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Abstract

Mobile robots with manipulators have been more and more commonly ap-
plied in extreme and hostile environments to assist or even replace human
operators for complex tasks. In addition to autonomous abilities, mobile
robots need to facilitate the human-robot interaction control mode that en-
ables human users to easily control or collaborate with robots. This paper
proposes a system which uses human gestures to control an autonomous mo-
bile robot integrating a manipulator and a video surveillance platform. A
human user can control the mobile robot just as one drives an actual vehicle
in the vehicle’s driving cab. The proposed system obtains human’s skele-
ton joints information using a motion sensing input device, which is then
recognized and interpreted into a set of control commands. This is imple-
mented, based on the availability of training data set and requirement of
in-time performance, by an adaptive cerebellar model articulation controller
neural network, a finite state machine, a fuzzy controller and purposely de-
signed gesture recognition and control command generation systems. These
algorithms work together implement the steering and velocity control of the
mobile robot in real-time. The experimental results demonstrate that the
proposed approach is able to conveniently control a mobile robot using virtual
driving method, with smooth manoeuvring trajectories in various speeds.
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1. Introduction

A conventional mobile manipulator typically consists of a mobile plat-
form and a manipulator with multiple degrees-of-freedom (DOF), and thus
it benefits the advantages of both components [1, 2, 3, 4]. In addition to
saving human labors in traditional tasks like autonomous navigation, un-
manned production lines, and environmental perception, mobile robots are
more and more commonly applied to assist or even collaborate with hu-
man beings to work in extreme or hostile environments for complex tasks
[5], such as aerospace and deep-sea exploration [6, 5, 7]. Such assistance
or collaboration requires effective and efficient natural interactions between
humans and robots [8]. In addition, there is an appeal in more user friendly
and natural way to control robots performing normal daily tasks along with
the increasingly wider use of robots in people’s daily life, as conventional
control methods depending on traditional input devices, such as keyboards,
joysticks, or touch-screens, is inconvenient and unsuitable for those people
lack of learning ability.

Human-robot interaction (HRI) is rapidly being established and devel-
oped in this context as a technical discipline that studies the mutual commu-
nication and understanding between humans and robots, and helps humans
collect, manage, and handle information [9, 10, 11, 12, 13, 14]. A number
of approaches have been proposed to control robots using human gestures.
For instance, Pedersen and Krüger defined five gestures used as control com-
mands to guide the movements of mobile robots [15]; and a similar piece of
work was also reported by Pentiuc et al. [16]. Wongphati [17, 18] used a set
of body gestures to build a stationary of control commands for mobile robot
control. Burger et al. [19] developed a mobile manipulator platform that
can be controlled by speech commands and two-arm gestures. In addition,
Yu et al. [20] applied hand gestures captured by a Leap Motion device to
control humanoid robots. However, these studies constrain human gestures
to fixed discrete patterns by connecting each of these symbolic commands
to a particular robot action without the flexibility of quantitative control in
real time.

This paper proposes a human gesture-based HRI method using multiple
continuous human gestures to quantitatively control a mobile robot with a
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multi-DOF manipulator, in an effort to address the identified challenge above.
In particular, this paper implements the proposed idea by taking real driving
gestures for normal vehicles to quantitatively control the mobile robot. This
approach firstly capture the gestures using a motion sensing input device,
“Microsoft Kinect”, thanks to its rich libraries in gesture recognition. Then,
the interactions between a human demonstrator and the mobile robot is
made through tele-manipulations. The surveillance videos, captured by a
binocular camera mounted on the robot, are collected via wireless network
transmissions in real time.

The proposed method, in contrast to the existing ones, is of more flex-
ible control operations, which can be used in multi-person-operation tele-
manipulation tasks. This is implemented by two separate gesture processing
channels for steering, and velocity changing with the latter including gear
shifting and accelerator/break pressing. The training data set for gear shift-
ing gestures can be readily obtained by sampling human gestures and thus
an adaptive Cerebellar Model Articulation Controller (CMAC) network is
applied in this work for gear shifting gesture classification [21]. However,
differently, it is difficult to obtain training data for the steering and veloc-
ity control simultaneously, because such type of training data can only be
obtained by simultaneously sampling the mobile robot’s moving direction
and velocity and their corresponding gestures from the human demonstra-
tor. Note that a fuzzy inference system can take the advantage of human
driving experiences in the from of fuzzy rules to solve such problem [22, 23].
Thus, the major contribution of this work is a gesture-based control system
which integrates a CMAC and a fuzzy controller (Sections 2.2, 2.3 and 2.4)
using human gestures that are similar to practical driving gestures to control
a mobile robot in an efficient and user-friendly way.

The remainder of this paper is organized as follows. Section 2 details of
the proposed HRI system, including steering control and the velocity con-
trol. Section 3 elaborates the experimental setup and discusses the detailed
experimental results. Section 4 concludes the work and points out important
future work.

2. The Porposed Approach

2.1. Overall Control Procedure

The entire control architecture of the mobile robot system is shown in Fig-
ure 1. In particular, a human user generates actual driving gestures in front
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Figure 1: The flowchart of the entire architecture. The architecture consists of three
control subsystems: steering control, velocity control, and manipulator control.

4



of a motion sensing input device, i.e., Microsoft Kinect 2, which captures the
skeleton information of the human gestures. Then, the skeleton information
is used to control the mobile robot equipped with a robotic hand-eye coor-
dination system. The proposed approach is mainly comprised of one gesture
recognition module and three control subsystems: (1) the mobile platform’s
steering control, (2) the mobile platform’s moving velocity control, and (3)
the manipulator’s control. All these subsystems take human gestures as in-
puts and generate control values or control commands to the mobile robot
system accordingly as introduced below and detailed in Sections 2.2, 2.3 and
2.4.

• The steering control subsystem utilises driving gestures for actual ve-
hicles to control the robot’s direction. A human user performs the
basic gestures by holding a virtual steering wheel. The user rotates a
virtual steering wheel to change the mobile robot’s moving direction.
The rotation gestures are translated to the mobile robot’s direction
values by constantly considering the positions of the hands of the user.
In contrast to other existing approaches, the proposed steering control
method supports quantitative information and thus produces smooth
control results.

• The moving velocity control subsystem takes the values of the two con-
trol components from actual vehicles, including “transmission gears”
and “break/accelerator”. The human user performs gear shifting ges-
tures in front of the Kinect device; a transmission gear shift module
is created to recognize the human gestures to generate commands of
“shift-gear-up” or “shift-gear-down”. A finite state machine module
not only records the current gear state, but also adjusts the gear state
based on the commands from the transmission gear shift module.

The accelerator and break functions of a vehicles are simulated by
“pushing-down” and “pulling-up” the operator’s two hands simulta-
neously. The current gear state values and the position values are sent
to a fuzzy controller, which produces velocity commands for the mobile
platform using a pre-defined fuzzy rule base based on expert knowledge.
Similar to the steering control, this moving velocity control method also
exhibits a quantitative property for smooth control performance.

• The manipulator control subsystem uses a predefined arm gesture to
inform the robot’s hand-eye coordination system to perform tasks of ob-
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ject capturing. The robot’s vision system captures the entire workspace
of the robot’s manipulator which facilitates the identifying the target
object. Once the target object is found, the robot’s hand-eye coordi-
nation system automatically performs capturing movements using the
manipulator. The implementation details of this subsystem is beyond
the focus of this paper and thus omitted due to space limit but can be
found in the work of [24, 25].

The states of the robot is monitored by a human-robot interaction inter-
face as detailed in Section 2.5, through which the human user can watch the
control performance and also the object capturing actions performed by the
manipulator.

2.2. Gesture Recognition Module

The environment of the mobile robot is shown in Figure 2. A human
demonstrator sits in front of the Kinect device and watches the human-robot
interaction interface. An obstacle and a target object are placed in the robot’s
workspace. The gestures of the human user are used for the steering control,
velocity control and manipulator control subsystems. The communications
between the human demonstrator and the mobile robot are made through
wireless network connection.

The proposed approach uses human driving gestures to control a mobile
manipulator by manoeuvrings the mobile platform and performing object-
capturing function, which is usually taken as a very challenging task. There-
fore, the Microsoft Kinect sensor is employed in this work for gesture cap-
turing to reduce the implementation complexity due to its rich built-in li-
braries. Thanks to this, the skeleton information of human body can be
readily captured, which is sufficiently accurate for robot control. In addi-
tion, as illustrated in Figure 2, the human demonstrator sits in front of the
Kinect device, and only human arm and hand gestures are used to control
the robot. Such ready-made skeleton information and the fixated gesture
sampling environment jointly reduce the complexity of gesture recognition
tasks.

For each sampling unit, the Kinect generates a position vector,
−−→
body, of

the key points of a human body, and particularly 25 points are used in this
work. The human gesture classification model identifies each sampled human
gesture, and assign the gesture to the corresponding subsystem. In particular,
the Euclidean distance, d, between a human user’s two hands is used to check
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Figure 2: The experimental environment. The human demonstrator sits in front of the
Kinect device and watches the human-robot interaction interface. The communications
between the human demonstrator and the mobile robot are made through wireless network
connection. An obstacle (i.e., the orange and black object) and a target object (i.e., the
yellow ball) are placed in the robot’s workspace.

Activated Module Distance Range
Steering Control Module 250mm < δ < 500mm
Velocity Control Module δ > 1, 000m
Manipulator Module δ < 100mm

Table 1: The setup of the hand classification module.

the gesture’s type. The positions of the two hands are obtained from
−−→
body.

Simple determination rules are pre-defined for gesture type identification as
follows:

1. Steering control gestures: the human performs the basic gestures for
holding a virtual steering wheel; thus, d need to fall in the range
[250mm, 500mm].

2. Velocity control gestures: the human performs gear shifting gestures;
d is larger than 1, 000mm.

3. Manipulator control gestures: the human user straightens the arms and
holds the hands together in front of chest; thus, d is less than 100mm.

These gesture classification rules are summarized in Table 1. In order
to achieve better classification accuracy, three key points regarding gesture
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recognition are considered as follows:

Illumination: the Kinect device takes depth images and infrared images
together to calculate the human demonstrator’s skeleton information.
The infrared camera embedded in the Kinect device is not sensitive
to the environmental illumination; therefore, the proposed system is
workable under normal illumination. However, the gesture recognition
system is not suitable for extreme environments, i.e. under very intense
or weak lighting conditions.

Occlusion: if occlusions happen to the human demonstrator’s body, i.e., the
demonstrator’s two arms, the system can still successfully capture the
demonstrator’s skeleton information. However, if occlusions happens to
objects or other person’s bodies, the system might not able to generate
generate correct results. In addition, the gesture recognition system
need to use images of upper part of human body; therefore, the ideal
condition is no occlusion exists between the Kinect and the upper part
of the human demonstrator.

Motion noises: the Kinect may fail to detect the hand’s position while the
demonstrator is performing gestures of driving. Such failure are usually
caused by a number of unexpected noises of the hand position. Such
noise has a adverse impact of the gesture classification accuracy. In
order to mitigate such risk, the median filtering algorithm is applied in
this work to simply filter such noises.

2.3. Steering Control Subsystem

The hand gestures for holding a virtual steering wheel is shown in Figure
3. This type of gesture is based on a predefined assumption: the human user
always uses two hands to hold the virtual steering wheel. In order to calculate
the direction information of the steering wheel, the relative positions of the
hands are required. A straight line “L” from the centre of the right hand to
the that of the left hand is used for calculating the steering information. d
denotes the length of L; and α denotes the inclination angle of L against to
the horizontal line.

A radius range of the virtual steering wheel, between R1 and R2, is set to
determine whether a gesture is for steering control. Also, it is very difficult for
humans to keep their two hands horizontal; therefore, a horizontal allowance
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Figure 3: The gestures of holding a virtual steering wheel. d denotes the distance between
human’s two hands; α denotes the inclination angle of L against the horizontal line. R1

and R2 denote the radius range of the virtual steering wheel. θ1 and θ2 denotes the
allowance of the steering wheel.
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Figure 4: The procedure of the steering control.
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of the steering wheel, θ1 and θ2, is also created in this work to eliminate the
effect of such difficulty.

The procedure of the steering control is shown in Figure 4. First, d is
obtained by:

d =
√

(xrighthand − xlefthand)2 + (yrighthand − ylefthand)2, (1)

where (xrighthand, yrighthand) denotes the human user’s right hand coordinates
in the two-dimensional Cartesian plane and similar meaning also applies to
(xlefthand, ylefthand). Then, if d is within the range [R1, R2] (as defined in
Table 1), the inclination angle α of L is calculated for the steering control;
otherwise, the current gesture is not for the steering control. The value of α
is calculated as:

α = arctan
yrighthand − ylefthand
xrighthand − xlefthand

. (2)

If α is within the range [θ1, θ2] ∈ R, the mobile robot will move straight
forward; otherwise, α, θ1, and θ2 are used together to determine the direction
to turn. If α is less than θ1, the robot turns left; if α is larger than θ2, the
robot turns right. The steering angle sa is calculated by:

sa =


(α− θ2)k α > θ2

0 θ1 ≤ α ≤ θ2

(α + θ1)k α < θ1

, (3)

where, k is a proportionality constant number, in this research k is set to
1.2 empirically. To simplify the implementation, values of θ1 and θ2 are
intuitively set to satisfy θ1 = −θ2 where θ2 = 15◦.

Then, sa is delivered to the mobile platform and is converted to exact
control values. Gvien the fact that the mobile platform does not contain
a steering mechanism, the steering control is implemented by adjusting the
velocity difference between the two sides of wheels. Assume that the current
common velocity of the four wheels is vc, the steering angle is sa, and the
turning direction is left; then, the velocities of both sides of the wheels (vright
and vleft) are computed as:{

vleft = vc(1− 2·sa
π

)

vright = vc
. (4)
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If the turning direction is right, the velocities vright and vleft are obtained
by: {

vleft = vc

vright = vc(1 + 2·sa
π

)
. (5)

2.4. Velocity Control Subsystem

The velocity control subsystem involves two variable factors: gear and
accelerator states. In actual automobile gear control (and in left steering
countries as the experiments of this work carried out in such a country), a
human driver changes gears using the driver’s right hand to shift the gears up
and down. Therefore, in this work, only a human user’s right hand gestures
are used to control the mobile robot’s gears. To import this gear shifting
pattern to the mobile robot, a recognition module is built to detect a human
user’s gear shifting movements. The accelerator states are detected using the
according gestures through a simple distance-based classifier. The recognized
gear and accelerator states are finally passed to a fuzzy inference system,
which generates the final commands for robot velocity control.

2.4.1. The CMAC Gesture Recognition Network for Gear Shifting

The gesture recognition module consists of an adaptive CMAC neural
network and a finite state machine (FSM). The CMAC network identifies
the user’s gestures, and the FSM retains previous gear states and produces
the next gear state for the robot. The input of the CMAC network contains
six angles (θ1, θ2, · · · , θ6), which are regarded as the feature values of the
user’s hand gestures. The values of the six angles are calculated using four
salient points in the user’s right hand and spine. The salient points are: wrist,
elbow, shoulder, and middle spine. The feature values change simultaneously
with the user’s right hand movements. To normalize the CMAC network’s
input values and to simplify the calculation of those values, the six features
are presented as cosine values (ϕ1, ϕ2, · · · , ϕ6). Therefore, for each cosine
value, the positions of three salient points are required. Table 2 shows the
combinations of the three key points for each cosine value. The three points
are the angle’s vertex and two points (labelled Point 1 and Point 2 in the
table) at the angle’s two rays.

The value of each feature is calculated as follows:

ϕn =
l21 + l22 − l23

2 · l1l2
, (6)
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Feature Vertex Point 1 Point 2
ϕ1 Elbow Wrist Shoulder
ϕ2 Shoulder Middle spine Elbow
ϕ3 Middle spine Wrist Shoulder
ϕ4 Wrist Middle spine Shoulder
ϕ5 Middle Spine Wrist Elbow
ϕ6 Wrist Shoulder Elbow

Table 2: The feature values of right hand’s gestures.

where, l1 denotes the edge from the vertex to Point 1; l2 represents the edge
from the vertex to Point 2; l3 indicates the edge from Point 1 to Point 2; n
stands for the number of feature values (ϕ1, ϕ2, · · · , ϕ6). The output of the
CMAC network is the three gesture types of gear shifting, each allied with
a shifting command for action “Hold gear”, “Push Gear”, or “Pull Gear”.
The output layer of CMAC network contains two nodes, and the three gear
shifting commands are encoded as (0, 0), (1, 0), and (0, 1).

The training data of the CMAC network is generated by a human demon-
strator who repeats each of the three types of gestures 200 times. Thus, there
are 600 data instances in the training data set in total. The CMAC network
contains six layers, each of which has five blocks, and the network’s learn-
ing rate is set as 0.5. Table 3 summarizes the format of the training data.
After the training process, the trained CMAC network receives real-time
gesture values from human users, and generates the recognized results which
is relayed to the FSM as discussed in the next subsection.

Gesture Categories Gesture Features Expected Outputs
Hold gear ϕ1, · · · , ϕ6 (0,0)
Push gear ϕ1, · · · , ϕ6 (1,0)
Pull gear ϕ1, · · · , ϕ6 (0,1)

Table 3: The Input and Expected Output Formats of the CMAC Neural Network.

2.4.2. Finite State Machine for Gear Shifting

The work flowchart of the FSM applied to retain and change gear states
is shown in Figure 5. The FSM consists of a state set and an action set.
The state set includes four states: “Start”, “Retain Gear, “Shift Gear Up”,
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Figure 5: The work flowchart of the Finite State Machine.

and “Shift Gear Down”; and the action set includes four actions: “Hold”,
“Push”, “Pull”, and “Release”. The actions “Hold”, “Push”, and “Pull” ac-
tions correspond to the CMAC network’s output “Hold gear”, “Push gear”,
and “Pull gear”, respectively. The “Release” action means the shifting gear
movement is completed. The “Hold” action informs the FSM to retain the
current gear state. The “Push” action informs the FSM to shift the current
gear up. The “Pull” action informs the FSM to shift the current gear down.

The range of gear values is set to [−1, 3] ∈ N , where 0 indicates the
neutral gear, positive values denote forward movement gears, and negative
values denote backward gears. When the FSM state is transferred from “Hold
gear” to “Push”, the current gear increases by one gear; when the FSM state
is transferred from “Hold gear” to “Pull”, the current gear state decreases by
one. The entire work procedure is illustrated in the following pseudo-code.

2.4.3. Accelerator Module

An accelerator module is built to use human gestures to control the
robot’s moving velocity with regard to each gear state. The input of the
accelerator module is the distance between the human user’s left hand and
left shoulder denoted as hdistance, which approximates the operation on the
accelerator or the break (as one can only press the accelerator or the break).
In particular, the distance hdistance is calculated as:

hdistance = |zlefthand − zleftshoulder|, (7)

where zlefthand and zleftshoulder are the left hand and left shoulder positions
in the z direction, respectively.

Both the current gear state and distance h representing the control of ac-
celerator or break, are sent to the fuzzy controller module to produce velocity
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Algorithm 1 The state transition procedure of FSM.

1: if “Hold gear” gesture is detected then
2: The state transits from “Start” to “Retain Gear”
3: if “Push gear” gesture is detected then
4: The state transits from “Retain Gear” to “Shift Gear Up”
5: and the current gear state increases by one
6: if “Hold gear” gesture is detected then
7: The state transits to “Retain Gear”
8: else
9: The state transits to “Start”

10: end if
11: else if “Pull gear” gesture is detected then
12: The state transits from “Retain Gear” to “Shift Gear Down”
13: and the current gear state decreases by one
14: if “Hold gear” gesture is detected then
15: The state transits to “Retain Gear”
16: else
17: The state transits to “Start”
18: end if
19: else
20: The state transits to “Start”
21: end if
22: else
23: Retain the current state
24: end if
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commands. To facilitate this, hdistance has to be converted to discretization
values, which is implemented by:

h =
γ · hdistance
|Pneck − Pspine|

+ ς, (8)

where, Pneck and Pspine denote the human user’s neck and spine positions,
respectively; γ is an amplification factor, empirically set to 10; ς is a constant,
empirically set to 1. γ and ς work together to ensure that the range of h
is from 1 to 9. The utilisation of the distance between the neck and spine
ensures that the proposed system can be used by users in different sizes, and
thus guarantees the wide applicability of the system.

2.4.4. Fuzzy Controller Module

A fuzzy controller is applied in this work to control the velocity of the
mobile robot, which takes the current gear state (g) and the distance (h)
between the human user’s left hand and left shoulder as inputs, and produces
the velocity values (s) of the mobile robot. The fuzzy rule base is created
based on domain knowledge. The domains of variables (g, h, s) are discretely
defined as: 

g : [1, 2, 3]

h : [1, 2, 3, 4, 5, 6, 7, 8, 9]

s : [1, 2, 3, 4, 5, 6, 7, 8, 9].

(9)

These variable domains are further fuzzy partitioned in linguistic values as:
g : [P,Z,N ]

h : [PB, PS, ZE,NS,NB]

s : [PB, PM,PS, ZE,NS,NM,NB].

(10)

The membership functions of these linguistic values regarding fuzzy varialbes
g, h, s are listed in Tables 4, 5, and 6, respectively.

g 1 2 3
P 0 0.5 1
Z 0 1 0
N 1 0.5 0

Table 4: The membership functions of linguistic values of variable g.
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h 1 2 3 4 5 6 7 8 9
PB 0 0 0 0 0 0 0 0.5 1
PS 0 0 0 0 0 0.5 1 0.5 0
ZE 0 0 0 0.5 1 0.5 0 0 0
NS 0 0.5 1 0.5 0 0 0 0 0
NB 1 0.5 0 0 0 0 0 0 0

Table 5: The membership functions of linguistic values of variable h.

s 1 2 3 4 5 6 7 8 9
PB 0 0 0 0 0 0 0 0.2 1
PM 0 0 0 0 0 0 0.2 1 0
PS 0 0 0 0 0.2 1 0.2 0 0
ZE 0 0 0 0.2 1 0.2 0 0 0
NS 0 0.2 1 0.2 0 0 0 0 0
NM 0 1 0.2 0 0 0 0 0 0
NB 1 0.2 0 0 0 0 0 0 0

Table 6: The membership functions of linguistic values of variable s.

The fuzzy rules of the fuzzy controller are summarized in Table 7. The
fuzzy controller is implemented using the Mamdani fuzzy inference system [26].
The centroid method is used for the defuzzificaiton calculation, which is ob-

g

s h
PB PS ZE NS NB

P PB PB PM PM PS
Z PM PS ZE NS NM
N NS NM NM NB NB

Table 7: The fuzzy control rules table.

tained by:

s =

∑n
i=1 νiµ(νi)∑n
i=1 µ(νi)

. (11)

where, νi denotes the elements in the output domain; µ(νi) denotes the mem-
bership of element νi; and n denotes the number of activated members (i.e.,
those elements with a membership greater than 0). The utilisation of the
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fuzzy controller not only addresses the difficulty of data capturing as the
rule base is generated using expert knowledge, but also helps in meeting the
requirements of real-tiem control. The output of the fuzzy controller, that is
the mobile robot’s velocity, s, is in the range of [0,10]. Notice that the mobile
platform uses an internal velocity unit (mm/s), s cannot be directly sent to
the mobile platform. Equation 12 is therefore introduced in this work to con-
vert the output from the fuzzy controller to the mobile platform’s velocity
unit.

vcurrent = s · ψ, (12)

where ψ is a proportionality constant. In this work, ψ is empirically set to
100mm/s.

2.5. Human-robot Interaction Interface

A

B

(1) Interaction 
Window

(2) Parameter 
State Window

Hands 
Tracking

(3) Video Monitor 
Window

Figure 6: The human-robot interaction interface. (A) The interface contains a interaction
window, a video monitoring window, and a parameter state window. (B) The hand gesture
for the manipulator’s capturing commend.

The dashboard of the human-computer interface is shown in Figure 6-A,
which consists of three display windows, including the interaction window,
the parameter state window, and the video monitor window. The interaction
window shows the reflection of the human user gestures, which are captured
by the “Kinect 2”. Human users can adjust their gestures by watching the
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mirroring images. Several bright spots in the video monitoring window in-
forms the human users that the hand gesture classification module is working.
In particular, larger green and yellow spots indicate the two wrist skeleton
joints. Figure 6-B demonstrates the predefined gesture used for the object-
capturing command. When the human users intend to let the mobile robot
capture an object, which appears within the robot’s workspace, the human
user straightens the arms and holds the hands together in front of the chest.
If the mobile robot receives this command, the manipulator module is in-
voked to complete an object-capturing movement (refer to [24, 25] for more
details on the implementation on the object-capturing ability).

The parameter state window displays five boxes: the camera platform’s
position, the current gear state g, the accelerator position h, the robot’s
moving velocity s, and the current gesture’s type (Gesture). The Gesture
box shows the current states of human gestures, including: “Move Forward”,
“Move Backward”, “Turn Left”, “Turn Right”, “Control Steering Wheel”,
“Hold”, and “Push and Pull”. The g box indicates the current gear’s value,
which is an integer in the range of [−1, 3] ∈ N , in which 0 is neutral. Positive
integer values represent the three gears for moving forward; −1 represents
the only reverse gear. The h box indicates the distance between the human
user’s left hand and chest, which is in the range of [1, 9] ∈ N . The s box
shows the output of the fuzzy controller for speed control, and the range of
s is [1, 9] ∈ N .

The video monitoring window simply displays the images of the manipu-
lator’s workspace, which are captured by the cameras mounted on the mobile
robot. Although the robot’s vision system contains two cameras, only the
images captured by the right camera are displayed in the video monitoring
window as it generally includes the complete scene for object-capturing tasks.

3. Experimentation and Evaluation

The proposed approach uses human gestures similar to the practical driv-
ing gestures, to control a mobile robot. In particular, an adaptive CMAC
network is applied to classify human gestures of gear shifting; the recogni-
tion of gestures simulate break and accelerator is implemented by a simple
distance-based gesture recognition approach; and a specifically designed con-
trol procedure is used to recognize the steering gestures and produces control
commend for the mobile robot. Both the identified gear shifting and the ac-
celerator/break gestures are fed into a fuzzy controller which produces the
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velocity control command for the mobile robot. The complex parts of the
system implemented in the experiment, including the training of the CMAC
network for gear shifting gesture recognition, the evaluation of the steering
control subsystem, and the evaluation of the velocity control subsystem are
detailed in subsections 3.2, 3.3 and 3.4, respectively. Note that there is also
a hand-eye coordination system is used in this work and thus the experiment
to perform object-capturing tasks, but the details of the implementation of
this system is omitted as this is beyond the main focus of this paper.

In this phase, enough training data must be collected; then, these training
data are used to train the adaptive CMAC network. After the training phase,
the steering control and velocity control subsystems are evaluated by our
experiments. The following subsections specify the training results of the
adaptive CMAC networks, and the evaluations of the steering control and
velocity control modules.

3.1. Mobile Robot Hardware

Camera

J2

Robotic mobile 
platform

Manipulator

J1 J3

J4

J6

J5

Figure 7: The overview of the robot’s hardware system. The robot contains a mobile
platform and a robotic hand-eye coordination system.

The hardware of the experimental robot system used in this experiment is
shown in Figure 7, which consists of two components: a mobile platform and
a robot’s hand-eye coordination system. The mobile platform is a “Pioneer-
3AT” robot, which has four wheels and an embedded control system. The
robot’s steering mechanism is implemented by changing the velocity differ-
ence of the wheels on the two two sides of the mobile platform.
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The hand-eye coordination system consists of a binocular camera system
and a 5-DOFs manipulator. The manipulator is equipped with four motors
J1, J2, J3, and J4. The former three motors jointly drive a gripper to move
in a three-dimensional workspace. The gripper’s opening and closing actions
are driven by the J4 motor. The robot’s vision is implemented by a mo-
torized binocular vision system with a fixed posture. The mobile platform
and robotic hand-eye coordination of this paper is adapted from the work
described in [27, 24].

3.2. Training of CMAC for Gear Shifting Gesture Recognition
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Figure 8: The error convergence curve of the CMAC network for gesture recognition.

The training error curve of the CMAC network over 40 epochs based on
510 training instances is shown in Figure 8. Because of the CMAC’s excellent
classification ability, the training error decreases rapidly during the first 10
epochs. At the 20th epochs, the error has already decreased to 0.0011; the
training error finally terminates at 6.8438e− 04. Extra 90 testing instances
are used to evaluate the CMAC’s performance. The total testing error for
the 90 instances is 5.6204e− 04. The network with such a low error vale can
sufficiently support the gear classification.

3.3. Steering Control Subsystem

The steering control module is implemented using the hand positions of
human users, which is simple but effective and efficient. Randomly take one
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steering control task as an example for the discussion. As shown in Figure 9,
which is a screenshot of the human-robot interaction interface window, the
two larger green and red points indicate the positions of the human user’s left
and right hands respectively, and the recognized gesture is indicated in the
“Gesture” box. At the top-left figure, both hands are at the same horizontal
position; and accordingly, the Gesture box displays “Move Forward” which
represents the correct interpretation of the gesture and thus the success of
the subsystem. In this situation, no steering information is sent to the robot.
At the top-right corner of the figure, the position of the right hand is higher
than that of the left hand; therefore, the Gesture box successfully shows
“Turn Right”. In the bottom picture, the position of the left hand is higher
than that of the right hand; therefore, the Gesture box correctly indicates
“Turn Left”.

A. No turning B. Turn right

C. Turn left

Move Forward

Figure 9: The testing results of the steering gestures. Picture A illustrates the “Move
Forward” gesture; Picture B shows the “Turn Right” gesture; and Picture C indicates the
“Turn Left” gesture.

3.4. Velocity Control Subsystem

The robot’s velocity is determined by the the current gear state, g, and the
accelerator’s position, h, using a fuzzy control algorithm. Therefore, in this
section, the performances of the accelerator and gear control are evaluated
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first, followed by the evaluation of the performance of the overall velocity
control.

3.4.1. Accelerator Module

Figure 10 shows one random case of the accelerator/break control, in-
cluding two human gestures representing the fastest and slowest accelerator
positions. The top-left picture demonstrates the distance between the user’s
hands and chest, because the hands are very close to the chest, that is h is
1. If the current gear state, g is 2, the output, s, of the fuzzy controller is
then 3. The top-right picture illustrates the human-robot interaction inter-
face window. The bottom-left picture shows the largest distance between the
user’s hands and chest, and thus, h is 9. If the current gear state, g, is 2,
the output s of the fuzzy controller is 7. This case clearly demonstrates the
working the proposed accelerator module.

  g = 2, h = 1, s = 3 

  g = 2, h = 9, s = 7 

h

h

A. Low speed

B. High speed

Move Forward

Move Forward

Figure 10: Demonstration of the experimental results of the accelerator control. The first
row shows the gesture of low speed and the second row shows the gesture of high speed.

3.4.2. Gear Control Module

The gear control module integrates the CMAC neural network and the
finite state machine. The performance of the CMAC has been discussed in
Section 3.2; therefore, this section only evaluates the final recognized results

22



Pull

Figure 11: Demonstration of the experimental results of the gear control gestures.

of the sampled gestures. Figure 11 shows the experimental results of the gear
control function. The figure shows three gestures, which relate to the three
gear operation commands. The top picture shows the “Hold” command, the
bottom-left shows the “Push” command, and the bottom-right shows the
“Pull” command. The human’s right arm is highlighted by a yellow box.

The human’s right arm is horizontal and the hand faces downwards shown
in the top picture of Figure 11,. This gesture informs the FSM to retain the
current gear. For example, if the current gear state is 0, the FSM will retain
this gear state. In the bottom-left of the picture, the human’s right arm is
straight and the hand is close to the human’s leg. This gesture informs the
FSM to change the state from “Retain the Gear” to “Shift Gear Up”. For
example, if the current gear state is 0, the gear state will be increased to
1. The right arm in the bottom-right picture is bent upwards. This gesture
informs the FSM to change the state from “Retain the Gear” to “Shift Gear
Down”. For example, if the current gear state is 0, the gear state will be
decreased to −1, which directs the robot to reverse back. The case discussed
herein as shown in Figure 11 shows that the FSM and CMAC work together
successfully supporting the gear shifting function for the mobile robot.

3.4.3. The Overall Velocity Control

Figure 12 shows the output of the fuzzy controller with different inputs.
The three curves indicate the velocities with the three gear states against the
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accelerator’s values. The velocity curve of Gear 1 is presented as the solid
line in the figure. The highest and lowest velocities of Gear 1 are 3 and 1,
respectively. The velocity curve of Gear 2 is presented as a dot-dash line.
The highest and lowest velocities of Gear 2 are 6 and 3, respectively. The
velocity curve of Gear 3 is presented as a dash line, and the velocity increases
from 7 to 9 in this line.
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Figure 12: The result of the robot’s velocity generated by the fuzzy controller. The three
curves indicate the velocities with regard to the three gear states against the accelerator’s
values.

3.5. The Overall Manoeuvring

The overall manoeuvring performance (combining the velocity control
and steering control modules) of the mobile robot is shown in Figure 13.
The first two pictures show the robot’s moving trajectories with different
velocities. The third picture shows the robot’s trajectories when turns were
implied. These pictures were taken by the multiple exposure mode of the
camera, which captured the moving object’s images and integrated the cap-
tured images into one picture. Denser images of the moving object in such
a picture indicate slower moving velocity. Therefore, the moving velocity in
the first picture is slower than that in the second. The result of the different
number of images included in the pictures taken in a fixed time span proves
the previous velocity setup, in which s takes 2 for the first picture and s
takes 4 for the second one.

The third row of Figure 13 shows a complete procedure where the mobile
robot avoids an obstacle and moves towards a target object. This picture
was also taken by the multiple exposure mode. The obstacle was an orange
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wood brick, and the target was a yellow ping-pong ball. In this experiment,
the human successfully controlled the robot to turn right to avoid obstacle
using hand gestures, and then turn left to reach the target. The moving time
of the test was around ten seconds. The moving trajectory proves that the
mobile robot is able to perform prompt turning actions.

 Speed = 2

 Speed = 4

Turning

Figure 13: Demonstration of the result of the vehicle’s turning. The first two rows of
pictures show the robot’s moving trajectories with different velocities. The first row of
picture contains 10 images of the moving robot, and the second row of picture contains 6
images of the moving robot. The third row of picture shows the robot’s turning trajectories.

3.6. Discussions and Comparisons

The proposed approach has demonstrated its effectiveness in controlling
the mobile robot to reach target objects for object-capturing tasks through
the experiments. This approach differs from the existing work in that the
proposed mobile robot uses natural human gestures similar to a human’s
actual driving gestures. The complex gesture recognition tasks have been
implemented by employing a CMAC neural network with successful experi-
mental results generated. To further evaluate the strengths of this research, a

25



comparison of the proposed system with the typical mobile robot approaches
is summarized in Table 8. In particular, the comparison is made from three
important aspects: 1) human-robot interaction command type, 2) velocity
control of mobile robot, and 3) control system’s implementation.

First, many existing approaches [15, 17, 18, 19] prefer to apply qualitative
commands to control mobile robots. These qualitative commands directly
inform robots to move forwards or backwards, and turn left or right. How-
ever, the propose approach herein applies quantitative commands to control
the robot, using detailed steering and velocity values to control the robot.
Thanks to this, the proposed mobile robot in this work produces smooth
movement trajectories and delivers fast response of commands. Second,
few existing conventional approaches support multiple velocities for mobile
robots. In contrast, the proposed work applies practical driving gestures for
normal vehicles to control the mobile robot. Thus, the robot’s velocities are
determined by the current gear state and accelerator state. Consequently, the
users can conveniently and flexibly control the velocity and direction of the
mobile robot. Third, the proposed approach adopts the CMAC network and
a fuzzy controller to implement the overall velocity control, which benefits
both the self-adaption and learning abilities of the CMAC, and the running
efficiency of fuzzy inference systems in implementing real-time control. As
a result, the proposed system is able to generate new gesture commands, if
required, by sampling new human gestures. In contrast, in order to inte-
grate new commands, other robot systems usually require extra design and
development stage of complex mathematical modelling [3, 4, 1, 28].

4. Conclusion

This paper presented an approach which uses human gestures to control
a mobile robot with a manipulator for object-capturing tasks. In particular,
the most complex part of the method, that is the quantitative velocity control
is achieved by applying an adaptive CMAC network, a finite state machine,
and a fuzzy controller. The experiments demonstrate that human users can
successfully control the mobile robot to move it at various speeds to avoid
obstacles and reach the target objects. These experiments also illustrate the
key advantage of this research over the existing work in that the proposed
approach greatly simplifies the complexity of mobile robot control. Therefore,
the proposed approach improves the robot’s autonomous and collaborative
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Options: Existing Meth-
ods:

The Proposed
Method:

Human-robot in-
teraction command
type

Qualitative
commands e.g.
[15, 17, 18, 19]

Quantitatively com-
mands, such as
steering degrees and
velocity values;

Velocity control of
mobile robot

Few methods di-
rectly support

Velocity is defined
by the gear chang-
ing and accelerator
modules;

Implementation of
control system

Implemented by
mathematical mod-
elling methods
[3, 4, 1, 28]

A learning ability is
established in this
method, so as to
handle new gesture
commands.

Table 8: The comparison table

working ability to perform in complex environments which greatly widen the
applicability of the mobile robots.

The proposed system can be improved in multiple ways. Firstly, more
natural body information, such as EMG or EEG signals, can be used as
the robot system’s input to control mobile robots [29, 30, 31]. Also, in the
present work, only static cameras are used for the robotic vision. This can be
enhanced by applying a motorized binocular vision system, which will enable
the mobile robot to detect targets in a much larger working area. In addition,
the current gesture recognition system cannot handle the occlusion problem.
Thus it is desirable to integrate the occlusion elimination algorithms into the
system.
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