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Abstract
Purpose During needle interventions, successful automated detection of the needle immediately after insertion is necessary
to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle
passes and improves health outcomes.
Methods We present a novel approach to localize partially inserted needles in 3D ultrasound volume with high precision
using convolutional neural networks. We propose two methods based on patch classification and semantic segmentation of
the needle from orthogonal 2D cross-sections extracted from the volume. For patch classification, each voxel is classified
from locally extracted raw data of three orthogonal planes centered on it. We propose a bootstrap resampling approach to
enhance the training in our highly imbalanced data. For semantic segmentation, parts of a needle are detected in cross-sections
perpendicular to the lateral and elevational axes. We propose to exploit the structural information in the data with a novel
thick-slice processing approach for efficient modeling of the context.
Results Our introduced methods successfully detect 17 and 22G needles with a single trained network, showing a robust
generalized approach. Extensive ex-vivo evaluations on datasets of chicken breast and porcine leg show 80 and 84% F1-
scores, respectively. Furthermore, very short needles are detected with tip localization errors of less than 0.7 mm for lengths
of only 5 and 10 mm at 0.2 and 0.36 mm voxel sizes, respectively.
Conclusion Ourmethod is able to accurately detect even very short needles, ensuring that the needle and its tip are maximally
visible in the visualized plane during the entire intervention, thereby eliminating the need for advanced bi-manual coordination
of the needle and transducer.

Keywords Needle detection · 3D ultrasound · Convolutional neural networks

Introduction

Ultrasound (US) imaging is broadly used to visualize and
guide the interventions that involve percutaneous advancing
of a needle to a target inside the patients’ body. However,
for a typical 2D US system, bi-manual coordination of the
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needle and US transducer is challenging, as the limited US
field of view obscures the visualization of the complete nee-
dle and an inadequate view leads to an erroneous placement
of the needle tip. Therefore, while advancing the needle, con-
tinuous manipulation of the transducer is necessary to search
for the needle in the imaging data for the best needle plane
visualization. As an alternative, 3D US transducers with
an image-based needle-tracking system can overcome these
limitations andminimize themanual coordination,while pre-
serving the use of a conventional needle, signal generation
and transducers [12]. In such a system, the needle is conve-
niently placed in the larger 3D US field of view and the
processing unit automatically localizes and visualizes the
entire needle. Therefore, the manual skills are significantly
simplified when the entire needle is visible in the visualized
plane, after the needle is advanced or the transducer ismoved.
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Several image-based needle localization techniques have
been proposed based on maximizing the intensity over par-
allel projections [1]. Due to the complexity of realistic data,
methods that solely rely on the brightness of the needle are not
robust for localizing thin objects in a cluttered background.
Therefore, information regarding the line-like structure of a
needle is used by Hessian-based line filtering methods [21].
Although shown to be limited in localization accuracy [12],
they can be beneficial for reducing the imaging artifacts.
Other techniques involve exploiting the intensity changes
caused by needle movement to track the needle in the US
data [2]. Nevertheless, large movements of the transducer or
the patient will increase the difficulty of motion-based track-
ing and therefore, we aim at repeated detection in static 3D
volumes. When realizing the real-time operation, tracking of
the needle is implemented by repeated detection with suffi-
cient time resolution. This will result in detection per volume
in a 4DUS sequence, which allows for arbitrary inter-volume
movements.

More recently, attenuation of the US signal due to energy
loss beyond the US beam incident with the needle, is used
to detect the position of the needle [8,11]. However, signal
loss due to the presence of other attenuating structures may
degrade the accuracy of estimation and must be explicitly
handled. Alternatively, supervised needle-voxel classifiers
that employ the needle shape and its brightness have shown
to be superior to the traditional methods [12]. Nevertheless,
as the needle is assumed to be already inserted in the volume
up to a considerable length, they typically do not achieve high
detection precision and therefore cannot localize the needle
when it is partially inserted in the volume. Moreover, when
the target structure is deep, the degraded resolution and pos-
sible needle deflections further complicate the interpretation
of data and reduce voxel classification performance, which
should be addressed by better modeling of both local and
contextual information.

In our recently published work in training convolu-
tional neural networks (CNN), substantial improvement has
been shown to the detection accuracy of needle voxels in
3D US data [10]. Although this method was shown to
achieve high-performance results for ex vivo data acquired
from linear-array transducers, the choice of patch classifi-
cation in this framework can be further improved for US
data segmentation. In US imaging using sector, curved and
phased-array transducers, the insonification angle of the US
beams is changed throughout the volume,which creates vary-
ing angles with different parts of the needle. Therefore, the
needle can be partially invisible, due to the lack of received
US reflections from parts of the needle. The missed data
enforces a trade-off betweenpatch sizes for richer needle con-
text information and localization accuracy. Larger patches
require more max-pooling layers that reduce the localization

accuracy, while small patches allow the network to infer from
only parts of the needle.

As an alternative to patch training, semantic segmentation
methods can generate dense prediction maps by omitting
the use of fully connected layers. Examples of such net-
works are fully convolutional networks (FCN) [7,16], and
context modeling by employing atrous convolutions [3,24].
Although integrating atrous (or dilated) convolutions in the
deep layers of the network increases the field of view while
preserving the spatial dimensions, applying convolutions in
a large number of high-resolution feature maps is computa-
tionally expensive. However, original FCN architectures can
simultaneously exploit the global and local information in
the data and remain more memory efficient by introducing
skip connections from higher-resolution feature maps to the
deconvolutional layers. Initial attempts of applying these net-
works onUSdata are presented for fetal heart segmentation in
2DUS [19]. Further improvement is shown for segmentation
of fetus, gestational sac, and placenta in 3D US volumes by
integrating the sequential information [23]. The drawback of
using such 3D+time models are, however, the exponentially
increased computational complexity of the 3D convolution
operations, a very large dataset is required for training the
increased number of network parameters, and the sequential
modeling will be suboptimal in the early timesteps after large
movements of the transducer or subject.

In this paper, we build upon our recent contribution using
CNN [10] and extend it to create semantic FCN models. We
modify and extend this architecture such that it models 3D
needle context information and achieves high needle seg-
mentation precision at a low false negative rate. We propose
a novel multi-view thick-sliced FCN model for an efficient
modeling of 3D context information. Therefore, the system
will successfully perform needle localization both in cases
of invisible needle parts and when only a short part of the
needle is inserted into the patient’s body, yielding an early
correction of inaccurate insertions. The needle is then visual-
ized in an intuitivemanner, eliminating the need for advanced
manual coordination of the transducer. The main contribu-
tions of this paper are: (1) a novel approach for segmentation
and localization of partially inserted and partly invisible
needles in 3D US data using CNN models, (2) an original
update strategy for CNN parameters using most-aggressive
non-needle samples, which significantly improves the per-
formance on highly imbalanced datasets, (3) a novel method
formodeling of 3DUS context information using 2.5D (thick
slice) data, which enables an accurate training of the network
using limited training samples, and (4) extensive evaluation
of the proposed methods on two types of ex-vivo data giv-
ing a very high average of 81.4% precision at 88.8% recall
rate.

123



International Journal of Computer Assisted Radiology and Surgery (2018) 13:1321–1333 1323

Patch Classification

Semantic
Segmentation

Needle-Axis
Estimation and
Visualization

Fig. 1 Block diagram of our proposed framework for needle detection in 3D US data

Methods

The block diagram of our proposed framework consists of
three main stages as depicted in Fig. 1. In this study, we
introduce two different approaches for segmentation of nee-
dle voxels in 3D US volumes, i.e., classification of extracted
patches in the data using their triplanar orthogonal views
(“Patch classification” subsection), and end-to-end dense
segmentation of needle voxels in multi-view thick slices
(“Semantic segmentation” subsection). The segmentation
results are then used to fit a predefined model of the needle
and extract the cross-section containing the entire needle and
the tip (“Needle axis estimation and visualization” subsec-
tion). For clarity, we emphasize here that we detect the plane
where the needle and its tip are maximally visible, but do not
explicitly detect the needle tip. This localization processing
is done for every data volume individually. For a 3D+time
US sequence, this would effectively mean repeated detection
for every volume or image.

Patch classification

The block diagram of the proposed patch classification tech-
nique is shown in Fig. 2. A CNNmodel is trained to robustly
classify the needle voxels in the 3D US volumes from other
echogenic structures, such as bones and muscular tissues.
Our voxel classification network predicts the label of each
voxel from the raw voxel values of local proximity. In a 3D
volume, this local neighborhood can simply be a 2D cross-
section in any orientation, multiple cross-sections, or a 3D
patch. Here, we use three orthogonal cross-sections centered
at the reference voxel, which is a compromise with respect
to the complexity of the network. The size of triplanar cross-
sections is chosen based on the diameter of a typical needle
(0.7–1.5 mm), voxel size, and spatial resolution of the trans-
ducer, to contain sufficient context information. We extract
triplanar cross-sections of 21 × 21 pixels (4.2 × 4.2 mm),
which provides sufficient global shape information and still
remains spatially accurate. For low-frequency transducers,
more context is required for a discriminative modeling, as
the structure details of a needle will be distorted at low spa-
tial resolutions.

CNNarchitectureFor our experiments,we evaluate twoCNN
architectures based on shared convolutional (ShareCNN) and
independent convolutional (IndepCNN)filters. InShareCNN,
a single convolutional filter bank is trained for the three input
planes to have the same set of filters for all the planes. In Inde-
pCNN, three sets of filter banks are trained independently,
each to be convolvedwith one of the three planes.As depicted
in Fig. 2, both architectures consist of four convolutional lay-
ers having 32, 48, 64 and 96 filters of 3× 3 kernel size, three
fully connected layers having 128, 64 and 2 neurons, and
one softmax layer. According to the given number of fil-
ters, ShareCNN and IndepCNN architectures have 2160 and
6480 parameters in their convolutional layers, respectively.
In both architectures, extracted feature maps after the last
convolutional layer are concatenated prior to the fully con-
nected layers [14].
CNN training Our dataset is significantly imbalanced due to
the small size of a needle compared to the full volume, i.e.,
approximately only 1 voxel out of 3000 voxels in a volume
belongs to the needle. This is common in representation of an
instrument in 3D US volumes. Therefore, in order to avoid
a prediction bias toward the majority class, we downsample
the negative training data tomatch the number of needle sam-
ples. For an informed sampling of the negative (non-needle)
set, we propose an iterative scheme based on bootstrapping
[15] to achieve the maximum precision. In the first step, we
train our network with uniformly sampled needle and non-
needle patches. Training patches are rotated arbitrarily by 90◦
steps around the axial axis to improve the orientation invari-
ance. The trained network then classifies the same training
set for validation. Finally, misclassified false positives are
harvested as the most-aggressive non-needle voxels, which
are used to update the network. Figure 3 shows how the itera-
tive and informed sampling can increase the precision of the
network. It is worth mentioning that commonly used meth-
ods for imbalanced data, like weighted loss function, do not
necessarily improve precision. For example, the majority of
our negative set consists of “easy” samples that can be clas-
sified beyond the model’s margin and will influence the loss
function in their favor.

The CNN parameters are trained using stochastic gradi-
ent descent (SGD) and the categorical cross-entropy cost
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Fig. 2 Block diagram of the patch classification approach using CNN
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Feature-space of an imbalanced dataset Step 1. Random negative sampling Step 2. Most-aggressive negative sampling

Fig. 3 An example of the iterative sampling strategy to increase the precision of the network. The red circles represent the positive data points,
gray and blue triangles are the negative and sampled data points, respectively and the dashed line represents the decision boundary of a classifier

function. All activation functions are chosen to be rectified
linear units (ReLU) [5]. Furthermore, for optimization of the
network weights, we divide the learning rate by the exponen-
tially weighted average of recent gradients (RMSProp) [20].
Initial learning rates are chosen to be 10−4 and 10−5 for
train and update iterations, respectively. In order to prevent
overfitting, we implement the dropout approach [18] with
a probability of 0.5 in the first two fully connected layers.
The trained network computes a label per voxel indicating
whether it belongs to the needle or not.

Semantic segmentation

As discussed in “Introduction” section, semantic segmenta-
tion of a needle using FCN architectures are more interest-
ing than patch classification as the context information is
modeled, while the spatial dimensions are preserved. Fur-

thermore, in contrast to the patch-based methods, where
redundant processing of voxels is inevitable, FCN models
are more computationally efficient as they exploit the one-
time extracted features to simultaneously label all the data
points using deconvolutional networks.

Figure 4 shows the architecture of the proposed seman-
tic needle segmentation technique in 3D US volumes. Our
method is based on decomposing the 3D volume into 2D
cross-sections for labeling the needle parts and reconstruct-
ing the 3D needle labels from the multiple views. Therefore
in our approach, the number of parameters in the convolution
kernels decreases exponentially compared to the 3D kernels,
and consequently, the network requires fewer training sam-
ples and executes faster. We will now present our strategy for
selecting the cross-sections to be processed.

The 2D cross-sections are selected in multiple directions
and perpendicular to the transducer with the step size equal to
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the voxel size. Since in a 3DUS volume, the needle can enter
the field of view from either the lateral or elevational direc-
tions, we consider cross-sections perpendicular to these axes.
The segmentation outcome of each cross-section is mapped
onto its corresponding position in 3D. Afterward, the result-
ing probability volume from the two directions is combined
together using multiplicative averaging to create the final
labeling outcome in 3D.

In order to exploit the 3D structural information in our
model, instead of only using 2D planar data, we opt for
processing the consecutive cross-sections before and after
the processing plane as additional inputs to the network. In
this study, we add two additional cross-sections and evaluate
several spacing gaps d, between them. Therefore, as shown
in Fig. 4, a 3-channel input to the network is formed from
the 2.5D (thick slice) US data at a specific position, which
is used to create a 2D segmentation map of the processing
cross-section.
FCN architecture Figure 4 depicts the FCN architecture
used in our system comprising two stages of convolution
and deconvolution networks. Inspired by ShareCNN, we use
shared convolution filters (ShareFCN) for both lateral and
elevational planes. The convolution network is identical to
the design of the VGG very deep 19 layer CNN [17]. The
deconvolution network consists of three unpooling masks of
2, 2 and 8 pixels, respective convolution layers having 512,
256 and 2 filters with 3×3 kernel size, and one softmax layer.
Therefore, the receptive field of the network is equal to awin-
dow of 96× 96 pixels, which is equivalent to approximately
19.2×19.2mm for higher-resolutionVL13-5 transducer and
34.5×34.5mmfor lower-resolutionX6-1 transducer, achiev-
ing a large context modeling at the same inference resolution
of the input data. Convolution layers are stacked together fol-
lowed by an activation function. As discussed, the network
takes a 3-channel 2D input and the output layer indicates the
class-assignment probability for each pixel in the processing
cross-section.
FCN training The training set consists of 3-channel cross-
sections extracted with a gap of d mm in both elevational
and lateral directions. The training volumes are augmented
by 10 arbitrary rotations around the axial (z) axis prior to
extraction of the cross-sections. Therefore, several views of
the needle are used to train the network, including in-plane,
out-of-plane and cross-sections with partial visibility of the
needle. Similar to our approach presented in “Patch classi-
fication” subsection, we downsample the negative training
data, which are the sections that do not contain the nee-
dle, to match the number of cross-sections from the needle.
However, since the initial training samples are not highly
imbalanced, we do not perform bootstrapping for training
the FCN parameters.

We trained the network parameters usingSGDupdatewith
a batch size of one sample and softmax cross-entropy cost

function. The learning rate is adaptively computed using the
ADAM optimization method [6] with an initial learning rate
equal to 1e−4. Furthermore, dropout layerswith aprobability
of 0.85 are added to the layer numbers 17 and 18 of the
convolution network.

Needle axis estimation and visualization

In order to robustly detect the instrument axis in the presence
of outliers, we fit a model of the needle to the detected voxels
using the RANSAC algorithm [4]. The needle model can be
represented by a straight cylinder having a fixed diameter. In
cases of large instrument deflection, themodel can be adapted
to define a parabolic segment, as shown in [9]. Using the
RANSAC algorithm, the cylindrical model that contains the
highest number of voxels is chosen to be the estimated needle.
As the experimented needle diameters are less than 2 mm,
we set the cylindrical model diameter to be approximately
2 mm.

After successful detection of needle axis, the 2D cross-
section of the volume is visualized that contains the plane
with the entire needle with maximum visibility, which is also
perpendicular to coronal (xy) planes. This cross-section is the
in-plane viewof the needle that is very intuitive for physicians
to interpret. This ensures that while advancing the needle, the
entire instrument is visualized asmuch as it is visible and any
misalignment of the needle and target is corrected without
maneuvering the transducer.

Implementation details

Our Python implementations of the proposed patch classifi-
cation and semantic segmentation methods take on average
74 and 0.5 µs for each voxel, respectively (1180 and 15 ms
for each 2D cross-section) on a standard PC with a GeForce
GTX TITAN X GPU. Therefore, when implementing a full
scan to process all voxels and cross-sections in the volume,
patch classification executes in 4–5 min, whereas semantic
segmentation takes only 2–3 s. Nevertheless, further opti-
mization is possible using conventional techniques such as a
coarse-fine search strategy with a hierarchical grid to achieve
real-time performance. Furthermore, the execution time of
RANSAC model fitting is negligible, as the expected num-
ber of outliers is very small.

The required computational power for realization of our
proposedmethods is expected to bewidely available on high-
end ultrasound devices that benefit from parallel computing
platforms, such as a GPU. However, for implementation
in mid-range and portable systems, more efficient and
compressed architectures should be investigated. Still, ever-
increasing computational capacity of mobile processors, as
well as fast development and availability of on-board embed-
ded units with pre-programmed convolutional modules will
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Fig. 4 Block diagram of the semantic segmentation approach using FCN

Table 1 Specifications and experimental settings of 3D US volumes used for evaluation

Tissue type / transducer Needle type and diameter Experimental settings Voxel size (mm)

# of vols. Maximum length (mm) Steepness angles

Chicken breast/ VL13-5a 17G (1.47 mm) 10 30 10◦−30◦ 0.20

22G (0.72 mm) 10 30 5◦−50◦ 0.20

Porcine leg/ X6-1a 17G (1.47 mm) 10 45 55◦−80◦ 0.36

22G (0.72 mm) 10 35 20◦−65◦ 0.36

aAvailable from Philips Healthcare, Bothell, WA, USA

make such computer-aided applications more affordable and
readily accessible to the majority of ultrasound devices.

Experimental results

The evaluation dataset consists of four types of ex-vivo US
data acquired from chicken breast and porcine leg using
a VL13-5 transducer (motorized linear-array) and a X6-1
transducer (phased-array). Our experiments with two types
of transducers and tissue types investigate the robustness
of the proposed methods in various acquisition settings
and conditions. Properties and specifications of our dataset
are summarized in Table 1. Each volume from VL13-5
transducer contains on average 174 × 189 × 188 voxels
(lat.×ax.×elev.), at 0.2 mm/voxel and from X6-1 trans-
ducer contains 452 × 280 × 292 voxels, at approximately

0.36 mm/voxel. Ground-truth data is created by manually
annotating the voxels belonging to the needle in each volume.
Testing evaluation is performed based on five-fold cross-
validation separately for each transducer across its 20 ex-vivo
3D US volumes. For each fold, we use 4 subsets for training
and 1 subset for testing, to make the training and testing data
completely distinct.

Patch classification

We use the dataset from chicken breast to evaluate the
performance of the proposed patch classification method.
Capability of the network to transform the input space to
meaningful features is visualized using a multi-dimensional
scaling that projects the representation of feature space onto a
2D image. For this purpose,we applied t-distributed Stochas-
tic Neighbor Embedding (t-SNE) [22] to the first fully
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connected layer of the network. The result of the multi-
dimensional projection of the test set in one of the folds is
depicted in Fig. 5, where close points have similar charac-
teristics in the feature space. As shown, the two clusters are
clearly separated based on the features learned by the net-
work.

Performance of our proposed methods is evaluated in the
full volumes and the results are shown in Table 2, listing
voxel-level recall, precision, specificity and F1-score. Recall
is the sensitivity of detection and is defined as the number
of correctly detected needle voxels divided by the number
of voxels belonging to the needle. Precision or the positive
predictive value is defined as the number of correctly detected
needle voxels divided by the total number of detected needle
voxels. Specificity is defined as the number of voxels that
are correctly detected as non-needle divided by the number
of voxels that are not part of the needle. Finally, F1-score
is calculated as the harmonic mean between the voxel-based
recall and precision and is used to measure the similarity
between the system detections and the ground-truth labels.

Furthermore, we compare the results with the approach
of [13], which is based on supervised classification of vox-
els from their responses to hand-crafted Gabor wavelets. As
shown, both sharedCNNand independentCNNarchitectures
outperform the Gabor features yielding a 25% improvement
on F1-score. Furthermore, ShareCNN achieves higher pre-
cision than IndepCNN at approximately similar recall rate.
The degraded performance of IndepCNN can be explained
by the large increase in the number of network parameters in
our small-sized data.

Figure 6 shows examples of the classification results for 17
and 22G needles. As shown in the left column, detected nee-
dle voxels correctly overlap the ground-truth voxels, which
results in a good detection accuracy. Furthermore, example
patches from true and false positives are visualized, which
show a very high local similarity. Most of the false negative
patches belong to the regions with other nearby echogenic
structures, which distorts the appearance of the needle.

Semantic segmentation

We evaluate the performance of our proposed semantic seg-
mentation method on both datasets from chicken breast and
porcine leg. As shown in Table 1, the data of porcine leg are
acquired using a phased-array transducer, in which the nee-
dle appearance will be more inconsistent due to the varied
reflection angles of the backscattered beams.

Data representation in 2.5D

As discussed in “Semantic segmentation” section, we use a
3-channel input to the FCN network for better modeling of
the 3D structures from 2.5D (thick slice) US data. The three

channels consist of parallel cross-sections having d mm gap
between them. In this section, we investigate the contribution
of ourmulti-slicing approach for increasing the segmentation
accuracy of individual cross-sections and identify the optimal
d for each type of data and needle.

Figure 7 depicts the bar chart of the measured improve-
ment of the F1-scores for each dataset and choice of d
compared to 1-channel single-slice input. The F1-scores are
calculated after cross-validation of the predictions on parallel
cross-sections to the lateral and elevational axes. As shown,
adding extra consecutive cross-sections for segmentation of
the needle increases the performance in all the cases. How-
ever, when the distance d is too large, the visible structures
in the extracted cross-sections cannot be co-related to each
other any longer and therefore the performance gain will
decrease. As shown in Fig. 7, the spacing values of 1.3 and
2.0 mm gain the highest improvement in the F1-score, while
the results for 2.0 mm are more stable. Therefore, we choose
d = 2.0 mm as the optimal spacing among the consecutive
cross-sections and use it in the following experiments.

Voxel segmentation performance

Our proposed method based on dense needle segmentation
in multi-slice thick (2.5D) US planes is evaluated in terms
of recall, precision and specificity, as defined in “Patch clas-
sification” section. Table 3 shows the obtained voxel-wise
performances onboth chickenbreast andporcine legdatasets.
As shown, the proposed ShareFCN architecture, achieves
very high recall and precision scores in both chicken breast
and porcine leg datasets.

To study the performance of our trained networks in seg-
menting needle voxels, we visualize the response of the
intermediate feature layers to needle cross-sections. For this
purpose, the reconstructed patterns from the evaluation set
that cause high activations in the feature maps are visualized
using the Deconvnet, as proposed by Zeiler et al. [25]. Fig-
ure 8 shows the input stimuli that creates largest excitations
of individual feature maps at several layers in the model, as
well as their corresponding input images. As shown, both
networks trained for VL13-5 and X6-1 transducers improve
the discriminating features of the needle and remove the
background as the network depth increases. However, it is
interesting to notice the different modeling behavior of the
network in convolution layers 12, 20 and 21 for the two trans-
ducers. In the dataset acquired using the VL13-5 transducer,
the higher-frequency range creates more strong shadow cast-
ings below the needle in the data. Therefore, as it can be
observed in Figure 8a, the trained network additionally mod-
els the dark regions in layers 12 and 20 and fuses them to the
shape and intensity features extracted in the shallower layers
of the network.
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Fig. 5 Multi-dimensional
projection of voxels in the test
set using the t-SNE algorithm.
Red and blue points represent
needle and non-needle voxels,
respectively
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Table 2 Average voxel
classification performances in
the full volumes of chicken
breast (%)

Method Recall Precision Specificity F1-score

Gabor transformationa [13] 47.1 48.2 – 53.7

ShareCNNb 76.3 ± 5.8 83.2 ± 5.6 99.98 ± 4e−5 78.5 ± 5.3

IndepCNNb 78.4 ± 5.3 64.7 ± 4.8 99.97 ± 6e−5 66.1 ± 4.9

aTwo models trained separately for each needle (averaged)
bSingle model trained directly for both needles
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Fig. 6 Examples of classification results for 17 and 22G needles. (Left) Detected needle voxels in 3D volumes shown in red and ground-truth
voxels in green. (Right) Triplanar orthogonal patches classified as true positive, false positive, and false negative

Figure 9 shows examples of the segmentation results in
cross-sections perpendicular to the lateral and elevational
axes. As shown, the segmentation is very accurate for all
the cases of a needle being entirely visible in a cross-section,
partially acquired or being viewed from the out-of-the-plane
cross-sections. In particular, Fig. 9d depicts a case of a needle
with a relatively large horizontal angle with the transducers,
which results in the needle being partially acquired in all the
processed cross-sections. As it can be seen, visible parts of
the needle at each cross-section are successfully segmented

and after combining the results, the needle voxels are recov-
ered and detected in 3D.

Axis estimation accuracy

Because of the high detection precision achieved with both
ShareCNNand ShareFCN approaches, estimation of the nee-
dle axis is possible even for short needle insertions after
a simple RANSAC fitting. The accuracy of our proposed
ShareCNN and ShareFCN methods in localizing the needle
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Fig. 7 Improvements of
F1-scores for each choice of d,
which is the gap between the
consecutive slices used as input
to the three channel FCN
network
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Table 3 Average voxel
classification performances of
semantic segmentation approach
in the full volumes (%)

Method Tissue Recall Precision Specificity F1-score

ShareFCNa Chicken breast 89.6 ± 4.2 79.8 ± 5.5 99.97 ± 1e−4 80.0 ± 4.7

Porcine leg 87.9 ± 4.2 83.0 ± 3.7 99.99 ± 1e−5 84.1 ± 3.4

aSingle model trained directly for both 17 and 22G needles
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Fig. 8 Visualization of features projected into the input space in the
trained model a for Linear-array VL13-5 transducer and b for Phased-
array X6-1 transducer. Reconstruction of the input image is shown by
using only the highest activated features after the convolutional layers

2, 4, 8, 12, 20, 21, and 22. Note the skip connections in the layers to fuse
coarse, semantic and local features. The ground-truth needle is marked
with a yellow arrowhead in input images

axis is evaluated as a function of the needle length as por-
trayed by Fig. 10.We use twomeasurements for defining and
evaluating spatial accuracy. The needle tip error (εt ) is calcu-

lated as the point-plane distance of the ground-truth needle
tip and the detected needle plane. The orientation error (εv) is
the angle between the detected and the ground-truth needle.
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17G needle
Linear-array trans.

5–13 MHz

(a)

22G needle
Linear-array trans.

5–13 MHz

(b)

17G needle
Phased-array trans.

1–6 MHz

(c)

22G needle
Phased-array trans.

1–6 MHz

(d)

Fig. 9 Examples of segmentation results of a 17G and b 22G needles
in chicken breast acquired with a linear-array transducer, and c 17G
and d 22G needles in porcine leg acquired with a phased-array trans-
ducer. Images in the top row are input cross-sections to the network and

images in the bottom row are the segmentation results. Volumes on the
right side show the segmented needle voxels after combining the results
from both lateral and elevational directions in red and the ground-truth
voxels in green

As discussed earlier, we do not explicitly detect the needle
tip, but detect the plane where the needle and its tip are max-
imally visible. This localization processing is done for every
individual data point, leading to repeated detection in cases
of a 3D+time US sequence.

As shown in Fig. 10a, b, both ShareCNN and ShareFCN
methods perform accurately in the datasets of chicken breast,
reaching εt of less than 0.7 mm for needle lengths of approx-
imately 5 mm or larger. In both approaches, the εv shows
more sensitivity to shorter needles and varies more for the
22G needle, which is more difficult to estimate, compared
to a thicker needle. Furthermore, for the ShareCNN method,

voxels in the first 2 mm are undetectable, as the minimum
distance of extracted 3D patches from the volume borders
corresponds to half of a patch length.

In the datasets of porcine leg, the voxel size is reduced
to 0.36 mm due to the lower acquisition frequency of the
phased-array transducer. Therefore, longer lengths of the
needle are required for accurate detections. As shown in
Fig. 10c, for needles of approximately 10 mm or longer, the
εt reduces to 0.7 and 0.6 mm for 17 and 22G needles, respec-
tively. In contrast to the datasets of chicken breast, the εv is
generally larger for short 17G needles in porcine leg. Most
importantly, in all of the experiments, the needle tip error, εt ,
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Fig. 10 Needle tip position error (εt ) and orientation error (εv) as a
function of needle length. Dashed lines represent standard errors of the
measured values. a ShareCNN results in chicken breast dataset voxel

size ≈ 0.20mm. b ShareFCN results in chicken breast dataset voxel
size ≈ 0.20mm. c ShareFCN results in porcine leg dataset voxel size
≈ 0.36mm

remains lower than 0.7mm. This shows that after insertion of
only 5 mm for higher-resolution linear-array transducers and
10 mm for lower-resolution phased-array transducers, the tip
will be always visible in the detected plane as their distance
is less than the thickness of US planes.

Discussion

From comparing the results reported in Tables 2 and 3, it can
be concluded that the performance of ShareFCN is compara-
ble and only slightly better than the patch-based ShareCNN
on chicken breast data acquired from the higher-frequency
rangeVL13-5 linear-array transducer. However, amajor ben-
efit of dense segmentation using ShareFCN is related to
the data of the lower-frequency range X6-1 phased-array
transducer. The resulting lower spatial resolution of these
transducers distorts the appearance and obscures structure
details of a needle. In these cases, training a discriminant
model of the needle requires deeper and more complex
convolutional networks, which increases the computational
complexity. Therefore, more computationally efficient net-
works such as our proposed ShareFCN are preferred over
patch classification methods.

Furthermore, as discussed in “Introduction” section, the
US beamsteering angle of a phased-array transducer varies
for each region in the field of view. Consequently, US reflec-
tions from different parts of a needle will vary largely, such

that a considerable portion of the needle shaft can be virtu-
ally invisible in the data. Therefore, the receptive field of a
convolutional network need to be large enough to model the
contextual information from the visible parts of the needle. In
a patch-based classification technique, a larger receptive field
can be achieved by, e.g., increasing the patch size, increas-
ing the number of convolution and max-pooling layers, or
employing normal or atrous convolutions with larger kernel
sizes. In all of these methods, the computational complexity
increases exponentially as more redundant calculations have
to be computed for adjacent patches, and the spatial accuracy
decreases as small shifts of patches cannot be translated to
two different classes.

Conclusions

Ultrasound-guided interventions are increasingly used to
minimize risks to the patient and improve health outcomes.
However, the procedure of needle and transducer position-
ing is extremely challenging and possible external guidance
tools would add to the complexity and costs of the procedure.
Instead, an automated localization of the needle in 3DUS can
overcome 2D limitations and facilitate the ease of use of such
transducers, while ensuring an accurate needle guidance. In
this work, we have introduced a novel image processing sys-
tem for detecting needles in 3D US data, which achieves
very high precision at a low false negative rate. This high
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precision is achieved by exploiting dedicated convolutional
networks for needle segmentation in 3D US volumes. The
proposed networks are based on CNN, which is improved by
proposing a new update strategy to handle highly imbalanced
datasets by informed resampling of non-needle voxels. Fur-
thermore, novel modeling of 3D US context information is
introduced using 2.5D data of multi-view thick-sliced FCN.

Our proposed patch classification and semantic segmen-
tation systems are evaluated on several ex-vivo datasets and
outperform classification of the state-of-the-art handcrafted
features, achieving 78 and 80% F1-scores in the chicken
breast data, respectively. This shows the capability of CNN in
modelingmore semanticallymeaningful information in addi-
tion to simple shape features, which substantially improves
needle detection in complex and noisy 3D US data. Fur-
thermore, our proposed needle segmentation method based
on 2.5D US information achieves 84% F1-score in datasets
of porcine leg that are acquired with a lower-resolution
phased-array transducer. These results show a strong seman-
tic modeling of the needle context in challenging situations,
where the intensity of the needle is inconsistent and even
partly invisible.

Quantitative analysis of localization error with respect to
the needle length shows that the tip error is less than 0.7 mm
for needles of only 5mm long and 10mm long at voxel size of
0.2 and 0.36 mm, respectively. Therefore, the system is able
to accurately detect short needles, enabling the physician to
correct inaccurate insertions at early stages in both higher-
resolution and lower-resolution datasets. Furthermore, the
needle is visualized intuitively by its in-plane view while
ensuring that the tip is always visible, which eliminates the
need for advanced manual coordination of the transducer.

Future work will evaluate the proposed method in even
more challenging in-vivo datasets with suboptimal acquisi-
tion settings. Due to the complexity of data from interven-
tional settings, larger datasets need to be acquired for training
more sophisticated networks. Moreover, further analysis is
required to limit the complexity of CNN with respect to its
performance for embedding this technology as a real-time
application.
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21. Uherčík M, Kybic J, Zhao Y, Cachard C, Liebgott H (2013) Line
filtering for surgical tool localization in 3D ultrasound images.
Comput Biol Med 43(12):2036–45

22. van der Maaten L, Hinton G (2008) Visualizing high-dimensional
data using t-SNE. J Mach Learn Res 9:2579–605

23. Yang X, Yu L, Li S, Wang X, Wang N, Qin J, Ni D, Heng PA
(2017) Towards automatic semantic segmentation in volumetric
ultrasound. In: Medical image computing and computer-assisted
intervention (MICCAI), pp 711–719

24. Yu F, Koltun V (2016) Multi-scale context aggregation by dilated
convoluions. In: International conference on learning representa-
tions (ICLR). ArXiv:1511.07122

25. Zeiler MD, Fergus R (2014) Visualizing and understanding con-
volutional networks. In: European conference on computer vision
(ECCV), Springer, New York, pp 818–833

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.07122

	Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks
	Abstract
	Introduction
	Methods
	Patch classification
	Semantic segmentation
	Needle axis estimation and visualization
	Implementation details

	Experimental results
	Patch classification
	Semantic segmentation
	Data representation in 2.5D
	Voxel segmentation performance

	Axis estimation accuracy

	Discussion
	Conclusions
	References




