis [24] and
Flexer et al. [27] simplify the models to single Gaussian rep-
resentations, for which a closed form of the Kullback-Leibler
divergence exists. Pampalk [13] gives a global overview of
these approaches. As well, Jensen et al. [28] provide an evalu-
ation of different GMM configurations. Besides MFCCs, more
descriptors can be used for timbral distance measurement. For
example, Li and Ogihara [29] apply a Euclidean metric on a
set of descriptors, including Daubechies wavelet coefficient
histograms.

Temporal (or rhythmic) representation of the songs is another
important aspect. A number of works propose specific temporal
distances in combination with timbral ones. For example, Pam-
palk et al. [12], [13] exploit fluctuation patterns, which describe
spectral fluctuations over time, together with several derivative
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descriptors, modeling overall tempo and fluctuation informa-
tion at specific frequencies. A hybrid distance is then defined
as a linear combination of a Euclidean distance on fluctuation
patterns together with a timbral distance, based on GMMs of
MFCCs. Pohle et al. [14] follow this idea, but propose using a
cosine similarity distance for fluctuation patterns together with a
specific distance measure related to cosine similarity for GMMs
of MFCCs. Furthermore, they propose an alternative temporal
descriptor set, including a modification of fluctuation patterns
(onset patterns and onset coefficients), and additional timbral
descriptors (spectral contrast coefficients, harmonicness, and at-
tackness) along with MFCCs for single Gaussian modeling [15],
[16]. Song and Zhang [17] present a hybrid distance measure,
combining a timbral Earth mover’s distance on MFCC cluster
models, a timbral Euclidean distance on spectrum histograms,
and a temporal Euclidean distance on fluctuation patterns.

Finally, some attempts to exploit tonal representation of songs
exist. Ellis and Poliner [30], Marolt [31], and Serrà et al. [32]
present specific melodic and tonality distance measurements,
not addressed to the task of music similarity, but to version
(cover) identification. In principle, their approaches are based
on matching sequences of pitch class profiles, or chroma feature
vectors, representing the pitch class distributions (including the
melody) for different songs.

Though common approaches for content-based music sim-
ilarity may include a variety of perceptually relevant descrip-
tors related to different musical aspects, such descriptors are, in
general, relatively low-level and not directly associated with a
semantic explanation [33]. In contrast, research on computing
high-level semantic features from low-level audio descriptors
exists. In particular, in the context of MIR classification prob-
lems, genre classification [34], mood detection [35], [36], and
artist identification [24] have gathered much research attention.

Starting from the relative success of this research, we hy-
pothesize that the combination of classification problem out-
puts can be a relevant step to overcome the so-called semantic
gap [33] between human judgements and low-level machine
learning inferences, specifically in the case of content-based
music similarity. A number of works support this hypothesis.
Berenzweig et al. [9] propose to infer high-level semantic di-
mensions, such as genres and “canonical” artists, from low-level
timbral descriptors, such as MFCCs, by means of neural net-
works. The inference is done on a frame basis, and the resulting
clouds in high-level feature space are compared by centroids
with a Euclidean distance. Barrington et al. [8] train GMMs
of MFCCs for a number of semantic concepts, such as genres,
moods, instrumentation, vocals, and rhythm. Thereafter, high-
level descriptors can be obtained by computing the probabilities
of each concept on a frame basis. The resulting semantic clouds
of songs can be represented by GMMs, and compared with Kull-
back-Leibler divergence. McFree and Lanckriet [18] propose a
hybrid low-dimensional feature transformation embedding mu-
sical artists into Euclidean space subject to a partial order, based
on a set of manually annotated artist similarity triplets, over pair-
wise low-level and semantic distances. As such, the authors con-
sider low-level timbral distance, based on MFCCs, tonal dis-
tance, based on chroma descriptors, and the above-mentioned
semantic distance [8]. The evaluation includes the embeddings,

which merge timbral and tonal distances, and, alternatively, tim-
bral and semantic distances. West and Lamere [10] apply clas-
sifiers to infer semantic features of the songs. In their experi-
ment, Mel-frequency spectral irregularities are used as an input
for a genre classifier. The output class probabilities form a new
high-level feature space, and are compared with a Euclidean dis-
tance. The authors propose to use classification and regression
trees or LDA for classification.

In spite of having a variety of potential content-based ap-
proaches to music similarity, still there exist certain open is-
sues. The distances, operating solely on low-level audio descrip-
tors, lack semantic explanation of similarity on a level which
human judgements operate. The majority of approaches, both
low-level and high-level, focus mostly on timbral descriptors,
whereas other types of low-level descriptors, such as temporal
and tonal, are potentially useful as well. Furthermore, compara-
tive evaluations are necessary, especially those carried out com-
prehensively and uniformly on large music collections. In ex-
isting research, there is a lack of such comparative evaluations,
taking into consideration different approaches. Objective evalu-
ation criteria of music similarity are generally reduced to co-oc-
currences of genre, album, and artist labels, being tested on rel-
atively small ground truth collections. In turn, subjective eval-
uations with human raters are not common. We will focus on
filling in these open issues, employing comprehensive music
collections, objective criteria for similarity, and human listeners
for subjective evaluations. As existing approaches still perform
relatively poorly, we hypothesize that better performance may
be achieved by combining conceptually different distance mea-
surements, which will help to jointly exploit different aspects of
music similarity.

B. Musical Descriptors

In the present work, we characterize each song using an
in-house audio analysis tool.5 From this tool, we use 59 de-
scriptor classes in total, characterizing global properties of
songs, and covering timbral, temporal, and tonal aspects of mu-
sical audio. The majority of these descriptors are extracted on a
frame-by-frame basis with a 46 ms frame size, and 23 ms hop
size, and then summarized by their means and variances across
these frames. In the case of multidimensional descriptors, co-
variances between components are also considered (e.g., with
MFCCs). Since it is not the objective of this paper to review
existing methods for descriptor extraction, we just provide a
brief overview of the classes we use in Table I. The interested
reader is referred to the cited literature for further details.

C. Baseline Simple Approaches

In this work, we consider a number of conceptually different
simple approaches to music similarity. Among them we indicate
several baselines, which will be used in objective and subjective
evaluations, and moreover will be regarded as potential compo-
nents of the hybrid approach.

1) Euclidean Distance Based on Principal Component Anal-
ysis -PCA: As a starting point, we follow the ideas proposed
by Cano et al. [19], and apply an unweighted Euclidean metric

5http://mtg.upf.edu/technologies/essentia
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TABLE I
OVERVIEW OF MUSICAL DESCRIPTORS

on a manually selected subset of the descriptors outlined above,6

This subset includes bark bands, pitch, spectral centroid, spread,
kurtosis, rolloff, decrease, skewness, high-frequency content,
spectral complexity, spectral crest, flatness, flux, spectral en-
ergy, energy bands, strong peak, tristimulus, inharmonicity, odd
to even harmonic energy ratio, beats loudness, beats loudness
bass, untransposed harmonic pitch class profiles, key strength,
average loudness, and zero-crossing rate.

Preliminary steps include descriptor normalization in the in-
terval and PCA [44] to reduce the dimension of the de-
scriptor space to 25 variables. The choice of the number of target
variables is conditioned by a trade-off between target descrip-
tiveness and the curse of high-dimensionality [45]–[47], typical
for metrics, and is supported by research work on dimen-
sion reduction for music similarity [48]. Nevertheless, through
our PCA dimensionality reduction, an average of 78% of the
information variance was preserved on our music collections,
reducing the number of 201 native descriptors by a factor of 8.

2) Euclidean Distance Based on Relevant Component Anal-
ysis ( -RCA-1 and -RCA-2): Along with the previous
measure, we consider more possibilities of descriptor selec-
tion. In particular, we perform relevant component analysis
(RCA) [21]. Similar to PCA, RCA gives a rescaling linear
transformation of a descriptor space but is based on preliminary
training on a number of groups of similar songs. Having such
training data, the transformation reduces irrelevant variability
in the data while amplifying relevant variability. As in the

-PCA approach, the output dimensionality is chosen to be
25. We consider both the descriptor subset used in -PCA and
the full descriptor set of Table I ( -RCA-1 and -RCA-2,
respectively).

3) Kullback-Leibler Divergence Based on GMM of MFCCs
(1G-MFCC): Alternatively, we consider timbre modeling with
GMM as another baseline approach [26]. We implement the

6Specific details not included in the cited reference were consulted with P.
Cano in personal communication.

simplification of this timbre model using single Gaussian with
full covariance matrix [24], [27], [49]. Comparative research of
timbre distance measures using GMMs indicates that such sim-
plification can be used without significantly decreasing perfor-
mance while being computationally less complex [13], [28]. As
a distance measure between single Gaussian models for songs

and , we use a closed form symmetric approximation of the
Kullback-Leibler divergence

(1)

where and are MFCC means, and are MFCC
covariance matrices, and is the dimensionality of the
MFCCs. This dimensionality can vary from 10 to 20 [28], [35],
[50]. To preserve robustness against different audio encodings,
the first 13 MFCC coefficients are taken [51].

III. PROPOSED SIMPLE APPROACHES

Concerning simple approaches to music similarity, here we
propose two novel distance measures that are conceptually dif-
ferent than what has been reviewed. We regard both approaches
as potential components of the hybrid approach.

A. Tempo-Based Distance (TEMPO)

The first approach we propose is related to the exploitation
of tempo-related musical aspects with a simple distance mea-
sure. This measure is based on two descriptors, beats per minute
(BPM) and onset rate (OR), the latter representing the number
of onsets per second. These descriptors are fundamental for the
temporal description of music. Among different implementa-
tions, we opted for BPM and OR estimation algorithms pre-
sented in [39].
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Fig. 1. General schema of CLAS distance. Given two songs X and Y, low-level audio descriptors are extracted, a number of SVM classifications are run based on
ground truth music collections, and high-level representations, containing probabilities of classes for each classifier, are obtained. A distance between X and Y is
calculated with correlation distances such as Pearson correlation distance.

For two songs and with BPMs and , and
ORs and , respectively, we determine a distance mea-
sure by a linear combination of two separate distance functions

(2)

defined for BPM as

(3)
and for OR as

(4)

where , . The
parameters and of (2) define the weights for each
distance component. Equations (3) and (4) are based on the as-
sumption that songs with the same BPMs (ORs) or multiples of
the BPM (OR), e.g., , are more similar than
songs with non-multiple BPMs (ORs). For example, the songs

and with and should have a
closer distance than the songs and with . Our
assumption is motivated by research on the perceptual effects of
double or half tempo [52]. The strength of this assumption de-
pends on the parameter . Moreover, such a distance
can be helpful in relation to the common problem of tempo du-
plication (or halving) in automated tempo estimation [53], [54].
In the case of , all multiple BPMs are treated equally,
while in the case of , preference inversely decreases
with . In practice, we use .

Equations (2)–(4) formulate the proposed distance in the
general case. In a parameter-tuning phase, we performed a

grid search with one of the ground truth music collections
(RBL) under the objective evaluation criterion described in
Section IV-A. Using this collection, which is focused on
rhythmic aspects and contains songs with various rhythmic pat-
terns, we found and
to be the most plausible parameter configuration. Such values
reveal the fact that in reality, both components are equally
meaningful and that mainly a one-to-one relation of BPMs
(ORs) is relevant for the music collection and descriptors we
used to evaluate such rhythmic similarity. When our BPM (OR)
estimator has increased duplicity errors (e.g., a BPM of 80 was
estimated as 160), we should expect lower values.

B. Classifier-Based Distance (CLAS)

The second approach we propose derives a distance measure
from diverse classification tasks. In contrast to the aforemen-
tioned methods, which directly operate on a low-level descriptor
space, we first infer high-level semantic descriptors using suit-
ably trained classifiers and then define a distance measure oper-
ating on this newly formed high-level semantic space. A schema
of the approach is presented in Fig. 1.

For the first step, we choose standard multi-class support
vector machines (SVMs) [44], which are shown to be an ef-
fective tool for different classification tasks in MIR [24], [35],
[36], [55], [56]. We apply SVMs to infer different groups of
musical dimensions such as 1) genre and musical culture, 2)
moods and instruments, and 3) rhythm and tempo. To this end,
14 classification tasks are run according to all available ground
truth collections presented in Table II. More concretely, we
train one SVM per each ground truth collection, providing its
annotated songs as a training input. For each collection and the
corresponding SVM, a preliminary correlation-based feature
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TABLE II
GROUND TRUTH MUSIC COLLECTIONS EMPLOYED FOR OBJECTIVE EVALUATION OF THE SIMPLE APPROACHES. ALL PRESENTED COLLECTIONS ARE USED FOR

TRAINING CLAS-BASED DISTANCES, EXCEPT G3, ART, AND ALB COLLECTIONS DUE TO INSUFFICIENT SIZE OF THEIR CLASS SAMPLES

selection (CFS) [44] over all available -normalized de-
scriptors (Section II-B) is performed to optimize the descriptor
selection for this particular classification task. As an output,
the classifier provides probability values of classes on which it
was trained. For example, a classifier using the G1 collection
is trained on an optimized descriptor space, according to the
collection’s classes and the CFS process, and returns genre
probabilities for the labels “alternative”, “blues”, “electronic”,
“folk/country”, etc. Altogether, the classification results form
a high-level descriptor space, which contains the probability
values of each class for each SVM. Based on results in [35], we
decided to use the libSVM7 implementation with the C-SVC
method and a radial basis function kernel with default parame-
ters.

For the second step, namely defining a distance operating on
a formed high-level semantic space (i.e., the one of the label
probabilities), we consider different measures frequently used
in collaborative filtering systems. Among the standard ones, we
select the cosine distance (CLAS-Cos), Pearson correlation dis-
tance (CLAS-Pears) [5], [57], and Spearman’s rho correlation
distance (CLAS-Spear) [58]. Moreover, we consider a number
of more sophisticated measures. In particular, the adjusted co-
sine distance (CLAS-Cos-A) [5], [57] is computed by taking
into account the average probability for each class, i.e., com-
pensating distinction between classifiers with different numbers
of classes. Weighted cosine distance (CLAS-Cos-W) [59] and
weighted Pearson correlation distance (CLAS-Pears-W) [60]
are both weighted manually and also based on classi-
fication accuracy . For , we split the collections into
three groups of musical dimensions, namely genre and musical

7http://www.csie.ntu.edu.tw/~cjlin/libsvm/

culture, moods and instruments, and rhythm and tempo. We
empirically assign weights 0.50, 0.30, and 0.20, respectively.
Our choice is supported by research on the effect of genre in
terms of music perception [11], [61] and the fact that genre is
the most common aspect of similarity used to evaluate distance
measures in the MIR community [12]. For , we evaluate the
accuracy of each classifier, and thereafter assign proportional
weights which sum to 1.

With this setup, the problem of content-based music simi-
larity can be seen as a collaborative filtering problem of item-to-
item similarity [57]. Such a problem can generally be solved by
calculating a correlation distance between rows of a song/user
rating matrix with the underlying idea that similar items should
have similar ratings by certain users. Transferring this idea to
our context, we can state that similar songs should have similar
probabilities of certain classifier labels. To this extent, we com-
pute song similarity on a song/user rating matrix with class la-
bels playing the role of users, and probabilities playing the role
of user ratings, so that each -class classifier corresponds to
users.

IV. EVALUATION OF SIMPLE APPROACHES

We evaluated all considered approaches with a uniform
methodological basis, including an objective evaluation on
comprehensive ground truths and a subjective evaluation based
on ratings given by real listeners. As an initial benchmark
for the comparison of the considered approaches, we used a
random distance (RAND), i.e., we selected a random number
from the standard uniform distribution as the distance between
two songs.
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Fig. 2. Objective evaluation results (MAP) of the simple approaches for the different music collections considered.

TABLE III
OBJECTIVE EVALUATION RESULTS (MAP) OF THE SIMPLE APPROACHES FOR THE DIFFERENT MUSIC COLLECTIONS CONSIDERED.

N.C. STANDS FOR “NOT COMPUTED” DUE TO TECHNICAL DIFFICULTIES. FOR EACH COLLECTION, THE MAPS OF THE APPROACHES,
WHICH PERFORM BEST WITHOUT STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN THEM, ARE MARKED IN BOLD

A. Objective Evaluation Methodology

In our evaluations, we covered different musical dimensions
such as genre, mood, artist, album, culture, rhythm, or presence
or absence of voice. A number of ground truth music collections
(including both full songs and excerpts) were employed for that
purpose, and are presented in Table II. For some dimensions
we used existing collections in the MIR field [34], [36], [55],
[62]–[64], while for other dimensions we created manually la-
beled in-house collections. For each collection, we considered
songs from the same class to be similar and songs from different
classes to be dissimilar, and assessed the relevance of the songs’
rankings returned by each approach.

To assess the relevance of the songs’ rankings, we used the
mean average precision (MAP) measure [65]. The MAP is a
standard information retrieval measure used in the evaluation
of many query-by-example tasks. For each approach and music
collection, MAP was computed from the corresponding full dis-
tance matrix. The average precision (AP) [65] was computed for
each matrix row (for each song query) and the mean was calcu-
lated across queries (columns).

For consistency, we applied the same procedure to each of
the considered distances, whether or not they required training:
the results for RAND, -PCA, -RCA-1, -RCA-2,
1G-MFCC, TEMPO, and CLAS-based distances, were aver-
aged over five iterations of 3-fold cross-validation. On each
iteration, all 17 ground truth collections were split into training
and testing sets. For each testing set, the CLAS-based distances

were provided with 14 out of 17 training sets. The G3, ART,
and ALB collections were not included as training sets due
to the insufficient size of their class samples. In contrast, for
each testing set, -RCA-1, and -RCA-2 were provided
with a single complementary training set belonging to the same
collection.

B. Objective Evaluation Results

The average MAP results are presented in Fig. 2 and Table III.
Additionally, the approaches with statistically non-significant
difference in MAP performance according to the independent
two-sample t-tests are presented in Table IV. These t-tests
were conducted to separately compare the performances for
each music collection. In the cases that are not reported in
Table IV, we found statistically significant differences in MAP
performance .

We first see that all considered distances outperform the
random baseline (RAND) for most of the music collections.
When comparing baseline approaches ( -PCA, -RCA-1,

-RCA-2, 1G-MFCC), we find 1G-MFCC to perform best
on average. Still, -PCA performs similarly (MHA, MSA,
MRE, and MEL) or slightly better for some collections (MAC
and RPS). With respect to tempo-related collections, TEMPO
performs similarly (RPS) or significantly better (RBL) than
baseline approaches. Indeed, it is the best performing dis-
tance for the RBL collection. Surprisingly, TEMPO yielded
accuracies which are comparable to some of the baseline
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TABLE IV
APPROACHES WITH STATISTICALLY NON-SIGNIFICANT DIFFERENCE IN

MAP PERFORMANCE ACCORDING TO THE INDEPENDENT TWO-SAMPLE

T-TESTS. THE � -RCA-2 APPROACH WAS EXCLUDED FROM

THE ANALYSIS DUE TO TECHNICAL DIFFICULTIES

approaches for music collections not strictly related to rhythm
or tempo such as G2, MHA, and MEL. In contrast, no sta-
tistically significant difference was found in comparison
with the random baseline for the G3, MAG, MRE, and ALB
collections. Finally, we saw that classifier-based distances
achieved the best accuracies for the majority of the collections.
Since all CLAS-based distances (CLAS-Cos, CLAS-Pears,
CLAS-Spear, CLAS-Cos-W, CLAS-Pears-W, CLAS-Cos-A)
showed comparable accuracies, we only report two examples
(CLAS-Pears, CLAS-Pears- ). In particular, CLAS-based
distances achieved large accuracy improvements with the G2,
G4, MPA, MSA, and MAC collections. In contrast, no improve-
ment was achieved with the ART, ALB, and RBL collections.
The distance 1G-MFCC performed best for the ART and ALB
collections. We hypothesize that the success of 1G-MFCC for
the ART and ALB collections might be due to the well-known
“album effect” [24]. This effect implies that, due to production
process, songs from the same album share much more timbral
characteristics than songs from different albums of the same
artist, and, moreover, different artists.

C. Subjective Evaluation Methodology

In the light of the results of the objective evalua-
tion (Section IV-B), we selected four conceptually dif-
ferent approaches ( -PCA, 1G-MFCC, TEMPO, and
CLAS-Pears- ) together with the random baseline
(RAND) for the listeners’ subjective evaluation. We designed
a web-based survey where registered listeners performed a
number of iterations blindly voting for the considered distance
measures, assessing the quality of how each distance reflects
perceived music similarity. In particular, we evaluated the
resulting sets of most similar songs produced by the selected
approaches, hereafter referred as “playlists”. Such a scenario

is a popular way to assess the quality of music similarity mea-
sures [3], [6]. It increases discrimination between approaches
in comparison with a pairwise song-to-song evaluation. More-
over, it reflects the common applied context of music similarity
measurement, which consists of playlist generation.

During each iteration, the listener was presented with 5
different playlists (one for each measure) generated from the
same seed song (Fig. 3). Each playlist consisted of the five
nearest-to-the-seed songs. The entire process used an in-house
collection of 300K music excerpts (30 s) by 60K artists (five
songs/artist) covering a wide range of musical dimensions
(different genres, styles, arrangements, geographic locations,
and epochs). No playlist contained more than one song from
the same artist.

Independently for each playlist, we asked the listeners to pro-
vide 1) a playlist similarity rating and 2) a playlist inconsis-
tency boolean answer. For playlist similarity ratings, we used a
six-point Likert-type scale (0 corresponding to the lowest sim-
ilarity, 5 to the highest) to evaluate the appropriateness of the
playlist with respect to the seed. Likert-type scales [66] are
bipolar scales used as tools-of-the-trade in many disciplines to
capture subjective information, such as opinions, agreements, or
disagreements with respect to a given issue or question. The two
opposing positions occupy the extreme ends of the scale (in our
case, low-high similarity of the playlist to the seed), and several
ratings are allocated for intermediate positions. We explicitly
avoided a “neutral” point in order to increase the discrimina-
tion between positive and negative opinions. We did not present
examples of playlist inconsistency but they might comprise of
speech mixed with music, extremely different tempos, com-
pletely opposite feelings or emotions, distant musical genres,
etc.

We divided the test into two phases: in the first, 12 seeds
and corresponding playlists were shared between all listeners;
in the second one, the seeds for each listener (up to a maximum
of 21) were randomly selected. Listeners were never informed
of this distinction. Additionally, we asked each listener about
his musical background, which included musicianship and lis-
tening expertise information (each measured in three levels).
Altogether we collected playlist similarity ratings, playlist in-
consistency indicators, and background information from 12 lis-
teners.8

D. Subjective Evaluation Results

In any experimental situation such as our subjective evalua-
tion, analysis of variance (ANOVA) is the usual methodology
employed to assess the effects of one variable (like the simi-
larity computation approach) on another one (such as the simi-
larity rating obtained from listeners). ANOVA provides a statis-
tical test of whether or not the means of several groups (in our
case, the ratings obtained using a specific similarity computa-
tion approach) are equal. In addition to the effect of the different
similarity computation methods, in our evaluation we wanted to
know the possible effect of the musicianship and listening expe-
rience of the participants. Furthermore, we also wanted to know

8Due to confidential reasons, the survey was conducted on a limited closed
set of participants, and was unavailable to the general public.
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Fig. 3. Screenshot of the subjective evaluation web-based survey.

the effect produced by the two consecutive testing phases used
(one presenting the same songs to all the listeners, and the other
using different songs for each of them). Therefore, a mixed-de-
sign ANOVA with two between-subjects factors (musicianship
and listening expertise) and two within-subjects factors (sim-
ilarity computation approach and testing phase) was required.
Results from this analysis revealed that the effect of the simi-
larity computation method on the similarity ratings was statisti-
cally significant [ , ,

] and that it separated the methods in three different
groups: RANDOM and -PCA (which yielded the lowest sim-
ilarity ratings) versus TEMPO versus 1G-MFCC and CLAS-
Pears- (which yielded the highest similarity ratings). The
same pattern was obtained for the effects on the inconsistency
ratings (Fig. 4). The effect of the testing phase, also found to
be significant, reveals that ratings yielded slightly lower values
in the second phase. This could be due to the “tuning” of the
similarity ratings experienced by each subject as the experiment
proceeded. Fortunately, the impact of phase was uniform and did
not depend on or interact with any other factor. Hence, the sim-
ilarity ratings are only made “finer” or more “selective” as the
experiment progresses, but irrespective of the similarity com-
putation approach. On the other hand, the potential effects of
musicianship and listening expertise revealed no impact on the
similarity ratings. Overall, we conclude that the -PCA and
TEMPO distances, along with a random baseline, revealed poor
performance, tending to provide disruptive examples of playlist
inconsistency. Contrastingly, CLAS-Pears- and 1G-MFCC
revealed acceptable performance with slightly positive user sat-
isfaction. We have omitted for clarity the specific results of the
statistical tests which validated our concluding statements.

V. SEMANTIC EXPLANATION OF MUSIC SIMILARITY

Here we give some thoughts concerning the proposed CLAS
distance and its semantic application. An interesting aspect of
this proposed approach is the ability to provide a user of the
final system with a concrete motivation for the retrieved songs
starting from a purely audio content-based analysis. To the
best of the authors’ knowledge, this aspect is very rare among
other music content-processing systems [67]. However, there
is evidence that retrieval or recommendation results perceived

Fig. 4. Average playlist similarity rating and proportion of inconsistent
playlists for the subjective evaluation of the simple approaches. Error bars
indicate one standard error of the mean.

as transparent (getting an explanation of why a particular
retrieval or recommendation was made) are preferred by users,
increasing their confidence in a system [68].

Remarkably, the proposed classifier-based distance gives the
possibility of providing high-level semantic descriptions for the
similarity between a pair of songs along with the distance value
itself. In a final system, such annotations can be presented in
terms of probability values of the considered dimensions that
can be understood by a user. Alternatively, automatic text gen-
eration can be employed to present the songs’ qualities in a tex-
tual way. For a brief justification of similarity, a subset of di-
mensions with the highest impact on overall similarity can be
selected. A simple use-case example is shown in Fig. 5. For
a pair of songs and the CLAS-Pears- distance measure, a
subset of 15 dimensions was determined iteratively by greedy
distance minimization. In each step, the best candidate for elim-
ination was selected from different dimensions, and its weight
was zeroed. Thereafter, the residual dimension probabilities that
exceeded corresponding random baselines9 can be presented to
a user. Notice however that as random baselines differ for dif-
ferent dimensions depending on the number of output classes of
the corresponding classifier, the significance of dimension prob-
abilities cannot be treated equally. For example, the 0.40 prob-
ability of a dimension regressed by an eight-class classifier is
considerably more significant than the 0.125 random baseline.
Though not presented, the dimensions with probabilities below
random baselines also have an impact on the distance measure-
ment. Still, such negative statements (in the sense of a low prob-
ability of a regressed dimension) are probably less suitable than
positive ones for justification of music similarity to a user.

9Under the assumptions of the normal distribution of each classifier’s labels
for a music collection.
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Fig. 5. Real example of a semantic explanation of the similarity between two
songs retrieved from our music collection for the classifier-based distance.

VI. PROPOSED HYBRID APPROACH (HYBRID)

Finally, we hypothesize that an important performance
gain can be achieved by combining conceptually different
approaches, covering timbral, rhythmic, and semantic aspects
of music similarity. We propose a hybrid distance measure,
consisting of a subset of the simple measures described above.
We define the distance as a weighted linear combination of

-PCA, 1G-MFCC, TEMPO, and CLAS-Pears- dis-
tances. We select these four conceptually different approaches
relying on the results of the objective evaluation of potential
components (Section IV-B). For each selected component, we
apply score normalization, following ideas in [69] and [70].
More concretely, each original distance variable is equalized
to a new variable , uniformly distributed in .
The equalizing function is given by the cumulative distri-
bution function of , which can be obtained from a distance
matrix on a given representative music collection. As such, we
use an aggregate collection of 16 000 full songs and music ex-
cerpts, composed from the ground truth collections previously
used for objective evaluation of simple approaches (Table II).
The final hybrid distance is obtained by a weighted linear
combination of component distances. The weights are based
on the results of the subjective evaluation (Section IV-D) and
are set as follows: 0.7 for -PCA, 3.0 for 1G-MFCC, 1.2 for
TEMPO, and 3.0 for CLAS-Pears- distances. Hence, for
each component, a weight corresponds to an average playlist
similarity rating given by listeners.

VII. EVALUATION OF HYBRID APPROACH

A. Objective Evaluation Methodology

Here we followed a different evaluation strategy than with
the simple approaches. This strategy comes from the fact that
the ground truth music collections available to our evaluation,
both in-house and public, can have different biases (due to
different collection creators, music availability, audio formats,
covered musical dimensions, how the collection was formed,
etc.). Therefore, in order to minimize these effects, we carried
out a large-scale cross-collection evaluation of the hybrid
approach against its component approaches, namely -PCA,
1G-MFCC, TEMPO, and CLAS-Pears- , together with the
random baseline (RAND). Cross-collection comparison implies

TABLE V
NUMBER OF OCCURRENCES OF TEN MOST FREQUENT GENRES,

COMMON FOR COLLECTIONS G-C1 AND G-C2

that the queries and their answers belong to different music
collections (out-of-sample results), thus making evaluation
results more robust to possible biases.

Solely the genre musical dimension was covered in this
experiment. Two large in-house ground truth music collections
were employed for that purpose: 1) a collection of 299 000
music excerpts (30 s) (G-C1), and 2) a collection of 73 000 full
songs (G-C2). Both collections had a genre label associated
with every song. In total, 218 genres and subgenres were
covered. The size of these music collections is considerably
large, which makes evaluation conditions closer to a real-world
scenario. As queries, we randomly selected songs from the ten
most common genres from both collections G-C1 and G-C2.
The distribution of the selected genres among the collections
is presented in Table V. More concretely, for each genre, 790
songs from collection G-C1 were randomly selected as queries.
The number of queries per genre corresponds to a minimum
number of genre occurrences among the selected genres.

Each query was applied to the collection G-C2, forming a full
row in a distance matrix. As with the objective evaluation of
simple approaches (Section IV-A), MAP was used as an eval-
uation measure, but was calculated with a cutoff (similarly to
pooling techniques in text retrieval [71]–[73]) equal to the ten
closest matches due to the large dimensionality of the resulting
distance matrix. The evaluation results were averaged over five
iterations. In the same manner, a reverse experiment was carried
out, using songs from the G-C2 collection as queries, and ap-
plied to the collection G-C1. As the evaluation was completely
out-of-sample, the full ground truth collections were used to
train the CLAS approach.

B. Objective Evaluation Results

The results are presented in Table VI. In addition, we an-
alyzed the obtained MAPs with a series of independent two-
sample t-tests. All the approaches were found to perform with
statistically significant difference .

We see that all considered distances outperform the random
baseline (RAND). We found 1G-MFCC and CLAS-Pears-
to have comparable performance, being the best among the
simple approaches. As well, the TEMPO distance was found to
perform similarly or slightly better than -PCA. Overall, the
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TABLE VI
OBJECTIVE CROSS-COLLECTION EVALUATION RESULTS (MAP

WITH CUTOFF AT TEN) AVERAGED OVER FIVE ITERATIONS

results for simple approaches conform with our previous objec-
tive evaluation. Meanwhile, our proposed HYBRID distance
achieved the best accuracy in the cross-collection evaluation in
both directions.

C. Subjective Evaluation Methodology

We repeated the listening experiment, conducted for simple
approaches (Section IV-C) to evaluate the hybrid approach
against its component approaches. The same music collec-
tion of 300 000 music excerpts (30 s) by 60 000 artists (five
songs/artist) was used for that purpose. Each listener was
presented with a series of 24 iterations, which, according to
the separation of the experiment into two phases, included
12 iterations with seeds and corresponding playlists shared
between all listeners, and 12 iterations with randomly selected
seeds, different for each listener. In total, we collected playlist
similarity ratings, playlist inconsistency indicators, and back-
ground information about musicianship and listening expertise
from 21 listeners.

D. Subjective Evaluation Results

An ANOVA with two between-subjects factors (musician-
ship and listening expertise) and two within-subjects factors
(similarity computation approach and testing phase) was used
to test their effects on the similarity ratings and on the in-
consistency ratings given by the listeners (Fig. 6). The only
clearly significant factor explaining the observed variance in
the similarity ratings was the similarity computation approach
[ , , ]. The
specific pattern of significant differences between the tested
computation approaches makes the HYBRID metric to clearly
stand out from the rest, while -PCA and TEMPO score
low (but without statistical differences between them), and
CLAS-Pears- and 1G-MFCC (again without statistically
significant differences between them) score between the two
extremes. As we did not find any significant effect of musi-
cianship and listening expertise on the similarity ratings, it
seems clear that the differences in similarity ratings can be
attributed only to the differences in the similarity computation
approaches.

The same pattern and meaning was also found for the incon-
sistency ratings: they were dependent on the similarity computa-
tion approach, and most of them were generated by the -PCA
and TEMPO methods, whereas the HYBRID method provided

significantly lower inconsistency ratings. No other factor or in-
teraction between factors was found to be statistically signifi-
cant, but a marginal interaction effect of similarity computation
approach and testing phase was found. This effect means that
some similarity computation methods (but not all) lowered the
ratings as the evaluation progressed. The same pattern was ob-
tained for the inconsistency ratings. In conclusion, we found a
similarity computation method (HYBRID) that was clearly pre-
ferred over the rest, and no effect other than the computation
method was responsible for that preference.

VIII. MIREX 2009 EVALUATION

A. Methodology

We submitted the HYBRID and CLAS-Pears- systems
to the Music Information Retrieval Evaluation eXchange
(MIREX). MIREX is an international community-based frame-
work for the formal evaluation of MIR systems and algorithms
[74], [75]. Among other tasks, MIREX allows for the com-
parison of different algorithms for artist identification, genre
classification, or music transcription. In particular, MIREX
allows for a subjective human assessment of the accuracy
of different approaches to music similarity by community
members, this being a central task within the framework. For
that purpose, participants can submit their algorithms as binary
executables and the MIREX organizers determine and publish
the algorithms’ accuracies and runtimes. The underlying music
collections are never published or disclosed to the participants,
neither before or after the contest. Therefore, participants
cannot tune their algorithms to the music collections used in
the evaluation process.

In the MIREX’2009 edition, the evaluation of each submitted
approach was performed on a music collection of 7000 songs
(30 s excerpts), which were chosen from IMIRSEL’s10 collec-
tions [75] and pertained to ten different genres. For each par-
ticipant’s approach, a 7000 7000 distance matrix was calcu-
lated. A query set of 100 songs was randomly selected from the
music collection, representing each of the ten genres (ten songs
per genre). For each query and participant approach, the five
nearest-to-the-query songs out of the 7000 were chosen as can-
didates (after filtering out the query itself and all songs of the
same artist). All candidates were evaluated by human graders
using the Evalutron 6000 grading system [76]. For each query,
a single grader was assigned to evaluate the derived candidates
from all approaches. Thereby, the uniformity of scoring within
each query was ensured. For each query/candidate pair, a grader
provided 1) a categorical broad score in the set {0, 1, 2} (corre-
sponding to “not similar”, “somewhat similar”, and “very sim-
ilar” categories), and 2) a fine score in the range from 0 (failure)
to 10 (perfection). The listening experiment was conducted with
50 graders, and each one of them evaluated two queries. As this
evaluation was completely out-of-sample, our submitted sys-
tems were trained on the full ground truth collections required
for the CLAS distance.

10http://www.music-ir.org/evaluation/
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Fig. 6. Average playlist similarity rating and proportion of inconsistent
playlists for the subjective evaluation of the hybrid approach. Error bars
indicate one standard error of the mean.

B. Results

The overall evaluation results are reproduced in Table VII.11

Our measures are noted as BSWH1 for CLAS-Pears- , and
BSWH2 for HYBRID. The results of the Friedman test against
the summary data of fine scores are presented in Fig. 7. First, and
most importantly, we found the HYBRID measure to be one of
the best performing distances in the MIREX 2009 audio music
similarity task. HYBRID was very close to PS1, but worse than
the leading PS2 distance [15]. However, no statistically signif-
icant difference between PS2, PS1, and our HYBRID measure
was found in the Friedman test. Second, the CLAS-Pears-
measure revealed satisfactory average performance comparing
to other distances with no statistically significant difference to
the majority of the participant approaches. Nevertheless, CLAS-
Pears- outperformed a large group of poor performing dis-
tances with a statistically significant difference. Finally, we state
that despite the fact that we do not observe examples of stable
excellent performance among all participant distances, up to
above-average user satisfaction was achieved by the majority of
the approaches, including our HYBRID and CLAS-Pears-
distances.

IX. CONCLUSIONS

In the current work, we presented, studied, and comprehen-
sively evaluated, both objectively and subjectively, new and ex-
isting content-based distance measures for music similarity. We
studied a number of simple approaches, each of which apply a
uniform distance measure for overall similarity. We considered
five baseline distances, including a random one. We explored the
potential of two new conceptually different distances not strictly

11Detailed results can be found on the official results webpage
for MIREX’2009: http://www.music-ir.org/mirex/2009/index.php/
Audio_Music_Similarity_and_Retrieval_Results

Fig. 7. MIREX 2009 Friedman’s test (fine scores). Figure obtained from the
official results webpage for MIREX’2009.

operating on the often exclusively used musical timbre aspects.
More concretely, we presented a simple tempo-based distance
which can be especially useful for expressing music similarity in
collections where rhythm aspects are predominant. Using only
two low-level temporal descriptors, BPM and OR, this distance
is computationally inexpensive, yet effective for such collec-
tions. As well, our subjective evaluation experiments revealed
a slight preference by listeners of tempo-based distance over a
generic Euclidean distance.

In addition, we investigated the possibility of benefiting from
the results of classification problems and transferring this gained
knowledge to the context of music similarity. To this end, we
presented a classifier-based distance which makes use of high-
level semantic descriptors inferred from low-level ones. This
distance covers diverse groups of musical dimensions such as
genre and musical culture, moods and instruments, and rhythm
and tempo. The classifier-based distance outperformed all the
considered simple approaches in most of the ground truth music
collections used for objective evaluation. In contrast, this perfor-
mance improvement was not seen in the subjective evaluation
when compared with the best performing baseline distance con-
sidered. However, they were found to perform at the same level
and, therefore, no statistically significant differences were found
between them. In general, the classifier-based distance repre-
sents a semantically rich approach to music similarity. Thus, in
spite of being based solely on audio content information, this
approach can overcome the so-called “semantic gap” in con-
tent-based music similarity and provide a semantic explanation
to justify the retrieval results to a user.

We explored the possibility of creating a hybrid approach,
based on the studied simple approaches as potential compo-
nents. We presented a new distance measure, which combines
a low-level Euclidean distance based on PCA, a timbral dis-
tance based on single Gaussian MFCC modeling, our tempo-
based distance, and a high-level semantic classifier-based dis-
tance. This distance outperformed all previously considered ap-
proaches in an objective large-scale cross-collection evaluation,
and revealed the best performance for listeners in a subjective
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TABLE VII
MIREX 2009 OVERALL SUMMARY RESULTS SORTED BY AVERAGE FINE SCORE. THE PROPOSED APPROACHES

CLAS AND HYBRID ARE HIGHLIGHTED IN GRAY (BSWH1 AND BSWH2, RESPECTIVELY)

evaluation. Moreover, we participated in a subjective evaluation
against a number of state-of-the-art distance measures, within
the bounds of the MIREX’2009 audio music similarity and re-
trieval task. The results revealed high performance of our hybrid
measure, with no statistically significant difference from the
best performing method submitted. In general, the hybrid dis-
tance represents a combinative approach, benefiting from tim-
bral, rhythmic, and high-level semantic aspects of music simi-
larity.

Further research will be devoted to improving the classifier-
based distance with the addition of classifiers dealing with mu-
sical dimensions such as tonality or instrument information.
Given that several separate dimensions can be straightforwardly
combined with this distance, additional improvements are fea-
sible and potentially beneficial. In particular, contextual dimen-
sions, in the form of user ratings or social tags, can be added to
make possible a fusion with collaborative filtering approaches.
As well, to improve the classifier-based distance itself, we will
consider a better combination of classifiers’ output probabili-
ties. Additionally, an enhancement of the tempo-based distance
component of the proposed hybrid approach is possible by using
a richer representation for rhythm, such as the fluctuation pat-
terns.
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Abstract

Sound engineers need to access vast collections of sound effects for their
film and video productions. Sound effects providers rely on text-retrieval
techniques to offer their collections. Currently, annotation of audio con-
tent is done manually, which is an arduous task. Automatic annotation
methods, normally fine-tuned to reduced domains such as musical instru
ments or reduced sound effects taxonomies, are not mature enough for
labeling with great detail any possible sound. A general s ound recogni-
tion tool would require: first, a taxonomy that represents the world and,
second, thousands of classifiers, each sp ecialized in distinguishing little
details. We report experimental results on a general sound annotator. To
tackle the taxonomy definition problem we use WordNet, a semantic net-
work that organizes real world knowledge. In order to overcome the need
of a huge number of classifiers to distinguish many different sound classes,
we use a nearest-neighbor classifier with a database of isolated sounds
unambiguously linked to WordNet concepts. A 30% concept prediction is
achieved on a database of over 50.000 s ounds and over 1600 concepts.

1 INTRODUCTION

Sound effects providers rely on classical text retrieval techniques to manage
manually labeled audio collections. The manual annotation is a labor-intensive
and error-prone task. There are attempts towards metadata generation by auto-
matic classification. State of the art of audio classification methods, except for
reduced-domain tasks, is not mature enough for real world applications. Au-
dio classification methods cannot currently provide the level of detail needed
in a sound effect management system, e.g: “fast female footsteps on wood”,
“violin pizzicato with natural open strings” or “mid tom with loose skin bend
at end”. In audio classification, researchers normally assume the existence of

1
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a well defined hierarchical classification scheme of a few categories (less than
a hundred categories). On-line sound effects and music sample providers have
several thousand categories. This makes the idea of generating a model for each
category quite unfeasible, we would need several thousand classifiers.
In this context, we present an all-purpose sound recognition system based

on nearest-neighbor classification rule. A sound sample will be labeled with
the descriptions from the similar sounding examples of a annotated database.
The terms borrowed from the closest match are unambiguous due to the use of
WordNet1 (Miller November 1995) as the taxonomy back-end. With unambigu-
ous tagging, we refer to assigning concepts and not just terms to sounds. For
instance, the sound of a “bar” is ambiguous, it could be “bar” as “rigid piece of
metal or wood” or as “establishment where alcoholic drinks are served” where
each concept has a unique identifier.
The rest of the paper is organized as follows: In Section 2 we briefly enu-

merate some approaches to the problem of automatically identification and we
reflect on the difficulties inherent in automatically describing any isolated sounds
with a high level of detail. In Section 3, we present a real world size taxonomy
for sound effect description. From Section 4 to 7 we describe the system setup
as well as preliminary results. We conclude with possible continuations of the
approach.

2 RELATED WORK

Existing classification methods are normally finely tuned to small domains, such
as musical instrument classification (Herrera, et al. 2003)(Kostek & Czyzewski
2001) or simplified sound effects taxonomies (Casey 2002)(Wold, et al. 1996),
(Zhang & Kuo 1999). Peltonen et al. presented a system in (Peltonen, et al.
2002) devised to classify environments or ambiances, e.g: “street, pub, office,
church”. Different audio classification systems differ mainly on the acoustic
features derived from the sound and the type of classifier. Independently of the
feature extraction and selection method and the type of classifier used, content-
based classification systems need a set of classes and a large number (e.g: 30 or
more) of audio samples for each class to train the system.
Classification methods cannot currently offer the detail needed in commercial

sound effects management. It would require to develop thousands of classifiers,
each specialized in distinguishing little details and a taxonomy that represents
the real world. Dubnov and Ben-Shalom (Dubnov & Ben-Shalom 2003) point
that one of the main problems faced by natural sounds and sound effects classi-
fiers is the lack of clear taxonomy. In musical instrument classification, the tax-
onomies more or less follow perceptual-related hierarchical structures(Lakatos
2000). Accordingly, in such problems one can devise hierarchical classification
approaches such as (Martin 1999)(Peeters & Rodet 2003) in which the system
distinguishes in a first level between sustained and non-sustained sounds, and
in a second level among strings, woodwinds and so on. In every-day sound
classification, there is not such a parallelism between semantic and perceptual
categories. On the contrary one can find hissing sounds in categories of “cat”,
“tea boilers”, “snakes”. Sound engineers exploit this ambiguity and create the
illusion of “crackling fire” by “recording twisting cellophane”.

1http://www.cogsci.princeton.edu/\~\wn/
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We have to add to this problem the fact that designing a taxonomy or
classification scheme to include the concepts of the real world is a daunting
task. The MPEG7 standard provides description mechanisms and taxonomy
management tools for multimedia documents. Casey (Casey 2002) shows an
example on how to build such a classification scheme using MPEG7. However,
it is very complicated to devise and maintain classification schemes that account
for the level of detail needed in a production-size sound effect management
system. We have found that it is much faster to start developing ontologies on
top of a semantic network such as WordNet rather than starting from scratch
(see Section 3).
Slaney describes in (Slaney 2002) a method of connecting words to sounds.

He avoids the needs of taxonomy design when bridging the gap between per-
ceptual and semantic spaces searching for hierarchies in an unsupervised mode.
Barnard et al. describe a similar approach for matching words and images (Barnard,
et al. 2003).

3 TAXONOMY MANAGEMENT

WordNet is a lexical network designed following psycholinguistic theories of hu-
man lexical memory. Standard dictionary organize words alphabetically. Word-
Net organizes concepts in synonym sets, called synsets, with links between the
concepts. It knows for instance that the word piano, as a noun, has two senses,
the musical attribute that refers to “low loudness” and the “musical instru-
ment”. It also encodes the information that a “grand piano” is a type of “pi-
ano”, and that it has parts such as a keyboard, a loud pedal and so on. Such a
knowledge system is useful for retrieval. It can for instance display the results
of a query “car” in types of cars, parts of car, actions of a car (approaching,
departing, turning off).
Even though WordNet already organizes over 100,000 terms, it sometimes

lacks specific knowledge, such as “close-up” — referring to the recording tech-
nique — or that a “747” is an airplane. We have developed a WordNet editor
and augmented it both with concepts from taxonomies to describe acoustically
sounds and mining legacy metadata from sound effects libraries. The extended
lexical network includes the semantic aspects, perceptual and sound effects spe-
cific terms in an unambiguous way. For further details on the implementation
and evaluation of WordNet as backbone for audio taxonomy management, we
refer to (Cano, et al. 2004b).

4 EXPERIMENTAL SETUP

Our database consists of 54,799 sounds from over 30 different libraries of sound
effects, music and music samples. These sounds have been unambiguously
tagged with concepts of an enhanced WordNet. Thus a violin sound with the
following caption:“violin pizzicato D#” has the following synsets:

• violin, fiddle – (bowed stringed instrument that is the highest member of
the violin family; this instrument has four strings and a hollow body and
an unfretted fingerboard and is played with a bow)

3
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• pizzicato – ((of instruments in the violin family) to be plucked with the
finger)

• re, ray – (the syllable naming the second (supertonic) note of any major
scale in solmization)

• sharp – ((music) raised in pitch by one chromatic semitone; ”C sharp”)

In Figure 1, we show a histogram with the number of synsets the sounds
have been labeled with after disambiguation. It should be clear that the higher
the number of synsets, the better a sound is described. In average, a sound is
labeled with 3.88 synsets. In Figure 2 we plot the rank-frequency analysis of
the synsets. For this analysis we counted the occurrence of different synsets
and then sorted them according to descending frequency. The plot is repeated
for various parts of speech, specifically: noun, verb, adjective and adverb. The
distribution of 3028 synsets with respect its syntactic function is as follows:
2381 nouns, 380 verbs, 251 adjectives and 16 adverbs. The number of synsets
for which there are ten or more examples sounds is 1645.
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Figure 1: Histogram of number of synsets (concepts) per sound

The classifier uses a set of 89 features and a nearest-neighbor classifier using
a database of sounds with WordNet as taxonomy backbone. In Section 5 we
outline the features used in the system and in section 6 the classifier.

5 FEATURES EXTRACTION

Every audio sample is converted to 22.05 KHz mono and then passed through
a noise gate in order to determine its beginning and its end. After a frame-
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Figure 2: Number of sounds described per synset as a function of the synset
rank. The frequency rank is plotted for the different parts of speech: noun,
verb, adjective and adverbs.

by-frame analysis we extract features belonging to three different groups: a
first group gathering spectral as well as temporal descriptors in the MPEG-7
standard; a second one built on Bark Bands perceptual division of the acoustic
spectrum and which outputs the mean and variance of relative energies for each
band; and, finally a third one, composed of Mel-Frequency Cepstral Coefficients
and their corresponding variances (see Appendix and (Herrera, et al. 2002) for
details).

6 NEAREST-NEIGHBOR CLASSIFIER

We use the k=1 nearest neighbor decision rule (1-NN)(Jain, et al. 2000) for
classification. The choice of a memory-based nearest neighbor classifier avoids
the design and training of every possible class of sound (the order of several
thousands). Another advantage of using a NN classifier is that it does not
need to be redesign, nor trained whenever a new class of sounds is subsequently
added to the system. The NN classifier needs a database of labeled instances
and a similarity distance to compare them. An unknown sample will borrow
the metadata associated with the most similar registered sample. The simi-
larity measure of the system is a normalized Manhattan distance of the above
enumerated features:

d (x, y) =

N
∑

k=1

|xk − yk|

(maxk − mink)
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SN TO HH CR KI RI

SN 150 1 2 2 1 20
TO 1 148 2 0 19 0
HH 5 7 153 0 1 4
CR 21 0 2 45 0 12
KI 1 17 0 0 182 0
RI 15 0 5 4 0 135

Table 1: Percussive instruments confusion matrix where SN:Snare, To:Tom,
HH:Hihat, CR:Crash, KI:Kick, RI:Ride

Query Sound Caption Nearest-neighbor Caption

Mini Cooper Door Closes Interior Persp. Trabant Car Door Close
Waterfall Medium Constant Extremely Heavy Rain Storm Short Loop
M-domestic Cat- Harsh Meow A1v:Solo violin (looped)

Auto Pull Up Shut Off Oldsmobile Ferrari - Hard Take Off Away - Fast
Animal-dog-snarl-growl-bark-vicious Dinosaur Monster Growl Roar

Table 2: The classifier assigns the metadata of the sounds of the second column
to the sounds of the first.

where x and y are the vectors of features, N the dimensionality of the fea-
ture space, and maxk and mink the maximum and minimum values of the kth
feature.
In some of our experiments, the standard deviation-normalized Euclidean

distance does not perform well. Specially harmful is the normalization with
standard deviation. Changing the normalization from the standard deviation
to the difference between maximum and minimum boosted classification. For
example the percussive instrument classification (see Section 7) raises from 64%
to 82% correct identification. Changing the distance from Euclidean to Man-
hattan provided an extra 3% improvement..

7 EXPERIMENTAL RESULTS

The first experiment consisted in finding a best-match for all the sounds in the
database. Table 2 shows some examples: on the left column the original caption
of the sound and on the right the caption of the nearest neighbor. The caption
on the right would be assigned to the query sound in an automatic annotation
system.
As can be inferred from Table 2, it is not trivial to quantitatively evaluate

the performance of the system. An intersection on the terms of the captions
would not yield a reasonable evaluation metric. The WordNet based taxonomy
can inform us that both “Trabant” and “Mini Cooper” are narrow terms for the
concept “car, automobile”. Thus, the comparison of number of common synsets
on both query and nearest-neighbor could be used as a better evaluation. As
was shown in previous work (Cano, et al. 2004a), the intersection of synsets
between query and best-match is 1.5 in average, while 50% of the times the best-
match did not share a single common synset (see Figure 3). The intersection of
source descriptions can be zero for very similar sounding sounds. The closest-
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Figure 3: Probability distribution of correctly identified synsets. For each sound
we count the intersection of concepts correctly predicted. The Concepts per
sound shows the perfect score. The perceptual distance prediction plot indicates
the prediction accuracy using the perceptual similarity distance. The textual
distance line indicates the prediction using the textual captions and a cosine
distance and it is shown for comparison.

match for a “paper bag” turns out to be a “eating toast”. These sounds are
semantically different but perceptually similar. This situation is very common,
sound engineers take advantage of the ambiguity and use “coconut half-shells”
to create the sound of a “horse’s hoof-beats” (L.Mott 1990). This ambiguity is
a disadvantage when designing and assessing perceptual similarity distances.
Another experiment is the prediction of synsets, that is, how well a particular

concept, say “cat miaow”, will retrieve “miaow” sounds. The methodology is
as follows. For each synset, we retrieve the sounds that have been labeled
with that particular synset. For each sound its nearest-neighbor is calculated.
We finally compute how many best-matching sounds are also labeled with that
synset. From the total of 3028 synsets we restricted the experiment to the
ones that had been attached to 10 or more sounds. This leaves us with 1645
synsets. Figure 4 displays the results. The top figure displays how often a synset
retrieved sounds whose best-matches were also labeled with that synset. The
bottom figure, on the other hand, shows the precision on the best 20 retrieved
sounds. The ordering of synsets on the x-axis corresponds to their frequency
rank as displayed in Figure 2. It is interesting to see that there is not a strong
correlation between the synset frequency and the precision. On a random guess
one would expect some synsets predicted much better only because they are
very frequent.
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AF AS BF BT BA BC CE DB EC FL HO OB PI SS TT

AF 7 0 3 0 0 0 0 0 0 1 0 0 0 0 0
AS 0 18 0 0 0 1 0 0 0 0 0 0 0 0 0
BF 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0
BT 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1
BA 0 0 0 0 14 0 0 0 0 0 0 0 0 1 0
BC 0 0 0 1 0 10 1 1 0 0 0 1 0 0 0
CE 0 1 0 0 0 1 74 3 0 0 0 0 0 0 0
DB 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0
EC 0 1 1 0 0 2 0 0 5 1 0 1 0 2 1
FL 1 2 0 3 0 1 0 0 0 11 0 4 0 0 0
HO 0 0 0 0 2 0 0 0 0 0 10 0 0 0 0
OB 0 1 0 0 0 0 2 0 0 0 1 7 0 0 1
PI 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0
SS 0 0 0 0 0 1 0 0 0 0 0 0 0 24 0
TT 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7

Table 3: Harmonic instruments confusion matrix where AF:AltoFlute,
AS:AltoSax, BF:BassFlute, BT:BassTrombone, BA:Bassoon, BC:BbClarinet,
CE:Cello, DB:DoubleBass, EC:EbClarinet, FL:Flute, HO:Horn, OB:Oboe,
PI:Piano, SS:SopranoSax, TT:TenorTrombone.

In a second experiment we tested the general approach in reduced domain
classification regime mode: percussive instruments, harmonic instruments and
we achieve acceptable performances. The assumption is that there is a paral-
lelism between semantic and perceptual taxonomies in musical instruments. The
psychoacoustic studies of (Lakatos 2000) revealed groupings based on the sim-
ilarities in the physical structure of instruments. We have therefore evaluated
the similarity with classification on the musical instruments space, a subspace
of the universe of sounds.
Table 3 depicts the confusion matrix of a 15 class harmonic instrument

classification which corresponds with a 77.3% (261 audio files). In the 6 class
percussive instrument classification an 85% Recognition (955 audio files) using
10 fold validation (see Table 1).
The last experiment is the robustness of the NN classification framework

to audio distortions. The harmonic instruments samples of the experiments
of Table 3 have been transcoded and resampled into WAV PCM format and
Ogg format2. The results are depicted in Table 4. The percentages indicate
the classification accuracy using different audio qualities. The columns are the
audio qualities used as reference. The rows indicate the audio qualities used in
the queries.

8 DISCUSSION

A major issue when building sound classification systems is the need of a taxon-
omy that organizes concepts and terms unambiguously. If the task is classifying
any possible sound, the taxonomy design becomes a daunting task. We need
a taxonomy or classification scheme that encodes the common sense knowledge

2http://www.vorbis.com
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Figure 4: Synset precision using the 1-NN perceptual distance. The X axis
corresponds to the synsets ordered by its frequency rank. The graph at the top
shows the precision on the 1-NN. The bottom graph displays the precision on
the 20 best retrieved sounds. The plots have been smoothed with an average
filter. The dotted line of the bottom graph reproduces the precision on the
1-NN of the top graph.

of the world. WordNet can be be used as a starting taxonomy. Normally, in
identification a classifier is build to identify certain concepts: “cars” , “laughs”,
“piano”. Sound samples are gathered and are tagged with those concepts and
a classifier is trained to learn that concept. The number of concepts and its
possible combinations in the real world makes this approach unfeasible, one
would need to train tens of thousands of classifiers and new ones would have to
be trained for new concepts. We have presented an alternative approach that
uses an unambiguously labelled big audio database. The classifier uses nearest-
neighbor rule and a database of sounds with WordNet as taxonomy backbone.
As a results the list of possible sources is presented to the user: this sound could
be a “paper bag” or “toast”+“eating”. Information from text or images can be
used to disambiguate the possibilities.
We acknowledge that the use a single set of features and a single distance

for all possible sound classes is rather primitive. However, as Figure 4 indicates,
there is room for improvement. The NN rule can be combined with other clas-
sifiers: If the system returns that a particular sound could be a violin pizzicato
or a guitar, we can then retrieve pizzicato violin and guitar sounds of the same
pitch and train a classifier to decide which is more likely. Another example is
“car approaches”, we can look for other “cars” and other “motor vehicle” “ap-
proaches” or “departs” to decide which is the right action. This same thinking
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Wav 44kHz Ogg 44kHz Ogg 11kHz

Wav 44kHz 91.5% 92.0% 75.0%
Wav 22kHz 86.4% 85.6% 82.0%
Wav 11kHz 71.8% 73.1% 89.3%
Ogg 44kHz 90.3% 91.5% 76.0%
Ogg 11kHz 74.0% 74.8% 91.5%

Table 4: Retrieval consistency on different distortions on the harmonic instru-
ments classification. The columns indicate the reference audio quality and the
rows the performance with the different distortions. Wav: PCM Microsoft WAV
format, Ogg: Ogg Vorbis encoding, #kHz: Sampling rate

applies to adjective type of modifiers, something can be described as “loud”,
“bright” or “fast”. The concept “fast” means something different if we talk of
“footseps” or “typing”.
The system can be publicy accessed and tested through a web interface which

allows users to upload sounds at http://www.audioclas.org.
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10 Appendix

10.1 Spectro-temporal descriptors

Spectral Flatness is the ratio between the geometrical mean and the arithmetical
mean of the spectrum magnitude.

SFM = 10. log
(
∏N/2

k=1
Sp(e

j 2πk
N ))

1

N/2

1

N/2

∑N/2

k=1
Sp(ej 2πk

N )

where Sp(e
j 2πk
N ) is the spectral power density calculated on the basis of an

N-poing Fast Fourier Transform.
Spectral Centroid is a concept adapted from psychoacoustics and music cog-

nition. It measures the average frequency, weighted by amplitude, of a spectrum.
The standard formula for the (average) spectral centroid of a sound is:

c =

∑

j cj

J

where cj is the centroid for one spectral frame, and J is the number of
frames for the sound. The (individual) centroid of a spectral frame is defined
as the average frequency weighted by amplitudes, divided by the sum of the
amplitudes.

cj =

∑

fjaj
∑

aj

Strong Peak intends to reveal whether the spectrum presents a very pro-
nounced peak.

Spectral Kurtosis is the spectrum 4th order central moment and measures
whether the data are peaked or flat relative to a normal (gaussian) distribution.

kurtosis =

∑N
i=1
(Yi − Y )4

(N − 1)s4

where Y is the sample mean, s is the sample standard deviation and N is the
number of observations.

Zero-Crossing Rate (ZCR), is defined as the number of time-domain zero-
crossings within a defined region of signal, divided by the number of samples of
that region.

Spectrum Zero-Crossing Rate (SCR) gives an idea of the spectral density of
peaks by computing ZCR at a frame level over the spectrum whose mean has
previously been subtracted.

Skewness is the 3rd order central moment, it gives indication about the
shape of the spectrum in the sense that asymmetrical spectra tend to have large
Skewness values.

skewness =

∑N
i=1
(Yi − Y )3

(N − 1)s3

where Y is the mean, s is the standard deviation, and N is the number of data
points.
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10.2 Bark-band energy

Bark-band energy are the energies after dividing the spectrum into the 24 Bark
bands of frequencies depicted by Table 5. These bands are perception-related
and have been chosen to enable systematic, instead of database-dependant, di-
vision of the spectrum. In order to cope with some low-frequency information
that was found to be discriminative in a previous work (Herrera et al. 2002),
the two lowest Bark bands have been splitted into two halves.

10.3 Mel-Frequency Cepstrum Coefficients

Mel-Frequency Cepstrum Coefficients (MFCCs) are widely used in speech recog-
nition applications. They have been proved useful in music applications as
well (Logan 2000). They are calculated as follows:

1. Divide signal into frames.

2. For each frame, obtain the amplitude spectrum.

3. Take the logarithm.

4. Convert to Mel spectrum.

5. Take the discrete cosine transform (DCT).

Step 4 calculates the log amplitude spectrum on the so-called Mel scale. The
Mel transformation is based on human perception experiments. Step 5 takes the
DCT of the Mel spectra. For speech, this approximates principal components
analysis (PCA) which decorrelates the components of the feature vectors. Lo-
gan (Logan 2000) proved that this decorrelation applies to music signals as well.
As they can be used as a compact representation of the spectral envelope, their
variance was also recorded in order to keep some time-varying information. 13
MFCCs are computed frame by frame, and their means and variances are used
as descriptors.
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Chroma Binary Similarity and Local Alignment
Applied to Cover Song Identification

Joan Serrà*, Emilia Gómez, Perfecto Herrera and Xavier Serra

Abstract—We present a new technique for audio signal com-
parison based on tonal subsequence alignment and its application
to detect cover versions (i.e., different performances of the
same underlying musical piece). Cover song identification is a
task whose popularity has increased in the Music Information
Retrieval (MIR) community along in the past, as it provides a
direct and objective way to evaluate music similarity algorithms.
This article first presents a series of experiments carried out
with two state-of-the-art methods for cover song identification.
We have studied several components of these (such as chroma
resolution and similarity, transposition, beat tracking or Dynamic
Time Warping constraints), in order to discover which character-
istics would be desirable for a competitive cover song identifier.
After analyzing many cross-validated results, the importance
of these characteristics is discussed, and the best-performing
ones are finally applied to the newly proposed method. Multiple
evaluations of this one confirm a large increase in identification
accuracy when comparing it with alternative state-of-the-art
approaches.

Index Terms—Music, Information retrieval, Acoustic signal
analysis, Multidimensional sequences, Dynamic programming.

I. I NTRODUCTION

I N THE present times, any music listener may have thou-
sands of songs stored in a hard disk or in a portable

MP3 player. Furthermore, on-line digital music stores own
large music collections, ranging from thousands to millions
of tracks. Additionally, the ‘unit’ of music transactions has
changed from the entire album to the song. Thus, users or
stores are faced to search through vast music databases at the
song level. In this context, finding a musical piece that fits
one’s needs or expectancies may be problematic. Therefore,
it becomes necessary to organize them according to some
sense of similarity. It is at this point where determining if two
musical pieces share the same melodic or tonal progression
becomes interesting and useful. To address this issue, from
a research perspective, a good starting point seems to be the
identification of cover songs (or versions), where the relation-
ship between them can be qualitatively defined, objectively
measured, and is context-independent. In addition, from the
users perspective, finding all versions of a particular song can
be valuable and fun.

It is important to mention that the concept of music simi-
larity, and more concretely, finding cover songs in a database,
has a direct implication to musical rights management and
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licenses. Also, learning about music itself, discovering the
musical essence of a song, and other many topics related
with music perception and cognition are partially pursued
by this research. Furthermore, the techniques presented here
can be exploited for general audio signal comparison, where
cover/version identification is just an application among other
possible ones.

The expressionscover songandversionmay have different
and somehow fuzzy connotations. Aversion is intended to
be what every performer does by playing precomposed music,
while the termcover songcomes from a very different tradition
in pop music, where a piece is composed for a single performer
or group. Cover songs were, originally, part of a strategy
to introduce ‘hits’ that had achieved significant commercial
success from other sections of the record-buying public, with-
out remunerating any money to the original artist or label.
Nowadays, the term has nearly lost these purely economical
connotations. Musicians can play covers as a homage or a
tribute to the original performer, composer or band. Some-
times, new versions are made for translating songs to other
languages, for adapting them to a particular country/region
tastes, for contemporising familiar or very old songs, or for
introducing new artists. In addition, cover songs represent the
opportunity to perform a radically different interpretation of a
musical piece.

Today, and perhaps not being the proper way to name it, a
cover song can mean any new version, performance, rendition
or recording of a previously recorded track [1]. Therefore,
we can find several musical dimensions that might change
between two covers of the same song. These can be related
to timbre (different instruments, configurations or recording
procedures), tempo (global tempo and tempo fluctuations),
rhythm (e.g., different drum section, meter, swinging pattern or
syncopation), song structure (eliminating introductions, adding
solo sections, choruses, codas, etc.), main key (transposition
to another tonality), harmonization (adding or deleting chords,
substituting them by related ones, adding tensions, ...) and
lyrics (e.g., different languages or words).

A robust mid-level characteristic that is largely preserved
under the mentioned musical variations is a tonal sequence
(or a harmonic progression [2]). Tonality is ubiquitous and
most listeners, either musically trained or not, can identify the
most stable pitch while listening to tonal music. Furthermore,
this process is continuous and remains active throughout the
sequential listening experience [3], [4]. From the point of view
of the Music Information Retrieval (MIR) field, clear insights
about the importance of temporal and tonal features in a music
similarity task have been evidenced [5], [6], [7].

Tonal sequences can be understood as series of different
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note combinations played sequentially. These notes can be
unique for each time slot (a melody) or can be played jointly
with others (chord or harmonic progressions). Systems for
cover song identification usually exploit these aspects and
attempt to be robust against changes in other musical facets. In
general, they either try to extract the predominant melody [8],
[9], a chord progression [10], [11], or a chroma sequence [12],
[13], [14], [15], [16]. Some methods do not take into account
(at least explicitly) key transposition between songs [13],
[14], but the usual strategy is to normalize these descriptor
sequences in respect to the key. This is usually done by
means of a key profile extraction algorithm [9], [10], [15],
or by considering all possible musical transpositions [12], [8],
[11], [16]. Then, for obtaining a similarity measure, descriptor
sequences are usually compared by means of Dynamic Time
Warping (DTW) [8], [10], [15], an edit-distance variant [7],
[11], string matching [12], Locality Sensitive Hashing (LSH)
[14], or a simple correlation function or a cosine angle [9],
[13], [16]. In addition, a beat tracking method might be used
[9], [12], [16], or a song summarization or chorus extraction
technique might be considered [9], [15].

Techniques for predominant melody extraction have been
extensively researched in the MIR community [17], [18], [19],
as well as key/chord identification engines [20], [21]. Also,
chroma-based features have become very popular [22], [23],
[24], [25], with applications in various domains such as pattern
discovery [26], audio thumbnailing and chorus detection [27],
[28], or audio alignment [5], [29].

Regarding alignment procedures and sequence similarity
measures, DTW [30] is a well known technique used in speech
recognition for aligning two sequences which may vary in
time or speed and for measuring similarity between them.
Also, several edit-distance variants [31] are widely used in
very different disciplines such as text retrieval, DNA or protein
sequence alignment [32], or MIR itself [33], [34]. If we use
audio shingles (i.e., high-dimensional feature vectors concate-
nations) to represent different portions of a song sequence,
LSH solves fast approximate nearest neighbor search in high
dimensions [35].

One of the main goals of this article is to present a study
of several factors involved in the computation of alignments
of musical pieces and similarity of (cover) songs. To do
this, the impact of a set of factors in state-of-the-art cover
song identification systems is measured. We experiment with
different resolution of chroma features, with different local
cost functions (or distances) between chroma features, with
the effect of using different musical transposition methods, and
with the use of a beat tracking algorithm to obtain a tempo-
independent chroma sequence representation. In addition, as
DTW is a well known and extensively employed technique,
we test two underexplored variants of it: DTW with global
and local constraints. All these experiments are oriented to
elucidate the characteristics that a competitive cover song iden-
tification system should have. We then apply this knowledge
to a newly proposed method, which uses sequences of feature
vectors describing tonality (in our case Harmonic Pitch Class
Profiles [25], from now on HPCP), but it presents relevant
differences in two important aspects: we use a novel binary

similarity function between chroma features, and we develop
a new local alignment algorithm for assessing resemblance
between sequences.

The rest of the paper is organized as follows. First, in section
II, we explain our test framework. We describe the methods
used to evaluate several relevant parameters of a cover song
identification system (chroma resolution and similarity, key
transposition, beat tracking and DTW constraints), and the
descriptors employed across all these experiments. We also
introduce the database and the evaluation measures that are
employed along this study. Then, in section III, we sequentially
present all the evaluated parameters and the obtained results.
In section IV, we propose a new method for assessing the sim-
ilarity between cover songs. This is based on the conclusions
obtained through our experiments (summarized in section
III-F) and on two main aspects: a new chroma similarity
measure and a novel dynamic programming local alignment
algorithm. Finally, a short conclusions section closes the study.

II. EXPERIMENTAL FRAMEWORK

A. Tonality descriptors

All the implemented methods use the same feature set:
sequences ofHarmonic Pitch Class Profiles(HPCP) [25].
The HPCP is an enhanced pitch class distribution (or chroma)
feature, computed in a frame-by-frame basis only using the
local maxima of the spectrum within a certain frequency
band. Chroma features are widely used in the literature and
proven to work quite well for the task at hand [13], [15],
[16]. In general, chroma features should be robust to noise
(e.g., ambient noise or percussive sounds), independent of
timbre and played instruments (so that the same piece played
with different instruments has the same tonal description), and
independent of loudness and dynamics. These are some of the
qualities that might make them lead to better results for cover
song identification when comparing them, for instance, with
MFCCs [7], [14].

In addition to using the local maxima of the spectrum within
a certain frequency band, HPCPs are tuning independent
(so that the reference frequency can be different from the
standard A 440 Hz), and consider the presence of harmonic
frequencies. The result of HPCP computation is a 12, 24 or 36-
bin (depending on the desired resolution) octave-independent
histogram representing the relative intensity of each 1, 1/2
or 1/3 of the 12 semitones of the equal tempered scale. A
schema of the extraction process and a plot of the resulting
HPCP sequence are shown in figures 1 and 2.

We start by cutting the song into short overlapping and
windowed frames. For that, we use a Blackman-Harris (62 dB)
window of 93 ms length with a 50% frame overlapping. We
perform a spectral analysis using the Discrete Fourier Trans-
form (DFT), and the spectrum is whitened by normalizing the
amplitude values with respect to the spectral envelop. From the
obtained spectrum, we compute a set of local maxima or peaks
and we select the ones with frequency valuesfiǫ(40, 5000)
Hz. The selected spectral peaks are summarized in an octave-
independent histogram according to a reference frequency
(around 440 Hz). This reference frequency is estimated by
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Fig. 1. General HPCP feature extraction block diagram. Audio (top) is
converted to a sequence of HPCP vectors (bottom) that evolves with time.

Fig. 2. Example of a high-resolution HPCP sequence (bottom panel)
corresponding to an excerpt of the song “Imagine” by John Lennon (top
panel). In the HPCP sequence, time (in frames) is represented in the horizontal
axis and chroma bins are plotted in the vertical axis.

analyzing the deviations of the spectral peaks with respect to
an equal-tempered chromatic scale. A global estimate of this
reference frequency is employed for all the analyzed frames.

Instead of contributing to a single HPCP bin, each peak
frequencyfi contributes to the HPCP bin(s) that are contained
in a certain window around its frequency value. The peak
contribution i is weighted using acos2 function around the
bin frequency. The length of the weighting windowl have
been empirically set to4

3
semitones. This weighting procedure

minimizes the estimation errors that we find when there are
tuning differences and inharmonicity present in the spectrum,
which could induce errors when mapping frequency values
into HPCP bins.

In addition, in order to make harmonics contribute to the
pitch class of its fundamental frequency, we also introduce
an additional weighting procedure: each peak frequencyfi

has a contribution to itsnHarmonics = 8 sub-harmonics.
We make this contribution decrease along frequency using an

exponential function.
The HPCP extraction procedure employed here is the same

that has been used in [15], [36], [37], [25], and the parameters
mentioned in this paragraph have been proven to work well
for key estimation and chord extraction in the previously cited
references.

An exhaustive comparison between ‘standard’ chroma fea-
tures and HPCPs is presented in [25] and [38]. In [25], a
comparison of different implementations of chroma features
(Constant-Q profiles [39], Pitch Class Profiles (PCP) [20],
chromagrams [21] and HPCP) with MIDI-based Muse Data
[40] is provided. The correlation of HPCP with Muse Data
was higher than 0.9 for all the analyzed pieces (48 Fugues
of Bach’s WTC) and HPCPs outperformed the Constant-Q
profiles, chromagrams and PCPs. We also compared the use
of different HPCP parameters, arriving to optimal results with
the ones used in the present work. In [38], the efficiency of
different sets of tonal descriptors for music structural discovery
was studied. Herein, the use of three different pitch-class
distribution features (i.e., Constant-Q Profile, PCP and HPCP)
was explored to perform structural analysis of a piece of music
audio. A database of 56 audio files (songs by The Beatles)
was used for evaluation. The experimental results showed that
HPCP were performing best, yielding an average of 82% of
accuracy in identifying structural boundaries in music audio
signals.

B. Studied methods

We now describe two methods that have served us to test
several important parameters of a cover song identification
system, as a baseline for further improvements [16], [25]. We
have chosen them because they represent in many ways the
state-of-the-art. Their main features are the use of global align-
ment techniques and common feature dissimilarity measures.
In subsequent sections, we differentiate these two methods by
its alignment procedure (cross-correlation or Dynamic Time
Warping), but other procedures are characteristic for each one
(such as audio features, dissimilarity measure between feature
vectors, etc.).

1) Cross-correlation approach:A quite straightforward ap-
proach is presented in [16]. This method finds cover versions
by cross-correlating chroma vector sequences (representing the
whole song) averaged beat-by-beat. It seems to be a good
starting point since it was found to be superior to other
methods presented to MIREX 2006 evaluation contest1. We
worked with a similar version of the forementioned system.
We re-implemented the algorithm proposed by the authors2 in
order to consider the same chroma features for all the methods
(HPCPs) and to ease the introduction of new functionalities
and improvements. We now describe the followed steps.

First of all, HPCP features are computed. Each frame vector
is normalized by dividing it by its maximum amplitude, as
shown in figure 1. In addition, beat timestamps are computed

1See the complete results at http://www.music-ir.org/mirex/2006/index.php/
Audio Cover Song (Accessed 28 Jan. 2008)

2http://labrosa.ee.columbia.edu/projects/coversongs (Accessed 28 Jan.
2008)
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with an algorithm adapted from [41], [42] using theaubio
library3.

The next step is to average the frame-based HPCP vectors
contained in between each two beat timestamps. With this,
we obtain a tempo-independent HPCP sequence. In order to
account for key changes, the two compared HPCP sequences
are usually transposed to the same key by means of a key
extraction algorithm or an alternative approach (see section
III-C). Another option is the one proposed in [16], where
the sequence similarity measure is computed for all possible
transpositions and the maximum value is then chosen.

In this approach, sequence similarity is obtained through
cross-correlation. That is, we calculate a simple cross-
correlation between each two tempo-independent HPCP se-
quences for each song being compared (with possibly different
lengths). The cross-correlation values are further normalized
by the length of the shorter segment, so that the measure is
bounded between zero and one. Note that a local distance
measure between HPCPs must be used. The most usual thing
is to use an euclidean-based distance, but other measures can
be tried (see section III-B).

In [16], the authors found that genuine matches were
indicated not only by cross-correlations of large magnitudes,
but that these large values occurred in narrow local maxima
in the cross correlations that fell off rapidly as the relative
alignment changed from its best value. So, to maximize these
local maxima, cross-correlation was high-pass filtered. Finally,
the final measure representing the dissimilarity between two
songs is obtained with the reciprocal of the maximum peak
value of this high-pass filtered cross-correlation.

2) Dynamic Time Warping approach:Another approach
for detecting cover songs was implemented, reflecting the
most used alignment technique in the literature: Dynamic
Time Warping (DTW). The followed method has a very high
resemblance with the one presented in [25].

We proceed by extracting HPCP features in the same way
as the previous approach (section II-B1). Here, we do not
use any beat tracking method because DTW is specially
designed for dealing with tempo variations (see section III-D).
For speeding up calculations, a usual strategy is to average
eachk consecutive descriptors vectors (frames). We call this
value (k) the averaging factor. Here, each HPCP feature
vector is also normalized by its maximum value. We deal
with key invariance just in the same way than the previous
approach (section II-B1) and transpose the HPCP sequences
representing the two songs’ tonal progressions to a common
key.

To align these two sequences (which can have different
lengthsn andm), we use the DTW algorithm [30]. It basically
operates by recursively computing ann × m cumulative
distance matrix by using the value of a local cost function.
This local cost function is usually set to be any euclidean-
based distance, though in [15], [25] the correlation between the
two HPCP vectors is used to define the dissimilarity measure
(see section III-B). With DTW, we obtain the total alignment
cost between two HPCP sequences in matrix element(n, m).

3http://aubio.org (Accessed 28 Jan. 2008)

We can also obtain an alignment path whose length acts as a
normalization factor.

C. Evaluation methodology

To test the effectiveness of the implemented systems un-
der different parameter configurations, we compiled a music
collection comprising 2053 commercial songs distributed in
different musical genres. Within these songs, there were 451
original pieces (we call themcanonical versions) and 1462
covers. Songs were obtained from personal music collections.
The average number of covers per song was 4.24, ranging
from 2 (the original song plus 1 cover) to 20 (the original
song plus 19 covers). There were also 140 ‘confusing songs’
from the same genres and artists as the original ones that were
not associated to any cover group. A special emphasis was put
in the variety of styles and the employed genres for each cover
set. A complete list of the music collection can be found in
our web page4.

Due to the high computational cost of the implemented
cover song identification algorithms, we have restricted the
music collection for preliminary experiments. We simulta-
neously employed two non-overlapping smaller subsets of
the whole song database, intended to be as representative as
possible of the entire corpus. We provide some statistics in
table I.

TABLE I
SONG COMPILATIONS USED. DB75, DB330AND DB2053CORRESPOND

TO THE NAMES WE GIVE TO THE DIFFERENT DATABASES. ‘⋆’ DENOTES

AVERAGE NUMBER OF COVERS PER GROUP. IN DB75 AND DB330THERE

WERE NO ‘ CONFUSING SONGS’

DB75 DB330 DB2053
Total number of songs 75 330 2053
Number of cover sets 15 30 451
Covers per set 5 11 4.24⋆

We queried all the covers and canonical versions and
obtained a distance matrix whose dimensions depended on
the number of songs. This data was further processed in order
to obtain several evaluation measures. Here, we mainly show
the results corresponding to standard F-measure and average
Recall (Rx) [43]. This last measure was computed as the mean
percentage of identified covers within the firstx answers. All
experiments were evaluated with these measures, and, most of
the time, other alternative metrics were highly correlated with
the previous ones. A qualitative assessment of valid evaluation
measures for this cover song system was presented in [44].

III. E XPERIMENTS

The next subsections describe the tests carried out to evalu-
ate the impact of several system parameters and procedures in
both methods explained in section II-B. Our hypothesis was
that these had a strong influence in final identification accuracy
and shouldn’t be blindly assigned. To our knowledge, this is
one of the first systematic study of this kind that has been
made until now (with, perhaps, the exception of [11], where
the author evaluated the influence of key shifting, cost gap

4http://mtg.upf.edu/∼jserra/files/coverdatabase.csv.tar.gz
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insertions and character swaps in a string alignment method
used for cover song identification, in addition to the use of a
beat-synchronous set).

In our experiments, we aimed at measuring, on a state-
of-the-art cover song identification system, the impact of the
following factors [45]: (a) the resolution of the chroma fea-
tures, (b) the local cost function (or distance) between chroma
features, (c) the effect of using different key transposition
methods, and (d) the use of a beat tracking algorithm to
obtain a tempo-independent chroma sequence representation.
In addition, as DTW is a well known and extensively em-
ployed technique, we wanted to (e) test two underexplored
variants of it: DTW with global and local constraints. A wrap-
up discussion on these factors is provided in section III-F.
Finally, we want to highlight that through all experiments
reported in this section, all combinations of parameters cited in
each subsection were studied. We report average performance
results for each subsection given that all parameter combina-
tions resulted in similar behaviours. Different behaviours are
properly highlighted through the text, if any.

A. Effect of chroma resolution

Usually, chroma features are represented in a 12-bin his-
togram, each bin corresponding to 1 of the 12 semitones
of the equal-tempered scale. But higher resolutions can be
used to get a finer pitch class representation. Other commonly
used resolutions are 24 and 36 bins [25] (corresponding to
1/2 or 1/3 of a semitone). We tested these three values in
our experiments. The resolution parameter was changed in
the HPCP extraction method of the approaches explained in
section II-B.

The average identification accuracy across experiments with
two different chroma similarity measures (section III-B) and
two key transposition methods (section III-C) are shown in
table II. In all the experiments, and independently of the HPCP
distance used and the transposition made, the greater the HPCP
resolution, the better the accuracy we got (F-measure more
than 12% better).

TABLE II
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENTHPCPRESOLUTIONS. AVERAGE OF DIFFERENT

CROSS-CORRELATION APPROACH VARIANTS EVALUATED WITHDB75

Resolution F-measure R4
12 bins 0.495 0.429
24 bins 0.511 0.435
36 bins 0.558 0.489

B. Effect of chroma similarity measures

In order to test the importance of the used HPCP distance
measure, we evaluated two similarity measures: cosine simi-
larity and the correlation between feature vectors. These two
measures were chosen because they are commonly used in
the literature. Correlation has been used in [15], [25], and
is inspired on the cognitive aspects of pitch processing in
humans [46]. Furthermore, for key extraction, it was found to

work better than the simple euclidean distance between HPCP
vectors [25].

Tests were made with the methods exposed in section II-B
and the two measures cited above. The results are shown
in table III. We observe that the employed HPCP distance
plays a very important role. This aspect of the system can
yield to more than a 13% accuracy improvement for some
tests [45]. In all trials made with different resolutions and
ways of transposing songs, correlation between HPCPs was
found to be a better similarity measure than cosine distance5.
The former gives a mean F-measure improvement, among the
tested variants, of approximately 6%.

TABLE III
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR COSINE DISTANCE(dCOS ) AND CORRELATION DISTANCE
(dCORR). AVERAGE OF DIFFERENT CROSS-CORRELATION APPROACH

VARIANTS EVALUATED WITH DB75

Distance used F-measure R4
dCOS 0.504 0.436

dCORR 0.537 0.461

C. Effect of key transposition

In order to account for songs played in a different key
than the original one, we calculated a global HPCP vector
and we transposed (circularly-shifted) one HPCP sequence to
the other’s tonality. This procedure was introduced in both
methods described in section II-B. A global HPCP vector was
computed by averaging all HPCPs in a sequence, and it was
normalized by its maximum value as all HPCPs. With the
global HPCPs of two songs (

−→
hA and

−→
hB), we computed what

we call theOptimal Transposition Index(from now on OTI),
which represents the number of bins that an HPCP needs to be
circularly shifted to have maximal resemblance to the other:

OTI(
−→
hA,

−→
hB) = argmax

0≤id≤NH−1

{
−→
hA · circshiftR(

−→
hB, id)} (1)

where ‘·’ indicates a dot product,NH is the HPCP size
considered, andcircshiftR(

−→
h , id) is a function that rotates

a vector (
−→
h ) id positions to the right. A circular shift of one

position is a permutation of the entries in a vector where
the last component becomes the first one and all the other
components are shifted. Then, to transpose one song, for each
HPCP vectori in the whole sequence we compute:

−−→
hTr

A,i = circshiftR(
−−→
hA,i, OT I) (2)

where superscriptTr denotes musical HPCP transposition.
In order to evaluate the goodness of this new procedure for

transposing both songs to a common key, an alternative way
of computing a transposed HPCP sequence was introduced.
This consisted on calculating the main tonality for each piece
using a key estimation algorithm [25]. This algorithm is a
state-of-the-art approach with an accuracy of 75% for real

5http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
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audio pieces [36], and scored among the first classified algo-
rithms in the MIREX 2005 contest6 with an accuracy of 86%
with synthesized MIDI files. With this alternative procedure,
once the main tonality was estimated, the whole song was
transposed according to this estimated key. A possibly better
way of dealing with key changes would be to calculate the
similarity measures for all possible transpositions and then
take the maximum [16]. We have not tested this procedure
since for high HPCP resolutions it becomes computationally
expensive.

OTI and key transposition methods were compared across
several HPCP resolutions (section III-A) and two different
HPCP distance measures (section III-B). The averaged identifi-
cation accuracy is shown in table IV. It can be clearly seen that
a key estimation algorithm has a detrimental effect to overall
results (F-measure 17% worse). This was also independent
of the number of bins and the HPCP distance used7. We
have evaluated dependence of the number of HPCP bins, and
HPCP distance, and we have found that they had similar
behavior. Therefore, it seems appropriate to transpose the
songs according to theOTI of the global HPCP vectors. Apart
from testing the appropriateness of our transposition method,
we were also pursuing the impact that different transposition
methods could have, which we see is quite important in table
IV.

TABLE IV
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FORGLOBAL HPCP + OTITRANSPOSITION METHOD AND BY

USING A KEY ESTIMATION ALGORITHM . AVERAGE OF DIFFERENT
CROSS-CORRELATION APPROACH VARIANTS EVALUATED WITHDB75

Method F-measure R4
GlobalHPCP + OTI 0.569 0.500

Key finding algorithm 0.474 0.400

D. Effect of beat tracking and averaging factors

In the cross-correlation approach (section II-B1), HPCP
vectors were averaged beat-by-beat. With the DTW approach
of section II-B2, we expected DTW being able to cope with
tempo variations. To demonstrate this, we performed some
tests with DTW. In these, severalaveraging factorswere also
tried.

Experiments were done with 5 different DTW algorithms
(see section III-E). In these and subsequent experiments
HPCP resolution was set to 36, correlation was used to
assess the similarity between HPCP vectors and we employed
OTI-based transposition. Results shown in table V are the
average identification accuracy values obtained across these
different implementations. We have to note that taking the
arithmetic mean of the respective evaluation measures masks
the concrete behaviour of them along different averaging
factors (information regarding the effect of different averaging
factors upon considered constraints can be found in subsequent
section III-E). Nevertheless, for all the tested variants, better

6http://www.music-ir.org/mirex/2005/index.php/
Audio and Symbolic Key Finding (Accessed 29 Jan. 2008)

7http://mtg.upf.edu/∼jserra/chromabinsimappendix.html

accuracies were reached with averaging HPCPs in a frame
basis, than using beat-by-beat averaging. A similar result using
the Needleman-Wunsch-Sellers algorithm [47] reported in [11]
supports our findings.

TABLE V
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENTaveraging factors(INCLUDING BEAT AVERAGING).
CORRESPONDING TIME FACTOR IS EXPRESSED IN THE SECOND COLUMN.
AVERAGE OF DIFFERENTDTW APPROACH VARIANTS EVALUATED WITH

DB75

Averaging factor Averaging length F-measure R4
(frame count) (seconds)

Beat variable 0.469 0.417
5 0.232 0.470 0.419
10 0.464 0.494 0.448
15 0.696 0.511 0.465
20 0.929 0.514 0.463
25 1.161 0.512 0.466
30 1.393 0.510 0.461
40 1.856 0.487 0.434

E. Effect of DTW global and local constraints

We can apply different constraints to a DTW algorithm in
order to decrease the number of paths considered during the
matching process. These constraints are desirable for two main
purposes: to reduce computational costs and to prevent ‘patho-
logical’ warpings. ‘Pathological’ warpings are considered the
ones that, in an alignment, assign several multiple values of
a sequence to just one value of the other sequence. This is
easily seen as a straight line in the DTW matrix (an example
is shown in the first plot of figure 3).

To test the effect of these constraints we implemented 5
variants of a DTW algorithm: the one mentioned in section
II-B2, two globally constrained DTW algorithms, and two
locally constrained ones:

• Simple DTW: This implementation corresponds to the
standard definition of DTW, where no constraints are
applied [30].

• Globally constrained DTW: Two implementations were
tried. One corresponds to Sakoe-Chiba constraints [48]
and the other one to the Itakura parallelogram [49]. With
these global constraints, elements far from the diagonal
of then×m DTW matrix are not considered (see figure
4). A commonly used value for that in many speech
recognition tasks is 20% [30].

• Locally constrained DTW: To further specify the optimal
path, some local constraints can be applied in order
to guarantee that excessive time scale compression or
expansion is avoided. We specified two local constraints
that were found to work in a plausible way with speech
recognition [50]. From this reference,Type 1andType 2
constraints were chosen (we denote themMyersT1and
MyersT2respectively). For both, the recursive relation of
DTW is changed in such a way that in element(i, j) of a
DTW cumulative distance matrix, we only pay attention
to warpings(i−1, j−1) (no tempo deviation),(i−2, j−1)
(2x tempo deviation) and(i − 1, j − 2) (0.5x tempo
deviation). So, we allow maximal deviations of the double
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or half the tempo. This seems reasonable for us since, for
instance, if the original song is at 120 B.P.M., a cover
may not be at less than 60 B.P.M. or more than 240
B.P.M. The difference betweenMyersT1 and MyersT2
constraints relies in the way we weight this warpings:
considering intermediate distances for the former, and
double-weighting the distance between elementsi and
j for the latter [50].

These three implementations were evaluated across different
averaging factors (see section III-D) and the means of the F-
measure and average recall within the 4 first answered items
(R4) were taken. Results can be seen in table VI. In general,
better accuracies are achieved with local constraints, whereas
global constraints yielded the worst results.

TABLE VI
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENTDTW ALGORITHMS IMPLEMENTING GLOBAL AND
LOCAL CONSTRAINTS. EVALUATION WAS DONE WITH DB75

Alg. name Constr. type F-measure R4
Sakoe-Chiba Global 0.321 0.283
Itakura Global 0.344 0.304
Simple DTW No constr. 0.600 0.541
MyersT2 Local 0.608 0.552
MyersT1 Local 0.624 0.570

There is one important fact about local constraints that
needs to be remarked and that can be appreciated in table
VII. In general (except for the locally constrained methods),
as the framelength decreases, it can be seen that identification
accuracy does so. This is due to the fact that lower frame-
lengths introduce the creation of ‘pathological’ warping paths
(straight lines in the DTW matrix) that do not correspond to
the true alignment (a straight line indicates several points of
one sequence aligned just to one point of the other, left picture
in figure 3). This makes the path length to increase, and since
we normalize the final result by this value to yield sequence
length independence, the final distance value decreases. Then,
false positives are introduced in the final outcomes of the
algorithm. Figure 3 shows the same part for matrices obtained
after a simple and a locally constrained DTW approach. Local
constraints prevent DTW from these undesired warpings. If
there is a single horizontal or vertical step in the warping
path, they force them to be the opposite way in next recurrent
step. This is why the accuracy of locally constrained methods
keeps increasing while lowering the averaging factor.

Fig. 3. Parts of the matrix obtained with a simple (left) and locally
constrained (MyersT1, right) DTW approach for the same two songs. On
the left we can observe some ‘pathological’ warpings, while on the right,
these have disappeared.

Also in table VII, we observe that the identification accuracy
for globally constrained methods is significantly lower than for

the other ones. This is due to the fact that, by using these global
constraints, we restrict the paths to be around the DTW matrix
main diagonal. To understand the effect of that, as an example,
we consider a song composed by two parts that are the same
(S1 = AA) and another song (a cover) with nearly half the
tempo (′) and composed by only one of these parts (S2 = A′).
The plots in figure 4 graphically explain this idea. The first one
(left) was generated using a method with no constraints. We
observe that the best path (straight diagonal red line) goes from
(1, 1) to more or less(20, 10) (horizontal axis lower-half part).
This is logical sinceS2 (vertical axis) is a half-tempo kind-of
repetition of one part ofS1 (horizontal axis). The middle plot
corresponds to the same matrix with Sakoe-Chiba constraints.
We observe that the ‘optimal’ path we could trace with the first
plot has been broken by the effect of the global constraints. A
similar situation occurs with Itakura constraints (right plot).

Fig. 4. Examples of an unconstrained DTW matrix (left), and Sakoe-Chiba
(center) and Itakura (right) global constraints forS1 (x-axis) andS2 (y-axis).
As this is an intuitive example, coordinate units in the horizontal and vertical
axes are arbitrary.

F. Discussion

In previous subsections we have studied the influence of
several aspects in two state-of-the-art methods for cover song
identification. All the analyzed features proved to have a direct
(and sometimes dramatic) impact in the final identification
accuracy. We are now able to summarize some of the key
aspects that should be considered when identifying cover
songs. These aspects have been considered as a basis to
design our approach, which will be presented in the following
sections.

1) Audio features:The different musical changes involved
in cover songs, as discussed in section I, give us clear insights
on which features to use. As chroma features have been
evidenced to work quite well for this task [13], [15], [16]
and proven to be better than timbre oriented descriptors as
MFCC [7], [14], our approaches are based on HPCPs, given
their usefulness for other tasks (e.g., key estimation) and their
correspondence to pitch class distributions (see [25], [38] for
a comparison with alternative approaches).

In section III-A, we have shown that HPCP resolution is
important with both cosine and correlation distances. We have
tested 12, 24, and 36-bin HPCPs with different variants of
the methods presented in section II-B, and the results suggest
that accuracy increases as the resolution does so. On the other
hand, increasing resolution also increases computational costs,
so that higher resolution is not considered. In addition, 36
seems to be a good resolution for key estimation [36] and
structural analysis [51].
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TABLE VII
F-MEASURE FOR DIFFERENT AVERAGING FACTORS AND CONSTRAINTS. DTW APPROACH EVALUATION WITH DB75

Alg. name Constr. type 5 10 15 20 25 30 40
Sakoe-Chiba Global 0.259 0.282 0.327 0.332 0.342 0.355 0.331
Itakura Global 0.256 0.286 0.362 0.353 0.360 0.395 0.388
Simple DTW No constr. 0.537 0.606 0.611 0.632 0.638 0.634 0.598
MyersT1 Local 0.647 0.651 0.641 0.643 0.624 0.625 0.577
MyersT2 Local 0.651 0.646 0.617 0.614 0.599 0.566 0.542

2) Similarity measure between features:In section III-B
we have stated the importance of the similarity employed to
compare chroma vectors. Furthermore, we have shown that
using a similarity measure that is well correlated with cognitive
foundations of musical pitch [46] improves substantially the
final system accuracy. When using tonality descriptors, some
papers do not specify how a local distance between these fea-
ture vectors is computed. They are supposed to assess chroma
features’ similarity as the rest of studies: with an euclidean-
based distance. Since tonality features such as chroma vectors
are proven not to be in an euclidean space [52], [53], [54],
[55], this assumption seems to be wrong. Furthermore, any
method (e.g., a classifier) using distances and concepts just
valid for an euclidean space will have the same problem. This
is an important issue that will be dealt in the proposed method
(section IV).

3) Chroma transposition:To account for main key differ-
ences, one song is transposed to the tonality of the other
one by means of computing a global HPCP for each song
(section III-C) and circularly shifting by the OTI (equation
1). This technique has been proven to be more accurate than
transposing the song to a reference key by means of a key
estimation algorithm. In this case, the use of a less-than-perfect
key extraction algorithm degrades the overall identification
accuracy. Through the testing of two transposition variants we
have pointed out the relevance this fact has in a cover song
identification system or in a tonal alignment algorithm.

4) The use of beat tracking:We have seen that the DTW
approach summarized in section II-B2 could lead to better
results without beat tracking information (tables V and VII).
Better results for DTW without beat tracking information
were also found when comparing against the cross-correlation
approach (which uses beat information). We can see this in
table IX and in figure 8 (we also provide an extra comparative
figure in a separate web page8). This is another fact that makes
us disregard the use of ‘intermediate’ processes such as key
estimation algorithms and beat tracking systems (citing the two
that have been tested here), or chord and melody extraction
engines. We feel that this can be a double-edged sword. Due
to the fact that all these methods do not have a fully reliable
performance9, they may decrease the accuracy of a system
comprising (at least) one of them. The same argument can
be applied to any audio segmentation, chorus extraction, or
summarization technique. We can also take a look at state-
of-the-art approaches. For instance, common accuracy values

8http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
9To account for accuracies of those systems you can visit, e.g., MIREX

2006 wiki page: http://www.music-ir.org/mirex/2006/index.php/MainPage
(Accessed 29 Jan. 2008)

for a chord recognition engine range from 75.5% [56] to
93.3% [57] depending on the method and the considered
music material. Also, in this last case, once the chords are
obtained, the approach to measure distances between them
is still an unsolved issue, involving both some cognitive and
musicological concepts that are not fully understood yet. So,
errors in these ‘intermediate’ processes might be added (in
case we are using more than one of them), and be propagated
to the overall system’s identification accuracy (the so called
weakest linkproblem).

5) Alignment procedure:Several tests have been presented
with chroma features DTW alignment. DTW allows us to
restrict the alignment (or ‘warping’) paths to our requirements
(section III-E). Consequently, we have tested four ‘standard’
constraints on these paths (two local and two global con-
straints). With global constraints we are not considering paths
(or alignments) that might be far from the DTW matrix main
diagonal. A problem arises when this path can represent a
‘correct’ alignment (as the example illustrated in figure 4).
We have also seen that the accuracy decreases substantially
with these constraints. As mentioned in section I, covers can
substantially alter the song structure. When this happens, the
‘correct’ alignment between two covers of the samecanonical
song may be outside of the main DTW matrix diagonal.
Therefore, the use of global constraints dramatically decreases
the system detection accuracy. These two facts reveal the
incorrectness of using a global alignment technique for cover
song identification. Regarding local constraints, we have seen
that these can help us by reducing ‘pathological’ warpings
that arise when using a smallaveraging factor(table VII).
Consequently, this allows us to use much detail in our analysis,
and, therefore, to get a better accuracy.

Many systems for cover song identification use a global
alignment technique such as DTW or entire song cross-
correlation for determining similarity (except the ones that use
a summarization, chorus extraction or segmentation technique,
which would suffer from the problem of the ‘weakest link’,
cited above). In our opinion, a system considering similarity
between song subsequences, and thus, using a local similarity
or alignment method, is the only way to cope with strong song
structural changes.

IV. PROPOSED METHOD

In this section we present a novel method for cover song
identification which tries to avoid all the weak points that
conventional methods may have and which have been analyzed
in previous section. The proposed method uses high-resolution
HPCPs (36-bin) as these have been shown to lead to better
accuracy (section III-A). To account for key transpositions, the
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OTI transposition method explained in section III-C is used in-
stead of a conventional key finding algorithm. We avoid using
any kind of ‘intermediate’ technique as key estimation, chord
extraction or beat tracking, as these might degrade the final
system identification accuracy (as discussed in section III-F).
The method does not employ global constraints, and takes
advantage of the improvement given by the local constraints
explained in section III-E. Furthermore, it presents relevant
differences in two important aspects that boost its accuracy
in a dramatic way: it uses a new binary similarity function
between chroma features (we have verified the relevance of
distance measures in section III-B), and employs a novel
local alignment method accounting for structural changes
(considering similarity between subsequences, as discussed in
section III-F).

A quite resemblant method to the one proposed here is [12].
In there, a chroma-based feature named Polyphonic Binary
Feature Vector (PBFV) is adopted, which uses spectral peaks
extraction and harmonics elimination. Then, the remaining
spectral peaks are averaged across beats and collapsed to a 12-
element binary feature vector. This results in a string vector for
each analyzed song. Finally, a fast local string search method
and a Dynamic Programming (DP) matching are evaluated.
The method proposed here also extracts a chroma feature
vector using only spectral peaks (HPCP, see section II-A), but
we do not do beat averaging, which we find has a detrimental
effect in the accuracy of DP algorithms such as Dynamic Time
Warping (DTW) (section III-D). Another important difference
to the proposed method is the similarity between vectors.
In [12], this is computed between binarized vectors, while
in the proposed method, what is binarized is the similarity
measure, not the vectors themselves (equation 3). Finally, we
also think that using an exhaustive alignment method like the
one proposed in next section IV-A is also determinant for our
final system identification accuracy.

A. System description

Figure 5 shows a general block diagram of the system. It
comprises four main sequential modules: pre-processing, sim-
ilarity matrix creation, dynamic programming local alignment
(DPLA) and post-processing.

From each pair of compared songs A and B (inputs),
we obtain a distance between them (output). Pre-processing
comprises HPCP sequence extraction and a global HPCP
averaging for each song. Then, one song is transposed to the
key of the other one by means of anOptimal Transposition
Index (OTI). From these two sequences, a binary similarity
matrix is then computed. This last is the only input needed for
a Dynamic Programming Local Alignment(DPLA) algorithm,
which calculates a score matrix that gives highest ratings to
best aligned subsequences. Finally, in the post-processing step,
we obtain a normalized distance between the two processed
songs. We now explain these steps in detail.

1) Pre-processing:For each song, we extract a sequence of
36-bin HPCP feature vectors as made before, using the same
parameters specified in section II-A. An averaging factor of
10 was used as it was found to work well in sections III-D

and III-E. As we are using local constraints for the proposed
method, it is not surprising to find a quite similar identifi-
cation accuracy curve for different values of the averaging
factor when comparing the proposed method with the locally
constrained DTW algorithms explained in section III-E. In an
electronic appendix to this article10, the interested reader can
find a figure showing the accuracy curves for the proposed
method and for DTW with local constraints [45].

A global HPCP vector is computed by averaging all HPCPs
in a sequence, and normalizing by its maximum value. With
the global HPCPs of two songs (

−→
hA and

−→
hB), we compute the

OTI index, which represents the number of bins that an HPCP
needs to circularly shift to have maximal resemblance to the
other (see equation 1 in section III-C).

The last operation of the pre-processing block consists in
transposing both musical pieces to a common key. This is
simply done by circularly shifting each HPCP in the whole
sequence of just one song byOTI(

−→
hA,

−→
hB) bins (remember

we denote musical transposition by superscriptTr).
2) Similarity matrix: The next step is computing a similar-

ity matrix S between the obtained pair of HPCP sequences.
Notice that the sequences can have different lengthsn and
m, and that, therefore,S will be an n × m matrix. Element
(i, j) of the similarity matrixS, has the functionality of a

local sameness measure between HPCP vectors
−−→
hTr

A,i and
−−→
hB,j

(Si,j = s(
−−→
hTr

A,i,
−−→
hB,j)). In our case, this is binary (i.e., only

two values are allowed).
We outline some reasons for using a binary similarity mea-

sure between chroma features. First, as these features might
not be in an euclidean space [46], we would prefer to avoid the
computation of an euclidean-based (dis)similarity measure (in
general, we think that tonal similarity, and therefore chroma
feature distance, is a still far to be understood topic, with
many of perceptual and cognitive open issues). Second, using
only two values to represent similarity, the possible paths
through the similarity matrix become more evident, providing
us with a clear notion of where the two sequences agree
and where they mismatch (see figure 6 for an example). In
addition, binary similarity allows us to operate like many string
alignment techniques do: just considering if two elements of
the string are the same. With this, we have an expanded range
of alignment techniques borrowed from string comparison,
DNA or protein sequence alignment, symbolic time series
similarity, etc. [32]. Finally, we believe that considering the
binary similarity of an HPCP vector might be an easier (or at
least more affordable) task to assess than obtaining a reliable
graded scale of resemblance between two HPCPs correlated
with (sometimes subjective) perceptual similarity.

An intuitive idea to consider when deciding if two HPCP
vectors refer to the same tonal root is to keep circularly shifting
one of them and to calculate a resemblance index for all
possible transpositions. Then, if the transposition that leads
to maximal similarity corresponds to less than a semitone
(accounting for slight tuning differences), the two HPCP vec-
tors are claimed to be the same. This idea can be formulated

10http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
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Fig. 5. General block diagram of the system.

in terms of the OTI explained in equation 1. So, as we are
using a resolution of a1/3 of a semitone (36 bins), the binary
similarity measure between the two vectors is then obtained
by:

s(
−−→
hTr

A,i,
−−→
hB,j) =

{

µ+ if OTI(
−−→
hTr

A,i,
−−→
hB,j) ∈ {0,1,NH-1},

µ− otherwise.
(3)

whereµ+ and µ− are two constants that indicate match or
mismatch. These are usually set to a positive and a negative
value (e.g., +1 and -1). Empirically, we found that a good
choice forµ+ andµ− were +1 and -0.9 respectively. Ranges
of µ+ and µ− between±0.7 and±1.25 resulted in changes
smaller than an 5% of the evaluation measures tested. We show
two examples of this type of similarity matrix in figure 6.

Fig. 6. Euclidean-based similarity matrix for two covers of the same song
(left), OTI-based binary similarity matrix for the same covers (center) and
OTI-based binary similarity matrix for two songs that do not share a common
tonal progression (right). We can see diagonal white lines in the second plot,
while this pattern does not exist in the third. Coordinate units in the horizontal
and vertical axes correspond to 1 sec frames.

3) Dynamic programming local alignment (DPLA):A bi-
nary similarity matrix S is the only input to our DPLA
algorithm. In section III-E we have seen that using global
constraints and, thus, forcing warping paths to be around the
alignment matrix main diagonal, had a detrimental effect in
final system accuracy. Instead, the use of local constraints
[50] can help us preventing ‘pathological warpings’ and just
admitting certain ’logical’ tempo changes. Also, in section
III-F, it has been discussed the suitability of performing a
local alignment to overcome strong song structure changes
(i.e., to check all possible subsequences). The Smith-Waterman
algorithm [58] is a well-known algorithm for performing local
sequence alignment in Molecular Biology. It was originally

designed for determining similar regions between two nu-
cleotide or protein sequences. Instead of looking at the total
sequence, the Smith-Waterman algorithm compares segments
of all possible lengths and optimizes the similarity measure.

So, in the same manner as the Smith-Waterman algorithm
does, we create an(n + 1) × (m + 1) alignment matrixH
through a recursive formula, that, in addition, incorporates
some local constraints:

Hi,j = max



















Hi−1,j−1 + Si−1,j−1 − δ(Si−2,j−2, Si−1,j−1)

Hi−2,j−1 + Si−1,j−1 − δ(Si−3,j−2, Si−1,j−1)

Hi−1,j−2 + Si−1,j−1 − δ(Si−2,j−3, Si−1,j−1)

0
(4)

for 4 ≤ i ≤ n+1 and4 ≤ j ≤ m+1. EachSi,j corresponds to
the value of the binary similarity matrixS at element(i, j),
and δ() denotes a penalty for a gap opening or extension.
This latter value is set to 0 ifSi−1,j−1 > 0 (no gap between
Si−1,j−1 and eitherSi−2,j−2, Si−3,j−2 or Si−2,j−3), or to a
positive value ifSi−1,j−1 ≤ 0. More concretely:

δ(a, b) =











0 if b > 0 (no gap)

c1 if b ≤ 0 anda > 0 (gap opening)

c2 if b ≤ 0 anda ≤ b (gap extension)

(5)

Good values were empirically found to bec1 = 0.5 for
a gap opening, andc2 = 0.7 for a gap extension. Small
variability of the evaluation measures was shown forc1, c2

values between 0.3 and 1. We used the songs in DB90 for
empirically estimating these parameters and then evaluated the
method with DB2053 (see section IV-B).

Values ofH can be interpreted considering thatHi,j is the

maximum similarity of two segments ending in
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1 respectively. The zero is included to prevent negative

similarity, indicating no similarity up to
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1.

The first 3 rows and columns ofH can be initialized to have
a 0 value.

An example of the resultant matrixH is shown in figure
7. We clearly observe two local alignment traces, which
correspond to two highly resemblant sections between two
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versions of the same song (fromH150,25 to H250,100 and from
H280,25 to H400,100, where sub-indices respectively denote
rows and columns).

Fig. 7. Example of a local alignment matrixH between two covers. It can
be seen that the two songs do not entirely coincide (just in two fragments),
and that, mainly, their respective second halves are completely different.
Coordinate units in the horizontal and vertical axes correspond to 1 sec
averaging across frames.

4) Post-processing:In the last step of the method, only the
best local alignment inH is considered. This means that the
score determining the local subsequence similarity between
two HPCP sequences, and, therefore, what we consider to be
the similarity between two songs, corresponds to the value of
H ’s highest peak:

Score(HPCPTr
A , HPCPB) = max{Hi,j} (6)

for any i, j such that1 ≤ i ≤ n + 1 and1 ≤ j ≤ m + 1.
Finally, to obtain a dissimilarity value that is independent of

song duration, the score is normalized by the compared song
lengths [45] and the inverse is taken:

d(songA, songB) =
n + m

Score(HPCPTr
A , HPCPB)

(7)

wheren andm are the respective lengths for songs A and B.

B. Evaluation

We now display the results corresponding to the evaluation
of our method. This has been made with the music collection
presented in section II-C and within the framework of the
MIREX 2008 Audio Cover Song Identification contest as well.
As the databases used in this part of the paper may have
more than 5 covers per set, the first 10 retrieved items were
considered for evaluation.

Firstly, as we have proposed a new distance measure be-
tween chroma features, we provide results for a comparison
between common distance measures and the proposed OTI-
based binary distance in table VIII. To perform this com-
parison, we have thresholded common distance measures and
applied the same DPLA algorithm (with the same parameters)
to all of them. Several thresholds were tested for each distance

in order to determine the ones leading to best identification
accuracy. We observe that OTI-based binary similarity matrix
outperforms other binary similarity matrices obtained through
thresholding common similarity measures between chroma
features. In the case of these last measures, best identification
accuracy values for different thresholds tested are shown.

TABLE VIII
IDENTIFICATION ACCURACY FORDPLA ALGORITHM WITH 5 DIFFERENT

BINARY SIMILARITY MATRICES AS INPUT. EVALUATION DONE WITH

DB2053

Distance used F-measure R10
Dot product 0.132 0.136
Euclidean distance 0.218 0.216
Cosine similarity 0.221 0.219
Correlation 0.239 0.247
OTI-based similarity 0.601 0.576

We next show the general evaluation results corresponding
to our personal music collection. Within these, we compare
identification accuracy between the proposed method and the
best variants of the cross-correlation and DTW methods tested.
In table IX we report the F-measure values for the three
different databases presented. Recall is shown in figure 8. In
there, we plot an average Recall figure for all the implemented
systems (best variants). Vertical axis represents Recall and
horizontal axis represents different percentages of the retrieved
answer. As this was set to a maximum length of 10, the
numbers represent 0 answers (giving a Recall of 0), 1 answer, 2
answers and so forth. We can see that with the newly proposed
method the accuracy is around 58% of correctly retrieved
songs within the first 10 retrieved answers. This value is highly
superior to the accuracies achieved for the best versions of the
cross-correlation and DTW methods that we could implement
(around 20 and 40 percent respectively), and is very far from
the the baseline corresponding to just guessing by chance,
which is lower than 0.3%.

TABLE IX
F-MEASURE FOR THE PROPOSED METHOD, THE DTW AND THE

CROSS-CORRELATION APPROACHES. PARAMETERS FOR THE

CROSS-CORRELATION AND THE DTW METHODS WERE ADJUSTED

ACCORDING TO THE BEST VALUES AND VARIANTS FOUND IN SECTIONIII

Method DB75 DB330 DB2053
Cross-correlation 0.638 0.348 0.169
DTW 0.651 0.485 0.399
Proposed method 0.868 0.688 0.601

If we take a look to MIREX 2007 contest data (where we
participated with this algorithm), we observe that our system
was the best performing one with a substantial difference to
others [59]. A total of 8 different algorithms were presented
to the MIREX 2007 Audio Cover Song task. Table X shows
the overall summary results obtained11. The present algorithm
(SG, first column) performed the best in all considered eval-
uation measures, reaching an average accuracy of 5.009 of
correctly identified covers within the 10 first retrieved elements
(MNCI10) and a Mean Average Precision (MAP) of 0.521.

11See the complete results and details about the evaluation procedure at
http://www.music-ir.org/mirex/2007/index.php/
Audio Cover Song Identification Results (Accessed 29 Jan. 2008)
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TABLE X
RESULTS FORMIREX 2007 AUDIO COVER SONG TASK. ACCURACY MEASURES EMPLOYED WERE THE TOTAL NUMBER OF COVERS IDENTIFIED WITHIN

THE FIRST10 ANSWERS(TNCI10), THE MEAN NUMBER OF COVERS IDENTIFIED WITHIN THE10 FIRST ANSWERS(MNCI10), THE MEAN OF AVERAGE
PRECISION(MAP) AND THE AVERAGE RANK OF THE FIRST CORRECTLY IDENTIFIED COVER(RANK1). CLOCK TIME MEASURES ARE REPORTED ON THE

LAST LINE OF THE TABLE (NUMBER OF USED THREADS IN BRACKETS). VALUES FOR THE ALGORITHM PRESENTED HERE ARE SHOWN IN THE FIRST

COLUMN (SG)

Measure Range SG EC JB JEC KL1 KL2 KP IM

TNCI10 [0-3300] 1653 1207 869 762 425 291 190 34
MNCI10 [0-10] 5.009 3.658 2.633 2.309 1.288 0.882 0.576 0.103
MAP [0-1] 0.521 0.330 0.267 0.238 0.13 0.086 0.061 0.017
Rank1 [0-1000] 9.367 13.994 29.527 22.209 57.542 51.094 46.539 97.470
Runtime [HH:MM] 01:37(1) 04:28(5) 04:32(8) 00:47(8) 10:45(8) 02:37(1) 03:51(1) 02:04(1)

Fig. 8. Average Recall figures comparing the proposed approach (blue circles)
with the cross-correlation (green sum signs) and the DTW (red crosses)
methods for DB2053. Parameters for the cross-correlation and the DTW
methods compared were adjusted according to the best values found in section
III. A base-line identification accuracy (BLE) is also plotted (black bottom
asterisks).

Furthermore, the next best performing system reached and an
MNCI10 of 3.658 and aMAP of 0.330, which represents a sub-
stantial difference to the one proposed in this paper (57.88%
superior in terms ofMAP). In addition, statistical significance
tests showed that the results for the system were significantly
better than those of the other six systems presented in the
contest.

A basic error analysis [45] shows that the best identified
covers are “A forest”, originally performed by The Cure
and “Let it be”, originally performed by The Beatles. Other
correctly classified items are “Yesterday”, “Dont let me down”
and “We can work it out”, all originally performed by The
Beatles and “How insensitive” (Vinicius de Moraes). This high
amount of Beatles’ songs within the better classified items
can be due to the fact that there were many Beatles’ cover
sets (e.g., 14 out of 30 in DB330), but it can also be justified
considering the clear simplicity and definition of their tonal
progressions, that, in comparison with other more elaborated
pieces (e.g., “Over the rainbow” performed by Judy Garland),
leads to better identification. Within this set of better identified
covers there are several examples of structural changes and
tempo deviations. In the electronic appendix12, we provide a
confusion matrix with labels corresponding to cover sets (rows
and columns).

We detected that there were some songs, such as “Eleanor

12http://mtg.upf.edu/∼jserra/chromabinsimappendix.html

Rigby” and “Get Back”, that caused ‘confusion’ more or
less with all the queries made. One explanation for this
might be that these two songs are built over a very simple
chord progression involving just two chords: the tonic and the
mediant (e.g., C and Em for a C major key) for the former,
and the tonic and the subdominant (e.g., C and F for a C major
key) for the latter. So, as they rely half of the time in the tonic
chord, any song being compared to them will share half of the
tonal progression. Other poorly classified items are “The battle
of Epping forest” (Genesis) or “Stairway to heaven” (Led
Zeppelin). Checking their wrongly associated covers, we find
that, most of the time, the alignment, the similarity measure
and the transposition are performing correctly according to the
features extracted. Thus, we have the intuition that the tonal
progression might not be enough for some kinds of covers.
This does not mean that HPCPs could be sensitive to timbre
or other facets of the musical pieces. On the contrary, we are
able to detect many covers that have a radical change in the
instrumentation, which we think it is due to the capacity of
HPCPs to filter timbre out.

An interesting misclassification appears with “No woman no
cry”, originally performed by Bob Marley. These covers are
associated more than 1/3 of the times with the song “Let it be”
(The Beatles). When we analyzed the harmonic progression of
both songs, we discovered that they share the same chords in
different parts of the theme (C - G - Am - F). Thus, this
might be a logical misclassification using chroma features.
Another source of frequent confusion is the classical harmonic
progression I - IV - I or I - V - IV - I, which many songs
share.

V. CONCLUSIONS

In this paper we have devised a new method for audio
signal comparison focused on cover song identification that
by large outperforms state-of-the-art system. This has been
achieved after experimenting with many proposed techniques
and variants, and testing their effect in final identification
accuracy, which also was one of the main objectives in writting
this article.

We have first presented our test framework and the two
state-of-the-art methods that we have used in further experi-
ments. The performed analysis has focused on several variants
that could be taken for these two methods (and, in general,
for any method based on chroma descriptors): (a) the chroma
features resolution - section III-A; (b) the local cost function
(dissimilarity measure) between chroma features - section
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III-B; (c) the effect of using key transposition methods -
section III-C; and (d) the use of a beat tracking algorithm
to obtain a tempo-independent representation of the chroma
sequence - section III-D. In addition, as DTW is a well known
and extensively used technique, we tested two underexplored
variants of it, apart from the simple one mentioned in section
II-B2: DTW with global and with local constraints (section
III-E). The results of these cross-validated experiments have
been summarized in section III-F.

Finally, we have presented a new cover song identification
system that takes advantage of the results found and that has
been proven, using different evaluation measures and contexts,
to work significantly better than other state-of-the-art methods.
Although cover song identification is still a relatively new
research topic, and systems dealing with this task can be
further improved, we think that the work done and the method
presented here represent an important milestone.
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B. S. Ong, “Melody transcription from music audio: approaches and
evaluation,” IEEE Trans. on Audio, Speech and Language Processing,
vol. 15, pp. 1247–1256, 2007.

[20] A. Sheh and D. P. W. Ellis, “Chord segmentation and recognition using
em-trained hidden markov models,”Int. Symp. on Music Information
Retrieval (ISMIR), pp. 183–189, 2003.

[21] C. A. Harte and M. B. Sandler, “Automatic chord identification using a
quantized chromagram,”Conv. of the Audio Engineering Society (AES),
pp. 28–31, 2005.

[22] T. Fujishima, “Realtime chord recognition of musical sound: a system
using common lisp music,”Int. Computer Music Conference (ICMC),
pp. 464–467, 1999.

[23] G. Tzanetakis, “Pitch histograms in audio and symbolic music informa-
tion retrieval,” Int. Symp. on Music Information Retrieval (ISMIR), pp.
31–38, 2002.

[24] S. Paws, “Musical key extraction from audio,”Int. Symp. on Music
Information Retrieval (ISMIR), pp. 96–99, 2004.
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[36] E. Gómez and P. Herrera, “Estimating the tonality of polyphonic audio
files: cognitive versus machine learning modelling strategies,”Int. Symp.
on Music Information Retrieval (ISMIR), pp. 92–95, 2004.

[37] ——, “The song remains the same: identifying versions of the same
song using tonal descriptors,”Int. Symp. on Music Information Retrieval
(ISMIR), pp. 180–185, 2006.

[38] B. S. Ong, E. Gómez, and S. Streich, “Automatic extraction of musical
structure using pitch class distribution features,”Workshop on Learning
the Semantics of Audio Signals (LSAS), pp. 53–65, 2006.

125



14 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. YY, MONTH YEAR

[39] H. Purwins, “Proles of pitch classes. circularity of relative pitch and key:
experiments, models, computational music analysis, and perspectives.”
Ph.D. dissertation, Berlin University of Technology, Germany, 2005.

[40] D. Huron, “Scores from the ohio state university cognitive
and systemathic musicology laboratory - bach well-tempered
clavier fugues, book ii,” Online: http://kern.ccarh.org/cgi-
bin/ksbrowse?l=/osu/classical/bach/wtc-2, 1994, (Last access Jan.
2008).

[41] M. E. P. Davies and P. Brossier, “Beat tracking towards automatic
musical accompainment,”Conv. of the Audio Engineering Society (AES),
May 2005.

[42] P. Brossier, “Automatic annotation of musical audio for interactive
applications,” Ph.D. dissertation, Queen Mary, London, 2007.

[43] R. Baeza-Yates and B. Ribeiro-Neto,Modern Information Retrieval.
ACM Press Books, 1999.
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Abstract In the context of content analysis for indexing and retrieval, a method for creating
automatic music mood annotation is presented. The method is based on results from
psychological studies and framed into a supervised learning approach using musical features
automatically extracted from the raw audio signal. We present here some of the most relevant
audio features to solve this problem. A ground truth, used for training, is created using both
social network information systems (wisdom of crowds) and individual experts (wisdom of the
few). At the experimental level, we evaluate our approach on a database of 1,000 songs. Tests of
different classificationmethods, configurations and optimizations have been conducted, showing
that Support Vector Machines perform best for the task at hand. Moreover, we evaluate the
algorithm robustness against different audio compression schemes. This fact, often neglected, is
fundamental to build a system that is usable in real conditions. In addition, the integration of a
fast and scalable version of this technique with the European Project PHAROS is discussed. This
real world application demonstrates the usability of this tool to annotate large-scale databases.
We also report on a user evaluation in the context of the PHAROS search engine, asking people
about the utility, interest and innovation of this technology in real world use cases.

Keywords Music information retrieval . Mood annotation . Content-based audio .

Social networks . User evaluation

1 Introduction

Psychological studies have shown that emotions conveyed by music are objective enough to be
valid for mathematical modeling [4, 13, 24, 32]. Moreover, Vieillard et al. [43] demonstrated
that within the same culture, the emotional responses to music could be highly consistent. All
these results indicate that modeling emotion or mood in music is feasible.
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In the past few years, research in content-based techniques has been trying to solve the
problem of tedious and time-consuming human indexing of audiovisual data. In particular,
Music Information Retrieval (MIR) has been very active in a wide variety of topics such as
automatic transcription or genre classification [5, 29, 41]. Recently, classification of music
mood has become a matter of interest, mainly because of the close relationship between
music and emotions [1, 19].

In the present paper, we present a robust and efficient mood annotator that automatically
estimates the mood of a piece of music, directly from the raw audio signal. We achieve this task
by using a supervised learningmethod. In Section 2, we report on related works in classification
of music mood. In Section 3, we detail the method and the results we achieved. In Section 4,
we describe the integration of this technique in the PHAROS project (Platform for searcHing
of Audiovisual Resources across Online Spaces). In Section 5, we present the protocol and
results of a user evaluation. Finally, in Section 6, we discuss future works.

2 Scientific background

Although there exist several studies dealing with automatic content-based mood classification
(such as [4, 26, 37, 47]), almost every work differs in the way that it represents the mood
concepts. Similar to psychological studies, there is no real agreement on a common model
[16]. Some consider a categorical representation based on mutually exclusive basic emotions
such as “happiness”, “sadness”, “anger”, “fear” and “tenderness” [19, 26, 36, 39], while others
prefer a multi-labeling approach (i.e., using a rich set of adjectives that are not mutually
exclusive) like Wieczorkowska [45]. The latter is more difficult to evaluate since they consider
many categories. The basic emotion approach gives simple but relatively satisfying results,
around 70–90% of correctly classified instances, depending on the data and the number of
categories chosen (usually between 3 and 5). Li and Ogihara [22] extract timbre, pitch and
rhythm features from the audio content to train Support Vector Machines (SVMs). They
consider 13 categories, 11 from the ones proposed in Farnsworth [10] plus 2 additional ones.
However, the results are not that convincing, obtaining low average precision (0.32) and
moderate recall (0.54). This might be due to the small dataset labeled by only one person and
to the large number of categories they chose. Conversely, it is very advisable to use few
categories and a ground truth annotated by hundreds of people (see Section 3.1).

Other works use the dimensional representation (modeling emotions in a space), like Yang
[47]. They model the problem with Thayer’s arousal-valence1 emotion plane [40] and use a
regression approach (Support Vector Regression) to learn each of the two dimensions. They
extract mainly spectral and tonal descriptors together with loudness features. The overall
results are very encouraging and demonstrate that a dimensional approach is also feasible. In
another work, Mandel et al. [27] describe an active learning system using timbre features and
SVMs, which learns according to the feedback given by the user. Moreover, the algorithm
chooses the examples to be labeled in a smart manner, reducing the amount of data needed to
build a model, and has an accuracy equivalent to that of state-of-the-art methods.

Comparing evaluations of these different techniques is an arduous task. With the objective to
evaluate different algorithms within the same framework, MIREX (Music Information Retrieval
Evaluation eXchange) [8] organized a first task on Audio Mood Classification in 2007.2

1 In psychology, the term valence describes the attractiveness or aversiveness of an event, object or situation.
For instance happy and joy have a positive valence and anger and fear a negative valence.
2 http://www.music-ir.org/mirex2007/index.php/Audio_Music_Mood_Classification
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MIREX is a reference in the MIR community that provides a solid evaluation of current
algorithms in different tasks. The MIREX approach is similar to the Text Retrieval Conference
(TREC)3 approach to the evaluation of text retrieval systems, or TREC-VID4 for video
retrieval. For the Audio Mood Classification task, it was decided to model the mood
classification problem with a categorical representation in mood clusters (a word set defining
the category). Five mutually exclusive mood clusters were chosen (i.e, one musical excerpt
could only belong to one mood cluster). In that aspect, it is similar to a basic emotion approach,
because the mood clusters are mutually exclusive. They asked human evaluators to judge a
collection of 1,250 30-second excerpts (250 in each mood cluster). The resulting human-
validated collection consisted of 600 30-second clips in total. The best results approached 60%
of accuracy [14, 18]. In Table 1, we show the categories used and the results of different
algorithms, including our submitted algorithm [18] (noted CL). One should note that the
accuracies from the MIREX participants are lower than those found in most of the existing
literature. This is probably due to a semantic overlap between the different clusters [14]. Indeed,
if the categories are mutually exclusive, the category labels have to be chosen carefully.

Performing a statistical analysis on this data with the Tukey-Kramer Honestly
Significantly Differently method (TK-HSD) [2], the MIREX organizers found that our
algorithm had the first rank across all mood clusters despite its average accuracy being the
second highest [14]. Another interesting fact from this evaluation is that, looking at all the
submissions, the most accurate algorithms were using SVMs. The results of the MIREX
task show that our audio feature extraction and classification method are state-of-the-art.
Thus, to create a new music mood annotator, even though we tried different classification
methods, we focused on the optimization of Support Vector Machines [3]. Moreover, we
especially focused on using a relevant taxonomy and on finding an efficient and original
method to create a reliable ground truth.

3 Method

To classify music by mood, we frame the problem as an audio classification problem using a
supervised learning approach. We consider unambiguous categories to allow for a greater
understanding and agreement between people (both human annotators and end-users).We build
the ground truth to train our system on both social network knowledge (wisdom of crowds) and
experts validation (wisdom of the few). Then we extract a rich set of audio features that we
describe in Section 3.2. We employ standard feature selection and classification techniques
and we evaluate them in Section 3.3. Once the best algorithm is chosen, we evaluate the
contribution of each descriptor in 3.5 and the robustness of the system as reported in
Section 3.4. In Fig. 1, we show a general block diagram of the method.

3.1 Ground truth from wisdom of crowds and wisdom of the few

For this study we use a categorical approach to represent the mood. We focus on the following
categories: happy, sad, angry, and relaxed. We decided to use these categories because these
moods are related to basic emotions from psychological theories (reviewed in [15]) and they
cover the four quadrants of the 2D representation from Russell [34] with valence and arousal
dimensions (see Fig. 2).

3 http://trec.nist.gov/
4 http://www-nlpir.nist.gov/projects/trecvid/
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The Russell 2D model (called “circumplex model of affect”) is a reference widely accepted
and cited in psychological studies on emotion. In this space, “happy” and “relaxed” have positive
valence and, respectively, high and low arousal. “Angry” and “sad” have negative valence and,
respectively, high and low arousal. As we do not want to be restricted to exclusive categories, we
consider the problem as a binary classification task for each mood. One song can be “happy” or
“not happy”, but also independently “angry” or “not angry” and so on.

The main idea of the present method is to exploit information extracted from both a
social network and several experts validating the data. To do so, we have pre-selected the

Fig. 1 Schema of the method employed to create the ground truth, validate it and design the music mood
annotator

Table 1 Extract from the Audio Mood Classification task results, MIREX 2007. Mean accuracies in
percentage over a 3-fold Cross Validation. Comparison of our submitted algorithm (CL [18]), with the other
top competitors (GT [42], TL [23], ME [28]). We used several of the audio features presented later in this
paper and SVMs

Mood Clusters CL GT TL ME

rowdy,rousing,confident,boisterous,passionate 45.83% 42.50% 52.50% 51.67%

amiable,good natured,sweet,fun,rollicking,cheerful 50.00% 53.33% 49.17% 45.83%

literate,wistful,bittersweet,autumnal,brooding,poignant 82.50% 80.00% 75.00% 70.00%

witty,humorous,whimsical,wry,campy,quirky,silly 53.33% 51.67% 52.50% 55.00%

volatile,fiery,visceral,aggressive,tense/anxious,intense 70.83% 80.00% 69.17% 66.67%

Mean accuracy 60.50% 61.50% 59.67% 57.83%
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tracks to be annotated using last.fm5 tags (textual labels). Last.fm is a music
recommendation website with a large community of users (30 million active users based
in more than 200 countries) that is very active in associating tags with the music they listen
to. These tags are then available to all users in the community. In Fig. 3, we show an
example of a “tag cloud”, which is a visualization of the tags assigned to one song with the
font size weighted by the popularity of the tag for this particular song.

In the example shown in Fig. 3, we can see that “happy” is present and quite highly
weighted (which means that many people have used this tag to describe the song). In addition
to “happy”, we also have “cheerful”, “joy”, “fun” and “upbeat”. To gather more data, we need
to extend our query made to last.fm with more words related to mood. For the four chosen
mood categories, we generated a set of related semantic words using Wordnet6 and looked for
the songs frequently tagged with these terms. For instance “joy”, “joyous”, “cheerful” and
“happiness” are grouped under the “happy” category to generate a larger result set. We query
the social network to acquire songs tagged with these words and apply a popularity threshold
to select the best instances (we keep the songs that have been tagged by many users).

Note that the music for the “not” categories (like “not happy”) was evenly selected
using both music tagged with antonyms and a random selection to create more
diversity. Afterwards, we asked listeners to validate this selection. We considered a
song to be valid if the tag was confirmed by, at least, one listener, as the pre-selection
from last.fm granted that the song was likely to deserve that tag. We included this
manual tag confirmation in order to exclude songs that could have received the tag by
error, to express something else, or by a “following the majority” type of effect. The
listeners were exposed to only 30 s of the songs to avoid changes in the mood as much
as possible and to speed up the annotation process. Consequently, only these 30 s
excerpts have been included in the final dataset. In total, 17 different evaluators
participated and an average of 71% of the songs originally selected from last.fm was
included in the training set. We observe that the “happy” and “relaxed” categories have
a better validation rate than the “angry” and “sad” categories. This might be due to

6 Wordnet is a large lexical database of English words with sets of synonyms http://wordnet.princeton.edu/

5 http://www.last.fm

Fig. 2 “Circumplex model of
affect” (adapted from Russel
[34])
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confusing terms in the tags used in the social networks for these latter categories or to a
better agreement between people for “positive” emotions. These results indicate that the
validation by experts is a necessary step to ensure the quality of the dataset. Otherwise,
around 29% of errors, on average, would have been introduced. This method is relevant
to pre-selecting a large number of tracks that potentially belong to one category.

At the end of the song selection process, the database was composed of 1,000 songs
divided between the four categories of interest plus their complementary categories (“not
happy”, “not sad”, “not angry” and “not relaxed”), i.e. 125 songs per category. The audio
files were 30-second stereo clips at 44 khz in a 128 kbps mp3 format.

3.2 Audio feature extraction

In order to classify the music from audio content, we extracted a rich set of audio features
based on temporal and spectral representations of the audio signal. For each excerpt, we
merged the stereo channels into a mono mixture and its 200 ms frame-based extracted
features were summarized with their component-wise statistics across the whole song. In
Table 2, we present an overview of the extracted features by category.

For each excerpt we obtained a total of 200 feature statistics (minimum, maximum,
mean, variance and derivatives), and we standardized each of them across the whole music
collection values. In the next paragraphs, we describe some of the most relevant features for
this mood classification task, with results and figures based on the training data.

3.2.1 Mel frequency cepstral coefficients (MFCCs)

MFCCs [25] are widely used in audio analysis, and especially for speech research and music
classification tasks. The method employed is to divide the signal into frames. For each frame,
we take the logarithm of the amplitude spectrum. Then we divide it into bands and convert it
to the perceptually-based Mel spectrum. Finally we take the discrete cosine transform (DCT).

Fig. 3 Tag cloud of the song “Here comes the sun” from the Beatles. The tags recognized as mood tags are
underlined. The bigger the tag is, more people have used it to define that song

Table 2 Overview of the audio features extracted by category. See [12, 25, 31] for a detailed description of
the features

Timbre Bark bands, MFCCs, pitch salience, hfc, loudness, spectral: flatness, flux, rolloff, complexity,
centroid, kurtosis, skewness, crest, decrease, spread

Tonal dissonance, chords change rate, mode, key strength, tuning diatonic strength, tristimulus

Rhythm bpm, bpm confidence, zero-crossing rate, silence rate, onset rate, danceability
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The number of output coefficients of the DCT is variable, and is often set to 13, as we did in
the present study. Intuitively, lower coefficients represent spectral envelope, while higher ones
represent finer details of the spectrum. In Fig. 4, we show the mean values of the MFCCs for
the “sad” and “not sad” categories. We note from Fig. 4 a difference in the shape of the
MFCCs. This indicates a potential usefulness to discriminate between the two categories.

3.2.2 Bark bands

The Bark band algorithm computes the spectral energy contained in a given number of
bands, which corresponds to an extrapolation of the Bark band scale [31, 38]. For each
Bark band (27 in total) the power-spectrum is summed. In Fig. 5, we show an example of
the Bark bands for the “sad” category.

As with the MFCCs, the Bark bands appear to have quite different shapes for the two
categories, indicating a probable utility for classification purposes.

3.2.3 Spectral complexity

The spectral complexity descriptor is based on the number of peaks in the input spectrum. We
apply peak detection on the spectrum (between 100 Hz and 5 Khz) and we count the number of
peaks. This feature describes the complexity of the audio signal in terms of frequency
components. In Figs. 6 and 7, we show the box-and-whisker plots of the spectral complexity
descriptor’s standardized means for the “relaxed”, “not relaxed”, “happy” and “not happy”
categories. These results are based on the entire training dataset. These plots illustrate the
intuitive result that a relaxed song should be less “complex” than a non-relaxing song.
Moreover, Fig. 7 tells us that happy songs are on average spectrally more complex.

3.2.4 Spectral centroid and skewness

The spectral centroid and skewness descriptors [31] (as well as spread, kurtosis, rolloff and
decrease) are descriptions of the spectral shape. The spectral centroid is the barycenter of the
spectrum, which considers the spectrum as a distribution of frequencies. The spectral skewness
measures the asymmetry of the spectrum’s distribution around its mean value. The lower the
value, the more energy exists on the right-hand side of the distribution, while more energy on
the left side indicates a higher spectral skewness value. In Fig. 8 we show the spectral
centroid’s box-and-whisker plot for “angry” and in Fig. 9 the spectral skewness for “sad”.

Fig. 4 MFCC mean values for coefficients between 2 and 13 for the “sad” and “not sad“ categories of our
annotated dataset
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Figure 8 shows a higher spectral centroid mean value for “angry” than “not angry”,
which intuitively means more energy in higher frequencies. For the spectral skewness, the
range of mean values for the “sad” instances is bigger than for the “not sad” ones. This
probably means that there is a less specific value for the centroid. In any case, it seems to
have on average a lower value for the “not sad” instances.

3.2.5 Dissonance

The dissonance feature (also known as “roughness” [35]) is defined by computing the peaks
of the spectrum and measuring the spacing of these peaks. Consonant sounds have more

Fig. 5 Bark band mean values for coefficients between 1 and 25 for the “sad” and “not sad “categories of
our annotated dataset

Fig. 6 Box-and-whisker plot
of the standardized spectral com-
plexity mean feature for “relaxed”
and “not relaxed”
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evenly spaced spectral peaks and, on the contrary, dissonant sounds have more sporadically
spaced spectral peaks. In Figs. 10 and 11, we compare the dissonance distributions for the
“relaxed” and “angry” categories. These figures show that “angry” is clearly more dissonant
than “not angry”. Listening to the excerpts from the training data, we noticed many
examples with distorted sounds like electric guitar in the “angry” category, which seems to
be captured by this descriptor. This also relates to psychological studies stating that
dissonant harmony may be associated with anger, excitement and unpleasantness [13, 44].

Fig. 7 Box-and-whisker plot of
the standardized spectral com-
plexity mean feature for “happy”
and “not happy”

Fig. 8 Box-and-whisker plot of
the standardized spectral centroid
mean for “angry” and “not angry”
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3.2.6 Onset rate, chords change rate

From psychological results, one important musical feature when expressing different mood
types is rhythm (generally, faster means more arousal) [15]. The basic measure/element of
rhythm is the onset, which is defined as an event in the music (any note, drum, etc.). The
onset times are estimated by looking for peaks in the amplitude envelope. The onset rate is
the number of onsets in one second. This gives us the number of events per second, which

Fig. 9 Box-and-whisker plot of
the standardized spectral skewness
mean for “sad” and “not sad”

Fig. 10 Box-and-whisker plot of
the standardized dissonance mean
for the “relaxed” and “not
relaxed” categories
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is related to a perception of the speed. The chords change rate is a rough estimator of the
number of chords change per second.

In Fig. 12, we compare the onset rate values for the “happy” and “not happy” categories.
It shows that “happy” songs have higher values for the onset rate, which confirms the
psychological results that “happy” music is fast [15]. In Fig. 13, we look at the chords
change rate, which is higher for “angry” than “not angry”. This is also a confirmation of the
studies previously mentioned, associating higher arousal with faster music.

Fig. 11 Box-and-whisker plot
of the dissonance mean for the
“angry” and “not angry” categories

Fig. 12 Box-and-whisker plot of
the standardized onset rate value
mean for the “happy” and “not
happy” categories
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3.2.7 Mode

In Western music theory, there are two basic modes: major and minor. Each of them has
different musical characteristics regarding the position of tones and semitones within their
respective musical scales. Gómez [11] explains how to compute an estimation of the mode
from raw audio data.

The signal is first pre-processed using the direct Fourier transform (DFT), filtering
frequencies between 100 Hz and 5000 Hz and locating spectral peaks. The reference
frequency (tuning frequency) is then estimated by analyzing the frequency deviation of the
located spectral peaks. Next the Harmonic Pitch Class Profile (HPCP) feature is computed
by mapping frequency and pitch class values (musical notes) using a logarithmic function
[11]. The global HPCP vector is the average of the instantaneous values per frame,
normalized to [0,1] to make it independent of dynamic changes. The resulting feature
vector represents the average distribution of energy among the different musical notes.
Finally, this vector is compared to minor and major reference key profiles based on music
theory [17]. The profile with the highest correlation with the HPCP vector defines the
mode.

In Fig. 14, we represent the percentages of estimated major and minor music in the
“happy” and “not happy” categories. We note that there is more major music in the “happy”
than in the “not happy” pieces. In music theory and psychological research, the link
between valence (positivity) and the musical mode has already been demonstrated [15].
Still, having empirical data from an audio feature automatically extracted showing the same
tendency is an interesting result. We note also that the proportion of major music is also
high in the “not happy” category, which is related to the fact that the majority, 64%, of the
whole dataset is estimated as major.

We have mentioned here some of the most relevant features showing their potential to
individually discriminate between categories, however, we keep all the descriptors in our
“bag-of-features”; those that are not obviously useful could be significant when combined

Fig. 13 Box-and-whisker plot of
the chords change mean for the
“angry” and “not angry” categories
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with others in a linear or non-linear way. To capture these relationships and build the model,
we tried several kinds of classification algorithms.

3.3 Classification algorithms

Once the ground truth was created and the features extracted, we performed a series of tests
with 8 different classifiers. We evaluated the classifiers using their implementations in
Weka [46] with 10 runs of 10-fold cross-validation and parameter optimizations (See
Table 3 for the mean accuracies). Next, we list the different classifiers we employed.

3.3.1 Support Vector Machines (SVMs)

Support Vector Machines [3], is a widely used supervised learning classification
algorithm. It is known to be efficient, robust and to give relatively good performance.
Indeed, this classifier is widely used in MIR research. In the context of a two-class
problem in n dimensions, the idea is to find the “best” hyperplane separating the points of

Fig. 14 Bar plot of the estimated
mode proportions (in percentage)
for the “happy” and “not happy”
categories

Table 3 Mean classification accuracy with 10 runs of 10-fold cross-validation, for each category against its
complementary. In bold is the highest accuracy for each category. The last column is the duration, in seconds,
for a 10-fold cross-validation (computed on a 1.86 Ghz Intel Core Duo)

Angry Happy Relaxed Sad Mean Accuracy Duration 10 folds

SVM linear 95.79% 84.57% 90.68% 87.31% 89.58% 14 s

SVM poly 98.17% 84.48% 91.43% 87.66% 90.44% 24 s

SVM RBF 95.19% 84.47% 89.79% 87.52% 89.24% 17 s

SVM sigmoid 95.08% 84.52% 88.63% 87.31% 88.89% 17 s

J48 95.51% 80.02% 85.25% 85.87% 86.66% 5 s

Random Forest 96.31% 82.55% 89.47% 87.26% 88.90% 13 s

k-NN 96.38% 80.89% 90.08% 85.48% 88.21% 4 s

Logistic Reg 94.46% 73.60% 82.54% 76.38% 81.75% 20 s

GMMs 96.99% 79.91% 91.13% 86.54% 88.64% 12 s
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the two classes. This hyperplane can be of n-1 dimensions and found in the original
feature space, in the case that it is a linear classifier. Otherwise, it can be found in a
transformed space of higher dimensionality using kernel methods (non-linear). The
position of new observations compared to the hyperplane tells us in which class belongs
the new input. For our evaluations, we tried different kernel methods: linear, polynomial,
radial basis function (RBF) and sigmoid respectively called SVM linear, SVM poly, SVM
RBF and SVM sigmoid, as shown in Table 3. To find the best parameters in each case we
used the cross-validation method on the training data. For the linear SVM we looked for
the best value for the cost C (penalty parameter), and for the others we applied a grid
search to find the best values for the pair (C, gamma) [3]. For C, we used the range
[2−15,215] in 31 steps. For gamma, we used the range [215,23] in 19 steps. In the other
cases than the linear SVM, once we have the best pair of values (C,gamma), we conduct a
finer grid search on the neighborhood of these values. We note that from our data, the best
parameter values highly depends on the category. Moreover, even if a RBF kernel is not
always recommended for large feature sets compared to the size of the dataset [3], we
achieved the best accuracy using this kernel for almost all categories. We used an
implementation of the Support Vector Machines called libsvm [6].

3.3.2 Trees and random forest

The decision tree algorithm splits the training dataset into subsets based on a test attribute
value. This process is repeated on each subset in a recursive manner (recursive
partitioning). The random forest classifier uses several decision trees in order to improve
the classification rate. We used an implementation of the C4.5 decision tree [33] (called J48
in Weka and in Table 3). To optimize the parameters of the decision tree, we performed a
grid search on the two main parameters: C (the confidence factor used for pruning) from 0.1
to 0.5 in 10 steps and M (the minimum number of instances per leaf) from 2 to 20.

3.3.3 k-Nearest Neighbor (k-NN)

For a new observation, the k-NN algorithm looks for a number k of the closest training
samples to decide on the class to predict. The result relies mostly on the choice of distance
function, which might not be trivial in our case, and also in the choice of k. We tested
different values of k (between 1 and 20) with the Euclidean distance function.

3.3.4 Logistic regression

Logistic regression can predict the probability of occurrence of an event by fitting data to a
logistic curve. It is a generalized linear model used for binomial regression. To optimize it,
we varied the ridge value [21].

3.3.5 Gaussian Mixture Models (GMMs)

GMM is a linear combination of Gaussian probability distributions. This approach assumes that
the likelihood of a feature vector can be expressed with a mixture of Gaussian distributions.
GMMs are universal approximations of density, meaning that with enough Gaussians, any
distribution can be estimated. In the training phase, the parameters of the Gaussian mixtures for
each class are learnt using the Expectation-Maximization algorithm, which iteratively computes
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maximum likelihood estimates [7]. The initial Gaussian parameters (means, covariance, and
prior probabilities) used by the EM algorithm are generated via the k-means method [9].

3.4 Evaluation results

After independent parameter optimization for each classifier, the evaluation was made with 10
runs of 10 fold cross-validation. For comparison purposes, we show the mean accuracies obtained
for eachmood category and algorithm configuration separately. Each value in a cell represents the
mean value of correctly classified data in the test set of each fold. Considering that each category is
binary (for example, “angry” vs. “not angry”), the random classification accuracy is 50%.

The SVM algorithm with different kernels and parameters, depending on the category,
achieved the best results. Consequently, we will choose the best configuration (SVM with
polynomial kernel except for happy where we will use a linear SVM) for the integration in
the final application.

The accuracies we obtained using audio-based classifiers are quite satisfying and even
exceptional when looking at the “angry” category with 98%. All four categories reached
classification accuracies above 80%, and two categories (“angry” and “relaxed”) peaked
above 90%. Even though these results might seem surprisingly high, this is coherent with
similar studies [37]. Also, the training examples were selected and validated only when
they clearly belonged to the category or its complementary. This can bias the database and
the model towards detecting very clear between-class distinctions.

3.5 Audio feature contribution

In this part, we evaluated the contribution of the audio features described in 3.2. In order to
achieve this goal, we chose the best overall classifier for each category and we made 10
runs of 10-fold cross-validation with only one descriptor type statistic. We show in Table 4
the resulting mean accuracies for each configuration compared to the best accuracy
obtained with all the features in the first row.

We observe that most of the descriptors give worst results for the “happy” category. This
reflects also the results with all features, with a lower accuracy for “happy”. Moreover,
some descriptors like the spectral centroid and the chords change rate do not seem to
contribute positively for this category. We also note that the mode helps to discriminate

Table 4 Mean classification accuracy with 10 runs of 10-fold cross-validation, for each category against its
complementary with feature sets made of one descriptor statistic

Angry Happy Relaxed Sad

All features 98.17% 84.57% 91.43% 87.66%

MFCCs 89.47% 57.59% 83.87% 81.74%

Bark bands 90.98% 59.82% 87.10% 83.48%

Spectral complexity 95.86% 55.80% 88.71% 86.52%

Spectral centroid 89.47% 50.00% 85.48% 83.04%

Spectral skewness 77.44% 52.23% 73.38% 73.48%

Dissonance 91.73% 62.05% 82.66% 79.57%

Onset rate 52.63% 60.27% 63.31% 72.17%

Chords change rate 74.81% 50.00% 69.35% 68.26%

Mode 71.43% 64.73% 52.82% 52.08%
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between “happy” and “not happy”, like seen in Fig. 14. It is also relevant for the “angry”
category. However it does seem useful for “sad” against “not sad”. It is also worth noticing
that if some individual descriptors can give relatively high accuracies, the global system
combining all the features is significantly more accurate.

3.6 Audio encoding robustness

The cross-validation evaluation previously described gives relatively satisfying results in
general. It allows us to select the best classifier with the appropriate parameters. However,
since the goal is to integrate this model into a working platform, we have to test the stability
and robustness of the mood classification with low quality encodings. Indeed it should be
able to process musical content of different quality (commercial or user generated). The
original encodings of the training set were mp3 at 128 kbps (kilobits per second). We
generated two modified versions of the dataset, lowering the bit rate to 64 kbps and
32 kbps. In Fig. 15, we represent the accuracy degradation of the classifier trained with the
entire dataset and tested on the same one with the previously mentioned low-rate encodings.
We decided to train and test with full datasets, as this classifier model would be the one to
be used in the final integrated version. Please note that the accuracies are different from
Table 3 because in this case we are not performing cross-validation.

We observe degradation due to encoding at a lower bit rate. However, in all cases, this does
not seem to have a strong impact. The degradation, in percentage, compared to the original
version at 128 kbps is acceptable. For instance, we observe that for the “angry” category, at
32 kbps, only 0.7% of the dataset is no longer correctly classified as before. We also notice that
the highest percentage of degradation is 3.6% obtained for the “relaxed” category (with 32 kbps).
Even though there is a slight drop in the accuracy, the classification still gives satisfying results.

4 Integration in the PHAROS project

After explaining the method we used to build the ground truth, extract the features, select
the best classification model and evaluate the results and robustness, we discuss here the
integration of this technology in the PHAROS search engine framework.

Fig. 15 Effect of the audio bit
rate reduction on the accuracy
(in percentage) for the entire
dataset
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4.1 The PHAROS project

PHAROS7 (Platform for searcHing of Audiovisual Resources across Online Spaces) is an
Integrated Project funded by the European Union under the Information Society
Technologies Programme (6th Framework Programme) - Strategic Objective ’Search
Engines for Audiovisual Content’. PHAROS aims to advance audiovisual search from a
point-solution search engine paradigm to an integrated search platform paradigm. One of
the main goals of this project is to define a new generation of search engine, developing a
scalable and open search framework that lets users search, explore, discover, and analyze
contextually relevant data. Part of the core technology includes automatic annotation of
content using integrated components of different kinds (visual classification, speech
recognition, audio and music annotations, etc.). In our case, we implemented and integrated
the automatic music mood annotation model previously described.

4.2 Integration of the mood annotator

As a search engine, PHAROS uses automatic content annotation to index audiovisual
content. However, there is a clear need to make the content analysis as efficient as possible
(in terms of accuracy and time). To integrate mood annotation into the platform, we first
created a fast implementation in C++ with proprietary code for audio feature extraction and
dataset management together with the libsvm library for Support Vector Machines [6]. The
SVMs were trained with full ground truth datasets and optimal parameters. Using a
standard XML representation format defined in the project, we wrapped this implemen-
tation into a webservice, which could be accessed by other modules of the PHAROS
platform. Furthermore, exploiting the probability output of the SVM algorithm, we
provided a confidence value for each mood classifier. This added a floating point value that
is used for ranking the results of a query by the annotation probability (for instance from the
less to the most happy).

The resulting annotator extracts audio features and predicts the music’s mood at a high
speed (more than twice real-time), with the same performance level than what was
presented in the previous section (using the same database). This annotator contributes to
the overall system by allowing for a flexible and distributed usage. In our tests, using a
cluster of 8 quad-core machines, we can annotate 1 million songs (using 30-seconds of
each) in 10 days. The mood annotation is used to filter automatically the content according
to the needs of users and helps them to find the content they are looking for. This integrated
technology can lead to an extensive set of new tools to interact with music, enabling users
to find new pieces that are similar to a given one, providing recommendations of new
pieces, automatically organizing and visualizing music collections, creating playlists or
personalizing radio streams. Indeed, the commercial success of large music catalogs
nowadays is based on the possibility of allowing people to find the music they want to hear.

5 User evaluation

In the context of the PHAROS project, a user evaluation has been conducted. The main
goal of these evaluations was to assess the usability of the PHAROS platform and in
particular, the utility of several annotations.

7 http://www.pharos-audiovisual-search.eu
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5.1 Protocol

26 subjects participated in the evaluation. They were from the general public, between 18 and
40 years old (27 in average), all of them self-declared eager music listeners and last.fm users.
The content processed and annotated for this user evaluation was made of 2092 30-second
music videos. After a presentation of the functionalities on site, the users were then directly
using an online installation of the system from their home. During 4 weeks, they could test it
with some tasks they were asked to do every two days. The task related to our algorithm was
to search for some music and to refine the query using a mood annotation. One query example
could be to search for “music” and then refine with the mood annotation “relaxed”. They had
to answer a questionnaire at the end of the study:

– “Do you find it interesting to use the mood annotation to refine a query for music?”
– “Do you find the “mood” annotation innovative?”
– “Does the use of the mood annotation correspond to your way of searching for

audiovisual information?”

5.2 Results

As a general comment, there is difficulty for users to understand directly a content-based
annotation. Some effort and thinking has to be done to make it intuitive and transparent. For
instance what is “sad=0.58” (music annotated sad with a confidence of 0.58), is it really
sad? Is it very sad? The confidence, or probability, value of one annotation is quite relative
to other instances and most of all to the training set. This can be used for ranking results but
might not be shown to the end-user directly. We should prefer nominal values like “very
sad” or “not sad” for instance. Another important point seen when analyzing the comments
from the users is the need to focus on precision. Especially in the context of a search
engine, people will only concentrate on the first results and may not go to the second page.
Instead, they are more likely to change their query. Several types of musical annotations
were proposed to the user (genre, excitement, instrument, color, mode and key). From this
list, mood was ranked as the second best in utility, just after musical genre (which is often
given as metadata). Users had to rate on a scale from 0 to 10 their answer to several
questions (0 would be “I strongly disagree” and 10 “I strongly agree”). We summarize here
the answers to the questions related to the mood annotation:

– “Do you find it interesting to use the mood annotation to refine a query for music?”
Users answered positively with a mean of 8.66, standard deviation of 1.85, showing a
great interest to use this annotation.

– “Do you find the “mood” annotation innovative?” The mean of answers was also
positive with 6.18 in average (standard deviation 3.81).

– “Does the use of the mood annotation correspond to your way of searching for
audiovisual information?” Here users agreed with an average of 6.49 (standard
deviation 3.47).

In all cases the mood annotation and its integration into the PHAROS platform was
greatly accepted and highly considered by users. They also rated it as the most innovative
musical annotation overall. In Fig. 16, we show a screenshot of the version of the PHAROS
platform installed for the user evaluation. As an open framework, a PHAROS installation
can be instantiated with different configurations, features and user interfaces. In this study
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we used an instance created by taking advantage of Web Ratio8 (an automatic tool to
generate web interface applications). In this screenshot, the user is searching for “relaxed”
music. They enter “relaxed” as a keyword and are browsing the musical results. The ones
shown here were rated as “relaxed” (respectively 100% and 99%) thanks to the automatic
music mood annotator we describe in this article.

6 Discussion and conclusion

We presented an approach for automatic music mood annotation introducing a procedure to
exploit both the wisdom of crowds and the wisdom of the few. We detailed the list of audio
features used and revealed some results using those most relevant. We reported the
accuracies of optimized classifiers and tested the robustness of the system against low bit
rate mp3 encodings. We explained how the technology was integrated in the PHAROS
search engine and used it to query for, refine and rank music. We also mentioned the results
from a user evaluation, showing a real value for the users in an information retrieval
context. However, one may argue that this approach with 4 mood categories is simple when
compared to the complexity of human perception. This is most likely true. Nevertheless,
this is an important first step for this new type of annotation. So what could be done to
improve it? First, we can add more categories. Although there might be a semantic overlap,
it can be interesting to annotate music moods with a larger vocabulary, if we can still have
high accuracies and add useful information (without increasing the noise for the user).
Then, we can try to make better predictions by using a larger ground truth dataset or by
designing new audio descriptors especially relevant for this task. Another option would be
to generate analytical features [30], or to combine several classifiers to try to increase the

Fig. 16 Screenshot of the PHAROS interface used for the user evaluation
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accuracy of the system. We could also consider the use of other contextual information like
metadata, tags, or text found on the Internet (from music blogs for instance). It has also
been shown that lyrics can help to classify music by mood [20]. Indeed, multimodal
techniques would allow us to capture more emotional data but also social and cultural
information not contained in the raw audio signal. We should also focus on the user’s needs
to find the best way to use the technology. There is a clear need to make the annotation
more understandable and transparent. Mood representations can be designed to be more
usable than only textual labels. Finally, the mood annotation could be personalized, learning
from the user’s feedback and his/her perception of mood. This would add much value,
although it might require more processing time per user, thus making the annotation less
scalable. Nevertheless, it could dramatically enhance the user experience.
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Introduction
a b s t r a c t

This study investigates neural correlates of music-evoked fear and joy with fMRI. Studies on neural correlates
of music-evoked fear are scant, and there are only a few studies on neural correlates of joy in general. Eigh-
a r t i c l e i n f o
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teen individuals listened to excerpts of fear-evoking, joy-evoking, as well as neutral music and rated their
own emotional state in terms of valence, arousal, fear, and joy. Results show that BOLD signal intensity in-
creased during joy, and decreased during fear (compared to the neutral condition) in bilateral auditory cortex
(AC) and bilateral superficial amygdala (SF). In the right primary somatosensory cortex (area 3b) BOLD sig-
nals increased during exposure to fear-evoking music. While emotion-specific activity in AC increased with
increasing duration of each trial, SF responded phasically in the beginning of the stimulus, and then SF activ-
ity declined. Psychophysiological Interaction (PPI) analysis revealed extensive emotion-specific functional
connectivity of AC with insula, cingulate cortex, as well as with visual, and parietal attentional structures.
These findings show that the auditory cortex functions as a central hub of an affective-attentional network
that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF
with AC during the joy condition, taken to reflect that SF is sensitive to social signals with positive valence.
During fear music, SF showed functional connectivity with visual cortex and area 7 of the superior parietal
lobule, taken to reflect increased visual alertness and an involuntary shift of attention during the perception
of auditory signals of danger.

© 2013 Elsevier Inc. All rights reserved.

at has been investigated most

Messiah (“And He Shall Purify”), Mozart's Idomeneo, the thunderstorm
portrayed in Beethoven's sixth symphony, Berlioz' Songe d'une nuit du
Sabbat, Herrmann's music for Psycho, and Penderecki's Polymorphia.
Of all emotions, fear is the one th

intensely in affective neuroscience over the last decades. However, Nevertheless, only two previous functional neuroimaging studies

have investigated brain responses to fear-evoking music. One of these
s

there is scarcity of functional neuroimaging studies on fear with
music, and neural correlates of music-evoked fear have thus remained
b
f
p
v
j
T
m
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m
m
c

elusive. This stands in gross contrast to a long musical tradition of
using musical means to evoke fear in the listener. The earliest theoreti-
cal treatise on such means is the Affektenlehre (“theory of affects”) of
the Baroque, which prescribed musical methods and figures for imitat-
ing, or portraying (and thus, according to theAffektenlehre, summoning)
emotions, including fear (Mattheson, 1739/1999). Among countless
well-known examples of fear-evoking (Western) music are Handel's
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tudies explored how fear music can enhance feelings of fear evoked
y images (Baumgartner et al., 2006), but that study did not present
ear music alone, thus leaving open the question as to which activation
atterns would be evoked by fearful music alone (i.e., without negative
isual images). The other study investigated howmusic evoking fear or
oy can change the perception of neutral film clips (Eldar et al., 2007).
he latter study also investigated brain responses evoked by the fear
usic alone (without film clips), compared to a baseline condition, in
elected regions of interest (amygdala, anterior hippocampal formation,
refrontal cortex, and auditory cortex). However, no effects of fear
usic were observed without film-clips (nor effects of joy or neutral
usic without film-clips), neither in the amygdala, nor in the hippo-
ampus or the prefrontal cortex. In addition, a study by Lerner et al.
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(2009) showed that listening to fear-evoking music with closed eyes
(compared to listening with open eyes), evoked greater activation
than open eyes in the amygdala/anterior hippocampal formation and
anterior temporal poles (this effect of eyes open/closed was not ob-
served when listening to neutral music). Main effects of fear compared
to neutral music were not reported in that study. Finally, a recent study
by Trost et al. (2012) reported brain activations due to music-evoked
“tension” (characterized by feelings of high arousal and low valence),
under which the authors also subsumed “feelings of anxiety and sus-
pense induced by scarymusic” (brain activations included bilateral supe-
rior temporal gyrus, right parahippocampal gyrus, motor and premotor
areas, cerebellum, right caudate nucleus, and precuneus). Notably, the
concept of “tension” also includes emotional phenomena not related to
fear, such as emotional reactions to unexpected musical events (Huron,
2006), and, therefore, Trost et al. (2012) argued that it is not clearwheth-
er the observed brain activations were due to fear responses, or to more
general feelings of tension and unease. Thus, there are no functional neu-
roimaging data available that would allow us to draw conclusions about
neural correlates of music-evoked fear.

With regard to lesion studies, Gosselin et al. (2005) showed im-
paired recognition of scary music in epileptic patients following uni-
lateral medial temporal lobe excision (including the amygdala). In
that study, both patients with left or right medial temporal lobe resec-
tions showed impaired recognition of scary, but not happy or sad,
music. Corroborating this finding, data from a patient with bilateral
damage restricted to the amygdala showed a selective impairment in
the recognition of scary and sadmusic (Gosselin et al., 2007), indicating
that the recognition of fear expressed by music involves the amygdala.
These findings are reminiscent of findings reporting similar impairment
for the recognition of fearful faces (reviewed in Peretz, 2010), suggesting
that scary music and fearful faces are processed, at least in part, by com-
mon cerebral structures. Supporting this assumption, patients with uni-
lateral anteromedial temporal lobe excision were found to be impaired
in the recognition of both scary music and fearful faces (Gosselin et al.,
2011), with results in both tasks being correlated. This suggested a mul-
timodal representation of fear within the amygdala (although recog-
nition of fearful faces was preserved in some patients, while their
recognition of scary music was impaired). However, due to the size
of the lesions in the reported studies, it remains unclear which nuclei
of the amygdaloid complex played a role in the reported findings.

Functional neuroimaging studies on fear evoked by visual stimuli,
recall/imagery, or auditory (but not musical) stimuli have also implicat-
ed the amygdaloid complex (LeDoux, 2000), in particular the basolateral
amygdala (BL), as well as a range of functionally connected structures in
fear responses (e.g., Phan et al., 2002). Such structures include the audi-
tory cortex in auditory fear conditioning paradigms (LeDoux, 2000), as
well as a large array of both cortical and subcortical structures, such as
cingulate and insular cortex, hippocampus, parahippocampal cortex,
orbitofrontal cortex, dorsolateral prefrontal cortex, striate (visual) cor-
tex, basal ganglia, cerebellum, as well as brainstem regions such as the
periaqueductal gray (Roy et al., 2009; Stein et al., 2007; Williams et al.,
2006).

Based on the reported findings, we aimed to investigate the role of
the amygdaloid complex and the auditory cortex, including their
functional connections, for fear evoked by music. The cultural practice
of using music to evoke fear makes music an important means to
investigate neural circuits underlying fear (Eerola and Vuoskoski,
2011), in addition to the vast number of studies using visual stimuli
to investigate neural correlates of fear. Besides fear stimuli, the present
study also used joyful and neutral music. Joy was chosen as positive
emotion because, on the one hand, both joy and fear are considered as
“basic emotions” (Ekman, 1999), and both the expression of joy as
well as of fear in Western music can be recognized universally (Fritz
et al., 2009). On the other hand, other than, e.g. peaceful music (which
is also perceived as positive, e.g. Vieillard et al., 2008), arousal levels
evoked by joy music can well be matched with those evoked by fear
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music. Similarly, musical and acoustical parameters such as tempo
and pitch variation can well be matched between joy and fear music.
Moreover, joyfulmusicwas chosen to replicate results of previous studies.
Althoughonly a fewprevious functional neuroimaging studies specifically
used “happy” (Brattico et al., 2011; Brown et al., 2004; Mitterschiffthaler
et al., 2007) or “joyful” (Koelsch et al., 2006; Mueller et al., 2011) music,
these studies, along with other studies investigating musical frissons
(Blood and Zatorre, 2001; Salimpoor et al., 2011), or music evoking emo-
tional responseswith positive valence andhigh arousal (Trost et al., 2012)
indicate a number of relatively consistent features, namely stronger BOLD
signal intensity (a) in the auditory cortex (Brattico et al., 2011; Koelsch et
al., 2006; Mitterschiffthaler et al., 2007; Mueller et al., 2011; Trost et al.,
2012), (b) the ventral striatum (Blood and Zatorre, 2001; Brown et al.,
2004; Koelsch et al., 2006; Menon and Levitin, 2005; Mitterschiffthaler
et al., 2007; Trost et al., 2012), (c) the anterior insula (Blood and
Zatorre, 2001; Brown et al., 2004; Koelsch et al., 2006), and (d) the
anterior cingulate cortex (Blood and Zatorre, 2001; Janata, 2009;
Mitterschiffthaler et al., 2007). Moreover, (e) several studies on music-
evoked emotions showed signal changes in the anterior hippocampal
formation in response to stimuli with positive emotional valence
(e.g., Blood and Zatorre, 2001; Mueller et al., 2011; Trost et al.,
2012). Based on these findings, we hypothesized increased BOLD sig-
nals in response to joy stimuli (compared to neutral or fear stimuli) in
the auditory cortex, ventral striatum, insula, ACC, and hippocampal
formation.

Another aspect of our study was the investigation of the temporal
dynamics of emotion across time. To our knowledge, only two previ-
ous functional neuroimaging studies have investigated the temporal
dynamics of neural correlates of emotion (for habituation-effects
across an experimental session see Mutschler et al., 2010). A study
by Salimpoor et al. (2011) reported that BOLD signal intensity increased
(a) in the dorsal striatumduring the anticipation of amusic-evoked fris-
son, and (b) in the ventral striatum during the experience of the frisson
(notably, additional PET data showed that these signal increases were
related to dopaminergic synaptic activity in these structures). Another
study (Koelsch et al., 2006), in which stimuli of 60 s were split into
two 30-second halves, showed that significant signal differences be-
tween pleasant and unpleasant music were most pronounced during
the second half of the trials. The structures with such temporal dynam-
ics of activation included the auditory cortex, inferior fronto-lateral
areas (area 45 and the posterior part of the inferior frontal sulcus), an-
terior insula, the amygdaloid complex (probably basolateral amygdala),
hippocampal formation, temporal poles, and parahippocampal cortex
(a similar trend was observed in the ventral striatum).

Particular care was taken with regard to the acoustic parameters
of our stimuli: numerous acoustical features of the stimuli were mea-
sured, which allowed us (1) to match joy, fear, and neutral stimuli
with regard to numerous acoustical parameters (e.g., pitch variation,
tempo, intensity, and spectral flux), and (2) to introduce acoustical
factors that differed between conditions as regressors of no interest
in the analysis of fMRI data. Provided that no crucial acoustical features
weremissed, this enabled us to investigate the role of the auditory cortex
with regard to its emotion-specific interfacing with limbic/paralimbic
structures. Previous work has implicated auditory association cortex
(auditory parabelt), aswell as its connectionswith the lateral amygdala,
in fear conditioning (LeDoux, 2000). However, auditory parabelt regions
project to numerous limbic/paralimbic structures (such as orbitofrontal
cortex, insula, and cingulate cortex; e.g. Petrides and Pandya, 1988;
Smiley et al., 2007; Yukie, 1995), and the role of these auditory projec-
tions for emotional processes, and thus the role that the auditory cortex
plays for emotional processes, is largely unknown.

Summary of hypotheses

Motivated by the reported findings, we testedwhethermusic-evoked
fear, as compared to neutral or joy stimuli, would elicit signal changes in
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the basolateral nucleus of the amygdaloid complex. For joy, as compared
to neutral or fear, we expected stronger BOLD signal intensity in the ven-
tral striatum, auditory cortex, hippocampal formation, insula, and cingu-
late cortex. Finally, to explore neural networks underlying joy and fear,
we performed a Psychophysiological Interaction (PPI) analysis using the
peak voxels indicated by the contrast analysis between conditions as
seed voxels. More specifically, we were interested in emotion-specific
functional connectivity between amygdaloid complex and auditory cor-
tex, between auditory cortex and insula, as well as between auditory cor-
tex and cingulate cortex.

Materials and methods

Participants

18 individuals (aged 20–31 years,M = 23.78, SD = 3.54, 9 females)
took part in the experiment. All participants had normal hearing
(as assessed with standard pure tone audiometry) and were right-
handed (according to self-report). None of the participants was a pro-
fessional musician, nor a music student. Seven participants had no for-
mal musical training, eight participants had once received music lessons
(mean duration of formal training was 2.81 years, SD = 2.36, instru-
ments were: flute, drums, piano, violin, guitar and melodica) but had
not played their instruments for several years (M = 8.83, SD = 7.52),
and three participants had learned a musical instrument that they
were still playing (mean duration of formal training was 12.5 years,
SD = 3.5, instruments were: guitar, violin, piano and electric bass). Ex-
clusion criteria were left-handedness, professional musicianship, past
diagnosis of a neurological or psychiatric disorder, a score of ≥13 on
Beck's Depression Inventory (BDI; Beck et al., 1993), excessive con-
sumption of alcohol or caffeine during the 24 h prior to testing, and
poor sleep during the previous night. All subjects gavewritten informed
consent. The study was conducted according to the Declaration of
Helsinki and approved by the ethics committee of the School of Life Sci-
ences and the Psychology Department of the University of Sussex.

Stimuli and procedure

Musical stimuli were selected to evoke (a) feelings of joy, (b) feelings
of fear, or (c) neither joy nor fear (henceforth referred to as neutral
stimuli). There were n = 8 stimuli per category (the complete list of
joy and fear stimuli is provided in Supplementary Table S1). Joy stimuli
had been used in previous studies (e.g., Fritz et al., 2009; Koelsch et al.,
2010a, 2011; Mueller et al., 2011) and consisted of CD-recorded pieces
from various epochs and styles (classical music, Irish jigs, jazz, reggae,
South American and Balkan music). Fear-evoking musical stimuli were
excerpts from soundtracks of suspense movies and video games. To in-
crease the fear-evoking effect of the fear stimuli, their relatively high
acoustic roughness (see also next paragraph) was further increased:
from each fear excerpt, two copies were obtained and pitch-shifted,
one copy was shifted one semitone higher, the other copy a tritone
lower (see also Fritz et al., 2009; Koelsch et al., 2006). Then, all three ver-
sions of one excerpt (original pitch, one semitone higher, and a tritone
lower) were rendered as a single wav-file (pitch-shift and rendering
was performed using Ableton Live, version 8.0.4, Ableton AG, Berlin,
Germany). Neutral stimuli were sequences of isochronous tones, for
which the pitch classes were randomly selected from a pentatonic
scale. These tone sequences were generated using the MIDI (musical in-
strument digital interface) toolbox for Matlab (Eerola and Toiviainen,
2004). Importantly, for each joy–fear stimulus pair (see below), a neutral
control stimulus was generated that matched joy and fear stimuli with
regard to tempo, F0 range (i.e., range of the fundamental frequency),
and instrumentation (using the two main instruments or instrument
groups of the respective joy-fear pair). To create stimuli that sounded
like musical compositions played with real instruments (similar to the
joy and fear stimuli), the tones from the MIDI sequences were set to

S. Koelsch et al. / Neur
rigger instrument samples from a high quality natural instrument li-
rary (X-Sample Chamber Ensemble, Winkler & Stahl GbR, Detmold,
ermany) and from the Ableton Instrument library (Ableton AG, Berlin,
ermany). Stimuli were then rendered as wav-files using Ableton Live.
sing Praat (version 5.0.29; Boersma, 2002), all excerpts (joy, fear, and
eutral) were edited so that they all had the same length (30 s), 1.5 s
ade-in/fade-out ramps, and the same RMS power.

Importantly, joy and fear stimuli were chosen such that each joyful
xcerpt had a fearful counterpart that matched with regard to tempo
beats per minute), mean fundamental frequency, variation of funda-
ental frequency, pitch centroid value, spectral complexity, and spec-

ral flux. This was confirmed by an acoustic analysis of the stimuli
sing ‘Essentia’, an in-house library for extracting audio and music fea-
ures from audio files (http://mtg.upf.edu/technologies/essentia). The
ssentia software was also used to specify acoustical differences be-
ween stimuli with regard to other acoustical factors: 177 acoustical
escriptors were extracted frame-by-frame (frame length = 21.5 ms,
0% overlap), averaged along the entire duration of the file, and then
ompared between conditions (joy, neutral, fear) using one-way
NOVAs. Bonferroni-corrected significance-level was 0.05/177 =
.00028 (lowering this threshold for one-sided tests, i.e. 0.00056,
id not change any of the results). The extracted features represent
coustic and musical features used in music information retrieval,
.e., different combinations of them are used for predictive models
fmusically relevant categorizations such as genre detection, instrument
etection, key and mode detection, or emotional expression. Although
hese features have mostly been validated in machine-learning contexts
Huq et al., 2010; Kim et al., 2010; Laurier, 2011), it is possible that they
lso play a role for human auditory perception. In addition, many of the
sed parameters have been validated in perceptual experiments, such as
eatures related to spectral complexity, F0, and F0 variations (Agrawal et
l., 2012; Alluri et al., 2012; Coutinho and Dibben, 2012; Juslin and
aukka, 2003; Kumar et al., 2012), sensory dissonance (Coutinho and
ibben, 2012; Koelsch et al., 2006; Plomp and Levelt, 1965; Vassilakis
nd Kendall, 2010), spectral flux (Coutinho and Dibben, 2012; Menon
t al., 2002), spectral centroid (Coutinho and Dibben, 2012), spectral
rest (Laurier, 2011), temporal modulation frequencies (Kumar et al.,
012), key strength (Alluri et al., 2012; Krumhansl, 1990), and pulse clar-
ty (Alluri et al., 2012). Significant effects of condition were indicated for
he following acoustic factors (with F-values in parentheses, degrees of
reedom: 2, 21): (a) Mean (72.3) and variance (13.8) of F0 salience
this measure is highest for single tones, intermediate for chords, and
owest for noises; note that mean F0 and variance of F0 did not differ be-
ween joy, fear, and neutral stimuli). The mean F0 salience was highest
or neutral, intermediate for joy, and lowest for fear stimuli (p b .0001
n all pairwise comparisons). This reflects that both joy and fear (but
ot neutral) stimuli contained numerous harmonies, and that fear (but
ot joy) stimuli contained numerous percussive sounds, as well as
issing and whooshing noises. (b) Mean (41.3) and variance (28.0) of
ensory dissonance. Sensory dissonance was lowest for neutral, interme-
iate for joy, and highest for fear stimuli. Mean sensory dissonance dif-
ered significantly between joy and neutral (p b .0001), between fear
nd neutral (p b .0001), and between joy and fear stimuli (p b .05).
c) Mean chord strength (25.2) and key strength (14.7); these factors
easure how strongly a sound resembles the sound of a chord, and
ow clearly the sounds of a stimulus can be attributed to a key. Chord
trength was higher for joy compared to fear stimuli (p b .0001), as
ell as for joy compared to neutral stimuli (p b .0006), whereas fear
nd neutral stimuli did not differ significantly from each other. Key
trength was higher for joy compared to fear stimuli (p b .0001), and
or neutral compared to fear stimuli (p = .01); joy and neutral stimuli
id not differ significantly from each other (p > .15). (d) Mean (30.0)
nd variance (16.4) of spectral flux (a measure of spectral variation
ithin sounds), mean (30.0) spectral crest (ameasure of the inhomoge-
eity, or noisiness, of the spectrum) andmean (10.6) spectral complexity
which correlates with the amount of different timbres that are present
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in a piece). Mean spectral flux, spectral crest, and spectral complexity
were lowest for neutral stimuli (with significant differences between
neutral and joy, as well as between neutral and fear stimuli, p b .05 in
each test), and did not differ significantly between joy and fear stimuli
(p > .2 in each test).

Prior to the MRI session, participants were presented with short
(12 s) versions of each stimulus to obtain familiarity ratings: Partici-
pants rated their familiarity with each piece on a four-point scale
(ranging from “Tomy knowledge I have never heard this piece before”,
to “I know this piece, and I knowwho composed or performed it”). Par-
ticipants were then trained on the rating procedure, using 12 s long ex-
cerpts of musical pieces that did not belong to the stimulus set used in
the fMRI scanning session.

During the fMRI scanning session, stimuli were presented in a
pseudo-random order so that no more than two stimuli of each stim-
ulus category (joy, fear, neutral) followed each other. Participants
were asked to listen to the musical stimuli with their eyes closed
(see also Lerner et al., 2009). Each musical stimulus was followed
by an interval of 2 s in which a beep tone of 350 Hz and 1 s duration
signaled participants to open their eyes and to commence the rating
procedure. During the rating procedure, participants indicated how
they felt at the endof eachexcerptwith regard to valence (‘pleasantness’),
‘arousal’, ‘joy’ and ‘fear’. That is, participants provided ratings about how
they felt, and not about which emotion each stimulus was supposed to
express (Gabrielson and Juslin, 2003; Juslin and Västfjäll, 2008). Ratings
were obtained with 6-point Likert scales (ranging from “not at all” to
“very much”). The time interval for the rating procedure was 12 s and
each rating periodwas followed by a 4 s rest period (duringwhich partic-
ipants closed their eyes again), amounting to a total length of 48 s per trial
(see Fig. 1). The entire stimulus set was presented twice during the fMRI
scanning session. Musical stimuli were presented using Presentation
(version 13.0, Neurobehavioral systems, Albany, CA, USA) via MRI com-
patible headphones (under which participants wore earplugs). Instruc-
tions and rating screens were delivered through MRI compatible liquid
crystal display goggles (Resonance Technology Inc., Northridge, CA,

52 S. Koelsch et al. / Neu
Fig. 1. Experimental design. In each trial, a music stimulus was presented for 30 s.
Music stimuli were pseudorandomly either a joy, a fear, or a neutral stimulus. Partici-
pants listened to the music with their eyes closed. Then, a beep tone signaled to open
the eyes and to commence the rating procedure. Four ratings (felt valence, arousal, joy,
and fear) were obtained in 12 s, followed by a 4 s pause (during which participants
closed their eyes again). Trial duration was 48 s, the experiment comprised of 48 trials.
USA)with integrated eye-tracker that allowedus to guarantee that partic-
ipants opened and closed their eyes according to the instruction.

MR scanning

Scanningwas performedwith a 3 T SiemensMagnetomTrioTim. Prior
to the functional MR measurements, a high-resolution (1 × 1 × 1 mm)
T1-weighted anatomical reference image was acquired from each partic-
ipant using a rapid acquisition gradient echo (MP-RAGE) sequence. Con-
tinuous Echo Planar Imaging (EPI) was used with a TE of 30 ms and a TR
of 2000 ms. Slice-acquisition was interleaved within the TR interval. The
matrix acquired was 64 × 64 voxels with a field of view of 192 mm,
resulting in an in-plane resolution of 3 mm. Slice thickness was 3 mm
with an interslice gap of 0.6 mm (37 slices, whole brain coverage). The
acquisition window was tilted at an angle of 30° relative to the AC-PC
line in order tominimize susceptibility artifacts in the orbitofrontal cortex
(Deichmann et al., 2002, 2003;Weiskopf et al., 2007). Given the duration
of our stimuli (30 s), a continuous scanning design was required to per-
form the PPI analysis (so that enough data points were available for
meaningful correlation estimations, see below).

Data analysis

FMRI data were processed using LIPSIA 2.1 (Lohmann et al., 2001).
Data were corrected for slicetime acquisition and normalized into
MNI-space-registered images with isotropic voxels of 3 cubic millime-
ters. A temporal highpass filter with a cutoff frequency of 1/90 Hz was
applied to remove low frequency drifts in the fMRI time series, and a
spatial smoothing was performed using a 3D Gaussian kernel and a fil-
ter size of 6 mm FWHM.

A mixed effects block design GLM analysis was employed (Friston
et al., 2007). Valence ratings, arousal ratings, familiarity ratings, psy-
choacoustic parameters that differed significantly between conditions
(see Stimuli and procedure), and realignment parameters were includ-
ed in the design matrix as covariates of no interest (Johnstone et al.,
2006). Then, one-sample t-testswere calculated voxel-wise for the con-
trast between fear vs. joy, and corrected for multiple comparisons by
the use of cluster-size and cluster-value thresholds obtained by Monte
Carlo simulations with a significance level of p b 0.05 (Lohmann et al.,
2008). The significant clusters identified in this analysis were used as
regions of interest (ROIs) to compare the average signal intensity (aver-
aged across all voxels in each cluster) within those clusters between
fear and neutral, as well as between joy and neutral. In addition, to ex-
plore the temporal nature of the significant differences in activity be-
tween fear and joy, for each peak voxel of each significant cluster, the
timecourse of activitywas determined by computing the voxel intensity
separately for each scan (i.e., with a temporal resolution of 2 s) and for
each condition.

Temporal interaction analysis
To investigate possible interactions between emotion and time we

split the data from each trial into first half (seconds 1 to 15) and sec-
ond half (seconds 16 to 30), and calculated a statistical parametric
map based on the interaction between emotion (two levels: joy, fear)
and time (two levels: first half, second half). A first-level interaction con-
trast was calculated for each subject, and the contrast images were then
used for voxel-wise one-sample t-tests at the second level (corrected for
multiple comparisons by the use of cluster-size and cluster-value thresh-
olds obtained by Monte Carlo simulations with a significance level of
p b .0.05) to identify clusters of voxels for which the emotion × time in-
teraction was significantly different from zero.

PPI analysis
The timecourses of activity at the peak voxels identified in the

contrast joy vs. fear, averaged together with the timecourses from ad-
jacent voxels, were used as seeds for Psychophysiological Interaction
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(PPI) analyses to identify target regions for which the covariation of
activity between seed and target regions was significantly different
between experimental conditions. At the first level, contrasts were
calculated for each subject based on the interaction term between
emotion (joy vs. fear) and each seed voxel's timecourse of activity
(Friston et al., 1997). For each seed voxel, the contrast images from
all subjects were used in voxel-wise one-sample t-tests at the second
level (corrected for multiple comparisons by the use of cluster-size
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and cluster-value thresholds obtained by Monte Carlo simulations
with a significance level of p b .0.05) to identify clusters of voxels
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analysis). Therefore, these variables (valence, arousal, and familiarity)
did not contribute to the fMRI results presented in the following.
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for which the psychophysiological interaction effect was significant.

Results

Behavioral data

Behavioral data are summarized in Fig. 2 and Table 1. Valence
(pleasantness) ratings were lower for fear than for joy stimuli
(t(15) = 42.29, p b 0.0001), higher for joy than for neutral stimuli
(t(15) = 16.10, p b 0.0001), and did not differ significantly between
neutral and fear stimuli (t(15) = −1.94, p=.072). Arousal ratings were
higher for fear than for neutral stimuli (t(15) = 11.84, p b 0.0001),
higher for joy than for neutral stimuli (t(15) = 12.26, p b 0.0001), and
did not differ between joy and fear stimuli (t(15)= .94, p=.36). Joy rat-
ingswere lowest for fear stimuli, and highest for joy stimuli, with ratings
for neutral stimuli being in between. Joy ratings differed significantly be-
tween fear and neutral stimuli (t(15) = 9.03, p b 0.0001), fear and joy
stimuli (t(15) = 32.32, p b 0.0001), and between joy and neutral stimuli
(t(15) = 16.73, p b 0.0001). Correspondingly, fear ratings were highest
for fear stimuli, lowest for joy stimuli, with ratings for neutral stimuli
Fig. 2. Behavioral ratings of participants on the four emotion scales used in the present study
depicted separately for each stimulus category (fear, neutral, joy). Note that joy stimuli were
fear and neutral stimuli did not differ from each other). Also note that arousal ratings of joy a
rated as more arousing than neutral stimuli.
eing in between. Although the degree of experienced fear was relatively
oderate (4.02 on a scale from 1 to 6), fear ratings differed significantly
etween fear and neutral stimuli (t(15) = 17.71, p b 0.0001), fear and
oy stimuli (t(15) = 33.16, p b 0.0001), and between joy and neutral
timuli (t(15) = 9.93, p b 0.0001). Average familiarity ratings were
ighest for joy stimuli, lowest for neutral stimuli, with ratings for fear
timuli being in between. Familiarity ratings differed significantly be-
ween joy and fear stimuli (t(7) = 3.659, p b 0.05), fear and neutral
timuli (t(7) = 4.41, p b 0.01), and between joy and neutral stimuli
t(7) = 5.06, p b 0.0005). Due to thedifferences in thebehavioral ratings
etween stimulus categories with regard to valence, arousal, and famil-
arity, each participant's valence, arousal, and familiarity ratings were
sed in the fMRI data analysis as regressors of no interest (see Data

53ge 81 (2013) 49–60
MRI data

LM analysis
The statistical parametric maps (SPMs) of the contrast joy > fear

corrected for multiple comparisons, p b .05) revealed significant BOLD
ignal differences in the auditory cortex (AC) bilaterally, and in the su-
erficial amygdala (SF) bilaterally (see also Table 2 and Fig. 3a). The
ctivation of the AC covered auditory core, belt, and parabelt regions bi-
aterally. The voxelswithmaximum z-valueswere located alongHeschl's
yrus (HG), with the peak voxel in the left AC being located on the
ostero-lateral rim of HG (30% TE 1.2 according to Morosan et al.,
001), and the peak voxel in the right AC being located more medially
n HG (90% TE 1.0 according to Morosan et al., 2001). In both left and
ight amygdala, the peak voxel was located in SF (left: 80% probability,
: (a) valence, (b) arousal, (c) joy, and (d) fear. Range of scales was 1 to 6. Ratings are
rated as more pleasant than fear and neutral stimuli (valence/pleasantness ratings for
nd fear stimuli did not differ from each other, and that both joy and fear stimuli were
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Table 1
Descriptive statistics of behavioral data (mean, with standard deviation in parentheses).
Range of valence, arousal, joy, and fear scales was 1 to 6, range of the familiarity scale
was 1 to 4. For statistical tests see main text.

Fear Neutral Joy

Valence 2.43 (0.20) 2.69 (0.48) 4.84 (0.21)
Arousal 3.97 (0.21) 3.03 (0.22) 4.05 (0.21)
Joyfulness 1.62 (0.16) 2.40 (0.29) 4.83 (0.42)

b .0
in the
ring

-Val
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right: 90% probability according to the cytoarchitectonic probabilitymap
by Amunts et al., 2005). The signal differences in SF extended bilaterally
into the hippocampal-amygdaloid transition area (HATA, Amunts et al.,
2005). The opposite contrast (fear > joy) showed signal differences in
the anterior bank of the right postcentral gyrus (area 3b of the primary
somatosensory cortex, S1, the peak voxel was locatedwith 80% probabil-
ity in this area according to Geyer et al., 1999). Contrastswith the neutral
condition did not yield any additional activations (see also Table 2 and
next section), except activations in the visual cortex for both joy > neutral
(left V1, MNI-coordinate:−1,−82,−5; left V4:−33,−82,−14; right
V2: 32, −99, 3) and fear > neutral (left V2, MNI-coordinate: −8, −95,
25; right V2: 23,−93, 26).

ROI analysis
To specify whether the observed differences between fear and joy

were due to signal increase or decrease compared to the neutral con-
trol condition, ROI analyses were conducted for the significant clus-
ters identified in the GLM analysis (AC, SF, S1), comparing the mean
signal intensity of the voxels in each cluster between fear and neutral,
as well as between joy and neutral. Results of these analyses (corrected
for multiple comparisons, p b .05) showed that, compared to the neu-
tral condition, there was stronger signal intensity during joy and weak-
er signal intensity during fear in theAC bilaterally aswell as in the left SF
(see also Table 2). In the right SF, signal intensity was weaker during
fear compared to neutral (with no difference between joy and neutral).
In the right S1, signal intensity was stronger during fear compared to
neutral (joy and neutral did not differ from each other).

Timelines
To explore the temporal dynamics of the observed differences, the

signal intensity of the peak voxel of each significant cluster (AC, SF, S1)
was computed separately for each scan (i.e., with a temporal resolution
of 2 s) in each condition. These timelines are shown in Fig. 4. In the AC,
the auditory stimuli evoked a signal increase (in all conditions), with
the signal intensity being generally highest for joy, lowest for fear, and
intermediate for neutral (see next paragraph for statistical analysis).
The most pronounced differences between conditions emerged at, and
after around 10 s after stimulus onset. In SF, joy stimuli evoked a signal
increase bilaterally, while fear stimuli evoked a signal increase only in
the right SF. In the left SF, differences in signal intensity between fear
and joy were particularly strong during the first half of the stimuli

Fearfulness 4.02 (0.23) 2.22 (0.30) 1.31 (0.17)
Familiarity 1.44 (0.11) 1.17 (0.10) 2.01 (0.42)

Table 2
Results of General Linear Model (GLM) contrasts, corrected for multiple comparisons (p
for comparisons involving the neutral condition within the significant clusters identified
indicate that differences between fear and neutral were due to higher signal intensity du
significant.

MNI coordinate Cluster size (mm3) z
(a) joy > fear
l Heschl's gyrus −56 −14 7 16,038 6.3
r Heschl's gyrus 50 −16 8 13,176 5.5
l superficial amygdala −17 −7 −15 486 4.3
r superficial amygdala 22 −6 −13 324 3.4

(b) fear > joy
r postcentral gyrus (area 3b) 52 −13 36 297 −3.5
(and a similar trend is observable in the right SF). Differences between
conditions emerged several seconds after stimulus onset, were most
pronounced at around10 s, and vanished towards the endof the stimuli
(see next paragraph for statistical analysis). In the right S1, all condi-
tions evoked an initial signal decrease, followed by a signal increase
(which was strongest for fear stimuli), and a decline of signal intensity
towards the end of the stimuli.

Temporal interaction analysis
To statistically test the temporal dynamics observed in the time-

lines, and to further explore the temporal dynamics of differences be-
tween conditions in other structures (see Introduction), a temporal
interaction analysis was computed with factors emotion (two levels:
joy and fear) and time (two levels: first half and second half of each
stimulus, see Materials and methods). Results (corrected for multiple
comparisons, p b .05) are listed in Table 3 and summarized in Fig. 3b.
Significant interactions were observed in the AC bilaterally, and in the
left SF. This confirms the observations based on the timelines that dif-
ferences in the AC were more pronounced during the second half, and
in the SF during the first half of trials. Moreover, according to the hy-
potheses (see Introduction), significant emotion × time interactions
were observed bilaterally (a) in the posterior portion of the inferior
frontal sulcus (IFS), (b) the anterior part of Broca's area (BA 45/46),
and (c) in the ventral pallidum/ventral striatum (see also Fig. 3b).
These interactions were due to more pronounced differences be-
tween conditions in the second compared to the first half. No interac-
tions were observed in the hippocampus, parahippocampal gyrus,
temporal poles, nor in the Rolandic operculum.

PPI analysis
Finally, we conducted a Psychophysiological Interaction (PPI) analy-

sis (for details see Materials and methods). Seed regions were the peak
voxels (as well as the directly adjacent voxels) identified in the GLM
analysis in the direct contrast between fear and joy stimuli. Results of
this analysis (corrected for multiple comparisons, p b 0.05), are listed
in Table 4 and summarized in Fig. 3c.

Both left and right AC showed stronger functional connectivity
during joy (compared to fear) with both ipsilateral and contralateral
AC. In specific, the left posterior-lateral auditory belt showed stronger
functional connectivity during joy with both left and right primary
auditory cortex (left: 80%, right: 100% probability for TE 1.0 according
to Morosan et al., 2001), as well as with lateral auditory belt-regions
of both hemispheres. The right auditory core region showed stronger
functional connectivity during joy with lateral auditory belt regions of
both hemispheres (TE 2 according to Morosan et al., 2001, no proba-
bilistic maps are available for this region). During fear (compared to
joy), both left and right AC showed stronger functional connectivity
with the cuneus (areas 17 and 18), the median wall of the precuneus
(areas 5 and 7), and almost the entire cingulate sulcus (CS), from the
pre-genual CS to the ascending branch of the (posterior) CS. More-
over, both left and right AC showed stronger functional connectivity
during fear with the anterior insula bilaterally, and the left (but not

5): (a) joy > fear, (b) fear > joy. The two outermost right columns provide the p-values
GLM analysis (region of interest analysis). The diamonds in the outermost right column
neutral than during fear. Abbreviations: ROI: region of interest; l: left; r: right; n.s.: not

ue: max (mean) p-Value ROI: joy vs. neutral p-Value ROI: fear vs. neutral
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6 (3.76) .0002 .0001⋄

5 (3.72) .0006 .0007⋄

2 (3.36) .02 .009⋄

0 (3.09) n.s. .03⋄

0 (−3.11) n.s. .0001
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the right) AC showed stronger functional connectivity during fear with
the fundus of the central sulcus and the anterior bank of postcentral
gyrus (areas 3a & b of S1).

The left SF showed stronger functional connectivity during joy
(compared to fear) with right posterior HG (posterior auditory core
and belt regions, 80% TE 1.1 according to Morosan et al., 2001). During
fear (compared to joy), the left SF showed stronger functional connec-
tivity with cuneus (V1–V4), and area 7a of the superior parietal lobule

connectivity during joy (compared to fear) with themediodorsal nucle-
us of the thalamus (43% th-temporal according to Eickhoff et al., 2005).
The S1 region did not show any significant PPI results in our data.

Discussion

Summary of results

t

Fig. 3. FMRI results (all corrected for multiple comparisons, p b .05). (a) shows the statistical parametric maps (SPMs) of the direct contrast between joy and fear stimuli, red:
joy > fear, blue: fear > joy. The SPMs show stronger BOLD signals during joy (compared to fear) in the auditory cortex (AC), and the SF bilaterally. Stronger BOLD signals during
fear (compared to joy) were yielded in area 3b of the primary sensory cortex. The inset shows the coordinates of the peak voxels in the SF (indicated by the black crosses) projected
on the cytoarchitectonic probability map according to Eickhoff et al. (2005); green: superficial amygdala, red: basolateral amygdala, yellow: hippocampal-amygdaloid transition
area, blue: hippocampus (cornu ammonis). (b) shows the interaction contrast between emotion (joy vs. fear) and time (1st half of each trial vs. 2nd half of each trial). Significant
interactions were indicated in the auditory cortex bilaterally, the left SF, left area 45 (pars triangularis of the inferior frontal gyrus), inferior frontal sulcus, and ventral pallidum/
ventral striatum. (c) shows results of the Psychophysiological Interaction Analysis (PPI) for the regions that significantly differed in the SPM contrast between fear and joy, seed
voxels were located in left AC (Heschl's gyrus), right AC (Heschl's gyrus), left SF, and right SF. Red/yellow colors indicate regions that exhibited stronger functional connectivity
with the seed regions during the joy than during the fear condition. Blue colors indicate regions that exhibited stronger functional connectivity with the seed regions during the
fear than during the joy condition.

55S. Koelsch et al. / NeuroImage 81 (2013) 49–60
(precuneus) bilaterally (left: 70%, right: 40% probability according to
Scheperjans et al., 2008). The right SF showed stronger functional
The contrast analysis showed that BOLD signals in the auditory cor-
ex (AC) bilaterallywere strongest during joy, weakest during fear, with
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neutral in between. A similar pattern was observed for the superficial
amygdala (SF), except that joy vs. neutral did not differ from each
other in the right SF. In S1, fear evoked stronger BOLD signals than

(compared to fear) with both the ipsilateral and the contralateral AC.
During fear (compared to joy), both left and right AC showed stronger
functional connectivity with the cuneus (areas 17 and 18), the median

e)

c) d)

b)a)

Fig. 4. Timelines depicting average BOLD signal intensity in the regions that significantly differed in the GLM contrast joy vs. fear. The ordinate represents values of voxel intensity,
the abscissa represents time (in seconds), zero corresponds to the onset of trials.
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both neutral and joy (joy vs. neutral did not differ). In AC bilaterally, re-
sponses were stronger during the second half of each trial (and the
same phenomenon was observed in area 45, the IFS, and the ventral
pallidum/ventral striatum). By contrast, BOLD signals in the left SF
were stronger during the first half. PPI results showed that both left
and right AC showed stronger functional connectivity during joy

Table 3
Results of the interaction contrast of emotion (joy vs. fear) × time (1st half vs. 2nd half
of each trial), corrected for multiple comparisons (p b .05). Abbreviations: AC: auditory
cortex; FOp: frontal operculum; SF: superficial amygdala STG: superior temporal gyrus;
l: left; r: right.
MNI
coordinate

Cluster size
(mm3)

z-Value: max
(mean)

l post. IFS −51 18 31 1809 4.02 (3.39)
r post. IFS 45 21 34 1134 3.76 (3.17)
l pars triangularis (area 45)a −51 30 10 – 3.76 (–)
r pars triangularis (area 45) 51 30 10 513 3.27 (3.26)
l ant insula/deep FOp −34 34 4 621 4.22 (3.27)
l ant. STG −60 −9 −2 1377 4.56 (3.45)
r ant. STG/planum polare 51 0 −8 2214 4.81 (3.40)
l planum temp. (AC) −42 −30 13 2457 3.94 (3.35)
r planum temp. (AC) 45 −27 19 5589 4.50 (3.42)
l SF −21 −6 −14 324 3.51 (3.19)
l pallidum −15 0 7 1296 4.42 (3.47)
r pallidum 11 3 4 378 3.79 (3.31)

a The peak voxel in the l pars triangularis was part of the cluster with the maximum
peak voxel in the l insula/deep frontal FOp.
wall of the precuneus (areas 5 and 7), and almost the entire cingulate
sulcus (CS).Moreover, both left and right AC showed stronger function-
al connectivity during fear with the anterior insula bilaterally, and the
left (but not the right) AC showed stronger functional connectivity dur-
ing fear with areas 3a & b of S1. The left SF showed stronger functional
connectivity during joy (compared to fear) with right posterior Heschl's
gyrus. During fear (compared to joy), the left SF showed stronger func-
tional connectivity with cuneus (V1–V4), and area 7a of the superior
parietal lobule (precuneus) bilaterally. The right SF showed stronger func-
tional connectivity during joy (compared to fear) with the mediodorsal
nucleus of the thalamus.

Auditory cortex and emotional processing

Pronounced emotion-specific effects were observed in the auditory
cortex: In the General Linear Model (GLM) contrast, BOLD responses
in the entire supratemporal cortex (auditory core, belt, and parabelt)
were stronger for joy than neutral stimuli, and stronger for neutral
than fear stimuli. As will be argued in the following, these results indi-
cate a prominent role of the auditory cortex in the emotional processing
of auditory information. Importantly, there are five reasons as to why
the activity differences between conditions cannot simply be due to
acoustical factors: (1) the values of acoustical descriptors that signifi-
cantly differed between conditions were included as covariates of no
interest, and should therefore not have contributed to differences be-
tween conditions observed in the GLM contrasts. (2) However, even if
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this procedure did not cancel out acoustical differences between condi-
tions, joy and fear stimuli did not differ with regard to their intensity,
mean F0 frequency, variation of F0 frequency, pitch centroid value,
spectral complexity, and spectral flux. (3) F0 salience and chord strength
differed significantly between joy and fear stimuli, aswell as between joy
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Table 4
Results of PPI analysis (corrected for multiple comparisons, p b .05), separately for the
seed voxels in: (a) left AC (Heschl's gyrus), (b) right AC (Heschl's gyrus), (c) left SF, and
(d) right SF (the PPI analysis with S1 as seed region did not indicate any results). Pos-
itive z-values (outermost right column) indicate stronger functional connectivity dur-
ing joy compared to fear, whereas negative z-values indicate stronger functional
connectivity during fear compared to joy. Abbreviations: AC: auditory cortex; FOp:
frontal operculum; HG: Heschl's gyrus; ITS: inferior temporal sulcus; MD: mediodorsal;
MTG: middle temporal gyrus; PAC: primary auditory cortex; SF: superficial amygdala;
SFS: superior frontal sulcus; SPL: superior parietal lobule; STG: superior temporal
gyrus; l: left; r: right.

MNI
coordinate

Cluster size
(mm3)

z-Value: max
(mean)

(a) Left auditory cortex
l HG (PAC) 51 −18 7 2349 4.26 (3.17)
r HG (PAC) −51 −18 7 1431 3.77 (3.16)
r supramarginal gyrus 63 −24 34 89,235 −4.97 (−3.22)
cuneus (area 17, 18) 9 −66 4 19,764 −3.99 (−3.07)
l post. MTG/ITS −60 −60 7 2646 −4.19 (−3.17)
l anterior insula −42 9 1 7263 −4.52 (−3.16)
l mid-insulaa −41 −5 14 – −3.5 (–)
l post. insulab −36 −20 11 – −3.68 (–)

(b) Right auditory cortex
l SFS −24 30 52 2997 −4.07 (−3.19)
l SFS −24 51 25 756 −3.92 (−3.04)
r SFS 27 42 37 3672 −3.76 (−3.05)
l ant. insula/deep FOp −45 12 1 648 −4.06 (−3.27)
l mid-insula −34 3 16 459 −3.48 (−3.05)
r ant. insula & putamen 27 12 7 2295 −4.35 (−3.17)
l planum temporale −60 −24 7 2970 4.34 (3.22)
r planum temporale 60 −18 4 1188 3.68 (3.13)
r supramarginal gyrus 63 −42 37 3429 −4.65 (−3.17)
l post. MTG/ITS −60 −66 7 3240 −4.40 (−3.24)
r post. MTG 54 −57 13 5427 −3.81 (−3.06)
pre-genual cingulate −6 42 7 2268 −3.64 (−2.98)
cingulate sulcus 3 15 43 3888 −4.38 (−3.13)
post. cingulate sulcus 6 −30 49 33,264 −5.40 (−3.18)

(c) Left superficial amygdala
r planum temporale/post. HG 42 −33 13 567 3.75 (3.05)
r SPL (area 7) 18 −48 54 351 −4.13 (−2.94)
l SPL (area 7) −21 −51 54 756 −4.56 (−3.21)
r sup. occipital gyrus (area 18) 26 −95 20 7020 −3.68 (−2.87)
l middle occipital gyrus −30 −78 19 11,043 −4.24 (−2.99)
l lingual gyrus (V4) −18 −73 −5 675 −2.94 (−2.69)
r lingual gyrus (V3 & V4) 18 −81 −8 648 −2.85 (−2.67)

(d) Right superficial amygdala
MD thalamus 3 −12 4 297 3.22 (2.93)

a The peak voxel in the l mid-insula was part of the cluster with the maximum peak
voxel in the l ant. insula.

b The peak voxel in the l post.-insula was part of the cluster with the maximum peak
voxel in the l ant. insula.
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and neutral stimuli (F0 saliencewas highest for neutral, intermediate for
joy, and lowest for fear stimuli; chord strength was highest for joy stim-
uli, and did not differ between neutral and fear stimuli). Nevertheless, in
the GLM, BOLD signal intensity in the auditory cortexwas stronger in re-
sponse to joy compared to neutral, and during neutral compared to fear
stimuli; this pattern does not correlate with the pattern of F0 salience
(being strongest for neutral stimuli) or the pattern of chord strength
(which did not differ between neutral and fear stimuli). (4) Key-
strength showed differences between joy and fear, as well as be-
tween fear and neutral stimuli, but not between joy and neutral
stimuli. Again, this pattern is not consistent with the pattern of BOLD
responses observed in the auditory cortex. Although not well known,
it is highly likely that extraction of the key of tonal music (including
extraction of a tonal center) involves both posterior and anterior
supratemporal cortex bilaterally (e.g., Koelsch, 2011; Liegeois-Chauvel
et al., 1998; Patterson et al., 2002; Peretz and Zatorre, 2005). Therefore,
he interactions of the auditory cortex with limbic/paralimbic brain
tructures are likely to be due to emotional processes, rather than
eing merely due to cognitive processes related to the key-strength
f sounds. (5) Although fear stimuli had a higher degree of sensory
issonance than joy stimuli, activity changes in the auditory cortex
re unlikely to be due to this difference only, because neutral stimuli
ere even more consonant than joy stimuli. The pattern of BOLD
ignal intensity observed in the GLM contrast is, thus, not related to
he degree of sensory dissonance of the stimuli.

Instead, the observed pattern of BOLD signal intensity in the AC
orresponds to the emotion ratings for joy (and inversely for fear,
espectively), indicating that activity of the auditory cortex is related
o the emotional quality of auditory information: Compared to neu-
ral, BOLD signals had a higher intensity during the joy condition, and
lower intensity during the fear condition. In otherwords, we observed
n actual increase in BOLD activity during listening to joy stimuli and an
ctual decrease during listening to fear stimuli (compared to neutral
timuli). With regard to the pronounced regional activity in the audito-
y cortex during the joy-evokingmusic (as indicated by the GLMs), it is
ikely that this was in part due to a more detailed acoustical analysis of
he joyful music, which was probably related to a voluntary shift of
ttention: participants had a preference for the joy stimuli (as indicated
y the valence ratings), and therefore probably paid more voluntary at-
ention to those stimuli, leading to a stronger auditory cortex activation
Jäncke et al., 1999). Similar findings have previously been reported for
leasant compared to unpleasantmusic (Koelsch et al., 2006;Mueller et
l., 2011) or pleasant vs. unpleasant sounds from the International
ffective Digitized Sound System (IADS, Plichta et al., 2011). However,
t is unlikely that merely preference (and, correspondingly, volun-
ary shifts of attention) explains this effect, because the preference
f participants was comparable between fear and neutral music
again, as indicated by the valence ratings), and yet BOLD signal in-
ensity differed between fear and neutral.

The role of the auditory cortex in the emotional processing of au-
itory information is further highlighted by the PPI results involving
uditory seed regions: These results revealed emotion-specific func-
ional connectivity (a) between auditory cortical areas and cingulate,
s well as insular cortex during joy stimuli, and (b) between auditory
reas and parietal, as well as visual cortex (V1–V5) during fear stimuli.
oth cingulate and insular cortex are involved in emotional processes,
n particular with regard to autonomic regulation aswell as the produc-
ion of subjective feelings (Craig, 2009;Medford and Critchley, 2010). In
ddition, the cingulate cortex has been implicated in the coordination of
utonomic activity, behavior, motor expression, as well as cognitive
rocesses in response to emotionally salient stimuli (Koelsch et al.,
010b; Medford and Critchley, 2010).
With regard to the marked functional connectivity between audi-

ory areas and parietal as well as visual cortex, anatomical studies
ndicate that core, belt and parabelt regions project to V1 and V2 of vi-
ual cortex, and that neurons in V2 project back into these auditory
egions (reviewed in Smiley et al., 2007). The observed functional
onnectivity between these areas in the present study highlights the
ole of auditory–visual interactions, in particular during emotional
tates of fear. The functional significance of such interactions is prob-
bly increased visual alertness in the face of danger signaled by audi-
ory information (probably including involuntary shifts of attention).
ur results are the first to show that the auditory cortex is a central
ub of an affective-attentional network that is more extensive than
reviously believed, involving functional connectivity of auditory
ssociation cortex with a diverse range of visual, attentional, and limbic/
aralimbic structures. This finding also supports the notion thatmultisen-
ory interactions in the cerebral cortex are not limited to established
olysensory regions, but that “interactions with other sensory systems
lso take place in auditory cortex” (Smiley et al., 2007). Notably, this latter
onclusion holds even if such multisensory interactions were due to
coustical features which were possibly not accounted for by the

57ge 81 (2013) 49–60
159



roIm
computational feature extraction (andnot necessarily related to emotion-
al responses).

Manyof the observed emotion-specific functional connections parallel
anatomical connections previously described in monkeys (as described
below). Our results provide information about the emotion-specific na-
ture of such connections. With regard to functional connections to the
insula, our results parallel connections between posterior AC and neigh-
boring granular insula in macaque monkeys (Smiley et al., 2007), taken
as a likely source of somatosensory input into the AC (Smiley et al.,
2007). In addition, we observed functional connectivity not only with
posterior, but also with mid- and anterior insula. This indicates clear
functional connectivity between AC and the insula in humans, possibly
reflecting sensory-limbic interactions that are more pronounced in
humans than in monkeys. Such sensory-limbic interactions are also
apparent in the extensive functional connectivity between AC and
cingulate cortex. Previous studies with monkeys showed anatomical
connections between (lateral) auditory belt and posterior cingulate cor-
tex (Yukie, 1995). Our data suggest more extensive functional connec-
tions between auditory cortex and cingulate cortex in humans that
also include anterior cingulate regions.

Superficial amygdala and its role for joy and fear

The superficial amygdala (SF) showed higher BOLD signal values
bilaterally during joy compared to the fear stimuli. These findings cor-
roborate previous reports of (right) SF activation in response to pleas-
ant joyful music (compared to unpleasant music-like noise, Mueller
et al., 2011). Due to its dense anatomical connections to the ventral
striatum (from which it evolved phylogenetically, Nieuwenhuys et
al., 2008), the superior amygdaloid complex has so far been implicated
in positive emotion and hedonic processes (Nieuwenhuys et al., 2008),
in line with our results. In addition, the superior amygdaloid complex
has reciprocal connections to the orbitofrontal cortex (Bach et al., 2011)
and plays a role for olfactory processes (Heimer and Van Hoesen, 2006;
Price, 2003). Further functional connections include the caudate, cingu-
late cortex, insula, and hippocampus (Roy et al., 2009). Interestingly, a
study by Goossens et al. (2009) suggested that the SF is particularly sen-
sitive to social stimuli. Thus, in the present study, the joyful music possi-
bly evoked activity within the SF due to the extraction of the social
significance of the joyful music (but see also below). Such significance
emerges from several social functions of music, including communica-
tion, coordination of movements, cooperation, and social cohesion
(summarized in Koelsch, 2010). The fear stimuli, on the other hand,
had no socially incentive value (being a signal of threat, and thus moti-
vating withdrawal), probably resulting in decreased neuronal activity
within the SF bilaterally (compared to joy and neutral stimuli). The
fact that fear stimuli evoked significantly weaker responses in the
right SF compared to a neutral control condition, and virtually no signal
change in the left SF, suggests that the pattern of SF response to an au-
ditory signal codes the emotional quality of that stimulus (i.e., whether
the stimulus is an incentive social signal, or a signal of threat). Note that
it is unlikely that SF simply codes valence (or arousal), for two reasons:
first, to our knowledge, no previous study using stimuli that are per-
ceived as rewarding, but do not have a social component (such as
monetary rewards) reported SF activation, and second, valence as
well as arousal ratings were used as regressors of no interest in the
statistical modeling of the data, and are thus unlikely to contribute
to the present fMRI results.

The PPI results reveal that functional connectivity between (left)
SF and auditory regions was stronger during joy than during fear
stimuli. Although previous studies have shown anatomical and func-
tional connections between the basolateral (BL) amygdala and AC
that are involved in fear conditioning (LeDoux, 2000), the significance
of functional connectivity of the SF has remained elusive. As argued
above, such connectivity is perhaps related to the social significance
of stimuli, in contrast to the connectivity between BL and AC, which
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appears to be important for the conditioning of (auditory) signals of
danger. It has recently been proposed (Kumar et al., 2012) that amyg-
dala activity affects AC activity as a function of the emotional valence
of stimuli (and that AC provides limbic/paralimbic structures with in-
formation about the acoustic quality of sounds). Thus, the functional
connectivity between (left) SF and AC observed in the present study is
in part consistent with the results by Kumar et al. (2012), because the
stronger AC activity during joy (compared to fear) might be related to
amygdalar activity (note that the functional connectivity between SF
and AC was stronger during joy than fear, and that joy also evoked
stronger BOLD signals than fear in AC). The neural pathway that origi-
nates in SF and modulates AC activity remains to be specified; as will
be discussed below, such a pathway probably involves thalamic nuclei,
including themedio-dorsal thalamus. Notably, the study byKumar et al.
(2012) presented unpleasant stimuli only, thus our results suggest that
amygdala activity is also related to AC activity in response to pleasant
auditory stimuli.

In addition to joy, SF is also involved in fear responses, as indicated
by the increased functional connectivity of the (left) SF with area 7
and with visual areas during fear (compared to joy), possibly related
to the elicitation of increased visual alertness during fear-evoking
auditory information. Finally, the right SF showed increased function-
al connectivity during joy with the medio-dorsal thalamus (MD). A
diffusion-tensor-imaging study by Behrens et al. (2003) reported a
fiber tract extending anteriorly and inferiorly along the medial wall
of the thalamus, then turning laterally into the amygdala. A similar
path has been documented for non-human primates, via the inferior
thalamic peduncle (Aggleton and Mishkin, 1984). In the study by
Behrens et al. (2003), this pathway was small, and the authors were
thus not confident that their result was valid. However, our results
suggest that this pathway from MD to the (superficial) amygdala ex-
ists, and that it plays a specific role for positive emotion. Perhaps this
thalamic nucleus is part of the pathway by which AC activity is regu-
lated as an effect of SF activity.

Contrary to our hypothesis, no activity changes were observed be-
tween conditions in the hippocampal formation. However, the activity
changes observed in the SF spread into the hippocampal-amygdaloid
transition area, and perhaps stronger signal changes in the hippocampal
formation would have been obtained in a less noisy environment:
Mueller et al. (2011) reported that significant signal changes in the hip-
pocampal formation (evoked by pleasant joyfulmusic contrasted to un-
pleasant music-like noise) were observed only with interleaved silent
steady state scanning, or with sparse temporal scanning; no signal
change was observed in the hippocampus during continuous scanning
in that study.

Primary somatosensory cortex (S1)

Stronger BOLD signals were measured in right area 3b of S1 during
fear than during joy (or neutral) in voxels that correspond to the cor-
tical representation of the face in S1 (Blakemore et al., 2005; Moulton
et al., 2009). Previous experiments have reported that the recognition
of emotions from visually presented facial expressions requires right
somatosensory-related cortices, including the face representation in
S1 (Adolphs et al., 2000). That finding corroborated the notion that
individuals recognize another individual's emotional state by inter-
nally generating somatosensory representations that simulate how
the other individual would feel when displaying a certain emotional
(facial) expression. Our data suggest that such somatosensory-driven
simulations are also activated by auditory information with emotional
valence, such as music (probably also affective prosody). This notion
is consistent with data indicating facial mimicry in response to happi-
ness or sadness expressed by music (Lundqvist et al., 2009). It is also
possible that somatosensory activity reflects mapping of an evoked
emotional state during the emergence of feelingswith the aid of somato-
sensory representations (e.g., of proprioceptive information during
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visually evoked emotions, Rudrauf et al., 2009). Again, our results sug-
gest that such mapping can be activated by auditory information with
emotional valence. The reason as towhy, in our study, S1 representations
were activated more strongly in response to fear than to joy remains to
be specified.

Conclusions

This study has two main conclusions: First, during music listening,
the auditory cortex has emotion-specific functional interactions with
a diverse range of visual, parietal, and limbic/paralimbic structures;
this demonstrates that the auditory cortex is a central relay of an
affective-attentional network that is more extensive than previously
believed. This finding also implicates that the auditory cortex is in-
volved in sensory-limbic and multisensory interactions that resemble
those of established polysensory regions. Second, our results suggest
that the superficial amygdala (SF) is sensitive for incentive social sig-
nals (including music), but at the same time also involved in fear
responses: in concert with the auditory cortex, the SF appears to elicit
increased visual alertness in the face of danger signaled by auditory
information. Fear music may thus activate phylogenetically old mech-
anisms that engage the visual localization of potentially threatening
objects. It is tempting to speculate that the corresponding increase of ac-
tivity in visual areas during listening to fear-evokingmusic leads tomore
intense visual imagery (compared, e.g., to joyful music), particularly
when listening to music with closed eyes (as in the present study).
Such increased visual imagery during fear-evoking music might be an
important factor contributing to the emotional experience, and the es-
thetic appeal, of fear-evoking music.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.05.008.
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4. THE AGE OF CONTEXT-AWARENESS
My cow is not pretty, but it’s pretty to me 

David Lynch 

Well, shall we think or listen? 
Is there a sound addressed not wholly to the ear? 

We half close our eyes. 
We do not hear it through our eyes. 

It is not a flute note either, 
it is the relation of a flute note to a drum. 

William Carlos Williams, The Orchestra 

4.1. Introduction 
“An essential part of human psychology is the ability to identify music, text, images or 
other information based on associations provided by contextual information of different 
media” (Brochu et al., 2003). Because of that, studies abound on the different usages of 
music and their contexts of listening (Schedl et al., 2012; Stober, 2011). But context was, 
indeed, one of the missing elements in many of the early approaches to MIR and a partial 
cause of the semantic gap (see the previous chapter) (Wiggins, 2009; Schedl & Knees, 
2009). With the availability of portable personal communication devices, which include 
sensing capabilities, the possibility of detecting and characterizing contextual data was 
made feasible and, hence, a new series of research and applied questions was posed 
(Kaminskas & Ricci, 2009; Schedl, 2013), marking the beginning of the age of context-
awareness.  
It is difficult to find a single notion or definition of context (but see (Dey & Abowd, 2000; 
Dey, 2001) because different types of contexts have been attracted the attention of 
researchers: 

• Physiological parameters, which can be altered as a consequence of music
listening (Bernardi et al., 2009) and hence can be used to track and modulate
pleasantness or discomfort (Thaut & Davis, 1993; Kallinen & Ravaja, 2004;
Nagel, 2007; Bernatzky et al., 2011; Knox et al., 2011), or to track musical
sections, motives or special musical events (Cabredo et al., 2011; Oliver &
Kreger-Stickles, 2006; Masahiro et al., 2008). Alternatively, these parameters can
act as triggers for certain musical selections and for musical behaviour, so they
provide context but also they are affected by it (Hu et al., 2006).

• The listener itself, as a carrier of a listening history, music preferences or
personality, and subject to a short-term changing mindset and mood (Baur et al,
2010; Baur, 2011; Schedl et al., 2013). Mindset and mood may act like high-level
surrogates of the physiological parameters, with the advantage that they are
usually reported verbally, not requiring specific tracking devices (but they can be
automatically inferred, up to a certain point, from measures taken by them)
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(Schubert, 2002). The connection between personality and music preferences 
have been successfully explored and characterized (Rentfrow & Gosling, 2003; 
Rentfrow et al., 2011) and some applications start to take advantage of it 
(Fernández-Tobias et al., 2016; Ferwerda et al., 2016). An important but still open 
issue is how the emotional content of music can modify the emotional states or 
mood of the listener. Predictive models of that are still missing or are rudimentary 
(Han et al., 2010; Gilda, 2017). 

• Activities in which listeners play or listen to music. The most usual is working-
out, but studying, dancing, getting asleep, driving or making love are also 
common in listener’s reports (Hu et al., 2006; Lee & Downie, 2004). Portable 
music devices addressed to them have been created (one of the first appliances 
incorporating automatic music audio analysis was Yamaha’s BodyBeat30, 
targeted to people working out with music tempos matching the rhythm of the 
jogger). Behavioural measures like mouse-clicks, button pressings, playlist skips, 
stepping or writing velocity, etc., are also used to infer part of that context 
(Pampalk, Pohle and Widmer, 2005; Stober, 2011; Hu & Ogihara, 2011).  

• Physical environment context, including temporal, geographical and weather 
conditions: listening to music can be geo-tagged in order to provide concert-going 
suggestions, and time of listening can be used as a predictor of future listening 
(Lee & Lee, 2006; Baltrunas & Amatriain, 2009; Herrera et al., 2010). 
Environmental noise, illumination or weather conditions, being factors that affect 
human behaviour, can also be sensed and used to modulate musical 
recommendations, playlists or playing parameters (Park et al., 2006). 

• Peers: social context is a powerful modulator of preferences and opinions about 
music and artists (Hargreaves & North, 1999; Uitdenbogerd & Van Steelant, 
2002; Fields et al., 2008; Barrington et al., 2009; Liu & Reimer, 2008). For this 
reason, computing similarities and relatedness, or even basing recommendation 
systems on peer-based data, such as tags from social websites, have been proposed 
(Levy & Sandler, 2007; Lamere, 2008; Shavitt & Weinsberg, 2009). 

• Culture: we now know that even before birth the music culture surrounding us 
exerts a crucial role by means of implicit learning of musical regularities 
(Tillmann & Bharucha, 2000) and hence our familiarity or preference for certain 
musical features is influenced by those that are predominant there. Such cultural 
connections, stereotypes or assumptions can be inferred by web-mining, playlist-
mining or social-mining and be used to filter retrieval, guide searches or build 
similarities between tracks, artists, contexts of use, etc. (Whitman & Lawrence, 
2002; Baumann & Hummel, 2005; Knees et al., 2008; Schedl, 2008; Schedl et al., 
2008; Levy & Sandler, 2008). 

• The context music itself sets. This type of context is the only one being purely 
musical as it comprises the music happening before (and sometimes after) a 
specific moment in time. Purely musical context has a crucial role for adaptive 

                                                 
30 http://www.yamaha.com/bodibeat 
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signal processing31 and feature extraction algorithms (Goto, 2001; Müller et al., 
2009; Peeters, 2006; Stober, 2011). Intrinsic musical context is very relevant for 
playlist continuation (Fields, 2011; Bonnin & Jannach, 2014; Vall et al., 2017), a 
fruitful and somehow new topic that motivated a challenge in the context of the 
RecSys conference32. Most of the approaches rely on the most recent listening 
only, hence overlooking the benefits that long-term listening patterns might exert 
(Kamehkosh et al., 2016). 

• Music-synchronous or visual-linked media. In addition to lyrics analysis (Hyung 
et al., 2014), video accompanying music (Schindler & Rauber, 2015), record 
sleeves (Libeks & Turnbull, 2011) and artists’ photos (Libeks & Turnbull, 2010), 
provide additional data streams to compute similarities, describe preferences or 
suggest music. “Multi-modality” becomes then a solid research topic in MIR 
(Mayer & Rauber, 2010; Schedl & Knees, 2011, Oramas et al., 2017). 

If there was one type of application that probably reaches a maturity status in this age, it 
could be that of recommender systems and therefore we can witness the flourishing of a 
myriad of music recommenders that were taking advantage of contextual information and 
hence, improving the figures of merit over pure audio-based ones (Baltrunas et al., 2011; 
Hu & Ogihara, 2011; Wang et al., 2012; Kaminskas et al., 2013; Cheng & Shen, 2014; 
Schedl et al., 2014).  
Understanding music-related context has called for knowledge from disciplines as diverse 
as biology, neuroscience, psychology, linguistics, ergonomics or economics. 
Surprisingly, the applied intentions of many MIR researchers did not find in those 
disciplines the answers for some of their questions and needs, and this has fostered the 
inherent interdisciplinarity in the field.   
 

4.2. Papers included in this chapter 
Bogdanov, D., Haro, M., Fuhrmann, F., Xambó, A., Gómez, E. & Herrera, P. 
(2013) Semantic content-based music recommendation and visualization based on user 
preference examples. Information Processing and Management, 49(1), 13-33. (h-index: 
84; Journal IF 2017: 3.444, Q1 in Information Processing journals; 71 citations) 
Herrera, P., Resa Z., & Sordo M.  (2010). Rocking around the clock eight days a week: 
an exploration of temporal patterns of music listening. 1st Workshop on Music 
Recommendation and Discovery (WOMRAD), ACM RecSys, 2010, Barcelona, 
Spain. (27 citations, WIRED magazine short note, idea quickly adopted by last.fm33) 
 

                                                 
31 See also Celemony System’s Audio Random Access technology, tying traditional signal processing 
with audio content analysis to improve the former in “real-time”. 
https://en.wikipedia.org/wiki/Audio_Random_Access 
32 http://2018.recsyschallenge.com 
33 http://blog.last.fm/2010/09/06/now-in-the-playground-listening-clocks 

https://en.wikipedia.org/wiki/Audio_Random_Access
http://2018.recsyschallenge.com/
http://blog.last.fm/2010/09/06/now-in-the-playground-listening-clocks
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4.3. Contributions in the selected papers 
In "Semantic content-based music recommendation and visualization based on user 
preference examples" we built individualized user models to avoid a cold start with a 
music recommender. Preference elicitation is a challenging fundamental problem when 
designing recommender systems, so we based our recommender on an explicit set of 
music tracks provided by the involved users as “representative” of their musical tastes 
and interests. We inferred from them a user model based on semantic descriptors (i.e., if 
they preferred danceable or non-danceable, vocal or instrumental, tonal or atonal, fast or 
slow music, etc.). Then we showed the utility of such profile for, on one side, 
automatically creating a cartoon humanoid or “musical avatar”, as a device to visualize 
and socially communicate music preferences (different body and clothing parts changed 
accordingly to preferred aspects). Our subjects judged their respective avatars as good 
and compact ways to capture their preferences. On the other hand, the user profile was 
used to recommend music by means of three different strategies, two of them based on a 
semantic music similarity measure (computed either using just one of the preferred items 
or using all of them), and one strategy based on a Gaussian Mixture Model computed 
using the whole preferred set. We used qualitative dimensions such as familiarity with 
the recommended items, liking of them, and intentions (to further listening to them), to 
evaluate the users’ satisfaction with the recommendation. Interestingly, in addition to hits 
(unfamiliar tracks that were liked and intended to be further listened to) and fails (disliked 
tracks with no future listening prospects) we introduced the category “trust” to consider 
tracks that, although familiar (hence not “discoveries”) were liked and intended for further 
listening. Trusts are indicators that the system “understands” the tastes of the user, and a 
moderate number of them, scattered among many hits, seemed to be a desirable feature 
(in fact Last.fm supplied 25% of them whereas our tested methods supplied less than 4% 
trusted items). Overall our semantic-descriptor-based recommendations were better than 
those based on low-level features only, and better than those generated using just genre 
labels. Even though our fails were higher than the hits, it is remarkable for an audio 
content-based recommender to get hits just 7 percent units below than a full-fledged 
commercial system as Last.fm. Qualitatively, the user profile computed from a preference 
set assures a noise-free representation of the user’s preference with a maximum possible 
coverage. Moreover, the chosen preference elicitation technique -namely inferring the 
dimensions of the user’s preferences in a fully audio content-based manner- affords the 
system to overcome the so-called cold-start problem, which audio content-unaware 
systems must face. It also guarantees recommendations of non-popular items, which may 
be preferred by specialized or long-tail seeking listeners. Finally, having semantic 
descriptions for both the user and the recommended items allows to automatically 
generate justifications for the recommended music (e.g., ‘‘This track was recommended 
because you like jazz music with acoustic instrumentation and relaxed mood’’.), which 
is a highly desirable feature for a recommendation system (Tintarev & Masthoff, 2007). 
In “Rocking around the clock eight days a week: an exploration of temporal patterns of 
music listening” we presented one of the earliest studies (if not the first one) on how 
music listening patterns can be influenced by contextual factors such as the day of the 
week or the time where listening happens. Chronobiology has demonstrated in the last 50 
years that there are many biological processes (and hence, probably behavioural patterns) 
that are driven or, at least, modulated by inner and outer clocks. Music listening could be 
just another example, although the nature and method of our research cannot demonstrate 
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any causal relation. Here we addressed the hypothesis that, for some listeners, certain 
moments of the day or certain days of the week could yield a clear preference for some 
artists or genres. With the help of circular statistics (which was also an innovation in the 
MIR literature), we analysed playcounts from Last.fm (thanks to the dataset made 
publicly available by Celma 
34) and we detected the existence of that kind of patterns. Once temporal preference was 
modelled for each listener, we tested the robustness of it using the listener’s playcount 
from a posterior temporal period. We showed that, for some users, artists and genres, 
temporal patterns of listening could be used to predict music listening selections with 
above-chance accuracy. This finding could be exploited in music recommendation and 
playlist generation to provide user-specific music suggestions at the “right” moment. 
Research on the topic has been updated with expanded focus, including country and other 
demographic information (Schedl, 2017), focus on seasonal effects (Pettijohn et al., 2010; 
Krause & North, 2018), or weather conditions (Karmaker et al., 2018).  
  

                                                 
34 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html 



 

 

 

 

Bogdanov, D., Haro, M., Fuhrmann, F., Xambó, A., Gómez, E. & Herrera, P. (2013) "Semantic 
content-based music recommendation and visualization based on user preference examples". 
Information Processing and Management, 49(1), 13-33. 

 

DOI:https://doi.org/10.1016/j.ipm.2012.06.004 

ISSN: 0306-4573 

168

https://doi.org/10.1016/j.ipm.2012.06.004


Information Processing and Management 49 (2013) 13–33
Contents lists available at SciVerse ScienceDirect
Semantic audio content-based music recommendation

Information Processing and Management

journal homepage: www.elsevier .com/ locate/ infoproman
and visualization based on user preference examples

Dmitry Bogdanov a,⇑, Martín Haro a, Ferdinand Fuhrmann a, Anna Xambó b, Emilia Gómez a,
Perfecto Herrera a

a Music Technology Group, Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
b Music Computing Lab, The Open University, Walton Hall, MK7 6AA Milton Keynes, UK

a r t i c l e i n f o

Article history:
Received 26 September 2011
Received in revised form 15 February 2012

a b s t r a c t

Preference elicitation is a challenging fundamental problem when designing recommender
systems. In the present work we propose a content-based technique to automatically gen-
erate a semantic representation of the user’s musical preferences directly from audio. Start-
Accepted 17 June 2012
Available online 25 July 2012

Keywords:
Music information retrieval
Information systems
User modeling
Recommender system
Preference visualization
Evaluation
1. Introduction

Over the past decade, we ha
try. Consequently, the overload
tems. Such information system
ing from an explicit set of music tracks provided by the user as evidence of his/her
preferences, we infer high-level semantic descriptors for each track obtaining a user model.
To prove the benefits of our proposal, we present two applications of our technique. In the
first one, we consider three approaches to music recommendation, two of them based on a
semantic music similarity measure, and one based on a semantic probabilistic model. In
the second application, we address the visualization of the user’s musical preferences by
creating a humanoid cartoon-like character – the Musical Avatar – automatically inferred
from the semantic representation. We conducted a preliminary evaluation of the proposed
technique in the context of these applications with 12 subjects. The results are promising:
the recommendations were positively evaluated and close to those coming from state-of-
the-art metadata-based systems, and the subjects judged the generated visualizations to
capture their core preferences. Finally, we highlight the advantages of the proposed seman-
tic user model for enhancing the user interfaces of information filtering systems.

� 2012 Elsevier Ltd. All rights reserved.

ve witnessed a rapid growth of digital technologies, the Internet, and the multimedia indus-
of generated information has created the current need for effective information filtering sys-

s include tools for browsing and indexing large data catalogs as well as recommendation
algorithms to discover unknown but relevant items therein. Their development and related research are usually carried
out in the field of information retrieval.

In particular, recommender systems built upon user profiles are currently in the spotlight of the information retrieval
community. Since preferences are highly subjective, personalization seems to be a key aspect for optimal recommendation.
Ideally, such systems should be able to grasp user preferences and provide, on this basis, the content which is relevant to the
user’s needs.

Preference elicitation can therefore be regarded as a fundamental part of recommender systems and information filtering
systems in general. Several approaches have been proposed in the literature to tackle this problem. In particular, Hanani,
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Shapira, and Shoval (2001) identified two main strategies – explicit and implicit user preference inference. The former relies
on user surveys in order to obtain qualitative statements and ratings about particular items or more general semantic prop-
erties of the data. In contrast, the latter relies on the information inferred implicitly from user behavior and, in particular,
consumption statistics. In the present work, we focus on music recommender systems and consider explicit strategies to in-
fer musical preferences of a user directly from the music audio data.

When considering digital music libraries, current major Internet stores contain millions of tracks. This situation compli-
cates the user’s search, retrieval, and discovery of relevant music. At present, the majority of industrial systems provide
means for manual search (Nanopoulos, Rafailidis, Ruxanda, & Manolopoulos, 2009). This type of search is based on metadata1

information about artist names, album or track titles, and additional semantic2 properties which are mostly limited to genres.
Music collections are then queried by tags or textual input using this information.

Moreover, current systems also provide basic means for music recommendation and personalization, which are not re-
lated to the audio content, i.e., using metadata. Such systems obtain a user’s profile by monitoring music consumption
and listening statistics, user ratings, or other types of behavioral information, decoupled from the actual music data (Baltr-
unas & Amatriain, 2009; Celma, 2008; Firan, Nejdl, & Paiu, 2007; Jawaheer, Szomszor, & Kostkova, 2010; Levy & Bosteels,
2010; Shardanand & Maes, 1995). In particular, a user can be simply represented as a vector of ratings or playback counts
for different artists, albums, and tracks. Having a database of such user profiles, this allows the use of collaborative filtering
to search for similar users or music items (Sarwar, Karypis, Konstan, & Reidl, 2001). Alternatively, semantic tag-based profiles
can be built to be matched with music items directly. Firan et al. (2007) proposes to create such a semantic profile using
implicit information about a user’s listening behavior. To this end, they use the user’s listening statistics (artist or track play-
back counts) and the editorial metadata extracted from the files in the user’s personal music collection (artist names and
track titles). The tags are obtained for artists, albums, and particular tracks from music services which provide means for
social tagging, such as Last.fm.3 Tags can also be retrieved from information found on the Web (Celma, 2008; Celma & Serra,
2008; Schedl, Widmer, Knees, & Pohle, 2011) in the form of reviews, biographies, blog posts, music related RSS feeds, etc.

These approaches, notably using collaborative filtering for music recommendation, are found to be effective when con-
sidering popular music items. However, it has been shown that they fail in the long tail, i.e., for unpopular items, due to
the lack of available user ratings, social tags, and other types of metadata (Celma, 2008). On the other hand, there is evidence
(Barrington, Oda, & Lanckriet, 2009; Celma & Herrera, 2008) that content-based4 information extracted from the audio can
help to overcome this problem.

Existing research in the area of audio content-based music recommendation usually focuses on the related task of mea-
suring music similarity. The Music Information Research (MIR) community has achieved relative success in this task (Casey
et al., 2008; Downie, Ehmann, Bay, & Jones, 2010), striving to facilitate both manual search and automatization of music rec-
ommendation. In these approaches, music tracks are represented in a given feature space, built upon timbral, temporal, to-
nal, and/or higher-level semantic dimensions, all extracted from audio content (Barrington, Turnbull, Torres, & Lanckriet,
2007; Bogdanov, Serrà, Wack, & Herrera, 2009; Pampalk, 2006; Pohle, Schnitzer, Schedl, Knees, & Widmer, 2009; West & La-
mere, 2007). Such a representation enables the definition of similarity measures (or distances5) between tracks, which can be
used to search music collections using queries-by-example. Such distance-based approaches are designed and evaluated, in
most cases, for the query-by-one-example use-case. Since retrieval based on a single example is just a particular case of using
a recommender system, these approaches may not be directly suitable for music recommendation purposes in general. As the
users only provide one query, no knowledge about their musical preferences is required. Querying by example implies an active
interaction by the user to explicitly define the ‘‘direction of search’’. As a result, such approaches are not suitable when a user
does not know her/his exact needs and prefers receiving recommendations from an available music collection without defining
an example (seed) item.

In addition to these non-personalized measures, there has only been sparse work on personalized music similarity mea-
sures from audio content data (Lu & Tseng, 2009; Sotiropoulos, Lampropoulos, & Tsihrintzis, 2007; Vignoli & Pauws, 2005).
These studies introduce metrics, which are adapted according to a user’s perception of similarity to measure distances be-
tween tracks in a given collection. Nevertheless, these studies are also focused on the query-by-one-example scenario, and,
in their majority, do not take musical preferences into account.

Alternatively, there exist few research studies on user preference modeling for music recommendation which include
studies of audio content-based (Grimaldi & Cunningham, 2004; Hoashi, Matsumoto, & Inoue, 2003; Logan, 2004; Mandel
& Ellis, 2005) and hybrid approaches (Li, Myaeng, Guan, & Kim, 2005; Su, Yeh, & Tseng, 2010; Yoshii, Goto, Komatani, Ogata,
& Okuno, 2006). These studies present several shortcomings. Firstly, they operate solely on rough timbral, and sometimes
temporal and tonal information. This information is low-level as it does not incorporate higher-level semantics in the
description of music. In the case of music similarity, it has been shown that distance measures which operate on semantic
descriptors, inferred from low-level features, outperform low-level derived similarities (Barrington et al., 2007; Bogdanov

1 We pragmatically use the term ‘‘metadata’’ to refer to any information not extracted from the audio signal itself.
2 We use the term ‘‘semantic’’ to refer to the concepts that music listeners use to describe items within music collections, such as genres, moods, musical

culture, and instrumentation.
3 http://last.fm.
4 We use the terms ‘‘audio content-based’’ or ‘‘audio content’’ to refer to any information extracted from the raw audio signal.
5 For the sake of simplicity we refer to any (dis) similarity estimation with the term ‘‘distance’’.
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et al., 2009; West & Lamere, 2007). Recent research suggests that exploiting a semantic domain can be a relevant step to
overcome the so-called semantic gap (Aucouturier, 2009; Celma, Herrera, & Serra, 2006), which arises from the weak linking
between human concepts related to musical aspects and the low-level feature data extracted from the audio signal. Further-
more, the metadata components of the majority of hybrid approaches solely use information about user ratings, exploiting it
in a collaborative filtering manner. This allows to measure relations between different music tracks or between different
users, but does not provide insights into the underlying relations between the music and the user himself, i.e., the nature
of musical preferences. Moreover, a large amount of users and ratings is usually required for reasonable performance, as such
systems are prone to the so-called ‘‘cold-start problem’’ (Maltz & Ehrlich, 1995), i.e., the inability to provide good recommen-
dations at the initial stages of the system.

This all indicates a lack of research on both metadata-based and audio content-based strategies for an effective elicitation
of musical preferences, including comprehensive evaluations on large music collections and real listeners. Most existing ap-
proaches exploit user ratings as the only source of explicit information. The evaluation of such approaches is often done
objectively without the participation of real listeners. Ground truth datasets of user ratings are used instead. However, these
ratings can be considered as indirect and even noisy preference statements (Amatriain, Pujol, & Oliver, 2009). They do not
necessarily represent real user preferences, as they are biased by the precision of a rating scale, decisions on the design of the
recommender interface, etc. (Cosley, Lam, Albert, Konstan, & Riedl, 2003). In turn, implicit listening behavior statistics based
on track counts might not represent real preferences in particular since it ignores the difference between track durations or
users’ activities when listening the music (Jawaheer et al., 2010). Furthermore, these information sources do not guarantee a
complete coverage of all kinds of preferred items. Alternative explicit approaches are generally limited to surveying for the
names of favorite artists, albums, or preferred genres.

In the present work, we focus on audio content-based user modeling suitable for music recommendation. In contrast to
most existing approaches, we propose a novel technique which is based on the automatic inference of a high-level semantic
description6 of the music audio content, covering different musical facets, such as genre, musical culture, moods, instruments,
rhythm, and tempo. These semantic descriptors are computed from an explicit set of music tracks defined by a given user as
evidence of her/his musical preferences. To the best of our knowledge this approach for user modeling for music recommenda-
tion has never been evaluated before. In particular, our technique relies on two hypotheses. First, we suppose that asking for
explicit preference examples is an effective way to infer real user preferences. Second, we assume that high-level semantic
description outperforms common low-level feature information in the task of music recommendation. The latter hypothesis
is based on similar evidence in the case of music similarity estimation (Bogdanov et al., 2009).

In particular, our focus lies on music discovery as the use-case of a recommender system, where we consider both rele-
vance and novelty aspects, i.e., recommending music liked by, but previously unknown to users. We propose three new rec-
ommendation approaches operating on semantic descriptions, based on the proposed user preference modeling technique.
To evaluate them, we compare our methods with two baseline approaches working on metadata. First, we employ a simple
approach which uses exclusively genre information for a user’s preference examples. Second, we apply a state-of-the-art
commercial black-box recommender system on the basis of Last.fm. This recommender relies on metadata, and partially uses
collaborative filtering information (Levy & Bosteels, 2010), operating on a large database of users and their listening statis-
tics. We provide this system with editorial metadata for the preference examples to retrieve recommendations. Moreover,
we also consider two audio content-based baseline approaches. In contrast to the proposed semantic methods, these algo-
rithms use the same procedure for recommendation but operate on low-level timbral features. We then evaluate all consid-
ered approaches on 12 subjects, for which we use their gathered preference data to generate recommendations and carry out
a listening experiment to assess familiarity, liking and further listening intentions of the provided recommendations. The
obtained results indicate that our proposed approaches perform close to metadata-based commercial systems. Moreover,
we show that the proposed approaches perform comparably to the baseline approach working on metadata which relies
exclusively on manually annotated genre information to represent user preferences and a music collection to recommend
music from. Furthermore, the proposed approaches significantly outperformed the low-level timbre-based baselines, sup-
porting our hypothesis on the advantage of using semantic descriptors for music recommendation.

In a second step we exploit the proposed user preference model to map its semantic description to a visual domain. To the
best of our knowledge, this task of translating music-oriented user models into visual counterparts has not been explored
previously. We propose a novel approach to depict a user’s preferences. In our study we consider three descriptor integration
methods to represent user preferences in a compact form suitable for mapping it to a visual domain. We evaluate this visu-
alization approach on the same 12 subjects and discuss the obtained results. More precisely, we show that the generated
visualizations are able to reflect the subjects’ core preferences and are considered by the users as a closely resembling,
though not perfect, representation of their musical preferences.

In summary, the proposed technique generates a user model from a set of explicitly provided music tracks, which, in turn,
are characterized by the computed semantic descriptors. This semantic representation can be useful in different applications,
along with music recommendation, to enrich user experience and increase user trust in a final recommender system. The
examples of such applications are, among others, user characterization and visualization, and justification of the provided
recommendations. To support and evaluate the proposed technique, we focus on two applications, namely music recommen-

6 We will use the generic terms ‘‘descriptor’’ and ‘‘semantic descriptor’’ to refer to any high-level semantic description.
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dation and musical preference visualization. A general scheme of the proposed technique and its applications is presented in
Fig. 1.

This article is organized as follows: The next section covers related work in the field of audio content-based music rec-
ommendation. In Section 3 we describe the proposed preference elicitation technique, including the processes of data gath-

Fig. 1. General scheme of the proposed preference elicitation (user modeling) technique and its applications.
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ering Section 3.1 and automatic descriptor extraction Section 3.2. In Section 4 we analyze the evaluation data provided by 12
participants. Section 5 focuses on the first application of the presented preference inference technique – audio content-based
music recommendation. In Section 6 we present the second application – audio content-based visualization of musical pref-
erences, starting from the proposed user modeling technique. In Section 7 we provide a general discussion and consider sev-
eral use-cases of integration of the proposed applications into a final recommender system and their further improvement.
Finally, in Section 8 we state general conclusions and highlight future research directions.

2. Related work in music recommendation

In this section we review the most important studies in music recommendation, considering both audio content-based
and hybrid approaches. These studies can be divided into three categories: personalized music similarity measures, audio
content-based models and hybrid models of user preferences.

A number of studies incorporate perceptual personalization of music similarity measures which can be applied for music
recommendation. Sotiropoulos et al. (2007) present an active learning system, which adapts the underlying Euclidean dis-
tance measure according to a user’s feedback on the perceived music similarity. The system operates on sets of timbral, tem-
poral, and tonal features, employing feature selection based on neural networks. Vignoli and Pauws (2005) present a music
recommender system based on a hybrid distance measure defined as a user-weighted combination of timbre, genre, tempo,
year, and mood distance components. The weights can be explicitly defined by the user. Moreover, Lu and Tseng (2009) pres-
ent a personalized hybrid recommender system. They propose to combine a distance working on tonal and rhythmic features
together with a distance based on collaborative filtering information about preferred tracks, and a semantic emotion-based
distance. In order to train the personalized hybrid distance, the user is given a sample of music tracks and is asked to explic-
itly supply the system with preference assessments (likes/dislikes) and the underlying reasons (such as preference by tonal-
ity, and rhythm) for each track. Based on these assessments, the system searches for the closest tracks to the preferred tracks
in a music collection using the personalized distance. The scope of this system is considerably limited: its audio content-
based component is based on score analysis instead of real audio while the emotion-based component requires manual
mood annotations done by experts.

Regarding the work on audio content-based user modeling for music recommendation, Hoashi et al. (2003) present a sys-
tem with an underlying classification procedure, which divides tracks into the ‘‘good’’ and ‘‘bad’’ categories according to the
genre preferences explicitly given by a user. Tree-based vector quantization is used for classification of the tracks repre-
sented in a timbral feature space by mel-frequency cepstral coefficients (MFCCs). A sample of tracks labeled by genre is used
for initial training of the algorithm. Additional corrections to the classification algorithm can be done via relevance feedback.
Grimaldi and Cunningham (2004) apply similar classification using the tracks rated by a user as ‘‘good’’ and ‘‘bad’’ examples.
The authors employ kNN and feature sub-space ensemble classifiers working on a set of timbral and temporal features. These
classifiers and features were originally suited for the task of genre classification. Due to this fact, the authors found that the
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proposed approach fails in the case when the user’s preference is not driven by a certain genre. Logan (2004) proposes to
generate recommendations based on an explicitly given set of music tracks, which represent a user’s preferences. A timbral
distance measure is applied to find the tracks similar to the set. As such, the author proposes to use the Earth mover’s dis-
tance between clusters of MFCCs, which represent music tracks. Unfortunately, no evaluation on real listeners was con-
ducted. Instead, a set of tracks from a randomly chosen album was used to simulate a user’s preferences. A track for the
same album, not belonging to the user set, is then used as an objective criterion for the evaluation. One of the potential draw-
backs of such an evaluation methodology consists in the bias, which leads to the overestimation of real performance, given
that timbral distances tend to easily recognize tracks for the same album due to the so-called ‘‘album effect’’ (Mandel & Ellis,
2005). This effect implies that, due to the production process, tracks from the same album share much more timbral char-
acteristics than tracks from different albums of the same artist, and, more so, different artists.

Finally, there are more sophisticated user modeling approaches which use both metadata and audio content information.
Yoshii et al. (2006) present a probabilistic user model, which incorporates ratings given by a user and audio content-based
‘‘bags-of-timbres’’. The latter ones represent polyphonic timbre weights, and are obtained from a Gaussian mixture model of
MFCCs for each track. The authors use a Bayesian network in the core of their system. A simulation by user ratings obtained
from the Amazon Internet store was used to conduct an objective evaluation. Li et al. (2005) and Li, Myaeng, and Kim (2007)
propose a track-based probabilistic model, which extends the collaborative filtering approach with audio content-based
information. In this model, music tracks are classified into groups based on both available user ratings (by all users in the
system) and the extracted set of timbral, rhythmic, and pitch features. The predictions are made based on a user’s own rat-
ings, considering their Gaussian distribution on each group of tracks. The authors conducted an objective evaluation using
ground truth user ratings. Similarly, Su et al. (2010) present a hybrid recommendation approach, which represents the tracks
in a audio content-based feature space. Patterns of temporal evolution of timbral information are computed for each track,
represented as frame sequences of clusters of timbral features. Subsequently, given a collaborative filtering information in
the form of user ratings, the tracks can be classified into ‘‘good’’ and ‘‘bad’’ according to the ratings of a user and his/her
neighbors with similar ratings. To this end, the frequency of the occurrence of ‘‘good’’ and ‘‘bad’’ patterns are computed
for each track and are taken as a criterion for classification. The evaluation of the proposed approach is done on ground truth
ratings obtained from the Amazon Internet store.

3. Methodology

In this section we explain the proposed audio content-based technique for user modeling. We describe the underlying
procedure of gathering user preference examples and the process of descriptor extraction. This technique was partially pre-
sented in (Bogdanov, Haro, Fuhrmann, Gómez, & Herrera, 2010; Haro et al., 2010).

3.1. Preference examples gathering

As a first step, we ask users to gather the minimal set of music tracks which is sufficient to grasp or convey their musical
preferences (the user’s preference set). Ideally, the selection of representative music should not be biased by any user expec-
tations about a final system or interface design issues. Therefore, for evaluation purposes, we do not inform the user about
any further usage of the gathered data, such as giving music recommendations or preference visualization. Furthermore, we
do not specify the number of required tracks, leaving this decision to the user.

Generally, example gathering could be performed by either asking the user to provide the selected tracks in audio format
(e.g., mp3) or by means of editorial metadata sufficient to reliably identify and retrieve each track (i.e., artist, piece title, edi-
tion, etc.). For the proposed audio content-based technique and its applications, the music pieces would be informative even
without any additional metadata (such as artist names and track titles). Nevertheless, for a considerable amount of users in a
real world (industrial) scenario, providing metadata can be easier than uploading audio. In this case, the audio including full
tracks or previews can be obtained from the associated digital libraries by the provided metadata.

For our evaluation purposes only, users are obliged to provide audio files and optionally provide metadata. We then, by
means of audio fingerprinting,7 retrieve and clean metadata for all provided tracks including the ones solely submitted in audio
format. Therefore, we will be able to compare our approaches to metadata-based approaches in the case of music recommen-
dation. We also ask the users for additional information, including personal data (gender, age, interest in music, musical back-
ground), a description of the strategy followed to select the music pieces, and the way they would describe their musical
preferences.

3.2. Descriptor extraction

Here we describe the procedure followed to obtain a semantic representation of each music track from the user’s pref-
erence set. We follow Bogdanov et al. (2009) and Bogdanov, Serrà, Wack, Herrera, and Serra (2011) to obtain such
descriptions.

7 We use MusicBrainz service: http://musicbrainz.org/doc/MusicBrainz_Picard.
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For each music track, we calculate a low-level feature representation using an in-house audio analysis tool.8 In total, this
tool provides over 60 commonly used low-level audio features, characterizing global properties of the given tracks, related to
timbral, temporal, and tonal information. The features include inharmonicity, odd-to-even harmonic energy ratio, tristimuli,
spectral centroid, spread, skewness, kurtosis, decrease, flatness, crest, and roll-off factors, MFCCs, spectral energy bands,
zero-crossing rate (Peeters, 2004), spectral complexity (Streich, 2007), transposed and untransposed harmonic pitch class pro-

Table 1
Ground truth music collections employed for semantic regression. Source references: (1) Homburg et al. (2005), (2) in-house, (3) Tzanetakis and Cook (2002),
(4) Gómez and Herrera (2008), (5) Laurier et al. (2009) + in-house, and (6) Cano et al. (2006).

Name Category Classes (semantic descriptors) Size (tracks) Source

G1 Genre & Culture Alternative, blues, electronic, folk/country, funk/soul/rnb, jazz, pop,
rap/hiphop, rock

1820 track excerpts, 46–490 per
genre

(1)

G2 Genre & Culture Classical, dance, hip-hop, jazz, pop, rhythm’n’blues, rock, speech 400 tracks, 50 per genre (2)
G3 Genre & Culture Blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock 993 track excerpts, 100 per genre (3)
CUL Genre & Culture Western, non-western 1640 track excerpts, 1132/508 per

class
(4)

MHA Moods &
Instruments

Happy, non-happy 302 full tracks + excerpts, 139/163
per class

(5)

MSA Moods &
Instruments

Sad, non-sad 230 full tracks + excerpts, 96/134
per class

(5)

MAG Moods &
Instruments

Aggressive, non-aggressive 280 full tracks + excerpts, 133/147
per class

(5)

MRE Moods &
Instruments

Relaxed, non-relaxed 446 full tracks + excerpts, 145/301
per class

(5)

MAC Moods &
Instruments

Acoustic, non-acoustic 321 full tracks + excerpts, 193/128
per class

(5)

MEL Moods &
Instruments

Electronic, non-electronic 332 full tracks + excerpts, 164/168
per class

(5)

RPS Rhythm & Tempo Perceptual speed: slow, medium, fast 3000 full tracks, 1000 per class (2)
RBL Rhythm & Tempo Chachacha, jive, quickstep, rumba, samba, tango, viennese waltz, waltz 683 track excerpts, 60–110 per class (6)
ODA Other Danceable, non-danceable 306 full tracks, 124/182 per class (2)
OPA Other Party, non-party 349 full tracks + excerpts, 198/151

per class
(2)

OVI Other Voice, instrumental 1000 track excerpts, 500 per class (2)
OTN Other Tonal, atonal 345 track excerpts, 200/145 per

class
(2)

OTB Other Timbre: bright, dark 3000 track excerpts, 1000 per class (2)
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files, key strength, tuning, chords (Gómez, 2006), pitch, beats per minute (BPM) and onsets (Brossier, 2007). Most of these fea-
tures are extracted on a frame-by-frame basis and then summarized by their means and variances across all frames. In the case
of multidimensional features (e.g., MFCCs), covariances between components are also considered.

We use the described low-level features to infer semantic descriptors. To this end, we perform a regression by suitably
trained classifiers producing different semantic dimensions such as genre, musical culture, moods, instrumentation, rhythm,
and tempo. We opt for multi-class support vector machines (SVMs) with a one-vs.-one voting strategy (Bishop, 2006), and use
the libSVM implementation.9 In addition to simple classification, this implementation extends the capabilities of SVMs making
available class probability estimation (Chang & Lin, 2011), which is based on the improved algorithm by Platt (2000). The classi-
fiers are trained on 17 ground truth music collections (including full tracks and excerpts) presented in Table 1, corresponding to 17
classification tasks.

For each given track, each classifier returns the probabilistic estimates of classes on which it was trained. The classifiers
operate on optimized low-level feature representations of tracks. More concretely, each classifier is trained on a reduced set
of features, which is individually selected based on correlation-based feature selection (Hall, 2000) according to the under-
lying music collection. Moreover, the parameters of each SVM are found by a grid search with 5-fold cross-validation. Clas-
sification results form a high-level semantic descriptor space, which contains the probability estimates for each class of each
classifier. The accuracy of classifiers varies between 60.3% and 98.2% with the median accuracy being 88.2%. Classifiers
trained on G1 and RBL show the worst performance, close to 60%,10 while classifiers for CUL, MAG, MRE, MAC, OVI, and
OTB show the best performance, greater than 93%.

With the described procedure we obtain 62 semantic descriptors, shown in Table 1, for each track in the user’s preference
set. These resulting representations of tracks (i.e., vectors of class probabilities) form our proposed user model, defined as a
set U:

U ¼ fðPðC1;1jTiÞ; . . . ; PðC1;N1 jTiÞ; . . . ; PðC17;1jTiÞ . . . ; PðC17;N17 jTiÞÞg; ð1Þ

8 http://mtg.upf.edu/technologies/essentia.
9 http://www.csie.ntu.edu.tw/cjlin/libsvm/.

10 Still, note the amount of classes in G1 and RBL classifiers is 9 and 3, respectively.
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where P(C jT ) stands for the probability of track T from a preference set belonging of lth class C of the kth classifier having

D. Bogdanov et al. / Information Processing and Management 49 (2013) 13–33 19
k,l i i k,l

Nk classes.
As the procedure of the low-level signal analysis and the details of semantic descriptor extraction are out of the scope of

this paper, we refer the interested reader to the aforecited literature on low-level features, and to (Bogdanov et al., 2009,
2011), and references therein, for details on the SVM implementation.

4. User data analysis

In order to evaluate the proposed technique, we worked with a group of 12 participants (8 male and 4 female) selected
from the authors’ colleagues and acquaintances without disclosing any detail of the targeted research. They were aged be-
tween 25 and 45 years old (average l = 33 and standard deviation r = 5.35) and showed a very high interest in music (rating
around l = 9.64, with r = 0.67, where 0 means no interest in music and 10 means passionate about music). Ten of the 12
participants play at least one musical instrument, including violin, piano, guitar, synthesizers, and ukulele.

The number of tracks selected by the participants to convey their musical preferences was very varied, ranging from 23 to
178 music pieces (l = 73.58, r = 45.66) with the median being 57 tracks. The time spent for this task also differed a lot, rang-
ing from half an hour to 60 h (l = 11.11, r = 22.24) with the median being 5 h.

It is interesting to analyze the provided verbal descriptions about the strategy followed to select the music tracks. Some of
the participants were selecting one track per artist, while some others did not apply this restriction. They also covered var-
ious uses of music such as listening, playing, singing or dancing. Other participants mentioned musical genre, mood, expres-
sivity, musical qualities, and chronological order as driving criteria for selecting the tracks. Furthermore, some participants
implemented an iterative procedure by gathering a very large amount of music pieces from their music collections and per-
forming a further refinement to obtain the final selection. Finally, all participants provided a set of labels to define their mu-
sical preferences. We asked them to provide labels related to the following aspects: musical genre, mood, instrumentation,
rhythm, melody/harmony, and musical expression. We also included a free category for additional labels on top of the pro-
posed musical facets.

The number of labels provided by the participants ranged from 4 to 94 labels (l = 25.11, r = 23.82). The distribution of the
number of labels that participants provided for each facet (normalized by the total number of labels provided by each par-
ticipant) is presented in Fig. 2. We observe that most of them where related to genre, mood, and instrumentation, some of
them to rhythm and few to melody, harmony, or musical expression. Other suggested labels were related to lyrics, year, and
duration of the piece. The participants’ preferences covered a wide range of musical styles (e.g., classical, country, jazz, rock,
pop, electronic, folk), historical periods, and musical properties (e.g., acoustic vs. synthetic, calm vs. danceable, tonal vs. ato-
nal). Taking into account this information, we consider that the population represented by our participants corresponds to
that of music enthusiasts, but not necessarily mainstream music consumers.

Finally, the music provided by the participants was very diverse. Fig. 3 presents an overall tag cloud of music preferences
of our population (mostly genre-based). The tag cloud was generated using artist tags found on Last.fm tagging service for all
tracks provided by the participants with a normalization by the number of tracks provided by each participant.

5. Music recommendation

The first considered application exploits the computed user model to generate music recommendations based on seman-
tic descriptors. For consistency, we focus on the task of retrieving 20 music tracks from a given music collection as recom-
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Genre Mood Instrument Rhythm MelodyHarmony Expression Others

Fig. 2. Box plot of the proportions of provided labels per musical facet, normalized by the total number of labels per participant. Categories from left to right
correspond to genre, moods, instruments, rhythm, melody and harmony, musical expression, and other labels respectively. Red crosses stand for extreme
outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mendations for the user. To this end, we compute the same semantic descriptions for the tracks in the given collection to be
matched with the user model.

Fig. 3. Tag cloud representing overall music preferences of our participants, based on artist tags found on Last.fm.
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5.1. Recommendation approaches

We propose three approaches to generate music recommendations, operating on a subset of the retrieved semantic
descriptors. Two of the approaches are distance-based, while the third one creates a probabilistic model. We follow the re-
search on semantic similarity done by Bogdanov et al. (2009) to select this subset and the distance measure, proposed and
validated by the authors. The subset includes the descriptors inferred using the G1, G2, G3, CUL, MHA, MSA, MAG, MRE, MAC,
MEL, RPS, RBL, OPA, and OVI collections (see Table 1). The distance is defined as a weighted Pearson correlation distance
(Abdullah, 1990) between vectors of retrieved descriptor values. It has been shown to result in positive feedback in terms
of user satisfaction, comparable to well-known low-level timbral distances. The proposed approaches are (see Fig. 4 for a
graphical example):

1. Semantic distance from the mean (SEM-MEAN). We summarize the user model across individual tracks to a single point in
the semantic descriptor space. As such, we compute the mean point, i.e., the centroid (Salton, Wong, & Yang, 1975), for
the user’s preference set. We rank the tracks according to the semantic distance to the mean point and return the 20 near-
est tracks as recommendations.
Fig. 4. Graphical representation of the proposed recommendation approaches in the semantic space (here reduced to two dimensions and the case of one
recommended track for illustration purpose). Solid lines outline recommendation outcomes (items marked by stars) and the respective recommendation
sources in the case of the distance-based approaches. The dashed lines indicate regions of equal probability of the respective components of the GMM in the
case of the probabilistic approach. In SEM-MEAN, the mean vector of the preference set is used to retrieve the closest track from the music collection using
track-to-mean semantic distance. In SEM-ALL, all tracks from the preferences set are considered to retrieve the track closest to the preference set using
track-to-set semantic distance. In SEM-GMM, a probabilistic model is built from the preference set. The track from the music collection yielding the highest
probability value is returned as recommendation. See text for details.
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2. Semantic distance from all tracks (SEM-ALL). Alternatively, instead of simplifying the user model to one point we consider
all individual tracks. Thus, we take into account all possible areas of preferences, explicitly specified by the user, while
searching for the most similar tracks. We define a track-to-set semantic distance as a minimum semantic distance from
a track to any of the tracks in the preference set. We return the 20 nearest tracks according to this distance as
recommendations.

3. Semantic Gaussian mixture model (SEM-GMM). Finally, we propose to represent the user model as a probability density of
preferences in the semantic space. We employ a Gaussian mixture model (GMM) (Bishop, 2006), which estimates a prob-
ability density as a weighted sum of a given number of simple Gaussian densities (components). The GMM is initialized
by k-mean clustering, and is trained with an expectation–maximization algorithm. We select the number of components
in the range between 1 and 20, using a Bayesian information criterion (Bishop, 2006). Once we have trained the model, we
compute the probability density for each of the tracks. We rank the tracks according to the obtained density values11 and
return the 20 most probable tracks as recommendations.

5.2. Evaluation

Here we describe the evaluation of the proposed recommendation approaches against metadata-based and audio con-
tent-based baselines.

5.2.1. Metadata-based baselines
We consider two baseline approaches to music recommendation working on metadata. The first baseline is constructed

exclusively using information about the user’s genre preferences. The second one is based on the information about pre-
ferred tracks and artists (taken from the editorial metadata provided by the user for the preference set), and partially em-
ploys collaborative filtering information, querying a commercial state-of-the-art music recommender for similar music
tracks.

1. Random tracks from the same genre (GENRE). This simple and low-cost approach provides random recommendations rely-
ing on genre categories of the user’s preference set. We assume that all tracks in the given music collection are manually
tagged with a genre category by an expert. We randomly preselect 20 tracks from the preference set and obtain their
genre labels. Ideally, tracks from the preference set should contain manual genre annotations by an expert as well. More-
over, the annotations should be consistent with the ones in the music collection to be able to match the tracks by genre.
Nevertheless, the tracks from the preference set, since they were submitted by the user, do not necessarily contain a
genre tag, and the quality of such tags and their consistency with the genres in the music collection cannot be assured.
Therefore, we retrieve this information from the Web. We use track pages or artist pages from the social music tagging
system Last.fm as the source of genre information. We run queries using metadata of the preselected tracks, and select the
most popular genre tag, which is presented among genre tags of the given music collection. For each of the 20 preselected
tracks, we return a random track of the same genre label.

2. Black-box music similarity from Last.fm (LASTFM). As we did not have collaborative filtering data available for our research
(and moreover, a large dataset would be required to match with our participants’ tracks), we opted to use black box rec-
ommendations provided by Last.fm.12 It is an established music recommender with an extensive number of users, and a
large playable music collection, providing means for both monitoring listening statistics and social tagging (Jones & Pu,
2007). In particular, it provides track-to-track13 and artist-to-artist14 similarity computed by the undisclosed algorithm,
which is partially based on collaborative filtering, but does not use any audio content. It is important to notice that the
underlying music collection of Last.fm used in this baseline approach differs (being significantly larger and broader) from
the collection used by the other approaches in our evaluation. Again, we randomly preselect 20 tracks from the preference
set and independently query Last.fm for each of them to receive a recommendation. For each track we select the most similar
track from the recommended ones with an available preview.15 If no track-based similarity information is available (e.g.,
when the query track is an unpopular long-tail track with a low number of listeners), we query for similar artists. In this
case we choose the most similar artist and select its most popular track with an available preview.

5.2.2. Audio content-based baselines
We consider two audio content-based baseline approaches. These approaches apply the same ideas as the proposed

semantic approaches, but operate on low-level timbral features, frequently used in the related literature.

1. Timbral distance from all tracks (MFCC-ALL). This approach is a counterpart to the proposed SEM-ALL approach using a com-
mon low-level timbral distance (Pampalk, 2006) instead of the semantic one. The tracks are modeled by probability dis-

11 Under the assumption of a uniform distribution of the tracks in the universe within the semantic space.
12 All experiments were conducted on May 2010.
13 For example, http://last.fm/music/Grandmaster+Flash/_/The+Message/+similar.
14 For example, http://last.fm/music/Baby+Ford/+similar.
15 These previews are downloadable music excerpts (30 s), which are later used in our subjective evaluation for the case of the LASTFM approach.
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tributions of MFCCs using single Gaussian with full covariance matrix. For such representations a distance measure can be
defined using a closed form approximation of the Kullback–Leibler divergence. This baseline resembles the state-of-the-
art timbral user model, proposed by Logan (2004), which uses the Earth-Mover’s Distance between MFCC distributions as
a distance.

2. Timbral Gaussian mixture model (MFCC-GMM). Alternatively, we consider a counterpart to the proposed SEM-GMM prob-
abilistic approach: we use a population of mean MFCC vectors (one vector per track from the user’s preference set) to
train a timbral GMM.

5.2.3. Evaluation methodology
We performed subjective listening tests on our 12 subjects in order to evaluate the considered approaches. As the source

for recommendations, we employed a large in-house music collection, covering a wide range of genres, styles, arrangements,
geographic locations, and musical epochs. This collection consists of 100,000 music excerpts (30 s) by 47,000 artists (approx-
imately 2 tracks per artist).

For each subject, we computed the user model from the provided preference set. According to the considered recommen-
dation approaches we generated 7 playlists (three by the proposed approaches working with the semantic user model, two
by the approaches working on metadata, and two by the low-level timbral approaches). Each playlist consisted of 20 music
tracks. Following a usual procedure for evaluation of music similarity measures and music recommendations, we applied an
artist filter (Pampalk, 2006) to assure that no playlist contained more than one track from the same artist nor tracks by the
artists from the preference set. These playlists were merged into a single list, in which tracks were randomly ordered and
anonymized, including filenames and metadata. The tracks offered as recommendations were equally likely to come from
each single recommendation approach. This allowed us to avoid any response bias due to presentation order, recommenda-
tion approach, or contextual recognition of tracks (by artist names, etc.) by the participants. In addition, the participants
were not aware of the amount of recommendation approaches, their names and their rationales.

We designed a questionnaire in order to obtain the different subjective impressions related to the recommended music
(see Table 2). For each recommended track the participants were asked to provide a number of ratings:

� Familiarity ranged from 0 to 4; with 0 meaning absolute unfamiliarity, 1 feeling familiar with the music, 2 knowing the
artist, 3 knowing the title, and 4 the identification of artist and title.
� Liking measured the enjoyment of the presented music with 0 and 1 covering negative liking, 2 representing a neutral

position, and 3 and 4 representing increasing liking for the musical excerpt.
� Listening intentions measured the readiness of the participant to listen to the same track again in the future. This measure

is more direct and behavioral than the liking, as an intention is closer to action than just the abstraction of liking. Again
the scale contained 2 positive and 2 negative steps plus a neutral one.
� ‘‘Give-me-more’’ with 1 indicating request for more music like the presented track, and 0 indicating reject of such music.

The users were also asked to provide the track title and artist name for those tracks rated high in the familiarity scale.

5.2.4. Results
First, we manually corrected familiarity ratings when the artist/title provided by a user was incorrect compared to the

actual ones. In such situations, a familiarity rating of 3, or, more frequently, 4 or 2, was lowered to 1 (in the case of incorrect

Table 2
Meaning of familiarity, liking, listening intentions, and ‘‘give-me-more’’ ratings as given to the participants.

Rating Value Meaning

Familiarity 4 I know the song and the artist
3 I know the song but not the artist
2 I know the artist but not the song

1 It sounds familiar to me even I ignore the title and artist (maybe I heard it in TV, in a soundtrack, long time ago, etc.)
0 No idea

Liking 4 I like it a lot!
3 I like it
2 I would not say I like it, but it is listenable
1 I do not like it
0 It is annoying, I cannot listen to it!

Listening
intentions

4 I am going to play it again several times in the future

3 I probably will play it again in the future
2 It does not annoy me listening to it, although I am not sure about playing it again in the future
1 I am not going to play it again in the future
0 I will skip it in any occasion I find in a playlist

Give-me-more 1 I would like to be recommended more songs like this one
0 I would not like to be recommended more songs like this one
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artist and track title) or 2 (in the case of correct artist, but incorrect track title). These corrections represented just 3% of the
total familiarity judgments.

Considering the subjective scales used, a good recommender system should provide high-liking/listening intentions/re-
quest for the greater part of retrieved tracks and in particular for low-familiarity tracks. Therefore, we recoded the user’s
ratings into 3 main categories, referring to the type of the recommendation: hits, fails, and trusts. Hits were those tracks hav-
ing a low familiarity rating (<2), high (>2) liking and intentions ratings, and a positive (>0) ‘‘give-me-more’’ request. Fails
were those tracks having low (<3) liking and intentions ratings, and null ‘‘give-me-more’’ request. Trusts were those tracks
which got a high familiarity (>1), high (>2) liking and intentions ratings, and a positive (>0) ‘‘give-me-more’’ request. Trusts,
provided their overall amount is low, can be useful for a user to feel that the recommender is understanding his/her pref-
erences (Barrington et al., 2009; Cramer et al., 2008). A user could be satisfied by getting a trust track from time to time,
but annoyed if every other track is a trust, especially in the use-case of music discovery (the main focus of the present work).
18.3% of all the recommendations were considered as ‘‘unclear’’ (e.g., a case when a track received a high liking, but a low
intentions rating and a null ‘‘give-me-more’’ request). Most of the unclear recommendations (41.9%) consisted of low liking
and intention ratings (<3 in both cases) followed by a positive ‘‘give-me-more’’ request; other frequent cases of unclear rec-
ommendation consisted of a positive liking (>2) that was not followed by positive intentions and positive ‘‘give-me-more’’
(15.5%) or positive liking not followed by positive intentions though positive ‘‘give-me-more’’ (20.0%). We excluded the un-
clear recommendations from further analysis.

We report the percent of each outcome category per recommendation approach in Table 3 and Fig. 5a. An inspection of it
reveals that the approach which yields the largest amount of hits (41.2%) and trusts (25.4%) is LASTFM. The trusts found with
other approaches were scarce, all below 4%. The approaches based on the proposed semantic user model (SEM-ALL, SEM-
MEAN and SEM-GMM) yielded more than 30% of hits, and the remaining ones did not surpass 25%. The existence of an asso-
ciation between recommendation approach and the outcome of the recommendation was statistically significant, according
to the result of the Pearson chi-square test (v2(18) = 351.7, p < 0.001).

Additionally, we performed three separate between-subjects ANOVA tests in order to test the effects of the recommen-
dation approaches on the liking, intentions, and ‘‘give-me-more’’ subjective ratings. The effect was confirmed in all of them
(F(6,1365) = 55.385, p < 0.001 for the liking rating, F(6,1365) = 48.89, p < 0.001 for the intentions rating, and F(6,1365) =
43.501, p < 0.001 for the ‘‘give-me-more’’ rating). Pairwise comparisons using Tukey’s test revealed the same pattern of dif-
ferences between the recommendation approaches, irrespective of the three tested indexes. This pattern highlights the LAST-
FM approach as the one getting the highest overall ratings. It also groups together the timbral MFCC-GMM and MFCC-ALL
approaches (those getting the lowest ratings), and the remaining approaches (SEM-ALL, SEM-MEAN, SEM-GMM, and GENRE)
are grouped in-between. The mean values of the obtained liking, listening intentions, and ‘‘give-me-more’’ ratings per each
approach are presented in Fig. 5b.

Finally, a measure of the quality of the hits was computed by multiplying the difference of liking and familiarity by lis-
tening intentions for each recommended track. This quality score ranks recommendations considering that the best ones cor-
respond to the tracks which are highly-liked though completely unfamiliar, and intended to be listened again. Selecting only
the hits, an ANOVA on the effect of the recommendation approach on this quality measure revealed no significant differences
between any of the approaches. Therefore, considering the quality of hits, there is no recommendation approach granting
better or worst recommendations than any other. The same pattern was revealed by solely using the liking as a measure
of the quality of the hits.

5.3. Discussion

We presented an application of the considered user model for music recommendation. Based on this computed model, we
proposed three approaches operating on a subset of the retrieved semantic descriptors. Two of these approaches recommend
tracks similar to the preference set using a semantic distance. The third approach creates a probabilistic model using GMM to
estimate the density of the user’s preferences within the semantic domain. We evaluated these approaches against two
metadata-based and two audio content-based baselines in a subjective evaluation on 12 participants. Specifically, we em-
ployed a simple metadata-based approach which recommends random tracks, selected from the genres preferred by the

Table 3
The percent of fail, trust, hit, and unclear categories per recommendation approach. Note that the results for the LASTFM approach were obtained on a different
underlying music collection.

Approach Fail Hit Trust Unclear

SEM-MEAN 49.167 31.250 2.500 17.083
SEM-ALL 42.500 34.583 3.333 19.583

SEM-GMM 48.750 30.000 2.500 18.750
MFCC-ALL 64.167 15.000 2.083 18.750
MFCC-GMM 69.583 11.667 1.250 17.500
LASTFM 16.667 41.250 25.417 16.667
GENRE 53.750 25.000 1.250 20.000
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user. Alternatively, given the editorial metadata for the user’s preference set, we employed a state-of-the-art black-box rec-
ommender working on collaborative filtering information – Last.fm, to retrieve similar music. Among the audio content-
based baselines, we employed two approaches operating on low-level timbral features (MFCCs) instead of the semantic
descriptors. These approaches are counterparts to our semantic distance-based and probabilistic approaches, working with
a timbral user model.

The evaluation results revealed the users’ preference for the proposed semantic approaches over the low-level timbral

Fig. 5. The percent of fail, trust, hits, and clear categories per recommendation approach (a); the liking, listening intentions, and ‘‘give-me-more’’ mean
ratings for recommendation approach (b). The results for the LASTFM approach were obtained on a different underlying music collection. The ‘‘give-me-
more’’ rating varies in the [0,1] interval.
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baselines. This fact supports our hypothesis on the advantage of using semantic description for music recommendation.
Moreover, it complements the outcomes from the previous research on semantic music similarity (Bogdanov et al., 2009).
We may conclude that the high-level semantic description outperforms the low-level timbral description in the task of music
recommendation and, in particular, musical preference elicitation.

Comparing with the baselines working on metadata, we found that the proposed approaches perform better than the sim-
ple genre-based recommender (although no statistically significant differences were found in terms of liking, listening inten-
tions, and ‘‘give-me-more’’ ratings). Interestingly, this naive genre-based recommender still outperformed the timbre-based
baselines. This could be partially explained by the fact that genre was one of the driving criteria for selecting the users’ pref-
erence sets (see Fig. 2), and that manually annotated genre and sub-genre labels entail more information and diversity than
timbral information automatically extracted from MFCCs.

On the other hand, the proposed approaches were found to be inferior to the considered commercial recommender (LAST-
FM) in terms of the number of successful novel recommendations (hits). Still, this metadata-based approach using collabo-
rative filtering yielded only 7 absolute percentage points more hits than one of our proposed semantic methods (SEM-ALL).
Considering trusted recommendations, the LASTFM baseline provided about 22% more recommendations already known by
the participants. Interestingly, one track out of four recommended by this baseline was already familiar to the participants,
which might be considered an excessive amount considering the music discovery use-case. In particular, the larger amount
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of both hits and trusts provided by the LASTFM baseline can be partly explained by the fact that the recommendations were
generated using the Last.fm music collection. Due to the extensive size of this collection and the large amount of available
collaborative filtering data, we can hypothesize the obtained performance of this approach to be an upper bound in both hits
and trusts and expect a lower performance on our smaller in-house collection. Taking all this into account, we expect the
proposed semantic approaches, and the underlying semantic user model, to be suitable for music discovery in the long tail
which can suffer from insufficient, incorrect, or incomplete metadata information.

6. Visualization of musical preferences

The second application exploits the computed user model to generate a visualization of the user’s musical preferences in
form of a Musical Avatar, a humanoid cartoon-like character. Although such a task is not directly related to music recommen-
dation, it might be a useful enhancement for recommender systems. In particular, automatic user visualization can provide
means to increase user engagement in the system, justify recommendations (e.g., by visualizing playlists), and facilitate so-
cial interaction among users.

6.1. Descriptor summarization

The retrieved semantic descriptors provide a rich representation of user preferences, which in particular can give valuable
cues for visualization. Instead of using their full potential, in this proof-of-concept application we operate on a reduced sub-
set of descriptors for simplicity reasons in the mapping process. To this end, we select this subset considering the classifiers’
accuracy against ground truth values provided by a subset of five participants. When selecting the subset, we also intend to
preserve the representativeness of the semantic space. We asked these participants to manually annotate their own music
collections with the same semantic descriptors as those inferred by the classifiers. We then compared these manual anno-
tations with the classifiers’ outputs by Pearson correlation and selected the best performing descriptors. The observed cor-
relation values for all semantic descriptors varied between �0.05 and 0.70 with the median being 0.40. The subset of 17
descriptors was selected with the majority of correlations (for 14 descriptors) being greater than 0.40. The resulting descrip-
tors, which are used by the proposed visualization approach, are presented in Table 4.

Having refined the semantic descriptors for the computed user model, we consider different summarization methods to
obtain a compact representation which can be mapped to the visual domain. With these summarization strategies we ex-
plore the degree of descriptor resolution necessary for optimal visual representation. These strategies can be based on con-
tinuous or discrete values, and therefore lead to visual elements of continuous or discrete nature (e.g., size). The idea behind
this exploration is related to the possibility that users might prefer simpler objects (discrete visual elements such as presence
or absence of a guitar) or more complex ones (continuous elements such as guitars of different sizes) depicting subtle vari-
ations of preferences.

We summarize the user model across individual tracks to a single multidimensional point in a semantic descriptor space
as in the case of the SEM-MEAN representation proposed for music recommendation (Section 5.1). We first standardize each
descriptor to remove global scaling and spread; i.e., for each track from the user’s preference set we subtract the global mean
and divide by the global standard deviation. We estimate the reference means (lR,i) and standard deviations (rR,i) for each
descriptor from the representative in-house music collection of 100,000 music excerpts used for the subjective evaluation of
music recommendation approaches (Section 5.2.3). Moreover, we range-normalize the aforementioned standardized
descriptor values according to the following equation:

Ni ¼
di �min

max�min
; ð2Þ

where di is the standardized value of descriptor i, and since di has zero mean and unit variance, we set the respective min and
max values to �3 and 3, since according to Chebyshev’s inequality at least 89 % of the data lies within 3 standard deviations
from its mean value (Grimmett & Stirzaker, 2001). We clip all resulting values smaller than 0 or greater than 1. The obtained
scale can be seen as a measure of preference for a given category, and is used by the visualization process (see Section 6.2).

We then summarize the descriptor values across tracks by computing the mean for every normalized descriptor (lN,i).
Table 4
Selected descriptors, and the corresponding music collections used for regression, per category of
semantic descriptors (i.e., genre, moods & instruments, and others) used for visualization.

Genre Moods & Instruments Others

Electronic (G1) Happy (MHA) Party (OPA)
Dance (G2) Sad (MSA) Vocal (OVI)
Rock (G2) Aggressive (MAG) Tonal (OTN)

Classical (G3) Relaxed (MRE) Bright (OTB)
Jazz (G3) Electronic (MEL) Danceable (ODA)
Metal (G3) Acoustic (MAC)
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At this point, we consider three different methods to quantize the obtained mean values. These quantization methods
convey different degrees of data variability, and are defined as follows:

� Binary forces the descriptors to be either 1 or 0, representing only two levels of preference (i.e., 100% or 0%). We quantize
all lN,i values below 0.5 to zero and all values above (or equal) 0.5 to one.
� Ternary introduces a third value representing a neutral degree of preference (i.e., 50%). We perform the quantization

directly from the original descriptor values, that is, we calculate the mean values for every descriptor (li) and quantize
them according to the following criteria:

Ternary ¼
1 if li > ðlR;i þ thiÞ;
0:5 if ðl � thiÞ 6 l 6 ðl þ thiÞ;

8><
ð3Þ
i R;i i R;i

0 if li < ðlR;i � thiÞ;
>:

where thi = rR,i/3.
� Continuous preserves all possible degrees of preference. We maintain the computed lN,i values without further changes.
At the end of this process we obtain three simplified representations of the user model, each of them consisting of 17
semantic descriptors.

6.2. Visualization

In order to generate the Musical Avatar, we convert the summarized semantic descriptors to a set of visual features.
According to MacDonald, Hargreaves, and Miell (2002), individual, cultural and sub-cultural musical identities emerge
through social groups concerning different types of moods, behaviors, values or attitudes. We apply the cultural approach
of representing urban tribes (Maffesoli, 1996), since in these tribes, or subcultures, music plays a relevant role in both per-
sonal and cultural identities. Moreover, they are often identified by specific symbolisms which can be recognized visually.

Therefore, we decided to map the semantic descriptors into a basic collection of cultural symbols. As a proof-of-concept,
we opt for an iconic cartoon style of visualization. This choice is supported by a number of reasons; firstly, this style is a less
time-consuming technique compared to other approaches more focused on realistic features (Ahmed, de Aguiar, Theobalt,
Magnor, & Seidel, 2005; Petajan, 2005; Sauer & Yang, 2009). Secondly, it is a graphical medium which, by eliminating super-
fluous features, amplifies the remaining characteristics of a personality (McCloud, 2009). Thirdly, there are examples of
existing popular avatar collections of this kind such as Meegos16 or Yahoo Avatars.17

In our approach the relevant role is played by the graphical symbols, which are filled with arbitrary colors related to them.
Although colors have been successfully associated with musical genres (Holm, Aaltonen, & Siirtola, 2009) or moods (Voong &
Beale, 2007), the disadvantage of using only colors is the difficulty to establish a global mapping due to reported cultural
differences about their meaning.

In our design, we consider the information provided by the selected descriptors and the design requirements of modu-
larity and autonomy. Starting from a neutral character,18 we divide the body into different parts (e.g., head, eyes, mouth).
For each of the parts we define a set of groups of graphic symbols (graphic groups) to be mapped with certain descriptors. Each
of these graphic groups always refers to the same set of descriptors. For example, the graphic group corresponding to the mouth
is always defined by the descriptors from the categories ‘‘Moods and Instruments’’ and ‘‘Others’’ but never from ‘‘Genre’’ cate-
gory. The relation between graphic groups and categories of the semantic descriptors is presented in Table 5. For this mapping,
we consider the feasibility of representing the descriptors (e.g., the suit graphic group is more likely to represent a musical genre
compared to the other descriptor categories). We also bear in mind a proportional distribution between the three main descrip-
tor categories vs. each of these graphic groups in order to notice them all. However, in accordance with the cartoon style some of
these graphic groups refer to all three main descriptor categories because they can highlight better the most prominent char-
acteristics of the user’s profile, and also they can represent a wide range of descriptors (e.g., the head and complement graphic
groups). Apart from the listed graphic groups, we introduce a label to identify the gender of the avatar, each providing a unique
set of graphic symbols.

Besides the body elements, we also add a set of possible backgrounds to the graphic collection in order to support some
descriptors of the ‘‘Others’’ category such as ‘‘party’’, ‘‘tonal’’, or ‘‘danceable’’. In addition, the ‘‘bright’’ descriptor is mapped to
a gray background color that ranges from RGB (100,100,100) to RGB (200,200,200). The relation between graphic groups
and categories of the semantic descriptors is presented in Table 5. We note that our decisions on the design, and in particular
on the descriptor mapping, are arbitrary, being a matter of choice, of visual and graphic sense, and common sense according
to many urban styles of self-imaging.

16 http://meegos.com.
17 http://avatars.yahoo.com.
18 A neutral character corresponds to an empty avatar. It should be noted that the same representation can be achieved if all normalized descriptor values are

set to 0.5 meaning no preference to any descriptor at all.
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We construct a vector space model and use a Euclidean distance as a measure of dissimilarity to represent the user’s mu-
sical preferences in terms of graphic elements. For each graphic group we choose the best graphic symbol among the set of
all available candidates, i.e., the closest to the corresponding subset of the user’s vector model (see Table 6 for an example of
the vector representation of these elements). This subset is defined according to the mapping criteria depicted in Table 5. As
a result, a particular Musical Avatar is generated for the user’s musical preferences. All graphics are done in vector format for

19

Table 5
Mapping of the descriptor categories to the graphic groups.

Graphic group Descriptor categories

Genre Moods & Inst. Others

Background �
Head � � �
Eyes � �
Mouth � �

Complement � � �
Suit � �
Hair �
Hat � �

Complement2 �
Instrument � �

Table 6
Vector representation example: user profile vs. the instrument graphic group (continuous summarization). A visual element with the minimum distance to the
user profile is selected (in this case, the turntable).

Category Descriptor User profile

Genre Classical (G3) 0.0 0.0 0.0 0.0 0.0
Genre Electronic (G1) 1.0 0.0 0.0 0.0 1.0
Genre Jazz (G3) 0.0 0.0 1.0 0.0 0.0
Genre Metal (G3) 0.0 0.0 0.0 0.0 0.0
Genre Dance (G2) 1.0 0.0 0.0 0.0 0.0
Genre Rock (G2) 0.5 1.0 0.0 0.0 0.0
Moods & Inst. Electronic (MEL) 1.0 0.0 0.0 0.0 1.0
Moods & Inst. Relaxed (MRE) 0.0 0.0 0.0 0.0 0.0
Moods & Inst. Acoustic (MAC) 0.8 0.0 0.0 1.0 0.0
Moods & Inst. Sad (MSA) 0.0 0.0 0.0 0.0 0.0
Moods & Inst. Aggressive (MAG) 0.0 1.0 0.0 0.0 0.0
Moods & Inst. Happy (MHA) 1.0 0.0 0.0 0.0 0.0

Distance to user profile 2.43 2.62 2.07 1.70
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rescalability and implemented using Processing (Reas & Fry, 2007).
According to the summarization methods considered in Section 6.1, the mapping is done from either a discrete or con-

tinuous space resulting in different data interpretations and visual outputs. These differences imply that in some cases
the graphic symbols have to be defined differently. For instance, the ‘‘vocal’’ descriptor set to 0.5 in the case of continuous
method means ‘‘she likes both instrumental and vocal music’’, while this neutrality is not present in the case of the binary
method. Furthermore, in the continuous method, properties such as size or chromatic gamma of the graphic symbols are
exploited while this is not possible within the discrete vector spaces. Fig. 6 shows a graphical example of our visualization
strategy where, given the summarized binary user model, the best graphic symbol for each graphic group is chosen. Fig. 7
shows a sample of Musical Avatars generated by the three summarization methods and Fig. 8 shows a random sample of dif-
ferent Musical Avatars.

6.3. Evaluation

6.3.1. Evaluation methodology
We carried out a subjective evaluation on our 12 subjects. For each participant, we generated three Musical Avatars cor-

responding to the three considered summarization methods. We then asked the participants to answer a brief evaluation
questionnaire. The evaluation consisted in performing the following two tasks.

In the first task, we asked the participants to manually assign values for the 17 semantic descriptors used to summarize
their musical preferences (see Table 4). We requested a real number between 0 and 1 to rate the degree of preference for

19 http://processing.org.
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each descriptor (e.g., 0 meaning ‘‘I do not like classical music at all’’ up to 1 meaning ‘‘I like classical music a lot’’ in the case of
the ‘‘classical’’ descriptor). For the second task, we first showed 20 randomly generated examples of the Musical Avatars in
order to introduce their visual nature. We then presented to each participant six avatars: namely, the three images generated

Fig. 6. Example of the visualization approach. It can be seen how the descriptor values influence the selection of the different graphic elements used to
construct the avatar. The values inside the graphic element boxes represent all possible descriptor values that can generate the presented element.

Fig. 7. Sample Musical Avatars generated by the three summarization methods (i.e., from left to right, binary, ternary, and continuous) for the same
underlying user model. Notice the differences in guitar and headphones sizes among the generated avatars.
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from her/his own preference set, two randomly generated avatars, and one neutral avatar. We asked the participants to rank
these images assigning the image that best express their musical preferences to the first position in the rank (i.e., rank = 1).
Finally, we asked for a written feedback regarding the images, the evaluation procedure, or any other comments.20

6.3.2. Results

Fig. 8. A random sample of Musical Avatars.

Table 7
Mean ranks and standard deviations for the different visualization methods obtained in the user evaluation. The random column corresponds to the average
values of the individual random results (see text for details).

Continuous Binary Ternary Random Neutral

l 1.73 2.27 2.91 4.28 5.18
r 0.79 1.49 1.45 1.16 0.98
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From the obtained data we first analyzed the provided rankings to estimate the accuracy of the visualization methods
examined in the questionnaire. To this end, we computed the mean rank for each method. The resulting means and standard
deviations are reported in Table 7. We tested the effect of the method on the ratings obtained from the subjects using a with-
in-subjects ANOVA. The effect of the visualization method was found to be significant (Wilks Lambda = 0.032,
F(4,7) = 52,794, p < 0.001). Pairwise comparisons (a least significant differences t-test with Bonferroni correction, which con-
servatively adjusts the observed significance level based on the fact that multiple comparisons are made) revealed significant
differences between two groups of avatars: on one side, the random and the neutral avatars (getting ratings that cannot be
considered different from each other) and, on the other side, the binary, ternary, and continuous avatars (which get ratings
that are statistically different from the random and the neutral ones, but without any significant difference between the
three). The differences between those two groups of avatars are clearly significant (p < 0.005) except for the differences be-
tween random and ternary, and between binary and neutral, which are only marginally significant (p 6 0.01).

We then introduced a dissimilarity measure to assess the significance of the summarized description of musical prefer-
ences. In particular, we estimated how the computed representation performs against a randomly generated baseline. There-
fore, we first computed the Euclidean distance between the obtained descriptor vector representing the user profile
(standardized and range-normalized) and the vector containing the participants’ self-assessments provided in the first task
of the evaluation. We then generated a baseline by averaging the Euclidean distances between the self-assessments and 10
randomly generated vectors. Finally, a t-test between the algorithm’s output (l = 0.99, r = 0.32) and the baseline (l = 1.59,
r = 0.25) showed a significant difference in the sample’s means (t(11) = �5.11, p < 0.001).

From the obtained results, we first observe that the generated description based on audio content analysis shows signif-
icant differences when compared to a random assignment. The mean distance to the user-provided values is remarkably
smaller for the generated data than for the random baseline; i.e., the provided representations reasonably approximate
the users’ self-assessments in terms of similarity. Furthermore, Table 7 clearly shows a user preference for all three proposed

20 A screenshot of the evaluation and more Musical Avatars are available online http://mtg.upf.edu/project/musicalavatar.
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quantization methods over the randomly generated and the neutral Musical Avatars. In particular, the continuous summari-
zation method has been found top-ranked, followed by the binary and ternary quantization methods. This ranking, given the
ANOVA results, should be taken just as approximative until a larger sample of user evaluations is available. Specifically, the
conducted ANOVA did not reveal a clear particular preference for any of the three considered methods.

Evaluation of the participants’ comments can be summarized as follows. First, we can observe a general tendency towards
an agreement on the representativeness of the Musical Avatar. As expected, some subjects reported missing categories to
fully describe their musical preferences (e.g., country music, musical instruments). This suggests that the provided semantic
descriptors seem to grasp the essence of the user’s musical preference, but fail to describe subtle nuances in detail. This could
be explained by the fact that we use a reduced set of semantic descriptors in our prototype (17 descriptors out of the 62
initially extracted for the proposed user model). Finally, some participants could not decode the meaningfulness of some vi-
sual features (e.g., glasses, head shape). This information will be considered in our future work for refining the mapping
strategy. According to the obtained results, we observed participants’ preference for all three summarization methods based
on the proposed user model over the baselines. In general, we conclude that the Musical Avatar provides a reliable, albeit
coarse, visual representation of the user’s musical preferences.

7. General discussion and possible enhancements for recommender systems
Let us shortly recapitulate the major contents of the current work. We proposed a novel technique for semantic prefer-

ence elicitation suitable for various applications within music recommender systems and information filtering systems in
general. Two such applications – music recommendation and musical preference visualization, were presented and evalu-
ated from a user modeling point-of-view. Moreover, the proposed user modeling approach and the considered applications
can be used as basic tools for human computer interaction to enrich the experience with music recommender systems. A
number of innovative personalized interfaces for understanding, discovering, and manipulating music recommendations
can be built on top of our developed methodologies.

Considering the limitations of our study, we would like to note that we employed a small sample of subjects (12 music
enthusiasts) that might not represent the general population. We nevertheless observed statistical significant differences
which, in this context, mean that the detected trends are strong enough to override the individual differences or potentially
large variability that might be observed in small-size samples of listeners. We also believe that users of music recommender
systems, at least to date, are mainly music enthusiasts, and hence we have properly and sufficiently sampled that population.
More importantly, to the best of our knowledge, the few existing research studies on music recommendation involving eval-
uations with real participants are significantly limited in the tradeoff between the number of participants (Hoashi et al.,
2003) and the number of evaluated tracks per approach by a particular user Barrington et al. (2009) and Lu and Tseng
(2009). Furthermore, no studies on human evaluation of visualization approaches considering musical preferences are
known to the authors.

In what follows we comment on the implications of the presented approaches for the user’s interaction as well as future
implementations of ‘‘final systems’’, which unite both applications, recommendation and visualization, into a single, inter-
active music recommender interface. For both considered applications a user-defined preference set served as a starting
point. This preference set is automatically converted into a fully semantic user model. The preference set offers a compact
description of presumably multi-faceted preferences explicitly in terms of multiple music tracks. Therefore it is not limited
to a single seed item or semantic term to draw recommendations from. In contrast, the preference set manually provided by
the user assures a noise-free representation of the user’s preference with a maximum possible coverage. Moreover, the cho-
sen preference elicitation technique – namely inferring the dimensions of the user’s preferences in a fully audio content-
based manner – provides the system with the flexibility to overcome the so-called cold-start problem, which audio con-
tent-unaware systems are typically faced with (see Section 1). It also guarantees recommendations of non-popular items,
which may be preferred by specialized or long-tail seeking listeners. Finally, having semantic descriptions for both the user
and the recommended items allows to automatically generate justifications for the recommended music (e.g., ‘‘This track
was recommended because you like jazz music with acoustic instrumentation and relaxed mood’’.), which is a highly desir-
able feature for a recommendation system (Tintarev & Masthoff, 2007).

The mapping of the semantic dimensions to visual features, resulting in the Musical Avatar, enables an intuitive, yet still
arbitrary, depiction of musical preferences. This by itself enriches and facilitates the user’s interaction process, an appealing
feature for any recommender system. Furthermore, allowing the user to interact and manipulate graphical representations
offers a straightforward path towards user adaptive models. One possible extension here is the filtering of music recommen-
dations according to the presence or absence of certain visual features of the Musical Avatar. This allows users to actively
control the output of the music recommender by selecting certain visual attributes which are connected to acoustic prop-
erties via the mapping described in Section 6. Also, the iconic Musical Avatar may serve as a badge, reflecting a quick state-
ment of one’s musical preferences, with possible applications in online social interaction. Moreover, users can share
preferences related to the generated avatars or group together according to similar musical preferences represented by
the underlying user models.

Both aforementioned applications can be easily united into a single interactive recommender system. In addition to the
already discussed music recommendation and static preference visualization, the concepts introduced in the present work
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can be extended to reflect time-varying preferences. For example, an underlying user model can be computed considering
different time periods (e.g., yesterday, last week, last month). Also, tracking preferences over time enables the generation
of ‘‘preference time-lines’’, where Musical Avatars morph from one period to the next, while users can ask for recommenda-
tions from different periods of their musical preferences.

Moreover, in the visualization application, exploiting multiple instances of preference sets can alleviate the limitations
introduced by a single preference set. Multiple graphical instances can be used to visually describe different subsets of a mu-
sic collection, thus serving as high-level tools for media organization and browsing. Hence, recommendations can be directed
by those avatars, introducing one additional semantic visual layer in the recommendation process. Using multiple represen-
tations can help to better visually depict preferences of certain users, where a single avatar is not sufficient for describing all
facets of their musical preferences. Moreover, users may want to generate context dependent avatars, which can be used for
both re-playing preference items or listening to recommendations depending on the context at hand (e.g., one may use his
avatar for happy music at a party or listen to recommendations from the ‘‘car’’ avatar while driving).

Finally, alternative methods for gathering the preference set can be employed. Since selecting representative music tracks
may be a boring and exhausting task for certain users, data-driven approaches can be applied. Audio content-based methods
may be used to infer preference items from the user’s personal collection by, for instance, clustering the collection according
to certain musical facets to find central elements within each cluster (i.e., centroids). Additionally, listening statistics or per-
sonal ratings of particular items can be used to infer musical preferences without actually processing a full music collec-
tion.21 Nevertheless, such an implicit inference of a preference set can lead to noisy representations or to the lack of
coverage of all possible facets of the user’s musical preferences (see also Section 1).

8. Conclusions
In the present work we considered audio content-based user modeling approaches suitable for music recommendation

and visualization of musical preferences. We proposed a novel technique for preference elicitation, which operates on an
explicitly given set of music tracks defined by a user as evidence of her/his musical preferences and builds a user model
by automatically extracting a semantic description of the audio content for each track in the set. To demonstrate the effec-
tiveness of the proposed technique we considered (and evaluated) two applications: music recommendation and visualiza-
tion of musical preferences. The results obtained from the subjective evaluations, conducted on 12 subjects, are promising.

In the case of music recommendation, we demonstrated that the approaches based on the proposed semantic model, in-
ferred from low-level timbral, temporal, and tonal features, outperform state-of-the-art audio content-based algorithms
exploiting only low-level timbral features. Although these approaches perform worse than the considered commercial
black-box system, which exploit collaborative filtering, the difference in performance is greatly diminished when using
the semantic descriptors computed in our model. It is important to notice that one of the main advantages of our model
is the fact that it does not suffer from the long-tail and cold-start problems, which are inherent to collaborative filtering
approaches.

In the case of musical preferences visualization, we presented an approach to automatically create a visual avatar of the
user, capturing their musical preferences, from the proposed user model. To the best of our knowledge, such a task has not
been previously explored in the literature, and we have developed an appropriate procedure and an evaluation methodology.
The subjective evaluation showed that the provided visualization is able to reliably depict musical preferences, albeit in a
coarse way.

In addition to the demonstrated applications, we also described a number of possible enhancements of music recom-
mender systems based on the proposed user model. Specifically, we discuss justification of recommendations, interactive
interfaces based on visual clues, playlist description and visualization, tracking the evolution of a user’s musical preferences,
and social applications.

As future work, we plan to focus our research on performance improvements, enriching the current model with more
semantic descriptors (e.g., instrument information), and improving the accuracy of the underlying classifiers. We also plan
to expand the present prototypical study and conduct a large scale Web-based user evaluation in order to better assess the
representativeness of the obtained user models for their further refinement. In particular, as the proposed technique requires
some effort from the user to gather preference examples, a comparison with implicit methods to obtain information about
preferences would be of interest.
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ABSTRACT 
Music listening patterns can be influenced by contextual factors 
such as the activity a listener is involved in, the place one is 
located or physiological constants. As a consequence, musical 
listening choices might show some recurrent temporal patterns. 
Here we address the hypothesis that for some listeners, the 
selection of artists and genres could show a preference for certain 
moments of the day or for certain days of the week. With the help 
of circular statistics we analyze playcounts from Last.fm and 
detect the existence of that kind of patterns. Once temporal 
preference is modeled for each listener, we test the robustness of 
that using the listener’s playcount from a posterior temporal 
period. We show that for certain users, artists and genres, 
temporal patterns of listening can be used to predict music 
listening selections with above-chance accuracy. This finding 
could be exploited in music recommendation and playlist 
generation in order to provide user-specific music suggestions at 
the “right” moment. 

Categories and Subject Descriptors 
H.5.5 Sound and Music Computing – methodologies and 
techniques, modeling. 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Music context analysis, Playlist generation, User modeling, Music 
metadata, Temporal patterns, Music preference. 

1. INTRODUCTION 
Among the requirements of good music recommenders we can 
point to, not only delivering the right music but, delivering it at 
the right moment. This amounts to consider the context of 
listening as a relevant variable in any user model for music 
recommendation. As existing technologies also make it possible 
to track the listening activity every time and everywhere it is 
happening, it seems pertinent to ask ourselves how this tracking 
can be converted into usable knowledge for our recommendation 

systems. Music listening decisions might seem expressions of free 
will but they are in fact influenced by interlinked social, 
environmental, cognitive and biological factors [21][22].  

Chronobiology is the discipline that deals with time and rhythm in 
living organisms. The influence of circadian rhythms (those 
showing a repetition pattern every 24 hours approximately, 
usually linked to the day-night alternation), but also of ultradian 
rhythms (those recurring in a temporal lag larger than one day like 
the alternation of work and leisure or the seasons), has been 
demonstrated on different levels of organization of many living 
creatures, and preserving some biological cycles is critical to keep 
an optimum health [18]. The observation that human behavior is 
modulated by rhythms of hormonal releases, exposure to light, 
weather conditions, moods, and also by the activity we are 
engaged into [12][3] paves the way to our main hypothesis: there 
are music listening decisions that reflect the influence of those 
rhythms and therefore show temporal patterns of occurrence. The 
connection would be possible because of the existing links 
between music and mood on one side, and between music and 
activity on the other side. In both cases, music has functional 
values either as mood regulator [23] or as an activity regulator 
[13]. Therefore, as mood and activity are subject to rhythmic 
patterns and cycles, music selection expressed in playlists could 
somehow reflect that kind of patterning [26][23]. More 
specifically, in this paper we inquire on the possibility of 
detecting that, for a specific user, certain artists or musical genres 
are preferentially listened to at certain periods of the day or on 
specific days of the week. The practical side of any finding on this 
track would be the exploitation of this knowledge for a better 
contextualized music recommendation. Our research is aligned 
with a generic trend on detecting hidden patterns of human 
behavior at the individual level thanks, mainly, to the spread of 
portable communication and geolocation technologies [4][20]. 

2. RELATED RESEARCH 
While recommendations based on content analysis or on 
collaborative filtering may achieve a certain degree of 
personalization, they do miss the fact that the users interact with 
the systems in a particular context [19]. Furthermore, several 
studies have shown that a change in contextual variables induces 
changes in user’s behaviors and, in fact, when applying contextual 
modelling of the users (i.e., considering the time of the day, the 
performed activity, or the lighting conditions), the performance of 
recommendation systems improves both in terms of predictive 
accuracy and true positive ratings [8][25]. Although context-
based music recommenders were available since 2003 [1], time 
information is a recently-added contextual feature [7][17].  
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A generic approach to the characterization of temporal trends in 
everyday behavior has been presented in [10], where the concept 
of “eigenbehavior” is introduced. Eigenbehaviors are 
characteristic behaviors (such as leaving early home, going to 
work, breaking for lunch and returning home in the evening) 
computed from the principal components of any individual’s 
behavioral data. It is an open research issue if Eigenbehaviors 
could provide a suitable framework for analyzing music listening 
patterns. A model tracking the time-changing behavior of users 
and also of recommendable items throughout the life span of the 
data was developed for the Netfix movie collection [14]. This 
allowed the author to detect concept drifts and the temporal 
evolution of preferences, and to improve the recommendation 
over a long time span. 

Although research on behavioral rhythms has a long and solid 
tradition, we are not aware of many studies about their influence 
on music listening activities. The exception is a recent paper [2] 
where users’ micro-profiles were built according to predefined 
non-overlapping temporal partitions of the day (e.g., “morning 
time slot”,). The goal of the authors was to build a time-aware 
music recommender and their evaluation of the computed micro-
profiles showed their potential to increase the quality of 
recommendations based on collaborative filtering. Most of that 
reported work was, though, on finding optimal temporal 
partitions. As we will see, there are other feasible, maybe 
complementary, options that keep the temporal dimension as a 
continuous and circular one by taking advantage of circular 
statistics. Developed forty years ago and largely used in biological 
and physical sciences, circular statistics has also been exploited in 
personality research for studying temporal patterns of mood 
[15][16]. To our knowledge, it is the first time they are used in the 
analysis of music-related behavior, though applications to music 
have been previously reported [5][9]. 

3. METHODOLOGY 
3.1 Data Collection 
Getting access to yearly logs of the musical choices made by a 
large amount of listeners is not an easy task. Many music playing 
programs store individual users’ records of that, but they are not 
publicly accessible. As a workable solution, we have taken 
advantage of Last.fm API, which makes possible to get the 
playcounts and related metadata of their users. As raw data we 
have started with the full listening history of 992 unique users, 
expressed as 19,150,868 text lines and spanning variable length 
listening histories from 2005 to 2009. The data contained a user 
identifier, a timestamp, Musicbrainz identifiers for the artist and 
track, and a text name for the listened track.  

The artist genre information was gathered from Last.fm using the 
Last.fm API method track.getTopTags(), which returns a list of 
tags and their corresponding weight1.This list of tags, however, 
may relate to different aspects of music (e.g. genre, mood, 
instrumentation, decades...). Since in our case we need a single 
genre per track, we first clean tags in order to remove special 
characters or any other undesirable characters, such as spaces, 
hyphens, underscores, etc. Then irrelevant tags (i.e., those having 

                                                                 
1 Last.fm relevance weight of tag t to artist a, ranging from 0 to 

100. 

a low weight) are removed and the remaining ones are matched 
against a predefined list of 272 unique musical genres/styles 
gathered from Wikipedia and Wordnet. From the genre tags we 
obtained for each song, we select the one with the highest weight. 
If there are several tags with the highest weight, we select the one 
with the least popularity (popularity is computed as the number of 
occurrences of a specific genre in our data-set). 

3.2 Data cleaning 
Data coming from Lastfm.com contain playcounts that cannot be 
attributable to specific listening decisions on the side of users. If 
they select radio-stations based on other users, on tags or on 
similar artists there are chances that songs, artists and genres will 
not recur in a specific user’s profile. In general, even in the case 
of having data coming from personal players obeying solely to the 
user’s will, we should discard (i) users that do not provide enough 
data to be processed, and (ii) artists and genres that only appear 
occasionally. We prefer to sacrifice a big amount of raw data 
provided those we keep help to identify a few of clearly recurring 
patterns, even if it is only for a few users, artists or genres. 

In order to achieve the above-mentioned cleaning goals we first 
compute, for each user, the average frequency of each artist/genre 
in his/her playlist. Then, for each user’s dataset, we filter out all 
those artists/genres for which the playlist length is below the 
user’s overall average playlist length. Finally, in order to get rid of 
low-frequency playing users, we compute the median value of the 
number of artists/genres left after the last filtering step, which we 
will name as “valid” artists/genres. Those users whose number of 
“valid” artists/genres is below the median percentage value are 
discarded.  

3.3 Prediction and Validation Data Sets 
Once we get rid of all the suspected noise, we split our dataset in 
two groups. One will be used to generate the temporal predictions 
while the other one will be used to test them. The test set contains 
all the data in the last year of listening for a given subject. The 
prediction-generation set contains the data coming from two years 
of listening previous to the year used in the test set.  

3.4 Circular Statistics 
Circular statistics are aimed to analyze data on circles where 
angles have a meaning, which is the case when dealing with daily 
or weekly cycles. In fact, circular statistics is an alternative to 
common methods or procedures for identifying cyclic variations 
or patterns, which include spectral analysis of time-series data or 
time-domain based strategies [15]. Although these approaches are 
frequently used, their prerequisites (e.g., interval scaling, regularly 
spaced data, Gaussianity) are seldom met and, as we mentioned 
above, these techniques have rarely been used to analyze music-
related data and therefore we wanted to explore its potential.  
Under the circular statistics framework, variables or data 
considered to be cyclic in nature are meant to have a period of 
measurement that is rotationally invariant. In our case this period 
is referred to the daily hours and the days of the week. Therefore, 
taking into account the rotationally invariant period of analysis 
this would be reflected as daily hours that range from 0 to 24, 
where 24 is considered to be the same as 0. Regarding to the 
weekly rhythm, Monday at 0h would be considered to be the same 
as Sunday at 24h.  
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The first step in circular analysis is converting raw data to a 
common angular scale. We chose the angular scale in radians, and 
thus we apply the following conversion to our dataset: 

k
xπα 2

=  

where x represents raw data in the original scale, α is its angular 
direction (in radians) and k is the total number of steps on the 
scale where x is measured. In fact, we denote α as a vector of N 
directional observations αi  (i ranging from 1 to N). For the daily 
hour case, x would have values between 0 and 24, and k = 24. 
Alternatively, for the weekday analysis, x would have a scale from 
0 (Monday) to 6 (Sunday) and thus, k = 6. As noted, the effect of 
this conversion can be easily transformed back to the original 
scale. Once we have converted our data to angular scale, we 
compute the mean direction (a central tendency measure) by 
transforming raw data into unit vectors in the two-dimensional 
plane by  
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After this transformation, vectors ri are vector-averaged by 

r = 1
N

ri
i
∑  

The quantity r  is the mean resultant vector associated to the 
mean direction, and its length R describes the spread of the data 
around the circle. For events occurring uniformly in time R 
values approach 0 (uniform circular distribution) whereas events 
concentrated around the mean direction yield values close to 1 
(see figure 1 for an example). A null hypothesis (e.g., uniformity) 
about the distribution of data can be assessed using Rayleigh’s 
[11] or Omnibus (Hodges-Ajne) tests [27], the latter working well 
for many distribution shapes. Once we have detected significantly 
modally distributed data by means of both tests, we verify that it 
wasn’t completely pointing to a single day or hour. All the 
circular statistics analyses presented here have been performed 
with the CircStat toolbox for Matlab [6]. 

4. RESULTS 
4.1 Data cleaning 
As a consequence of the cleaning process, our working dataset 
now contains data from 466 valid users. The cleaning process has 
kept 62% of their total playcounts, which corresponds to 4,5% of 
the initial amount of artists. This dramatic reduction of the artists 
should not be surprising as many listening records show a “long-
tail” distribution, with just a few of frequently played artists, and  
many of them seldom played. On the other hand, when focusing 
on musical genre listening, the working dataset includes 515 
users, from which 78% of their playcounts has been kept. These 
playcounts comprise 8.6% of the total number of genres. Again, a 
long-tail distribution of the amount of listened genres is observed.  

4.2 Temporal Patterns of Artist Selection 
Once we have cleaned our dataset, we compute the mean circular 
direction and the mean resultant vector length for each artist and 
user. Therefore, these values can be considered as a description of 
the listening tendencies for each artist by each user. Both 
parameters were calculated for the daily and for the weekly data. 

Figure 1. Circular representation of a specific user listening 
behavior for a specific artist along 24 hours. The left side 
diagram shows the daily distribution of listening, and the 
right one the circular histogram. The red line represents the 
mean vector direction and length in both cases.  

In order to assess the relevance of these listening trends, we tested 
that the distribution of playcounts was different from uniform, and 
that it was modally distributed (i.e, showing a tendency around an 
hour or around a day of the week) and discarded those that were 
not fulfilling these requirements (a null hypothesis rejection 
probability p<0.05 was set for the tests). 
In the hour prediction problem, for each listener’s clean dataset 
almost 93% (σ=13) of the artists passed on average the uniformity 
test (i.e., listening to them is meant to be concentrated around a 
specific hour). However, considering the raw dataset, only a per-
user average of 7% (σ=3.2) of the artists show a listening hour 
tendency. For the weekly approach, the per-user average in the 
clean dataset is 99.8% (σ=0.8), indicating that there are some 
artists showing a clear tendency towards a preferred listening day. 
Considering the original raw dataset, they correspond to a 7.5% 
(σ= 3.2) of all the played artists.   
Data from 466 users, including 7820 different songs and a grand 
total of 23669 playcounts were used in the validation of the 
temporal listening patterns of artists. For each user and artist we 
computed a “hit” if the absolute difference between the playing 
day in the prediction and test conditions, expressed as a circular 
mean value in radians, was less than 0.45 (the equivalent to a half-
a-day error). For the time of the day a half-an-hour error was 
accepted, corresponding to a difference between the predicted and 
the observed time of less than 0.13 radians.  

When predicting the day of listening, an overall 32.4% of hits was 
found for the songs in the test collection, which exceeds by far the 
chance expectations (1/7=14.28%). As the final goal of the model 
is providing user-specific contextual recommendation, an 
additional per-user analysis yielded 34.5% of hits (σ=17.8). 
Identical data treatment was done with the time of the day 
yielding an overall 17.1% of hits (chance expectation baseline: 
1/24=4.1%) and a per-user hit rate of 20.5% (σ=16.4). 

4.3 Temporal Patterns of Genre Selection 
Data from 456 users, including more than 5100 songs and 117 
genres, were used for the validation of the genre-related patterns. 
In order to consider a “hit” in the prediction of listening time and 
day for a given genre, we set the same thresholds than for 
evaluating the artist prediction. For the time of the day an overall 
22.6% (and per-user 23.2%) of accurate predictions was found. It 
is interesting to note that relaxing the required accuracy of the 
prediction to plus/minus one hour error we reached 39.9% of 
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average hits and per-user average 41% (σ=28.4). For the day of 
the week, the overall hit percent was 40.9%, while the per-genre 
average and the per-user average were, respectively, 40.7% 
(σ=24.1) and 41.7% (σ=26.3). It is interesting to note that among 
the best predictable genres we find many of infrequent ones but 
also many of the most frequent ones. 

5. CONCLUSIONS 
The present study is, as far as we know, the first one inquiring the 
possibility that our music listening behavior may follow some 
detectable circadian and ultradian patterns, at least under certain 
circumstances. We have discovered that a non-negligible amount 
of listeners tend to prefer to listen to certain artists and genres at 
specific moments of the day and/or at certain days of the week. 
We have also observed that, respectively for artists and for genres, 
20% and 40% time-contextualized music recommendations can be 
successful. In our future work agenda, more sophisticated 
prediction models will be tested, and also ways to implement them 
into existing music recommenders. 
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5. THE AGE OF CREATIVE SYSTEMS? 
 

In the future, you won't buy artists' works;  
you'll buy software that makes original pieces of "their" works,  

or that recreates their way of looking at things. 

Brian Eno, Wired 3.05, May 1995, p. 150 
 

5.1. Introduction 
In the preceding decades, we have witnessed how the interest on and the needs of 
analysing, describing, and experiencing music contents, motivated research efforts along 
three sequentially opened but intercommunicated and coexistent paths that we have titled 
“ages”. Currently available music representations are rich (even “deep”) though they are 
still incomplete, not only because of technical limitations in the available algorithms and 
data, but also because one essential component was frequently ignored. Music is, above 
all, social action: performance happens before listening, before analysing, individually or 
collectively. Performance predates millenia any known form of symbolic record related 
to music. And music performance, additionally, is originally social. It tends to be created 
between people that, sharing some framework, interact under accepted codes to create 
music. It is then natural to wonder if the performative and interactive aspects of music 
can be benefited from state-of-the-art techniques and technologies developed in twenty 
years of MIR. Moreover, a digital native generation, used to constant interaction with 
devices as proxies of people, places, emotions or actions, would acclaim any development 
where information extracted from music items could be put into value by giving them the 
agency to move it around, change it, alter other processes, etc. 
When we use the expression “creative systems” there are two possible senses for that 
concept: either systems that show creativity by themselves (hence, artificial systems with 
a certain autonomy in the decisions they make), or systems that enhance creativity of 
humans (hence, tools for creators who are -or should be- the ultimate decision makers). 
It cannot be denied that humans show a bizarre fascination for any kind of automatism, 
and automatic music creation systems have been around us since the invention of the 
clockwork (or probably before, at least as “algorithms” -what, if not an algorithm, is 
implicit in a treatise on harmonization or on counterpoint? -). In these and many other 
algorithm composition systems (Hiller & Isaacson, 1959; Cope, 1991) some arbitrary 
rules have been implemented to generate music with certain particularities (i.e., those 
defining fifth species counterpoint, for example). Currently, though, we do not need to be 
restricted to deal with such low-interaction systems and we can get more insights and 
satisfactions (as researchers and as users too) with those of the other type, those that allow 
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creation to develop as a human-machine dialog, turn-taking, negotiation… processes that 
humans use in a natural way35. 
It is significative that, in ISMIR 2013, a late-breaking demo session was devoted to 
“Creative MIR” (Humphrey, Turnbull and Collins, 2013). Research on that field had 
already been presented in earlier conference editions or elsewhere (Wiggins, 2006; 
Griffin et al., 2010; Fiebrink, 2011; Pardo et al., 2012) but this could be taken as the 
implicit acknowledgment of a new “age” starting. In addition, I was recently surprised to 
discover in the news section of the Computer Music Journal (Unknown reporter, 2011) a 
very short summary of my keynote to the Third International Workshop on Advances in 
Music Information Research (Ad-MIRe 2011) putting in my mouth the words "time has 
arrived for a paradigm shift towards doing use-inspired basic research where the focus on 
'information' shifts towards 'interaction'”36. So, then we were all tuned-in, it seems. Now 
features, semantic content and context can be flowing to assist music creation, and some 
of the to-be included elements are gestures, haptics and a closed loop between the user 
and the system. In this context was conceived and developed the GiantSteps project37, 
which started in 2013, and provided the context where the paper included in this chapter 
originated. 
The MIRES38 roadmap (Serra et al., 2013) was already remarking the growing 
importance of MIR for music creation, with the goal of researching on “intuitive tools, 
controlled through parameters relevant from the viewpoint of human cognition of music 
and sound, and also to enhance the quality of existing processes by selecting appropriate 
processes and parameter sets according to the nature of the extracted elements”. Some 
areas that are considered ripe for that are: 

• Content-based sound processing: commercial examples of using audio analysis 
outcomes to guide sound edition and mixing can be experienced with 
GarageBand, Melodyne, Revoice Pro or Ableton Live, which use polyphonic 
transcription, drum detection, or tempo and pitch adaptation to input or guide 
materials. Semantic-based (or automatic) mixing is another sparkling and 
promising area (Man & Reiss, 2013; Man et al., 2017). Lastly, let’s mention the 
innovative possibility of object and content-based processing (Hattwick et al., 
2013) whereby objects capable of sensing and analysing sound and gestures foster 
original ways to musically interact with the environment (see also Mogees39). 

• Computer-aided composition. In contrast to more traditional and general-purpose 
systems, the possibility of modelling styles and genres is one of the most thrilling 
avenues for research because it calls for the analysis and representation of specific 
corpora, sometimes in an interactive fashion. Systems that, with a minimal input 
from the user, can generate reasonable style-constrained variations (Henry et al., 
2018) or complement such input (i.e., by harmonizing with it, by adding a 
bassline, generating solos…), are demanded by potential users (Andersen and 
Knees, 2016), have been early research topics (Arcos et al, 1998 Grachten et al., 

                                                 
35 See Herrerman et al. (2017) for an excellent review and systematization of music generation systems. 
36 The keynote title was “From MIR to MIR Through Three Ages and a Paradigm Shift", and there I 
presented some of the ideas that have been framed this thesis 
37 http://www.giantsteps-project.eu/#/ 
38 http://www.mires.cc/, but see also http://mtg.upf.edu/MIRES. 
39 https://www.facebook.com/mogees/ 

http://www.giantsteps-project.eu/#/
http://www.mires.cc/
http://mtg.upf.edu/MIRES
https://www.facebook.com/mogees/
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2006), and they still pose challenging research questions (McVicar et al., 2014; 
Van Balen, 2016; Faraldo et al., 2017; Gómez-Marín et al, 2017). The project 
Flow Machines has fuelled the field with surprising and provocative outcomes40 
but also with relevant research contributions, many of them related to constrained 
Markov models (Pachet et al., 2013; Roy et al, 2016; Sakellariou et al., 2017). 

• Databases for music and sound production, where the prototypical applications
are content-driven concatenative synthesis (Zils & Pachet, 2001; Collins, 2002;
Schwartz et al., 2006) mashup generation (Davies et al., 2014), or soundtrack
generation (Müller & Driedger, 2012). Several systems have been developed more
recently such as LoopMashVST41, FreeSound Radio (Roma et al., 2009), Floop
(Roma & Serra, 2015), Phonos Explorer (Bandiera, 2015), FreeSound Explorer
(Font et al., 2017), and APICultor (Ordiales and Bruno, 2017). In 2018 Native
Instruments has opened a web-based sample-search service powered with MIR
algorithms42 (it is worth to note that 15 years have passed since IRCAM’s Studio
Online (Ballet & Borghessi, 1999) or our AUDIOCLAS demonstrators for the
Tape Gallery (see chapter 3), which essentially were offering a similar service,
even though the technologies were more rudimentary and error-prone).

• Live performance spans through different and usually separated areas. In the
context of DJing, for example, beat synchronisation and harmonic mixing
(Ishizaki, 2015), are typical problems. Here we have witnessed the development
of virtual DJs (Cliff, 2000; Hirai, 2015), thanks to the work done on automatic
playlist generation and continuation. The problem even motivated a Turing test
competition43 (in which one of the winners (Parera, 2016) was developed as a
MSc thesis project supervised by Sergi Jordà and the author of this thesis44), but
it seems much more interesting and full-fledged the AI DJ project45, even though
it has not been academically presented. With quite a different framework and
aesthetics, live coding is another approach that keeps growing, with proposals
that, for example, combine live coding and the analysis of personal or public
collections of sounds (Xambó et al., 2018). The work developed in the IRCAM
around OMax and based on audio-based oracle factors (Assayag et al., 2010;
Dubnov & Assayag, 2012), makes possible the establishment of improvisatory
dialogues between humans and music-listening (music recycling) systems or,
additionally, interactive arrangement and voicing based on pre-set corpuses.  Also
based on oracle factors is Mimi (Schankler, 2014), a system that allows the
visualization of the musical past and the (potential) futures of a live improvisation.
Another popular performance technique, looping, has also been addressed in the
context of Flow Machines (Pachet et al., 2013).

40 http://www.flow-machines.com/overview/, 
https://www.youtube.com/channel/UCB00CfzP5YHpgJbMB_exm9A 
41 https://www.soundonsound.com/techniques/great-loops-loopmash, 
https://www.steinberg.net/en/products/mobile_apps/loopmash.html 
42 https://sounds.com/ 
43 http://bregman.dartmouth.edu/turingtests/music2018. This competition has changed the goal in 
subseqüent years, dealing now with style imitation and improvisation with a human performer. 
44 http://bregman.dartmouth.edu/turingtests/node/57 
45 https://medium.com/@naotokui/ai-dj-project-a-dialog-between-human-and-ai-through-music-
abca9fd4a45d 

http://www.flow-machines.com/overview/
https://www.youtube.com/channel/UCB00CfzP5YHpgJbMB_exm9A
https://www.soundonsound.com/techniques/great-loops-loopmash
https://www.steinberg.net/en/products/mobile_apps/loopmash.html
https://sounds.com/
http://bregman.dartmouth.edu/turingtests/music2018
http://bregman.dartmouth.edu/turingtests/node/57
https://medium.com/@naotokui/ai-dj-project-a-dialog-between-human-and-ai-through-music-abca9fd4a45d
https://medium.com/@naotokui/ai-dj-project-a-dialog-between-human-and-ai-through-music-abca9fd4a45d
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The age of creative music systems takes advantage of the hybridization of several research 
communities, specially those of MIR, AI and HCI. Concepts such as “The Machine 
Learning Algorithm as Creative Musical Tool” (Fiebrink & Caramiaux, 2018) are 
keeping our expectations higher than ever. 
 

 

5.2. Papers included in this chapter 
Nuanáin, C. Ó., Herrera P., & Jordà S. (2017).  Rhythmic Concatenative Synthesis for 
Electronic Music: Techniques, Implementation, and Evaluation. Computer Music 
Journal. 41(2), 21-37 (Journal h-index: 35; Journal IF 2016: 0.405; Q1 in Music Journals; 
0 citations; a shorter version was selected best paper in NIME 2016; CMJ used a 
screenshot for the cover of the issue where it was published). 
 

5.3. Contributions in the selected papers 
In addition to our contribution of providing a quite complete state of the art on 
concatenative synthesis and its application and relevance in the composition and 
production of styles of electronic dance music, we describe RhythmCAT, a user-friendly 
system for generating rhythmic loops that model the timbre and rhythm of an initial target 
loop.  Although there are a few commercial applications that encapsulate techniques of 
concatenative synthesis for the user, most systems are custom-built for the designer or are 
prototypical in nature. Additionally, we detected a marked lack of evaluation strategies 
or reports of user experiences in the accompanying literature and, based on these 
investigations, we set out to design a system that applied and extended many of the 
pervasive techniques in concatenative synthesis with a clear idea of its application and its 
target user. We built then an instrument that was easily integrated with modern digital 
audio workstations and presented an interface that intended to be attractive and easy to 
familiarize oneself with. The system operates as an Ableton Live instrument that takes an 
audio excerpt or a loop as input and “reconstructs” it using a provided collection of sound 
samples. The system makes possible to use a personal similarity function, assigning 
different weights to the involved features. One of the most appealing features is a 2D 
interactive timbre space where users can modulate, in real-time, the concatenation 
sequence. 
A three-tiered, qualitative and quantitative, evaluation of the system, not only in terms of 
its objective performance but also in the subjective aural and experiential implications for 
our users, was our final substantial contribution to this area. The results of our evaluations 
showed that our system is an efficient, effective and user-friendly tool (though users were 
not favourable to personalising the similarity function, for example) that integrates well 
in the typical workflow of electronic music creators. 
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Rhythmic Concatenative
Synthesis for Electronic
Music: Techniques,
Implementation, and
Evaluation

Cárthach Ó Nuanáin, Perfecto
Herrera, and Sergi Jordà
Music Technology Group
Communications Campus–Poblenou
Universitat Pompeu Fabra
Carrer Roc Boronat, 138, 08018
Barcelona, Spain
{carthach.onuanain, perfecto.herrera,
sergi.jorda}@upf.edu

Abstract: In this article, we summarize recent research examining concatenative synthesis and its application and
relevance in the composition and production of styles of electronic dance music. We introduce the conceptual
underpinnings of concatenative synthesis and describe key works and systematic approaches in the literature. Our
system, RhythmCAT, is proposed as a user-friendly system for generating rhythmic loops that model the timbre and
rhythm of an initial target loop. The architecture of the system is explained, and an extensive evaluation of the system’s
performance and user response is discussed based on our results.

Historically, reusing existing material for the pur-
poses of creating new works has been a widely
practiced technique in all branches of creative arts.
The manifestations of these expressions can be
wholly original and compelling, or they may be
derivative, uninspiring, and potentially infringe on
copyright (depending on myriad factors including
the domain of the work, the scale of the reuse, and
cultural context).

In the visual arts, reusing or adapting existing ma-
terial is most immediately understood in the use of
collage, where existing works or parts thereof are as-
sembled to create new artworks. Cubist artists such
as Georges Braque and Pablo Picasso extensively ref-
erenced, appropriated, and reinterpreted their own
works and the works of others, as well as common
found objects from their surroundings (Greenberg
1971). Collage would later serve as direct inspiration
for bricolage, reflecting wider postmodernist trends
towards deconstructionism, self-referentiality, and
revisionism that include the practice of parody and
pastiche (Lochhead and Auner 2002).

In music and the sonic arts, the natural corollary
of collage came in the form of musique concrète
(Holmes 2008), a movement of composition stem-
ming from the experiments of Pierre Schaeffer and,
later, Pierre Henry at the studios of Radiodiffusion-
Télévision Française in Paris during the 1940s and
1950s (Battier 2007). In contrast to the artificially

Computer Music Journal, 41:2, pp. 21–37, Summer 2017
doi:10.1162/COMJ a 00412
c© 2017 Massachusetts Institute of Technology.

and electronically generated elektronische Musik
spearheaded by Karlheinz Stockhausen at the West
German Radio studios in Cologne, the French com-
posers sought to conceive their works from existing
recorded sound, including environmental sources
like trains and speech. Seemingly unrelated and
nonmusical sounds are organized in such a way that
the listener discovered the latent musical qualities
and structure they inherently carry.

It is important to note that in music composi-
tion general appropriation of work predates these
electronic advancements of technology. In West-
ern art music, for example, composers like Béla
Bartók—himself a musicologist—have often turned
to folk music for its melodies and dance music styles
(Bartók 1993), and others (e.g., Claude Debussy, cf.
Tamagawa 1988) became enchanted by music from
other cultures, such as Javanese gamelan, studying
its form and incorporating the ideas into new pieces.
Quotations, or direct lifting of melodies from other
composers’ works, are commonplace rudiments in
jazz music. Charlie Parker, for example, was known
to pepper his solos with reference to Stravinsky’s
Rite of Spring (Mangani, Baldizzone, and Nobile
2006). David Metzer has compiled a good reference
on appropriation and quotation music (Metzer 2003).

The modern notion of sampling stems from the
advent of the digital sampler and its eventual explo-
sion of adaptation in hip-hop and electronic music.
Artists such as Public Enemy and the Beastie Boys
painstakingly assembled bewildering permutations
of musical samples, sound bites, and other miscel-
laneous recorded materials that sought to supplant
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the many cultural references that permeated their
lyrics (Sewell 2014). Later, the influence of hip-hop
production would inform the sample-heavy arrange-
ments of jungle and drum and bass, in particular
with its exhaustive rerendering of the infamous
“Amen Break.” John Oswald, an artist who directly
challenged copyright for artistic gain, dubbed his ap-
proach “plunderphonics” and set out his intentions
in a suitably subtitled essay “Plunderphonics, or Au-
dio Piracy as a Compositional Prerogative” (Oswald
1985). Using tape-splicing techniques, he created
deliberately recognizable montages of pop music,
such as that by Michael Jackson, in a style that be-
came later known as “mashups.” Nowadays, artists
such as Girltalk create extremely complex and mul-
tireferential mashups of popular music, harnessing
the powerful beat-matching and synchronization
capabilities of the modern digital audio workstation
(Humphrey, Turnbull, and Collins 2013).

Although the question of originality and author-
ship is not in the realm of this discussion, this
interesting and pertinent topic is under the scrutiny
of researchers in musicology and critical studies.
We encourage the reader to consult work by Tara
Rodgers (2003), Paul Miller (2008), and Kembrew
McLeod (2009) for a more focused discourse.

Associated research efforts in computer music,
signal processing, and music information retrieval
(MIR) afford us the opportunity to develop au-
tomated and intelligent systems that apply the
aesthetic of sampling and artistic reuse. The term
concatenative synthesis has been extensively used
to describe musical systems that create new sound
by automatically recycling existing sounds ac-
cording to some well-defined set of criteria and
algorithmic procedures. Concatenative synthesis
can be considered the natural heir of granular syn-
thesis (Roads 2004), a widely examined approach
to sound synthesis using tiny snippets (“grains”)
of around 20–200 msec of sound, which traces its
history back to Iannis Xenakis’s theories in For-
malized Music (Xenakis 1971). With concatenative
synthesis, the grains become “units” and are more
related to musical scales of length, such as notes
and phrases. Most importantly, information is at-
tached to these units of sound: crucial descriptors
that allow spectral and temporal characteristics

of the sound to determine the sequencing of final
output.

In the following sections, we will present a
thorough, critical overview of many of the key
works in the area of concatenative synthesis, based
on our observation that there has not been such
a broad survey of the state of the art in other
publications in recent years. We will compare
and contrast characteristics, techniques, and the
challenges of algorithmic design that repeatedly
arise. For the past three years, we have been working
on the European-led initiative GiantSteps (Knees et
al. 2016). The broad goal of the project is the research
and development of expert agents for supporting and
assisting music makers, with a particular focus
on producers of electronic dance music (EDM).
Consequently, one of the focuses of the project has
been on user analysis: thinking about their needs,
desires, and skills; investigating their processes
and mental representations of tasks and tools; and
evaluating their responses to prototypes.

Modern EDM production is characterized by
densely layered and complex arrangements of tracks
making liberal use of synthesis and sampling,
exploiting potentially unlimited capacity and pro-
cessing in modern computer audio systems. One
of our main lines of research in this context has
been the investigation of concatenative synthesis
for the purposes of assisting music producers to
generate rhythmic patterns by means of automatic
and intelligent sampling.

In this article, we present the RhythmCAT
system, a digital instrument that creates new
loops emulating the rhythmic pattern and timbral
qualities of a target loop using a separate corpus of
sound material. We first proposed the architecture
of the system in a paper for the conference on New
Interfaces for Musical Expression (Ó Nuanáin, Jordà,
and Herrera 2016a), followed by papers evaluating
it in terms of its algorithmic performance (Ó
Nuanáin, Herrera, and Jordà 2016) and a thematic
analysis of users’ experience (Ó Nuanáin, Jordà,
and Herrera 2016b). This article thus represents
an expanded synthesis of the existing literature,
our developments motivated by some detected
shortcomings, and the illustration of an evaluation
strategy.

22 Computer Music Journal
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State of the Art in Concatenative Synthesis

Other authors have previously provided insightful
summaries of research trends in concatenative
synthesis (e.g., Schwarz 2005; Sturm 2006). These
surveys are over ten years old, however (but see
Schwarz 2017 for a continuously updated online
survey), so we offer here a more recent compendium
of state-of-the-art systems as we see them, based on
our investigations of previous publications up until
now.

Before music, concatenative synthesis enjoyed
successful application in the area of speech syn-
thesis; Hunt and Black (1996) first reported a unit
selection scheme using hidden Markov models
(HMMs) to automatically select speech phonemes
from a corpus and combine them into meaningful
and realistic sounding sentences. Hidden Markov
models extend Markov chains by assuming that
“hidden” states output visible symbols, and the
Viterbi algorithm (Rabiner 1989) can return the
most probable sequence of states given a particular
sequence of symbols. In concatenative synthesis,
the maximum probabilistic model is inverted to
facilitate minimal cost computations.

The target cost of finding the closest unit in
the corpus to the current target unit becomes the
emission probability, with the concatenation cost
representing the transition probability between
states. The Viterbi algorithm thus outputs indices
of database units corresponding to the optimal
state sequence for the target, based on a linear
combination of the aforementioned costs. Diemo
Schwarz (2003) directly applied this approach for
musical purposes in his Caterpillar system.

Schwarz notes, however, that the HMM approach
can be quite rigid for musical purposes because it
produces one single optimized sequence without
the ability to manipulate the individual units.
To address these limitations, he reformulates
the task into a constraint-satisfaction problem,
which offers more flexibility for interaction. A
constraint-satisfaction problem models a problem
as a set of variables, values, and a set of constraints
that allows us to identify which combinations
of variables and values are violations of those
constraints, thus allowing us to quickly reduce large

portions of the search space (Russell and Norvig
2009).

Zils and Pachet (2001) first introduced constraint
satisfaction for concatenative synthesis in what
they describe as musical mosaicking—or, to use
their portmanteau, musaicing. They define two
categories of constraints: segment and sequence
constraints. Segment constraints control aspects of
individual units (much like the target cost in an
HMM-like system) based on their descriptor values.
Sequence constraints apply globally and affect
aspects of time, continuity, and overall distributions
of units. The constraints can be applied manually
by the user or learned by modeling a target. The
musically tailored “adaptive search” algorithm
performs a heuristic search to minimize the total
global cost generated by the constraint problem.
One immediate advantage of this approach over the
HMM is the ability to run the algorithm several
times to generate alternative sequences, whereas
the Viterbi process always outputs the most optimal
solution.

A simpler approach is presented in MatConcat
(Sturm 2004), using feature vectors comprising six
descriptors and computing similarity metrics be-
tween target units and corpus units. Built for the
MATLAB environment for scientific computing,
the interface is quite involved, and the user has
control over minute features such as descriptor
tolerance ranges, relative descriptor weightings,
as well as window types and hop sizes of output
transformations. On Sturm’s Web site are short
compositions generated by the author using ex-
cerpts from a Mahler symphony as a target, and
resynthesized using various unrelated sound sets,
for instance, pop vocals, found sounds, and solo in-
strumental recordings from saxophone and trumpet
(www.mat.ucsb.edu/∼b.sturm/music/CVM.htm).

As concatenative synthesis methods matured,
user modalities of interaction and control became
more elaborate and real-time operations were
introduced. One of the most compelling features
of many concatenative systems is the concept of
the interactive timbre space. With the release of
CataRT (Schwarz et al. 2006), these authors provided
an interface that arranges the units in an interactive
two-dimensional timbre space. The arrangement
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of these units is according to a user-selectable
descriptor on each axis. Instead of using a target
sound file to inform the concatenation procedure,
the user’s mouse cursor becomes the target. Sounds
that are within a certain range of the mouse cursor
are sequenced according to some triggering options
(one-shot, loop, and—most crucially—with real-
time output).

Bernardes takes inspiration from CataRT and
from Tristan Jehan’s Skeleton (Jehan 2005) to
build his EarGram system for the Pure Data (Pd)
environment (Bernardes, Guedes, and Pennycook
2013). Built on top of William Brent’s excellent
feature-extraction library timbreID (Brent 2010), it
adds a host of interesting features for visualization
and classification. For instance, as well as the
familiar waveform representation and previously
described 2-D timbre representation (with various
clustering modes and dimensionality-reduction
implementations), there are similarity matrices
that show the temporal relations in the corpus
over time. Some unique playback and sequencing
modes also exist, such as the infiniteMode, which
generates endless playback of sequences, and the
soundscapeMap, which features an additional 2-D
control of parameters pertaining to sound scene
design. Another system that adapts a 2-D timbre
space is AudioGarden by Frisson, Picard, and
Tardieu (2010), which offers two unique mapping
procedures. The first of these, “disc” mode, places
units by assigning the length of the audio file to the
radius of the unit from the center, with the angle
of rotation corresponding to a principal component
of timbre, mel-frequency cepstrum coefficients
(MFCCs). In the other mode, called “flower” mode,
a point of the sound is positioned in the space
according to the average MFCCs of the entire sound
file. Segments of the particular sound are arranged
in chronological fashion around this center point.

There have been some concatenative systems tai-
lored specifically with rhythmic purposes in mind.
Pei Xiang proposed Granuloop for automatically re-
arranging segments of four different drum loops into
a 32-step sequence (Xiang 2002). Segmentation is
done manually, without the aid of an onset detector,
using the Recycle sample editor from Propellerhead
Software. Segmented sounds are compared using the

inner product of the normalized frequency spectrum,
supplemented with the weighted energy. These val-
ues become weights for a Markov-style probability
transition matrix. Implemented in Pd, the user
interacts by moving a joystick in a 2-D space, which
affects the overall probability weightings determin-
ing which loop segments are chosen. The system
presents an interesting approach but is let down by
its lack of online analysis. Ringomatic (Aucouturier
and Pachet 2005) is a real-time agent specifically
tailored for combining drum tracks, expanding on
many of the constraint-based ideas from their prior
musaicing experiments. They applied the system to
real-time performance following symbolic feature
data extracted from a human MIDI keyboard player.
They cite, as an example, that a predominance of
lower-register notes in the keyboard performance
applies an inverse constraint that creates comple-
mentary contrast by specifying that high-frequency
heavy cymbal sounds should be concatenated.

As demonstrated in EarGram, concatenative
synthesis has been considered useful in sound
design tasks, allowing the sound designer to build
rich and complex textures and environments that
can be transformed in many ways, both temporally
and timbrally. Cardle, Brooks, and Robinson (2003)
describe their Directed Sound Synthesis software as a
means of providing sound designers and multimedia
producers a method of automatically reusing and
synthesizing sound scenes in video. Users select
one or more regions of an existing audio track and
can draw probability curves on the timeline to
influence resynthesis of these regions elsewhere
(one curve per region). Hoskinson and Pai (2001), in
a nod to granular synthesis, refer to the segments
used in their Soundscapes software as ”natural
grains,” and they seek to synthesize endless streams
of soundscapes. The selection scheme by which
segments are chosen is based on a representation
of each segment as a transition state in a Markov
chain. Its interface features knobs and sliders for
interactively controlling gain and parameters of
multiple samples. To evaluate the platform they
conducted an additional study (Hoskinson and Pai
2007) to reveal whether listening subjects found the
concatenated sequences convincing compared with
genuinely recorded soundscapes.
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More-specific and applied-use cases of concate-
native synthesis include work by Ben Hackbarth,
who explores the possibilities of concatenative syn-
thesis in large-scale music composition (Hackbarth,
Schnell, and Schwarz 2011). Hackbarth has worked
with Schwarz to provide an alternative interface
for exploring variations based on a force-directed
graph. John O’Connell describes a graphical system
for Pd that demonstrates the use of higher-level
perceptual concepts like mood (happy versus sad)
for informing selection in audio mosaics (O’Connell
2011).

Commercial implementations also exist for con-
catenative synthesis. Of particular note is Steinberg’s
Loopmash, a software plug-in and mobile application
for automatically creating mashups from existing
looped content (www.steinberg.net/loopmash). The
interface consists of a number of tracks in a timeline
arrangement. One track is set as a master, and slices
in the master are replaced with matching slices from
the other slave tracks. Users interact by manipulat-
ing “similarity gain” sliders that control the influ-
ence of each track in the slice selection algorithm.
Other applications exist more as MIDI sampler sys-
tems attempting to model the performance qualities
of natural sources such as orchestral ensembles (e.g.,
SynfulOrchestra, www.synful.com) or the human
voice (e.g., Vocaloid, www.vocaloid.com).

There are many other concatenative systems that
are too numerous to discuss in detail here. We have,
however, compiled a table in a previous publication
summarizing all the systems we have come across
in our research, with remarks on interaction and
visualization features, support for rhythm, and
whether any user evaluation was carried out (Ó
Nuanáin, Jordà, and Herrera 2016b).

Design and Implementation

In this section, we will describe our implementa-
tion of the RhythmCAT system, beginning with
an explanation of the musical analysis stages of
onset detection, segmentation, and feature extrac-
tion. This is followed by an examination of the
interactive user interface and the pattern-generation
process.

Figure 1. Block diagram of
functionality in the
RhythmCAT system.

Figure 1 gives a diagrammatic overview of these
important stages, which can be briefly summarized
as:

1. Sound Input
2. Onset Detection and Segmentation
3. Audio Feature Extraction
4. Storage and Data Representation
5. Pattern Synthesis
6. Real-Time Audio Output
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The system is developed in C++ using the
JUCE framework (www.juce.com), the Essentia
musical analysis library (Bogdanov et al. 2013), and
the OpenCV computer vision library for matrix
operations (Bradski 2000).

Sound Input

The first stage in building a concatenative music
system generally involves gathering a database of
sounds from which selections can be made during
the synthesis procedure. This database can be
manually assembled, but in many musical cases the
starting point is some user-provided audio that may
range in length from individual notes to phrases to
complete audio tracks.

The two inputs to the system are the sound
palette and the seed sound. The sound palette refers
to the pool of sound files we want to use as the
sample library for generating our new sounds. The
seed sound refers to the short loop that we wish
to use as the similarity target for generating those
sounds. The final output sound is a short (one to two
bars) loop of concatenated audio that is rendered in
real time to the audio host.

Onset Detection and Segmentation

In cases where the sounds destined for the sound
palette exceed note or unit length, the audio needs
to be split into its constituent units using onset
detection and segmentation.

Onset detection is a large topic of continuous
study, and we would encourage the reader to exam-
ine the excellent review of methods summarized
by Simon Dixon (2006). Currently, with some tun-
ing of the parameters, Sebastien Bock’s Superflux
algorithm represents one of the best-performing
state-of-the-art detection methods (Böck and Wid-
mer 2013). For our purposes, we have experienced
good results with the standard onset detector avail-
able in Essentia, which uses two methods based on
analyzing signal spectra from frame to frame (at a
rate of around 11 msec). The first method involves
estimating the high-frequency content in each frame

(Masri and Bateman 1996) and the second method
involves estimating the differences of phase and
magnitude between each frame (Bello and Daudet
2005).

The onset detection process produces a list of
onset times for each audio file, which we use to
segment into new audio files corresponding to unit
sounds for our concatenative database.

Audio Feature Extraction

In MIR systems, the task of deciding which features
are used to represent musical and acoustic properties
is a crucial one. It is a trade-off between choosing
the richest set of features capable of succinctly
describing the signal, on the one hand, and the
expense of storage and computational complexity,
on the other. When dealing specifically with musical
signals, there are a number of standard features cor-
responding roughly to certain perceptual sensations.
We briefly describe the features we chose here (for a
more thorough treatment of feature selection with
relation to percussion, see Herrera, Dehamel, and
Gouyon 2003; Tindale et al. 2004; and Roy, Pachet,
and Krakowski 2007).

Our first feature is the loudness of the signal,
which is implemented in Essentia according to
Steven’s Power Law, namely, the energy of the
signal raised to the power of 0.67 (Bogdanov et al.
2013). This is purported to be a more perceptually
effective measure for human ears. Next, we extract
the spectral centroid, which is defined as the
weighted mean of the spectral bins extracted using
the Fourier transform. Each bin is then weighted by
its magnitude.

Perceptually speaking, the spectral centroid
relates mostly to the impression of the brightness
of a signal. In terms of percussive sounds, one
would expect the energy of a kick drum to be more
concentrated in the lower end of the spectrum and
hence have a lower centroid than that from a snare
or crash cymbal.

Another useful single-valued spectral feature is
the spectral flatness. It is defined as the geomet-
ric mean of the spectrum divided by the arithmetic
mean of the spectrum. A spectral flatness value of 1.0
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means the energy spectrum is flat, whereas a value of
0.0 would suggest spikes in the spectrum indicating
harmonic tones (with a specific frequency). The
value intuitively implies a discrimination between
noisy or inharmonic signals and signals that are
harmonic or more tonal. Kick-drum sounds (espe-
cially those generated electronically) often comprise
quite a discernible center frequency, whereas snares
and cymbals are increasingly broadband in spectral
energy.

Our final feature is MFCCs. These can be con-
sidered as a compact approximation of the spectral
envelope and is a useful aid in computationally
describing and classifying the timbre of a signal. It
has been applied extensively in speech processing,
genre detection (Tzanetakis, Essl, and Cook 2001),
and instrument identification (Loughran et al. 2004).
The computation of MFCCs, as outlined by Beth
Logan (2000), is basically achieved by computing
the spectrum, mapping the result into the more
perceptually relevant mel scale, taking the log, and
then applying the discrete cosine transform.

It is difficult to interpret exactly what each of the
MFCC components mean, but the first component
is generally regarded as encapsulating the energy.
Because we are already extracting the loudness
using another measure, we have discarded this
component in our system. For detailed explanations
and formulae pertaining to the features introduced
here, as well as others, we direct the reader to
Geoffroy Peeters’s compendium (Peeters 2004).

Storage and Data Representation

Further on in this article we will describe in greater
detail how the seed or target audio signal is actually
received from the Virtual Studio Technology host,
but in terms of analysis on that seed signal, the
process is the same as before: onset detection and
segmentation followed by feature extraction.

The resulting feature vectors are stored in two
matrices: the palette matrix and the target matrix.
The palette matrix stores the feature vectors of each
unit of sound extracted from the sound palette, and
the target matrix similarly stores feature vectors of
units of sound extracted from the seed loop.

Pattern Synthesis and Real-Time Audio Output

This section details the visible, aural, and interactive
elements of the system as they pertain to the user.
Figure 2 provides a glimpse of the user interface in a
typical pattern generation scenario.

Workflow

The layout of the interface was the result of a
number of iterations of testing with users who,
while praising the novelty and sonic value of
the instrument, sometimes expressed difficulty
understanding the operation of the system. One of
the main challenges faced was how best to present
the general workflow to the user in a simple and
concise manner. We decided to represent the flow of
the various operations of the software emphatically
by using a simple set of icons and arrows, as seen in
Figure 2a.

The icons indicate the four main logical opera-
tions that the user is likely to implement, and opens
up related dialog screens:

Palette Dialog – indicated by the folder icon
Seed Dialog – indicated by the jack cable icon
Sonic Dialog – indicated by the square feature

space icon
Output Dialog – indicated by the speaker icon

Sound Palette

The user loads a selection of audio files or folders
containing audio files that are analyzed to create
the sound palette, as has previously been discussed.
Next, dimensionality reduction is performed on
each feature vector of the units in the sound
palette using principal component analysis (PCA).
Two PCA components are retained and scaled
to the visible area of the interface to serve as
coordinates for placing a circular representation
of the sound in two-dimensional space. We call
these visual representations, along with their
associated audio content, sound objects. They are
clearly visible in the main Timbre Space window,
Figure 2d.
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Figure 2. The main user
interface for RhythmCat
consists of panels for
workflow (a), slider
controls (b), master

controls (c), the main
timbre space interface (d),
and waveform
representation (e).

Seed Input

Seed audio is captured and analyzed by directly
recording the input audio of the track on which
the instrument resides in the audio host. Using
the real-time tempo and information about bar and
beat position provided by the host, the recorder
will wait until the next measure starts to begin
capture and will only capture complete measures
of audio. This audio is analyzed as before, with one
exception. Because the goal of the instrument is
to integrate with an existing session and generate
looped material, we assume that the incoming audio
is quantized and matches the tempo of the session.
Thus, onset detection is not performed on the seed
input; instead, segmentation takes place at the
points in time determined by the grid size (lower
left of the screen).

An important aspect to note: Because the instru-
ment fundamentally operates in real time, we need

to be careful about performing potentially time-
consuming operations, such as feature extraction,
when the audio system is running. Thus, we perform
the audio-recording stage and feature-extraction pro-
cess on separate threads, so the main audio-playback
thread is uninterrupted. This is separate to yet
another thread that handles elements of the user
interface.

Sonic Parameters

Clicking on the square sonic icon in the center
of the workflow component opens up the set of
sliders shown in Figure 2b, which allows us to
adjust the weights of the features in the system.
Adjusting these weights has effects in terms of
the pattern-generation process but also in the
visualization. Presenting their technical names
(centroid, flatness, and MFCCs) would be confusing
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for the general user, so we relabeled them with
what we considered the most descriptive subjective
terms. With the pattern-generation process, these
weights directly affect the features when performing
similarity computation and unit selection, as we
will see in the next section. Depending on the
source and target material, different combinations
of feature weightings produce noticeably different
results. Informally, we have experienced good
results using MFCCs alone, for example, as well as
combinations of the flatness and centroid. In terms
of visualization, when the weights are changed,
dimensionality reduction is reinitiated and, hence,
positioning of the sound objects in the timbre space
changes. Manipulating these parameters can help
disperse and rearrange the sound objects for clearer
interaction and exploration by the user in addition
to affecting the pattern generation process.

Once the palette and seed matrices have been
populated, a similarity matrix between the palette
and seed matrix is created. Using the feature
weightings from the parameter sliders, a sorted
matrix of weighted Euclidean distances between
each onset in the target matrix and each unit sound
in the palette matrix is computed.

Unit Selection and Pattern Generation

The algorithm for unit selection is quite straight-
forward. For each unit i in the segmented target
sequence (e.g., a 16-step sequence) and each corpus
unit j (typically many more), the target unit cost
Ci, j is calculated by the weighted Euclidean distance
of each feature k.

These unit costs are stored in similarity matrix
M. Next we create a matrix M′ of the indices
of the elements of M sorted in ascending order.
Finally, a concatenated sequence can be generated
by returning a vector of indices I from this sorted
matrix and playing back the associated sound file.
To retrieve the closest sequence V0 one would only
need to return the first row.

Returning sequence vectors as rows of a sorted
matrix limits the number of possible sequences to
the matrix size. This can be extended if we define
a similarity threshold T and return a random index

Procedure GET-ONSET-LIST
for n in GridSize do

R = Random number 0 < Variance
I = Index from Row R of Similarity

Matrix
S = New SoundConnection
S->SoundUnit = SoundUnit(I)
Add S to LinkedList

end for
return LinkedList

End Procedure

Figure 3. Algorithm for
generating a list of sound
connections.

between 0 and j − T for each step i in the new
sequence.

When the user presses the New Pattern button
(Figure 2c), a new linked list of objects, called sound
connections, is formed. This represents a traversal
through connected sound objects in the timbre space.
The length of the linked list is determined by the grid
size specified by the user, so if the user specifies, for
example, a grid size of 1/16, a one-measure sequence
of 16th notes will be generated. The algorithm in
Figure 3 details the exact procedure whereby we
generate the list. The variance parameter affects the
threshold of similarity by which onsets are chosen.
With 0 variance, the most similar sequence is always
returned. This variance parameter is adjustable from
the Accuracy/Variety slider in the lower-left corner
of the instrument (Figure 2c).

In the main timbre space interface (Figure 2d),
a visual graph is generated in the timbre space by
traversing the linked list and drawing line edges
connecting each sound object pointed to by the
sound connection in the linked list. In this case, a
loop of 16 onsets has been generated, with the onset
numbers indicated beside the associated sound
object for each onset in the sequence. The user
is free to manipulate these sound connections to
mutate these patterns by touching or clicking on
the sound connection and dragging to another sound
object. Multiple sound connections assigned to an
individual sound object can be selected as a group
by slowly double-tapping and then dragging.

On the audio side, every time there is a new beat,
the linked list is traversed. If a sound connection’s
onset number matches the current beat, the corre-
sponding sound unit is played back. One addition
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that occurred after some user experiments with the
prototype is the linear waveform representation of
the newly generated sequence (Figure 2e). Users felt
the combination of the 2-D interface with the tradi-
tional waveform representation made the sequences
easier to navigate and they also welcomed being able
to manipulate the internal arrangement of sequence
itself once generated.

Evaluation

In the course of our literature review of the state of
the art, we were particularly interested in examining
the procedures and frameworks used in performing
evaluations of the implemented systems. Our most
immediate observation was that evaluation is an
understudied aspect of research into concatenative
systems. With creative and generative systems,
this is often the case; many such systems are
designed solely with the author as composer in
mind.

Some authors provide examples of use cases
(Cardle, Brooks, and Robinson 2003). Authors, such
as Sturm, have made multimedia examples available
on the Web (see Zils and Pachet 2001; Xiang 2002;
Sturm 2004). Frequently, researchers have made
allusions to some concept of the “user,” but only
one paper has presented details of a user experiment
(Aucouturier and Pachet 2005). One researcher,
Graham Coleman, also highlighted this lack of
evaluation strategies in concatenative synthesis
in his doctoral dissertation (Coleman 2015). For
the evaluation of his own system, he undertook a
listening experiment with human participants in
tandem with a thorough analysis of algorithmic
performance and complexity.

We conducted extensive evaluation of our own
system, both quantitatively and qualitatively. In
the quantitative portion, we set out to investigate
two key aspects. First, if we consider the system as
a retrieval task that aims to return similar items,
how accurate and predictable is the algorithm and
its associated distance metric? Second, how does
this objective retrieval accuracy correspond to the
perceptual response of the human listener to the
retrieved items?

The qualitative evaluation consisted of inter-
active, informal interviews with intended users—
mostly active music producers but also music
researchers and students—as they used the soft-
ware. We gathered their responses and impressions
and grouped them according to thematic analysis
techniques. As alluded to in the introduction, both
the quantitative evaluation and the qualitative eval-
uation have been previously reported in separate
publications, but we include summaries of each here
for reference.

System Evaluation

We describe here the qualitative portion of the
evaluation, first by introducing the experimental
setup, then presenting and comparing the results of
the algorithm’s retrieval accuracy with the listener
survey.

Experimental Setup

Because the goal of the system is the generation
of rhythmic loops, we decided to formulate an
experiment using breakbeats (short drum solos taken
from commercial funk and soul stereo recordings).
Ten breakbeats were chosen in the range 75–
142 bpm, and we truncated each of them to a
single bar in length. Repeating ten times for each
loop, we selected a single loop as the target seed
and resynthesized it using the other nine loops
(similar to holdout validation in machine learning)
at four different distances from target to create 40
variations.

Each of the loops was manually labeled with
the constituent drum sounds as we hear them.
The labeling used was “K” for kick drum, “S” for
snare, “HH” for hi-hat, “C” for cymbal, and “X”
when the content was not clear (such as artifacts
from the onset-detection process or some spillage
from other sources in the recording). Figure 4 shows
the distribution labels in the entire data set and
the distribution according to step sequence. We
can notice immediately the heavy predominance
of hi-hat sounds, which is typical in kit-based
drumming patterns. In addition, the natural trends
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Figure 4. Distribution of
sound labels in the source
corpus (a). Distribution of
sound labels by step
number in the 16-step
sequence (b).

of kit drumming are evident, namely, kick-drum
placement on the first beat and offbeat peaks for the
snares.

Retrieval Evaluation

We compared each of the labels in each 16-step
position of the quantized target loop with the labels
in each step of the newly generated sequences. The
accuracy A of the algorithm is then given by the
number of correctly retrieved labels divided by the
total number of labels in the target loop, inspired
by a similar approach adopted by Thompson, Dixon,
and Mauch (2014).

Based on Pearson’s correlation of the retrieval
ratings and the distances of the generated patterns,
we were able to confirm the tendency of smaller
distances to produce more similar patterns in

Figure 5. Scatter plot and
linear regression of
accuracy versus distance
for all sound labels (a) and
for the same sequence
with kick drum and snare
isolated (b).

terms of the labeling accuracy. A moderate
negative correlation of r = −0.516 (significance
level p < 0.001) is visible by the regression line
in Figure 5a. If we isolate the kick and snare
(often considered the more salient events in
drum performances, see Gouyon, Pachet, and
Delerue 2000) the negative correlation value
decreases sharply to r = −0.826, as shown in
Figure 5b.
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Listener Evaluation

Observing that the algorithm tends to reproduce
labels in a predictable fashion, we sought to establish
whether this conforms in reality to what a human
listener perceives. An online listener survey was
conducted using the same generated loops and
targets from the retrieval evaluation. Twenty-one
participants completed the survey, drawn mostly
from music researchers and students from the
institutions of Universitat Pompeu Fabra and
the Escola Superior de Música de Catalunya in
Barcelona, as well as friends with an interest in
music. Twenty out of those indicated that they
played an instrument, with nine specifying an
instrument from the percussion family.

The participants were requested to audition
a target loop and each of the generated loops in
succession. They were then asked to rate, on a
Likert scale of 1 to 5, the similarity of the generated
loop to the target in terms of their timbre (i.e., do
the kick drums, snares, and hi-hats sound alike?) as
well as the rhythmic structure of the pattern (i.e.,
is the arrangement and placement of the sounds
similar?). We also asked them to rate their aesthetic
preference for the generated patterns, to determine
any possible correlation with similarity.

Survey results were collated and analyzed using
Spearman’s rank correlation, comparing the mode
of the participants’ responses with the distance
value of each loop. A moderate-to-strong negative
correlation pattern emerged for all of the variables
under consideration, namely, r = −0.66 for pattern
similarity, r = −0.59 for timbral similarity, and
r = −0.63 for their personal preference according to
similarity (with significance levels of p < 0.01 in all
instances). It should be evident that the listeners’
judgments reflect what the results unearthed in the
retrieval evaluation.

User Evaluation

The quantitative evaluation demonstrated the pre-
dictive performance of the algorithm based on
retrieval accuracy and the corresponding listeners’
judgments of similarity and likeness. Equally deserv-

ing of evaluative scrutiny is the users’ experience of
working with the software: gauging their responses
to the interface, its modes of interactions, and its rel-
evance and suitability for their own compositional
styles and processes.

To this effect, a qualitative evaluation phase was
arranged to gather rich descriptive impressions from
related groups of users in Barcelona and Berlin during
February 2016. In Barcelona, as with user profiles
of the listener survey, most of the participants were
researchers or students in the broad area of Sound
and Music Computing. In Berlin we were able to
gain access to artists involved in the Red Bull Music
Academy as well as with employees of the music
software company Native Instruments.

In broad terms, the overall sense of people’s
impressions was positive. Many participants were
initially attracted to the visual nature of the soft-
ware and were curious to discover its function
and purpose. After some familiarization with its
operation, people also remarked positively on its
sonic output and ability to replicate the target
loop:

“It’s an excellent tool for making small changes
in real time. The interface for me is excellent.
This two-dimensional arrangement of the
different sounds and its situation by familiarity,
it’s also really good for making these changes.”

“I’m really interested in more-visual, more-
graphical interfaces. Also, the fact that you can
come up with new patterns just by the push of
a button is always great.”

“It’s inspiring because this mix makes some-
thing interesting still, but also I have the feeling
I can steal it.”

“The unbelievable thing is that it can create
something that is so accurate. I wouldn’t believe
that it’s capable of doing such a thing.”

Some of the negative criticism came from the
prototypical nature of the instrument, and some
users were not comfortable with its perceived
indeterminacy:
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“It was too intense and also [had] a prototype
feeling. So I was like, ‘Well, it’s cool and very
interesting but not usable yet.’”

“Right now it’s still hard to find your way
around, but that’s something you can refine
pretty easily.”

Usage Scenarios

Participants were asked to consider how they
would envisage themselves using the software.
Most of them concurred that its strength would
be in supporting musicians in their production and
compositional workflows. Some users were curious
about using it in live contexts, such as continuous
analysis of instrumental performance or beat-boxing
assistance:

“This is great! Ah, but wait . . . Does it mean
I could, like, beat box really badly some idea
that I have . . . and then bring my samples, my
favorite kits and then it will just work?”

Continuous recording and analysis is within
the realm of possibility, but can potentially be an
operation that is prohibitively computationally
expensive, depending on the granularity of the beat
grid and the size of the corpus. Further benchmarking
and tests are required to establish the upper bounds.

Another interesting observation was that many
users did not want to start with a target, preferring
to use the instrument as a new, systematic method
of exploring their existing sounds:

“I’ve got this fully on wet straight away, which
tells you the direction I’d be going with it.”

“You just want to drag in a hundred different
songs and you just want to explore without
having this connection to the original group.
Just want to explore and create sound with it.”

Traditional Forms of Navigation

Our original intention was for users to solely be able
to arrange their patterns through the 2-D timbre
space. Through the course of our discussions with
users we learned that, although they were eager to

adapt the new visual paradigm, they still felt the need
for a linear waveform to aid their comprehension.
Because of this feedback, the waveform view was
implemented early on in our development, as is
evident in its inclusion in Figure 2.

“It’s a bit hard to figure out which sixteenth
you are looking for, because you are so used to
seeing this as a step grid.”

‘You have a waveform or something. . . Then I
know, okay, this is the position that I’m at.”

“Is there also a waveform place to put the
visualization? People are so used to having that
kind of thing.”

Shaping Sounds

A recurring issue, which cropped up mainly with
producers and DJs, was the desire to shape, process,
and refine the sounds once a desirable sequence was
generated by the system. This way of composing
seems emblematic of electronic music producers
across the board; they start with a small loop or idea
then vary and develop it exploiting the many effects
processing and editing features provided by their
tools. Most crucially, they desired the option to be
able to control the envelopes of the individual units
via drawable attack and decay parameters, which is
currently being implemented.

“. . . an attack and decay just to sort of tighten
it up a little bit . . . get rid of some of the rough
edges of the onsets and offsets.”

“It would be great if you could increase the
decay of the snare, for example. Which, if it’s
prototype, you can’t expect to have all those
functions there immediately, but in an end
product, I think it would be a necessity.”

Parameterization and Visualization

The most overarching source of negative criti-
cism from all users was in how we presented
the parameters of the system. Users are freely
able to manipulate the individual weightings of
the features, affecting their relative influence in
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the similarity computation, but also in the PCA
dimensional-reduction stage. In an effort to make
this more “user friendly,” we relabeled the fea-
ture names with more generally comprehensible
terms like “timbre,” “brightness,” “harmonicity,”
and “loudness.” Despite this, participants reported
being confused and overwhelmed by this level of
control, stating that they were a “a bit lost already,”
that there are “four parameters, and you don’t know
which thing is what,” and that they “would prefer
not to have too many controls.”

Most users were quite content with the overall
sonic output from the system without delving into
the manipulation of feature parameters. For the
visualization, however, there are certain configura-
tions of the features that produce the best separation
and clustering of the units (although MFCCs alone
appear to be the most robust in our experience).

One option we are actively investigating would
be to remove these parameter sliders and replace
them with an optional “advanced” mode, giving
users the ability to select specific parameters for
the axes (as in CataRT) in addition to “automatic”
arrangement configurations made possible by using
dimensionality-reduction techniques. These con-
figurations could be derived by analyzing different
sound sets to find weighting combinations that
give the best visual separation, depending on the
corpus provided. Finally, we are currently using PCA
for dimensionality reduction. There are also other
approaches, including multidimensional scaling
(Donaldson, Knopke, and Raphael 2007) and the
recent t-distributed stochastic neighbor embedding
algorithm (Frisson 2015; Turquois et al. 2016), which
have been used in musically related tasks and that
we are implementing and evaluating as alternatives.

Discussion

Evaluating systems for music creation and manip-
ulation is a difficult, ill-defined, and insufficiently
reported task. As we have stressed in the course of
this article, this is also the case with systems for
concatenative synthesis. After conducting our own
evaluation, we considered what key points could be
made to help inform future evaluations by interested

researchers in the community. Our observations led
us to indicate three distinct layers that should be
addressed for a significant, full-fledged appraisal.

The most high-level and general “system” layer
calls for user evaluations that go beyond “quality of
experience” and “satisfaction” surveys. Such evalu-
ations should strive to address creative productivity
and workflow efficiency aspects particular to the
needs of computer-music practitioners.

At the mid-level “algorithmic” layer, we examine
the mechanics of developing solutions strategies for
concatenative synthesis. We have identified three
main trends in algorithmic techniques used for
tackling tasks in concatenative synthesis, namely,
similarity-matrix and clustering approaches (like
ours), Markov models, and constraint-satisfaction
problems. Each of these techniques exhibits its own
strengths and weaknesses in terms of accuracy,
flexibility, efficiency, and complexity. Comparing
these algorithms within a single system and, indeed,
across multiple systems, using a well-defined
data set, a clear set of goals, and specific success
criteria would represent a valuable asset in the
evaluation methodology of concatenative synthesis.
Additionally, we should pay attention to the distance
and similarity metrics used, as there are other
possibilities that are explored and compared in other
retrieval problems (e.g., Charulatha, Rodrigues, and
Chitralekha 2013).

At the lowest level, the focus is on the broader
implications related to MIR of choosing appropriate
features for the task at hand. In the course of our
evaluation, we chose the features indicated in the
implementation and did not manipulate them in
the experiment. There are, of course, many other
features relevant to the problem that can be studied
and estimated in a systematic way, as is par for
the course in classification experiments in MIR.
Furthermore, tuning the weights was not explored
and is an important consideration that depends
greatly on different corpora and output-sequence
requirements.

In addition to this three-tiered evaluation method-
ology, an ideal component would be the availability
of a baseline or comparison system that ensures new
prototypes improve over some clearly identifiable
aspect. Self-referential evaluations run the risk of
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confirming experimenter bias without establishing
comprehensive criticism.

Conclusion

In this article, we explored concatenative synthesis
as a compositional tool for generating rhythmic
patterns for electronic music, with a strong empha-
sis on its role in EDM musical styles. One of our
first contributions was to present a thorough and
up-to-date review of the state of the art, beginning
with its fundamental algorithmic underpinnings
and proceeding to modern systems that exploit new
and experimental visual and interactive modalities.
Although there are a number of commercial applica-
tions that encapsulate techniques of concatenative
synthesis for the user, the vast majority of systems
are frequently custom-built for the designer or are
highly prototypical in nature. Consequently, there
is a marked lack of evaluation strategies or reports
of user experiences in the accompanying literature.

Based on these investigations, we set out to
design a system that applied and extended many of
the pervasive techniques in concatenative synthesis
with a clear idea of its application and its target
user. We built an instrument that was easily
integrated with modern digital audio workstations
and presented an interface that intended to be
attractive and easy to familiarize oneself with.
How to evaluate the system, not only in terms of
its objective performance but also in its subjective
aural and experiential implications for our users, was
our final substantial contribution to this area. The
results of our evaluations showed that our system
performed as expected, and users were positive
about its potential for assisting in their creative
tasks, while also proposing interesting avenues for
future work and contributions.

Resources

A demonstration version of the software is available
online at http://github.com/carthach/rhythmCAT.
A video example can be viewed at http://youtu.be
/hByhgF fzto.
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6. CONCLUDING THOUGHTS  
 

You never know what is enough  
unless you know what is more than enough 

William Blake 
The Marriage of Heaven and Hell 

 
 
 
I started my journey in MIR with some ideas and targets that were motivated by my own 
experience in music reinforcement, mixing and creation. I “wanted” to see realized some 
of my dreams, and the promise of technologies to lead me there, kept me challenged and 
interested in the field as an active researcher. Twenty years later the dream is half reality 
and half nightmare. As researchers, we are partially responsible of the growing 
banalization of music as an experience (I’m not talking about content here). Having 
helped to get “whatever music whenever and wherever you are” we have contributed to 
diminish the value given to concerts, shared attentive listening sessions, extremely 
moving personal experiences, or paying for specific multisensorial events.  Sometimes, 
technologies that were probably developed with a deep love and enthusiasm for music, 
have turned into weapons against its human inceptors. Sometimes I have the impression 
that we might had been playing “sorcerer’s apprentice” without being aware of that, 
generating knowledge (for free) with which big companies made the money and left us 
with just a ten percent of fun and functionalities, considering what could be done with 
our findings and creations. Not to mention how biased by our own cultural values and 
limited musical experience our thoughts and algorithms embedding those thoughts have 
been (and still are). And, to conclude, how far of real people much of our research has 
been done? I think our research community has been too solipsist, tending to consider (as 
a justification mechanism) that everybody is so music nerd as we are. And that is not true. 
We want everybody to be engaged in music activities everywhere, all the time, we thought 
that many people were waiting for humming queries all day, or to navigating across 
iconified music collections as a nicer view than their daily navigation from home to work, 
or that they would be eager to music discoveries, looking for at least one novel music 
item a day… but then we, both as collectives and individually, rarely attend to the concerts 
we think are worth, or give support (financial, I mean) to the artists we think they deserve 
it, or do not give quality time to listen to “that” nice piece of music we discovered 
yesterday. 
 
This thesis, though, is not about sociology of technology and my criticism is probably 
linked to the fact that I have got old and grumpy, and that my memory leaks more than 
what I would like. I tried here to organize some snapshots of my journey and 
achievements in a coherent and meaningful way, by means of the idea of ages that start 
when certain shortcomings are evident and, at the same time, candidate technologies for 
overcoming them are available. From the age of feature extractors to the age of creative 
systems, I have presented selected papers of research that were framed in them. Even 
though my deepest and probably fruitful involvement happened in the age of semantic 
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descriptors, I still look forward the promises of mixing MIR and HCI in the age of creative 
systems. 
 
Before 1998 there was just a single conference to present research and development on 
music and technology, the ICMC (International Computer Music Conference). Twenty 
years later you can find every three months a workshop or conference that, even in the 
case of not being focused on musical issues, will accept and properly review papers on 
that subject. ISMIR is the conference with the highest impact factor in the fields of music 
and musicology, according to Google Scholar46, but there are some others which are 
highly influential such as NIME (New Interfaces for Musical Expression), DAFx (Digital 
Audio Effects) or SMC (Sound and Music Computing), which also accept papers on MIR 
(even the ICASSP, the fourth international conference in signal processing47, has 
included sessions on MIR in recent years). This is another proof of the good health of our 
field. Looking at how the technologies have evolved, it is like comparing night and day. 
Polyphonic music can be described (even unmixed) with a level of detail and quality that 
is making possible professional applications. Recent papers, thanks to the intervention of 
deep learning, report on improvements (from promising to substantial) on every musical 
facet that has traditionally been addressed in MIR (from tempo estimation to mood 
classification, from tonal to structural description) (Choi et al., 2017c; Müller et al., 2017). 
Music recommendation is reliable and relevant, at least, when it comes from the main 
providers. Even though all that bright scenario, when I finish reading many papers I, 
nevertheless, still wonder with a deadpan face: “what did this paper taught me about 
music”? 
 
Using Kuhn’s terminology (2012) it seems as MIR is reaching the “paradigmatic” status, 
which means its members share a set of tacit assumptions about the way to approach 
music research (that we need features, that we need computable concepts, that algorithms 
have to be evaluated, that context is essential…), a research agenda (which are the 
essential topics?) and recipes to address those different problems. This status facilitates 
that new practitioners start working in the field in a sound and safe way, and that they 
beforehand know about what peers are expecting when reviewing their work. This status 
may be problematic, at the same time, as “exotic” approaches or “new” topics may find 
resistance to be accepted. In any case, it is refreshing to witness the efforts that some 
researchers are doing to challenge the approaches, methods and even the relevance of 
certain topics (Aucouturier & Bigand, 2013; Sturm, 2014; Sturm & Collins, 2014; Sturm 
et al., 2014; Sturm, 2015). This is, no doubt, a sign of good health.  
 
In this account I have depicted the early scenario when PhD students spent years to 
discover or invent good features and pre-processing strategies (and then tweaking them) 
to tackle a music description problem having to do with timbre, or rhythm, or tonality, or 
genre classification… These days, a bread-and-butter Convolutional Neural Network, or 
a Recurrent Neural Network combined with Restricted Boltzmann Machines (RNN-
RBM) will surpass the old features in one week or less. And the same can be said for 
whatever music classification problem that can be addressed. But, during the ages of MIR, 
we learned a lot about music and audio while searching for good features to detect guitar 
                                                 
46 https://scholar.google.es/citations?view_op=top_venues&hl=en&vq=hum_musicmusicology 
47 https://scholar.google.es/citations?view_op=top_venues&hl=en&vq=eng_signalprocessing 
 

https://scholar.google.es/citations?view_op=top_venues&hl=en&vq=hum_musicmusicology
https://scholar.google.es/citations?view_op=top_venues&hl=en&vq=eng_signalprocessing
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solos (Fuhrmann et al., 2009), mellotrons (Román-Echeverri & Herrera, 2013), 
mysterious or humourous music (Sarasúa et al., 2012), infant-oriented singing (Salselas 
& Herrera, 2011) or to rebuild a personal soundtrack to Alzheimer’s patients (Navarro et 
al., 2014). And all that still counts more, for me, than an accuracy increase of five percent 
units. Fortunately, we still need to keep human listeners and players close to the lab as 
their semantic mapping of the world is in constant evolution (that’s adaptation, in fact), 
and the ways music was tagged ten years ago will be different in ten years more, so the 
semantic path will always be open. I still perceive reticence in some people when they 
are faced with the idea to computationally capture a portion of their mental models of 
music, and this means there is still room for improvement. The discoveries made in the 
neurosciences of music, push us to envision personalisation experiences that decades ago 
belonged to science fiction. The status of “permanent sensorium” that (thanks to portable 
devices) the world has become, will give us precious data to understand how our music 
experiences are shaped by contextual factors of yet unsuspected influence (and hence how 
can be artificially altered to our convenience… or maybe to the convenience of the 
technological suppliers?). I hope to live enough to get my hands dirty with some chunks 
of those data and knowledge, in order to improve our current understanding of music 
understanding. And, when I retire, I hope to be allowed to play, in the nursing home, with 
fun music creation systems that can revive my personal memories in original ways, 
improve my social skills by means of the involvement in an orchestra of tangible wheel-
chairs, or let me really feel that, instead of being interfaced, I AM the music that I am 
playing. 
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