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On the influence of affect in EEG-based subject
identification

Pablo Arnau-González, Miguel Arevalillo-Herráez, Stamos Katsigiannis, and Naeem Ramzan, Senior
Member, IEEE

Abstract—Biometric signals have been extensively used for user identification and authentication due to their inherent characteristics
that are unique to each person. The variation exhibited between the brain signals (EEG) of different people makes such signals
especially suitable for biometric user identification. However, the characteristics of these signals are also influenced by the user’s
current condition, including his/her affective state. In this paper, we analyze the significance of the affect-related component of brain
signals within the subject identification context. Consistent results are obtained across three different public datasets, suggesting that
the dominant component of the signal is subject-related, but the affective state also has a contribution that affects identification
accuracy. Results show that identification accuracy increases when the system has been trained with EEG recordings that refer to
similar affective states as the sample that is to be identified. This improvement holds independently of the features and classification
algorithm used, and it is generally above 10% under a rigorous setting, when the training and validation datasets do not share data
from the same recording days. This finding emphasizes the potential benefits of considering affective information in applications that
require subject identification, such as user authentication.

Index Terms—EEG, affective computing, subject identification, subject recognition, user authentication
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1 INTRODUCTION

Electroencephalography (EEG)-based subject identifica-
tion is a relatively new biometric modality, with high robust-
ness prospects [1]. Despite the inconveniences associated
with the recording method, EEG signals are extremely hard
to reproduce and cannot be furtively captured at a distance
[2]. This has caused an increasing research interest in this
type of biometric systems.

The inter-subject and intra-subject distances between the
samples are two major aspects that influence the ability of
a biometric signal to uniquely and reliably recognise an
individual. These distances depend on many factors, such as
the acquisition protocol and the extracted features, and are
closely related to the uniqueness and permanence concepts.
Uniqueness means that any two subjects in the relevant
population should be sufficiently different in terms of the
trait, and hence appear well separated in the particular
representation space. Permanence relates to the manner in
which the characteristic varies over time, imposing that the
trait should be sufficiently invariant over a period of time
in terms of the matching criterion [3]. In other words, two
captures from the same individual at different points in time
should appear sufficiently close to each other in relation to
the distance between samples from different subjects.

Previous works in the field of psychology suggest that
there are significant differences in the way individuals feel
and express emotions [4], and have demonstrated that EEG
signals are a highly individual characteristic [5], [6], [7].
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However, the distance between two samples from the same
individual may depend on the subject’s condition and the
context in which the signals were captured, in between
other factors [1]. For example, the stress level of the user
may produce alterations in the EEG signal [8]. These intra-
subject variations may be further exploited to increase the
security of the system by e.g. detecting if the user is being
forced to enter the password [1], but they also contribute
to reduce the relative separation between samples from
different individuals.

In this paper, we analyze the impact of the user’s affec-
tive state on the EEG signal, in order to determine whether
this is sufficiently high to significantly alter the performance
of a biometric system. To this end, we analyze the topo-
logical structure of the data in three different public EEG
repositories, previously used in the field of emotion recogni-
tion. We also study the performance of a classification-based
subject identification approach under different settings that
consider self-reported emotional labels. Results show that
there is a notable difference in performance if the data
identification process contemplates the actual affective state
of the individual. It must be noted that in this work, we do
not attempt to build a fully functioning biometric system
but rather to study and determine whether an individual’s
affective state may affect the performance of an EEG-based
biometric system.

The rest of this paper is organized in four sections.
Section II describes the related literature and provides back-
ground information in the field of EEG signals and EEG-
based biometrics. Then, section III describes methodological
aspects, including the datasets and the feature extraction
process. After, section IV explains the experimental evalu-
ation and presents the results obtained. Finally, section V
summarizes the major conclusions that can be drawn from
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this work.

2 STATE-OF-THE-ART

EEG signals have been commonly used in medicine to diag-
nose a diversity of pathological conditions and disorders
[9], [10], [11], [12], [13], but their use has recently been
extended to other fields of research. At the beginning of this
century, EEG correlates of emotions reported in a number
of neuropsychological studies [14] also motivated their use
in the emotion (affect) recognition field [15], [16], [17], [18].
In emotion recognition, feature selection has been proved to
significantly affect the classification performance [14], [19].
This justifies that many previous works have focused on
finding the set of features that best correlates with specific
emotions. Features in the time domain, frequency domain,
time-frequency domain and electrode combinations have
extensively been used in this context [19], [15].

More recently, the large quantity of information that
EEG signals encode about the subject has been exploited in
biometrics [20], [21], [22], [23]. The theoretical aspects and
future perspectives of EEG-biometric systems have been
reviewed in [3] and [24]. Another survey, more focused on
practicality and usability issues has been presented in [25].
This includes signal acquisition devices, with medical-grade
sensors and low-cost devices been used in this context.
The former produce more reliable signals by using a large
number of electrodes for data capture, which need to be
moistened by electrolytes (e.g. saline solution). The latter
use a smaller number of electrodes and commonly use dry
sensors to reduce cost and improve usability.

Independently from the type of recording device, the
identity content carried in brain signals may critically de-
pend upon many factors, which include the type of task
in which the user is engaged. Thus, a major consideration
in biometric recognition from EEG signals relates to the
particular setting which is employed. In some cases, it may
be appropriate to involve the user into a concrete task, or to
use a predefined stimulus to evoke the desired brain activity.
In this regard, several approaches have been reported in the
literature, mainly covering three types of brain stimulation:
resting state, sensory (audio/visual) stimuli, and cognitive
tasks—(verbal instructions) [25]. The first two have predom-
inantly been used for subject identification, where the goal
is to match the identity of a subject out of a closed pool
of people. Cognitive tasks have also been used for person
authentication, with the aim to accept or reject an individual
who claims a concrete identity.

Another line of research in EEG biometrics is related
to the analysis of the small voltages generated in the
brain structures in response to a specific event or stimuli.
These are called event-related potentials (ERPs) [26] and are
subject-dependent. Many works in this direction have fo-
cused on the study of P300 (P3) waves, a waveform that can
be detected within 250 and 500 ms after a visual stimulus.
High subject identification rates have also been obtained
under this setting. For example, a recognition accuracy of
95% was initially reported in [27] and later improved to a
peak classification accuracy of 98.12% in [28]; whereas 100%
identification accuracy in a pool of 50 users was reported in
[21].

Some approaches in the literature have also used brain
activity for subject identification and/or authentication pur-
poses [29], [30], [31]. In this case, the EEG signal is acquired
while the subject performs some kind of intentional task,
such as mathematical calculations or a concrete physical
movement. Imagined speech was used for user identifica-
tion in [31], reaching 99.76% accuracy out of 6 different
subjects. A 99% authentication accuracy has been reported
in [30] using single-channel signals from consumer-grade
EEG sensor technology, by choosing custom tasks and cus-
tom acceptance thresholds for each subject. More recently,
and with the aim to ease acquisition and better fulfill the
collectability requirement, the use of a wearable in-ear EEG
sensor has been proposed [32]. Results using Power Spectral
Density (PSD) features and Support Vector Machines (SVM)
with different kernels showed an average accuracy of 95.7%
at a user verification task, without mixing the training and
validation data from the same recording days.

A current topic of interest refers to the study of the
longitudinal behavior of EEG signals, to analyze their per-
manence across time and the influence of aging effects on
the discriminative capabilities of EEG signals over long-
term periods. In [33], authors used event-related potential
(ERP) biometrics, and addressed permanence by asking a
subset of the participants to return to the lab between a
week and six months after their first session. They con-
cluded that the features used were stable over time, on the
basis of a continued accurate identification of individuals
from the ERPs when they returned. Also a good level of
stability was reported in [34], from the analysis of the
performance achieved with several EEG-based biometric
system configurations on a database that contained EEG
recordings from 50 users, which were acquired along three
distinct sessions spanning a period of one month and a
half, under eyes-closed and eyes-open resting conditions.
A more rigorous study over a considerably longer time
span has been recently presented in [35]. In this case, EEG
signals from 45 subjects were recorded in 5 to 6 sessions
with an interval between sessions no shorter than a month,
covering an overall period of about 3 years. This data was
used to provide evidence that aging actually affects EEG
biometric traits, and propose several strategies to mitigate
aging effects and achieve Equal Error Rates (EERs) below
2% when comparing samples taken at temporal distances in
the order of years.

Despite the extensive literature on the use of EEG signals
in biometrics and emotion recognition, the potential effect of
the user’s emotional state in biometric identification tasks
has received little attention. Correlates of emotions provide
evidence that the subject’s affective state has an influence
in the EEG signal. This allows exploiting specific emotional
responses to concrete events in order to characterize users
and help subject identification or authentication. However,
affect may also have a negative effect and hinder the user
identification task. When a subject interacts with a biometric
system, the individual is in an emotional state which is
generally unknown and most biometric systems have disre-
garded. This emotional state may vary between subsequent
operations, introducing a form of noise that may obstruct
pattern matching. In this paper, we analyze the implications
of this effect, to determine whether the influence of the emo-
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Table 1: Overview of the datasets used in this study

Dataset
Number of Number of Number of Video Video Recording Number of Sampling Number of
participants videos sessions content duration device channels frequency features

DEAP [36] 32 40 1 60 s 32 230Music Biosemi 512 Hz
videos Active II (↓ to 128 Hz)

MANHOB [37] 27 20 1 32 230Excerpts 34.9-117 s Biosemi 512 Hz
from movies (µ = 81 s) Active II (↓ to 128 Hz)

SEED [38] 15 15 3 240 s 62 230Excerpts ESI 1000 Hz
from movies NeuroScan (32 used) (↓ to 200 Hz)

tion on the EEG signal can potentially cause a significant
decrease of performance in a typical biometric system for
subject identification.

3 EXPERIMENTAL METHODOLOGY

3.1 Datasets
The growing interest in emotion recognition through EEG
signals has led to the development of public datasets
specifically aimed to the analysis of human affective states.
We have chosen three of the most widely used datasets
in the field to carry out our study, namely DEAP [36],
MAHNOB-HCI [37], and SEED [38]. These datasets contain
EEG recordings acquired from subjects exposed to video
stimuli, specifically selected in order to elicit emotions in
each of the 4 quadrants of Russell’s Circumplex Model [39].
In DEAP and MAHNOB-HCI, the stimuli were presented
in random order to each participant and emotional labels
for valence and arousal were assigned according to a self-
report using self-assessment manikins (SAM) [40]. In SEED,
however, the recordings were annotated according to the
emotional response that the stimulus was expected to elicit.

DEAP [36] contains EEG data for 32 subjects and the
video stimulus consisted of a set of 40 music videos of 63
seconds each. EEG signals were recorded at a sampling rate
of 512 Hz using the Biosemi Active II system, with 32 active
AgCl electrodes placed according to the international 10-20
system. EEG data were common average referenced, down-
sampled to 128 Hz, and high-pass filtered with a 2 Hz cut-
off frequency. MANHOB-HCI [37] contains data from 27
subjects exposed to video stimuli consisting of a set of 20
film clips. EEG signals were recorded by using the same
equipment as in DEAP.

The SEED dataset contains EEG recordings from 15
different individuals exposed to audiovisual stimuli during
three separate sessions. EEG signals were captured using an
ESI NeuroScan System with a sampling rate of 1 000 Hz and
a 62-channel electrode cap, and were down-sampled to 200
Hz for further processing. The presented stimuli consisted of
15 film clips designed to elicit specific emotions as follows: 5
for positive, 5 for negative, and 5 for neutral emotion. Each
of the three sessions replicated exactly the same experimen-
tal procedure, using the same video sequences in the same
order [38]. It must be noted that the recorded signals in the
SEED dataset are not annotated in terms of a continuous
Arousal/Valence scale, thus the samples of the SEED dataset
were annotated with the emotional labels of the associated

video stimuli. An overview of the three datasets used in this
work is given in Table 1.

3.2 Preprocessing and Feature Extraction
In all datasets, the subject label for the identification task
was set by using the identifier assigned to each subject. This
is an integer between 1 and 32 in DEAP, in the range 1 to 27
in MAHNOB and in between 1 and 15 in SEED. However,
there were relevant differences about the labeling used to
encode emotional responses in the three datasets. In SEED,
three different values were used, namely -1 (negative), 0
(neutral) and 1 (positive), according to the emotion that
the stimulus was expected to elicit. However, in DEAP
and MAHNOB, they were self-reported in a continuous
scale between 1 and 9, for each dimension in the Russell’s
circumplex model. In order to unify the experiments across
all different databases and yet maintain consistency with
other previous works in the literature that use DEAP and
MANHOB, e.g. [16], [36], [41], [42], the arousal and valence
labels in these two datasets were discretized into two levels
by applying a threshold to the originally reported values.
The threshold was set to 5, in order to be coherent with other
previous studies [16], [36], [41], [42]. For consistency with
the DEAP and MAHNOB datasets, the samples of the SEED
dataset that referred to neutral emotion were discarded, and
only those referring to positive or negative emotion were
used in this study.

With regard to feature extraction, DEAP and MANHOB
only use a subset of 32 channels out of the 62 used in
SEED. To also make the data uniform across the three
databases, we discarded the information from the additional
30 channels that were included in SEED but not in the other
two datasets. Then, we computed the Power Spectral Density
(PSD) in each of the 32 channels. For consistency reasons
and to ease the future comparison of results, this was
done as in the original publications [36], [37], [38], down-
sampling the signals to 128 Hz in the case of MANHOB, and
using Welch’s method with a Hamming window of 1 sec,
with 50% overlapping. The spectral power was averaged
over the θ (4-8 Hz), α̃ (8-10 Hz), α (8-12 Hz), β (12-30 Hz),
and γ (30+ Hz) bands for all electrodes. In addition, the
difference between the spectral power of all the symmetrical
pairs of electrodes on the right and left hemisphere in the
same bands was also computed in order to measure the
possible asymmetry in the brain activities due to emotional
stimuli. This yielded a vector of 230 features per recording
(32 electrodes × 5 bands + 14 pairs × 5 bands).
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As a result, after data preparation, each recording in
DEAP and MANHOB had 230 features and three labels
associated with it, namely: the user identifier, the arousal
(high/low) and the valence (negative/positive). In SEED,
we used the same features, but the labels were the user
identifier, the session identifier (1 to 3) and the polarity of
the emotion (positive/negative).

3.3 Experimental Protocols

It should be noted that we do not attempt to build an
EEG-based biometric system, which has been the subject of
many other previous works in the literature [43], [44], [45].
Rather, we aim to determine whether the user’s affective
state may alter the user identification performance of an
EEG-based biometric system. Hence, the evaluation of the
identification performance in comparison to the state-of-the-
art lies outside the scope of this research.

In order to analyze the effect of emotions in a subject
identification context, we conducted a series of studies
that are consistent with the purpose of the research. In all
cases, we considered a set of samples composed of the EEG
features extracted for each entire recording and the label of
the corresponding individual as provided in each dataset.

The first study was a qualitative analysis of the data
topology, aimed to assess the influence of the emotion on
the distance between data samples. In it, we first show the
suitability of the EEG signals for biometric subject identifica-
tion, by analyzing intra- and inter-subject distances between
data samples. Then, we independently evaluate the samples
from each subject, to determine whether the label has an
implicit influence on the distance between samples.

The second study aims to evaluate whether the evidence
found in the first study is sufficient to alter the classifica-
tion results and significantly affect the subject identification
accuracy. To this end, we use two substantially different
protocols, which are described next.

3.3.1 Protocol P1: Biased scenario
Many previous studies on EEG biometric identification have
claimed high accuracy results [46] by using single session
datasets, e.g. [47], or by randomly selecting training and
validation samples regardless of the data acquisition days
[48]. This was called the biased scenario in [32], and can
be affected by session-specific exogenous conditions (e.g.
capacitative coupling of electrodes and cables with other
devices, induction loops created between the employed
equipment and the body, power supply artifacts) [35] or
other noise-dependent features related to contamination
artefacts from subjects’ movements (e.g. eye blinks, chew-
ing) [32]. This approach benefits from the recording-day-
dependent EEG characteristic in the classification, it is hence
biased in favour of high classification rate and it cannot
evaluate the repeatability/reproducibility of the application
[32]. Still, recordings for the DEAP and MAHNOB datasets
were acquired during a single session per subject and do not
allow for a cross-session-validation study.

For this biased scenario, we created 20 000 sub-
sets of samples for each affective label available in
all datasets (DEAP-Arousal, DEAP-Valence, MAHNOB-
Arousal, MAHNOB-Valence, SEED-Polarity), by randomly

Table 2: Rejected subjects, minimum number of training
samples per subject, and number of samples per sub-set for
each dataset and emotional dimension

Dataset Rejected subjects M n

DEAP-Arousal None 32 10
DEAP-Valence 3, 12, 13, 20 28 10

MAHNOB-Arousal
3, 5, 7, 9, 10, 11,
13, 14, 15, 17, 18,

20, 21, 25, 26
12 8

MAHNOB-Valence
1, 3, 8, 9, 10, 13,

14, 15, 17, 18,
21, 25, 26, 27

13 8

SEED-Polarity None 15 15

selecting exactly one sample per subject with a given label.
10 000 of these sub-sets contained only samples labeled
as “positive” (or “high” for arousal) and the remaining
10 000 contained samples labeled as “negative” (or “low”
for arousal). Each of these sub-sets was used as a test set,
in order to compare various classification models at the task
of subject identification under two different settings. In the
SAME setting, the corresponding training set was composed
of the remaining samples in the dataset that shared the same
label. In the DIFF setting, the training set contained all the
remaining samples from the same database with a different
label.

Furthermore, in order to be able to do a fair paired com-
parison between the classification performance for the two
approaches (SAME and DIFF), subjects that did not have
at least n samples for each emotional label were discarded,
ensuring that at least n − 1 samples for each subject and
emotional label were included in the training set, plus 1
sample in the test set. The number of samples n was man-
ually selected for each dataset, so as to reach a reasonable
balance between the amount of rejected subjects and the
size of the training set (nDEAP = 10, nMAHNOB = 8,
and nSEED = 15). Furthermore, n remained the same at
each dataset for both the SAME and DIFF approaches. As
a result, the final number of samples, M , in each of the
20 000 sub-sets for each dataset and emotional dimension
was adjusted depending on the number of rejected subjects
in each case. The identifiers of the rejected subjects, the
minimum number of samples per subject n, and the number
of samples M for each combination of emotional dimension
and dataset can be found in Table 2.

In order to ensure that detected differences in perfor-
mance do not occur due to the particularities of a specific
classification algorithm, the aforementioned experiments
were conducted using seven different classifiers: Support
Vector Machines with Linear and Radial kernels (LSVM
and RSVM, respectively), k-Nearest Neighbor (k = 1, 3, 5),
Multilayer Perceptron (MLP) with one hidden layer of 10
hidden units using cross-entropy as the cost function and
stochastic gradient descent for training, and the AdaBoost
ensemble method using decision trees as the weak learner
[49].
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(a)

(b)

(c)

Figure 1: Distance matrices between all the samples in (a)
DEAP, (b) MAHNOB, and (c) a representative session in
SEED. The matrices contain the value of the cosine distances
encoded as a color according to the legend shown at the
right-hand side. Please, note that the first two subjects in
MAHNOB have almost double the samples than the rest

3.3.2 Protocol P2: Rigorous scenario
The importance of using data recorded across multiple
sessions per user to validate the robustness of an EEG-based
biometrics application has been remarked in a number of
previous works [32], [35]. It is widely accepted that a sound
experimental setting for biometric purposes should include
recordings for each user over multiple days. In addition, the
experimental methodology should ensure that the training
and validation datasets do not share data from the same
recording days. This has been called the rigorous scenario
in [32], and has been used in multiple longitudinal studies
that evaluated EEG signals as biometric identifiers [29], [33],
[34]. In our work, this setting could only be attempted in
SEED, as this is the only database of the ones considered that
contains labeled recordings from multiple separate sessions
per subject.

A similar experimental procedure as in Protocol P1 was
followed. The 20 000 test sub-sets previously created for
the SEED dataset were used in order to repeat the SAME
and DIFF experiments as previously described, with the
additional constraint that the training sets for the classi-
fication models could only contain samples referring to a
different session than the ones contained in the test set.
Furthermore, apart from the PSD features, we also examined
the performance of the Mel Frequency Cepstral Coefficients
(MFCC) features and the Auto Regression Reflection Coeffi-
cients (ARRC) features, as proposed by Piciucco et al. [45]
for EEG-based subject identification. As also proposed in
[45], the samples were divided into frames with a length
of 5 sec and 75% overlapping, leading to a total of 46 new
samples generated from each of the original recordings in
the dataset. Then, the 20 000 sub-sets were computed again
from the newly created samples of the SEED dataset and the
SAME and DIFF experiments were conducted again for the
MFCC and the ARRC features.

4 EXPERIMENTAL RESULTS

4.1 Distance based analysis
Along with other properties, uniqueness is essential to any
biometric recognition system. This translates into the neces-
sity that samples that belong to the same individual appear
close to each other, according to a concrete distance and
in relation to samples coming from different subjects. To
test if this condition holds for our data, we have computed
the cosine distance (DC ) between all pairs of samples in
each dataset, in line with other research works that have
remarked on the benefits of this distance in specific con-
texts [50], [51]. This has been computed as:

DC = 1− SC (1)

where SC is the cosine similarity between two feature
vectors FaFaFa and FbFbFb and is computed as:

SC = cos(θFa,Fb
) =

Fa · FbFa · FbFa · Fb

||FaFaFa||2 ||FbFbFb||2
(2)

In order to visualize the data in a form that can easily
be interpreted, we first sorted the samples in the datasets by
subject identifier, so that all elements for the same subject
appeared in a consecutive order. Then, the distance matrix
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Figure 2: Bar plots containing the per-subject difference of distance between samples with the same emotional state (SAME)
and with different emotional state (DIFF) for (a) DEAP - Valence, (b) DEAP - Arousal, (c) MAHNOB - Valence, (d)
MAHNOB - Arousal, and (e) SEED.
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Table 3: Classification accuracy for each dataset, emotional dimension, and setting

DEAP MAHNOB SEED

VALENCE AROUSAL VALENCE AROUSAL POLARITY

SAME DIFF SAME DIFF SAME DIFF SAME DIFF SAME DIFF

RSVM 0.9111 0.8917 0.8994 0.8922 0.7176 0.6825 0.7710 0.6176 0.7958 0.5899

LSVM 0.9897 0.9863 0.9813 0.9718 0.9589† 0.9418 0.9796† 0.8661 0.9475† 0.8572

1-NN 0.9915† 0.9896 0.9896† 0.9852 0.9196 0.8688 0.9309 0.8603 0.6916 0.6397

3-NN 0.9805 0.9733 0.9808 0.9718 0.8805 0.8383 0.8766 0.8475 0.5780 0.5593

5-NN 0.9639 0.9567 0.9697 0.9591 0.8613 0.8191 0.8419 0.8284 0.5525 0.5454

AdaBOOST 0.9773 0.9711 0.9715 0.9671 0.8911 0.8331 0.9010 0.8110 0.9200 0.7887

MLP 0.7704 0.7560 0.7382 0.7340 0.6876 0.7100 0.7156 0.6588 0.4158 0.3520

† indicates the highest classification accuracy achieved for the respective dataset and emotional dimension

was plotted in a graphic form by encoding distance values
using a colour scale from dark blue to dark red, with
dark blue denoting a distance close to 0 and dark red the
maximum distance. Results are shown in Figures 1a, 1b and
1c, for DEAP, MANHOB, and a representative session in
SEED, respectively.

The visual structure of the result indicates that the lowest
distances (in dark blue) appear in the diagonal, which
correspond to samples that belong to the same subject.

Nevertheless, the results reported in Figures 1a and 1b,
which refer to data taken during a relatively short period
of time, only indicate that the uniqueness property holds
in this case, and hence that the features extracted are po-
tentially adequate for subject identification. To study the
potential influence of the emotion in this context, we need to
determine whether the fact that two samples from the same
subject share the same emotional label has an impact on the
distance value.

To this end, we have studied each subject on an indi-
vidual basis, by computing the average distance between
samples that share the same affective label, and comparing
it to the average distance between data samples with a
different label. Figure 2(a-d) shows the results for the two
affective dimensions (valence and arousal) in the DEAP and
MAHNOB datasets, while results for the SEED dataset are
provided in Figure 2e. Despite some individual exceptions
(subject 23 in DEAP-Arousal and subject 18 in MAHNOB-
both dimensions), the bar plots presented in these figures
reveal that distances between samples that were labeled
with the same emotion are generally lower than the rest.

4.2 Results on biased scenario
The lower distances obtained in the same label case sug-
gest an improvement of the uniqueness property if all
samples share the same affective label, and highlight the
potential benefits of knowing the subject’s emotional state
when recordings are taken. In order to analyze whether the
distance reduction achieved is sufficient to yield a higher
identification accuracy, we have carried out a second exper-
iment. In order to evaluate the effect of the affective label
on the subject identification accuracy, this time we used a
classification setting, according to the protocol P1 described
in section 3.3.1. The same experiment was repeated for
valence and arousal in DEAP and MANHOB, and for the
expected polarity of the emotion in SEED.

The results of these experiments are reported in Table 3.
In all cases, the accuracy obtained in the SAME case was
consistently better than in the DIFF case. In addition, the
high performance in terms of the mean classification accu-
racy achieved with the Linear SVM classifier across the three
repositories indicates that uniqueness is naturally present
and supports the suitability of the feature set used in this
case. This is also confirmed by the high performance of the
1-NN which suggests that data can be linearly separated to a
reasonable level in the original space and there is no need to
map it to a higher dimensional one. The better performance
of the linear SVM over the Radial kernel version may be
due to a less accurate computation of the optimal SVM
parameters in the non-linear case, derived from the use of a
relatively small training set in a high dimensional space of
230 features. This would also justify the poorer performance
of all algorithms in MAHNOB, as less samples per subject
were used for training. We shall also remark on the generally
lower accuracy obtained in SEED. This is very likely because
SEED is the only repository of the ones we have used that
stores data captured over different sessions, and hence the
uniqueness and permanence properties are simultaneously
tested. It is also worth noting that the highest accuracy
achieved for the DEAP dataset in all the examined scenarios
(SAME/DIFF, Valence/Arousal), as shown in Table 3, is
consistent with the subject identification accuracy recently
reported by del Pozo-Panos et al. [20] for DEAP using PSD-
based features (97.97%).

As a further analysis of the results, the classification
accuracies for the best performing classifier in the SAME
and DIFF cases are plotted in Figures 3, 4, and 5 in the
form of box plots. This plots show that the classification
accuracy achieved in the SAME case also has a smaller
variance compared to DIFF, regardless of the dataset and
the emotional dimension (arousal or valence).

To test the statistical significance of the results presented
above, we have run a hypothesis contrast test, under the null
hypothesis H0 that the distribution defined by x− y (where
x and y are the classifier-wise distributions for the SAME
and DIFF cases, respectively) comes from a distribution
whose mean (or median, in case of non-parametric tests) is 0,
against the alternate hypothesis Ha that the distribution de-
fined by x− y actually has a mean (or median) with a value
other than 0, meaning that there are significant differences
between both distributions. Additionally, for testing the data
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(a) (b)

Figure 3: Box plots comparing differences between SAME
and DIFF when using a Linear SVM in DEAP: (a) for
arousal; and (b) for valence.

(a) (b)

Figure 4: Box plots comparing differences between SAME
and DIFF when using a Linear SVM in MAHNOB: (a) for
arousal; and (b) for valence.

Figure 5: Box plot comparing differences between SAME
and DIFF when using a Linear SVM in SEED

for normality, a Lilliefors test was done, rejecting the null
hypothesis that the data comes from a distribution from
the normal family (p � 0.05). Wilcoxon’s signed rank test
was chosen for testing these hypotheses due to being non-
parametric, thus eliminating the assumption of normality
inherent to Student’s t-test. The results of the Wilcoxon’s test
show that there are significant differences between SAME
and DIFF for all the five cases examined, independently of
the classification algorithm used. All p-values were below
10−7, providing strong evidence that there is a statistically
significant gain in terms of identification performance when
the training samples share the same emotional label.

4.3 Results on rigorous scenario

In order to complete our study on the influence of the
affective state on the identification accuracy, we have ex-
ploited the multiple session structure of the SEED database
to run a cross-session analysis, according to the experi-
mental Protocol P2. In addition, we have computed other

(a) (b)

(c)

Figure 6: Box plots comparing differences between SAME
and DIFF when using a Linear SVM in SEED: (a) for MFCC
features; (b) for ARRC features; and (c) for PSD features.

Table 4: Cross-session classification accuracy for SEED

MFCC ARRC PSD
SAME DIFF SAME DIFF SAME DIFF

RSVM 0.7309 0.6292 0.6467 0.5745 0.1786 0.1487
LSVM 0.7934† 0.7108 0.7079† 0.6210 0.4224 0.3614
1-NN 0.4925 0.433 0.3337 0.2765 0.2338 0.2070
3-NN 0.4953 0.4281 0.3513 0.2905 0.2271 0.1946
5-NN 0.4961 0.4292 0.3578 0.2964 0.2343 0.2054
AdaBoost 0.5112 0.4321 0.5017 0.3861 0.4601† 0.3924
MLP 0.6294 0.5348 0.5656 0.4704 0.2338 0.1835

† indicates the highest classification accuracy for each of the features used.

alternative features (see section 3.3.2) and repeated the
experimentation, to further support the consistency of our
results and also ensure that the differences found are not
due to particularities of the PSD features.

Table 4 reports the accuracy results obtained when the
training and validation datasets do not share data from
the same session. Results reported in Tables 3 and 4 reveal
that accuracy results are considerably lower when using the
rigorous scenario, as also highlighted in the box plots of
Figure 6. This finding is consistent with the bias reported
in [32] that leads to unrealistically high results when using
protocol P1, and also with the phenomenon of Template
Aging which effects when using recordings of cognitive
tasks performed with long time intervals between them,
as discussed in [25], [52], and [53]. However, results from
both cases support this work’s argument that the emotional
state of the individual affects identification accuracy. The
identification performance is clearly and consistently better
in the SAME case, regardless of the features, classifier or
concrete accuracy achieved. The best results are obtained
when using MFCC features. With these features, the SVM
behaves the best, reaching accuracies of 0.79 and 0.73 when
using a linear and a radial kernel, respectively. In the case
of the ARRC features, results are generally lower, but the
SVMs also behave as the best classification algorithms, with
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also reasonable accuracies of 0.71 for a linear kernel and 0.65
for a radial one. The PSD features behave the worst, but still
achieve a 0.46 identification accuracy when using AdaBoost.
Accuracy values under the SAME setting reported in Table 4
are from 11.6% to 29.9% higher than in the DIFF case.

As in the biased scenario, a paired Wilcoxon’s signed
rank test between the results for SAME and DIFF was also
conducted in order to examine the statistical significance of
the acquired results in the cross-session study for all the
features and classification algorithms used, leading to p �
0.001 in all cases and supporting the statistical significance
of the results.

The observation of the same trend for both the single-
session and cross-session studies, as well as for different
types of EEG features, indicates that the effect of emotion
in the performance of EEG-based subject identification tran-
scends the nature of the features used and highlights the
importance of considering the emotional state of the subjects
in EEG-based biometric applications.

5 CONCLUSIONS

In this work, we have studied how the difference in the
emotional state affects the classification performance of
EEG-based subject identification systems. For this purpose,
three publicly available datasets containing EEG recordings,
acquired under stimuli selected to elicit specific emotional
responses, have been examined for the task of subject iden-
tification. Initial observational results suggested that there
was a dependency linking the distance values between
samples and the emotional labels associated with them. In
particular, feature vectors from a subject that shared the
same label were generally closer to each other. This finding
led to a more thorough study of this phenomenon, by de-
signing further experiments to study potential implications
in a subject identification setting, with regard to the accuracy
achieved.

The new experiments showed a significant difference in
performance when the emotional labels in the training and
test sets match, compared to when they differ. A further
cross-session study performed over the SEED dataset re-
vealed that these differences in performance hold when data
is captured across different sessions, and also when different
sets of features are used. These results lead to the conclu-
sion that the user’s affective state plays a determinant role
that influences the performance of EEG-based identification
systems, and indicate that the integration of affective data
would help improve the performance and reliability of such
systems.

Possible ways to make explicit use of the research pre-
sented in this paper in a real setting would be a) by using
stimuli to elicit a particular emotion both while training
the biometric system and when identifying a user; or b)
by asking the user to report his/her emotional state during
measurements. Furthermore, subject identification accuracy
could easily be improved by training multiple systems, one
per emotion, and fusing the biometric responses. Never-
theless, there are still intrinsic difficulties to all these ap-
proaches that require further investigation. These include
both technical and usability-related issues, such as the im-
plementation of a reliable and personalized procedure to

consistently elicit the same emotion during training and test;
or the selection of an appropriate self-reporting mechanism
to seamlessly capture the emotion in a non-intrusive way.

We plan to extend the current research to study under
which conditions the results reported can be generalised to
other feature sets in typical classification settings. In addi-
tion, we shall study the potential further benefits obtained
by combining the classification results computed for several
emotional labels, e.g. arousal and valence. This may lead to
the use of data fusion methods that yield more consistent,
accurate, and useful results than those reported in Table 3
when using a single label.
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