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ABSTRACT	
	
Autonomous	Weapon	Systems	(AWS)	are	defined	as	robotic	weapons	that	have	the	ability	to	
sense	and	act	unilaterally	depending	on	how	they	are	programmed.	Such	human-out-of-the-loop	
platforms	will	be	capable	of	selecting	targets	and	delivering	lethality	without	any	human	
interaction.	This	weapon	technology	may	still	be	in	its	infancy,	but	both	semi-autonomous	and	
other	pre-cursor	systems	are	already	in	service.	There	are	several	drivers	to	a	move	from	merely	
automatic	weapons	to	fully	autonomous	weapons	which	are	able	to	engage	a	target	based	solely	
upon	algorithm-based	decision-making.	This	requires	material	step-change	in	both	hardware	
and	software	and,	once	deployed,	posits	a	significant	change	in	how	humans	wage	war.	But	
complex	technical	difficulties	must	first	be	overcome	if	this	new	independent	and	self-learning	
weapon	category	can	legally	be	deployed	on	the	battlefield.	AWS	also	pose	basic	statutory,	moral	
and	ethical	challenges.		
	

This	thesis	identifies	the	manifest	complexity	involved	in	fielding	a	weapon	that	can	
operate	without	human	oversight	while	still	retaining	value	as	a	battlefield	asset.	Its	key	
research	question	therefore	concerns	the	practical	and	technical	feasibility	of	removing	
supervision	from	lethal	engagements.	The	subject’s	importance	is	that	several	well-tried	
concepts	that	have	long	comprised	battlecraft	may	no	longer	be	fit	for	purpose.	In	particular,	
legal	and	other	obstacles	challenge	such	weapons	remaining	compliant	under	Laws	of	Armed	
Conflict.	Technical	challenges,	moreover,	include	the	setting	of	weapon	values	and	goals,	the	
anchoring	of	the	weapon’s	internal	representations	as	well	as	management	of	its	utility	
functions,	its	learning	functions	and	other	key	operational	routines.	While	the	recent	
development	pace	in	these	technologies	may	appear	extraordinary,	fundamental	fault	lines	
endure.	The	thesis	also	notes	the	inter-dependent	and	highly	coupled	nature	of	the	routines	that	
are	envisaged	for	AWS	operation,	in	particular	ramifications	arising	from	its	machine	learning	
spine,	in	order	to	demonstrate	how	detrimental	are	these	compromises	to	AWS	deployment	
models.	In	highlighting	AWS	deployment	challenges,	the	analysis	draws	on	broad	primary	and	
secondary	sources	to	conclude	that	Meaningful	Human	Control	(MHC)	should	be	a	statutory	
requirement	in	all	violent	engagements.	
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1. Introduction	

Machines	have	long	served	as	instruments	of	war	but	it	has	traditionally	been	the	relevant	
commander	who	has	decided	how	such	weapons	are	employed.		Evolution	of	technology,	
however,	has	the	potential	to	change	that	reality	and	the	purpose	of	this	thesis	is	to	analyse	the	
widespread	implications	of	this	development.	The	work	therefore	considers	challenges	and	
consequences	arising	from	the	deployment1	of	Autonomous	Weapon	Systems	(AWS)	that	may	be	
capable	of	executing	lethal	engagements	without	human	oversight.	For	the	purposes	of	this	
introduction,	an	autonomous	weapon	is	an	armament	in	which	the	identification	and	selection	of	
human	targets	and	the	initiation	of	violent	force	are	carried	out	under	machine	control.	Lethal	
capacities	are	thus	delegated	by	the	weapon	system	to	its	sub-components	in	ways	that	preclude	
deliberative	and	accountable	human	intervention.2	The	AWS	can	be	described	schematically	as	a	
weapon	with	sensors,	algorithms	and	effectors	that	can	include	stationery	as	well	as	mobile	
robotic	components.3	Data	collected	by	its	sensors	is	processed	computationally	to	enable	
independent	detection,	tracking	and	classification	of	objects.	Target	recognition	can	then	be	
achieved	by	comparing	this	sensed	data	remotely	or,	more	likely	in	a	communications-denied	
environment,	with	target	types	contained	in	that	weapon’s	database	or	perception	library.4	
Finally,	the	system	includes	a	weapon	to	engage	selected	targets.5	
	

																																																								
1	These	timeframes	are	broadly	adopted	as	at	2019	in	considering	AWS	deployment.	Such	phasing	clearly	moves	year	
to	year	as	evidenced	by	UNIDIR,	‘Framing	Discussion	on	the	Weaponization	of	Increasingly	Autonomous	
Technologies’,	United	Nations	Convention	for	Certain	Conventional	Weapons,	(2014),	generally	
<http://www.unidir.ch/files/publications/pdfs/framing-discussions-on-the-weaponization-of-increasingly-
autonomous-technologies-en-606.pdf>.	The	definition	of	‘near-term’,	however,	is	not	set	in	stone.	See:	Gabi	Siboni	and	
Yoni	Eshpar,	‘Dilemmas	in	the	use	of	autonomous	weapons’,	Strategic	Assessment,	The	Institute	for	National	Security	
Studies,	14,	4	(2014)	<http://www.inss.org.il/wp-
content/uploads/systemfiles/Dilemmas%20in%20the%20Use%20of%20Autonomous%20Weapons.pdf>.	Timelines	
are	also	covered	by	the	Brookings	Institute	in	its	2009	discussion	with	PW	Singer	(‘Wired	for	War:	The	Robotics	
Revolution	and	Conflict	in	the	Twenty-first	Century’)	and	General	James	Mattis,	(2012),	generally	
<https://www.brookings.edu/wp-content/uploads/2012/04/20090126_wired.pdf>	and	by	Chapter	2	(Context),	
specifically:	2.4	(‘Defence	planning’).	For	the	purposes	of	this	thesis,	near-term	relates	to	the	period	up	to	2025	and	
medium-term	relates	to	2025-2040.	
2	Lucy	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	
lawful	autonomy’,	in	R.	Geiss,	‘Lethal	Autonomous	Weapons	Systems:	Technology,	Definition,	Ethics,	Law	&	
Security’,	German	Federal	Foreign	Office	(Germany:	Berlin,	11	April	2017),	pp.	273-283.	
3	This	thesis	focuses	on	mobile	rather	than	static	weapon	platforms.	In	considering	relevant	models	for	the	
deployment	of	compliant	AWS,	Chapter	4	(Deployment)	reviews	the	close	correlation	between	a	machine’s	ability	to	
change	its	position	and	that	machine’s	non-defensive	weapon	tasking	in	what	is	a	wide	scale	of	likely	weapon	
configuration	and	assignment.	It	is	this	continuum	that	makes	precision	problematic	in	AWS	definition	except	in	
terms	of	that	platform’s	ability	to	remain	compliant	once	human	supervision	has	been	removed.	See:	US	Department	
of	Defense,	Summer	Study	on	Autonomy,	11,	(Defense	Science	Board,	2016)	
<https://www.hsdl.org/?abstract&did=794641>	[accessed	13	February	2018].	The	DoD’s	document	conceptualizes	
technologies	that	are	key	to	the	development	of	autonomous	systems	in	terms	of	‘sense,	think/decide,	act,	team’.	
4	ICRC,	‘Autonomous	weapons	systems:	Technical,	Military,	Legal	and	Humanitarian	aspects’,	Experts	meeting,	CCW,	64	
(Geneva,	Switzerland,	2014)	<https://www.icrc.org/en/document/report-icrc-meeting-autonomous-weapon-
systems-26-28-march-2014>	[accessed	17	November	2017].	
5	This	definition	accords	with	that	adopted	by	UN	Special	Rapporteur	on	Extrajudicial,	Summary	or	Arbitrary	
Executions.	See:	Christof	Heyns,	‘UN	Document	A/HRC/23/47,	Report	of	the	Special	Rapporteur	on	Extrajudicial,	
Summary	or	Arbitrary	Executions,	United	Nations’	(Human	Rights	Council,	23rd	Session,	Agenda	item	3,	27	May	2013)	
<https://www.ohchr.org/Documents/HRBodies/HRCouncil/RegularSession/Session23/A.HRC.23.47.Add.5_ENG.pdf
>.	AWS	is	here	defined	as	a	‘robotic	weapon	system	that	once	activated,	can	select	and	engage	targets	without	further	
intervention	by	a	human	operator’.	
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Why	is	this	subject	so	important?	AWS	posit	becoming	the	‘third	revolution	in	warfare’.6	Once	
developed,	autonomous	weapons	‘will	permit	armed	conflict	to	be	fought	at	a	disruptive	scale	and	
to	a	super-fast	timetable’.7		A	lethal	engagement	that	is	undertaken	by	an	unsupervised	weapon	is	
also	the	manifestation	of	handing	over	the	decision	to	kill	to	a	computer.	The	past	two	decades	
have	seen	a	broad	range	of	technological	advances	that	have	now	made	this	a	practicable	
possibility	and,	in	so	doing,	AWS	deployment	might	render	obsolete	several	precepts	of	current	
battlecraft.8	The	removal	of	meaningful	human	control	from	targeting	sequences	also	questions	
how	best	to	frame	battlefield	command,	battlefield	control	and	leadership	which	may	abruptly	no	
longer	be	fit	for	purpose.	Indeed,	this	thesis’	context	is	that	current	debate	on	AWS	is	heavily	
influenced	by	the	apparent	certainty	of	AWS’	deployment.9	As	also	noted	by	Kalmanovitz,	AWS’	
deployment	contributes	‘to	the	already	stark	asymmetries	of	so-called	riskless	warfare’	in	which	
risks	are	increasingly	passed	across	to	civilian	populations	in	an	opponent’s	territory.10	The	
matter’s	importance	is	also	heightened	by	the	absence	of	any	international	agency	that	is	
authorised	to	test	such	weapons,	to	control	AWS	risks	and	ensure	global	protection	of	civilian	
interests.	
	

Several	barriers,	however,	exist	to	the	removal	of	supervision	from	weapon	systems.	A	key	
purpose	of	this	thesis	is	to	highlight	sources	of	uncertainty	that	might	impact	upon	the	decision	to	
remove	supervision	in	such	weapons.	This	requires	a	wide	set	of	tests	in	order	to	resolve	four	
uncertainties.	How	might	this	new	technology	change	current	combat	methods?	After	all,	‘Fire	and	
forget’	weaponry	(and	the	issues	that	they	raise)	are	not	new.11	Second,	is	it	possible	to	shoehorn	
these	technology	developments	into	existing	engagement	rules	in	a	manner	that	still	safeguards	
compliance	with	legal	frameworks	already	in	place?12	As	noted	by	Kalmazovitz,	international	
criminal	law	holds	that	commanders	who	fail	to	avoid	non-negligible	risks	to	civilians	and	other	
protected	persons	can	themselves	be	liable	for	negligence	or	recklessness.13	Third,	what	
weighting	should	be	applied	in	this	review	to	contextual	components	that	are	a	part	of	the	
battlefield’s	processes	such	as	command,	political	and	social	vectors?	Finally	to	this	point,	defence	
planning	that	considers	the	removal	of	human	supervision	in	lethal	engagement	must	involve	
more	than	usual	guesswork.	It	is	not	yet	clear	how	such	weaponry	will	be	deployed	on	the	

																																																								
6 See,	generally:	BBC,	‘Killer	Robots:	Experts	warn	of	Third	Revolution	in	Warfare’,	BBC	website,	(2017)	
<http://www.bbc.co.uk/news/technology-40995835>	[accessed	12	November	2017].	
7 BBC,	‘Killer	Robots:	Experts	warn	of	Third	Revolution	in	Warfare’,	generally.	
8	This	conditional	is	discussed	in	detail	in	Chapter	3	(Drivers)	and	Chapter	4	(Deployment).		
9	Kenneth	Anderson	and	others,	‘Adapting	the	Law	of	Armed	Conflict	to	Autonomous	Weapon	Systems’,	International	
Law	Studies,	90,	386,	(US:	Stockton	Center	for	the	Study	of	International	Law,	2014), 389-390	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a613290.pdf>.	
10 Pablo	Kalmanovitz,	Judgement,	liability	and	the	risks	of	riskless	warfare,	Autonomous	Weapons	Systems:	law,	ethics,	
policy,	(UK:	Cambridge	University	Press,	2016),	p.	158.	
11	Economist	Magazine,	‘Trying	to	Restrain	the	Robots’,	para	3	of	29,	(19	January	2019)	
<https://www.economist.com/briefing/2019/01/19/autonomous-weapons-and-the-new-laws-of-war>	[accessed	2	
February	2019].	
	
12	Detailed	analysis	of	legal,	ethical	and	operational	obstacles	to	the	removal	of	human	oversight	in	lethal	
engagements	is	undertaken	in	Chapter	5	(Obstacles).		
13 Kalmanovitz,	pp.	156-157.	Various	commentators	including	Neha	Jain	and	Geoffrey	Corn	extend	this	form	of	liability	
(‘role	responsibility’)	to	the	use	of	AWS.	The	issue	is	discussed	in	Chapters	4	(Deployment).	Chapter	5	(Obstacles)	also	
discusses	definitions	and	responsibilities	of	commander,	politician	and	the	procurement	executive	(see	below:	AWS’	
Delivery	Cohort).	 



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 11 | P a g e  

 
 

battlefield.	Similarly,	it	is	not	clear	what	further	technical	advances	await	nor	what	priority	and	
resources	will	be	made	available	to	AWS	deployment.14	Faced	with	the	deployment	of	
independent	weapons,	defence	planning	becomes	considerably	more	challenging	given	the	
speculation	that	must	be	made	concerning	AWS’	shape	and	capability.	It	is	therefore	unavoidable	
to	make	uncomfortable	assumptions	about	what	is	likely	and	what	is	unlikely	in	this	field.	
Arguments	around	whether	weapon	independence	technically	constitutes	a	revolution	in	military	
affairs	(RMA)	are	thus	prompted	by	the	foundational,	irreversible	changes	in	battlefield	processes	
posited	by	autonomous	processes.	This	relationship,	moreover,	is	complicated	by	the	cumulative	
effects	of	such	challenges	and,	often,	by	those	challenges’	unanticipated	secondary	effects.	An	
appeal	of	unmanned	assets	is	also	their	promise	of	generating	mass	but	this	too	has	unexpected	
behavioural	consequences.	It	will	drive	up	the	ratio	of	AI-driven	systems	(both	physical	and	
virtual)	to	soldiers	in	uniform,	leading	over	time	to	‘proportionately	fewer	points	of	consciousness	
within	the	[whole]	system’	and,		consequently,	to	an	increasingly	untested	framework	for	
battlefield	oversight.15	In	this	vein,	it	is	the	independent	behaviour	of	these	machines	(in	what,	
notes	Barrons,	will	be	technologically	complex	and	uncooperative	weapon	systems)	that	must	
cumulatively	impact	battlecraft	efficiences,	subsequent	‘allocation	of	human	bandwidth’	as	well	as	
the	ability	of	AWS’	Delivery	Cohort’s	to	deliver	on	its	tasks.16	AWS	deployment	will	at	the	very	
least	require	‘frictionful	adjustment’17	across	working	practices,	skills,	training	and	command.		
	

In	December	2016,	the	Fifth	Review	Conference	of	the	Convention	of	Certain	Conventional	
Weapons	(CCW)18	agreed	to	formalise	discussions	that	first	began	in	2013	and	‘explore	and	agree	
on	possible	recommendations	on	options	related	to	emerging	technologies	in	the	area	of	LAWS,	in	
the	context	of	the	objectives	and	purposes	of	the	Convention,	taking	into	account	all	proposals	–	
past,	present	and	future’.19	This	was	a	breakthrough	development.	The	first	meeting	of	the	CCW	

																																																								
14	MC	Haas,	‘Autonomous	Weapon	Systems:	The	Military’s	smartest	toys?’	The	National	Interest,	(2014)	
<http://nationalinterest.org/feature/autonomous-weapon-systems-the-militarys-smartest-toys-11708>	[accessed	13	
July	17].	
15	Ministry	of	Defence,	‘Human-Machine	Teaming’,	UK	MOD,	Joint	Concept	Note	1/18,	(2018),	p.	44	
<https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/709359/201
80517-concepts_uk_human_machine_teaming_jcn_1_18.pdf>.	
16	General	Sir	Richard	Barrons,	Commander	Joint	Forces	Command	(Retd.)	in	conversation	with	the	author,	23	June	
2016.	For	the	purposes	of	this	thesis,	the	term	Delivery	Cohort	is	used	as	a	device	to	convey	the	parties	involved	in	
delivering	the	deployment	of	AWS	and	will	include,	inter	alia,	the	following	taskings:	neurophysiologists	to	coordinate	
AWS	networks,	psychologists	to	coordinate	learning	and	cognition,	biologists	for	adaption	strategies,	engineers	for	
control	routines,	logisticians,	roboticists,	electrical	specialists,	behaviorists,	politicians,	NGOs,	sociologists,	lawyers,	
company	directors,	weaponists,	military	tacticians,	manufacturers,	professionals	involved	in	miniaturization,	
simulation,	configuration,	coding,	power	supply	and	modularity,	specialists	in	sensors,	in	distributed	and	
decentralized	routines,	ethicists,	specialists	in	tooling	and	calibration.	
17	Ministry	of	Defence,	‘Human-Machine	Teaming’,	generally.		
18	The	CCW	is	the	UN-body	that	is	tasked	to	‘prohibit	or	restrict	further	the	use	of	certain	conventional	weapons	in	
order	to	promote	disarmament’	and	the	‘codification	and	progressive	development	of	the	rules	of	international	law	
applicable	in	armed	conflict’.	See:	‘Preamble,	1980	Convention	on	Prohibitions	on	the	Use	of	Certain	Conventional	
Weapons	Which	May	Be	Deemed	Excessively	Injurious	or	to	have	Indiscriminate	Effects’,	United	Nations	Treaty	
Collections,	22495,	(2	December	1983)	<https://treaties.un.org/doc/Treaties/1983/12/19831202%2001-
19%20AM/XXVI-2-revised.pdf>.	
19	Mary	Wareham,	Director,	HRW	Arms	Division,	in	conversation	with	the	author,	December	2018.	The	wording	is	
taken	from	the	‘Final	Report	of	the	2016	Informal	Meeting	of	Experts	on	Lethal	Autonomous	Weapons	Systems,	
Genev,	UN	Documents	Publishing,	(10	June	2016)	
<https://www.unog.ch/80256EDD006B8954/(httpAssets)/DDC13B243BA863E6C1257FDB00380A88/$file/Report
LAWS_2016_AdvancedVersion.pdf>.	Convention	here	relates	to	the	Geneva	Convention.	A	detailed	analysis	on	
International	Humanitarian	Law	(IHL),	International	Human	Rights	Law	(IHRL),	the	tipping	point	between	these	two	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 12 | P a g e  

 
 

Group	of	Governmental	Experts	(GGE)	in	November	2017	took	place	after	three	informal	CCW	
meetings	during	2014-2016	and	underlines	the	global	importance	now	attached	to	limiting	the	
introduction	of	what	may	be	a	materially	different	means	of	applying	force.	The	context,	after	all,	
is	that	signatories	to	the	CCW	generally	agree	that	‘any	use	of	force,	including	through	[AWS],	
must	strictly	comply	with	international	law	and,	in	times	of	armed	conflict,	with	IHL’.20		

 Thesis historiography  
	
The	structure	of	this	thesis	is	driven	by	available	historiography.	The	subject	has	therefore	been	
approached	using	several	broad	sources	of	written	research.21	First,	the	premise	of	removing	
supervision	from	lethal	engagements	is	examined	through	the	prism	of	fundamental	research	that	
has	been	published	on	the	nuts-and-bolts	architecture	of	artificial	intelligence	(AI).	What	might	
theoretically	be	possible	in	the	broad	space	of	machine	robotics	and	how	readily	might	this	
translate	to	unsupervised	weapons?	An	assumption	here	is	borrowed	from	Hammond	that	the	
core	methodology	of	AI	has	not	changed	materially	over	the	past	quarter	century.22	As	also	noted	
by	Guszcza	and	Maddirala,	AI	agents	are,	in	several	ways,	similar	today	to	years’	past.23	This	may	
not	appear	to	be	an	intuitive	assumption.	Hammond	therefore	highlights	that	recent24	
improvements	in	AI,	albeit	narrow	AI25,	have	occurred	not	because	any	methodological	
discontinuity	has	surfaced	to	disrupt	practices	but	because	‘necessary	computational	capacity,	
raw	volumes	of	data,	and	processing	speed	[is]	now	available	so	that	the	technology	can	shine’.26	
This	assumption	requires	further	analysis	as	it	forms	the	basis	of	this	thesis’	technical	review.	
While	the	central	premise	of	network	training	has	existed	for	more	than	thirty	years,	early	AI	
efforts	were	based	on	a	relatively	tiny	universe	of	just	a	few	thousand	examples	being	applied	to	
poorly	differentiated	problem	sets.	Today	this	same	technique	remains	the	default	‘but	[is]	now	
applied	to	hundreds	of	billions	of	examples	and	run	on	machines	with	specialized	chips	that	allow	
them	to	learn	from	these	examples	much	faster’.27	Exactly	the	same	dynamic	holds	true,	notes	

																																																								
frameworks	and	their	role	in	the	Law	of	Armed	Combat	(LOAC)	can	be	found	in	Chapter	5	(Obstacles),	specifically	5.1	
(‘Geneva	Convention	and	Laws	of	Armed	Combat’).	
20	United	Nations	Office	at	Geneva,	‘Possible	challenges	two	international	humanitarian	law	due	to	increasing	degrees	
of	autonomy’,	(2016),	NGO	Article	36	website,	<http://www.article36.org/wp-content/uploads/2015/04/Article-36-
remarks-CCW-150415-IHL.pdf>.	
21	A	writing	methodology	for	this	thesis	is	included	later	in	this	chapter.	See,	generally,	section	1.7	(‘Statement	of	
methods’)	and	subsequent	sections	setting	out	the	thesis’	broad	treatment	of	data,	sources	and	argument	formulation.		
	
22	K	Hammond,	‘Why	Artificial	Intelligence	is	succeeding:	Then	and	Now’,	Computerworld,	Artificial	intelligence	Today	
and	Tomorrow,	(2015),	para.	4	<http://www.computerworld.com/article/2982482/emerging-technology/why-
artificial-intelligence-is-succeeding-then-and-now.html>	[accessed	1	March	2017].	
23	J	Guszcza	and	N	Maddirala,	‘Minds	and	Machines:	The	Art	of	Forecasting	in	the	Age	of	Artificial	Intelligence’,	Deloitte	
University	Press,	Deloitte	Review,	19	(2016),	paras.	3-4	of	27	<https://dupress.deloitte.com/dup-us-en/deloitte-
review/issue-19/art-of-forecasting-human-in-the-loop-machine-learning.html>	[accessed	2	November	2016].	
24	Likely	timelines	for	these	developments	are	discussed	throughout	this	thesis.	As	per	footnote	1	to	this	chapter,	
near-term	relates	to	the	period	up	to	2025	and	medium-term	relates	to	2025-2040.	Recent	here	relates	to	
developments	witnessed	over	the	preceding	decade.	
25	AI	relates	here	to	non-sentient	computer	sequences	that	are	focused	on	one	narrow	task	or,	perhaps,	the	
combination	of	several	such	narrow	techniques	that	are	enhanced	by	access	to	massive	data	sets.	Discussion	on	the	
important	distinction	between	AI	and	AGI	(Artificial	General	Intelligence)	is	set	out	in	Chapter	6	(Wetware),	
specifically:	6.1	(‘Software	versus	intelligence’).		
26	K	Hammond,	para.	9.	
27	Ibid.	
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Knight,	for	how	an	autonomous	weapon	might	operate.28	It	was	previously	impossible.	Today	it	
‘might	now	be	feasible’29	leading	to	what	Sabin	refers	to	as	a	‘revolution	of	rising	expectations’.30	
The	point	is	that	it	is	not	just	that	algorithms	have	been	improved;	the	disruption	has	been	the	
massive	datasets	and	fast	chipsets	available	to	them	that	now	allow	extraction	of	meaningful	
signal	from	often-noisy	data.31		
	

Conflicting	context,	however,	suggests	instead	that	AI	has	had	a	chequered	past	‘full	of	hype	
and	disappointment’.32	The	field	has	witnessed	bubbles	involving	expert	systems,	neural	
networks,	hard	and	fuzzy	logic	models	as	well	as	a	dependence	upon	(and	then	subsequent	
relegation	of)	complex	statistics	in	order	to	enable	machine	reasoning.	This	thesis’	technical	
analysis	therefore	relies	on	a	second,	broad	and	quite	separate	historiography	of	research	
discussing	current	best	practice	and	developments	in	AI.	These	sources	are	global.	They	come	
from	diverse	academic	institutions,	defence	establishments,	practitioners	and	third	sector	
parties.33	This	second	historiography	cohort	is,	furthermore,	typically	less	than	five	years	old	and	
reflects	current	empirical	work	rather	than	what	is	theoretically	possible	in	the	science	as	it	might	
relate	to	AWS	deployment.	A	further	purpose	of	this	thesis	then	becomes	the	intermediation	of	
this	second	body	of	work	in	order	to	generate	inferences	that	are	relevant	to	the	deployment	of	
autonomous	weaponry.	Examination	of	AI	capabilities	as	they	relate	to	this	battlefield	context	is	
otherwise	absent,	as	negligible	historiography	currently	exists	for	this	exercise.	While	research	
may	be	available	on	the	matter’s	primary	arguments,	this	thesis	seeks	to	knit	directly	these	
fundamentals	with	specific	issues	that	concern	the	removal	of	human	supervision	over	battlefield	
weapons.	A	set	of	examples	provides	context.	An	unsupervised	weapon	clearly	requires	intricate	
routines	to	administer	its	onboard	goals	and	values.	It	will	require	dynamically	managed	utility	
functions,	the	set	of	mathematical	routines	ranking	alternative	course	of	action	according	to	their	
worth	to	the	weapon	system	and	its	programming.34	It	will	also	require	an	anchoring	mechanism	
to	ensure	the	platform’s	actions	do	not	stray	inappropriately	from	its	intended	purpose.	These	
																																																								
28	W	Knight,	‘The	US	Military	wants	its	Autonomous	Machines	to	explain	themselves’,	MIT	Technology	Review,	(2017)	
<https://www.technologyreview.com/s/603795/the-us-military-wants-its-autonomous-machines-to-explain-
themselves/>	[accessed	2	July	2017].	
29	A	Jhingran,	‘Obsessing	over	Artificial	Intelligence	is	the	wrong	way	to	think	about	the	future’,	Wired	Magazine,	
Business,	(2016)	<https://www.wired.com/2016/01/forget-ai-the-human-friendly-future-of-computing-is-already-
here/>	[accessed	29	June	2017].	
30	Professor	Philip	Sabin,	Professor	of	Strategic	Studies	at	KCL,	in	conversation	with	the	author,	29	June	2017.		
31	The	issue	of	data	efficacy	is	a	key	theme	in	assessing	compliant	AWS	deployment	and	is	covered	in	Chapter	7	
(Software,	specifically	Sources	of	technical	debt)	and	Chapter	9	(Hardware),	specifically:	9.1	(‘Hardware	and	sensor	
fusion	issues	for	AWS’).		
32	Rodney	Brooks,	‘The	Seven	Deadly	Sins	of		AI	Prediction’,	MIT	Technology	Review’,	(6	October	2017),	paras.	3-4	and	
generally	<https://www.technologyreview.com/s/609048/the-seven-deadly-sins-of-ai-predictions/>	[accessed	12	
August	2018].	
	
33	The	thesis’	bibliography	is	thematically	divided	into	five	discrete	sources:	ethical,	historical,	legal,	operational	and	
technical.	A	comprehensive	historiography	of	on-line	sources	then	comprises	a	sixth	section	to	the	bibliography.		For	
detail	on	this	thesis'	referencing,	see	section	1.7	('Statement	of	methods').	
34	For	a	discussion	on	these	topics,	see:	Chapter	8	(Software),	specifically:	8.3	(‘Utility	functions’)	and	8.5	(‘Anchoring	
and	Goal	setting	issues’).	More	generally,	Chapter	6	(Wetware)	isolates	complexities	arising	from	likely	fundamental	
architectures	in	autonomous	weapons.	Chapter	8	(Software)	identifies	specific	fault	lines	that	might	result	from	
specific	operational	routines	likely	to	underpin	weapons-directing	artificial	intelligence.	Chapter	9	(Hardware)	then	
highlights	difficulties	stemming	from	the	physical	properties	of	such	systems.	The	point	of	these	three	chapters	is	to	
demonstrate	the	cumulative	technical	complexity	that	underlies	AWS	deployment.	Taken	together,	the	thesis’	review	
of	coding	and	architecture	pinpoints	discrepancies	that	exist	between	capabilities	that	are	feasible	and	tasks	that	are	
essential	to	these	platforms’	function.	
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capabilities	may	have	robust	theoretical	foundations	but	involve	magnitudes	of	complexity	if	
actually	to	be	deployed	in	a	battlefield	setting.	
	

The	thesis’	first	research	question	therefore	emerges	directly	from	extrapolating	these	two	
elements	of	historiography.	Is	the	removal	supervision	from	lethal	engagements	technically	
feasible?	This	is	not	straightforward	given	the	breakneck	development	of	technical	competencies.	
An	obvious	danger	for	this	thesis	is	being	blindsided	by	the	unforeseen.35	Indeed,	it	is	not	new	for	
academics	in	this	field	to	posit	scenarios	that	are	based	on	amalgamations	of	existing	technologies	
which	suggest	that	can	targets	can	be	engaged	without	such	supervision.36	Technical	progress,	
however,	tends	to	be	chaotic	with	technologies	evolving	continually	rather	than	arriving	fully	
formed.	A	‘certain’	dead-end	today	is	tomorrow’s	ubiquitous	breakthrough	solution.	Nor	is	it	
necessarily	clear	which	grouping	of	technologies	might	overturn	how	battlecraft	may,	in	time,	be	
undertaken.37	This	is	an	important	observation.	As	noted	by	Scharre,	‘an	autonomous	weapon	
need	not	to	be	very	intelligent.	It	is	simply	a	weapon	that	selects	and	engages	targets	on	its	own’.38	
In	this	vein,	the	pace	of	technical	advance	requires	that	assumptions	continually	be	made	on	AWS’	
timelines	and	capabilities	and,	in	considering	AWS’	feasibility,	on	the	broad	context	that	must	
frame	such	removal	of	supervision	from	battlefield	weapons.		
	

It	is	this	knitting	together	of	themes	that	also	informs	the	thesis’	third	section	of	
historiography.	Assessing	AWS’	feasibility	requires	a	detailed	appreciation	of	existing	constraints	
that	together	require	human	supervision	in	lethal	engagements	be	retained.	This	third	
historiography	therefore	comprises	the	corpus	of	work	that	argues	against	the	introduction	of	
autonomy	in	weapon	systems.	This	constituent	covers	existing	supranational	Laws	Of	Armed	
Combat	(LOAC)	and,	on	a	more	granular	level,	evidence	relating	to	Rules	of	Engagement	(ROE).39	
It	includes	analysis	of	moral,	ethical,	and	economic	arguments	against	the	withdrawal	of	
Meaningful	Human	Control	(MHC)	across	engagements.40	This	third	component	also	covers	what	
emerges	as	the	key	role	of	context	and	situational	awareness	in	the	argument.	Again,	much	of	this	
secondary	material	must	be	extrapolated	from	existing	historiography	in	order	to	comment	
specifically	on	the	matter	of	oversight	in	lethal	battlefield	engagement.	The	thesis’	fourth	

																																																								
35	Caroline	Crampton,	‘Why	is	it	so	hard	to	predict	the	future	of	technology?’,	New	Statesman,	(2017)	
<http://www.newstatesman.com/culture/observations/2017/01/why-it-so-hard-predict-future-technology>	
[accessed	25	June	2017].	
36 Daniel	Oberhaus,	‘Watch	‘Slaughterbot’:	A	Warning	about	the	Future	of	Killer	Robots’,	Motherboard,	(2017)	
<https://motherboard.vice.com/en_us/article/9kqmy5/slaughterbots-autonomous-weapons-future-of-life>	
[accessed	17	November	2017].	Professor	Stuart	Russell,	Director	of	Computing	at	Berkeley	University,	concludes	that	
‘this	is	not	speculation.	It	is	the	result	of	integrating	and	miniaturizing	technologies	that	we	already	have’.	Russell's	
Slaughterbox	provides	a	useful	baseline	at	the	time	of	this	thesis'	writing	and	informs	a	degree	of	its	contextual	
anlaysis;	see	introduction	to	Chapter	2	(Context).	
37	Battlecraft	is	generally	defined	here	as	the	skills	and	techniques	of	military	combat	in	the	sustained	fight	between	
organised	armed	forces.	
	
38 Paul	Scharre,	‘Presentation	at	the	United	Nations	Convention	of	Certain	Conventional	Weapons’,	Informal	Meeting	of	
Experts	on	Lethal	Autonomous	Weapons,	Geneva,	(2015),	p.	2	
<https://www.unog.ch/80256EDD006B8954/(httpAssets)/98B8F054634E0C7EC1257E2F005759B0/$file/Scharre+
presentation+text.pdf>. 
39	See:	Chapter	5	(Obstacles),	specifically,	5.1	(‘Geneva	Conventions	and	the	Laws	of	Armed	Conflict’).	The	section	
discusses	the	nature	of	constraints	that	might	collude	against	compliant	AWS	deployment	(political,	social,	command,	
environmental,	ethical,	accounting,	physical,	behavioural	and	proliferation	constraints).		
40	MHC	is	a	key	concept	(and	conclusion)	for	this	thesis	and	is	discussed	in	detail	in	Chapter	10	(Oversight),	
specifically:	10.1	(‘Meaningful	Human	Control’)	and	Chapter	11	(Conclusion).		
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historiographical	element	is	then	comprised	of	sources	that	together	combine	to	promote	weapon	
autonomy.	This	component	provides	the	counterfactual	to	the	thesis’	preceding	three	sections	and	
covers	issues	such	as	perceived	political	dividends,	procurement	advantages,	operational	benefits	
and	the	role	of	dual-use	technologies.	It	also	factors	for	the	attraction	of	force	multiplication	and	
the	appeal	of	remote	engagement.	It	reviews	those	arguments	where	machine	involvement	in	
lethal	engagements	might	actually	lead	to	better	ethical	performance	in	combat	situations	and	
where	AI	might	make	battlefields	safer	for	humans,	especially	civilians.41	It	might	also	be	expected	
to	cover	empirical	deployment	of	unsupervised	systems	and	how	such	systems	might	be	
incorporated	into	future	battlecraft.	Here,	however,	the	corpus	remains	surprisingly	scant	as	
evaluation	of	AWS	deployment	from	an	empirically	technical	perspective	barely	exists.	The	thesis’	
fifth	and	final	historiographical	component	then	reviews	possible	solutions	in	this	AWS	debate	
and	acts	as	a	synthesis	in	considering	best	current	practice	in	weapon	supervision	and	the	matter	
of	MHC	in	lethal	engagements.	

	
Given	this	framework,	discrete	areas	of	inquiry	emerge	as	a	basis	for	the	thesis’	research	

questions,	each	related	to	the	central	question	around	AWS	feasibility.	First,	how	intractable	are	
technical,	operational	and	contextual	impediments	to	the	eventual	removal	of	human	supervision	
from	lethal	engagements?	Second,	what	might	interim	and	transitional	autonomous	systems	look	
like?	Third,	how	will	States	adopt	such	weapons	and	how	will	they	be	fitted	into	battlecraft?	A	
fourth	question	then	asks	whether	a	role	exists	(and	the	shape	of	that	role)	for	MHC	to	become	an	
over-arching	control	mechanism	and,	conceivably,	a	statutory	umbrella	for	the	deployment	of	
unsupervised	weapons.	A	complication	is	that	this	exercise	depends	upon	assessing	context,	both	
its	relevance	and	its	weighting	in	AWS	deployment.	As	noted	by	Talwar,	after	all,	autonomy	is	not	
in	itself	a	solution	to	any	problem.42	Instead,	the	utility	of	autonomous	capability	on	the	battlefield	
is	a	function	of	the	‘ecology	of	each	mission’s	needs	and	operating	environment.	There	is	no	value	
here	without	context’.43	This	is	doubly	relevant.	As	Ricks	concludes,	‘at	the	end	of	the	[planning]	
process,	there	will	be	gaps	in	facts	that	necessarily	have	to	be	filled	by	rational	assumptions’.44	
This	may	appear	uncomfortable	given	that	computing	was	little	more	than	a	fringe	activity	less	
than	two	generations	ago.	It	underlines,	however,	the	role	of	context	in	determining	whether	
supervision	should	remain	a	battlefield	prerequisite.	As	such,	this	analysis	is	deliberately	
undertaken	from	a	behavioural	perspective.	This	is	foremost	a	humanities-based	analysis	of	AWS	
feasibility.	It	considers,	after	all,	the	concepts	that	underlie	AWS	deployment	rather	than,	say,	
specifics	of	AWS’	coding.	The	methodology	of	the	thesis	is	not	to	provide	detailed	line-by-line	
technical	assessment	of	AWS	routines	but	instead	to	offer	a	conceptual	analysis	of	the	
determinants	and	possible	consequences	of	removing	oversight	from	weapon	technology.	
Technical	challenges	are	therefore	deliberately	framed	in	the	perspective	of	behaviour	and	
context.	While	a	decision	to	use	force	may	depend	on	a	mix	of	legal,	ethical	and	strategic	matters,	

																																																								
41	See:	Chapter	3	(Drivers),	specifically:	3.4	(‘Ethical	Drivers’)	and	the	accompanying	analysis	of	R	Arkin,	Governing	
lethal	behaviour:	Embedding	ethics	in	a	hybrid	deliberate/reactive	robot	architecture,	(Atlanta,	GA:	Georgia	Institute	of	
Technology,	2007),	generally.	
42 Rohit	Talwar	and	others,	‘Keeping	the	Human	Touch;	humans	need	a	new	mindset	to	function	in	a	tech-dominated	
society’,	Financial	Times,	People’s	Technology	section,	(2017)	p.	35. 
43	US	Department	of	Defense,	‘The	Role	of	Autonomy	in	DoD	Systems’,	Task	Force	Report,	(2012),	p.	
21<https://fas.org/irp/agency/dod/dsb/autonomy.pdf>.	
44	See,	generally:	T	Ricks,	‘Staff	Planning:	It’s	all	about	examining	assumptions	and	then	re-examining	them’,	Foreign	
Policy.com,	(2016)	<http://foreignpolicy.com/2016/01/12/staff-planning-its-all-about-examining-assumptions-and-
then-re-examining-them/>	[accessed	12	June	2017].	
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the	conclusion	in	this	broad	case	is	that	machines	remain	enduringly	incapable	of	understanding	
the	context	of	their	actions.		

	
The	analysis	is	concerned	by	what	is	feasible	around	human	supervision.	To	that	end,	the	

thesis	is	framed	less	by	its	analysis	of	drivers	accelerating	AWS	adoption	and	more,	in	fact,	by	
challenges	that	lurk	in	deployment	models	which	posit	how	weapons	with	gradually	less	human	
supervision	may	be	adopted.	What	is	not	in	doubt	is	a	general	lessening	of	human	involvement	
across	combat	activities,	whether	physically	through	increased	adoption	of	unmanned	weapon	
platforms	or	generally	through	wide	introduction	of	teaming	autonomous	processes	across	
combat	assets.	This	notion	drives	the	UK	Ministry	of	Defence’s	Joint	Concept	note	on	Human-
Machine	Teaming	where	‘future	force	design	must	find	the	optimal	mix	of	manned	and	unmanned	
platforms,	and	balance	employment	of	human	and	machine	cognition	for	various	tasks’.45	The	
challenge,	however,	is	that	the	idealised	‘centaur	model’	founded	upon	human-machine	teaming	
breaks	down	irreparably	once	battlefield	actions	are	required	that	are	faster	than	the	human	
operator	can	provide.	That	model	similarly	relies	on	sufficient	(and	empirically	unlikely)	
communication	being	available	between	machine	and	human.	The	machine	is	on	its	own.	One	final	
element	of	context	is	relevant	to	this	preamble.	In	considering	these	challenges,	this	analysis	is	
limited	to	the	current	era	of	narrow	AI;	should	artificial	general	intelligence	and	machine	
sentience	ever	reach	battlespace,	then	both	the	assumptions	and	deductions	of	this	thesis	will	no	
longer	be	valid.		

	
The	thesis’	litmus	test	is	therefore	whole-weapon	independence	with	the	analysis	assuming	

deployment	of	wide-task	AWS;	if	a	weapon	can	select	its	own	target	and	engage	that	target	
without	human	involvement	then	the	thesis’	technical	commentary	remains	intentionally	agnostic	
to	the	level	of	that	autonomy.	While	this	helps	future-proof	the	work’s	conclusions,	the	thesis	must	
still	be	sure	about	its	assumptions	in	order	to	identify	cumulative	ramifications	arising	from	AWS	
deployment.	An	example,	inferred	separately	from	Lombardi	and	Jones,	is	relevant	in	order	to	
demonstrate	this	layered	nature	of	the	issue.46	There	is,	for	instance,	likely	to	be	grey	area	
between	the	deployment	of	autonomous	battlefield	decision	aids	and,	in	time,	stand-alone	
weapons	that	are	capable	of	independent	action.47	The	appeal	here	of	weapons	that	partner	
human	soldiers	in	outwardly	narrow	tasks	is	also	that	they	provide	force	multiplication	and	do	
this	at	a	potentially	lower	cost	in	terms	of	casualties.	The	broad	capabilities,	however,	that	these	
systems	must	first	integrate	are	fundamentally	challenging	around	target	identification,	target	

																																																								
45	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	44.	
46	B	Lombardi,	‘Assumptions	and	Grand	Strategy’,	Defence	Research	and	Development,	Canadian	Centre	for	Operations	
Research	and	Analysis,	(2011),	p.	38	
<http://ssi.armywarcollege.edu/pubs/parameters/articles/2011spring/lombardi.pdf>.	
47	S	Jones,	‘AI	and	Robots	line	up	for	Battlefield	Service’,	Financial	Times,	(2016)	
<https://www.ft.com/content/02d4d586-78e9-11e6-97ae-647294649b28?mhq5j=e2>	[accessed	12	February	2017].	
A	decision	aid	here	relates	to	a	‘colleague’	weapon	that	provides	varying	levels	of	force	multiplication.	See,	generally:	
Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	human	teaming	models’)	and	4.5	(‘Flexible	autonomy’)	that	
consider	current	practice	and	relevant	emerging	technologies	in	autonomous	weapons.	
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selection	and	target	engagement.48	They	must	also	then	be	integrated	into	a	State’s	battlecraft.49	
Moreover,	effective	human-machine	collaboration	will	require	that	all	team	members	(humans	
and	‘colleague’	machines	alike)	share	common	goals,	values	and	utility	functions	notwithstanding	
that	those	goals	may	be	expressed	in	different	frameworks	and	semantics.50	Task	specificity	must	
then	require	complex	and	bespoke	rules	within	each	class	of	independent	weapon	that	will	also	
vary	by	mission	and	vary	over	time.	It	is	the	complexity	that	is	created	by	these	conditions	that	
undermines	the	feasible	and	compliant	deployment	of	armed	autonomous	weapons	and	provides	
the	basis	of	this	thesis’	inquiry.	

 Introduction to key concepts  
	
This	introduction	now	undertakes	two	tasks.	It	provides	an	overview	to	the	argument’s	central	
concepts	in	order	better	to	prepare	the	reader	for	discussion	on	the	challenges	to	AWS	
deployment.	It	also	provides	an	appraisal	of	important	themes	that	comprise	the	work’s	
individual	chapter	headings	in	order	to	map	the	thesis’	overall	structure.51	The	key	hypothesis	is	
that	the	right	of	combatants52	to	choose	their	means	and	methods	of	warfare53	is	not	unlimited.54	
This	highlights	a	key	principle.	Humans	should	exercise	control	over	combat	operations	but	also,	
crucially,	over	individual	attacks.55	This,	after	all,	is	a	basic	tenet	of	international	humanitarian	law	
(IHL),	a	central	component	of	the	Law	of	Armed	Conflict	(LOAC)	or	Law	of	War	that	underpins	
much	of	this	thesis’	later	analysis.56	Yielding	the	decision	to	kill	to	a	machine	is	the	key	issue	that	
confronts	this	study.	There	are	several	underlying	elements	to	this	observation	and,	for	the	
purposes	of	this	introduction	(and	expanded	in	later	chapters),	it	is	helpful	to	touch	on	a	handful	

																																																								
48	It	is	useful	here	to	signpost	the	structure	of	the	thesis.	Evidence	and	argument	for	statements	made	in	this	
Introduction	are	set	out	in	subsequent	chapters	as	follows:	Context	(Chapter	2);	drivers	to	adoption	and	deployment	
(Chapter	3);	current	practices	and	likely	pathways	to	the	removal	of	human	supervision	in	engagements	(Chapter	4);	
legal	and	other	obstacles	in	front	of	such	adoption	(chapter	5);	architectural	(Chapters	6	and	7)	and	control	issues	
(Chapter	8)	that	challenge	AWS	deployment;likely	equipment	deficiencies	(Chapter	9,	Hardware);	the	concept	and	
role	of	Meaningful	Human	Control	(MHC)	in	lethal	engagements	(Chapter	10,	Oversight).	The	thesis'	general	
methodology	is	set	out	in	Section	1.7	(‘Statement	of	methods’)	and	subsequent	sections	of	Chapter	1	(Introduction).		
49	This	thesis	primarily	considers	the	deployment	of	weapons	autonomy	from	the	perspective	of	a	sophisticated,	
resourced	State	and,	generally,	one	of	the	196	signatories	to	the	Geneva	Convention.	This	assumption	is	valid	as	the	
Convention	confers	an	obligation	to	comply	with,	inter	alia,	the	Laws	of	Armed	Combat	and	other	responsibilities	and	
commitments	set	out	in	Chapter	5	(Obstacles).		
50	See:	Chapter	8	(Software),	specifically:	8.5	(‘	Anchoring	and	goal	setting	issues’),	8.6	(‘Value	setting	issues’)	and	8.3	
(‘Utility	function’).	
51	See,	generally,	Thesis’	chapter	headings:	Context,	Drivers,	Deployment,	Obstacles,	Wetware,	Firmware,	Software,	
Hardware	and	Oversight.			
52	For	the	purposes	of	this	dissertation,	a	combatant	is	defined	under	the	‘Third	Geneva	Convention’	(Article	3,	GCIII,	
1949)	as	an	individual	taking	direct	part	in	the	hostilities	of	an	armed	conflict.	
53	‘The	Protocol	Additional	to	the	Geneva	Conventions’	(August	1947)	and	relating	to	‘The	Protection	of	Victims	of	
International	Armed	Conflicts	(Protocol	I)’,	(8	June	1977)	hereinafter	referred	to	as	Additional	Protocol	I;	the	
document	refers	alternately	to	‘methods	and/or	means	of	warfare’,	‘means	and	methods	of	attack’	and	‘weapon,	
means	or	method	of	warfare’,	<https://ihl-databases.icrc.org/ihl/INTRO/470>	[accessed	12	May	2017].	
54	This	principle	is	variously	stipulated	in,	for	instance,	‘Article	22’	of	the	Hague	Regulations	(1907);	See:	‘Respecting	
the	Laws	and	Customs	of	War	on	Land’	and	‘Article	35(1)’	of	Additional	Protocol	I,	<https://ihl-
databases.icrc.org/ihl/INTRO/470>	[accessed	12	May	2017].	
55	As	defined	in	US	Department	of	Defense,	‘DoD	Dictionary	of	Military	and	Associated	Terms’,	(2017)	
<http://www.dtic.mil/doctrine/new_pubs/dictionary.pdf>.	
56	International	Review	of	the	Red	Cross,	‘A	guide	to	the	legal	review	of	new	weapons,	means	and	methods	of	warfare:	
Measures	to	implement	Article	36	of	Additional	Protocol	I	of	1977’,	International	Committee	of	the	Red	Cross	Geneva,	
88,	864,	(2006),	p.	931.	
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of	these	conflicting	issues.	First,	replacing	human	soldiers	by	machines	might	have	benefits	in	
terms	of	reducing	casualties	for	the	machines’	owner,	reducing	his	costs	and	addressing	certain	
technical	challenges,	but	it	also	might	lower	the	threshold	for	going	to	battle	and	risk	starting	an	
arms	race	in	new	technologies.57	The	Future	of	Life	Institute	notes	that	the	way	that	humans	
resolve	conflict	shapes	the	society	in	which	those	humans	live,	the	consequence	being	that	
machines	which	can	make	the	decision	about	who	and	when	to	kill	clearly	has	the	ability	to	
fundamentally	change	this.58	It	is	the	availability	of	such	independent	weapons	to	any	political	
cohort	that	might	then	have	broad	constitutional	ramifications.	Suddenly,	the	decision	of	only	a	
very	few	people	(those	in	a	position	to	authorise	AWS	deployment)	may	be	required	for	a	polity	to	
drift	into	war,	so	reversing	a	trend	(in	the	West)	by	further	centralising	decisions	to	go	to	war.59	
Unlike	nuclear	devices,	after	all,	AWS	technology	requires	no	costly	or	hard-to-obtain	materials.	
Finally	to	this	point,	analysis	of	complex	machines	that	can	kill	without	oversight	is	unexpectedly	
involved,	unexpectedly	imprecise	and	requires	detailed	overlay	of	legal,	ethical,	contextual	and	
operational	constraints.60	It	is	for	this	reason	that	this	thesis’	humanities-based	assessment	can	
still	examine	AWS	deployment	from	both	a	technical	and	behavioural	perspective.61	
	

In	this	vein,	it	is	useful	to	review	certain	terms	that	will	appear	throughout	the	thesis.62	
Autonomous	weapons	were	initially	categorised	by	the	US	Department	of	Defense	into	three	sub-
types,	as	noted	by	NGO	Human	Rights	Watch	(HRW)	in	its	November	2012	report	Losing	
Humanity	and	defined	according	to	the	amount	of	human	involvement	in	their	actions.63	Human-
in-the-loop	weapons	comprise	robots	that	can	select	targets	but	only	deliver	force	with	a	human	
command.64	Human-on-the-loop	weapons	can	select	targets	and	deliver	force	under	the	oversight	

																																																								
57	For	a	study	of	AWS’	perceived	combat	benefits	see:	Mike	Guetlein,	‘Lethal	Autonomous	Weapons;	Ethical	and	
Doctrinal	Implications’,	US	Department	of	Joint	Military	Operations,	(2005),	generally	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a464896.pdf>.	
58	Future	of	Life	Institute,	‘Autonomous	Weapons:	An	Open	Letter	from	AI	and	Robotics	Researchers’,	Future	of	Life,	
(2015)	<https://futureoflife.org/open-letter-autonomous-weapons/>	[accessed	6	April	2016].	It	may,	for	instance,	
become	political	consensus	that	autonomous	systems	are	ideal	for	certain	tasks	such	assassinations,	destabilizing	
neighbouring	States	and	other	polities,	subduing	particular	populations	or	even	selectively	killing	a	particular	ethnic	
group.	
59	Daniel	Suarez,	‘The	kill	decision	shouldn’t	belong	to	a	robot’,	Ted.com,	(2013)	
<https://www.ted.com/talks/daniel_suarez_the_kill_decision_shouldn_t_belong_to_a_robot>	[accessed	18	May	2017].	
60	For	discussion	on	situational	awareness,	see:	Chapter	2	(Context),	specifically:	2.6	(‘The	role	of	situational	awareness	
and	uncertainty’).	For	analysis	on	its	technical	ramifications,	see:	Chapter	9	(Hardware),	specifically	9.1	(‘Hardware	
and	sensor	fusion	issues	for	AWS’).	
61	For	a	discussion	on	technical	faultlines	to	AWS,	see:	Chapters	6	(Wetware),	specifically	6.5	(‘Missing	Pieces’),	8	
(Software),	specifically	8.1	(‘Coding	methodologies’)	and	8.2	(‘Coding	errors’)	and	9	(Hardware),	generally.	For	
discussion	on	legal,	ethical	and	other	behavioural	constraints	on	AWS	deployment	see:	Chapter	5	(Obstacles).	
62	A	discussion	of	relevant	definitions	also	appears	in	Paddy	Walker,	‘Killer	Robots?	The	Role	of	Autonomous	Weapons	
on	the	modern	battlefield’,	MA	thesis,	Buckingham	University,	(2013),	p.	5	and	pp.	16-19.	
63	Bonnie	Docherty,	‘Losing	Humanity	–	the	Case	against	Killer	Robots’,	Human	Rights	Watch,	(2012)	
<http://www.hrw.org/reports/2012/11/19/losing-humanity-0>	[accessed	2	June	2015],	p.	2.	It	should	be	noted	that	
neither	the	CCW	nor	UN	States-parties	are	currently	considering	concerns	over	possible	use	of	fully	autonomous	
weapons	outside	of	armed	conflict	(for	example,	policing	and	law	enforcement	and	border	control).	HRW	has	
subsequently		investigated	concerns	in	this	area	in	its	May	2014	‘Shaking	the	Foundations’	Report;	see:	
<https://www.hrw.org/report/2014/05/12/shaking-foundations/human-rights-implications-killer-robots#>	
[accessed	13	May	2018].	
64	These	definitions	have	been	developed	by	Human	Rights	Watch.	HRW’s	paper	is	extensively	cited	in	this	thesis.	For	
a	discussion	and	timeline	on	reports	on	AWS,	see:	HRW	and	Harvard	Law	School	International	Human	Rights	Law	
Clinic,	‘Reviewing	the	Record:	Reports	on	Killer	Robots	from	Human	Rights	Watch	an	Harvard	Law	School	
International	Human	Rights	Law	Clinic,	(2018),	generally	<http://hrp.law.harvard.edu/wp-
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of	a	human	operator	who	can	override	the	robots’	actions.	HRW’s	third	definition	covers	fully	
autonomous	robots	that	are	capable	of	selecting	targets	and	delivering	force	without	any	human	
input	or	interaction.	This	thesis	concerns	this	third	category	of	autonomous,	human-out-of-the-
loop	weapon	systems	although,	as	evidenced	below,	the	original	heuristic	is	no	longer	wholly	
helpful	as	it	does	little	to	identify	elements	of	the	argument	relating	to	what	is	potentially	risky,	
dangerous	or	prone	to	unintended	consequences.65	It	is	also	important	to	understand	the	
difference	between	machines	that	are	autonomous	(machines	that	are	self-learning	and	therefore	
‘evolving’,	the	focus	of	this	thesis),	automated	(machines	that	are	nevertheless	complex	and	rules-
based	but	are	not	able	to	learn	through	assimilated	feedback)	and	automatic	machines	that	are	
simply	based	on	programmed	thresholds.	It	is	the	level	of	human	control	and	intervention	(and,	
conversely,	the	degree	of	machine	freedom)	that	is	the	key	distinction	for	this	thesis.	It	is	also	the	
whereabouts	in	a	weapon	system	where	autonomous	function	is	to	be	found.66	Simply	referring	to	
autonomy	as	a	general	weapon	attribute	is	too	imprecise	and	it	is	thus	the	task	nature	being	
undertaken	autonomously	at	subsystem	or	function	level	that	matters	to	this	analysis.	To	this	
point,	Sharkey	notes	that	certain	autonomous	functions	such	as	navigation	may	of	course	be	quite	
uncontentious	while	others,	such	as	targeting,	present	enduring	difficulties.67		

	
Three	other	classifications	require	discussion.	While	semi-autonomy	involves	human	

oversight	in	target	selection68,	supervised-autonomy	involves	machine-selected	targets	with	
humans	subsequently	confirming	any	lethal	engagement.69	It	is	then	human	and	communication	
shortcomings	that	might	lead	to	full	weapon	autonomy	whereby	the	machine	is	selecting	and	
engaging	targets	without	recourse	to	human	supervision.	Sartor	and	Omicini	also	point	out	the	
distinction	between	‘capability-independence’,	the	weapon’s	ability	to	accomplish	a	task,	and	
‘organisational	independence’,	the	ability	of	the	weapon	to	achieve	that	task	‘within	the	
sociotechnical	infrastructure	as	a	whole’.70	The	gap	between	these	two	independencies	is	a	key	
theme	of	this	thesis	and,	in	its	technological	context,	the	relevant	type	of	autonomy	to	this	thesis	

																																																								
content/uploads/2018/08/Killer_Robots_Handout.pdf>.	The	extent	of	NGO	advocacy	against	AWS	deployment	is	best	
evidenced	by	the	broad	composition	of	civil	society	organisations	comprising	coalitions	such	as	the	Campaign	to	Stop	
Killer	Robots	(incorporating,	inter	alia,	HRW,	Amnesty	International,	AAR	Japan,	ICRAC,	Mines	Action	Canada,	
Pugwash	Conferences	on	Science	and	World	Affairs,	PAX	Netherlands,	Nobel	Women's	Initiative,	Article	36,	SEHLAC	
Latin	America	and	Women's	League	for	Peace	and	Freedom).	An	analysis	of	civil	society's	AWS	debate	is	provided	by	
University	of	Sheffield's	Research	Excellent	Framework:	Impact	Case	Study	(Ref	3B),	'Shaping	International	Policy	and	
Stimulating	International	Public	Debtate	of	Autonomous	Weapon	Systems',	Sheffield	University,	2014,	
<https://www.sheffield.ac.uk/polopoly_fs/1.434127!/file/policy_study.pdf>.	
65	Future	of	Life	Institute,	‘Autonomous	weapons:	an	interview	with	the	experts’	(with	Ariel	Conn,	Heather	Roff	and	
Peter	Asaro,	www.futureoflife.org,	(2016),	p.	3	<http://futureoflife.org/2016/11/30/transcript-automous-weapons-
interview-experts/1>	[accessed	5	January	2017].			
66	Chapter	10	(Oversight),	specifically:	10.1	(‘Meaningful	Human	Control’).		
67	Noel	Sharkey,	‘Saying	"No!"	to	Lethal	Autonomous	Targeting’,	Journal	of	Military	Ethics,	Ethical	and	Emerging	
Military	Technology,	4,	(2010),	369-383.	
68	Examples	including	homing	munitions,	UAV	with	GPS	guided	munitions,	counter–rocket	artillery	and	certain	
sensor-fused	weapons.	
69	Examples	for	this	sub-group	include	Aegis	and	Patriot	missile	defence;	specific	weapon	systems	and	their	
classification	are	dealt	with	later	in	this	thesis.	See,	generally:	Chapter	4	(Deployment).	
70	Giovanni	Sartor	and	Andrea	Omicini,	in	N	Bhuta	and	others	(eds.),	Autonomous	Weapons	Systems:	Law,	Ethics,	Policy,	
(Cambridge:	Cambridge	University	Press,	2016),	p.	44.	
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may	be	task	autonomy.71	In	this	sense,	the	categorization	of	weapons	into	lethal,	non-lethal	or	
less-lethal	is	actually	less	helpful	as	it	masks	the	fact	that	weapon	effects	are	never	solely	a	
function	of	that	weapon’s	design	but	also	depend	upon	its	use	and	the	vulnerabilities	of	those	
affected	by	it.72		

 Timelines around capabilities 
	
This	thesis	concerns	the	future	battlefield.73	Weapons	capable	of	identifying,	tracking	and	
engaging	incoming	targets	without	supervision	(thus	far,	broadly	limited	to	a	defensive	role)	
already	function	without	human	engagement	in	their	decision-making.74	Generally	stationary,	
such	platforms	are	currently	designed	repeatedly	to	perform	pre-programmed	actions	within	
tightly	set	parameters	and	time	frames.75	Such	weapons	currently	perform	in	quite	structured	and	
controlled	environments.76	Notwithstanding	a	widespread	‘revolution	in	expectations’	around	
weapon	development77,	broadly	capable	AWS	deployment	remains	still	a	hypothetical	construct78	
leading	States	and	other	polities	to	be	wary	of	defining	too	clearly	their	responses	to	the	
technology,	in	particular	on	positions	around	statutory	instruments	that	might	ban	weapon	
autonomy.79	The	context	is	that,	while	pre-cursor	technologies	are	reviewed	below,	any	broad	
genre	of	unsupervised	weaponry	remains	in	its	infancy	despite	long-dated	attempts	to	automate	
weapons.80		

	

																																																								
71	As	opposed,	for	instance,	to	personal	autonomy	which	frequently	dominates	ethical	analysis	of	autonomy.	
Accordingly,	a	weapon	system	is	regarded	here	as	autonomous	if	it	is	able	to	select	and	engage	military	targets	
without	human	intervention	to	carry	out	that	task.		
72	Serious	injury	or	mental	trauma	is	recognised	in	ECtHR,	‘Abdullah	Yasa	et	al	versus	Turkey’,	App.	No.44827/08,	
European	Court	of	Human	Rights,	Information	Notes	on	the	Court’s	Case-law,	176,	Judgement,	(July	2014).	As	set	out	in	
Chapter	4	(Treatment	amounting	to	instrument	or	degrading	treatment	concerns	under	both	IHL	and	IHRL.	
73	For	a	discussion	on	likely	timelines,	see:	Chapter	2	(Context),	specifically:	2.4	(‘Defence	planning’).		
74	SIPRI	analysis,	introduction	to	Chapter	3	(Drivers).	
75 See:	Chapter	4	(Deployment),	specifically:	4.3	(‘Human	and	machine	teaming	models’).		
76	Jurgen	Attman	and	Frank	Sauer,	‘Autonomous	Weapon	Systems	and	Strategic	Stability’,	Survival,	59,	5,	(2017),	p.	
118.		
77	For	a	useful	discussion	on	‘the	battlefield	of	the	future’	see,	generally:	R	Wood,	‘The	Technical	Revolution	in	Military	
Affairs’,	(2010)	<www.holtz.org/library/technology/technical_revolution_in_military_affairs>	[accessed	2	March	16].	
As	Wood	comments,	‘innovation	in	weapons	design	is	driven	by	the	absolute	need	for	survival	and,	thus,	will	always	
advance	aggressively…	The	study	of	innovation	is	crucial	since	the	technology	of	war	interacts	with	the	actual	practice	
of	fighting’.	See	also:	R	Rubenstein	and	others,	Practicing	military	anthropology:	Beyond	expectations	and	traditional	
boundaries	(VA:	Sterling,	Kumarian	Press,	2013),	generally.		
78	In	particular,	the	task	type	and	capability	set	available	to	AWS	weapon	classes.	See,	generally:	Center	for	a	New	
American	Security,	‘Autonomous	Weapons	and	Human	Control’,	CNAS,	(2016),	pp.	4-5		
<https://www.files.ethz.ch/isn/196780/CNAS_Autonomous_Weapons_poster_FINAL%20(1).pdf>.	
79	The	position	of	the	UK	Foreign	Office	is	an	example.	See:	John	Templeton	Stroud,	UK	UN	delegation,	Fifth	Review	
Conference,	Convention	for	Conventional	Weapons,	HRW/Article	36	side	event,	December	2016.	UK’s	negotiating	
position	within	the	CCW	has	instead	been	to	point	to	both	current	absence	and	long-term	unfeasibility	of	AWS	to	
define	its	hands-off	stance	on	AWS	deployment	policy.	
80	See,	generally:	Chapter	4	(Deployment).For	a	detailed	review	of	pre-cursor	weapon	autonomy	see	also:	Walker,	p.	
19.	The	earliest	attempt	at	a	powered	unmanned	aerial	vehicle	was	A.M	Lowe’s	‘aerial	target’	of	1916.	See:	Jane’s	
‘Book	of	Remotely	Piloted	Vehicles’,	Collier	Books,	(1977)	
<https://books.google.co.uk/books/about/Jane_s_pocket_book_of_remotely_piloted_v.html?id=8o9TAAAAMAAJ>	
[accessed	28	May	2017].	Since	the	1980s,	technical	advances	have	allowed	engineers	to	contemplate	bringing	
autonomy	to	battlefield	weaponry.	Transistors,	for	instance,	have	‘shrunk	from	the	size	of	a	fingernail	to	today’s	high-
end	microprocessor	with	its	billion	transistors’.	
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It	is	also	useful	for	this	introduction	to	provide	definition	around	the	timelines	under	
discussion.	The	challenge	that	this	creates	is	neatly	framed	by	Clarke’s	aphorism	from	1962:	‘It	is	
impossible	to	predict	the	future	and	all	attempts	to	do	so	in	any	detail	appear	ludicrous	within	a	
few	years’.81	While	this	thesis’	consideration	of	defence	planning	later	refutes	Clarke’s	
pessimism82,	for	its	purposes	‘near-term’	is	reckoned	very	generally	to	be	within	the	six-or-so-
year	period	to	2025.83	‘Medium-term’	relates	to	developments	that	may	be	expected	to	occur	in	
the	fifteen	years	thereafter	to	2040.	Opinions	on	the	timetable	for	weapons-directing	artificial	
intelligence	are,	however,	‘as	confident	as	they	are	diverse’.84	By	way	of	context,	Bostrom	
estimates	from	recent	surveys	that	human-level	machine	intelligence	(HLMI)	has	a	fifty	per	cent	
probability	of	arriving	by	2040	and	a	ninety	percent	probability	by	2075.	Procurement	timelines	
depend,	however,	upon	the	scope	of	weapon	capabilities	being	envisaged	and	a	more	granular	
example	is	required.	Sadowski,	Chief	Robot	Scientist	at	the	US	DoD,	suggests	that	autonomous	
machines	for	quite	narrow	‘hauling	techniques	for	the	military’	may	be	deployable	within	ten	
years	and	more	complicated	convoy	applications	will	be	available	‘sometime	after’.85	Even	within	
this	narrow	vertical,	he	forecasts	a	time	frame	of	not	less	than	fifteen	years	before	any	
‘widespread	deployment	of	fully	autonomous	line-haul	convoys’.	Other	parties	are	less	
conservative	and	evidence	the	contradictory	nature	of	these	development	timelines.	In	an	open	
letter	published	in	July	2015,	leading	practitioners	in	the	field	of	artificial	intelligence	warned	that	
the	underlying	technology	behind	lethal	autonomous	systems	would	be	feasible	‘in	years,	not	
decades’.86	In	considering	the	likely	capabilities	that	such	AI-based	systems	might	require,	its	
signatories	concluded	that	artificial	intelligence	technology	has	already	reached	a	point	where	the	
deployment	of	such	systems	is	already	practically	(if	not	legally)	feasible.		

	
A	further	challenge	is	also	to	define	the	capabilities	that	will	comprise	AWS.87	To	be	

autonomous,	a	weapon	system	must	have	the	capability	to	select	independently	among	different	
courses	of	action	in	order	to	accomplish	goals	that	are	based	on	its	knowledge	(both	received	and	
learned)	and	subsequently	derived	understanding	of	the	world,	itself	and	its	immediate	

																																																								
81	David	Bawden,	‘The	nature	of	prediction	and	the	information	future:	Arthur	C.	Clarke's	Odyssey	vision’,	Aslib	
Proceedings,	49,	3,	(1997),	pp.	57-60.	
82	See:	Chapter	2	(Context),	specifically:	2.4	(‘Defence	planning’).	See	also:	Chapter	4	(Deployment),	specifically:	4.2	
(‘Planning	tools’).		
	
83	As	set	out	in	footnote	1,	these	timeframes	are	broadly	adopted	as	at	2019	in	considering	AWS	deployment.	Such	
phasing	clearly	moves	year	to	year	as	evidenced	by	UNIDIR,	‘Framing	Discussion	on	the	Weaponization	of	
Increasingly	Autonomous	Technologies’,	United	Nations	Convention	for	Certain	Conventional	Weapons,	(2014),	
generally	<http://www.unidir.ch/files/publications/pdfs/framing-discussions-on-the-weaponization-of-
increasingly-autonomous-technologies-en-606.pdf>.	See	also:	The	Brookings	Institution’s	2009	discussion	with	PW	
Singer	(‘Wired	for	War:	The	Robotics	Revolution	and	Conflict	in	the	Twenty-first	Century’)	and	General	James	Mattis,	
(2012),	generally	<https://www.brookings.edu/wp-content/uploads/2012/04/20090126_wired.pdf>.	Also;	Major-
General	Patrick	Cordingley	(Commander,	7th	Armoured	Brigade,	Gulf	War,	1991),	in	conversation	with	the	author,	
June	2016.		
	
84	Nick	Bostrom,	Superintelligence;	Paths,	Dangers,	Strategies,	(Oxford:	Oxford	University	Press,	2014),	p.	19.	
85	Breaking	Defense,	‘Interview	with	Bob	Sadowski,	US	Army	Chief	Roboticist’,	www.breakingdefense.com,	(2016)	
<http://breakingdefense.com>	[accessed	12	October	2016].	
86	Future	of	Life	Institute,	(2015),	generally.	
87	See:	Chapters	8	(Software)	and	9	(Hardware).	The	thesis	concentrates	upon	State	actors'	institutional	deployment	of	
AWS	rather	than	use	of	autonomous	weapons	by	non-state	parties.	Much	of	the	analysis	is	derived	in	sources	from	the	
United	States;	this	arises	from	much	of	the	thought	leadership	around	the	subject	currently	coming	from	America.	
Unless	otherwise	stipulated,	it	is	intended	that	the	arguments	hold	for	any	sovereign	State	involved	in	these	
platforms.	
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situation.88	This	requires	a	very	broad	list	of	competencies	that	is	investigated	in	subsequent	
chapters.89	Ansell	notes	that	autonomous	weapons	must	be	anchored	by	a	degree	of	reasoning	
that	is	based	on	data,	an	ability	to	act	independently	according	to	that	data,	a	capacity	to	decide	
and	an	awareness	of	its	surroundings.90	Weapons,	after	all,	which	are	merely	automatic	‘are	
controlled	by	an	on/off	switch’.91	A	ramification	for	this	thesis	is	that	unsupervised	weapons	will	
be	characterised	by	‘a	movement	from	today’s	‘mission	execution’	to	tomorrow’s	‘mission	
performance’,	the	difference	being	that	the	former	simply	executes	a	pre-programmed	plan	
whereas	autonomous	performance	involves	mission	outcomes	that	can	vary	even	during	a	
mission’.92	Identifying	the	technical	stretch	that	exists	between	such	envisaged	capabilities	and	
machine	functions	that	will	likely	be	available	becomes	an	important	component	of	this	analysis.93	

 AWS classification issues 
	
Two	further	introductory	classifications	are	relevant	to	frame	this	thesis.	Weapons	autonomy	
should	be	viewed	as	a	sliding	scale	that	extends,	on	the	one	hand,	from	weapons	capable	of	
narrowly	defined	supervised	tasks	to	autonomous	machines	capable	of	complex	thought	
processes.94	Second,	individual	AWS	components	must	work	independently95	but	also	act	together	
in	order	to	provide	self-authorisation	in	an	engagement.96	Such	capabilities	are	already	under	test.	
Since	2014,	unmanned	aircraft	demonstrators	such	as	the	X-47B	have	been	able	to	fly	a	mission	
with	no	involvement	of	a	ground-based	‘pilot’.97	The	tipping	point	between	weapon	automaticity	
and	autonomy	is	therefore	quite	clear;	it	becomes	the	combination	of	platform	and	weapon	that	

																																																								
88	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY2013-2038’,	Under-Secretary	of	Defense	
Acquisition,	Technology	and	Logistics,	Reference	14-S-0553,	Washington,	p.	4,	(November	2013)	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a592015.pdf>.	
89	Chapter	8	(Software),	specifically:	8.1	(‘Coding	methodologies’)	and	8.4	(‘Software	processing	functions’).		
90	‘…	and	ideally	all	of	these	four	characteristics	together’;	Dr	Darren	Ansell,	University	of	Central	Lancashire’s	School	
of	Computing,	in	conversation	with	the	author,	Chatham	House	Conference,	February	2014.	
91	Ibid.	
	

92	‘Unmanned	Systems	Integrated	Roadmap	FY	2013-2038’,	p.	67.	
93	See:	Chapters	6	(Wetware),	7	(Firmware),	8	(Software)	and	9	(Hardware).		As	detailed	in	this	analysis,	AWS	mission	
performance	will	involve	the	unit’s	ability	to	integrate	sensing,	deep	learning,	perceiving,	analysing,	communicating,	
planning,	decision	making	and	executing	in	order	to	achieve	such	complex	mission	goals.	
94	See:	Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	human	teaming	models’)	and	4.5	(‘Flexible	autonomy’).	
See	also:	Royal	Air	Force	Directorate	of	Defence	Studies,	‘Air	Power	–	UAVs:	The	wider	context’,	ed.	Owen	Barnes,	
(2015),	p.	69	<https://www.scribd.com/document/52847466/Air-Power-UAVS-The-Wider-Context>	[accessed	12	
June	2017].	
95	See:	‘Unmanned	Systems	Integrated	Roadmap,	FY2013-2038’,	Department	of	Defense;	‘Unmanned	systems	that	have	
the	option	to	operate	autonomously	are	typically	fully	pre-programmed	to	perform	defined	actions	repeatedly	and	
independent	of	external	influence	or	control’,	p.	66.	
96	Dr	Ansell,	School	of	Computing,	University	of	Central	Lancashire,	in	conversation	with	the	author,	Chatham	House	
Conference	on	Autonomous	Military	Technologies,	February	2014;	Ansell’s	position	highlights	the	distinction	between	
‘full	machine	authority’	versus	machines	that	act	unless	revoked	(‘direct	support’),	machines	that	advise	and	act	if	
authorised	(‘in	support’),	and	machines	that	are	merely	‘advisory’.	Again,	see:	Chapter	4	(Deployment),	specifically:	4.3	
(‘Machine	and	human	teaming	models’).	
97	Jonathan	Marcus,	‘Robot	Warriors:	Lethal	machines	coming	of	age’,	BBC	magazine,	(2014)	
<http://www.bbc.co.uk/news/magazine-21576376>	[accessed	19	June	2016].	Mary	Wareham	of	HRW	points	out	that	
the	X-47B	has	since	being	repurposed	into	an	air-born	fuel	tanker	reconfiguring	the	internal	payload	originally	
intended	to	carry	weapons.	
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creates	a	‘weapon	that	is	lethal,	a	weapon	that	on	its	own	can	kill’98	and	one	that	can	‘select	and	
engage	targets	without	further	intervention’.99	This,	however,	is	only	part	of	the	equation	as	it	
relates	to	AWS	deployment.	Russell	and	Norvig	rightfully	promote	a	different	perspective	in	
characterising	autonomy	as	‘an	agent’s	capacity	to	learn	what	it	can	to	compensate	for	partial	or	
incorrect	prior	knowledge’.100	Conversely,	autonomy	is	absent	should	that	agent	simply	rely	for	its	
operation	upon	the	prior	knowledge	of	its	designer	rather	than	on	its	own	percepts.101	The	
important	distinction	is	identified	by	Hanon	whereby	the	weapon	has	autonomous	choice	
regarding	target	selection	in	the	use	of	lethal	force.102		

 Thesis structure  
	
How	then	does	the	available	historiography	inform	this	thesis’	high-level	structure?103	Its	
argument	is	built	upon	behavioural	analysis	(deployment’s	context,	accelerators	and	obstacles)	
that	is	complimented	by	technical	analysis	(AWS’	architectural,	coding	and	processing	challenges).	
A	methods	statement	discussing	this	thesis’	processes,	in	particular	those	procedures	covering	its	
treatment	of	primary	source	material,	is	included	in	this	introductory	chapter.104	Indeed,	the	
thesis’	opening	chapters	seek	to	map	such	a	basis	against	which	to	consider	the	fielding	of	AWS.	
On	the	one	hand	are	politics,	culture	and	society.105	A	quite	separate	view	is	provided	by	the	
																																																								
98	Jody	Williams,	Human	Rights	Watch,	recipient	of	Nobel	Peace	Prize	for	work	on	landmine	ban,	in	conversation	with	
author,	CCW	GGE	meeting,	Geneva,	24	November	2017.	
99	Christof	Heyns,	‘Report	of	the	Special	Rapporteur	on	extrajudicial,	summary	or	arbitrary	executions’,	p.	8.	This	
distinction	informs	the	position	of	NGO	Article	36.	See:	Article	36,	‘Structuring	debate	on	autonomous	weapon	
systems’,	Memorandum	for	delegates	to	the	Convention	on	Certain	Conventional	Weapons	(CCW),	Geneva	(14	
November	2013).	Similarly,	HRW’s	Mary	Wareham	points	to	the	definition	of	weapons	‘able	to	select	and	attack	
targets	without	any	human	intervention’	being	the	broadly	adopted	working	definition	for	AWS	(in	conversation	with	
the	author,	June	2014);	See	also:	Campaign	to	Stop	Killer	Robots,	‘Urgent	Action	Needed	to	Ban	Fullt	Autonomous	
Weapons’,	CSKR	London,	(23	April	2013),	generally	<http://stopkillerrobots.org/wp-
content/uploads/2013/04/KRC_LaunchStatement_23Apr2013.pdf>.	
100	SJ	Russell	and	P	Norvig,	‘Artificial	Intelligence:	A	modern	approach’,	(Upper	Saddle	River,	NJ:	Prentice	Hall,	2010)	p.	
39.	The	focus	here	is	on	cognitive	capacity,	especially	the	capability	to	obtain	new	knowledge	through	interaction	with	
the	agent’s	immediate	environment.	See:	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).		
101	Sartor	and	Omicini,	p.	50.	
102	A	popular	analysis	of	the	subject	is	provided	by	Leighton	Hanon,	‘Robots	on	the	Battlefield	–	are	we	ready	for	
them?’,	American	Institute	of	Aeronautics	and	Astronautics,	(2004),	p.	7	<http://arc.aiaa.org/doi/abs/10.2514/6.2004-
6409>	[accessed	2	January	2014].	AWS	technology	is	already	subject	to	a	defined	set	of	recognised	institutional	
measurements.	These	grey	scales	of	autonomy	range	from	Level	1	(simple	remote	guidance)	to	Level	10	(full	
autonomy).		Autonomous	Control	Level	(ACL)	6	will,	for	instance,	allow	multiple	unmanned	weapon	systems	to	
recognise	multiple	targets	and	allocate	those	targets	between	systems.	A	further	example	is	useful.	ACL	9	is	intended	
to	enable	groups	of	automated	systems	to	assess	the	battlefield,	the	number	and	the	location	of	targets.	ACL	9	
incorporates	AWS’	analysis	of	targets’	threat	potential	in	order	to	allocate	overall	mission	priorities.	It	even	envisages	
the	skipping	between	low	and	high	value	targets.	For	a	popular	analysis	of	the	subject,	see:	Drone360	Magazine,	p.62	
<http://www.drone360mag.com>	(April/May	2016)	[accessed	16	February	2016].	It	is	noteworthy	for	this	analysis	
that	the	US	Military’s	Global	Hawk	AUV	has	autonomous	take-off	and	landing,	can	self-determine	destinations,	adjust	
and	set	speeds,	altitude,	roll,	pitch	and	yaw	but	only	ranks	at	2.5	on	the	ACL	scale	of	1-10.	
103	An	overview	is	as	follows:	First,	it	looks	to	establish	a	contextual	framework	to	frame	the	breadth	of	factors	that	
influence	the	broader	question	of	weapon	control	(Chapter	2,	Context).	It	then	identifies	drivers	influencing	the	
removal	of	human	oversight	in	lethal	engagements	(Chapter	3,	Drivers).	Material	obstacles	exist,	however,	for	any	
material	shift	towards	independent	weapons.	Chapters	5	through	9	(Obstacles,	Wetware,	Software,	Firmware,	and	
Hardware)	seek	first	to	identify	and	then	to	evaluate	the	significance	of	technical	and	other	related	faultlines	that	exist	
to	AWS	deployment.	These	chapters	together	consider	AWS’	technical	feasibility.	Chapter	10	(Oversight)	then	analyses	
the	concept	of	MHC	as	a	key	pivot	to	the	AWS	debate.		
104	See,	generally:	Section	1.7	(‘Statement	of	methods’).	
	
105	See:	Colin	Gray,	Strategy	and	defence	planning;	meeting	the	challenge	of	uncertainty,	(Oxford:	Oxford	University	
Press,	2014).	Also:	Colin	Gray,	The	Future	of	Strategy,	(Polity	Books,	2015)	and	Another	Bloody	Century,	(Phoenix,	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 24 | P a g e  

 
 

‘military	man’s	framework’106	of	technological	promise	and	battlefield	experience	tempered	by	an	
understanding	of	what	can	practically	be	achieved.107	Two	issues	arise	from	this	contention.	While	
Sabin	suggests	that	every	generation	may	think	it	is	witnessing	a	technical	discontinuity	in	
military	affairs108,	three	fifths	of	the	thesis	will	nevertheless	be	taken	up	reviewing	technical	
faultlines	that,	on	a	cumulative	basis	and	when	assessed	together,	certainly	impact	upon	
compliant	deployment	of	independent	weapons.	Second,	the	very	complexity	of	AWS’	deployment	
framework	(juggling	these	factors’	relative	precedence	in	order	to	arrive	at	appropriate	context)	
itself	deserves	attention,	as	it	too	must	inform	subsequent	‘planning	certainty’.	Hammes	borrows	
from	Bismark	to	make	the	point:	‘The	Statesman	is	like	a	wayfarer	in	the	forest	who	knows	in	
which	direction	he	is	walking	but	not	at	what	point	he	will	emerge	from	the	trees’.109	Chapter	
Two’s	review	of	context	thus	informs	much	of	the	thesis’	subsequent	analysis	and	quite	
deliberately	covers	the	broadest	possible	scope;	ethical,	legal,	political,	social	and	cultural	
components	are	each	integers	that	vie	for	prominence	with	the	technical	throughout	this	
deployment	debate	and	each	requires	appropriate	heft.	The	role	of	the	‘human	dimension’110,	for	
instance,	has	recurring	weight	in	setting	this	thesis’	assumptions.	This	is	borne	out	by	
developments	in	recent	military	doctrine:	The	US	Army	Combined	Arms	Center	identifies	
precisely	such	challenges	arising	from	‘the	rapid	evolution	of	methods,	the	complex	and	dynamic	
mix	of	cultures,	a	broad	range	of	actors	and	unprecedented	proliferation	of	technology’	and	does	
so	in	order	to	optimize	its	‘most	agile	resource,	its	people’.	111	Only	within	this	framework	does	the	
Center	see	its	resources	being	able	‘to	thrive	in	the	ambiguity	and	chaos	of	2015’.112	Tipping	
points	exist,	therefore,	when	one	element	(here,	perhaps	the	human	dimension)	trumps	other	
contextual	components	and,	certainly,	technical	components	within	this	thesis’	broad	argument;	
the	assertion	will	actually	be	that	good	soldiers	with	lesser	equipment	will	eventually	outplay	
poor	soldiers	armed	with	latest	technology.113	It	is	always	contextual	issues	that	will	fashion	the	
deployment	of	weapons	autonomy.		
	

In	this	vein,	this	thesis	considers	why	and	to	whom	the	deployment	of	AWS	might	appeal	and	
the	several	drivers	that	press	for	autonomy	in	States’	(and	others’)	arsenals.	Unsurprisingly,	this	is	

																																																								
2005).	Gray	is	Director,	Centre	for	Strategic	Studies,	Department	of	Politics	and	International	Relations,	Reading	
University.	In	particular,	Chapter	2	(Context)	seeks	to	repurpose	several	of	Gray’s	arguments	within	the	AWS	debate.		
106	General	Sir	Richard	Barrons,	Commander	Joint	Forces	Command	(Retd.)	in	conversation	with	the	author,	23	June	
2016.	
107	Several	sources	consider	this	relationship.	See,	generally:	J-C	Ruano-Borbalan,	‘Technology,	Science	and	Society;	
Norms,	Cultures	and	Institutions	matter’,	Journal	of	Innovation	Economics	and	Management,	1,	22,	(2017),	3-8	
<https://www.cairn.info/revue-journal-of-innovation-economics-2017-1-page-3.htm>	[accessed	12	December	2016]	
108	Professor	Philip	Sabin,	Professor	of	Strategic	Studies	at	KCL,	in	conversation	with	the	author,	29	June	2017.	
109	T	Hammes,	‘Assumptions	–	A	Fatal	Oversight’,	Infinity	Journal,	1,	(2010)	
<https://www.infinityjournal.com/article/1/Assumptions__A_Fatal_Oversight/>	[accessed	2	July	2017].	
110	US	Army,	‘Army	Human	Dimension	Strategy	2015;	Building	cohesive	teams	to	win	in	a	complex	world’,	ACAC,	
(2015)	p.	1	
<http://usacac.army.mil/sites/default/files/publications/20150524_Human_Dimension_Strategy_vr_Signature_WM_
1.pdf>.		
111	US	Army	Combined	Arms	Center,	‘The	Human	Dimension	White	Paper;	a	framework	for	optimizing	human	
performance’,	USACAC,	(2014)	p.	6	
<http://usacac.army.mil/sites/default/files/documents/cact/HumanDimensionWhitePaper.pdf>.	
112	Ibid.,	pp.	6-11.	
113	Here,	‘assertion’,	not	assumption;	see:	J.	Storr,	The	Human	Face	of	War,	25,	7	(A&C	Black,	2009)	p.	200.		
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also	an	involved	relationship.	While	recent	growth	in	military	robotics	and	unmanned	systems114	
may	have	multiple	drivers,	empirical	advantages	to	their	deployment	are	more	complex	to	
identify115,	a	phenomenon	that	is	reviewed	in	Chapter	Three	(Drivers)	through	its	analysis	of	
technology	creep	and	the	rise	of	machine	autonomy	in	other	commercial	sectors.116	Given	that	
such	systems	are	unmanned	and,	as	such,	with	a	definable	economic	cost	should	they	be	lost,	
appropriate	weighting	can	also	be	given	to	operational	factors,	the	appeal	of	‘force	multiplication’	
and	the	optionality	that	AWS	deployment	may	provide	commanders	through	adoption	of	riskier	
(and	likely	idiosyncratic)	tactics.117	Increasing	autonomy	in	weapon	systems	also	suggests	quicker	
reaction	to	adversarial	threats	through	an	accelerated	targeting-decision-cycle	and	the	speeding	
up	of	data	processing.118	As	noted	by	Russell,	it	promises	better	persistence	and	better	endurance	
while	also	reducing	humans’	exposure	to	enemy	fire.119	A	driver	therefore	stems	from	what	is	
referred	to	above	as	a	‘revolution	in	expectation’.120	Here,	weapons	autonomy	appears	to	be	an	
inescapable	development.121	Indeed,	the	US	Department	of	Defense’s	Unmanned	Systems	
Integrated	Roadmap	FY	2013-2038	plots	an	unambiguous	course	whereby	‘the	prevalence	and	
uses	of	unmanned	systems	continues	to	grow	at	a	dramatic	pace’.122	It	has	thus	become	a	broad	
procurement	assumption123	that	robotics	are	ideal	for	‘dull’	missions124	(long-duration	
undertakings	with	mundane	tasks	ill-suited	for	manned	systems),	‘dirty’	missions	(exposure	to	
hazardous	conditions)	as	well	as	deep	(behind	enemy	lines)	and	‘dangerous’	missions.		

	
Chapter	Three	also	reviews	those	theoretical	arguments	that	promote	AWS	deployment	as	a	

means	of	raising	ethical	standards	on	the	battlefield.	The	notion	here	is	that	machines	promise	to	

																																																								
114	See,	generally:	Marketsandmarkets.com,	‘Military	Robots	Market	to	be	worth	21.11	US$	Billions	by	2020’,	Markets	
and	Markets,	<http://www.marketsandmarkets.com/PressReleases/military-robots.asp>	[accessed	17	July	2017].	
115	Robotic	World	blog,	‘The	use	and	advantages	of	military	robots’,	A	Robotic	World,	
<http://minerrobot.weebly.com/the-use-and-advantages-of-military-robots.html>	[accessed	17	January	2017].	
116	Throughout	this	work,	the	term	driver	is	used	to	refer	to	accelerators,	prompts	and	catalysts	for	particular	further	
actions.	Source:	Dictionary.com	<http://www.dictionary.com/browse/drive>:	i)	definition	25,	‘vigorous	onset	or	
onward	course	towards	a	goal	or	objective’	and	ii)	coincidentally,	definition	26	‘a	strong	military	offensive’.	For	a	
pictorial	review	of	recent	combat	robotics	see:	S	Melendez,	‘The	Rise	of	the	Robots:	What	the	future	holds	for	the	
world’s	armies,	(2017),	Fast	Company	blog	<https://www.fastcompany.com/3069048/where-are-military-robots-
headed>	[accessed	4	July	2017].		
117	The	term	‘battlefield	commander’	does	not	relate	in	this	work	to	any	particular	rank	but	is	used	throughout	to	
convey	a	nomenclature	of	that	superior	who	is	controlling,	usually,	the	in-theatre	deployment	of	AWS.	This	may	or	
may	not	be	separate	from	other	political	authority	in	the	decision	process.	It	also	relates	to	a	level	of	accountability	
and	legal	responsibility.	Force	multiplication	is	discussed	in	detail	in	Chapter	3	(Drivers),	specifically:	3.3	(‘Structural	
and	procurement	drivers’)	and	3.5	(‘Operational	drivers’).		
118	See:	Chapter	3	(Drivers).	The	very	best	human	fighter	pilot	needs	at	least	0.3	seconds	to	respond	to	a	simple	
stimulus	and	more	than	twice	as	long	to	make	a	choice	between	several	possible	responses.	Chapter	3	(Drivers)	
similarly	discusses	the	OODA	Loop	(‘Observe,	Orient,	Decide	and	Act’).	
119	S	Russell,	D	Dewey	and	M	Tegmark,	‘Research	priorities	for	robust	and	beneficial	artificial	intelligence’,	AI	
Magazine,	(2015),	104-114	<http://futureoflife.org/data/documents/research_priorities.pdf>.	
120	Professor	Philip	Sabin,	Professor	of	Strategic	Studies	at	KCL,	in	conversation	with	the	author,	29	June	2017.	
121	Heather	Roff,	‘The	Self-Fulfilling	Prophesy	of	High-tech	War’,	Duck	of	Minerva,	(2015)	
<http://duckofminerva.com/2015/12/the-self-fulfilling-prophecy-of-high-tech-war.html>	[accessed	3	March	2017].		
122	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY	2013-2038’,	p.	20.	
123	Melendez,	(2017),	generally.	
124	The	relevance	of	autonomous	unmanned	machines	for	dull,	dirty,	deep	and	dangerous	missions	is	well	covered	by	
PJ	Neal,	‘From	Unique	Needs	to	Modular	Platforms:	The	Future	of	Military	Robotics’,	US	Naval	Institute,	(2010),	pp.	1-
7.	
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‘remove’	humans	from	that	combat	frontline.	Regardless	of	training	procedures,	it	has	proved	
empirically	unrealistic	to	assume	that	humans	obey	LOAC	in	moments	of	combat	stress:	In	this	
case,	Malhoney	notes	that	soldiers	‘are,	at	best,	a	variable	tool	in	waging	war’.125	The	corollary	is	
therefore	that	AWS	deployment	may	empirically	be	justified	by	recurring	lapses	in	battlefield	jus	
in	bello.126	Instead,	a	theoretical	construct	can	be	posited	whereby	autonomous	weapons	operate	
under	a	transparent,	code-based	‘ethical	governor’	that	edits	machine	actions,	goals	and	values	in	
advance	of	lethal	engagement.	Further	to	this	point,	AWS	may	operate	more	appropriately	than	
human	soldiers	if	built	without	need	for	self-protection.	Again,	however,	this	is	to	mask	difficulties	
if	AWS	deployment	is	to	be	reliable	and	compliant:	Just	as	it	is	unclear	how	unsupervised	
machines	can	be	shoehorned	into	battlefield	operations,	it	is	uncertain	how	removing	oversight	
will,	in	its	wide	definition,	affect	performance.127	Moreover,	efforts	to	deploy	battlefield	autonomy	
deflect	focus	from	the	fact	that	changes	in	how	missions	are	accomplished	will	result	in	wholly	
new	consequences	that	must	be	understood	and	integrated	into	subsequent	battlecraft.128	The	
thesis’	deployment	analysis	therefore	considers	several	continua	that	exist	between,	at	one	end,	
the	notion	of	self-learning	and	independent	‘killer	robots’	that	sentiently	roam	the	battlefield	to	
the	more	likely	advent	of	task-specific,	human-machine	teaming	that	involves	hardware	with	
specific	autonomous	capabilities	in	specific	applications.129	A	purpose	of	Chapter	Four	
(Deployment)	is	thus	to	consider	definitional	conflicts	that	arise	from	the	wide	variety	of	
static/mobile	platforms	and	defensive/aggressive	assignments	which	might	comprise	AWS	
deployment	as	well	as	their	incorporation	into	subsequent	battlecraft.		

	
As	noted	by	Cummings,	autonomy	is	also	likely	to	enable	the	execution	of	wholly	new	mission	

types130,	particularly	in	areas	such	as	cyber	and	electronic	warfare	in	which	decision	speed	is	
critical	to	success.131	Its	adoption,	however,	is	more	likely	to	be	characterised	by	incremental	
replacement	of	human	oversight	from	an	ever-increasing	number	of	currently	supervised	
battlefield	tasks.	That	scope	is	illustrated	by	a	set	of	lethal	and	non-lethal	scenarios	that	is	set	out	
by	the	US	Department	of	Defense’s	2016	study	of	weapons	autonomy.132	These	range	from	
covertly-deployed	networks	of	smart	mines	to	stand-alone	systems	controlling	the	rapid-fire	
exchange	of	cyber	weapons,	from	swarming	autonomous	machines	intended	to	disrupt	enemy	
operations	to	unmanned,	sentient	aircraft	capable	of	adaptively	jamming	enemy	positional,	
navigational	and	timing	(PNT)	capabilities.133	Scope	here	also	concerns	the	mechanisms	for	AWS	

																																																								
125	Col	S	Malhoney,	Ethics	Theory	for	the	Military	Professional,	32,	3,	(Air	University	Review,	1981),	p.	55.	
126	Jus	in	bello	et	al	is	discussed	in	Chapter	5	(Constraints),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	
Combat’).	
127	See,	in	particular:	Chapter	4	(Deployment),	specifically	4.7	(‘Operations	and	causes	of	failure’).		
128	Here,	consequences	are	understood	primarily	in	their	operational	rather	than	any	tactical	or	strategic	meaning.	
Battlecraft	is	defined	throughout	as	the	skills	and	techniques	that	comprise	military	combat	including	procedures	and	
the	deployment	of	military	assets.	
	
129	See,	generally:	Human	Rights	Watch,	Arms	Division,	Losing	Humanity	–	the	Case	against	Killer	Robots,	(USA:	
Washington,	2012)	<http://www.hrw.org/reports/2012/11/19/losing-humanity-0>.	The	organisation	is	widely	
recognised	to	have	been	the	first	NGO	to	highlight	the	issues	posed	by	the	deployment	of	autonomous	weapons.	
130	A	detailed	tasking	review	is	provided	by	ML	Cummings,	‘Artificial	intelligence	and	the	future	of	warfare’	The	Royal	
Institute	of	International	Affairs,	(2017)	<https://www.chathamhouse.org/publication/artificial-intelligence-and-
future-warfare>	[accessed	2	April	2017].		

131	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	US	Defense	Science	Board,	p.	11.	
132	Ibid.,	p.	4.	
133	Ibid.,	generally.		
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overrule	and	interruption.	Are	such	platforms	to	be	command-executing	whereby	the	weapon	
receives	its	order,	carries	it	out	and	then	pauses	to	await	the	next	command	or	a	sovereign-type	
system	that	has	open-ended	mandate	to	operate	on	the	battlefield	in	pursuit	of	broad	
objectives?134		

 Introduction to AWS feasibility  
	
It	is	this	portfolio	of	challenges	that	occasions	the	thesis'	overarching	inquiry	into	the	matter	of	
technical	feasibility	and	whether	or	not	such	deployment	obstacles	are	in	fact	intractable.	
Chapters	Five	to	Ten	identify	and	unpick	these	challenges.	First,	chapter	Five	(Obstacles)	identifies	
non-technical	constraints,	reviewing	the	legal	framework	into	which	such	weapons	must	fit	in	
order	to	highlight	areas	where	compliance	is	likely	to	be	problematic.135		This	thesis	adopts	ICRC’s	
broad	assumption	that	procuring	parties	(here,	States	rather	than	non-State	players)	do	place	
weight	on	their	weapons	being	LOAC	compliant.136	If,	for	instance,	it	is	a	legal	condition	to	
battlefield	engagement137	that	there	be	unambiguous	distinction	between	combatants	and	non-
combatants138,	how	then	might	AWS	fit	into	existing	frameworks	that	require	such	a	finely	
nuanced	calculation?139	There	are,	after	all,	four	such	legal	hurdles	that	comprise	LOAC.	Each	
requires	satisfaction.	Is	each	specific	attack	proportional?	Is	it	militarily	necessary?	Has	due	
process	has	demonstrably	been	undertaken	to	ensure	the	selected	target	is	a	bone	fide	combatant?	
Moreover,	LOAC	requires	that	appropriate	action	be	taken	to	prevent	unnecessary	human	
suffering	arising	from	that	(and	every)	lethal	engagement.	The	analysis	will	demonstrate	that	
other	‘soft’	complexities	exist.	It	is,	as	an	example,	very	difficult	for	coding	to	capture	the	fluid	
nature	of	LOAC,	in	particular	the	imprecision	that	exists	between	International	Humanitarian	Law	
(IHL),	International	Human	Rights	Law	(IHRL)	and	rules	on	targeting.140	It	will	also	be	challenging	
to	write	compliant	engagement	routines	given	very	different	national	interpretations	that	exist	on	
the	most	basic	components	of	formal	rules	of	engagement.141	Both	ICRC	and	Palin	separately	note	
that	it	is	the	battlefield	consequences	of	this	complexity142	that	should	dictate	humans	remain	

																																																								
	
134	Nick	Bostrom,	Superintelligence;	Paths,	dangers,	strategies,	(Oxford:	Oxford	University	Press,	2014)	p.	148.	See	also:	
Chapter	8	(Software),	specifically:	8.3	(‘Utility	function’),	8.5	(‘Anchoring	and	goal-setting	issues’)	and	8.6	(‘Value	setting	
issues’).	
135	Specifically	the	legal,	ethical,	political,	social	and	economic	constraints	to	removing	human	supervision	in	lethal	
engagements.			
136	International	Committee	of	the	Red	Cross,	‘The	Use	of	Armed	Drones	Must	Comply	with	the	Laws	of	Armed	
Combat’,	ICRC,	(2013)	<https://www.icrc.org/eng/resources/documents/interview/2013/05-10-drone-weapons-
ihl.htm>	[accessed	2	February	2016].		
137	A	detailed	discussion	on	the	ramifications	of	IHL	and	IHRL	on	inter-State	lethal	engagements	is	undertaken	in	
Chapter	5	(Obstacles),	specifically	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Conflict’).	
138	Lucy	Suchman	and	Jutta	Weber,	‘Human-Machine	Autonomies’	in	Autonomous	Weapon	Systems:	Law,	Ethics,	Policy,	
(Cambridge:	Cambridge	University	Press,	2016),	p.	1.	
139	For	a	detailed	discussion	on	this	nuance,	see:	JFR	Boddens	Hosang,	‘Rules	of	Engagement;	rules	on	the	use	of	force	
as	linchpin	for	the	international	law	of	military	operations’,	UvA-DARE,	(University	of	Amsterdam,	2017),	pp.	59-86.	
140	See:	Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Conflict’).		
141	Throughout	this	thesis,	UK	ROE	is	taken	from	JSP	383,	‘The	Joint	Service	Manual	of	the	Law	of	Armed	Conflict’,	
Ministry	of	Defence,	(UK	MOD	Publications,	28	August	2013)	<https://www.gov.uk/government/collections/jsp-383>	
[accessed	12	January	2017].			
142	International	Red	Cross,	‘Handbook	on	International	Rules	Governing	Military	Operations’,	ICRC,	(2013)	
<https://www.icrc.org/sites/default/files/topic/file_plus_list/0431-



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 28 | P a g e  

 
 

intimately	involved	in	the	engagement	sequence.143	The	point	is	that	it	is	often	not	
straightforward	to	determine	which	legal	framework144	on	hostilities	applies	in	each	
engagement.145	The	distinction	highlights	a	general	dislocation	between,	on	one	hand,	the	
capabilities	that	should	comprise	a	legally-compliant	yet	unsupervised	weapon	and,	on	the	other	
hand,	what	might	realistically	be	possible	using	a	code-based	framework	to	execute	on	those	same	
required	actions.	It	is	this	observation	that	reinforces	the	degree	of	priority	given	to	the	role	of	
technology	in	this	thesis’	arguments.146		

	
The	distinction	provides	a	helpful	bridge	to	considering	whether	the	whole	construct	of	

weapon	independence	is	terminally	undermined	by	these	technical	shortcomings.	Forming	a	view	
on	this	relationship	principally	requires	dissection	of	machine	learning	(ML)	processes	to	
determine	how	they	can	fit	with	operational	imperatives	but	also	with	LOAC	obligations.147	As	
noted	by	Christensen,	the	challenge	here	is	to	make	forecasts	in	a	discipline	where	technology	
development	is	so	fast-moving.148	A	key	precept	is	highlighted	by	Benitez	whereby	all	weapons	
and	all	weapon	consequences	must	be	controllable	and,	in	AWS	deployment,	whether	that	control	
can	still	be	maintained	absent	of	supervision	across	the	components	that	make	up	each	lethal	
engagement.149	Indeed,	a	broad	corpus	exists	to	evidence	that	this	is	a	long-standing	requirement	
for	the	moral	acceptability,	political	legitimacy	and	general	legality	of	organised	violence.150	A	
focus	for	this	thesis	is	therefore	to	determine	the	balance	that	must	exist,	on	the	one	hand,	
between	envisaged	tasks	for	the	AWS	and,	on	the	other,	between	prospective	technical	
capabilities	and	the	practicalities	of	battlefield	control	as	exercised	by	those	engaged	in	AWS	
deployment	(for	the	purposes	of	this	thesis,	hereinafter	labelled	the	Delivery	Cohort	as	defined	
below).151	Several	ramifications	arise	from	this	incongruity.	Enabling	a	weapon	to	select	targets	
makes	it	problematic	for	the	relevant	human	commander	both	to	predict	and	to	understand	every	
specific	target,	every	precise	engagement	moment,	the	location	where	violence	is	administered	
and	the	environment	within	which	violent	effects	are	undertaken.	This	informs	a	conclusion	that	
commanders	deploying	AWS	are	prima	facie	unable	to	control	machine	behaviours	that	are	within	

																																																								
handbook_on_international_rules_governing_military_oprations.pdf>.	The	publication	runs	for	1,464	pages	and	covers	
general	obligations	during	combat	including	targeting	and	command	responsibilities.		
143	R	Palin,	Multinational	Military	Forces:	Problems	and	Prospect,	(London:	Adelphi	Paper	294,	Routledge,	2005)	p.	34.		
144	Be	it	International	Humanitarian	Law	(IHL)	or	International	Human	Rights	Law	(IHRL).	
145	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction’,	p.	8.	
146	US	Department	of	Defense,	‘The	Role	of	Autonomy	in	DoD	Systems’,	pp.	21-29.		
147	See	again:	Chapters	6	(Wetware),	7	(Firmware)	and	8	(Software).	
148	For	a	broad	discussion	on	current	global	autonomous	developments	(Antarctica,	Ocean,	Swarm	technologies),	see:	
H	Christensen,	‘On	their	own:	Research	on	autonomous	technology	is	developing	increasingly	sophisticated	capability	
in	air,	marine	and	around	robotic	vehicles’,	Georgia	Tech	Research	Institute,	undated	
<https://gtri.gatech.edu/casestudy/autonomous-technology-research-developing-increasi>	[accessed	2	June	2017].		
149	Mike	Benitez,	‘It’s	About	Time:	The	Pressing	Need	to	Evolve	the	Kill	Chain’,	War	on	the	Rocks,	(2017)	
<https://warontherocks.com/2017/05/its-about-time-the-pressing-need-to-evolve-the-kill-chain/>	[accessed	29	
October	2017].		
150	The	harmful	effects	of	weapons	must	be	foreseeable	and	must	at	all	times	be	under	the	control	of	those	who	
employ	them.	See:	International	Committee	of	the	Red	Cross,	Draft	rules	for	the	limitation	of	the	dangers	incurred	by	
the	civilian	population	in	time	of	war,	Article	14,	ICRC,	(1956).	See	also:	International	Law	Commission,	Articles	on	the	
responsibility	of	States	for	internationally	wrongful	acts,	Article	8	and	23	(1),	UNGA	Res	56/83,	(2001).		
151	For	the	purposes	of	this	thesis,	the	term	Delivery	Cohort	is	a	useful	device	used	throughout	to	aggregate	the	
several	parties	involved	in	implementing	AWS	adoption.	See	footnote	16	to	this	chapter	for	definition.		
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their	responsibility.152		
	
Goff	and	Brooks	point	out	that	an	ability	to	make	appropriate	judgement	may	already	be	

diluted	as	irregular	warfare	removes	conventional	designations	from	battle	zones	and	
competencies.153	A	different	point	(but	supporting	this	notion	of	erosion	and	predictability)	is	
made	by	Santor	and	Omicini	who	note	that	even	when	a	human	operator	is	tasked	with	
authorising	force	(here,	‘pushing	the	button’	and	the	release	of	lethal	force	against	an	identified	
and	considered	target),	‘important	aspects	of	the	decisional	process	that	leads	to	selection	and	
engagement	[will	already	have]	been	delegated	to	automated	system[s]’.154	Indeed,	the	twin	cores	
of	machine	autonomy	and	human	involvement	in	the	targeting	loop	are	not	a	zero	sum	such	that	
increasing	the	one	results	in	a	corresponding	decrease	of	the	other.	As	suggesed	by	SIPRI,	this	
would	otherwise	become	a	virtuous	circle.155	This,	however,	is	oveshadowed	by	the	greater	hitch	
to	ensuring	predictability	whereby	AWS’	instructions	must	remain	prescriptive	specifications	that	
cannot	properly	be	defined	by	current	coding	methodologies156,	particularly	around	compliant	
selection	of	targets.157	Given	that	such	function	must	be	based	entirely	upon	code-based	
representations	of	the	machine’s	immediate	environment	(there	can,	by	definition,	be	no	human	
tuning	of	its	processes),	any	unforeseen	change158	to	that	environment	or	uncorreographed	
operation	outside	of	that	environment	‘will	necessarily	lead	to	unpredictability	in	its	
functioning’.159	Machine	predictability	therefore	arises	as	a	key	priority	to	commanders	and	the	
Delivery	Cohort.160	Asaro	and	others	conclude,	moreover,	‘as	the	behaviour	of	automated	systems	
becomes	more	complex,	and	more	dependent	on	imports	from	environmental	sensors	and	
external	data	sources,	the	less	predictable	[AWS]	become’.161	As	an	adjunct,	this	thesis	must	also	
consider	the	‘temporal’	aspects	of	AWS	deployment	and	the	consequences	of	warfare’s	
automation	narrowing	the	timeframe	for	consequential	situational	assessment.162	In	reflecting	

																																																								
152	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’).		
153	Kendall	Gott	and	Michael	Brooks,	Warfare	in	the	Age	of	Non-State	Actors,	(Kansas:	Combat	Studies	Institute	Press,	
2007),	pp.	209-230	and	225-342.	
	
154	Sartor	and	Omicini,	p.	61.	
155	Stockholm	International	Peace	Research	Institute,	‘Implementation	of	Article	36	Weapon	Reviews	in	light	of	
increasing	autonomy	in	weapon	systems’,	SIPRI,	(2015)	<https://www.sipri.org/media/press-
release/2015/implementing-article-36-weapon-reviews-light-increasing-autonomy-weapon-systems>	[accessed	25	
April	2017].		
156	Lucy	Suchman	and	J	Weber,	‘Human-machine	Autonomies’	in	N	Bhuta	et	al	(eds),	Autonomous	Weapons	Systems:	
Law,	Ethics,	Policy	(Cambridge	University	Press,	2016),	p.	85.	
157	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction’,	p.	9.	
158	L	Weiss,	‘Autonomous	Weapons	in	the	Fog	of	War’,	IEEE	Spectrum,	(2012)	
<http://spectrum.ieee.org/robotics/military-robots/autonomous-robots-in-the-fog-of-war>	[accessed	6	July	2017].		
159	Paul	Scharre,	‘Robotics	on	the	Battlefield,	Part	II:	The	Coming	Swarm’,	CNAS,	(2014)	
<https://s3.amazonaws.com/files.cnas.org/documents/cnas_TheComingSwarm_Scharre.pdf.	
160	General	Gary	Luck	and	others,	‘Joint	Operations:	Insights	and	Best	Practices’,	Joint	Warfare	Center,	US	Joint	Forces	
Command,	(2008),	p.	21	<http://www.au.af.mil/au/awc/awcgate/jfcom/joint_ops_insights_july_2008.pdf>.	
161	Peter	Asaro,	Cybernetics	and	autonomous	weapons:	reflections	and	responses,	XXXIII,	3,	(Italy:	Paragigmi:	Rivista	di	
critica	filosofica,	2015),	pp.	83-107.	
162	John	Horgon,	‘The	undiscovered	mind:	Exploring	the	world	of	artificial	intelligence’	in	When	Machines	outsmart	
humans,	(Nick	Bostrom	blog,	Futures,	Vol	35:7,	2000)	<https://nickbostrom.com/2050/outsmart.html>;	Kassan	
similarly	concludes	on	AI	machines	that	‘we	don’t	know	what	to	build,	much	less	how	to	build	it’.	Horgan	is	also	
pessimistic;	‘the	neuroscience	appears	to	be	making	anti-progress;	the	more	information	we	acquire,	the	less	we	seem	
to	know’.	
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upon	predictable	outcomes	(and	given	that	the	definition	between	surveillance	and	targeting	
practices	continues	to	blur),	even	the	boundaries	between	weapon	types	is	not	always	clear	as	
weapon	sub-components	become	less	distinct	and	even	geographically	distributed.163		
	

A	key	purpose	of	this	thesis	is	to	query	the	depth	and	persistence	of	such	flaws.	For	this,	the	
analysis	generally	assumes	the	deployment	of	wide-task	AWS	with	broad	autonomous	
capabilities.	What	emerges	is	an	imprecise	set	of	component	relationships,	a	brittleness	arising	
from	a	broad	portfolio	of	sub-systems	and	the	creation	of	‘technical	debt’	that	stems	from	AWS’	
complexity.164	Furthermore,	these	consequences	are	exacerbated	by	AWS’	foundational	
requirement	for	dynamic	re-basing	of	its	routines	including	anchoring,	goal	and	value	setting	as	
well	as	the	updating	of	both	utility	and	planning	functions.165	These	may	appear	discrete	issues	of	
calibration,	verification	and	testing	but	this	would	be	to	ignore	an	unending	requirement	(and,	
notes	Marchant,	the	associated	difficulty)166	for	AWS	to	undertake	moment-by-moment	tuning	
absent	of	third	party	involvement.167	Calibration	in	this	case	relates	not	to	maximizing	
performance	but	to	the	verifiable	measure	of	maintaining	LOAC	compliance.		
	

In	doing	so,	it	is	necessary	to	question	the	likely	fit	between	AWS	deployment	and	battlefield	
operations	including,	inter	alia,	a	review	of	metrics	such	as	adopted	rules	of	engagement	and	
command.168	A	purpose	of	this	section	is	therefore	to	evidence	a	fundamental	change	in	practices	
that	will	be	needed	as	AWS	are	deployed.	Indeed,	several	well-tried	concepts	that	have	long	
comprised	battlecraft	may	no	longer	be	fit	for	purpose.	Chapter	Ten	(Oversight)	considers	the	key	
and	enduring	role	of	humans	in	lethal	engagement	and	whether	MHC	might	provide	an	on-going	
control	mechanism	and	statutory	umbrella	for	AWS	deployment.	The	matter	has	been	an	agenda	
item	in	the	United	Nations’	Convention	for	Conventional	Weapons	since	2014	and,	while	progress	
in	that	body	continues	to	be	patchy,	the	historiography	for	this	thesis’	final	section	is	nevertheless	
developing	quickly.169	Roff	and	Moyes,	for	instance,	identify	the	overarching	significance	of	
selection	over	targets	to	be	the	critical	control	function	of	a	weapon.170	In	this	vein,	the	concept	of	
MHC	encapsulates	the	‘when,	where	and	how	weapons	are	used;	what	or	whom	they	are	used	

																																																								
163	Katharine	Hall	Kinderrater,	‘The	Emergence	of	Lethal	Surveillance:	Watching	and	Killing	in	the	History	of	Drone	
Technology’,	Security	Dialogue,	47,	3,	(25	January	2016),	223-238.	
	
164	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).	
165	Chapter	8	(Software),	specifically:	8.3	(‘Utility	function’)	and	8.5	(‘Anchoring	and	goal	setting	issues’).		
166	‘During	2009,	US	drones	sent	back…	more	than	24	years’	worth	of	video	footage’.	Here,	the	Economist	Magazine	
predicted	that	2011	would	produce	30	times	as	much	information’.	
167	See,	generally:	G	Marchant	and	others,	‘International	Governance	of	Autonomous	Military	Robots’,	Columbia	
Science	and	Technology	Law	Review,	XII,	(2011),	p.	274	
<http://stlr.org/download/volumes/volume12/marchant.pdf>.	See	also:	Chapter	10	(Oversight),	specifically:	10.3	
(‘Validation	and	testing’).		
168	Chapter	10	(Oversight),	specifically:	10.1	(‘Meaningful	Human	Control’).	See	also:	Chapter	5	(Obstacles),	specifically;	
5.6	(‘Behavioural	constraints’).	
169	HRW’s	Mary	Wareham	notes	that	there	were	no	discussions	on	killer	robots	at	the	CCW	until	November	2013	
when	the	annual	meeting	agreed	to	add	the	subject	to	the	agenda.	In	October	2012,	HRW	was	to	co-found	the	
Campaign	to	Stop	Killer	Robots.	
170	Heather	Roff	and	Richard	Moyes,	‘Meaningful	Human	Control,	Artificial	Intelligence	and	Autonomous	Weapons’,	UN	
Convention	for	Conventional	Weapons,	(2016),	generally.	See	also:	International	Committee	of	the	Red	Cross,	
‘Statement	of	the	International	Committee	of	the	Red	Cross’,	ICRC,	Geneva,	(2015).	
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against;	and	the	effects	of	their	use’.171	In	considering	MHC’s	role,	the	emphasis	in	this	thesis	is	
specifically	on	human	targets;	that	is,	the	identification	of	humans	or	human-inhabited	objects	
(buildings,	vehicles)	as	lawful	targets	for	engagement.172	The	thesis	reviews	(and	adopts)	Roff	and	
Moyes’	position	that	MHC	‘is	best	considered	as	operating	at	three	different	layers:	ante	bellum,	in	
bello	and	post	bellum’.173	The	distinction	is	important	as	it	suggests	that	MHC	must	imbue	all	
phases	of	battlecraft.	The	ramification	is	that	each	of	these	factors	informs	and	then	shapes	each	
other	constituent	of	the	control	debate	relating	to	‘the	design,	acquisition	and	use	of	tools	of	
violence’.	MHC	is	therefore	not	a	single	test	in	the	engagement	sequence.	Instead,	it	should	be	an	
overarching	benchmark	that	provides	a	framework	to	violence	which	is	applicable	right	down	to	
the	level	of	individual	direct	attacks.	Similarly,	its	obligations	require	the	operator	and	his	
command	chain	(however	that	may	then	be	comprised)	to	evaluate	the	expected	outcome	of	using	
that	specific	weapon	in	that	specific	context	with	this	obligation	existing	for	each	and	every	lethal	
engagement.174	Moreover,	notes	Asaro,	the	AWS	is	a	machine	deployed	for	a	certain	purpose:	In	
itself	it	is	devoid	of	agency	or	intentionality	and,	on	this	basis,	it	is	particularly	appropriate	first	to	
consider	the	broad	role	of	context	as	one	component	of	challenge	to	AWS	deployment.175		

 Statement of methods 
	
The	purpose	here	is	to	detail	this	thesis’	methods,	in	particular	its	handling	of	primary	sources	
which	comprise	a	key	part	of	the	work’s	original	contribution	to	its	subject	matter.	The	chapter’s	
balance	therefore	reviews	evidence-gathering,	sampling	and	data	collection	methods	as	well	as	
the	ethics	framework	underpinning	the	thesis’	writing	as	a	social	science	research	project.	The	
thesis	has	primarily	been	undertaken	using	qualitative	methods.	This	requires	amplification.	For	
the	purposes	herewith,	qualitative	methods	involve	‘description	of	kinds	of	characteristics	
without	exclusive	recourse	to	terms	of	measurements	or	amounts’.176	They	are	multi-method	in	
their	focus	involving	an	interpretative,	naturalistic	approach	to	the	subject	matter.	They	also	
provide	a	study	structure	‘within	natural	settings,	attempting	to	make	sense	of	and	interpret	
phenomena	in	terms	of	the	meanings	of	people	bring	to	them’.177	The	thesis’	extensive	attention	
upon	the	role	of	context	in	removing	weapon	supervision	is	a	consequence	of	this	approach	
which	is	underpinned	by	Tashakkori	and	Teddlie’s	‘belief	in	the	value-ladeness	of	inquiry,	a	
belief	in	the	theory-ladeness	of	facts	but	also	belief	that	reality	is	multiple	and	constructed’.178	By	
way	of	balance,	this	thesis’	structure	is	also	driven	by	the	contention	of	King,	Keohane	and	Verba	
that	such	differences	(between	quantitative	and	quantitative	approaches)	‘are	mainly	ones	of	

																																																								
171	Article	36,	‘Killing	by	machine;	key	issues	understanding	for	meaningful	human	control’,	2015,	generally.	
172	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction’,	p.	4.	The	thesis	is	therefore	less	
concerned	with	defensive	weapon	systems	that	operate	on	the	basis	of	unambiguous	signals	from	another	(unmanned	
or	uninhabited)	device	that	comprises	an	imminent	threat.	
173	Roff	and	Moyes,	p.	3.	
174	Indeed,	there	is	a	personal	legal	requirement	for	the	human	pulling	that	trigger	to	investigate,	understand	and	then	
act	upon	that	balance	of	probabilities.	
175	Peter	Asaro,	Determinism,	Machine	Agency	and	Responsibility,	2,	(Italy:	Politica	&	Societa,	2014),	pp.	265-292.	
176	R	Murray	Thomas,	Blending	Qualitative	and	Quantitative	Research	Methods	in	Thesis	and	Dissertations,	(Corwin	
Press,	Sage,	California,	2003),	p.	ix.	
177	Ibid.,	p.1.		
178	Abbas	Tashakkori	and	Charles	Teddlie,	Mixed		Mixed	Methodology:	Combining	Qualitative	and	Quantitative	
Approaches,		Applied	Social	Research	Methods	Series,	Volume	46,	(Thousand	Oaks,	Sage	publications,	1998),	p.	13.	
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style	and	specific	technique’	and	that	the	best	research	should	combine	features	of	each	
paradigm.179	
	

For	this	purpose,	the	thesis’	bibliography	is	divided	into	five	sections.	The	first	four	
sections	set	out	book	and	journal	references	underpinning	the	thesis’	ethical,	historical,	legal,	
operational	and	technical	analysis.	The	bibliography’s	more	extensive	section	then	lists	on-line	
sources	and	articles.180	Such	historiographical	evidence	points	to	the	comprehensive	secondary	
research	that	is	widely	available	on,	for	instance,	the	fundamentals	of	AI	and	what	then	is	
theoretically	possible	from	such	technologies	in	removing	supervision	from	lethal	engagements.	
The	guiding	purpose	to	the	methods	listed	below	(case	study,	personal	experience,	interview,	
observational,	historical	and	interactional	inputs)	has	therefore	been	to	deduce,	refine	and	then	
opine	from	this	reference	bank.	In	this	vein,	it	is	possible	to	compose	and	prove	a	theory	around	
the	challenges	to	the	deployment	of	autonomous	weapons.	Interviews	in	this	space	were	then	
directed	at	proving	assumptions	that	AI’s	core	methodologies	have	not	changed	materially	over	
the	past	quarter-century.181	Arguments	here	are	not	particularly	controversial	and	interviewees	
were	happy	to	corroborate	the	broad	premise.	References	similarly	abound	discussing	current	
best	practice,	laboratory	and	theoretical	developments	in	capabilities	and	those	specific	
competences	(with	their	underlying	technologies)	required	to	enable	such	removal.	Research,	
however,	is	largely	absent	on	assessing	the	feasibility	of	such	purpose.		
	

In	addressing	this	task,	the	thesis’	qualitative	methods	deliberately	borrow	from	a	
portfolio	of	research	models.	An	example	here	is	Creswell’s	Grounded	Theory	Approach.182	The	
dissertation’s	research	questions	(the	matter	of	technical	and	operational	feasibility,	the	matter	
of	interim	models	for	removing	weapon	supervision,	States’	adoption	of	weapon	autonomy,	the	
persistence	of	flaws	in	these	models	and,	finally,	the	likely	fit	between	fielding	autonomous	
weapons	and	battlefield	operations)	were	therefore	created	in	order	to	generate	a	
comprehensive	theory	on	AWS	deployment.	Existing	models	were	deliberately	set	aside	in	order	
to	allow	a	substantive	argument	to	emerge	(in	this	case,	the	multi-facetted	and	cumulative	
challenge	arising	from	such	weapons’	technical	debt,	contextual	limitations	and	enduringly	poor	
predictability).	The	approach	also	focuses	on	how	interests	and	parties	are	affected	by	this	new	
theory.	Under	'grounded	theory',	research	is	derived	from	data	acquired	through	fieldwork,	
interviews,	observations	and	the	broadest	possible	documentary	sources	but	is	also	
characterised	by	further	data	collection	arising	from	new	concepts	and	arguments	as	they	arise	
during	the	writing	process.	Here,	arguments	and	data	points	were	loosely	coded	in	order	to	align	
them	with	relevant	battlecraft	characteristics,	conditions	and	consequences	in	order	to	build	and	
emerging	story	line	for	the	overall	research.	Finally	to	this	point,	the	resulting	theory	(here,	
meaningful	human	control	in	the	kill	chain	and	the	enduring	difficulty	of	ceding	control	to	an	

																																																								
179	Gary	King,	Robert	Keohane	and	Sidney	Verba,	Designing	Social	Inquiry:	Scientific	Inference	in	Qualitative	Research,	
(Princeton	University	Publications,	1994),	pp.	5-7.		
180	The	thesis	cites	more	than	850	such	on-line	sources.	Some	180	journals	underpin	the	thesis’	ethical,	historical,	
legal,	operational	and	technical	analysis.		
181	K	Hammond,	Why	Artificial	Intelligence	is	Succeeding:	Then	and	Now,	(Computerworld,	Artificial	Intelligence	Today	
and	Tomorrow,	2015),	para	4	and	generally.	
182	John	Creswell,	Educational	Research	–	Planning,	Conducting	and	Evaluating	Qualitative	and	Quantitative	Research,	
(Boston:	Pearson	Publishing,	Chapter	13	‘Grounded	Theory	Designs,	2012),	pp.	422-499.	
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algorithm)	can	be	reported	in	a	narrative	framework	as	a	set	of	propositions.183	As	noted	by	
Strauss	and	Corbin,	an	advantage	of	this	approach	is	the	method’s	breadth	such	that	the	
resulting	theory,	if	suitably	well	researched,	can	be	‘abstract	enough	and	include	sufficient	
variation	to	make	it	applicable	to	a	variety	of	contexts	related	to	that	phenomenon’.184	
	
	 For	the	purposes	of	this	thesis	and	given	the	foregoing	approach,	evidence	is	defined	as	
an	argument	or	assertion	that	is	backed	up	by	information	in	a	wide	range	of	forms.	Here,	
therefore,	evidence	comprises	a	broad	literature	review,	stakeholder	consultation	and	the	
broadest	possible	meta-analysis.	Cairney,	for	instance,	notes	that	psychology	frequently	impacts	
upon	decision-making	and	decisions	are	rarely	made	purely	on	the	basis	of	scientific	evidence.185	
The	study’s	qualitative	methods	were	therefore	devised	around	a	tailored	set	of	research	
questions	in	order	to	provide	a	detailed	understanding	of	deployment	considerations,	the	
likelihood	of	success	arising	from	such	deployment	models	as	well	as	the	forces	impacting	
decisions	for	AWS’	deployment.	Such	an	understanding	is	critical	given	the	role	of	technical	
development	and	its	implementation	to	this	matter,	the	expectation	that	such	technical	
innovation	creates	in	both	public	and	policy-makers	as	well	as	the	generally	under-researched	
nature	of	the	subject	matter.	Here,	therefore,	the	author	deliberately	adopts	the	perspective	of	a	
social	constructivist	whereby	‘reality	is	socially,	culturally	and	historically	constructed’.186	
	

It	also	underlines	the	importance	of	this	thesis’		extensive	use	of	primary	sources.	
Original	interview	generally	underpins	this	thesis’	interpretivist	paradigm	‘which	portrays	a	
world	in	which	reality	is	socially	constructed,	complex	and	ever-changing’.187	In	order	to	
triangulate	this	evidence,	the	author	has	tested	several	military	sources	to	ascertain	that	
cohort’s	views	on	weapon	independence.	The	thesis’	footnotes	reference	ninety-five	instances	of	
data	points	derived	from	interviews.	The	thesis’	key	innovation	therefore	lies	in	an	combinatory	
analysis	of	long-standing	theory	and	current	best	practices	with	the	empirics	of	operational	
requirements	and	common	sense	in	order	to	provide	original	analysis	of	deployment	
challenges.188	A	useful	characteristic	of	quantitative	research,	after	all,	is	that	targeted	interviews	
are	appropriate	notwithstanding	their	small	sample	size	given	the	method’s	description	and	
analysis	of	a	research	subject	without	limiting	the	scope	of	that	research	or	the	nature	of	
participants’	responses.189	Interviews	split	broadly	between	experts	from	legal,	military,	NGO,	
academic,	practitioner	(industry	and	procurement)	and	other	relevant	institutions	(here,	RUSI,	
Chatham	House	and	Prowler.io	Decision	Summit).	Interviews	were	either	structured	(the	likes	of	
Generals	Cordingley	and	Sharp,	Professors	Sabin	and	Du,	NGO	experts	Wareham,	Goose,	Moyes	

																																																								
183	Ian	Dey,	Grounding	Grounded	Theory:	Guidelines	for	Qualitative	Inquiry,	(Emerald	Group	Publishing,	June	1999),	pp.	
1-2.		
184	Anselm	Strauss	and	Juliet	Corbin,	Basics	of	Qualitative	Research:	Grounded	Theory	Procedures	and	Techniques,	(Sage	
Publishing,	1990),	p.	23.		
185	Cairney,	P,	The	Politics	of	Evidence-based	Policy	Making,	(Palgrave	Macmillan,	2016).	
186	Bloomberg	LD	and	Volpe	M,	‘Completing	your	qualitative	dissertation	–	a	route	map	from	beginning	to	end’,	
(London:	Sage	Publications),	2012.	
187		
188	Here,	research	strategy,	methods,	approach	and	data	collection;	the	selection	of	the	sample,	Peter	analysis,	difficult	
considerations;	the	researcher	limitations	of	the	project.	
189	OP	Atieno,	An	Analysis	of	the	Strength	and	Limitations	of	Qualitative	and	Quantitative	Research	Paradigms,	Problems	
of	Education	in	the	21st	Century,	Masinde	Muliro	University,	Kenya,	13,	(2009),	p.14.	
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and	Sharkey),	semi-structured	(for	example,	Professors	Clark,	Asaro,	Roff,	Suchman,	Cummins	as	
well	as	industry	experts	such	as	Scharre	and	Borrie)	or	unstructured	(ICRC’s	Maurer,	General	
Barrons,	Doctors	West	and	Strohn).	Primary	material	was	also	collected	through	impromptu	
interviews	at	symposia	and	conferences.	Finally	to	this	point,	comments	arising	from	earlier	
drafts	invariably	occasioned	dialogue	which	is	usually	footnoted	in	subsequent	versions	as	
having	taken	place	‘in	conversation	with	the	author’.	The	process	followed	for	these	several	
formats	is	discussed	below.			
	
	 In	general,	the	thesis’	interviewing	methodology	follows	the	protocols	set	out	in	NGO	
Human	Rights	Watch’s	formal	‘Interview	Manual’.190	The	publication	identifies	core	principles,	
minimum	standards	and	best	practice	in	the	conduct	of	fact-finding	interviews.	The	protocols	
are	intended	to	ensure	‘factual,	accurate	[and]	ethical’	analysis	that	also	‘aspires	to	innovation	
and	learning’.191	Under	this	umbrella,	the	author	has	chosen	to	use	first-hand	interviews	as	the	
major	means	of	primary	data	collection	as	they	allow	original	perspective	that	reflects	
participants’	own	notions	of	what	are	complex	issues.	As	noted	by	Patton,	‘qualitative	
interviewing	begins	with	the	assumption	that	the	perspective	of	others	is	meaningful,	knowable	
and	able	to	be	made	explicit’.192	There	are,	however,	recognised	limitations	to	such	interviewing	
including	researcher	bias,	power	relations	and	transferability.	As	also	noted	by	HRW's	
handbook,	qualitative	research	has	drawbacks	as	it	generally	does	not	involve	random,	
representative	samples.193		
	
	 The	format	and	ethics	of	the	process	have	generally	been	governed	by	HRW	protocols,	in	
particular	the	NGO’s	internal	memorandum	‘Establishing	and	Writing	about	Broader	Patterns	in	
Human	Rights	Watch	Research’.194	Given	the	importance	of	primary	source	material	to	this	
thesis’	conclusions,	all	participating	interviewees	were	therefore	informed	of	the	purpose	of	the	
research	in	advance.	In	all	cases,	the	public,	communal	and	non-invasive	nature	of	the	subject	
matter	meant	that	interviews	were	freely	and	engagingly	given.	Participants	all	had	a	specialty	
in	one	or	more	aspects	of	the	argument	and,	as	above,	the	purpose	of	the	thesis’	qualitative	
research	was	to	process	their	contributions	into	a	coherent	theory	on	the	removal	of	weapon	
supervision.	Under	the	ESRC’s	Research	Ethics	Guidebook,	a	thesis’	ethical	framework	should	
comprise	processes	to	ensure	informed	consent,	confidentiality	(as	appropriate)	of	research	
respondents,	their	voluntary	participation	as	well	as	the	independence	and	impartiality	of	
ensuing	research.195	Consideration	was	therefore	given	to	whether	the	thesis’	subject	matter	or	

																																																								
190	Human	Rights	Watch,	HRW	Interview	Manual,	(February	2016;	latest	edition,	but	derived	from	earlier	editions	of	
the	same),	generally.		
191	Ibid.,	p.1.	Matters	of	consent	(pp.	34-40),	question	formation	(pp.	44-46,	77-79),	corroboration	(pp.	53-54)	and	
record-taking	(pp.	89-93)	are	dealt	with	in	the	Manual’s	Part	III.	
192	Patton	MR,	Qualitative	research	and	evaluation	methods.	Third	edition	(London:	Sage	publications	2001),	p.	341.	
193	HRW	protocols,	‘Establishing	and	writing	about	Broader	Patterns	in	Human	Rights	Watch	Research’,	(2016),	p.1.	
Care	must	therefore	be	taken	to	avoid	making	broad	claims	based	on	common	experiences	of	a	small	sample	set.	For	
this	reason,	the	author	has	relied	upon	primary	interviews	but	also	secondary	sources	and	thematic	experience	in	
order	to	inform	the	thesis’	wider	claims	that	is	built	upon	evidence	accumulated	through	individual	cases	and	other	
information.	
194	Human	Rights	Watch,	Establishing	and	Writing	about	Broader	Patterns	In	Human	Rights	Watch	Research,	(2019),	
HRW	Publications.	See	Sections	3,	‘Establishing	a	Pattern	in	Writing’	and	4,	‘Weighing	All	Evidence’.	
195	Economic	and	Social	Research	Council,	Institute	of	Education,	University	of	London,	the	Research	Ethics	
Guidebook:	A	Resource	for	Social	Scientists,	pp.	1-2.		
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researcher’s	background	might	influence	the	process’	ensuing	output.	For	the	most	part,	the	
researcher	was	of	a	similar	age	and	experience	base	in	order	to	foster	appropriate	equilibrium.	
Finally	to	this	point,	the	thesis	research	also	accords	with	relevant	guidelines	set	out	in	the	BSA’s		
2017	Statement	of	Ethical	Practice,	specifically	in	relation	to	informed	consent	(and,	as	
necessary,	post-hoc	consent),		the	use	of	a	gatekeeper,	acceptable	practices	for	covert	research	
(including	selective	rights	of	participants	to	review	and	edit)	as	well	as	the	construction	and	
storage	of	field	notes.196	The	Association’s	Annex	on	digital	research	is	particularly	relevant	in	its	
discussion	of		‘situational	ethics’	in	order	to	provide	discretion,	flexibility	and	innovation.	The	
Annex	correctly	notes	that	the	field	of	Internet	research	is	‘dynamic	and	heterogeneous	as	
reflected	in	the	fact	that	as	at	the	time	of	this	writing	no	official	guidance	regarding	Internet	
research	ethics	have	been	adopted	at	any	national	or	international	level’.197	 	

																																																								
196	The	British	Sociological	Association,	Statement	of	Ethical	Practice,	2017,	
https://www.britsoc.co.uk/media/24310/bsa_statement_of_ethical_practice.pdf,	p.5	and	generally.	
197	British	Sociological	Association,	Ethical	Guidelines	and	Related	Resources	for	Digital	Research	Annex,	2017,	
<https://www.britsoc.co.uk/media/24309/bsa_statement_of_ethical_practice_annexe.pdf>,	p.	8	and	generally.	In	
particular,	the	annex	deals	with	crediting,	consent	and	the	treatment	of	Community	research	sources.		
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2. Context:	The	role	of	context	in	the	removal	of	weapon	supervision	

While	the	primary	purpose	of	this	thesis	is	to	review	AWS	feasibility,	the	aim	of	this	second	chapter	
is	rather	to	provide	appropriate	context	to	the	lessening	of	human	supervision	in	lethal	
engagements.	It	is	to	place	AWS	within	recent,	relevant	history	in	order	to	evaluate	their	
deployment	against	a	broad	portfolio	of	social,	political	and	technical	norms.	The	chapter	is	a	frame	
of	reference	against	which	this	thesis’	subsequent	behavioural	and	technical	analysis	may	be	
interpreted.	Context	here	is	an	analysis	of	the	circumstances	that	form	the	setting	for	such	
independence.	The	issue	is	to	appraise	the	significance	of	weapon	autonomy	to	battlefield	practices	
and	then	to	assess	the	degree	to	which	erosion	of	human	supervision	amounts	to	a	discontinuity	in	
how	war	will	be	waged	once	AWS	have	been	deployed.1	In	particular,	the	exercise	should	be	a	
useful	adjunct	in	reviewing	catalysts	that	promote	adoption	of	independent	weapons,	the	subject	of	
the	following	chapter.		

An	interesting	starting	point	for	this	analysis	is	provided	by	Stuart	Russell,	professor	of	
computer	science	at	UC	Berkeley,	whose	video-piece	‘Slaughterbots’	portrays	a	'fictional	near-
future	in	which	autonomous	explosive-carrying	microdrones	are	killing	thousands	of	people	
around	the	world'.2	Stuart's	imaginary	narrator	quips	that	autonomy	allows	'you	to	separate	the	
bad	guys	from	the	good...	watch	the	weapons	make	the	decisions...	take	out	your	enemy	virtually	
risk-free'.3	Russell's	portrayal	is	one	of	several	radical	pictures	to	emerge	contemplating	combat	
which	has	been	transformed	by	the	adoption	of	broad-task,	wide-capability	autonomous	weapons.4	
In	so	doing,	a	plausible	narrative	emerges	on	how	AWS	might	be	integrated	into	States’	battlecraft,	
here	defined	as	the	techniques	and	drills	of	military	combat,	that	is	relevant	both	to	this	chapter’s	
analysis	on	context	but	also	to	the	wider	issue	of	AWS	feasibility	including	sophisticated	tactical	
uses	(area	denial,	defence	in	depth,	flank	security,	deep	operations,	establishment	of	an	efficient	
kill-box,	asymmetric	operations)	but	also	strategic	uses	(high	profile	engagements	and	other	
'morale	sapping	actions').5	Russell’s	analysis	has	several	constituents	that	are	relevant	to	this	
																																																								
1	Discussion	on	Revolution	in	Military	Affairs	(RMA)	follows	below	in	this	introduction	to	Chapter	2	(Context).	
	
2	Evan	Ackerman,	'Lethal	Microdrones,	Dystopian	Futures,	and	the	Autonomous	Weapon	Debate',	IEEE	Spectrum,	15	
November	2017,	<https://spectrum.ieee.org/automaton/robotics/military-robots/lethal-microdrones-dystopian-
futures-and-the-autonomous-weapons-debate>	[accessed	16	November	2017].	The	eight	minute	video	is	available	at	
<https://www.youtube.com/watch?v=9CO6M2HsoIA>	and	<https://www.youtube.com/watch?v=ecClODh4zYk>	
[accessed	10	November	2017].	Russell's	portrayal	suggests	AWS	with	multiple	roles.	It	notes	that	AWS	deployment	
might	come	with	a	high	risk	of	failure	but	with	little	consequence	being	attached	to	that	failure.	It	also	posits	material	
expansion	to	the	scope	and	daring	of	AWS,	the	liklihood	of	an	AWS	arms	race,	a	lower	bar	for	future	engagements	and,	
finally	to	this	point,	fast	cross-proliferation	of	lethal	autonomy	between	military	services.		
	

3	Stuart	Russell,	'Slaughterbots',	YouTube,	0.15	minutes/1.50	minutes/2.47	minutes,		
<https://www.youtube.com/watch?v=ecClODh4zYk>	[accessed	2	November	2017].	Russell	concludes	the	video	in	
person	by	stating	that	'this	short	film	is	more	than	speculation.	It	shows	the	results	of	miniturising	technologies	that	we	
already	have	[and	that]	allowing	machines	to	choose	to	kill	humans	will	be	devastating	to	our	security	and	freedom'.	
Ibid.,	(7.15	and	7.34	minutes).	
	
4	See,	generally,	Stuart	Russell,	‘Take	a	Stand	on	AI	Weapons’,	Nature,	521,	7553,	27	May	2015,	
<https://www.nature.com/news/robotics-ethics-of-artificial-intelligence-1.17611#russell>	[accessed	6	November	
2017].	Russell	opines	that	‘the	capabilities	of	autonomous	weapons	will	be	limited	more	by	the	laws	of	physics	
(constraints	on	range,	speed	and	payload)	than	any	deficiencies	in	the	AI	systems	that	control	them….	One	can	expect	
platforms	deployed	in	the	millions,	the	agility	and	lethality	of	which	will	leave	humans	utterly	defenceless’.	An	overview	
is	usefully	provided	by	Erik	Sufge,	'What	might	a	Killerbot	Arms	Race	Look	Like?',	Popular	Science,	28	May	2015,	
https://www.popsci.com/what-would-killerbot-arms-race-look/	[accessed	12	November	2017].		
5	Matt	Bartlett,	'The	AI	Arms	Rave	in	2019',	Towards	Data	Science,	28	January	2019,	
<https://towardsdatascience.com/the-ai-arms-race-in-2019-fdca07a086a7>	[accessed	13	March	2019].	See	also:	James	
Vincent,	'China	is	worried	an	AI	arms	race	could	lead	to	accidental	war',	The	Verge,	28	January	2019,	
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chapter’s	review	of	context.	On	one	hand,	it	echoes	arguments	that	are	centuries	old	such	as	the	
suggestion	of	Bridge	that	AWS	deployment	will	‘cause	war	on	a	vast	scale’.6	On	the	other,	it	seems	to	
reject	Wood’s	argument	that	‘war	is	cruelty	and	you	cannot	refine	it’.7	The	gulf	between	these	two	
positions	(on	the	one	hand,	AWS’	promise	of	targeted,	refined	violence	versus	the	‘gritty	and	
fundamental	violence	of	war’8)	explains	much	of	the	instability	that	follows	technical	changes	
throughout	the	practice	of	warfare.9	It	also	explains	the	widely	varying	conclusions	reached	by	
parties	trying	to	associate	particular	battlefield	outcomes	with	particular	combat	technologies.10	
Such	divergence,	however,	is	to	be	expected	given	the	much-expanded	data	sources	available	at	the	
time	of	writing	with	which	to	undertake	battlespace	analysis.11		

Russell’s	scenario	underlines	the	degree	of	transformation	that	AWS	deployment	might	posit	
for	how	war	is	prosecuted.	Indeed,	Wood	highlights	that	States	(and	other	parties)	wishing	to	
challenge	battlefield	status	quo	must	embrace	‘new	types	of	warfare’	in	order	to	achieve	genuine	
battlefield	advantage.12	AWS	deployment	is	generally	complicated	by	parties’	smokescreening	on	
account	of	the	strategic	benefits	attached	to	surprise	and,	notes	Cooke,	by	the	time	lag	that	exists	
between	the	commercial	development	of	a	technology	and	its	subsequent	rollout	as	battlefield	
capability.13	AWS,	moreover,	have	yet	properly	to	be	deployed	and	contextual	analysis	must	
therefore	remain	largely	a	matter	of	conjecture.	As	again	noted	by	Wood	in	Technical	Revolution	in	
Military	Affairs,	‘only	battle	can	provide	hard	evidence	of	a	weapon’s	utility,	forcing	a	chaotic	
discourse	as	stakeholders	attempt	to	predict	the	outcome	of	their	various	strategies	and	options’.14	
The	very	notion	of	context	therefore	presents	its	own	challenge	in	the	assessment	of	AWS	
deployment.	Not	only	are	the	consequences	of	removing	supervision	from	weapons	uncertain,	but,	
																																																								
<https://www.theverge.com/2019/2/6/18213476/china-us-ai-arms-race-artificial-intelligence-automated-warfare-
military-conflict>	[accessed	13	March	2019].		
	
6	Mark	Bridge,	‘Killer	robots	‘will	cause	war	on	a	vast	scale’’,	The	Times,	22	August	2017	
<https://www.thetimes.co.uk/article/elon-musk-among-technology-experts-calling-for-ban-on-killer-robots-mustafa-
suleyman-deepmind-ryan-gariepy-clearpath-robotics-mark-zuckerberg-facebook-stephen-hawking-noam-chomsky-
5ndnblj0v>	[accessed	6	November	2017].	
7 Richard	Wood,	‘The	Technical	Revolution	in	Military	Affairs’,	Holtz.org	blog,	undated	
<http://holtz.org/Library/Technology/Technical%20Revolution%20in%20Military%20Affairs.htm>	[accessed	3	
November	2017].	This	author’s	italics	for	emphasis.		
8	Brian	Ferguson,	‘Ten	Points	on	War’,	Social	Analysis,	52,	2,	Berghahn	Journals,	(2008),	32-49	(p.	32).		
9	Ofer	Fridman,	‘Revolutions	in	Military	Affairs	that	did	not	happen:	a	framework	for	analysis’,	Comparative	Strategy,	
Volume	35,	issue	5,	(2016),	pp.	388-406.	
10	For	an	overall	analysis	of	offensive	versus	defensive	operations,	see:	Jack	Levy,	‘The	offensive/	defensive	balance	of	
military	technology:	A	theoretical	and	historical	analysis’,	International	Studies	Quarterly,	28,	2,	(1984),	pp.	219-220	and	
221-222.	
11	Bill	Holford,	‘Big	Data	on	the	Battlefield’,	IT	ProPortal,	(1	February	2017)	
<https://www.itproportal.com/features/big-data-on-the-battlefield-an-introduction/>	[accessed	12	October	2017].		
12	Wood,	pp.	2-4.	The	discontinuity	of	AI	in	weapon	processes	is	also	highlighted	by	Jay	Tuck	whereby	AI	will	be	'one	
thousand	times	smarter	than	we	are,	moving	at	speeds	one	hundred	thousand	times	as	fast	as	we	can	think	and	
digesting	information	and	data	one	million	times	quicker	than	we	can';	Jay	Tuck,	'Artifical	Intelligence:	It	Will	Kill	US',	
TedX	Hamburg	Salon,	0.43	minutes,	31	January	2017,	<https://www.youtube.com/watch?v=BrNs0M77Pd4>	[accessed		
10	October	2017].	An	analysis	of	such	‘new’	process	is	undertaken	in	Chapter	3	(Drivers),	specifically:	3.2	(‘Technology	
creep	and	dual-use	technology	trends’)	and	3.3	(‘Structural	and	procurement	drivers’).	For	discussion	on	evolving	
capabilities	see	also:	introductions	to	Chapters	8	(Software)	and	9	(Hardware).	The	matter	of	discontinuity	in	military	
affairs	in	discussed	below.	See	here	Gordon	Cooke,	‘The	Future	Battlefield’,	US	Army,	(16	July	2018)	
<https://www.army.mil/article/208553/the_future_battlefield>	[accessed	12	January	2019].		
13	Wood,	p.	3	and	Cooke,	generally.	
14 Wood,	p.	6.		
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notes	Halford,	such	consequences	may	be	quite	different	for	each	affected	party	given	‘what	is	a	
dynamic,	shifting	relationship	between	social	and	technical	agents’.15		

	
Notwithstanding	such	uncomfortable	imprecision,	it	is	this	chapter’s	conclusion	that	context	is	

central	to	understanding	challenges	posed	by	AWS	deployment	especially,	notes	Scharre,	given	the	
significance	that	removing	weapon	supervision	may	pose	for	the	conduct	of	future	military	affairs.16	
Arguments,	after	all,	appear	throughout	this	thesis	on	how	weapon	autonomy	will	disrupt	how	
States	conduct	their	politics	and	their	wars.17	The	contextual	key	is	that	such	disruption	arises	from	
what	is	a	cumulative	set	of	circumstances	which	are	melded	from	technical	trends,	from	
procurement	trends	and,	crucially,	from	social	trends.	It	also	arises	from	the	number	of	deployment	
models,	weapon	specifications,	configurations	and	other	exogenous	deployment	factors	that	
combine	to	complicate	such	analysis.	Notwithstanding	this	patchwork,	it	is	context	that	becomes	
the	common	prism	through	which	to	weight	these	components	that	together	comprise	the	
deployment	debate	that	is	comprised	of	‘a	complicated,	multi-facetted	set	of	interlocking	
processes’.18	While	later	chapters19	will	demonstrate	that	the	step-change	of	AWS	deployment	
requires	an	‘assemblage	of	technical	competences’20,	it	is	a	particular	role	of	this	chapter	to	
evidence	that	these	new	battlefield	models	require	significantly	more	than	new	hardware	and	lines	
of	code	if	they	are	to	be	adopted.		

In	order	to	assess	context’s	significance,	this	chapter	is	divided	into	three	sections.	An	
introduction	to	its	significance	is	followed	by	analysis	of	context	from	the	perspective	of	the	
defence	planner.	The	chapter	then	considers	the	contextual	function	of	ambiguity	and	‘situational	
awareness’	in	unsupervised	engagements.	Throughout,	the	substance	of	AWS’	deployment	
challenge	is	complicated	by	difficulties	establishing	cause	and	effect.	As	evidenced	in	the	following	
chapter,	there	are	many	and	quite	uncorrelated	drivers	to	the	removal	of	human	supervision	from	
weapon	systems,	each	one	promising	discrete	improvement	in	one	or	other	processes	such	as	
better	operational	performance,	reduced	costs21,	broader	combat	options,	force	multiplication	or	
advantageous	expansion	of	the	battlefield	into	new	arenas.	Given	this	mix,	a	contextual	danger	is	
that	AWS	deployment	creates	circularity	between	consequences	(here,	the	consequences	of	

																																																								
15 Professor	Susan	Halford,	Department	of	Sociology,	President	of	British	Sociological	Association,	University	of	
Southampton,	in	conversation	with	the	author,	January	2018.		
16 Paul	Scharre,	‘Why	we	must	not	build	automated	weapons	of	war’,	Time	Magazine,	25	September	2017	
<http://time.com/4948633/robots-artificial-intelligence-war/>	[accessed	12	November	2017].	For	a	discussion	of	
likely	roles	within	general	AWS	deployment,	see:	Chapter	4	(Deployment),	specifically:	chapter	introduction	and	4.3	
(‘Machine	and	human	teaming	models’).			
17	Amitai	Etzioni	and	others,	‘Pros	and	Cons	of	Autonomous	Weapon	Systems’,	US	Military	Review,	May-June	2017	
<http://www.armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/May-June-2017/Pros-and-
Cons-of-Autonomous-Weapons-Systems/>	[accessed	13	November	2017].	This	point	is	explored	in	Chapter	5	
(Obstacles),	specifically	5.8	(‘Ethical	and	Accountability	constraints’).	
18	Wood,	p.	8.	
19	In	particular,	see:	Chapters	8	(Software)	and	9	(Hardware).		
20	Jai	Galliott	and	Mianna	Lots,	Super	Soldier:	ethical,	legal	and	social	implications,	(London:	Routledge,	Political	Science,	
2016),	p.	14	and	p.	17.	
21	David	Francis,	‘How	a	new	Army	of	Robots	can	cut	the	Defense	Budget’,	The	Fiscal	Times,	2	April	2013	
<http://www.thefiscaltimes.com/Articles/2013/04/02/How-a-New-Army-of-Robots-Can-Cut-the-Defense-Budget>	
[accessed	4	October	2017].	The	article	states	that	the	Pentagon	spends	$850k	per	annum	‘just	to	keep	each	soldier	on	
the	battlefield’.	This	compares	to	the	cost	of	automatic	weapons	systems	such	as	TALON	($230k),	the	SGR-Ai	($200k)	
and	the	710	Warrior	($350k).	Again,	deployment	of	such	systems	is	discussed	in	Chapter	5	(Deployment).		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 39 | P a g e  

 
 

introducing	autonomous	capabilities	onto	the	battlefield)	and	what	then	becomes	‘new’	context	
(new	norms	whereby	the	effects	of	AWS	deployment	materially	alter	what	was	that	battlefield’s	
‘preceding’	context).	Earlier	deductions	arising	from	the	analysis	of	battlefield	cause-and-effect	may	
all	at	once	no	longer	be	reliable.	In	promising,	for	example,	a	reduction	in	the	number	of	frontline	
personnel,	AWS	deployment	is	also	facilitating	removal	of	these	soldiers	from	harm’s	way	with	its	
own	set	of	quite	separate	contextual	ramifications.22		

Given	also	this	thesis’	focus	on	AWS’	feasibility,	the	balance	required	of	this	chapter	is	to	weigh	
the	matter	of	technology	in	what	is	a	much	larger	deployment	equation.	At	one	end	of	this	
argument,	media	reporting	is	near	universal	in	judging	near-term	technology	(here,	the	advent	of	
weapon	autonomy)	as	a	game-changer	in	battlefield	practices.23	In	this	vein,	the	Economist’s	special	
report	on	The	Future	of	War	cites	Hoffman,	Fellow	of	the	National	Defence	University,	‘that	these	
new	technologies	have	the	potential	not	just	to	change	the	character	of	war	but	even	its	supposedly	
immutable	nature	as	a	contest	of	wills’.24	Hoffman’s	conclusion	is	that	‘for	the	first	time,	the	human	
factors	that	have	defined	success	(sic)	in	war	-	will,	fear,	decision-making	and	even	the	human	
spark	of	genius	-	may	be	less	evident’.25	Hoffman	is	perhaps	referring	less	to	‘Clausevitzian	Genius’26	
(‘an	individually	outstanding	gift	of	intelligence	and	temperament’)	but	to	more	commonplace	
examples	of	front-line	élan	and	individuality	that	historically	have	determined	outcomes.	
Nevertheless,	his	deduction	concurs	with	several	of	the	deployment	models	reviewed	in	later	
chapters	and	relates	not	just	to	the	battlefield	(where,	notes	Clark,	‘will	is	executed	and	contact	
made’)	but	also	to	the	role	afforded	to	those	deciding	upon	AWS’	deployment.27	The	contextual	
inference	is	that	pace	of	technical	change	will	disturb	the	other	integers	that	make	up	the	basis	of	
contextual	analysis.	Reporting	from	the	February	2018	Pyeonchang	Winter	Games	(although	
recorded	before	the	Opening	and	not	during	it),	Basset	suggests	that	those	watching	the	event’s	
Opening	Ceremony	had	just	‘witnessed	a	sight	never	seen	before,	a	record-setting	1,218	drones	
joined	in	mechanical	murmuration’.28	Translated	to	the	battlefield,	a	capability	such	as	swarming	

																																																								
22	Helene	Cooper,	‘Air	Force	Plans	Shift	to	Obtain	High-Tech	Weapon	Systems’,	New	York	Times,	30	July	2014	
<https://www.nytimes.com/2014/07/31/us/politics/air-force-calls-for-cheaper-quicker-weapons-development.html>	
[accessed	19	July	2017].	
23	Economist	Magazine,	‘Autonomous	Weapons	are	a	game-changer’,	The	Economist,	25	January	2017	
<https://www.economist.com/special-report/2018/01/25/autonomous-weapons-are-a-game-changer>	[accessed	19	
July	2017].	
24	Economist	Magazine,	‘The	New	battlegrounds’,	The	Economist,	January	2018,	p.	13.		
25	Ibid.,	p.	14.		
26	Omar	Mohamed,	‘The	Master	Strategist:	Clausewitzian	Genius’,	Real	Clear	Defense,	(27	November	2016),	paras.	3,4	
and	12	of	12	
<https://www.realcleardefense.com/articles/2016/11/28/the_master_strategist_clausewitzian_genius_110387.html>		
[accessed	12	January	2019].	
	
27	Professor	Lloyd	Clark,	thesis	supervisor,	in	conversation	with	the	author,	June	2017.	See	also:	Chapter	4	(Deployment)	
and	Chapter	6	(Wetware),	specifically:	6.3	(‘The	Delivery	Cohort’).	The	Cohort	is	a	useful	artifice	to	describe	this	decision	
group	and	is	used	throughout	this	thesis.	It	likely	encompasses,	inter	alia,	the	following	constituents:	neurophysiologists	
to	coordinate	AWS	networks,	psychologists	to	coordinate	learning	and	cognition,	biologists	for	adaption	strategies,	
engineers	for	control	routines,	logisticians,	roboticists,	electrical	specialists,	behaviorists,	politicians,	NGOs,	sociologists,	
lawyers,	company	directors,	weaponists,	military	tacticians,	manufacturers,	professionals	involved	in	miniaturization,	
simulation,	configuration,	coding,	power	supply	and	modularity,	specialists	in	sensors,	in	distributed	and	decentralized	
routines,	ethicists,	specialists	in	tooling	and	calibration.	For	the	purposes	of	this	analysis,	together	this	interest	group	is	
termed	the	Delivery	Cohort.		
28	Brian	Barrett,	‘Inside	the	Olympics	Opening	Ceremony	World-Record	Drone	Show’,	Wired.com,	9	February	2018	
<https://www.wired.com/story/olympics-opening-ceremony-drone-show/>	[accessed	10	February	2018].	For	a	
disparaging	record	of	the	event,	see:	Rani	Molla,	‘Intel’s	Drone	Light	Show	Never	Got	Off	the	Ground	for	the	2018	Winter	
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may	have	properly	novel	effects	for	battlefield	practices.	It	may	enable	lethal	machines	to	
overwhelm	defences29,	it	may	allow	innovative	coordination	of	previously	disparate	multi-agent	
forces	and,	in	so	doing,	it	may	make	obsolete	current	battlefield	practices.	Ilachinski’s	contention	
that	autonomous	swarms	turn	current	battlefield	practices	on	their	head	is	at	the	same	time	calling	
into	question	the	very	framework	with	which	to	review	the	deployment	of	unsupervised	weapon	
systems.30	It	is	the	role	of	context	to	provide	measure	to	such	developments.		

 Warfare's continuum of methods 

Broad	change	(and,	as	below,	the	instability	that	it	brings	to	defence	planning)	certainly	justifies	
scrutiny	into	how	battlefield	practices	will	be	affected	by	AWS	deployment.	As	a	first	port,	van	
Creveld’s	Technology	and	War31	provides	a	stepping-stone	for	this	exercise.32	The	background	is	
that	van	Creveld	posits	a	long	continuum	in	warfare	from	practices	that	are	characterised	by	the	
substitution	of	‘firepower	mass	for	manpower	mass’	(van	Creveld’s	age	of	machines)	to	practices	
that	are	defined	instead	by	the	integration	of	technology	into	complex	combat	networks	(analogous	
to	AWS,	his	age	of	systems).	This	is	contextually	relevant	as	AWS	deployment	sits	neatly	in	this	
framework.	While	this	may	validate	Hoffman’s	ideas	around	a	new	era	of	warfare	(one	that	follows	
Russell’s	dystopian	analysis	of	a	battlefield	dominated	by	lethal	autonomous	systems),	it	also	
provides	context	that	links	AWS	technologies	to	a	long	line	of	earlier	weapon	innovations	which	
have	promised	to	upend	the	battlefield.33	It	is	here,	notes	Wylie,	where	an	argument	can	be	made	
that	history	is	punctuated	with	possible	Revolutions	in	Military	Affairs	(RMA)	of	which	AWS	
deployment	is	just	the	last	in	a	list	of	examples.34	Does,	however,	deploying	a	weapon	system	that,	
at	root,	is	different	simply	by	having	no	human	in	the	loop	constitute	a	wholly	novel	method	of	
waging	war?	Mansoor	notes,	after	all,	that	disruption	in	the	past	has	usually	been	brought	about	by	
a	much	broader	combination	of	technical	breakthrough,	organisational	adaptation	and	doctrinal	
innovation.35	Given	this	thesis’	later	finding	that	that	autonomy	cannot	take	over	every	battlefield	
task,	Bousquet	suggests	too	that	AWS	deployment	may	represent	a	break	with	past	disruptions	in	

																																																								
Olympic	Opening	Ceremony’,	Recode,	(10	February	2018)	<https://www.recode.net/2018/2/10/16998652/drones-
guinness-world-record-pyeongchang-2018-winter-olympics>	[accessed	12	January	2019].	
29 Kris	Osborn,	‘Swarming	mini	drones:	Inside	the	Pentagon’s	plan	to	overwhelm	Russian	and	Chinese	air	defences’,	The	
Buzz,	National	Interest,	10	May	2016	<http://nationalinterest.org/blog/the-buzz/swarming-mini-drones-inside-the-
pentagons-plan-overwhelm-16135>	[accessed	1	November	2017]	paras.	3-6	of	21.	Also,	see:	Chapter	4	(Deployment),	
specifically:	4.6	(‘Swarming	models’).	
30	Andrew	Ilachinski,	‘AI,	Robots	and	Swarms:	Issues,	Questions	and	Recommended	Studies’,	CAN	Corporation,	January	
2017	<https://www.cna.org/CNA_files/PDF/DRM-2017-U-014796-Final.pdf>	pp.	6-7	and	pp.	7-9.		
31	Martin	van	Creveld,	Technology	and	War:	From	2000	BC	to	the	Present	Day,	(USA:	Simon	&	Schuster,	2010),	pp.	217-
219,	p.	311.		
32	See	also:	Maxim	Worcester,	‘Autonomous	Warfare:	A	Revolution	in	Military	Affairs’,	ISPSW	Strategy	Series:	Focus	on	
Defence	and	International	Security,	Issue	340,	(April	2015),	pp.	2-3	
<https://www.files.ethz.ch/isn/190160/340_Worcester.pdf>.		
33	Promise	here	relates	to	the	‘Revolution	in	expectations’	discussed	by	Sabin.	See:	Chapter	6	(Wetware),	specifically:	6.1	
(‘Software	versus	intelligence’).		
34	Admiral	JC	Wylie,	Revolutions	in	Military	Affairs,	(UK	Essays,	November	2013)	
<https://www.ukessays.com/dissertation/examples/history/revolution-in-military-affairs.php#citethis>	[accessed	9	
July	2017].		
35	Peter	Mansoor,	‘The	Next	Revolution	in	Military	Affairs’,	Strategika,	Hoover	Institute,	Issue	39,	(15	March	2017),	para.	
1	of	4	<https://www.hoover.org/research/next-revolution-military-affairs>.	In	considering	the	ramifications	of	AWS	
deployment,	Mansoor	here	discusses	the	relative	development	of	the	first	firearms,	the	socket	bayonet,	the	dreadnought	
battleship,	carrier	aviation	and	blitzkrieg.		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 41 | P a g e  

 
 

the	discontinuity	it	brings	will	occur	‘without	necessarily	requiring	wholesale	organisational	
disruption	in	its	prosecution’.36	Bousquest	similarly	notes	that	an	RMA	can	only	be	analysed	within	
the	context	of	that	technology’s	‘wider	socio-technical	milieu’	into	which	these	battlefield	changes	
are	taking	place.37	This	is	not,	however,	to	fix	that	an	RMA	can	only	be	technically	driven.	The	issue	
is	that	the	wide	universe	of	AWS	deployment	models	(and	the	organisational	developments	that	
must	accompany	such	models)	undermines	this	exercise.	By	inference,	however,	Bousquest	offers	a	
way	out:	In	considering	links	between	AWS	and	an	RMA,	weapon	deployment	must	be	studied	‘with	
relation	to	broader	assemblages’	that	focus	instead	on	a	portfolio	of	weapon	inputs	such	as	‘its	
mode	of	production,	the	value	attributed	to	it,	its	distribution	in	the	social	field	and	its	
employment’.38	The	key	is	that	this	chapter’s	analysis	be	based	on	broad	context.	None	of	the	
characteristics	under	review	are	either	intrinsic	or	exclusive	to	the	autonomous	weapon.	They	are,	
unsurprisingly,	contextual	and	arise	directly	from	how	the	weapon	is	fielded	and	other	quite	human	
interventions.	While	AWS	might	be	designed	and	then	refined	by	its	Delivery	Cohort	with	particular	
uses	in	mind,	it	should	be	inferred	from	this	thesis’	technical	analysis	that	these	uses	will	rarely	
correlate	exactly	to	the	intentionality	of	their	creators	and,	as	noted	again	by	Bousquest,	are	‘always	
liable	to	being	repurposed	as	they	enter	into	different	assemblages’.39		

Certain	practical	factors	exist	that	bias	the	analysis	of	whether	a	new	weapon	system	
constitutes	an	RMA.	Disproportionate	attention	to	technology’s	role	in	war	can,	warns	Backstrom,	
be	allocated	just	to	the	weaponry	component	of	deployment.40	The	challenge	of	technological	
determinism	then	surfaces	where	perceived	changes	in	war’s	conduct	are	uncritically	attributed	to	
particular	battlefield	technologies.	Conversely,	insufficient	contextual	weight	might	be	given	to	
other	influences	such	as	logistics,	tactics	and	operational	changes	(changes,	for	instance,	to	the	
tooth-to-nail	ratio	of	combat	troops	to	support	staff)	and	the	broad	portfolio	of	effects	that	ensue.41	
Other	factors	may	be	marginalised	when	evaluating	battlefield	context.	A	platform’s	simple	ubiquity	
may	be	ignored:	The	cumulative	effect	of	the	‘humble	Kalashnikov’42,	nearly	one	quarter	of	the	five	
hundred	million	firearms	in	current	circulation,	posits	an	entirely	different	set	of	outcomes	
(ubiquitous,	easy	to	use	and	dependable43)	than	might	be	expected	from	expensively	procured	AWS	

																																																								
36 Antoine	Bousquet,	‘A	Revolution	in	Military	Affairs?	Changing	technologies	and	Changing	Practices	of	Warfare’,	
Technology	and	World	Politics,	Routledge,	(2017),	pp.	2-3	
<https://www.academia.edu/34469743/A_Revolution_in_Military_Affairs_Changing_Technologies_and_Changing_Pract
ices_of_Warfare>.		
37 Bousquet,	p.	2.	
38 Ibid.,	p.	2-4. 
39 Ibid.,	pp.	6-8.	See	also:	Chapter	4	(Deployment).	For	a	discussion	on	changing	capabilities	posited	by	AWS	see	also:	
Economist	Magazine,	‘Autonomous	Weapons	are	a	Game-changer’,	Economist,	25	January	2018	
<https://www.economist.com/special-report/2018/01/25/autonomous-weapons-are-a-game-changer>	[accessed	23	
July	2018].	 
40	Alan	Backstrom	and	Ian	Henderson,	‘New	Technology	and	Warfare’,	cit.	International	Review	of	the	Red	Cross,	Volume	
94,	Number	886,	(Summer	2012),	pp.	483-485	(‘New	Capabilities	in	Warfare’).		
41	Tamara	Campbell	and	Carlos	Velasco,	‘An	Analysis	of	the	Tail	to	Tooth	Ratio	as	a	measure	of	Operational	Readiness	
and	Military	Expenditure	Efficiency’,	Naval	Postgraduate	School,	(US:	Monterey,	December	2002),	p.	5	and	pp.	117-127	
(‘Conclusions’)	<http://www.dtic.mil/dtic/tr/fulltext/u2/a411171.pdf>.	
42	David	Blair,	‘AK	47	Kalashnikov:	The	Firearm	that	has	killed	more	People	than	any	Other’,	The	Telegraph,	2	July	2015 
<http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11714558/AK-47-Kalashnikov-The-firearm-
which-has-killed-more-people-than-any-other.html>	[accessed	23	July	2017].		
43	WeaponsMan	blog,	‘5	Reasons	for	the	AK’s	Legendary	Reliability’,	WeaponsMan,	
<http://weaponsman.com/?p=12534>	[accessed	7	August	2018].	
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(scarce,	unpredictable,	prone	to	independent	outcomes	and	reliant	on	challenging	battlefield	
integration).	In	the	same	vein,	specific	operational	effects	may	be	skewed,	again	compromising	the	
analysis’	rigour:	First	reported	in	September	2006,	the	SGR-AI	operates	as	an	unsupervised	robotic	
weapon	in	the	DMZ	between	North	and	South	Korea	and,	unsupervised,	it	offers	identification	and	
subsequent	tracking	of	intruders,	engaging	them	without	the	intervention	of	a	human	operator.44	
Various	relevant	observations	arise.	First,	that	platform’s	on/off	switch	illustrates	an	‘unstable	
slightness	of	difference’45	between	an	AWS	and	a	non-autonomous	weapon	and,	second,	the	risk	of	
the	SGR-AI	performing	poorly	(illegally?)	is	much	reduced	given	its	limited	task	of	static	targeting	
and	the	crucial	environmental	consideration	that	the	DMZ	is	a	thoroughly	constrained	area	of	
operation.46		

 The role of context in AWS' argument 

Context	then	becomes	a	key	tool	in	order	to	provide	confidence	around	this	thesis’	conclusions.	It	
provides	common	analytical	foundation,	continuity	and	setting	to	what,	after	all,	is	inquiry	into	a	
‘future-orientated	and	convoluted	phenomenon’.47	What	then	constitutes	context	in	this	
deployment	debate	and	what	significance	should	it	be	given	in	this	inquiry?	A	starting	point	is	the	
British	Army’s	Action	Centred	Leadership	and	the	explicit	priority	that	it	gives	to	the	role	of	context	
in	military	operations.48	The	notion	of	‘Understanding	Context’	is	given	unambiguous	precedence	by	
placing	it	on	top	of	the	Army’s	three	leadership	silos,	‘Achieve	the	Task’,	‘Build	Teams’	and	‘Develop	
Individuals’.49	Context	is	certainly	the	key	factor	in	how	the	Army	articulates	how	to	conduct	its	
mission	and,	within	this	framework,	it	is	defined	as	‘the	collection	of	circumstances	that	form	the	
setting	for	an	event	in	terms	of	which	it	can	be	fully	understood’.50	Context	encompasses	a	broad	
group	of	conditions,	some	tangible	and	some	intangible,	that	impact	all	components	of	military	
tasks	including	their	definition,	planning,	communication,	their	execution,	support	and	their	
evaluation.	By	way	of	balance,	however,	this	is	at	odds	with	the	prescription	of	Hoffman	who	
attributes	changes	in	war’s	character	not	to	context	and	intangibles	but	directly	instead	to	the	
deployment	of	specific	battlefield	technology	(here,	again,	the	adoption	of	weapon	autonomy).51	
This	posits	a	further	dilemma.	Can	a	weapon	algorithm	capture	battlefield	context	in	order	to	
instigate	confidence	in	its	subsequent	performance?	Given	the	ambiguity	under	which	AWS	will	be	

																																																								
44	Robotzeitgeist,	‘Robots	answer	battle	call	for	South	Korea’,	2006	<http://robotzeitgeist.com/tag/sgr-a1,	Robotics	
Zeitgeist,	2006>	[accessed	11	December	2016].	For	additional	discussion	on	this	and	other	precursor	AWS,	see:	Chapter	
4	(Deployment).	For	its	deployment,	see:	Global	Security,	‘Samsung	Techwin	SGR-A1	Sentry	Guard	Robot’,	(September	
2006)	<https://www.globalsecurity.org/military/world/rok/sgr-a1.htm>	[accessed	12	August	2018].	HRW’s	Mary	
Wareham	questions	whether	the	weapon	remains	operational.		
45	Professor	Peter	West,	Computer	Science	Department,	Cornell	University,	in	conversation	with	the	author,	12	
December	2017.		
46 Guglielmo	Tamburrini,	‘On	banning	autonomous	weapon	systems:	From	deontological	to	wide	consequentialist	
reasons’,	cit.	Bhuta	and	others,	Autonomous	Weapons	Systems:	law,	ethics,	policy,	p.	126.	Any	human	detected	in	the	
prohibited	area	is	classified	as	a	legitimate	target. 
47	Richard	Moyes,	Article	36,	‘War	without	oversight;	challenges	to	the	deployment	of	autonomous	weapons’,	
Buckingham	University	Humanities	Research	Institute	Seminar,	13	May	2018.	
	
48	Centre	for	Army	Leadership,	‘Army	Leadership	Doctrine’,	Edition	1	(UK:	RMAS	Camberley,	2016),	p.	17.	
49	Ibid.,	Chapter	4	(‘What	Leaders	Do’).		
50	Ibid.,	pp.	16-19.	
51	Economist	Magazine,	‘The	New	battlegrounds’,	p.	13.	
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operating,	it	is	this	dynamic	that	provides	much	of	this	thesis’	contextual	foundation	as	well	as	its	
behavioural	and	technical	analysis	set	out	in	subsequent	chapters.	

The	issue	also	has	an	inescapable	temporal	component	with	the	matter	of	duration	creating	
two	separate	challenges.	The	first	relates	to	timeframes.	In	considering	battlefield	autonomy,	the	
Economist’s	2018	report	on	The	Future	of	War	limits	its	forecasts	to	the	‘next	twenty	years	or	so,	
because	beyond	that	the	uncertainties	become	overwhelming’.	In	so	doing,	it	still	‘offer[s]	its	
predictions	with	humility’.52	Given	battlefield	developments	since,	say,	the	turn	of	the	Millennium,	
that	twenty	years	may	appear	a	long	timeframe	but	it	is	also	one	that	must	be	tempered	by	
context.53	Latiff	and	others	conclude,	after	all,	that	relevant	timeframes	should	be	much	shorter.54	
The	question	of	duration	should	also	be	framed	by	technical	bottlenecks	as	well	by	a	failure	to	
distinguish	between	what	may	be	short-term	outcomes	of	experts’	research	programmes	and	other	
more	ambitious	(albeit	distant)	goals	envisaged	for	AWS	deployment.55	A	second	‘temporal’	issue	
relates	to	the	use	of	context	as	a	tool.	Strachan,	currently	Professor	of	International	Relations	at	St	
Andrews	University,	posits	that	‘history	is	the	study	of	change’.56	The	student,	suggests	Strachan,	
should	embrace	Liddell	Hart’s	observation	that	‘the	past	is	a	foreign	place’	where	situations	never	
exactly	repeat	and,	instead,	it	is	change	that	is	the	norm.	In	setting	out	this	contextual	framework,	
Strachan	is	therefore	borrowing	from	historian	Bloch	whereby	an	examination	of	‘how	and	why	
yesterday	differed	from	the	day	before…	can	reach	conclusions	which	will	enable	it	to	foresee	how	
tomorrow	will	differ	from	yesterday’.57	Gray,	Emeritus	Professor	of	International	Relations	and	
Strategic	Studies	at	Reading	University,	offers	a	different	contextual	view,	one	that	is	anchored	in	
what	he	describes	as	the	continuum	of	history.	For	Gray,	the	relevant	context	is	that	history	repeats.	
There	may	always	be	an	element	of	chaos	that	is	present	in	strategic	history58	but,	as	he	opens	his	
work	on	the	friction	and	uncertainty	of	future	warfare,	Another	Bloody	Century,	‘historical	
perspective	is	the	only	protection	against	undue	capture	by	the	concerns	and	fashionable	ideas	of	

																																																								
52	Economist	Magazine,	‘The	New	Battlegrounds’,	pp.	3-4.	
53	Michael	Marshall,	‘Timeline:	Weapons	Technology’,	New	Scientist,	7	July	2009	
<https://www.newscientist.com/article/dn17423-timeline-weapons-technology/>	[accessed	12	June	2018].		The	first	
decade	of	this	century	saw	the	advent	of	national	defence	shields,	active	denial	systems,	high	energy	lasers,	pulsed	
energy	projectiles,	neuroscience-based	human	enhancement	and,	in	Metal	Storm,	a	gun	capable	of	firing	several	million	
rounds	per	minute.	See:	Chapter	1	(Introduction),	specifically:	1.2	(‘Introduction	to	key	Concepts’).	As	defined	in	this	
thesis’	introduction,	near-term’	is	reckoned	generally	to	be	within	the	period	2025.	‘Medium-term’	then	relates	to	
developments	that	may	be	expected	to	occur	in	the	fifteen	years	thereafter	to	2040.	
54	Paul	Scharre,	‘Making	Sense	of	Rapid	Technical	Change’,	Center	for	a	New	American	Security,	(17	July	2017),	generally	
<https://www.cnas.org/publications/commentary/making-sense-of-rapid-technological-change>.	See	also:	Robert	
Latiff,	‘How	Technological	Advancements	Will	Shape	the	Future	of	the	Battlefield’,	Signature,	(13	October	2017),	
generally	<https://www.signature-reads.com/2017/10/how-tech-advancements-will-shape-future-battlefield/>	
[accessed	13	January	2019].		
	
55	Tamburrini,	cit.	Nehal	Bhuta	and	others,	p.	122.	As	discussed	in	Chapter	3	(Drivers),	consequentialist	reasons	to	
deploy	AWS	are	often	based	on	expectations	(here,	AWS	being	able	to	reduce	casualties	and	collateral	damage).	
Advancing	this	scenario	contributes	to	unrealistic	expectations	about	AWS	compliant	deployment.		
56	Professor	Sir	Hew	Strachan,	currently	Professor	of	International	Relations	at	St	Andrews	University,	in	conference	
with	the	author,	22	February	2017.	Author’s	italics.	Also,	notes	Strohn,	this	does	not	mean	that	such	change	is	
‘unforeseeable’	but	that	the	study	of	periods	of	change,	such	as	the	French	Revolution,	is	really	for	the	realm	of	the	
historian	because	this	change	‘manifests	the	fundamental	issues’:	Dr	Matthias	Strohn,	in	conversation	with	the	author,	
January	2019.	
57	Hew	Strachan	and	Sibylle	Scheipers	(eds.),	The	Changing	Character	of	War,	(Oxford:	Oxford	University	Press,	2011),	p.	
7.	See	also,	generally:	Marc	Bloch,	‘A	Strange	Defeat:	A	Statement	of	Evidence	Written	in	1940’,	(UK:	Norton,	1999),	
generally.	
58	Colin	Gray,	The	Future	of	Strategy,	(UK:	Polity	Books,	2015),	p.	1.	
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today’.59	Divergent	from	Strachan,	this	definition	of	context	also	has	its	supporters	(endorsed,	by	
inference,	in	US	Chief	of	Staff	General	Milley’s	2017	presentation	to	the	RUSI	Land	War	Conference	
through	his	dictum	on	the	‘arrogance	of	the	present’).60	For	Gray,	there	is	an	observable	continuity	
to	history.61	His	contention	is	not	that	nothing	changes	but	rather	that	little	changes	in	matters	of	
profound	importance.	The	contextual	relevance	to	AWS	deployment	is	that,	for	Gray,	future	warfare	
‘will	be	strategic	history	much	as	usual’	regardless	of	such	weapon	development.62	While	the	
balance	of	this	chapter	disagrees	with	this	contention,	the	relative	positions	of	the	two	historians	
are	nevertheless	interesting	precisely	because	they	demonstrate	the	importance	of	context	in	
framing	the	removal	of	weapon	supervision.	For	this	reason,	notes	Clark,	it	may	be	more	apt	to	
consider	deployment	in	terms	of	war’s	enduring	themes	but	now	overlaid	by	the	novel	context	that	
comes	from	weapon	independence.63	As	developed	in	this	thesis’	technical	review,	while	the	force	
of	human	factors	in	combat	practices	may	remain	unaltered,	AWS’	context	is	complicated	by,	inter	
alia,	their	de	facto	independence	and	intrinsic	unpredictability.	

	
Given	such	divergence,	a	purpose	to	this	chapter	is	to	navigate	between	these	two	positions	in	

order	to	determine	how	context	might	practically	impact	on	AWS	deployment.	The	inference	is	that	
context	will	play	a	determinant	in	shaping	that	deployment.	This	is	true	for	a	wide	portfolio	of	
reasons,	the	nub	of	this	chapter,	whether	through	restrictions	brought	about	by	popular	pressure	
or	political	dealings,	by	third	sector	activism,	by	human	ingenuity	in	defeating	AWS’	technologies,	
by	economic	factors	whereby	scarce	resources	are	allocated	elsewhere,	by	organisational	inertia	
(or,	indeed,	friction)	or	by	other	as	yet	unidentified	considerations.	This,	therefore,	is	the	empirical	
role	of	context	at	work.	Moreover,	day-to-day	nuances	of	AI-driven	weaponry	are	rarely	out	of	the	
public	eye.	In	August	2017,	for	instance,	the	world’s	Press	carried	a	coordinated	statement	from	the	
world’s	top	academics	and	industry	leaders	warning	the	United	Nations	about	the	dangers	of	
autonomous	weapons.64	Alerting	the	UN	to	‘a	third	revolution	in	warfare’,	the	letter	warns	that	
‘once	this	Pandora’s	box	is	opened	it	will	be	hard	to	close’.65	On	the	other	hand	(and	sitting	apart	on	
that	continuum),	General	McMaster,	erstwhile	National	Security	Adviser	to	the	US	White	House,	
reminds	his	readers	in	2017	to	be	skeptical	about	ideas	that	divorce	war	from	its	political	nature,	in	
particular	where	those	theories	‘promise	fast	change	and	efficient	victories	through	the	application	
of	advanced	military	technologies’.66	The	two	positions	may	appear	opposing	end-points	of	the	
debate	on	context	but	this	is	to	miss	that	the	two	statements	are	not	actually	mutually	exclusive.	

																																																								
59	Gray,	Another	Bloody	Century,	p.	13.	
60	General	Mark	Milley,	speech	to	RUSI	Land	War	Conference,	27	June	2017	
<https://rusi.org/sites/default/files/20170627-rusi_lwc17-gen_milley.pdf>	and	in	subsequent	conversation	with	the	
author.	
61	See	also:	Lt	Col	Frank	Hoffman,	‘Thinking	about	future	conflict’,	Marine	Corps	Gazette,	Volume	98,	Issue	11,	
(November	2014),	paras.	18-22	of	42		<http://pqasb.pqarchiver.com/mca-members/doc/1619980305.html?FMT=TG>	
[accessed	38	November	2017].			
62	Gray,	Another	Bloody	Century,	p.	14.	
63	Professor	Lloyd	Clark,	in	discussion	with	the	author,	10	January	2019.		
	
64	Noah	Kulwin,	‘Elon	Musk	and	over	100	AI	Experts	warn	UN	about	Killer	Robots’,	Vice	News,	21	August	2017	
<https://news.vice.com/en_us/article/9kdgkz/elon-musk-and-over-100-ai-experts-warn-u-n-about-killer-robots>	
[accessed	30	June	2017].		
65	For	the	text	of	the	open	letter:	Future	of	Life	Institute,	‘An	Open	Letter:	Research	Priorities	for	Robust	and	Beneficial	
Artificial	Intelligence’,	undated	<https://futureoflife.org/ai-open-letter/>	[accessed	12	March	2018].	
66	Lt	Gen	HR	McMaster,	‘On	the	Study	of	War	and	Warfare’,	Modern	War	Institute,	(24	February	2017)	
<https://mwi.usma.edu/study-war-warfare/>	[accessed	12	February	2018]	para.	6	of	10.		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 45 | P a g e  

 
 

For	the	purposes	of	this	chapter,	it	is	McMaster’s	evaluation	that	generally	shapes	this	thesis	
whereby	the	cumulative	challenges	to	AWS	adoption	will	together	construct	challenging	restriction	
on	wholesale	deployment	of	unsupervised	weapons.	Separately,	however,	this	thesis’	analysis	
recognises	that	incremental	adoption	of	component	autonomy	will	certainly	come	to	dominate	
weapons	procurement.	The	analysis	thus	follows	Howard’s	aphorism	that	‘the	roots	of	victory	and	
defeat	often	have	to	be	sought	far	from	the	battlefield’67	and	it	is	likely	to	be	social,	political	and	
cultural	factors	that	will	trump	technical	considerations	in	the	adoption	of	battlefield	autonomy.68	A	
further	dynamic	arises:	While	battlefield	autonomy	will	certainly	make	significant	contribution	to	
near-term	battlefield	practices,	a	second	inference	is	that	such	cause-and-effect	will	remain	
context-specific	whereby	AWS	may	make	headlines	in	certain	brilliant	applications	but	may	
otherwise	remain	a	marginal	(albeit	contributory)	asset	in	broader	settings	and	circumstances.	This	
is	investigated	in	Chapter	Four	(Deployment)	and	its	analysis	of	likely	procurement	models.		

	
Recognising	that	discontinuity	cannot	be	confined	simply	to	advances	in	weapon	platforms,	

Drucker	highlights	that	parties	must	broaden	their	definitions	and	scope	of	context’s	role	in	AWS	
deployment.69	Rapidly	developing	social	media	models,	widespread	popular	connectivity	and	the	
reach	of	other	technological	developments	are,	notes	Staff,	combining	to	create	far-reaching	
cultural	and	societal	disruptions	which	are	‘taking	place	with	unparalleled	speed’.70	The	
pervasiveness	of	computers	is	again	a	defining	characteristic.	Such	contextual	components	have	
cumulative	although	imprecise	effects	on	how	disruptions	evolve	which	are	difficult	to	
distinguish.71	In	the	case	of	AWS	adoption,	a	relevant	source	is	provided	by	the	British	Army’s	
Leadership	Doctrine	and	its	deliberate	separation	between	the	nature	of	conflict	(an	immutable,	
unchanging	contest	of	will	that	involves	uncertainty,	chaos,	chance	and	friction)	and	the	character	
of	conflict	(which	changes	continually	and	is	shaped	primarily	by	politics	and,	crucially	for	the	
purposes	of	this	thesis,	the	technology	of	the	age).72	Here,	the	deployment	of	weapon	autonomy	
must	be	a	matter	of	conflict’s	character	(and	the	volatility	in	this	condition)	and	not	of	conflict’s	
fundamental	nature.	This	separation	(the	nature	of	conflict	and,	pertinent	to	AWS,	the	character	of	
conflict)	may	be	a	constructive	device	but,	in	considering	context,	in	no	way	does	it	solve	for	the	
deployment	challenges	of	removing	weapon	supervision.	Instead,	it	suggests	that	defence	planners’	
list	of	assumptions	is	becoming	ever	less	sharp	and,	contextually,	it	is	within	this	unpredictable	mix	
that	AWS	deployment	must	be	viewed.73	The	‘force’	in	this	discussion	is,	after	all,	that	same	force	
that	is	being	used	against	human	beings	and	is	not	merely	defensive	action	that	is	being	taken	
against	objects	(incoming	munitions	or	robots).	The	contextual	suggestion	is	that	such	force	can	

																																																								
67	Lloyd	Clark,	‘Blitzkrieg:	Myth,	Reality	and	Hitler’s	lightning	war	–	France	1940’,	(UK:	Atlantic	Books,	2016),	p.	2.		
68	UNESCO,	‘The	Infernal	Cycle	of	Armaments’,	International	Social	Science	Journal,	28,	2,	252-254	
<http://unesdoc.unesco.org/images/0001/000197/019707eo.pdf>.		
69	By	inference:	Peter	Drucker,	‘The	Age	of	Discontinuity:	Guidelines	to	our	changing	Society’,	ninth	edition,	(USA:	
Transaction	Publishers,	New	Brunswick,	2011),	pp.	4-10.	
70	E	Staff,	‘High	Profile	Panel	Warns	of	unavoidable,	far-reaching	technical	revolution’,	The	Education	Post,	7	July	2017	
<http://educationpostonline.in/2017/07/07/high-profile-panel-warns-of-unavoidable-far-reaching-tech-revolution/>	
[accessed	2	August	2017].		
71	A	Rachleff,	‘What	‘disrupt’	really	means’,	Techcrunch.com,	16	February	2013	
<https://techcrunch.com/2013/02/16/the-truth-about-disruption/>	[accessed	4	April	2017].	
72	Centre	for	Army	Leadership,	‘Army	Leadership	Doctrine’,	Edition	1,	(UK:	RMAS	Camberley,	2016),	p.	10.	
73	See,	generally:	Gray,	‘Strategy	and	Defence	Planning:	Meeting	the	Challenge	of	Uncertainty’,	p.	2.	Gray’s	useful	position	
is	that	‘defence	planning	is	substantially	guesswork,	and	it	has	to	be	such	–	educated	guesswork	one	hopes,	but	still	
guesswork’.	
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only	be	undertaken	as	part	of	a	process	that	is	properly	deliberative	(one	that	involves	human	
decision-making	and	meaningful	human	control	in	the	initiation	of	violence)	which,	in	common	
with	Asaro,	must	empirically	be	shaped	by	both	broad	context	and	the	laws	of	armed	conflict.74	
While	this	too	is	discussed	in	later	sections,	the	point	is	to	demonstrate	context’s	pervasive	
narrative	in	the	matter	of	AWS	deployment.	

 Context's behavioural significance 
	
Given	the	largely	intangible	nature	of	context’s	constituents	(as	noted	Cordingley	and	expressed	
here	as	the	‘definition,	planning,	communication,	execution,	support	and	evaluation’	of	military	
tasks	discussed	above),	how	then	might	this	collection	of	behavioural	circumstances	influence	AWS	
deployment?75	Imposition	of	force	by	one	individual	against	his	foe	has	long	been	an	intensely	
personal	affair.	While	human	beings	may	have	been	increasingly	remote	from	the	point	of	violence,	
that	human	being	has	up	to	now	taken	the	decision	to	take	life.76	Notwithstanding,	therefore,	that	
decision-makers	and	weapon	operators	alike	have	become	increasingly	remote	from	that	point,	
Heyns	notes	that	ethical	and	legal	norms	for	such	behaviours	‘have	developed	over	the	millennia	to	
determine	when	one	human	may	use	force	against	another,	in	peace	and	in	war,	and	have	assigned	
responsibility	for	violation	of	these	norms’.77	It	is	this	broad	set	of	conditions	that	still	underpins	
relevant	context	with	which	to	consider	the	role	of	that	decision-maker	and	operator.	The	issue,	
however,	is	that	AWS	deployment	may	grossly	destabilize	this	dynamic.	Importantly,	it	is	also	a	
matter	of	degree	as	advanced	military	powers	already	undertake	combat	missions	without	using	
the	full	range	of	their	technological	capabilities.78	Unsurprisingly,	this	argument	has	a	verso;	
although	outside	the	scope	of	this	analysis,	constraints	to	the	removal	of	supervision	(for	instance,	
the	statutory	requirement	for	MHC)	are	empirically	less	relevant	to	non-State	polities.	In	the	case	of	
irregular	forces	fielding	independent	weapons,	‘the	difference	between	an	autonomous	weapon	and	
a	drone	is	only	four	exploding	bolts’79	as	the	limitations	of	LOAC,	ethics	and	precedent	are	trumped	
by	non-State	priorities	of	expediency,	belief	and	culture.		

	
Defining	the	cultural	component	of	such	context	is	even	more	complicated.80	Culture,	notes	

Karppi,	is	subject	to	rapid,	inexplicable	change,	often	occasioned	by	catalysts	that	are	exogenous	

																																																								
74	Peter	Asaro,	‘On	banning	autonomous	weapons	systems:	human	rights,	automation	and	the	dehumanisation	of	lethal	
decision	making’,	International	review	of	the	Red	Cross,	94,	86,	(2012),	p.	2	and	pp.	8-17.	
75	Major-General	Patrick	Cordingley,	Commander,	7th	Armoured	Brigade,	Gulf	War,	1991,	in	conversation	with	the	
author,	May	2016.	See	also:	introduction	above	to	this	chapter.		
76	As	noted	by	Clark,	that	use	of	force	should	not	necessarily	conflate	with	loss	of	life.	Professor	Lloyd	Clark,	in	
conversation	with	the	author,	10	January	2019.	
	
77 Christof	Heyns,	‘Autonomous	Weapon	Systems:	living	in	a	dignified	life	and	dying	a	dignified	death’,	cit.	Bhuta	and	
others,	‘Autonomous	Weapons	Systems:	law,	ethics,	policy,	p.	2.	
78	Hew	Strachan,	The	Direction	of	War	–	Contemporary	strategy	in	historical	perspective,	(Cambridge:	Cambridge	
University	Press,	2013),	p.	167.	Also:	Major-General	Patrick	Cordingley,	in	conversation	with	the	author,	May	2016.	
79	Remote	Control,	‘Hostile	drones:	the	use	of	drones	by	non-State	actors	against	British	targets’,	Remote	Control	Project,	
(The	Oxford	Research	Group,	2013)	<http://remotecontrolproject.org/hostile-drones-the-hostile-use-of-drones-by-
non-state-actors-against-british-targets/>	[accessed	2	January	2017].	
80	Tero	Karppi	and	others,	Killer	Robots	as	Cultural	Techniques,	(International	Journal	of	Cultural	Studies,	Sage	Journals,	
October	2016),	1.	Here,	cultural	components	relate	to	the	psychological	connection	between	an	individual’s	self	and	
culture	represented	by	the	social	behaviours	and	norms	of	that	society.		
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and	unexpected.81	The	contextual	driver	for	AWS	deployment	is	that	cultural	(and	political)	
mindsets	are	created	and	broken	up	by	disparate	influences	that	are	unstable	and	exhibit	rapid	
change.82	Furthermore,	any	one	such	influence	will	likely	not	correlate	with	another	and	may	mask	
cross-border,	cross-party	and	other	affiliatory	stimuli.	Contextual	components	here	include	
demographic	considerations,	gender	considerations	and,	in	certain	geographies,	the	emergence	of	
more	individualistic	cultures	that	further	complicate	pigeonholing.83	Cultural	influences,	moreover,	
often	defy	easy	definition.	It	is	challenging	to	make	strict	contextual	classifications	given	that	
individual	elements	tend,	notes	Gitelman,	to	split	into	numerous	unstable	sub-elements.84	Given	
such	volatility,	it	is	unsurprising	that	ethical	issues,	legal	constraints	and	technical	expectation	may	
combine	with	social	and	other	human	influences	to	inform	how	political	decisions	may	be	
maneuvered	on	AWS	deployment.	Such	trends	are	difficult	to	predict,	they	come	in	bunches	and	
they	interact	erratically.	To	this	extent	at	least	(notwithstanding	it	being	an	uncomfortable	
generalization	on	warfare),	this	analysis	conforms	with	Gray’s	conclusion	that	‘the	course	and	
outcome	of	war	is	shaped	by	many	factors,	not	least	of	the	human,	the	cultural,	and	the	political,	in	
addition	to	the	possibilities	opened	by	machines’.85	Adamsky’s	The	Culture	of	Military	Innovation	
further	evidences	the	importance	of	such	context	in	his	conclusion	that,	contrary	to	the	USSR,	post-
WW2	US	was	still	able	to	achieve	technical	development	without	developing	doctrines	that	
integrated	such	technology	into	the	formal	systems	of	military	organisation.86		
	

It	is	also	this	pace	of	cultural	change	that	becomes	a	contextual	driver	in	considering	
independent	weapons.87	Pace	creates	contextual	difficulty	around	determining	which	and	when	
each	new	norm	(cultural,	social,	political)	might	next	prevail.88	Against	this	background,	what	is	an	
apt	example	of	cultural	context?89	Reaction	to	weapon	systems,	for	instance,	has	often	been	erratic.	
Public	disquiet	against	Spitfire	aircraft	flying	over	Southern	England	in	1937	turned	very	quickly	to	
public	adulation	in	advance	of	the	Battle	of	Britain.90	Its	contextual	relevance	to	AWS	deployment	is	

																																																								
81	Michelle	LeBaron,	‘Culture	and	Conflict’,	Beyond	Intractability	blog,	(July	2003)	
<http://www.beyondintractability.org/essay/culture_conflict>	[accessed	2	August	2017].		
82	Ibid.	
83	Mark	Rupert,	Support	the	Troops:	Populist	Militarism	and	the	Cultural	Reproduction	of	Imperial	Power,	generally	(USA:	
Maxwell	School,	Syracuse	University,	undated	<http://faculty.maxwell.syr.edu/merupert/Populist%20Militarism.pdf>.	
84	L	Gitelman,	Always	Already	New;	Media,	History	and	Data	of	Culture,	(USA:	MIT	Press,	2006),	pp.	4-6.	
85	Gray,	Another	Bloody	Century,	p.	22.	
86	Dima	Adamsky,	The	Culture	of	Military	Innovation:	Impact	of	Cultural	Factors	on	the	Revolution	in	Military	Affairs	in	
Russia,	the	US	and	Israel,	(US:	Stanford	University	Press,	2010),	pp.	31-44.	
	

87	C	Pierreault,	‘The	Pace	of	Cultural	Evolution’,	PLOS.org,	(14	September	2012),		
<http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045150>	[accessed	5	August	2017].	Peirreault	
investigates	rates	of	change	in	human	technology	and	their	correlation	to	cultural	and	biological	evolution.	See	also:	D	
Barea	and	Y	Silverstone,	‘New	Rules	for	Cultural	Change’,	Accenture	Strategy,	(2016)	
<https://www.accenture.com/t20161216T040430__w__/us-en/_acnmedia/PDF-24/Accenture-Strategy-Workforce-
Culture-Change-New.pdf>.	
88	For	a	useful	analysis	on	cultural	shift,	see:	David	Brookes,	‘When	Cultures	Shift’,	New	York	Times,	op-ed,	17	October	
2016	<https://www.nytimes.com/2015/04/17/opinion/david-brooks-when-cultures-shift.html?_r=0>	[accessed	12	
February	2017].	
89	See,	generally:	T.	Ricks,	‘The	widening	gap	between	Military	and	Society’,	Atlantic	Magazine,	July	1997	
<https://www.theatlantic.com/magazine/archive/1997/07/the-widening-gap-between-military-and-
society/306158/>	[accessed	10	March	2017].	
90	Professor	Lloyd	Clark,	thesis	supervisor,	in	conversation	with	the	author,	December	2016.	
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that	all	regimes	are	eventually	attentive	to	public	opinion.91	Whilst	elements	of	a	society	might	
momentarily	abhor	autonomous	weapons	on	ethical	grounds,	any	subsequent	undermining	of	
national	loyalties	(a	weakening,	perhaps,	within	the	willingness	of	its	people	to	fight)	might	
conversely	lead	others	to	advocate	remote	weaponry	as	a	means	to	influence	neighbours	while	
avoiding	casualties.	Finally	to	this	point,	it	should	be	reinforced	that	this	thesis’	commentary	is	
based	upon	deployment	of	State-sponsored	AWS.	The	emergence	of	AWS	under	entirely	new	
fighting	paradigms,	perhaps	by	an	as-yet	undefined	State	system	or,	more	obviously,	by	a	non-State	
polity,	remains	broadly	overlooked	which,	notes	GCSP,	will	have	quite	different	contextual	
ramifications.92	

 Defence planning 
	
The	effect	then	of	context	is	to	make	the	processes	of	the	defence	planner	never	more	
complicated.93	In	its	accounting,	defence-planning	assumptions	must	be	wide	and	in	lockstep	with	
current	ethical,	legal	and	technical	norms.94	It	must	incorporate	political,	environmental	and	
mission	analysis,	the	development	of	options,	the	review	and	then	matching	of	capabilities	and	
resources	and,	finally,	the	ensuing	development	of	appropriate	alternatives.95	In	this	vein,	context	
again	is	key.	Planners	must	throughout	have	in	mind	an	agreed	future	context	for	battlefield	
processes	in	order	(and	the	purpose	of	this	thesis)	to	establish	whether	that	framework	should	
accommodate	compliant	deployment	of	AWS.	The	complication	is	that	such	a	framework	must	also	
feature	technical	assumptions	if	unsupervised	weapons	are	to	be	realised	(including,	inter	alia,	their	
capabilities	and	tasking)	while	still	reckoning	for	political	precepts,	strategic	precepts	as	well	as	the	
effects	of	uncertainty,	notes	Barrons,	that	must	arise	from	what	are	inevitable	shortcomings	in	
defence	planning.96	Given	such	complexity,	it	is	context	that	provides	baseline	when	planning	for	
defence	in	a	future	that	in	large	part	cannot	be	understood.		
	

																																																								
91	Martin	Dimitrov,	‘Tracking	Public	Opinion	under	Authoritarianism’,	Russian	History,	41,	(2014),	pp.	230-233 
<http://www2.tulane.edu/liberal-arts/political-science/upload/dimitrov2014russian_history.pdf>.		
92	Geneva	Centre	for	Security	Policy	(GCSP),	‘Perils	of	Lethal	Autonomous	Weapon	Proliferation:	Preventing	Non-State	
Acquisition’,	GCFSP,	(2018),	generally	<https://www.gcsp.ch/News-Knowledge/Publications/Perils-of-Lethal-
Autonomous-Weapons-Systems-Proliferation-Preventing-Non-State-Acquisition>	[accessed	19	January	2019].	See	also:	
W	Wallach,	Towards	a	Ban	on	Lethal	Autonomous	Weapons:	Surmounting	the	Obstacles,	60.	5,	(USA:	Communications	of	
the	ACM,	2017)	,	p.	28.	
93	Dejan	Stojkovic	and	Bjorn	Robert	Dahl,	‘Methodology	for	Long-Term	Defence	Planning’,	Norwegian	Defence	Research	
Establishment,	(February	2007)	<https://www.ffi.no/no/Rapporter/07-00600.pdf>	generally.	See,	also:	Ministry	of	
Defence	and	Foreign	and	Colonial	Office,	‘UK’s	International	Defence	Engagement	Strategy’,	(UK	MOD/FCO,	2017)	
<https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/596968/06032
017_Def_Engag_Strat_2017DaSCREEN.pdf>.	For	reference	on	defence	planning	and	methodologies,	see:	NATO	office,	
‘Nato	Defence	Planning	Process’,	updated	28	June	2018	<https://www.nato.int/cps/en/natohq/topics_49202.html>	
[accessed	15	January	2019].	
94	R	Brooks,	‘In	defence	of	Killer	Robots:	Hold	on	there,	technophobe	hippies.	When	it	comes	to	‘doing	no	harm’,	robots	
are	a	hell	of	a	lot	better	than	humans’,	Foreign	Policy,	18	May	2015	<http://foreignpolicy.com/2015/05/18/in-defense-
of-killer-robots/>	[accessed	6	August	2017].		
95	Dejan	Stojkovic	and	Bjorn	Robert	Dahl,	Methodology	for	Long-Term	Defence	Planning,	p.	4.	
96	General	Sir	Richard	Barrons,	Ditchley	Foundation	Panel,	at	RUSI,	28	February	2017	and	in	subsequent	conversation	
with	the	author.	For	discussion	on	defence	planning	shortcomings,	see	also:	VS	Shekhawat,	‘Challenges	in	Defence	
Planning’,	Institute	for	Defence	Studies	and	Analyses’,	(October	2006)	
<https://idsa.in/strategicanalysis/ChallengesinDefencePlanning_vsshekhawat_1006>	[accessed	17	January	2019].	Also:	
Parliament	of	Finland,	‘Long-term	Challenges	of	Defence:	Final	Report	of	Parliamentary	Assessment	Group’,	(May	2014),	
pp.	3-8	<https://www.eduskunta.fi/FI/tietoaeduskunnasta/julkaisut/Documents/ekj_5+2014.pdf>.	
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Just	as	weapon	systems	are	not	created	in	a	vacuum,	so	defence	planning	requires	context	as	it	
is	unable	to	pilot	itself	‘given	that	the	future	never	arrives	and	can	never	be	known	with	certainty’.97	
Smith	also	notes	that	it	does	not	follow	simply	because	the	feasibility	of	a	technology	is	
demonstrated	that	a	‘military	will	want	or	be	able	to	adopt	it	as	there	are	numerous	political,	
economic,	operational,	ethical	and	cultural	factors	that	come	into	play’.98	This	narrative	is	
important	as	all	military	polities	practice	some	form	of	defence	planning.99	The	skill	of	such	
planning	is	also	the	pursuit	of	a	course	of	minimum	regret.100	Accordingly,	the	disruptive	
capabilities	posited	by	weapon	autonomy	pose	unusual	challenges	calling	into	question,	as	they	do,	
first	principles	around	States’	politics,	around	fundamental	law	and	ethics,	the	future	of	military	
command	and	battlefield	organisation,	allocation	of	resources	as	well	as	assumptions	on	leadership	
and	combat	assets.	In	considering	these	challenges,	the	balance	of	this	thesis	must	be	similarly	
beholden	to	context’s	significance	in	forming	its	conclusions.	
	

Given	that	context	is	an	inexact	tool,	the	issue	around	planning	analysis	concerns	the	degree	of	
exactness	then	required	in	order	for	it	to	be	a	relevant	tool.	The	behavioural	point	is	that	an	
understanding	of	context	and	deployment	assumptions	only	need	be	broadly	correct	to	mitigate	(as	
best	as	possible)	outright	error.	Long-term	defence	planning	(LTDP)	and	planners’	subsequent	
procurement	policy	does	not	need	to	be	‘in	some	absolute	sense	correct.	Instead,	it	needs	only	to	be	
correct	enough’.101	Its	connection	to	deployment	of	independent	weapons	is	quite	specific	given	
LTDP’s	key	commission,	notes	Stojkovic	and	Dahn,	must	be	to	‘deter	aggression	and	to	ensure	
homeland	defence’.102	Given	that	defence	planning	marks	out	how	polities	should	prepare	for	their	
future	security,	it	also	follows	that	there	can	be	no	objectively	correct	answer	from	the	exercise.	
Context	then	provides	the	basis	for	a	reasonable	smell-test	that	should	deliver	long-lasting	
relevance.103	Planners,	like	economists,	remain	in	‘the	dismal	position’104	of	having	certainty	neither	
about	the	effects	of	output	nor	the	worth	of	their	defence	choices	given	that	both	are	bound	up	with	
accident	and	chance.105	Planners,	after	all,	are	building	uncertain	models	using	uncertain	data-
points	each	that	exacerbate	overall	planning	uncertainty.	It	is	against	this	contextual	backdrop	that	
the	possible	disruption	of	AWS	is	so	telling:	Militaries	cannot	be	rearmed	overnight	while,	in	the	

																																																								
97	Colin	Gray,	‘Defence	planning,	surprises	and	prediction’,	presentation	to	Multiple	Futures	Conference,	NATO’s	Allied	
Command	Transformation,	(8	May	2009)	
<http://www.act.nato.int/images/stories/events/2009/mfp/mfp_surprise_prediction.pdf>	p.	4.	
98	Ron	Smith,	Military	Economics:	The	interaction	of	Power	and	Money,	(UK:	Palgrave	Macmillan,	2009),	p.	132.	
99	Source:	The	NATO	Defence	Planning	Process.	See:	<http://www.nato.int/cps/en/natohq/topics_49202.htm>	[accessed	
25	May	2017].	NATO	operates	a	formal	Defence	Planning	Process	comprised	of	five	steps	and	resulting	in	a	‘single,	
unified	political	guidance	for	defence	planning	setting	out	overall	aims	and	objectives	to	be	met	by	the	Alliance	and	
defining	priorities	and	timelines	for	use	by	the	planning	domains’.	
100	Gray,	Another	Bloody	Century,	p.	42.	
101	Ibid.,	p.	47.	
102 D	Stojkovic	and	B	Dahn,	‘Methodology	for	long-term	Defence	Policy’,	Norwegian	Defence	Research	Establishment,	p.	
13,	(28	February	2007)	<http://www.ffi.no/no/Rapporter/07-00600.pdf>.		
103	Stojkovic	and	Dahn,	p.	8.	
104	Adam	Rogers,	‘The	Dismal	Science	remains	Dismal,	say	Scientists’,	Wired	magazine,	Science,	paras.	3	and	11	of	18,	14	
November	2017	<https://www.wired.com/story/econ-statbias-study/>	[accessed	9	January	2018].		
105	See:	K	Booth	and	N	Wheeler,	The	security	dilemma:	Fear,	cooperation	and	trust	in	World	Politics,	(UK:	Basingstoke,	
Palgrave	MacMillan,	2008).	Also:	Stojkovic	and	Dahn,	pp.	15-16.	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 50 | P a g e  

 
 

face	of	discontinuity,	refits	and	periodic	modernization	as	well	as	uncertain	(and	often	extended)	
procurement	timescales	all	at	once	become	a	newly	inappropriate	risk.106	
	

Avoiding	miscalculation	also	focuses	defence	planning	on	political	consequences	and,	in	
particular,	the	economic	constituent	of	such	consequences.	Foot	points	out	that	the	costs	of	full	
warfare	between	the	US	and	China	might	amount	to	some	thirty	per	cent	of	China’s	Gross	Domestic	
Product	(GDP)	and	seven	per	cent	of	US	GDP.107	Studies	unsurprisingly	note	that	full	State-upon-
State	war	could	cost	both	protagonists	‘substantial	military	losses	to	bases,	[military	assets],	
significant	political	upheaval	at	home	and	abroad,	and	huge	numbers	of	civilian	deaths’.108	Such	
disproportionate	costs	encourage	instead	a	rising	role	for	alternative	means	of	warfare	which,	
notes	Kennon,	includes	‘political	warfare’	and	the	employment	by	defence	planners	of	military,	
intelligence,	diplomatic,	financial,	public	relations,	covert	and	other	psychological	means	that	‘fall	
short	of	conventional	warfare’.109	Chapter	4	(Deployment)	also	notes	that	it	might	encourage	the	
deployment	of	certain	hybrid	and	lighter	touch	deployment	models	involving	independent	
weapons.	Planning	certainty	around	autonomy	is,	after	all,	hindered	by	the	inability	to	conduct	
historical	audit	on	recent	battlefield	precedents.	Similarly,	the	further	into	the	future	that	context	is	
stretched,	the	less	confident	must	be	its	predictions.	As	Gray	concludes,	‘many	a	reputation	has	
been	dented	when	vanity	seduced	its	owner	to	venture	a	guess	too	far’.110		

	
Finally	to	the	defence	planner’s	assessment	of	AWS	feasibility,	not	all	contextual	drivers	

support	AWS’	deployment.		In	particular,	this	thesis’	later	analysis	concurs	with	Lorber’s	position	
that	technical	weaponry	exhibits	very	broad	difficulties111	which,	if	autonomy	is	to	realise	full	
potential,	must	incorporate	a	maintenance	tail,	innovative	training,	logistics,	replenishment	and	
repair	(together	with	its	coordinating	staff	work	for	each	such	component).	Failure	at	any	point	in	
this	long	chain	will	be	akin	to	failure	in	any	one	of	its	multipart	technical	components	and,	
moreover,	will	likely	cause	similarly	unacceptable	degradation	in	the	weapon’s	performance.112	
This	accords	with	Drozdova	that	such	planning	must	also	be	undertaken	within	the	contextual	

																																																								
106	For	a	discussion	on	procurement	timetables	and	challenges,	see:	Martin	Zapfe	and	Michael	Haas,	‘Arms	Procurement:	
The	Political-Military	Framework’,	CSS	Analyses	in	Security	Policy,	181,	(November	2015),	generally	
<http://www.css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-
studies/pdfs/CSSAnalyse181-EN.pdf>.	
	
107	Rosemary	Foot,	‘Constraints	on	Conflict	in	the	Asia-Pacific:	Balancing	the	‘War	Ledger’’,	66,	2,	(UK:	Political	Science,	
2014),	p.	119.	
108	Seth	Jones,	‘Much	‘Political	Warfare’	in	our	Future’,	BreakingDefense,	2	February	2018,	paras.	6-13	of	19	
<https://brekingdefense.com/2018/02/much-political-warfare-in-our-future>	[accessed	6	February	2018].		
109	Seth	Jones,	‘The	Return	of	Political	Warfare’,	Defense	Outlook	2018,	February	2018,	p.	3	
<https://www.csis.org/analysis/return-political-warfare>	[accessed	6	February	2018].	See	also	Anja	Kaspersen	and	
others,	‘Ten	Trends	for	the	Future	of	Warfare’,	World	Economic	Forum	(3	November	2016),	Paragraphs	2	(‘Speed	Kills’),	
3	(‘Fear	and	Uncertainty	increases	Risk’),	6	(‘A	Wider	Cast	of	Players’),	7	(‘The	Grey	Zone’)	and	9	(‘Expanded	Domain	of	
Conflict)	<https://www.weforum.org/agenda/2016/11/the-4th-industrial-revolution-and-international-security/>	
[accessed	18	January	2019].	
110	Gray,	Another	Bloody	Century,	p.	41.	
111	Azriel	Lorber,	Misguided	Weapons:	Technical	Failures	and	Surprise	on	the	Battlefield,	(USA:	Potomac	Books,	2002),	pp.	
8-10	(‘Other	factors	including	common	sense’).	See:	Chapters	6	(Wetware),	7	(Firmware)	and	8	(Software),	specifically:	
6.5	(‘Missing	pieces’),	7.1	(‘Sources	of	technical	debt’)	and	8.2	(‘Coding	errors’).		
112	For	a	detailed	analysis,	see:	Chapter	4	(Deployment),	specifically:	4.7	(‘Operations	and	causes	of	failure’).		
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footing	of	general	AWS	vulnerability	(in	particular,	to	offsetting	tactics	which	are	themselves	based	
on	relatively	‘low’	and	ubiquitous	technologies).113			

 Context’s human angle  
	
The	principal	driver	in	AWS	deployment	remains,	however,	the	role	of	the	human	in	battlefield	
processes.	Industrial	and	scientific	advances	have	not	yet	sidelined	the	rating,	soldier	or	pilot	and,	
in	AWS	deployment,	it	is	this	thesis’	suggestion	that	people	will	‘continue	to	matter	most’.114	
Empirically,	innovative	methods	and	weaponry	can	only	be	effective	if	integrated	with	(and,	notes	
Latiff,	under	the	command	of)	troops	who	are	both	appropriately	trained	in	its	use	and,	crucially,	
motivated	to	win	the	fight.	Motivation	is	a	further	contextual	component	in	judging	the	feasibility	of	
weapons	without	human	supervision.	It	encompasses	traits	such	as	incentive,	impetus,	catalyst	and	
drive.	Regardless	of	weaponry,	Bahnsen	and	Cone	have	highlighted	that	it	is	these	characteristics	
that	win	fights	although	Clark	significantly	notes	that	this	relationship	is	clearly	altered	by,	first,	
fighting	‘at	distance’	and,	second,	by	fighting	with	assets	that	are	themselves	autonomous.115	In	this	
vein,	robots	may	help	humans	in	that	fight	but,	in	the	final	analysis,	the	context	is	that	it	is	human	
resources	that	then	seal	the	battle.	A	difficulty	is	that	this	relationship	is	imprecisely	influenced	by	
several	competing	conditions	such	as	battle’s	proximity,	by	leadership	and,	note	Grinker	and	
Spiegel,	by	physiological	and	psychological	mechanisms	that,	together,	describe	what	is	human	
context.116	Nevertheless,	it	holds	that	the	‘essence	of	the	matter’	(here,	the	violence	of	combat)	all	
around	the	front-line	soldier	remains	unchanged	regardless	of	the	weapon	system	at	his	or	her	
disposal.117	As	noted	in	a	recent	US	Army	Handbook,	‘[h]owever	much	the	tools	of	war	may	
improve,	only	soldiers	willing	and	able	to	endure	war’s	hardships	can	exploit	them’.118	Taken	
together,	therefore,	such	analysis	starts	to	frame	the	human	context	with	which	to	review	AWS	
deployment,	a	dynamic	that	is	based	on	human	precedence	over	technology	and,	after	all,	moulded	
by	the	aphorism	that	it	is	‘usually	much	easier	to	predict	technological	change,	even	to	understand	
how	it	should	work,	than	it	is	to	comprehend	what	it	will	mean’.119	While	such	a	framework	may	be	
based	upon	the	competence	of	the	fighting	soldier	and	‘his	skill	in	injuring	people	and	damaging	
things’,	it	does	not,	however,	deny	a	role	for	battlefield	autonomy.120	Indeed,	Wadwa	and	Johnson	
note	that	context	can	accommodate	a	relationship	between	man	and	weapon	in	an	age	where	man	
may	no	longer	be	in	charge	of	that	weapon’s	effects.121	This,	of	course,	highlights	an	additional	

																																																								
113	Katya	Drozdova,	Low-tech	threats	in	the	Hi-tech	Age:	Subversive	networks	across	ideologies,	technologies	and	times,	
(USA:	University	of	Michigan	Press,	Analytical	Perspectives	on	Politics	Series,	2002),	p.	1.	Also:	Major-General	Patrick	
Cordingley,	in	conversation	with	the	author,	January	2019.		
114	Robert	Latiff,	Future	War:	Preparing	for	the	New	Global	Battlefield,	(USA:	Knopf	Doubleday	Publishing,	September	
2017),	pp.	3-16	(‘Introduction’).		
115	John	Bahnsen	and	Robert	Cone,	Defining	the	American	Warrior	Leader,	(USA:	Parameters,	December	1990),	pp.	24-
28.	Also,	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019.	
116	Roy	Grinker	and	John	Spiegal,	Men	Under	Stress,	(US:	Philadelphia	Press,	1945),	‘Abstract’.		
	
117	Ibid.,	p.	25,	here	the	‘utter	inalienable	violence	of	combat’.	
118	US	Army,	Serving	a	Nation	at	War,	(USA:	Washington	DC,	2004),	p.	8.	
119	Gray,	‘Another	Bloody	Century’,	p.	39.	Italics	by	the	thesis’	author	for	emphasis.	
120	Ibid.,	p.	45.	
121	Vivek	Wadwa	and	Aaron	Johnson,	‘Robots	could	eventually	replace	soldiers	in	warfare.	Is	that	a	good	thing?’,	
Washington	Post,	5	October	2016	<https://www.washingtonpost.com/news/innovations/wp/2016/10/05/robots-
could-eventually-replace-soldiers-in-warfare-is-that-a-good-thing/?noredirect=on&utm_term=.1a5862445221>	
[accessed	22	August	2018].	
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(even	unexpected)	conundrum:	While	humans	remain	responsible	for	AWS’	design,	its	testing	and	
validation,	its	coding,	calibration	and	maintenance,	the	human	is	also	abrogating	himself	from	the	
moment	when	that	weapon	kills.		
	

In	terms	of	context,	how	then	might	AWS	deployment	posit	a	new	relationship	between	human	
soldier	and	the	battlefield?	After	all,	change	on	a	human	level	is	not	obvious:	Warfare,	point	out	
Stojkovic	and	Dahn,	remains	a	set	of	actions	pivoting	around	human	inputs	and,	in	the	State	system	
at	least,	the	principal	contribution	to	defence	planning	remains	the	role	of	politics	and	political	
process.122	The	particularly	human	context	to	AWS	deployment	is	that	autonomous,	automatic	and	
manual	means	of	violence	are,	essentially,	all	similar	means	of	dispensing	lethality,	the	means	to	
cause	death	or	damage.123	Notwithstanding	rogue	human	behaviour124,	in	State	systems	of	warfare	
it	remains	political	(and	therefore	human)	processes	that	occasion	use	of	lethal	force.125	
Furthermore,	social	and	cultural	dimensions	reflecting	the	characteristics	of	those	States’	
communities	must	similarly	originate	from	entirely	human	interactions.	The	contextual	corollary	is	
that	conflict	will	persist	as	a	universally	human	activity	long	after	AWS	deployment	and,	in	this	
sense,	deployment	of	AWS	is	just	one	further	ingredient	to	humans’	ability	to	initiate	violence	for	
political	purposes.	While	it	may	tinker	with	the	equation	of	personal	danger,	AWS	deployment	does	
not	change	the	unchanging	nature	of	war.	Nor	does	it	refute	that	difficulties	abound	in	such	
contextual	tests.	In	the	first	place,	while	human	activity	will	continue	to	dominate	battlecraft,	it	is	
not	possible	to	translate	the	context	that	arises	from	this	conclusion	into	empirical	AWS	behaviour	
given,	of	course,	fundamental	(and	enduring)	challenges	to	weapon	coding	and,	as	discussed	in	this	
thesis’	technical	review,	challenges	arising	from	AWS’	underlying	machine-learning	spine.126	
Second,	not	all	wars	are	settled	by	violence	and,	as	noted	by	Turitto,	it	is	important	that	conclusions	
around	context	do	not	inappropriately	underweight	low-intensity	and	other	non-lethal	types	of	
warfare	such	as	non-State,	economic,	electronic	and	other	psychological	means	of	coercion.127		
	

Other	elements	of	human	context	will	inform	the	processes	of	AWS	deployment.	An	example	is	
in	the	pace	of	AWS	adoption	where	humans	either	embrace	speed-of-change	or	put	up	resistance	to	
transformation.	Cantwell	recounts	a	survey	on	attitudes	towards	unmanned	weapons	within	the	US	
Air	Force	which	found	that	one	third	of	pilots	had	‘wrapped	up	their	professional	identity	so	tightly	
around	the	act	of	flying’	that	they	would	rather	leave	the	service	than	fly	a	remotely	piloted	

																																																								
122	Stojkovic	and	Dahn,	p.	17.	
123	The	distinction	(death	or	damage)	is	deliberate	and	its	legal	consequences	are	taken	up	in	Chapter	5	(Obstacles),	
specifically:	5.5	(‘Article	36	and	LOAC-compliant	weaponry’),	and	Chapter	10	(Oversight),	specifically:	10.1	(‘Meaningful	
Human	Control’).		
124	Lonnie	Harelson,	‘The	Principles	of	War:	Valid	Yesterday,	Today	and	Tomorrow’,	Joint	Forces	Staff	College,	Norfolk	
US,	(2005)	<http://www.dtic.mil/dtic/tr/fulltext/u2/a436747.pdf>	pp.	24-26	(‘The	Future	Has	A	Need	For	the	Principles	
of	War’).	Fighting	wars	is	not	a	science	and	context	must	therefore	factor	in	the	unpredictable	nature	of	human	
involvement	(and	weapon	conformance)	in	its	processes.		
125	For	discussion	on	the	use	of	force	and	relevant	case	studies,	see:	International	Committee	of	the	Red	Cross,	The	Use	of	
Force	in	Armed	Conflict:	Interplay	between	the	Conduct	of	Hostilities	and	Law	Enforcement	Paradigms,	pp.	13-43,	(ICRC,	
November	2013).	
	
126	This	is	severally	discussed	in	this	thesis’	technical	analysis.	See	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	
technical	debt’),	and	Chapter	8	(Software),	specifically:	8.1	(‘Coding	methodologies’)	and	8.2	(‘Coding	errors’).		
127	James	Turitto,	‘Understanding	Warfare	in	the	Twenty	First	Century’,	International	Affairs	Review,	Volume	XVIII,	
Number	3,	(Winter	2010)	<http://www.iar-gwu.org/node/145>	[accessed	8	February	2018].		
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aircraft.128	Boulanin	and	Verbruggen	note	similar	skepticism	in	other	groups	of	military	service	
personnel.129	Suspicion	around	what	appears	‘new’	arises,	after	all,	from	a	long-held	precept	that	
‘every	change	in	a	military	context	is	risk’.130	This	caution,	moreover,	is	widely	reinforced,	not	least	
by	soldiers’	lack	of	trust	in	unproven	technology	and	attendant	changes	to	their	responsibilities131,	
by	organisational	stasis,	by	frequent	lack	of	coherent	vision	between	military	services	and,	notes	
Singer,	an	overarching	focus	on	current	operational	priorities.132	In	this	vein,	AWS’	inherent	traits	
(composite	and	therefore	complex	systems,	impenetrable	software	that	operators	cannot	readily	fix	
and,	as	later	detailed,	AWS’	inherently	unpredictable	outcomes)	are	unlikely	to	inspire	rank-and-
file	confidence	in	the	event	of	technical	lapses	and,	as	noted	in	the	US	Army’s	Army	Equipping	
Strategy,	such	technologies’	likely	requirement	for	a	long	unstable	period	of	adoption.133	
Empirically,	technical	challenges	are	also	difficult	to	refute	once	lodged	in	the	soldier’s	mind	and,	as	
noted	by	Wheeler	(and	in	this	thesis’	technical	review),	questions	will	persist	whether	weapon	
autonomy	will	perform	as	intended	in	complex	battlefields	situations.134	In	this	sense,	weapon	
autonomy	‘is	not	a	concrete	visible	object	but	instead	a	diffuse,	remote	set	of	capabilities	hidden	
deep	within	a	larger	weapon	system’135	creating	different	views	within	different	branches	of	
military	service	about	which	AWS	technologies	are	critical	on	the	future	battlefield.	It	is	this	
imprecision	that	has	also	complicated	the	role	of	Civil	Society	in	its	efforts	to	contain	such	
technologies.	As	noted	by	Roberts	and	Evanoff,	'the	distinguishing	features	that	make	autonomous	
weapons	enticing	military	investments	also	make	placing	restrictions	on	them	difficult.'136		

	
The	precise	impact	of	such	biases	may	be	debatable	but	are	certainly	shaped	by	human	

context,	in	particular	the	different	operational	realities	faced	by	each	combat	branch.137	
Heuristically,	AWS	deployment	will	be	governed	in	part	by	the	priority	given	by	each	military	

																																																								
128	Houston	Cantwell,	Beyond	butterflies:	Predator	and	the	evolution	of	unmanned	aerial	vehicles	in	Air	Force	culture,	
(USA:	School	of	Advanced	Air	and	Space	Studies:	Maxwell	Air	Force	Base,	AL,	2007),	pp.	81-85.	
129	Boulanin	and	Verbruggen,	p.	72.	
130	Michel	Goya,	cit.	Boulanin	and	Verbruggen,	p.	71.	
131	Peter	Singer,	‘Tactical	Generals:	Leaders,	Technology,	and	Perils’,	Brookings	Institute,	(7	July	2009),	paras.	9-10,	14-
15	and	generally	<https://www.brookings.edu/articles/tactical-generals-leaders-technology-and-the-perils/>	
[accessed	18	January	2019].	
	
132	Ibid.	Also:	Boulanin	and	Verbruggen,	p.	71. 
133	US	Army,	‘The	Army	Equipping	Strategy’,	Army	G-8,	(2009),	pp.	4-5	
<http://www.g8.army.mil/pdf/Army_Equipping_Strategy.pdf>.	
134	Scott	Wheeler,	‘Trusted	autonomy:	conceptual	developments	in	technology	foresight’,	Defence	Science	and	
Technology	Group	Report,	(Australian	Government,	Department	of	Defence,	Victoria,	2015),	 
<http://www.dtic.mil/dtic/tr/fulltext/u2/a626723.pdf>.	
135	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
136	Megan	Roberts	and	Kyle	Evanoff,	'Can	Civil	Society	Succeed	in	its	Quest	to	Ban	Killer	Robots?',	World	Politics	Review,	
17	November	2017,	https://www.worldpoliticsreview.com/articles/23636/can-civil-society-succeed-in-its-quest-to-
ban-killer-robots	[accessed	13	March	2019].		
	
137	A	useful	example	is	provided	by	US	inter-service	attitudes	towards	swarming	and	multi-vehicle	control.	While	the	US	
Air	Force	remains	sceptical	about	the	technology	(and	has	no	current	interests	in	its	development),	the	US	Navy	and	
Army	are	enthusiastic	about	its	operational	possibilities:	See	Chapter	4	(Deployment),	specifically	4.6	(‘Swarming	
model’)	and,	generally,	John	Arquilla	and	David	Ronfeldt,	Swarming	and	the	future	of	conflict,	(USA:	Santa	Monica:	Rand	
Corporation,	2000),		<https://www.rand.org/pubs/documented_briefings/DB311.html>	[accessed	12	December	2017].	
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service	to	embedding	those	technologies	that	it	deems	most	useful	to	its	current	practices.138	
Boulanin	and	Verbruggen	note	that	these	biases	are	exacerbated	when	budgets	are	tight	and	when	
acquisition	of	untried	hardware	(that	may	not	deliver	capabilities	for	several	years)	is	seen	as	being	
less	attractive	than	procuring	readily	available,	proven	technology	which	will	be	immediately	
accretive.139	In	this	vein,	context	perhaps	has	a	role	in	prompting	States	to	adopt	a	more	cautious	
and	incremental	path	towards	independent	weapons.	As	an	adjunct,	Rosen	notes	that	it	is	often	not	
until	the	occurrence	of	major	conflict	that	such	adoption	of	new	technologies	properly	
accelerates.140	A	final	contextual	drag	to	deployment	is	identified	by	Harari	and	arises	from	the	
phenomenon	of	human	knowledge	(as	a	proxy	here	for	battlefield	technology)	increasing	at	an	
unprecedented	speed.	In	this	case,	he	argues	that	new-found	knowledge	actually	fosters	paralysis:	
In	an	effort	to	understand	what	is	happening,	‘knowledge	explosion’	instead	leads	planners	and	the	
procurement	executive	into	stasis	given	ever	less	ability	to	‘make	sense	of	the	present	or	forecast	
the	future’.141	Clark	similarly	notes	that	institutional	belief	that	lessons	have	been	learned	from	an	
earlier	campaign	or	prior	technology	may	reduce	subsequent	creativity	and	questioning.142	By	
inference,	this	then	becomes	the	next		‘wide	socio-technical	milieu’	discussed	above	in	which	
context	actually	slows	the	pace	of	battlefield	change.143		
	

A	further	nuance	is	that	military	technology	(inter	alia,	AWS’	numbers,	ranges,	accuracy	and	
costs)	may	appear	easier	to	calculate	and	entrench	than	less	definable	assets	such	as	training,	
morale,	organisation,	doctrine	and	the	quality	of	leadership.144	This	contextual	wrinkle	may	also	
prove	an	important	factor	in	AWS	deployment	given	that	the	defence	planner	eventually	needs	to	
decide	the	extent	to	which	she	agrees	with	the	aphorism	that	‘historically,	good	men	with	poor	
ships	are	better	than	poor	men	with	good	ships’.145	Contextually,	the	inescapable	allocation	issue	is	
between	the	relative	worth	of	man	and	machine.	The	verso,	however,	is	stressed	by	Cordingley	that	
any	over-reliance	on	the	technical	can	actually	be	undone	by	a	portfolio	of	context-driven	factors	
such	as	poor	operational	direction,	ambiguous	strategy,	over-extended	logistics	and,	in	the	case	of	
AWS	deployment,	simple	operation	in	a	cluttered	unfamiliar	geography.146	It	is	this	line	of	analysis	
that	points	to	it	being	the	use	made	of	that	weapons	technology	rather	than	the	technology	itself	
which	is	then	important	to	AWS	context	and	that	it	is	the	human	combatant	rather	than	the	
machine	combatant	that	remains	the	most	important	component	to	this	piece.147	On	this	basis,	

																																																								
138	Army	Technology	blog,	‘Prioritizing	Procurement’,	www.armytechnology.com,	(20	November	2016),	generally	
<https://www.army-technology.com/features/feature45999/>	[accessed	12	June	2018].	
139 Boulanin	and	Verbruggen,	p.	72. 
140	S	Rosen,	Winning	the	Next	War,	(USA:	Cornell	University	Press,	Ithaca,	NY,	1991),	generally.		
141	Yuval	Noah	Harari,	Homo	Deus,	(UK:	Penguin	Random	House,	2016),	p.	46.	
142	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019.		
	
143 Bousquet,	p.	2.	Although	written	in	1991,	see	also:	Craig	Moore	and	others,	Measuring	Military	Readiness	and	
Sustainability,	(National	Defense	Research	Institute,	RAND	Publishing,	Santa	Monica,	1991)	pp.	ix-xiv	and	generally.	
144	Gray,	Another	Bloody	Century,	p.	98.	
145	Admiral	Alfred	Thayer	Mahan,	The	influence	of	Sea	Power	upon	the	French	Revolution	and	Empire	1793-1812,	Volume	
one,	(USA:	Boston,	1898),	p.	102.	
146	Major-General	Patrick	Cordingley,	Commander,	7th	Armoured	Brigade,	Gulf	War,	1991,	in	conversation	with	the	
author,	January	2019.	See	also:	Gray,	Another	Bloody	Century,	p.	121.	
147	Outside	the	scope	of	this	analysis,	historical	examples	might	include	Japanese	aviation’s	technical	superiority	over	
American	machinery	in	1942	in	the	Pacific.	Similarly,	German	operational	and	tactical	skill	had	material	impact	in	
negating	French	and	British	land	forces	superiority	in	early	1940.	
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context	around	deployment	should	therefore	afford	greater	weight	to	intangibles	such	as	superior	
training,	discipline	and	morale,	effective	leadership,	greater	numbers,	intelligence	and	logistics.	
Although	an	over-simplification	and	written	in	2004,	the	point	is	usefully	laboured	in	the	US	Army	
Handbook	by	its	exaggerated	statement	that	‘[h]owever	much	the	tools	of	war	may	improve,	only	
soldiers	willing	and	able	to	endure	war’s	hardships	can	exploit	them’.148		

	
This	precept	is	backed	up	by	Coker’s	analysis	of	Thucydides	whereby	it	has	often	proved	

historically	possible	to	compensate	for	technological	disadvantage	and	where,	in	a	world	today	
where	knowledge	diffusion	is	extensive,	there	is	sound	argument	to	assume	that	technological	
advantage	will	be	increasingly	fleeting.149	While	weapon	innovation	may	be	a	constant,	it	is	also	one	
where	effects	may	empirically	be	blunted	by	emulation,	by	parallel	discovery	and	adaption	or	by	
evasion.	Indeed,	notes	Macias,	newer	and	better	devices	‘are	always	just	round	the	procurement	
corner’	and	there	is	therefore	no	resting	point	for	the	defence	planner	on	the	continuum	of	
weapons	development.150	Finally	to	this	point,	each	such	novel	technology	can	perform	no	better	
than	the	crew	and	personnel	who	must	direct	them	(in	the	case	of	AWS,	the	set-up	and	monitoring	
of	those	systems).	Inferring	from	Adams’	Future	Warfare	and	the	Decline	in	Human	Decision	Making	
would	suggest	that	AWS’	calibration	and	its	need	for	dynamic	updating	will	mean	that	removing	
general	human	supervision	only	amplifies	AWS’	vulnerability	to	all	of	those	contextual	challenges	
identified	above.151	It	is	this	condition	that	leads	Cordingley	to	question	whether	AWS’	Delivery	
Cohort	will	practically	delegate	key	tasks	(the	security,	perhaps,	of	a	flank)	to	machines	without	
human	oversight.152	

 The role of situational awareness and uncertainty 
	
In	order	to	complete	this	chapter’s	analysis,	its	final	section	now	considers	context	from	the	
perspective	of	the	engaging	weapon.	What	contextual	evaluation	must	reasonably	be	included	in	
AWS’	targeting	and	decision	processes?	Key	to	this	is	the	notion	of	‘situational	awareness’	which	
Dorstal	defines	as	‘understanding	of	the	operational	environment	in	all	of	its	dimensions	–	political,	
cultural,	economic,	demographic	as	well	as	military	factors’.153	Situational	awareness	is	also	a	
catchall	notion	that	should	include	both	strategic	and	tactical	awareness.	Its	importance	is	
evidenced	by	Suchman	in	her	conclusion	that	such	capability	is	a	pivotal	component	for	weapon	

																																																								
148	US	Army,	Serving	a	Nation	at	War,	(USA:	Washington	DC,	2004),	p.	8.	
149	Christopher	Coker,	‘Still	“the	human	thing”?	Technology,	human	agency	and	the	future	of	war’,	International	
Relations,	32.1,	(2018)	<http://eprints.lse.ac.uk/87629/1/Coker_Human%20Thing.pdf>	pp.	23-38.	See	also:	Gray,	
Another	Bloody	Century,	pp.	121-128.	For	a	discussion	of	Boot’s	theory	of	technical	nullification,	see:	Chapter	5	
(Obstacles),	specifically,	5.6	(‘Behavioural	constraints’).		
150	Amanda	Macias,	‘Weapons	of	the	Future:	Here’s	the	New	War	Technologies	Lockheed	Martin	is	Pitching	to	the	
Pentagon’,	CNBC,	(6	March	2018),	generally	<https://www.cnbc.com/2018/03/06/future-weapons-lockheed-martin-
pitches-new-war-tech-to-pentagon.html>	accessed	18	January	2019].	
	
151	Inferred	from:	Thomas	Adams,	Future	Warfare	and	the	decline	in	human	decision	making,	2,	(Parameters,	2001),	p.	12	
<http://ssi.armywarcollege.edu/pubs/parameters/articles/2011winter/adams.pdf>.	
152	Major-General	Patrick	Cordingley,	in	conversation	with	the	author,	June	2017.	
	
153	Brad	Dorstal,	‘Enhancing	situational	understanding	through	the	employment	of	unmanned	aerial	vehicles’,	Centre	for	
Army	Lessons	Learned,	(2001)	<http://www.globalsecurity.org/military/library/report/call/call_01-18_ch6.htm>	
[accessed	6	March	2017].	Such	awareness	incorporates	melding	judgements	that	have	been	based	upon,	inter	alia,	
classification	of	persons,	escalation/de-escalation	of	force,	definition	and	ramifications	of	protected	places,	battlefield	
responsibilities	and	permissions,	appropriate	selection	of	armaments	as	well	as	the	three	principles	of	distinction,	
military	necessity	and	proportion.		
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adherence	to	International	Humanitarian	Law	(IHL)	as	well	as	to	‘any	other	form	of	legally	
accountable	rules	of	conduct	in	armed	conflict’.154	The	interpretative	routines	that	define	
situational	awareness	cannot,	moreover,	be	specified	in	law	given,	generally,	the	uncertainty	of	
actions	in	situations	of	armed	conflict.	What	is	clear,	however,	is	that	such	military	rules	require	
these	same	capabilities	in	each	specific	and	‘actually	occurring’	situation.		The	purpose	of	this	
section	is	therefore	to	review	the	tenets	of	what	comprises	appropriate	situational	awareness	in	
autonomous	self-directing	weapons.	It	is	also	to	judge	how	they	might	impact	AWS’	contextual	
framework	ahead	of	reviewing	AWS’	fundamental	feasibility	in	this	thesis’	later	technical	sections.		
	

Tyugu	notes	that	multiple	complications	arise	from	AWS’	having	to	precede	lethal	engagement	
with	such	an	awareness	check.155	Coding	for	situational	awareness	is	challenging	precisely	because	
‘future	autonomy	will	need	to	process	sensor	data	and	inputs	in	order	more	effectively	to	create	its	
own	internal	situation	model	to	direct	its	decision-making’.156	This	contrasts	with	human	senses	
that	provide	a	continuous	flow	of	stimuli.	An	adjunct	challenge	is	then	the	mediation	that	is	
necessary	between	the	weapon’s	battlefield	inputs,	each	of	which	must	compete	to	provide	the	host	
with	an	intuitive,	comprehensive	and	moment-to-moment	picture	on	its	surrounding	environment.	
In	this	respect,	human	perception	is	an	effortless	process.	Human	eyes,	for	instance,	do	not	tell	the	
brain	what	objects	they	see	any	more	than	a	camera	currently	informs	what	objects	it	is	
capturing.157	How,	therefore,	might	situational	awareness	be	undertaken	by	AWS?	The	challenge	
here	is	the	supervision	and	adjudication	of	complex	sensory	signals	as	well	as	the	management	of	
their	intensity.	Empirically,	such	signals	will	be	filtered	according	to	threshold	values	as	well	as	by	
circuits	that	are	designed	to	determine	‘match’,	‘mismatch’	and	‘novelty’	relationships	existing	
between	these	sensory	and	feedback	signals	and	the	AWS’	initial	representations.158	This	must	be	
undertaken	under	‘right	first	time,	every	time’	criteria159,	including	context-based	routines	that	
match	AWS’	sensed	data	with	both	targeting	parameters	and	required	rules	of	engagement.160	
Technical	narrative	evidences	these	challenges.	The	self-directing	weapon	must	generate	a	
mismatch	message	if	signal	arrays	do	not	correspond.	Similarly,	it	must	produce	novelty	signals	
whenever	a	sensory	signal	appears	without	a	corresponding	feedback	signal.	Even	at	a	theoretical	
level,	achieving	situational	awareness	in	machines	is	very	difficult.	The	constraint	is	that	such	
processes	require	broad	feedback	routines,	created	(and	then	processed)	at	each	stage	of	this	
awareness	routine	with	individual	outputs	being	re-introduced,	prioritised,	filtered,	weighted	and,	

																																																								
154	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction’,	p.	1.	See	also:	Chapter	5	(Obstacles),	
specifically:	5.1	(‘Geneva	Convention	and	the	Laws	of	Armed	Conflict’),	generally.		
155	Enn	Tyugu,	‘Situational	Awareness	and	control	errors	of	cyber	weapons’,	Cognitive	Methods	in	Situational	Awareness	
and	Decision	Support,	IEEE	International	Multi-disciplinary	Conference,	(February	2013),	(‘Abstract’).		
156	United	Air	Force,	Office	of	the	Chief	Scientist,	Autonomous	horizons	-	system	autonomy	in	the	air	force;	a	path	to	the	
future,	(USA;	USAF	Publishing,	June	2015),	p.	33	
<http://www.af.mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf?timestamp=1435068339702>	[accessed	
19	August	2016].	
157	Pentti	Haikonnen,	The	cognitive	approach	to	conscious	machines,	(UK:	Imprint	academic,	2003),	p.	42.	
158	For	instance:	Raytheon	Patent	US6952001B2,	‘Integrity	Bound	Situational	Awareness	and	Weapon	Targeting’,	
(2005)	<https://patents.google.com/patent/US6952001B2/en>	[accessed	19	February	2017].	The	routines	and	their	
challenges	are	covered	in	detail	in	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).		
159	Meghan	Han,	‘Lethal	Autonomous	Weapons	and	Info-Wars:	A	Scientist’s	Warning’,	Medium,	6	July	2017,	paras.	7,	12	
and	21	of	27	<https://medium.com/@Synced/lethal-autonomous-weapons-info-wars-a-scientists-warning-
cc95798bc302>	[accessed	12	February	2018].		
160	UK	Government,	‘Rules	of	Engagement’,	generally.	
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as	necessary,	acted	upon	(and	all	in	keeping	with	machine	goals	and	without	distortion	of	the	
weapon’s	primary	feedback).	For	compliant	function,	the	weapon’s	controller	must	presumably	
predict	(and	search)	for	other	contextual	representations	in	order	to	affirm	immediately	prior	
battlefield	readings.		

	
This	points	to	a	further	challenge:	Coding	for	the	separation	of	desired	and	undesired	

associations	(in	what,	after	all,	is	a	chaotic	battlefield	environment161)	presents	an	enduring	
bottleneck	to	enabling	appropriate	situational	awareness.	While	its	management	is	covered	in	this	
thesis’	later	technical	analysis,	awareness	routines	(for	the	purposes	of	weighting	context’s	role	in	
AWS	deployment)	must	also	enable	suppression	of	‘inappropriate’	sensory	input	in	order	to	ensure	
that	the	weapon’s	momentary	representation	accurately	reflects	its	current	state	as	modified	by	
new	sensory	input	as	well	as	output	from	subsequent	feedback	loops.162	Situational	awareness,	
furthermore,	must	account	for	associative	meanings	across	very	different	types	of	sensor	groups	
requiring,	in	turn,	complex	cross-connections	between	AWS’	different	sensory	modules.	Are	the	
weapon’s	contextual	associations	to	be	pre-set	and	immutable	or	rules-based	and	varying,	and	
within	what	framework	might	they	then	be	improved	through	subsequent	learning	processes?	Hew	
notes	that	it	is	how	these	issues	are	managed	that	will	define	AWS	context	from	the	perspective	of	
the	engaging	weapon.163	Such	fundamentals	therefore	dictate	both	the	weapon’s	overall	system	
architecture	but	also	the	balance	between	integration	and	manipulation	of	sensed	information	and,	
contextually,	the	effectiveness	of	the	weapon	that	can	then	be	deployed.164	

 Contextual inputs for AWS operation 
	
Divining	appropriate	context	from	its	surroundings	is	similarly	a	hardware	issue	in	AWS	
deployment.	In	this	vein,	Suchman	points	out	that	existing	weapon	sensors	may	be	able	to	identify	
an	object	as	a	human	but	cannot	currently	make	necessary	discrimination	among	persons	as	
required	by	the	legal	principle	of	distinction.165	Furthermore,	notes	the	World	Economic	Forum,	
zones	of	combat	will	be	increasingly	fluid,	contested	and	defined	by	uncertain	boundaries	making	it	
insufficient	for	AWS	to	rely	solely	upon	prior	internal	models	to	define	context	and	compliant	
operation.166	This	is	a	telling	point.	Machine	sensors	will	presumably	fail	where	combatants	are	
disguised	or	in	situations	where	an	enemy	employs	obfuscation	or	false	denial.	Wilke	notes	the	rise	

																																																								
161	“Its	grammar,	indeed,	may	be	its	own,	but	not	its	logic”	(Clausewitz,	cit.	Robert	Cassity	and	Jacqueline	Tame,	‘The	
Wages	of	War	Without	Strategy:	Beyond	the	Present	–	A	Call	to	Clausewitz	and	to	Conscience’,	Strategy	Bridge,	Abstract	
and	generally,	(23	August	2017)	<https://thestrategybridge.org/the-bridge/2017/8/23/the-wages-of-war-without-
strategy>	[accessed	17	January	2019].	
	
162	Nathan	Brennon,	‘Coordinated	Machine	Learning	and	Decision	Support	for	Situational	Awareness’,	Sandia	National	
Laboratories,	Report,	(September	2007),	pp.	23-29	<http://prod.sandia.gov/techlib/access-
control.cgi/2007/076058.pdf>.		
163	Patrick	Chisan	Hew,	‘The	Generation	of	Situational	Awareness	–	A	Near	to	Mid-Term	Study’,	Defence	System	Analysis	
Division,	(Australia:	Australian	Army	Publishing,	July	2006),	pp.	6-8	(‘Technical	Bottleneck	Issues’)	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a465252.pdf>.	
164	Haikonnen,	p.	190.	
165	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	lawful	
autonomy’,	p.	3.	
166	See,	generally:	Anja	Kaspersen	and	others,	‘Ten	Trends	for	the	Future	of	Warfare’,	World	Economic	Forum	(3	
November	2016),	Paragraphs	2	(‘Speed	Kills’),	3	(‘Fear	and	Uncertainty	increases	Risk’),	6	(‘A	Wider	Cast	of	Players’),	7	
(‘The	Grey	Zone’)	and	9	(‘Expanded	Domain	of	Conflict),		<https://www.weforum.org/agenda/2016/11/the-4th-
industrial-revolution-and-international-security/>	[accessed	18	January	2019].	
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of	the	unlawful	combatant,	categorised	in	this	instance	as	the	‘illegitimate,	non-innocent,	suspicious	
civilian’.167	Sophisticated	technologies	may	include	facial	or	gait	recognition	but	remain	reliant	on	
pre-established	databases	where	profiles	remain	inherently	vulnerable	to	false	positives,	
dissembling	and	inaccurate	categorization.	Such	databases	must	also	be	updated	dynamically	in	
what	is	likely	a	communications-denied	environment.168	Currently	posited	methodology	for	AWS	
deployment,	observes	Schuppli,	relies	inappropriately	upon	third	party	intelligence	gathering,	
assessment	and	military	action,	including	the	calculation	of	who	can	legally	be	killed,	largely	be	
performed	by	machines	and	‘based	on	an	ever	expanding	database	of	aggregated	information’.169	
An	issue	for	AWS	deployment	is	therefore	that	context	is	particularly	complicated	exactly	because	
there	can	‘be	neither	an	objectively	correct	answer	nor	one	that	is	testable	save	by	the	verdict	of	
future	events’.170		
	

As	pointed	out	by	Macauley,	a	final	point	of	context	for	AWS	deployment	arises	from	the	pell-
mell	pace	of	advance	of	technology	across	all	of	AWS’	componentry.171	Such	pace	of	change	
questions	what	may	eventually	be	properly	disruptive	and	what	is	currently	(at	the	point	of	
decision)	sustainable	in	these	systems.	In	this	vein,	the	US	Army	Research	Laboratory	(USARL)	looks	
at	the	impact	of	weapon	technology	thirty	years	hence	in	order	to	identify	what	it	judges	will	
become	key	drivers	in	battlecraft.172	Their	focus	is	driven	in	large	part	by	measures	that	seek	to	
address	current	and,	arguably,	enduring	shortcomings	in	the	collection	and	processing	of	battlefield	
context.	Evidencing	its	significance,	the	USARL	focuses	upon	matters	disrupting	context-collection	
by	adversaries	including	competences	‘that	could	be	used	to	deny,	deceive,	disrupt,	degrade	and	
compromise	adversary	information	and	information-related	processes’.173	Their	principal	
prediction	is	for	‘super-sensing	and	sense-making	[enhanced]	humans’	rather	than	inanimate	
intelligent	agents	on	the	battlefield.174	The	contextual	point	here	is	that	their	forecast	is	not	for	
independent	AWS.	Instead,	therefore,	context	should	be	underpinned	by	what	is	expected	in	2050	
to	be	self-arranging	and	self-marshalling	forces	(incorporating	material	autonomous	capabilities)	
but	with	‘fluid	command	and	control’	whereby	human	individuals,	human-led	teams	and	software	
agents	will,	as	appropriate,	‘self-organise,	dynamically	creating	and	modifying	collaborative	

																																																								
167	Christiane	Wilke,	‘Civilians,	combatants	and	the	history	use	of	International	law’,	Critical	Will:	Law	ad	the	Political,	28	
July	2014	<http://criticallegalthinking.com/2014/07/28/civilians-combatants-histories-international-law/>	[accessed	
5	May	2017].	

168	MC	Haas	and	SC	Fischer,	‘The	Evolution	of	Targeted	Killing	Practices:	Autonomous	Weapons,	Future	Conflicts	and	
the	International	Order’,	Contemporary	Policy,	38:2,	(August	2017),	p.	284	
<https://www.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-
studies/pdfs/Haas&Fischer_2017_TargetedKillingPractices.pdf>.		
169	Susan	Schuppli,	‘Deadly	Algorithms’,	Continent,	Issue	4.4,	p.	20-27	
<http://www.continentcontinent.cc/indenx.php/continent/article/view/212>	[accessed	7	May	2017].	
170	Gray,	Strategy	and	defence	planning;	Meeting	the	Challenge	of	Uncertainty,	p.	2.	
171	Thomas	Macauley,	‘The	Future	of	Technology	in	Warfare:	From	AI	Robots	to	VR	Torture’,	Techworld,	13	January	
2017	<https://www.techworld.com/security/future-of-technology-in-warfare-3652885/>	[accessed	15	May	2017].		
172	US	Army	Research	Laboratory,	Visualizing	the	tactical	ground	battlefield	in	the	year	2050:	workshop	report,	(USA:	
ARL-SR-0327,	June	2015).	Here,	the	‘obtaining,	collecting,	organizing,	fusing,	storing	and	distributing	relevant	
information’	includes	capabilities	around	‘command	and	control	functions	and	processes	including	reasoning,	influence,	
planning,	decision-making	and	collaborating’.	
173	Ibid.,	p.	2.	
174	Ibid.,	p.	8.		
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processes’.175	This	broad	narrative	is	contextually	supported	by	the	UK	Ministry	of	Defence’s	recent	
Future	Operating	Environment	2035.	In	this	case,	an	attempt	is	made	to	define	likely	characteristics	
of	the	future	battlefield	in	an	effort	to	inform	the	UK’s	on-going	defence	capability.176	It	is	rather	
because	of	the	uncertainty	that	such	prediction	entails	that	a	broad	grasp	of	context	is	so	important.	
In	the	case	of	AWS	deployment,	the	prediction	for	2035’s	battlefield	is	that	it	will	be	‘congested,	
cluttered,	connected	and	constrained’	and,	by	inference,	requiring	MHC	in	weapon	management.177		
	

Chapter	Two	is	therefore	intended	to	provide	a	prism	through	which	the	complications	of	self-
directing	weapons	can	be	judged.	Broad	context	offers	a	framework	through	which	to	identify	and	
then	weight	the	several	layers	of	challenge	that	might	impact	AWS	deployment.	Given	the	very	wide	
‘art	of	the	possible’	(here,	the	dystopian	scenario	put	forward	by	Stuart	Russell),	it	is	context	that	
provides	both	narrative	and	boundaries	in	order	to	understand	what	appear	as	very	quickly	
evolving	sets	of	circumstances.178	An	example	has	been	the	role	of	the	defence	planner	and	her	
requirement	to	determine	tipping	points	and	what	comprises	certain	disruption.	A	second	prism	is	
then	called	for	by	the	importance	of	context	within	the	weapon	system.	It	is	this	step	which	then	
calls	into	focus	whether	independent	weapons	can	both	capture	and	then	manage	the	relevant	
situational	awareness	that	is	a	necessary	prerequisite	for	compliant	lethal	engagement.	Together,	
context	is	therefore	a	fundamental	tool	in	this	thesis’	overall	investigation.	It	is	consistently	
relevant	to	understanding	why	(together,	‘drivers’),	how	(together,	‘deployment’)	and	why	not	
(together,	‘obstacles’)	AWS	deployment	may	or	may	not	be	viable.	

																																																								
175	Ibid.,	p.	11.	
176	UK	Ministry	of	Defence,	Strategic	Trends	Programme,	Future	Operating	Environment	2035,	(UK:	Crown	Copyright,	
August	2015),	p.	viii.		
177	UK	Ministry	of	Defence,	Strategic	Trends	Programme,	p.	1.	
178	Susan	Schuppli,	‘Deadly	Algorithms’,	p.	26.		
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3. Drivers:	Factors	accelerating	the	removal	of	weapon	supervision		

This	thesis	now	looks	to	understand	the	several	drivers	that	contribute,	either	singularly	or	in	
concert,	to	the	removal	of	human	supervision	in	lethal	engagements.1	Such	drivers	are	rarely	
discrete	and	tend	instead	to	overlap.	They	have	the	broadest	genesis,	different	intensities,	diverse	
trajectories	and,	as	detailed	below,	may	be	political,	social,	ethical,	moral,	economic,	operational,	
doctrinal	or	structural	in	their	spur.	Empirically,	drivers	accelerating	the	adoption	of	autonomy	will	
share	several	characteristics.	An	important	recognition,	however,	must	be	that	parties	remain	in	
the	early	stages	of	developing	robotic	battlefield	technologies2	and,	moreover,	that	fully	
autonomous	weapons	constitute	an	extreme	of	this	robotics	continuum.3	In	reviewing	what	is	
visible	at	States’	policy	level4,	the	Stockholm	International	Peace	Research	Institute	(SIPRI)	
concludes	that	‘there	is	not	yet	a	declared	arms	race	in	autonomy’.5	The	broad	narrative	to	this	
chapter	is	therefore	that	State	positions	on	autonomy	will	‘develop	and	mature	as	they	increasingly	
integrate	robotic	technologies	into	their	arsenals’.6	Furthermore,	the	notion	of	a	continuum	that	
exists	between	currently	robotic	battlefield	assets	and	those	same	assets	that	increasingly	operate	
without	human	supervision	underlines	much	of	this	chapter’s	analysis.7			

	 At	its	root,	several	push	and	pull	factors	exist	that	will	influence	State	adoption,	first,	of	
robotics	and,	subsequently,	of	battlefield	autonomy.	These	are	framed	by	militaries’	requirement	to	
improve	processes	and	stay	ahead	of	likely	adversaries’	capabilities	but	also	by	public	opinion	and,	

																																																								
1	For	the	purposes	of	this	thesis,	‘driver’	is	defined	as	‘a	factor	which	causes	a	particular	phenomenon	to	happen	or	
develop’.		
2	Paul	Scharre,	‘The	Coming	Swarm:	Robotics	on	the	Battlefield’,	Real	Clear	Defense,	(19	October	2014),	generally	
<https://www.realcleardefense.com/articles/2014/10/20/the_coming_swarm_robotics_on_the_battlefield_107499.ht
ml>	[accessed	8	December	2017].		
3	Khasha	Ghaffarzadel,	‘New	Robotics	and	Drones,	2018-2038:	Technologies,	Forecasts,	Players’,	IDTechEX	Reports,	
(2018),	generally	<https://www.idtechex.com/research/reports/new-robotics-and-drones-2018-2038-technologies-
forecasts-players-000584.asp>	[accessed	20	January	2019].		Several	continua	(relevant	to	AWS	deployment)	are	
reviewed	in	this	thesis	including	those	in	weapon	tasking	and	assignment,	in	procurement	practices	and	in	defence	
planning.	Continua	also	exist	in	battlefield	practices	(firepower	mass	to	manpower	mass	to	technology	mass),	in	
weapon	capability	and	the	move	from	automation	to	autonomy	as	well	as	the	sequences	within	target	acquisition,	
selection	and	dispatch.	For	a	discussion	on	this	relationship,	see:	Noel	Sharkey,	‘The	‘Evitability’	of	Autonomous	Robotic	
Warfare’,	International	Review	of	the	Red	Cross,	94,	886,	(Summer	2012),	generally	
<https://www.icrc.org/eng/assets/files/review/2012/irrc-886-sharkey.pdf>.			
4	Stopkillerrobots.org,	‘Country	Policy	Positions’,	SKR,	(25	March	2016)	<http://www.stopkillerrobots.org/wp-
content/uploads/2015/03/KRC_CCWexperts_Countries_25Mar2015.pdf>.		
5	SIPRI	is	the	Stockholm	International	Peace	Research	Institute	undertaking	research	into	conflict,	armaments,	arms	
control	and	disarmament.	See:	Boulanin	and	Verbruggen,	‘Mapping	the	development	of	autonomy	in	weapon	systems’.	
The	SIPRI	analysis	is	based	on	the	world’s	top	ten	arms	producing	nations	measured	by	arms	sales	and	includes	the	
USA,	Russia,	China,	France,	Germany,	Israel,	South	Korea,	Japan,	India	and	the	UK.	HRW’s	Mary	Wareham	points	out	that	
the	first	such	database	was	compiled	by	ASU’s	Dr	Heather	Roff	and	Richard	Moyes	of	Article	36,	
<https://futureoflife.org/wp-content/uploads/2017/01/Heather-Roff.pdf?x41605>	[accessed	19	December	2017].	For	
the	most	current	list	of	States	calling	for	a	ban	on	AWS,	see:	Campaign	to	Stop	Killer	Robots	
<https://www.stopkillerrobots.org/wp-content/uploads/2018/11/KKC_CountryViews22Nov2018.pdf>.	
6	Boulanin	and	Verbruggen,	p.	58.	
7	Economist	Magazine,	‘Autonomous	Weapons	are	a	game-changer’,	Economist,	25	January	2017,	generally	
<https://www.economist.com/special-report/2018/01/25/autonomous-weapons-are-a-game-changer>	[accessed	12	
March	2018].	
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notes	Clark,	by	general	defence	debate.8	Robotics,	after	all,	and	subsequent	removal	of	human	
intervention	from	these	processes	posit	several	benefits	and	a	purpose	of	this	chapter	is	to	review	
this	potential.	At	its	most	basic,	battlefield	robotics	can	sidestep	circadian	shortcomings	to	human	
performance	such	as	fatigue	as	well	as	often-inconvenient	human	requirements	for	upkeep	and	
other	support.	Apthorp,	for	instance,	notes	that	robots	will	likely	have	a	main	role	in	army	
logistics:9	The	payload	of	Boston	Dynamics’	340-pound	robotic	BigDog	is	three	times	greater	than	
that	which	can	be	hauled	by	the	regular	infantryman.10	As	important,	however,	are	push	factors	in	
this	dynamic,	those	contextual	drivers	inferred	from	Gillespie	that	include	AWS’	deployment’s	
political,	economic,	social,	technical,	environmental	and	legal	factors.11	It	is	these	components	that	
provide	the	common	thread	to	this	chapter’s	analysis	between,	first,	the	adoption	of	robotic	
battlecraft	and,	thereafter,	the	migration	of	unmanned	battlecraft	towards	autonomous	processes.	
That	migration	is	impacted	by	a	swathe	of	quite	uncorrelated	influences	such	as	the	political	
landscape12,	the	ramifications	of	an	ageing	population	(with,	perhaps,	its	decreasing	tolerance	for	
casualties13),	the	quickly	evolving	character	of	warfare	that	is	evidenced	in	later	chapters14	as	well,	
of	course,	as	increased	use	of	robotics	in	the	commercial	and	domestic	domains.15	While	the	certain	
impact	of	these	general	drivers	is	hard	to	measure,	it	is	this	chapter’s	assumption	that	they	will	
contribute	cumulatively	to	adoption	of	autonomy	in	battlefield	practices.	

Given	then	that	these	factors	are	combinatory,	structure	is	required	within	which	to	categorise	
the	drivers	that	together	facilitate	adoption	of	AWS.	Stanford	futurologist	Seba	provides	such	a	
framework	which,	once	repurposed,	is	useful	to	understanding	removal	of	human	supervision	in	
lethal	engagements.16	Adapting	then	his	model	to	AWS	deployment,	a	disruptive	weapon	system	
should	exhibit	four	characteristics.	It	should	be	possible	to	identify	permanent	and	dramatic	
changes	in	the	cost	curves	of	technologies	that	comprise	that	weapon	(here,	the	costs	of	the	weapon	
as	a	function	of	the	total	quantity	of	such	weapons	produced).	There	should	be	dramatic	increase	in	
the	weapon’s	capabilities	brought	about	the	convergence	of	these	technologies.	Such	
transformation,	furthermore,	should	be	accompanied	by	material	innovation	in	the	deployment	
models	of	these	technologies	as	well	as	integration	of	the	resulting	weapon	system	into	current	
practices.	Finally,	the	disruption	process	should	be	subject	to	what	Seba	identifies	as	an	S-curve	

																																																								
8	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019,	in	particular	‘the	recent	imperative	of	value	
based	defence’.	
	
9	Claire	Apthorp,	‘Using	Autonomy	To	Supply	the	‘Last	Mile’’,	Army	Technology,	25	June	2017	<http://www.army-
technology.com/features/featureusing-autonomy-to-supply-the-last-mile-5852408/>	[accessed	7	November	2017].		
10	See:	Boston	Dynamics,	<https://www.bostondynamics.com/ls3>	[accessed	2	March	2018].	
11	Andrew	Gillespie,	Foundations	of	Economics;	PESTEL	Analysis	of	the	Macro-Environment,	(Oxford:	Oxford	University	
Press,	10	March	2011)	<https://www.kantakji.com/media/1610/ty3.pdf>.		
12	David	Houle,	Entering	the	Shift	Age:	The	End	of	the	Information	Age	and	the	New	Era	of	Transformation,	(USA:	
SourceBooks,	2012),	generally.	
13	William	Boettcher	and	Michael	Cobb,	‘Don’t	Let	Them	Die	in	Vain:	Casualty	Frames	and	Public	Tolerance	for	
Escalating	Commitments	in	Iraq’,	Sage	Journal,	Volume	53,	Issue	5,	13	July	2009,	677.	
14	Oxford	Changing	Character	of	War	Centre,	generally	<http://www.ccw.ox.ac.uk/research/>	[accessed	19	January	
2019].		
15	International	Federation	of	Robots,	‘World	Robotics	2017’,	IFR,	Executive	summary,	2017,	pp.	15-17	
<https://ifr.org/downloads/press/Executive_Summary_WR_2017_Industrial_Robots.pdf>.		
16	Tony	Seba,	‘Clean	Disruption:	Why	conventional	energy	and	transportation	will	be	obsolete	by	2030’,	Presentation	to	
Swedbank,	(17	March	2016)	
<http://www.swedbank.no/idc/groups/public/@i/@sc/@all/@lci/documents/presentation/cid_1987411.pdf>.	
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adoption	whereby	a	period	of	humdrum	development	is	at	once	inflected	by	a	tipping	point	in	the	
product’s	adoption	after	which	the	system’s	implementation	switches	from	linear	to	exponential.17	
To	justify	his	analysis,	Seba	points	to	the	recent	cost	curve	disruptions	in	lithium	batteries,	in	
computing	power,	in	LIDAR18	as	well	as	acceleration	arising	from	innovative	implementation	
models	such	as	Open	Source	computing.19	Seba’s	model	supports	this	chapter’s	later	analysis	of	
drivers	as	well	as,	generally,	this	thesis’	consideration	of	AWS’	as	a	discontinuity	in	battlecraft.	

The	general	procurement	foundation	for	autonomous	weaponry	has	been	in	place	since	the	
late	1990s.20	More	than	two	decades	ago,	researchers	at	UCLA	and	Hewlett-Packard	had	succeeded	
in	building	microscopic	integrated	circuits	using	single	molecules	as	building	blocks.21	Heath,	the	
UCLA	professor	leading	that	project,	suggested	at	the	time	that	a	‘molecular	computer	with	the	
processing	power	of	one	hundred	conventional	personal	computers	would	be	about	the	size	of	a	
grain	of	salt’.22	The	procurement	implications	of	this	remain	significant	to	fielding	independent	
weaponry	including,	notes	Long,	inexpensive	capacity	relative	to	previous	peer	hardware,	
ubiquitous	supercomputing	and	‘almost	unlimited	memory	capacity	in	devices	so	small	that	they	
are	on	the	scale	of	insects’.23	Doctrinal	developments	have	been	similarly	significant.	Already	
identified	in	the	1980s	as	one	constituent	of	the	framework	for	an	‘automated	battlefield’,	weapon	
autonomy	has	long	been	part	of	US	military	calculations.24	In	this	way,	US	Defense	Secretary	Hugel’s	
2016	Defense	Innovation	Initiative25	(otherwise	referred	to	as	Third	Offset	Strategy	or	TOS)	is	only	
the	most	recent	initiative	in	a	series	of	State	initiatives	seeking	to	use	innovation	in	defence	to	
overcome	operational	challenges.26	Using	predictions	on	what	constitutes	AWS	deployment	may	
																																																								
17	Tony	Seba,	‘Clean	Disruption’	on	YouTube,	<https://www.youtube.com/watch?v=2b3ttqYDwF0>	[accessed	12	June	
2017].	
18	Ibid.	Seba	identifies	a	14%	improvement	in	Lithium	battery	performance	per	$1	from	1995	to	2010	and	a	20%	
improvement	thereafter;	in	2000,	one	teraflop	of	processing	power	cost	$46,000,000	and	required	housing	in	150	
square	metres’	space.	In	2016,	2.3	teraflops	cost	just	$59	and	was	available	as	a	personal	hard	drive.	By	2019,	it	is	
expected	that	20	teraflops,	the	performance	criterion	for	autonomous	vehicles,	will	be	available;	the	LIght	Detecting	
And	Radar	(LIDAR)	unit	that	cost	$150,000	in	2012	currently	costs	just	$250.	This,	notes	Seba,	is	expected	to	fall	to	$90	
in	2019.		
19	Source:	OpenSource.com,	‘What	is	open	source	computing?’	<https://opensource.com/resources/what-open-source>	
[accessed	12	February	2018].		
20	Walker,	Killer	Robots?,	pp.	26-28.	
21	David	Rotman,	‘Molecular	computing’,	MIT	Technology	Review,	(May	2000)	
<https://www.technologyreview.com/s/400728/molecular-computing/>	[accessed	15	May	2017].	Also:	John	Markoff,	
‘Computer	Scientists	are	Poised	for	Revolution	on	a	Tiny	Scale’,	NY	Times,	Technology,	1	November	1999	
<https://archive.nytimes.com/www.nytimes.com/library/tech/99/10/biztech/articles/01nano.html>	[accessed	15	
May	2017].		
22	Adams,	p.	4.	
23	Time	Digital,	‘Just	right	for	Mini-Me:	the	Mini-Micro-PC’,	Time	Digital	blog,	18	July	1999,	cit.	Adams,	p.	4.	
24	Jeffrey	Long,	The	Evolution	of	US	Army	Doctrine:	From	Active	Defense	to	the	Airland	Battle	and	Beyond,	(USA:	US	Army	
Command	and	General	Staff	College,	Fort	Leavenworth,	Kansas,	1991),	p.	122	and	generally.	Also:	John	Romjue	and	
others,	Prepare	the	Army	for	War:	A	Historical	Overview	of	the	Army	Training	and	Doctrine	Command,	1973-1993,	(USA:	
TRADOC	Historical	Series,	Office	of	the	Command	Historian,	Virginia,	1993),	pp.	44-48	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a267030.pdf>.	
25	See:	Thomas	Ridd,	Rise	of	the	Machines:	A	Cybernetics	history,	(USA:	WW	Norton,	NY,	2016),	generally.		
26	John	Louth	and	Christian	Moeling,	‘Technological	Innovation:	The	US	Third	Offset	Strategy	and	the	Future	of	
Transatlantic	Defense’,	Armaments	Industry	European	Research	Group,	Policy	Paper,	(December	2016),	pp.	3-6	
<http://www.iris-france.org/wp-content/uploads/2016/12/ARES-Group-Policy-Paper-US-Third-Offset-Strategy-
December2016.pdf>.	See	also:	Cheryl	Pellerin,	‘Third	Offset	Bolsters	America’s	Military	Deterrence’,	US	Department	of	
Defense,	(31	October	2016)	<https://dod.defense.gov/News/Article/Article/991434/deputysecretary-third-offset-
strategy-bolsters-americas-military-deterrence/>	[accessed	7	July	2017].	Pellerin’s	analysis	of	the	US	‘Third	Offset	
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therefore	be	one	method	of	assessing	its	drivers	but	such	an	exercise	is	not	clear-cut:27	2016’s	TOS	
was,	after	all,	preceded	by	several	quadrennial	defence	reviews	with	similarly	heroic	labels	such	as	
Reconnaissance-Strike	Complex,	Transformation,	Air	and	Sea	Battle	and	Anti-Access/Area	Denial.28	
Practice,	however,	does	not	necessarily	follow	rhetoric	and	it	is	this	disconnect	that	shapes	how	
this	chapter	is	organised.29	First,	it	provides	an	analysis	of	the	factors	encouraging	battlespace	
embrace	of	autonomy	while	reviewing	the	high-level	ramifications	of	this	move.	It	then	reviews	the	
notion	of	technology	creep	and	the	growing	practice	of	dual-use	in	technologies	behind	machine	
(and	therefore	weapon)	autonomy.30	The	chapter	next	considers	structural	and	procurement	
drivers	as	well	as	constraints	on	their	implementation	before	reviewing	ethical,	operational	and	
then	technical	drivers	to	the	introduction	of	autonomy	into	battlefield	practices.		

 Current practice 
	
A	constructive	starting	point	for	an	analysis	on	drivers	comes	from	SIPRI’s	dataset	which	(current	
at	the	time	of	this	thesis’	writing)	identifies	three	hundred	and	eighty-one	different	weapon	
systems	that	feature	degrees	of	autonomy	in	some	critical	functions.31	Crucially,	however,	this	
metric	does	not	equate	to	three	hundred	and	eighty-one	wholly	autonomous	systems.32	Two	points	
arise.	Bishop	and	Phillips’	Unmanning	the	Homeland	highlights	what	it	identifies	as	a	phenomenon	
of	‘progressive’	weapon	automation.33	Their	inference	supports	the	existence	of	a	continuum	from	
manned	to	autonomous	weapons	via	robotics	and	automation.	The	progression	from	manned	to	
robotic	to	autonomous	main	battle	tanks	may	appear	unsystematic	but,	notes	Snow,	it	nevertheless	
provides	a	relevant	precedent	to	States’	adoption	over	time	of	wider	unmanned	battlefield	

																																																								
Strategy’	highlights	the	role	of	AI	(particularly	machine	learning)	as	a	key	component	in	improving	the	strengths	and	
cost-effectiveness	of	its	forces.	
27	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY2013-2038’.	Here,	DoD	states	that	autonomy	in	
unmanned	systems	will	be	critical	to	future	conflicts	‘that	will	be	fought	and	won	with	technology’.	The	document	
highlights	that	‘the	special	feature	of	an	autonomous	system	is	its	ability	to	be	goal-directed	in	unpredictable	situations’.	
It	also	sets	out	a	25-year	vision	for	the	development,	production,	test,	training,	operation	and	sustainment	of	unmanned	
systems	technology	across	the	Department	of	Defense.	See	also:	Colin	Roberts,	‘Killer	Robots:	Moral	Concerns	versus	
Military	Advantage’,	The	National	Interest,	3	November	2016,	para.	1	of	11	<http://nationalinterest.org/blog/the-
buzz/killer-robots-moral-concerns-vs-military-advantages-18277>	[accessed	17	July	2017].		
28	Kathleen	Hicks,	‘What	will	replace	the	Third	Offset?	Lessons	from	Past	Innovation	Strategies’,	Defense	One,	17	March	
2017,	para.	2	of	9	<http://www.defenseone.com/ideas/2017/03/what-will-replace-third-offset-lessons-past-
innovation-strategies/136260/>	[accessed	18	February	2018].		
29	John	Gentry,	Doomed	to	Fail:	America’s	Blind	Faith	in	Military	Technology,	(USA:	Parameters,	32.4,	2002),	pp.	88-90	
<http://www.comw.org/rma/fulltext/0212gentry.pdf>.	
30	Deborah	Shapley,	‘Technology	Creep	and	the	Arms	Race;	A	World	of	Absolute	Accuracy’,	Science	Magazine,	Volume	
201,	Issue	4362,	(29	September	1978),	p.	1192	<http://science.sciencemag.org/content/201/4362/1192>	[accessed	
22	July	2017].		
31	See:	Chapter	4	(Deployment),	specifically	analysis	of	Boulanin	and	Verbruggen,	‘Mapping	the	Development	of	
Autonomy	in	Weapon	Systems’,	pp.	57-84	(‘Drivers	and	obstacles’)	<https://www.sipri.org/sites/default/files/2017-
11/siprireport_mapping_the_development_of_autonomy_in_weapon_systems_1117_1.pdf>.		
32	The	point	here	is	that	such	systems	include	an	element	of	autonomous	function	in	their	operation.	SIPRI	has	therefore	
identified	unsupervised	components	in	the	weapon	rather	than	that	whole	weapon	being	capable	of	autonomous	
function.	
	
33	Ryan	Bishop	and	John	Phillips,	‘Unmanning	the	Homeland’,	International	Journal	of	Urban	and	Regional	Research,	26.3.	
(2002),	620-625.	
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systems.34	In	this	vein,	both	Snow	and	Cummings	argue	that	it	is	the	pace	of	introduction	as	well	as	
the	breadth	of	robotic	tasking	that	mask	what	is	a	profound	disruption	in	procurement.35	A	further	
example	is	provided	by	the	DoD’s	adoption	of	unmanned	aircraft	systems:	By	July	2013,	the	number	
of	UAV	already	exceeded	ten	thousand	units,	demonstrating	wide	acceptance	of	battlefield	
automation.36	Likewise,	an	inaugural	requirement	in	2013	by	DARPA’s	Robotics	Challenge	for	
machines	to	undertake	complex	automated	tasking	(here,	the	negotiation	of	rough	terrain,	removal	
of	debris	and	dealing	with	multipart	maintenance	tasks)	has	since	matured	into	autonomy	
becoming	a	fundamental	requisite	in	DARPA’s	subsequent	challenges.37		

	
It	is	this	chapter’s	broad	assumption	that	extensive	implementation	of	automation	in	

battlefield	assets	is	broadly	evident38	which,	notes	Melendez,	when	taken	together	may	posit	a	
watershed	in	the	framing	of	military	technology.39	How	has	this	fulcrum	been	reached?	As	noted	by	
Turnbull,	it	is	the	combination	of	broad-based	innovation,	much	of	it	generated	by	academic,	
commercial	and	non-military	parties,	which	have	together	proved	important	catalysts	in	
accelerating	weapon	disruption.40	This	is	not	unexpected	given	that	the	development	timelines	for	
these	technologies	have	been	short.41	By	1995	UT	Arlington	students	had	already	demonstrated	
that	an	AAV	was	able	to	take	off	autonomously,	locate	and	identify	bio-hazardous	material,	map	the	
location	of	each	such	barrel	and	return	to	its	start	point.42	Three	years	later,	a	largely	autonomous	
UAV	no	bigger	than	a	model	airplane	successfully	negotiated	the	Atlantic	to	land	at	a	predetermined	
landing	point	in	mainland	Europe.43	This	short	timeline	is	mirrored	in	the	US	by	that	State’s	own	
institutional	roadmap.	As	early	as	2001	(and	motivated	by	cost,	policy,	opportunity	and	political	
imperatives),	the	US	Senate	Armed	Services	Committee	had	formalised	its	own	aggressive	schedule,	
albeit	a	guideline,	towards	autonomous	and	unmanned	hardware	by	funding	two	central	goals:	
Within	ten	years,	one	third	of	all	deep-strike	aircraft	should	be	unmanned	and,	within	fifteen	years	
of	that	date,	one	third	of	all	ground	combat	vehicles	should	operate	without	human	beings	on	

																																																								
34	Shawn	Snow,	‘The	US	Army	is	Developing	Autonomous	Armoured	Tanks’,	Army	Times,	29	August	2017,	paras.	3-4	and	
6	<https://www.armytimes.com/news/your-army/2017/08/29/the-us-army-is-developing-autonomous-armored-
vehicles/>)	[accessed	9	December	2017].		
35	Shawn	Snow,	‘The	US	Army	is	Developing	Autonomous	Armoured	Tanks’,	generally.	See	also,	generally:	Missy	
Cummings,	‘Artificial	Intelligence	and	the	Future	of	Warfare’,	Chatham	House	Research	Papers,	(January	2017)	
<https://www.chathamhouse.org/sites/files/chathamhouse/publications/research/2017-01-26-artificial-intelligence-
future-warfare-cummings-final.pdf>.	
36	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY	2013-2038’,	p.	5.	
37	DARPA	website,	‘DRC	Trials	2013	Countdown:	A	Look	at	the	Competition	Course’,	DARPA,	(16	December	2013),		
<https://www.darpa.mil/news-events/2013-12-16>	[accessed	15	January	2018].		
38	Postnote,	Automation	in	Military	Operations,	(UK:	Houses	of	Parliament,	Parliamentary	Office	of	Science	and	
Technology,	Number	511,	October	2015),	generally.	
39	S	Melendez,	‘The	Rise	of	the	Robots:	What	the	future	holds	for	the	world’s	armies’,	FastCompany.com,	12	June	2017,	
paras.	3,4	and	6	<https://www.fastcompany.com/3069048/where-are-military-robots-headed>	[accessed	7	June	2018]	
40	Grant	Turnbull,	‘Off	the	Shelf:	Re-thinking	Innovation	in	the	Military’,	Army	Technology,	2	March	2014	
<https://www.army-technology.com/features/featureinnovation-stagnation-re-thinking-innovation-in-the-military-
4187511/>	[accessed	18	January	2018].	
41	Boulanin	and	Verbruggen,	pp.	85-89	(‘Relevant	Innovations’).		
42	Arthur	Reyes	and	others,	‘Overview	of	the	University	of	Texas	and	Arlington’s	Autonomous	Vehicles	Laboratory’,	
Department	of	Computer	Science	and	Engineering,	Technical	Report	CSE-2003-13,	(2013),	generally.	By	way	of	
subsequent	narrative,	in	the	four	years	to	FY	2010,	flight	hours	for	UAS	increased	from	165,000	hours	to	more	than	
550,000	hours	and	the	inventory	from	less	than	3,000	to	6,500.	See,	here:	T	Adams,	pp.	57-71.	
43	Arthur	Reyes	and	others,	p.	14.		
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board.44	Such	direction	and	what	Antonova	terms	‘institutional	purpose’	remain	crucial	deployment	
drivers	in	the	dilution	of	human	oversight	in	military	hardware.45	In	the	case	of	the	US	DoD,	
moreover,	the	introduction	of	autonomy	has	also	been	aligned	across	services:	a	main	tenet	of	its	
2012	Task	Force	Report,	The	Role	of	Autonomy	in	DoD	Systems,	is	to	endorse	AWS’	operational	
benefits	(itemized	by	domain,	scenario	and	environment)	and	the	‘capability	surprise’	that	
autonomy	offers.46	It	has,	notes	Cordingley,	‘been	a	perfect	storm	of	innovation	enhancing	multiple	
capabilities	that	individually	and	cumulatively	are	key	to	battlefield	autonomy’.47	

	
In	order	to	understand	the	enduring	impact	of	AWS’	drivers,	it	is	also	necessary	to	evaluate	

Collingridge’s	assessment	that	‘weapon	automation	is	here	to	stay’.48	Indeed,	the	inference	is	that	
weapon	development	(of	whatever	type)	is	unstoppable49	and	it	is	this	broad	range	of	battlefield	
possibilities	promised	by	technology	at	the	time	of	writing	which	reinforces	the	impact	of	weapon	
automation.50	Acknowledging	its	widespread	implementation,	Scharre	highlights	that	‘the	same	
intelligence	that	allows	self-driving	cars	to	avoid	pedestrians	could	allow	future	weapons	that	hunt	
and	attack	targets	on	their	own’.51	Just	as	Thanmoor	notes	that	more	than	seventy	States	are	
currently	involved	in	developing	autonomous	weaponry,	some	three	thousand	companies	have	
demonstrably	invested	in	the	UAV	procurement	chain.52	By	2017,	the	Las	Vegas	Drone	Show	
already	had	more	than	950	trade	stands.53	This,	however,	creates	complications	as	a	driver.	
Regulation	of	autonomous	technology	is	generally	perfunctory	as	it	oversees,	for	instance,	research	
efforts	that	are	simultaneously	adopting	technologies	for	self-driving	vehicles,	for	advanced	nursing	
and	eldercare	and	other	verticals	where	machines	are	already	taking	actions	with	potentially	lethal	
consequences.54		

	
																																																								
44	Army	Times,	‘Gearing	Up	for	Robot	Wars’,	generally.	
45	Sam	Jones,	‘AI	and	Robots	Line	Up	for	Battlefield	Service’,	Financial	Times,	16	November	2016,	para.	6	of	19	
<https://www.ft.com/content/02d4d586-78e9-11e6-97ae-647294649b28>	[accessed	10	January	2018].	See	also:	
Albena	Antonova,	‘Institutional	and	Organisational	Transformation	in	the	Robotic	Era’,	IGI	Global	,	(August	2018),	p.	3	
(‘Introduction	to	Digital	Transformations	in	Era	4.0’).	
46	US	Department	of	Defense,	‘The	Role	of	Autonomy	in	DoD	Systems’,	US	DoD	Task	Force	Report,	20301-3140,	Section	
2.0	(April	2012)	<https://fas.org/irp/agency/dod/dsb/autonomy.pdf>.	See	also:	US	Department	of	Defence,	‘DARPA	
and	Army	Select	Contractors	for	future	Combat	Systems	Programs’,	OASD	Public	Affairs,	News	Release	236-00,	
Washington,	9	May	2017.	
47	Major-General	Patrick	Cordingley,	Commander,	7th	Armoured	Brigade,	Gulf	War,	1991,	in	conversation	with	the	
author,	January	2019.	
48	David	Collingridge,	The	Social	Control	of	Technology,	(USA:	Francis	Pinter,	1980),	generally.	
49	David	Majumdar,	‘Introducing	the	5	Deadliest	Weapons	of	the	US	Military’	The	National	Interest,	(27	December	2018),	
generally	<https://nationalinterest.org/blog/buzz/introducing-5-deadliest-weapons-us-military-39907>	[accessed	12	
January	2019].		
	
50	Jon	Wallace,	‘SciFi	Eye:	The	Disturbing	Future	of	Autonomous	Weapons’,	The	Engineer,	19	September	2017,	para.	1	
<https://www.theengineer.co.uk/autonomous-weapon-systems/>	[accessed	23	February	2018].	Also:	Boulanin	and	
Verbruggen,	pp.	85-89	(‘Relevant	Innovations’).	
51	Paul	Scharre,	‘Why	We	Must	Not	Build	Automated	Weapons	of	War’,	Time	Magazine,	25	September	2017,	para.	2 
<http://time.com/4948633/robots-artificial-intelligence-war/>	[accessed	24	February	2018].		
52	Ishaan	Thanroor,	‘Should	The	World	Kill	Killer	Robots	Before	It’s	Too	Late?’,	Washington	Post,	12	May	2014	
<http://www.washingtonpost.com/blogs/worldviews/wp/2014/05/12/should-the-world-kill-killer-robots-before-its-
too-late/>	[accessed	12	March	2018].	
53	See:	Interdrone,	<https://www.interdrone.com>	[accessed	12	November	2017].		
54	Anderson	and	Waxman,	Law	and	Ethics	for	Autonomous	Weapon	Systems:	Why	a	ban	won’t	work	and	How	the	Laws	of	
War	Can,	(USA:	National	Security	and	Law	Essays,	Hoover	Institute,	Stanford	University,	2013),	p.	2.		
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A	further	driver	is	that	autonomy’s	fundamental	technologies	can	be	procured	from	several	
well-diversified	sources.55	While	accessibility	is	just	one	factor,	a	finding	from	Seba’s	disruption	
model	is	nevertheless	that	rapid	scaling-up	can	lead	to	a	tipping	point	in	a	technology’s	general	
adoption56	and	that	this	feature	in	itself	soon	becomes	a	driver	to	that	technology	regardless	of	its	
underlying	industry.57	In	the	case	of	AWS,	it	may	therefore	represent	a	point	in	time	when	it	
becomes	foolhardy	for	defence	planning	to	ignore	the	technologies’	potential.58	There	is	usually	a	
human	angle	to	this	driver.	As	noted	by	Norton,	an	unexpected	consequence	to	weapon	deployment	
(here,	the	use	of	AWS)	will	likely	be	a	ramp-up	in	weapon-specific	personnel	responsible	for	
realizing	and	then	implementing	these	technologies.59	It	is	such	on-going	human	engagement	which	
Hammond	notes	has	the	simple	behavioural	effect	of	further	embedding	those	systems’	adoption.60	
Norton	estimates	that	in	2016	it	took	seventeen	people	just	to	fly	an	unmanned	aircraft.61	While	
these	numbers	are	only	indicative	and	will	certainly	change	as	technology	evolves,	human	tasking	
here	includes	piloting,	weapon	control	and	calibration.	In	this	case,	the	overall	number	of	people	
involved	in	supporting	that	UAV	unit	may	number	some	two	hundred	professionals	coordinating	
planning	and	maintenance,	launch	and	recovery,	surveillance	and,	crucially,	extensive	ISP	and	PED	
efforts	(Processing,	Exploitation	and	Dissemination)	arising	from	the	weapon’s	data	collection	and	
other	relevant	activities.62		
	

It	is	therefore	the	AWS’	‘assemblage’	of	possible	capabilities	that	becomes	a	central	
procurement	driver.63	Pairing	battlefield	priorities	with	pieces	of	technology	that	individually	
promise	to	solve	those	imperatives	combine,	in	theory,	to	make	out-of-the-loop	weaponry	an	
attractive	proposition.64	Unsurprisingly,	this	provides	the	narrative	to	commercial	parties	

																																																								
55 A	Google	search	on	‘DIY	drone	kit’	returns	677,000	sites;	see	also:	<http://www.buildyourowndrone.co.uk/>	
[accessed	17	November	2017]. 
56	For	analysis	of	Seba’s	concept,	see	footnotes	16-18	of	this	chapter.		
57	Peter	Kestner,	‘Encouraging	Autonomy’,	KPMG	website,	(30	November	2017)	
<https://home.kpmg.com/xx/en/home/insights/2017/11/encouraging-autonomy.html>	[accessed	12	November	
2017].		
58	European	Commission,	‘Reflection	Paper	on	the	Future	of	European	Defence’,	Europe:	Com	20170	315,	(7	June	2017),	
p.	10	<https://ec.europa.eu/commission/sites/beta-political/files/reflection-paper-defence_en.pdf>.		
59	Travis	Norton,	‘Staffing	for	Unmanned	Aircraft	Systems	(UAS)	Operations’,	Institute	for	Defense	Analyses	(IDA),	(June	
2016),	pp.	91-97	and	generally	
<https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/SFRD/2016/P-5253.ashx>	[accessed	
12	February	2019].	
	
60	Daniel	Hammond,	‘Autonomous	Weapons	and	the	Problem	of	State	Accountability’,	Chicago	Journal	of	International	
Law,	Volume	15,	Number	2,	Article	8,	(Winter	2015),	662-663	
<https://chicagounbound.uchicago.edu/cgi/viewcontent.cgi?article=1085&context=cjil>	[accessed	5	May	2017].	
Notwithstanding	its	origin	in	healthcare	technology,	see	also:	Oliver	Mytton	and	others,	‘Introducing	New	Technology	
Safely’,	QSHC,	(2011),	pp.	9-13	<https://qualitysafety.bmj.com/content/qhc/19/Suppl_2/i9.full.pdf>.	
61	Travis	Norton,	‘Staffing	for	Unmanned	Aerial	Systems	(UAS)’,	pp.	43,	89	and	91.	See	also:	David	Hambling,	Swarm	
Troopers:	How	small	drones	will	conquer	the	World,	(USA:	Archangel	Ink,	2015),	p.	34.	
62	Hambling,	p.	42.	
63	Jai	Galliott	and	Mianna	Lots,	Super	Soldier:	ethical,	legal	and	social	implications,	(USA:	Routledge,	Political	Science,	3	
March	2016),	p.	14	and	p.	17.	See	also:	The	US	Patriot	and	Phalanx	anti-missile	system,	the	Israeli	Iron	Dome	anti-
missile	system	and	South	Korea’s	border	denial	system	(see:	The	Telegraph,	13	July	2010	
<https://www.telegraph.co.uk/news/worldnews/asia/southkorea/7887217/South-Korea-deploys-robot-capable-of-
killing-intruders-along-border-with-North.html>)	[accessed	8	August	2018].	
64	In	order	to	define	‘battlefield	activities’,	a	useful	starting	point	herewith	is	still	provided	by	US	Army	Field	Manual,	
Intelligence	Preparation	of	the	Battlefield,	Section	1	(USA:	FM	34-130,	July	1994)	
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advancing	such	solutions.	BAE	Systems’	2014	press	release	for	its	Taranis	UAV	accentuates	its	
system’s	'autonomous	brains’65,	the	pitch	for	their	platform	and	a	pre-cursor	AWS,	suggesting	
military	advantage,	cost	benefit	relative	to	manned	equivalents	and	the	capability	of	remote	yet	
surgical	engagement.66	Just	as	it	is	technical	potential	which	is	the	potent	procurement	driver,	it	is	
the	fusion	of	such	technologies	(as	suggested	in	Seba’s	disruption	model)	that	has	the	ability	both	to	
create	a	tipping	point	in	adoption	as	well	as	an	institutional	‘fear-of-missing-out’.67	A	further	
example	provides	context.	From	fifteen	miles	distance,	the	US	Predator	UAV	can	already	capture	
images	in	which	features	just	four	inches	across	can	be	distinguished.68	Subsequent	introduction	of	
CCD	(Coherent	Change	Detection)	allows	that	machine	to	note	differences	between	the	current	
scene	under	observation	and	one	recorded	previously	enabling,	in	theory,	identification	of	
disturbances	left	by	an	IED	on	the	side	of	the	road.69	Similarly,	the	US	Predator’s	multi-spectral	
targeting	system	is	made	possible	through	the	fusion	of	discrete	technical	advances:70	A	stabilized	
gimbal	mount	with	two	axes	of	rotation	keeps	the	weapon’s	camera	pointed	in	exactly	the	same	
direction	regardless	of	the	platform’s	motion.	The	point	is	to	evidence	the	cumulative	nature	of	
such	technologies.71	The	driver	in	this	case	is	that	broad	developments	across	individual	
componentry	can	in	combination	suddenly	affect	materially	how	force	can	be	deployed.			
	

Technical	innovation	also	occasions	disruptive	refinement	to	current	deployment	models.	An	
example	is	provided	by	platform	lethality.	The	US	and	UK’s	Reaper	UAV	can	currently	carry	
fourteen	Hellfire	missiles.72	Alternatively,	it	can	be	deployed	carrying	just	four	such	missiles	but	
with	a	pair	of	laser	guided	five	hundred-pound	bombs.73	In	this	way,	the	weapon’s	payload	

																																																								
<https://fas.org/irp/doddir/army/fm34-130.pdf>.	The	document	covers	battlefield	environment,	effects,	threats,	
management	as	well	as	battle	execution,	space	and	time	as	it	relates	to	AWS	deployment.		
65	Chris	Smith,	‘What	is	Teranis?	Everything	you	need	to	know	about	Britain’s	undetectable	drone’,	BT	website,	(21	
November	2017)	<http://home.bt.com/tech-gadgets/future-tech/taranis-unmanned-aerial-vehicle-stealth-
11364110510493>	[accessed	12	March	2018].	
66	Guia	Marie	Del	Prado,	‘This	drone	is	one	of	the	most	secretive	weapons	in	the	world’,	Business	Insider,	29	September	
2015,	paras.	2-3	and	7	<http://uk.businessinsider.com/british-taranis-drone-first-autonomous-weapon-2015-
9?r=US&IR=T>	[accessed	9	September	2017].		
67	Peter	Singer	and	August	Cole,	‘Humans	Can’t	Escape	Killer	Robots	but	Humans	can	be	Held	Responsible	for	Them’,	
Vice	News,	15	April	2016	<https://news.vice.com/article/killer-robots-autonomous-weapons-systems-and-
accountability>	[accessed	8	February	2018].		
68	Air	Force	Technology,	‘RQ-1/MQ-1/MQ-9	Reaper	UAV’,	AFT,	<http://www.airforce-
technology.com/projects/predator-uav/>	[accessed	4	March	2018].		
69	Mark	Preiss	and	Nicholas	Stacy,	‘Coherent	Change	Detection:	Theoretical	Description	and	Experimental	Results’,	
Australian	Department	of	Defence,	DSTO-TR-1851,	Edinburgh,	(2006),	p.	iii.	See	also:	Hambling,	p.	41.	
70	Source:	Army	Recognition,	
<https://www.armyrecognition.com/us_american_unmanned_aerial_ground_vehicle_uk/mq-
1_predator_unmanned_aerial_vehicle_uav_data_sheet_specifications_information_description_uk.html>	[accessed	6	
February	2017].	
71	In	order	to	deliver	its	service,	the	Predator	must	then	deploy	multiple	cameras	featuring	various	levels	of	zoom	from	
a	45°	wide-angle	view	down	to	an	ultra-narrow	0.2°	tunnel	view.	On	a	standard	35mm	camera,	the	equivalent	lenses	at	
these	extreme	ends	would	be	a	55mm	wide-angle	lens	and	a	12,000mm	telephoto.	See:	Hambling,	p.	45.	
72	UK	Royal	Air	Force	blog,	<https://www.raf.mod.uk/aircraft/mq-9a-reaper/>	[accessed	6	February	2017].	
73	Source:	<https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104470/mq-9-reaper/>	[accessed	6	February	
2017].	
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flexibility	similarly	becomes	a	driver	to	that	platform’s	adoption	and	subsequent	enhancement.74	
Such	drivers,	moreover,	will	be	broadly	similar	whether	AWS’	tasking	is	primarily	as	a	defence	
system	(responding	either	automatically	and/or	autonomously	to	incoming	munitions),	as	an	anti-
personnel	system	tackling	incursions	into	a	defined	area	or	as	a	weapon	tasked	with	offensive	seek-
and-destroy.	The	issue,	again,	is	that	the	difference	between	‘a	machine	that	can	do	these	things	and	
make	its	own	attack	decisions’	is	increasingly	really	only	a	matter	of	programming75	and	that	
improvement	in	one	such	capability	leads	to	procurement	expectations	across	other	capabilities.76		

 Technology creep and dual-use technology trends  
	
A	further	driver	is	identified	by	Kaspersen	whereby	machine	autonomy	is	not,	of	course,	reserved	
for	military	applications.	Formerly	head	of	Geopolitics	and	International	Security	at	the	World	
Economic	Forum,	Kaspersen	points	out	that	there	is	already	significant	blurring	between	
commercial	and	military	use	of	autonomous	technologies	and	the	definitions	that	demarcate	their	
deployment.77	This	creates	a	dichotomy.	While	such	incoherence	certainly	complicates	arguments	
around	banning	self-directed	weaponry,	the	role	of	commercial	interests	is	pivotal	in	pushing	
technical	solutions	that	may	then	be	taken	up	in	military	applications.	The	context	is	that	the	same	
autonomous	capabilities	found	in	a	remotely	operating	search-and-rescue	vehicle	may	in	due	
course	underpin	a	lethal	autonomous	weapon.78	Autonomy,	after	all,	is	demonstrably	widespread	in	
multiple	commercial	applications.79	Civilian	aviation	provides	a	relevant	example.	The	Airbus	A320	
can	already	take	off	and	land	itself.80	A	2016	study	by	the	Humans	and	Autonomy	Laboratory	
reports	that	its	pilots	spend	about	three	minutes	per	flight	with	their	hands	on	the	cockpit	
controls.81		Similarly,	Boeing	777	pilots	report	that	they	are	in	control	for	less	than	ten	minutes	in	
each	flight.82	System	autonomy	already	permeates	most	commercial	verticals.	The	US	credit,	debit	
and	prepaid	card	industry	is	a	case	in	point:	It	monitors,	notes	Nilson,	innumerable	transactions	per	
second	with	autonomous	tools	that	identify	fraudulent	transactions	within	milliseconds	and	can	be	
undertaken	on	a	customer	base	of	more	than	several	billion	cards.83	By	way	of	context,	IBM’s	
Watson	for	Oncology	system	provides	cancer	doctors	with	recommended	courses	of	treatment	

																																																								
74	Bas	Vergouw	and	others,	‘Drone	technology:	Types,	Payloads,	Applications,	Frequency	Spectrum	Issues	and	Future	
Developments’,	Information	Technology	and	Law	Series,	27,	Springer,	Berlin,	ed.	B	Custers,	‘The	Future	of	Drone	Use’,	p.	
22.		
75	T	Adams,	p.	4.	
76	For	discussion	on	Sabin’s	‘revolution	in	expectations’	see:	Chapter	6	(Wetware),	specifically:	6.1	(‘Software	versus	
intelligence’).	
77	Anja	Kaspersen,	‘Is	Technology	Blurring	the	Lines	between	War	and	Peace?’,	World	Economic	Forum,	(12	February	
2016),	paras.	5	and	6	<https://www.weforum.org/agenda/2016/02/is-technology-blurring-the-lines-between-war-
and-peace/>	[accessed	5	February	2018].		
78	Alex	Brokaw,	‘Autonomous	Search	and	Rescue	drones	Outperform	Humans	at	Navigating	Forest	Trails’,	The	Verge,	11	
February	2016	<https://www.theverge.com/2016/2/11/10965414/autonomous-drones-deep-learning-navigation-
mapping>	[accessed	2	January	2018].		
79	See:	Zielinska	Teresa,	History	of	Service	Robots,	(USA:	IGI	Global	Publishing,	2014)	<http://www.irma-
international.org/viewtitle/84885/>	[accessed	12	March	2017].	
80	Source:	<https://www.flightdeckfriend.com/can-a-plane-land-automatically>	[accessed	3	March	2017].	
81	Drone	Mag,	April/May	edition	2016,	Drone	Mag,	p.	62	<www.drone360mag.com>	[accessed	12	March	2017].	
82	Ibid.,	paras,	62-65.	
83	The	Nilson	Report,	‘US	general	purpose	cards	-	midyear	2015’,	NR,	Issue	1069,	(August	2015),	generally.	
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within	seconds	from	its	unstructured	universe	of	pages	of	medical	documents84	and	Google’s	
machine-learning	password	classifiers	can	already	authenticate	users	via	multiple	signals	resulting	
in	a	ninety-nine	percent	reduction	in	Google	accounts	being	compromised	by	spammers	and	other	
fraud	attacks.85	The	reach	of	autonomous	agents	has	clearly	been	disruptive	within	several	
industries86	and,	notes	Worcester,	it	should	be	expected	that	a	similarly	fundamental	shift	will	now	
take	place	in	battlefield	practices.87	
	

More	relevant	to	AWS	deployment	is	that	autonomy	already	features	in	several	civilian	uses	of	
drone	technology.88	Non-military	practices	involving	autonomous	technology	include	State	police,	
border	security	and	parties	involved	in	agriculture,	maritime	and	forestry.89	By	2014,	the	
worldwide	UAV	market	was	already	reckoned	to	be	worth	$7bn.90	Civilian	markets	investing	in	the	
technology	include	coastguard,	oil	and	gas,	electricity	grids,	climate	modeling	and	the	
communications	industry.91	Zenko	and	Kreps,	furthermore,	note	of	autonomy	that	‘commercial	
drone	applications	advertised	by	companies	such	as	Amazon	give	the	illusion	of	a	technology	that	is	
ubiquitous	and	inevitable’	adding,	in	the	case	of	AWS,	to	the	concept	of	threat	inflation	and	‘a	
revolution	in	expectation’	discussed	in	previous	sections.92	The	Association	for	Unmanned	Vehicle	
Systems	International	(AUVSI)	reckons	at	the	time	of	writing	that	some	one	thousand	different	
model	types	are	already	in	production.93	Thus,	development	is	taking	place	in	all	areas	of	the	AUV	
supply	chain	and	it	is	the	pace	of	development	that	then	encourages	self-fulfilling	expansion	of	
machine	capabilities	from	autonomy	to	weapons	autonomy.94	In	their	consideration	of	‘unmanned	

																																																								
84	US	Department	of	Defense,	Defense	Science	Board,	p.	8.	
85	Iain	Thompson,	‘AI	Slurps,	Learns	Millions	of	Passwords	to	Work	Out	Which	Ones	You	May	Use	Next’,	The	Register,	20	
September	2017	<https://www.theregister.co.uk/2017/09/20/researchers_train_ai_bots_to_crack_passwords/>	
[accessed	26	January	2018].	
86	EY	blog,	<https://www.ey.com/Publication/vwLUAssets/EY-the-upside-of-disruption/%24FILE/EY-the-upside-of-
disruption.pdf>.	
87	Maxim	Worcester,	‘Autonomous	Warfare:	A	Revolution	in	Military	Affairs’,	ISPSW	Strategy	Series:	Focus	on	Defence	
and	International	Security,	Issue	340,	April	2015,	pp.	2-3	<https://www.files.ethz.ch/isn/190160/340_Worcester.pdf>.	
88	Examples	abound.	Drone	technology	is	being	used	to	provide	promotional	video	for	real	estate	agencies	and	field	
inspection	for	farmers.	As	above,	cost	is	the	principal	driver	given	such	UAV	services	can	be	delivered	at	a	fraction	of	the	
cost	of	a	helicopter.	For	sources,	see:	<http://phys.org/news/2013-12-commercial-drones-flight.html>	and	
<http://www.globalresearch.ca/drones-from-military-use-to-civilian-use-towards-the-remote-uav-policing-of-civil-
society/30876>,	[both	accessed	22	March	2017].	See	also:	Walker,	pp.	65-68.	Also:	Tom	Simonite,	‘Sorry,	banning	‘Killer	
Robots’	just	isn’t	practical’,	Wired,	22	August	2018	<https://www.wired.com/story/sorry-banning-killer-robots-just-
isnt-practical/>	[accessed	2	January	2018].	
89	Here.com	blog,	‘Enabling	an	Autonomous	World	for	Everyone’,	undated	
<https://www.here.com/en/vision/autonomous-world?cid=Auto-Google-MM-T2-Here-generic-
BMM&utm_source=Google&utm_medium=ppc&utm_campaign=Auto_PaidSearch_Automotive_AlwaysOn>	[accessed	17	
July	2018].	

90	Taylor	Vinters	LLP,	‘Qi3	Insight:	Unmanned	Aerial	Vehicles’,	Qi3	Ltd,	(February	2014),	p.	5	(‘Figures’).	
91	For	example:	the	VHALE	platform	as	proxy	satellites	and	MALE	platform	for	short-term	and	local	communications	
coverage.	
92 Micah	Zenko	and	Sarah	Kreps,	‘Limiting	Armed	Drone	Proliferation’,	p.	14.	See	also:	Amazon	blog,	
<https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011>	[accessed	24	April	2018].	The	
projected	service	is	also	detailed	by	Ed	Oswald,	‘Everything	You	Need	to	Know	about	Amazon’s	Drone	Delivery	Project,	
Amazon	Prime	Air’,	Digital	Trends,	3	May	2017	<https://www.digitaltrends.com/cool-tech/amazon-prime-air-delivery-
drones-history-progress/>	[accessed	24	April	2018].	 
93	Source:	Auvsi	<http://www.auvsi.org/home>	[accessed	2	May	2018].	
94	Boulanin	and	Verbruggen,	pp.	36-41.	See	also:	Christopher	Harress,	‘The	Rise	of	China’s	Drone	Fleet	and	Why	It	May	
Lead	to	Increased	Tension	in	Asia’,	International	Business	Times,	1	November	2014	<http://www.ibtimes.com/rise-
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systems	and	the	future	of	war’,	this	timeline	is	explicitly	recognised	by	the	relevant	US	
Representatives	Committee	on	Oversight	and	Government	Reform.95	Procurement	for	machine	
autonomy	is	therefore	already	deeply	intertwined	and,	as	pointed	out	by	the	Heyns,	UN’s	Special	
Rapporteur,	while	‘bright	lines	are	difficult	to	find,	lethal	automated	weapons	have	a	composite	
nature	and	are	combinations	of	underlying	technologies	with	multiple	purposes’.	96		

	
This	posits	two	further	features	that	are	relevant	to	a	discussion	on	AWS’	drivers.	Boulanin	and	

Verbruggen	highlight	the	phenomenon	of	incremental	‘technology	creep’	(here,	the	rapid	iterations	
of	individual	technologies	but	also	rapid	combination	of	developing	technologies	in	a	manner	that	
may	move	their	role	away	from	their	original	or	first	intended	specification).	This,	they	note,	
empirically	occurs	before	that	technology	‘watersheds’	and	when,	in	this	case,	AWS	have	already	
appeared	in	States’	arsenals.97	A	second	feature	is	that	already	adopted	military	hardware	may	
exhibit	tenets	that	would	otherwise	characterise	autonomous	systems.98	Mine	munitions	exhibit	
similar	incrementalism	whereby	autonomous	capabilities	have	long	enabled	target	engagement	
with	no	human-in-the-loop.99	Wareham	notes	that,	while	anti-personnel	landmines	are	prohibited	
by	the	Mine	Ban	Treaty,	concerns	remain	over	vehicle	mines	with	anti-handling	devices	and	
sensitive	fuses.100	The	challenge	is	that	incrementalism	may	camouflage	movement	along	that	
autonomy	continuum;	a	seemingly	innocuous	notch	up	(perhaps	a	small	mobile	robot	newly	
programmed	to	respond	autonomously	to	a	weapon	signature	to	protect	peacekeepers	from	local	
ensnarement)	might	actually	represent	a	material	discontinuity	in	battlecraft.		

 Structural and procurement drivers  
	
While	technical	progress	is	a	driver	in	AWS	deployment,	it	is	certainly	not	(to	paraphrase	Smith’s	
2009	work	on	the	interaction	of	politics,	resources	and	military	procurement)	the	only	one.101	

																																																								
chinas-drone-fleet-why-it-may-lead-increased-tension-asia-1535718>		[accessed	20	March	2016].	See	also:	Michael	
Hoffman,	‘China	Reports	Stealth	Drone’s	First	Test	Flight’,	DefenseTech,	22	November	2013,	generally	
<http://defensetech.org/2013/11/22/china-reports-stealth-drones-first-test-flight/>)	[accessed	20	March	2016].	
95	Hearing	on	‘The	Rise	of	Drones;	Unmanned	Systems	and	the	Future	of	War’,	Committee	on	Oversight	and	Government	
Reform,	Congressional	Research	Service,	(March	2010)	
<http://digitalcommons.wcl.american.edu/cgi/viewcontent.cgi?article=1002&context=pub_disc_cong>	[accessed	15	
June	2017]	generally.	
96	Christof	Heyns,	‘Report	of	the	Special	Rapporteur	on	extrajudicial,	summary	or	arbitrary	executions’,	p.	9.	See	also:	
Markus	Christen	and	others,	‘An	evaluation	schema	for	the	ethical	use	of	autonomous	robotic	systems	in	security	
applications’,	UZH	Digital	Society	Initiative,	University	of	Zurich,	White	Paper	1,	(2017),	pp.	31-36	
<https://philarchive.org/archive/CHRAES-3>	[accessed	12	November	2017].	
97	Boulanin	and	Verbruggen,	p.	19.	The	dataset	is	discussed	in	detail	in	the	next	chapter	and	focusses	on	weapon	
systems	rather	than	individual	munitions.	
98	Walker,	Killer	Robots?,	pp.	30-31.	
99	NGO	Article	36	is	the	leading	source	of	expertise	on	this	area;	see,	for	instance:	Article	36	
<http://www.article36.org/weapons/landmines/anti-vehicle-mines-victim-activation-and-automated-weapons/>	
[accessed	2	May	2016].	See	also:	David	Larter,	‘Autonomous	mine-hunting	boat	will	be	delivered	to	British	Navy	this	
winter’,	Defense	News,	13	September	2017	<https://www.defensenews.com/digital-show-
dailies/dsei/2017/09/13/autonomous-mine-hunting-boat-will-be-delivered-to-the-royal-navy-this-winter/>	[accessed	
23	October	2017].		
100	Mary	Wareham,	Director,	Human	Rights	Watch	Arms	Division,	in	conversation	with	the	author,	December	2018.	
	
101	Ron	Smith,	Military	Economics:	the	interaction	of	power	and	money,	(UK:	Palgrave	MacMillan,	Basingstoke,	2009),	p.	
132	
<https://books.google.co.uk/books?hl=en&lr=&id=Rd0YDAAAQBAJ&oi=fnd&pg=PP1&dq=r+smith+military+economic
s&ots=_uONTfBz2_&sig=_5GjeOYSLLg4T8snaahF332GAfY#v=onepage&q&f=false>	[accessed	29	March	2017].		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 71 | P a g e  

 
 

There	are,	then,	several	pathways	along	which	to	frame	acceleration	towards	the	adoption	of	
autonomous	weapons.	Kostopoulos,	advisor	to	the	AI	Initiative	at	Harvard’s	Future	Society,	usefully	
isolates	certain	high-level	behavioural	drivers.	Necessary	conditions	precedent	to	AWS	deployment	
should,	she	argues,	include	a	broad	‘trust’	in	the	weapons’	underlying	technologies,	a	general	
‘cultural	acceptance’	in	those	technologies	(by	organisational,	institutional	and	societal	parties)	
and,	finally,	reasonable	‘availability’	of	(and	hence	familiarity	with)	those	underlying	
technologies.102	Re-purposing	her	analysis	to	AWS	deployment,	‘trust’	here	also	encompasses	the	
weapon’s	fitness	for	purpose	as	well	as	the	‘authenticity’	of	its	machine	learning	environment	such	
that	operational	parameters	can	properly	be	isolated	and	processed.	Finally	to	this	point,	
Kostopoulis	notes	that	‘confidence’	as	a	driver	should	incorporate	a	reduction	in	burden	for	both	
soldier	and	commander,	reliable	and	value-adding	knowledge	transfer	between	colleague	machines	
and,	finally,	successful	training	and	testing	of	the	weapon	platforms	in	both	sympathetic	and	non-
sympathetic	environments.103		
	

Institutional	drivers	also	come	in	different	guises.	To	this	point,	it	is	relevant	to	consider	
military	influencers	in	weapons	autonomy.	In	1958	President	Eisenhower	created	the	Advanced	
Research	Projects	Agency	with	a	purpose	to	formulate	and	execute	research	and	development	
projects	that	would	expand	the	frontiers	of	technology	and	science.104	That	role	had	been	cemented	
as	a	response	to	the	Soviet	launching	of	Sputnik	two	years	before.	DARPA’s	mission	remains	
ensuring	that	US	military	technology	retains	an	edge	over	its	potential	enemies	and	to	ensure	
ongoing	decisive	military	advantage.	As	an	accelerator,	DARPA’s	current	programmes	therefore	
provide	useful	insight	into	America’s	military	research	priorities	(as	well,	if	course,	as	its	potential	
weaknesses)	and,	in	identifying	drivers	to	AWS,	give	context	to	how	such	platforms	may	be	
developed.	A	recent	theme	to	the	agency’s	work	is	its	focus	on	adaptive	systems,	autonomous	
decision	aids	and	battlefield	processes	that	are	increasingly	independent	of	human	intervention.105	
This	is	reflected	in	US	weapon	procurement.	By	2016,	US	DoD	was	spending	$3	billion	on	
unmanned	aircraft	comprising,	by	number,	forty	percent	of	all	US	aircraft.106	To	this	point,	Boulanin	
notes	that	the	underlying	deployment	models	(involving	degrees	of	unmanned	and	increasingly	
unsupervised	UAV)	have	similarly	proliferated.107	This	is	borne	out	in	the	commercial	sphere:	
When	the	American	Federal	Aviation	Administration	introduced	its	national	framework	for	
registering	unmanned	aircraft	in	late	2015,	more	than	one	hundred	and	eighty	thousand	drones	
where	were	registered	in	the	first	two	weeks	of	that	scheme.	As	evidenced	in	Chapter	Five’s	
discussion	on	proliferation,	the	USA	is	not	alone	in	this	phenomenon;	as	of	2018,	seventy	countries	

																																																								
102	Lydia	Kostopoulos,	‘Drivers	for	the	Deployment	of	Lethal	Autonomous	Weapons’,	Medium.com,	22	December	2017,	
paras.	5-9	<https://medium.com/@lkcyber/drivers-for-the-deployment-of-lethal-autonomous-weapons-systems-
ae1dd6278a35>	[accessed	9	March	2017].		
103	Kostopoulos,	para.	10.	
104	Subsequently	abbreviated	to	DARPA.	See:	<https://www.darpa.mil/about-us/darpa-history-and-timeline>	[accessed	
3	April	2017].		
105	DARPA	website,	<https://www.darpa.mil>		[accessed	18	July	2018].	
	
106	Dan	Gettinger,	‘Drones	in	the	Defense	Budget’,	Center	for	the	Study	of	the	Drone,	Bard	College,	October	2017,	
generally	<http://dronecenter.bard.edu/files/2018/01/Drones-Defense-Budget-2018-Web.pdf>.	Also:	J	Gertler,	‘US	
Unmanned	Aerial	Systems’,	Congressional	Research	Service,	CRS	R42136,	(3	January,	2012);	and	J	Gertler,		‘How	many	
UAVs	for	DoD?’,	Congressional	Research	Service,	CRS	IN10317,	(2015),	generally.	
107	Boulanin	and	Verbruggen,	p.	19.	See	also:	Chapter	4	(Deployment).		
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operate	unmanned	aircraft	with	thirty	armed	UAV	programmes	established	or	in	development.108	It	
is	against	these	developing	set	of	accelerators	that	AWS’	position	in	Seba’s	discontinuity	model	
should	be	considered.		
	

Several	systemic	trends	comprise	an	institutional	driver	to	AWS	deployment.	The	first	is	run-
away	budgets.	Miller	highlights	escalating	human	resource	costs	of	having	‘boots	on	the	ground’	(or,	
more	importantly,	in	the	air)	in	a	general	reference	to	manpower	expenditure.109	Between	FY	2001	
and	FY	2012,	US	compensation	costs	per	active-duty	service	member	grew	nearly	sixty	percent.110	
Adjusted	for	inflation,	this	equates	to	an	annual	(and	unsustainable)	growth	of	more	than	four	
percent.111	Manned	systems,	moreover,	are	costly	in	any	military	environment:	The	human	fighter	
must	be	able	to	breathe,	eat	and	take	care	of	bodily	functions.	His	safety	must	be	addressed	with	
armour,	redundant	control	apparatus	and	escape	systems.112	In	the	case	of	ground	troops,	
transportation	must	be	available	to	and	from	a	contact	zone	as	well	as	being	available	to	support	
him	while	he	is	there.	Each	such	subordinate	system	must	then	be	supported	by	its	own	complex	
logistics	chain.	In	addition,	medical	supplies,	facilities	and	staff	must	be	immediately	available	to	
evacuate	and	treat	the	injured.	The	human	component	of	these	chains	requires	extensive	
management,	training	as	well	as	generous	benefits	programmes	for	life.113	By	comparison,	the	cost	
of	robotic	systems	is	collapsing	due	to	increased	systems	commonality	and	production	
innovation.114	A	2015	study	undertaken	by	Duke	University115	concluded	that,	even	by	that	date,	the	
fully	loaded	manpower	cost	per	hour	of	a	UAV	was	ninety	percent	less	(one	hundred	and	fifty	
dollars	compared	to	two	thousand	dollars)	than	a	manned	aircraft.116	This,	notes	Cummings,	has	
created	an	unsustainable	cost	differential	that	creates	its	own	driver	towards	broad	adoption	of	

																																																								
108	K	Sayler,	‘A	world	of	proliferated	drones:	a	technology	primer’,	Centre	for	a	New	American	Security,	(July	2015)	
<www.cnas.org/world-of-proliferated-drones-technology-primer>	[accessed	24	August	2016].	See	also:	Chapter	5	
(Obstacles),	specifically	5.7:	(‘Proliferation	Constraints’).	
109	US	Department	of	Defense,	‘Cost-saving	Pilot	Programs	to	Support	War-fighter	Autonomy’,	US	DoD	News	feed,	
<http://www.defense.gov/news/newsarticle.aspx?id=120329>	[accessed	11	May	2016].	See	also:	Jack	Miller,	‘Strategic	
Significance	of	Drone	Operation	for	Warfare’,	E-International	Relations	Students,	(18	August	2013)	<http://www.e-
ir.info/2013/08/19/strategic-significance-of-drone-operations-for-warfare/>	[accessed	2	October	2016].		
110	Robert	Work	and	Shawn	Brimley,	‘20YY;	Preparing	for	War	in	the	Robotic	Age’,	Centre	for	a	New	American	Security,	
(January	2014),	p.	20	<https://www.cnas.org/publications/reports/20yy-preparing-for-war-in-the-robotic-age>.	
111	Over	the	same	time	period,	the	share	of	the	base	DoD	budget	for	military	personnel-related	costs	rose	from	30%	to	
34%	and	is	expected	to	consume	46%	of	the	budget	by	FY	2021	even	with	a	2.6%	historically	normal	real	annual	
growth.	
112	Simon	Ramo,	Let	Robots	Do	The	Dying,	(Kindle	publication,	2011),	8%.	
113	The	National	Audit	Office’s	analysis	provides	useful	context	here	in	demonstrating	the	current	costs	of	manpower	
assets.	29%	of	the	UK’s	2017	£35.3bn	budget	was	accounted	for	by	service	personnel,	4%	by	civilian	contractors	and	
4%	by	administration.	Pensions	to	service	personnel	comprised	2%	of	the	UK’s	defence	budget	in	2017.	See:	National	
Audit	Office,	‘A	Short	Guide	to	the	Ministry	of	Defence’,	NAO,	(2017),	p.	9	<https://www.nao.org.uk/wp-
content/uploads/2017/09/A-short-guide-to-the-Ministry-of-Defence.pdf>.		
114	PricewaterhouseCoopers,	‘The	New	Hire:	How	a	new	generation	of	robots	is	transforming	manufacturing’,	Zpryme	
Research	survey,	(February	2014),	p.	12	<https://www.pwc.fi/fi/palvelut/tiedostot/industrial-robot-trends-in-
manufacturing-report.pdf>.	
115	Professor	Missy	Cummings,	Director,	Humans	&	Autonomy	Laboratory,	Duke	University,	in	conversation	with	the	
author	(Chatham	House	conference;	Autonomous	Military	Technologies,	February	2014).	
116	Ian	Jaffe,	‘Former	Fighter	Pilot,	Duke	Prof	Missy	Cummings	talks	drones’,	Duke	Chronicle,	(15	September	2015)	
<http://www.dukechronicle.com/article/2015/09/former-fighter-pilot-duke-prof-missy-cummings-talks-drones>	
(accessed	17	January	2017].	Note,	however,	that	sensor	multiplicity	on	UAV	is	likely	to	dull	this	advantage	if	further	
analysts	are	then	required	to	process	additional	data.	
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robotics	and	unmanned	solutions	across	battlefield	assets.117	Fully	costed,	Hambling	calculates	that	
parties	will	spend	more	than	thirty	thousand	dollars	per	hour	to	fly	their	F-35	while	the	Reaper	
costs	less	than	four	thousand	dollars	to	operate	for	each	hour	of	use.118		
	

The	differential	that	is	evident	in	the	UAV’s	running	costs	also	characterises	its	relative	capital	
costs.119	In	this	case,	therefore,	spiraling	hardware	costs	create	their	own	institutional	driver	in	the	
face	of	squeezed	procurement	budgets.120	Here,	Wolf’s	work	on	defence	inflation	points	to	
Augustine’s	tongue-in-cheek	conclusion	made	in	1984	that	‘in	the	year	2054,	the	entire	[US]	
defence	budget	will	purchase	just	one	aircraft’.121	Weapon	autonomy,	note	Work	and	Brimley,	
posits	an	answer	to	escalating	costs	of	military	hardware	platforms.122	The	Centre	for	a	New	
American	Security	suggests	that	accelerating	hardware	costs123	already	mean	that	US	armed	forces	
are	no	longer	able	to	replace	front-line	combat	systems	on	a	one-for-one	basis.124	The	example	of	
the	F-35’s	procurement	provides	an	appropriate	case	study.	Thus,	notes	Enemark,	‘when	an	aircraft	
has	a	pilot	on	board,	there	is	a	need	to	accommodate	and	protect	frail	human	flesh	in	the	
engineering,	construction	and	use	of	that	aircraft’.125	As	of	2014,	eight	years	into	production,	the	F-
35	cost	some	$190	million	in	that	year’s	dollars.126	This	compares	to	the	calculation	in	2012	by	
Congress’	watchdog	agency	that	the	average	price	for	an	F-35	aircraft	had	already	doubled	from	
$69	million	since	the	programme’s	inception.127	Hambling	gauges	the	total	cost	of	ownership,	
including	maintaining	and	supporting	the	F-35	over	its	lifetime,	to	be	more	than	$300	million	per	
unit.128	This	masks	a	further	driver	to	AWS	deployment	where	the	imperative	to	shrink	costs	is	

																																																								
117	For	Russian	military	cost	inflation,	see:	Global	Security	<http://www.globalsecurity.org/military/world/russia/mo-
budget.htm>.	For	UK	cost	inflation,	see:	RUSI,		
<https://www.rusi.org/downloads/assets/Comment_Defence_Inflation_Myth_or_Reality.pdf>.	For	Chinese	military	cost	
inflation,	see:	Aviation	Week	<http://aviationweek.com/awin/china-s-inflation-adjusted-defense-budget-75>	[all	
accessed	18	February	2017].	
118	Hambling,	p.	66.	
119	Deborah	Heynes,	‘Spiralling	cost	of	weapons	makes	war	‘too	expensive’,	The	Times,	26	April	2017	
<https://www.thetimes.co.uk/article/spiralling-cost-of-weapons-makes-war-too-expensive-6fkzf03w6>	[accessed	23	
February	2017].		
120	Walker,	Killer	Robots?,	pp.	28-30.	
121	Katharina	Wolf,	‘Putting	Number	on	Capabilities:	Defence	Inflation	versus	Cost	Escalation’,	European	Institute	for	
Security	Studies,	Brief	Issue,	27,	(July	2015),	p.	1	and	generally	
<https://www.iss.europa.eu/sites/default/files/EUISSFiles/Brief_27_Defence_inflation.pdf>.	
	
122	Work	and	Brimley,	p.	22.	
123	Centre	for	a	New	American	Security,	cit.	Work	and	Brimley,	p.	22.	
124	To	survive	against	steadily	improving	guided	munitions	all	such	crewed	platforms	will	require	costly	stealth	
technology,	stand-off	ability	and	highly	capable	active	and	passive	defences.	In	the	case	of	the	F-35	aircraft,	see:	
<https://www.washingtonpost.com/sf/brand-connect/the-f-35-how-it-works/>	[accessed	4	September	2018].		
125	Christian	Enemark,	‘Armed	drones	and	the	Ethics	of	War:	Military	Virtue	in	a	post-heroic	age’,	(UK:	Routledge,	
Oxford,	2014),	p.	98.		
126	A	useful	summary	is	provided	by:	Amanda	Macias,	‘The	Pentagon	is	Trying	to	Figure	Out	the	True	Cost	of	its	Costliest	
Weapon	System,	the	F-35’,	CNBC,	(28	February	2018)	<https://www.cnbc.com/2018/02/28/pentagon-wants-to-know-
true-cost-of-f-35-system.html>	[accessed	2	September	2018].	An	unmanned	UAV,	for	instance,	requires	no	cockpit	
pressurisation	or	temperature	control	and	may	have	more	space	and	payload	capacity	for	fuel	allowing	it	to	stay	in	the	
air	for	longer	(long-dwell,	high	altitude	capabilities).	
127	Andrea	Shalal-Esa,	‘Insight:	Expensive	F-35	fighter	at	risk	of	budget	‘death	spiral’’,	Reuters	Newswire,	15	March	2013	
<http://uk.reuters.com/article/2013/03/15/us-usa-fighter-f35-insight-idUSBRE92E10R20130315>	[accessed	18	April	
2014].	
128	Hambling,	p.	94.	
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reinforced	by	a	requirement	to	reduce	complexity	across	the	purchasing	process.	The	F-35’s	first	
development	contract	was,	after	all,	signed	in	1996;	while	the	first	unit	flew	in	2006,	the	platform	
did	not	finally	arrive	into	service	until	2015,	nearly	twenty	years	after	initial	consent.129	Finally	to	
this	point,	the	complexity	and	cost	of	such	manned	platforms	reduce	the	physical	number	of	assets	
that	a	State	can	afford.	As	platforms	become	fewer	and	dearer,	a	simple	numbers	game	of	how	
many	aircraft	you	can	get	into	the	sky	itself	becomes	a	driver	to	the	deployment	of	cheaper	and	
more	numerous	weapon	systems.130	While	these	drivers	may	not	be	new	(Clark	points	to	similar	
discussion	around	mechanisation	and	aerial	warfare	in	the	1930s131),	the	research	of	Kirkpatrick	
and	Pugh	notes	meaningful	recent	escalation	in	weapon	unit	costs	as	well	as	accelerating	in-
programme	inflation	(actual	delivery	costs	of	a	weapon	programme	materially	outstripping	its	
initial	budget).132	Counter-point,	discussed	in	Chapter	Two,	is	provided	by	those	1,218	drones	
taking	part	in	the	2018	Pyeongchang	Winter	Olympics	Opening	Ceremony,	each	of	which	likely	cost	
less	than	one	thousand	dollars.133		

	
The	operation	of	manned	weapons	also	acts	as	a	driver	to	AWS	deployment.	Wheeler	suggests	

that	protecting	the	high	value	F-35	pilot	through	system	duplication	and	physical	shielding	may	
account	for	up	to	sixty	percent	of	that	platform’s	capital	cost.134	Tellingly,	this	redundancy	and	
work-round	may	also	‘degrade	[operational]	performance	by	up	to	eighty	percent’.135	Unlike	in	its	
unmanned,	autonomous	alternative,	the	combat	aircraft’s	pilot	remains	the	most	critical	(and	most	
vulnerable)	component	of	the	F-35	ecosystem.136	In	addition	to	creating	procurement	and	design	
constraints,	the	pilot	is	a	priority	for	adversarial	targeting,	becoming	an	increasing	burden	on	that	
platform’s	performance	in	terms	of	additional	armour,	life	support	and	limitations	imposed	on	the	
manned	unit	by	g-forces.137	There	is,	notes	Adams,	ample	incentive	to	exclude	humans	from	the	

																																																								
129	This	has	certain	procurement	ramifications.	Only	two	consortia	were	therefore	of	sufficient	size	to	compete	for	the	
contract	to	construct	the	high	value	aircraft.	Cost	and	commercial	risks	empirically	limit	business	competition	(and	any	
subsequent	chance	for	market	forces	to	reduce	a	programme’s	build	cost)	as	well	restricting	the	benefits	of	possible	
collaboration.	See:	Hambling,	p.	94	
130	Matthew	Alexander,	‘Is	the	UK	able	to	respond	to	the	technological	changes	of	warfare?’,	unpublished	thesis,	
University	of	Bath,	(15	April	2015)	<http://www.bath.ac.uk/research/case-studies/centre-for-war-and-technology>	
[accessed	4	February	2018].		
131	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019.	
	
132	D	Kirkpatrick	and	P	Pugh,	‘Towards	the	Starship	Enterprise:	Are	the	Current	Trends	in	Defence	Unit	Costs	
Inexorable?’,	Journal	of	Cost	Analyses,	2,	1	(1985),	59-60	and	generally.		
	
133	B	Barrett,	‘Inside	the	Olympics	Opening	Ceremony	World-Record	Drone	Show’,	Wired.com,	9	February	2018	
<https://www.wired.com/story/olympics-opening-ceremony-drone-show/>	[accessed	12	March	2018].	Also:	
dronesforless	<http://www.dronesforless.co.uk/drones/autel-robotics-x-star-premium-quadcopter-with-3-axis-
gimbal-pro-
bundle/?utm_source=googleshoppingpaid&utm_medium=cpc&utm_campaign=googleshoppingpaid&utm_content=SHP
2366C5&gclid=EAIaIQobChMIioqllpD72QIVkZa9Ch0gjgfxEAkYAiABEgKEHvD_BwE>	[accessed	12	February	2018].	
134	For	an	unauthorised	view	of	the	F-35’s	procurement	costs,	see:	Winslow	Wheeler,	‘How	Much	Does	an	F-35	Actually	
Cost?’,	www.warisboring.com,	(27	July	2014)	<https://warisboring.com/how-much-does-an-f-35-actually-cost/>	
[accessed	9	March	2018].		
135	Micha	Zenko,	The	Coming	Future	of	Autonomous	Drones,	(Council	on	Foreign	Relations,	4	September	2012)	
<http://blogs.cfr.org/zenko/2012/09/04/the-coming-future-of-autonomous-drones/>	[accessed	17	March	2016].	
Zenko	also	discusses	use	of	UAVs	tasked	with	actions	that	remain	short	of	warfare	but	which	are	nevertheless	designed	
to	secure	military	advantage.		
136	As	much	as	45%	of	the	costs	of	the	A-4	Skyhawk	is	accounted	by	the	crew	protection,	system	redundancy	and	other	
outlay	on	shielding	which	would	be	avoided	if	the	platform	was	unmanned;	see:	US	Military	blog,	
<http://usmilitary.about.com/od/attack/>	[accessed	12	January	2015].	
137	Adams,	p.	7	and	generally.	
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system.138	Lovelace	defines	this	driver	as	a	process	of		‘unmanning	the	weapon	platform’.139	While	
this	may	have	been	a	long-held	aspiration	in	military	procurement,	technical	innovation	(and	now	
this	cumulative	complexity	of	manned	machines	discussed	variously	by	Scharre	and	others)	that	
agitates	for	automation	and	autonomy	across	fighting	systems.140	Hambling	cites	Augustine’s	Law	
XV141	to	evidence	that	building	in	such	layers	of	redundancy	increases	costs	and	compromises	
reliability:	‘The	last	ten	percent	of	performance	generates	one	third	of	the	cost	and	two-thirds	of	
the	problems’.142	Another	risk	to	such	expensive	platforms	is,	of	course,	that	further	technical	shifts	
may	then	erode	their	relevance.143	In	this	vein,	Madrigal	notes	that	adoption	of	low-cost,	agile	and	
swarm-based	UAV	is,	at	the	very	least,	likely	to	make	the	guarantee	of	airspace	superiority	more	
difficult	to	achieve.144		

 Ethical drivers  
	
Ethical	factors	may	act	as	a	driver	to	removing	man’s	role	in	lethal	engagements.		As	noted	by	
Peralta,	their	often	intangible	nature	(in	particular	the	imprecision	with	which	they	relate	to	LOAC	
and	their	entanglement	with	the	specific	context	for	each	such	engagement)	means	that	this	
section’s	evaluation	of	ethics	can	appear	frustratingly	inexact	and	often	based	on	heuristics	rather	
than	worked-through	evidence.145	Nevertheless,	its	theoretical	notion	is	that	machine-based	
safeguards	can	be	built	into	autonomous	weapon	systems	to	ensure	compliance	with	international	
humanitarian	law	(IHL).146	Here,	roboticist	and	roboethicist	Arkin,	Professor	of	Interactive	
Computing	at	the	Georgia	Institute	of	Technology,	promotes	the	general	viability	of	what	is	termed	

																																																								
138	For	a	general	discussion	on	the	advantages	of	autonomy	in	weapon	systems,	see:	Adams,	p.	7.	
139	Douglas	Lovelace,	Autonomous	and	Semi-Autonomous	Weapon	Systems,	in	Law	Review,	Volume	44,	(Oxford:	Oxford	
University	Press,	6	October	2016),	p.	70.		
140	Paul	Scharre,	‘Autonomous	weapons	and	operational	risk’,	Centre	for	a	New	American	Security,	(2016),	pp.	25-34	
<https://www.files.ethz.ch/isn/196288/CNAS_Autonomous-weapons-operational-risk.pdf>.	
141	David	Smallwood,	‘Augustine’s	Law	Revisited’,	Sound	and	Vibration,	(March	2012)	
<http://www.sandv.com/downloads/1203smal.pdf>.	
142	See:	Chapter	4	(Deployment),	specifically:	4.6	(‘Swarming	models’).	Also:	Hambling,	p.	96.	Written	in	1984	by	former	
Under-Secretary	to	the	US	Army	Ralph	Norman	Augustine	as	a	tongue-in-cheek	set	of	business	aphorisms,	Augustine’s	
Laws		XVI	states	that	‘in	the	year	2054,	the	entire	defense	budget	will	purchase	just	one	aircraft.	This	aircraft	will	have	
to	be	shared	by	the	Air	Force	and	Navy	three-and-one-half	days	each	per	week	except	for	leap	year,	when	it	will	be	
made	available	to	the	Marines	for	the	extra	day’.	
143	Kelsey	Atherton,	‘The	future	of	the	Air	Force	is	fighter	pilots	leading	drone	swarms	into	battle’,	Popular	Science,	23	
June	2017,	paras.	3-4	<https://www.popsci.com/future-air-force-fighters-leading-drone-swarms>	[accessed	6	March	
2018].	See	also:	Ilana	Freedman,	‘F-22	and	F-35:	America’s	Costly	Boondoggles	Are	the	Victims	of	Arrogance	and	
Appeasement’,	Gerard	Direct,	10	March	2013,	paras.	7-9	<http://gerarddirect.com/2013/03/10/uss-f-35-and-f-22-
americas-costly-boondoggles-the-victims-of-arrogance-and-appeasement/>	[accessed	8	March	2018].		
144	Alexis	Madrigal,	‘Drone	Swarms	are	Going	to	be	Terrifying	and	Hard	to	Stop’,	The	Atlantic,	Technology,	7	March	2018	
<https://www.theatlantic.com/technology/archive/2018/03/drone-swarms-are-going-to-be-terrifying/555005/>	
[accessed	19	May	2018].	
145	Eyder	Peralta,	‘Weighing	the	good	and	the	bad	of	autonomous	killer	robots	in	battle’,	All	Tech	Considered,	28	April	
2016,	paras.	21-25	of	25	<https://www.npr.org/sections/alltechconsidered/2016/04/28/476055707/weighing-the-
good-and-the-bad-of-autonomous-killer-robots-in-battle>	[accessed	12	February	2018].	See:	Th.	A,	Van	Baarda,	Moral	
Ambiguities	Underlying	The	Laws	of	Armed	Combat:	A	Perspective	from	Military	Ethics,	(USA:	The	Yearbook	of	
International	Humanitarian	Law,	Volume	11,	December	2008),	p.	3.		
146	Walker,	Killer	Robots?	pp.	35-36,	59-60	and	61.	The	role	of	IHL	and	other	legal	constraints	in	AWS	deployment	is	
discussed	in	detail	in	Chapter	5	(Obstacles),	specifically:	5.1	(‘Geneva	Convention	and	Laws	of	Armed	Conflict’)	and	5.5	
(‘Article	36	and	LOAC-compliant	weapons’).		
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an	‘Artificial	Ethical	Override’.147	He	uses,	for	instance,	the	Mental	Health	Advisory	Team	report	from	
the	US	Surgeon	General’s	office	to	assert	that	unmanned	combat	systems	may	obviate	ethical	
challenges	arising	generally	in	combat	conditions.148	According	to	that	November	2006	study,	
soldiers’	conduct	during	Operations	Iraqi	Freedom	and	Enduring	Freedom	was	often	‘questionable’	
with	some	ten	percent	of	soldiers	reporting	that	they	had	mistreated	non-combatants	or	damaged	
civilian	property	and	only	forty-seven	percent	of	soldiers	agreeing	that	non-combatants	should	be	
treated	with	dignity	and	respect.149	Battlefield	surveys,	of	course,	risk	bias	and	sample	challenges,	
disputes	around	inappropriate	structure	and	coding,	worries	around	anonymity,	independence	and	
statistical	rigour	as	well	as	difficulties	occasioned	by	cross-culture	and	contextual	issues.150	Using	
such	data	is	therefore	fraught	with	difficulty	but,	for	the	narrow	purposes	of	this	analysis,	it	serves	
at	least	to	highlight	possible	faultlines.	The	report,	after	all,	found	that	more	than	thirty	percent	of	
soldiers	agreed	that	torture	be	allowed	in	order	to	save	the	life	of	a	fellow	soldier	with	forty-five	
percent	of	soldiers	reporting	that	they	would	not	report	a	colleague	if	he	had	killed	or	injured	an	
innocent	non-combatant.	Less	than	half	of	the	soldiers	said	that	they	would	report	a	team	member	
for	unethical	behaviour.	Empirically,	this	may	not	be	unexpected	given	the	prominent	role	of	trust	
in	military	ethics.151	Neuroscientists,	notes	Pryer,	have	found	that	human	circuits	responsible	for	
conscious	self-control	are	highly	vulnerable	to	stress.152	When	these	circuits	shut	down,	primal	
impulses	go	unchecked.	Notwithstanding	the	difficulty	of	using	such	primary	sources,	evidence	
nevertheless	exists	upon	which	Arkin	can	base	his	argument	for	an	ethical	driver:	Properly	crafted	
algorithms	may,	in	theory,	produce	a	more	consistent,	more	compliant	engagement	outcome	than	
has	been	achievable	in	a	fraught	combat	situation	where	human	supervision	has	empirically	been	
inadequate.153	
	

Accepting	for	the	moment	Arkin’s	use	of	these	surveys,	ethical	arguments	in	favour	of	AWS	
deployment	appear	on	first	reading	to	have	surprising	depth.	Weapons	autonomy	may,	after	all,	
reduce	soldiers’	participation	on	the	battlefield.	This	has	several	long-recognised	advantages.	As	far	

																																																								
147	Dieter	Vanderelst	and	Alan	Winfield,	‘An	Architecture	for	Ethical	Robots	Inspired	by	the	Simulation	Theory	of	
Cognition’,	Cognitive	Systems	Research,	48,	(May	2018),	pp.	56-65	
<https://reader.elsevier.com/reader/sd/pii/S1389041716302005?token=C7E1EA2947EBE5A58F14432243B19081E
625A4E6D56A5CC87D0ED7548B5A93DB91F0B8ADB1DA68FFA268CDC86E1319D1>	[accessed	17	January	2019].	
	
148	Ronald	Arkin,	Governing	lethal	behaviour:	Embedding	ethics	in	a	hybrid	deliberate/reactive	robot	architecture,	(USA:	
Atlanta,	GA:	Georgia	Institute	of	Technology,	2007),	generally.	See	also:	Surgeon	General’s	Office,	‘Mental	Health	
Advisory	Team	(MHAT)	IV	Operation	Iraqi	Freedom	05-07’,	US	GSO,	Final	Report,	(November	2006)	
<http://www.combatreform.org/MHAT_IV_Report_17NOV06.pdf>.	HRW’s	Mary	Wareham	notes	that	Arkin’s	work	
dates	from	2006	and	that	he	has	published	little	on	the	subject	since	that	date.	‘The	attention	that	Arkin	receives	is	more	
to	do	with	the	counterpoint	his	research	provides	to	the	AWS	debate	and	the	theory	behind	his	construct’.	
149	Surgeon	General’s	Office,	‘Mental	Health	Advisory	Team’,	generally.	
150	Statistical	issues	include	sampling	bias,	under-coverage	and	social	desirability	in	the	answering	of	the	survey’s	
questions,	non-response	bias,	the	issue	of	leading	questions	in	the	absence	of	any	control	group,	difficulties	around	
apportioning	causation	and	the	dealing	with	dependent	variables.	See:	Jacob	Metcalf,	Ethics	Codes:	History,	Context	and	
Challenges,	(USA:	Council	for	Big	Data,	Ethics	and	Society,	9	November	2014)	<https://bdes.datasociety.net/council-
output/ethics-codes-history-context-and-challenges/>	[accessed	6	May	2017].		
151	Source:	‘The	Army	Ethic	White	Paper’,	Center	for	the	Army	Profession	and	Ethics,	11	July	2014	
<https://www.army.mil/e2/c/downloads/356486.pdf>.	
152	Lt	Col	Douglas	Pryer,	‘The	rise	of	the	machines:	why	increasingly	‘perfect’	weapons	help	perpetuate	our	wars	and	
endanger	our	nation’,	Military	Review,	March-April	2013,	p.	15.	
153	Reverend	Sean	Wead,	‘Ethics,	Combat	and	a	Soldier’s	Decision	to	Kill’,	Military	Review,	March-April	2015,	pp.	70-72	
<https://www.armyupress.army.mil/Portals/7/military-
review/Archives/English/MilitaryReview_20150430_art013.pdf>.	
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back	as	1946	(with	no	substantive	studies	having	been	undertaken	in	the	meantime),	Swank	put	
forward	evidence	to	show	that	after	sixty	days	of	continuous	combat	ninety-eight	percent	of	
surviving	soldiers	suffer	psychiatric	trauma.154	A	further	thread	to	this	argument	is	the	challenge,	
notes	Hanlon,	of	creating	soldiers	that	are	‘fit	for	purpose’	in	the	first	place.155	Again	parking	
contextual	and	statistical	concerns	(and	using	contemporaneous	analysis	to	do	no	more	than	
indicate	a	theme),	Grossman’s	Second	World	War	study	suggests	that	‘most	men	[sic]	simply	did	
not	kill’.156	While	Marshall’s	US	Army	study	has	since	been	widely	discredited	(its	sample	size	was	
just	four	hundred	men	and,	notes	Strohn,	the	material	is	unlikely	to	hold	for	‘wars	of	survival	rather	
than	recent	wars	of	choice	and	expedition’157),	it	is	nevertheless	interesting	to	note	even	the	
questions	it	posed	and,	with	caveats,	its	finding	that	only	fifteen	percent	of	those	infantrymen	
‘interviewed’	had	actually	fired	at	enemy	positions	on	any	occasion	despite	eighty	percent	of	the	
sample	having	the	opportunity	to	do	so.158	Parks	and	Neiss’	study	of	the	Korean	War	indicates	that	
fifty	percent	of	the	F-86	pilots	never	fired	their	weapons	and,	ignoring	area	bombing,	only	ten	
percent	of	those	had	actually	hit	a	target.159	Finally	to	this	point,	Grossman	suggests	that	less	than	
one	percent	of	Second	World	War	pilots	accounted	for	thirty	to	forty	percent	of	all	downed	enemy	
aircraft.160	Notwithstanding	general	challenges	that	are	posed	by	ethical	questionnaires,	two	
inferences	arise	from	these	US	sources	that	are	then	leveraged	by	advocates	of	AWS.	Regardless	of	
training,	a	serviceable	conclusion	is	that	it	is	unrealistic	to	expect	human	beings	to	adhere	
unerringly	to	LOAC	when	confronted	by	challenges	of	the	battlefield.	That	assumption,	notes	Behm,	
is	borne	out	by	the	debate	that	continues	on	ethics	education	by	military	training	establishments.161	
An	argument	is	that	these	same	soldiers,	as	a	general	sample	and	when	compared	to	a	machine	
agent,	may	at	best	be	‘a	variable	tool	in	the	waging	of	war’.162	Arkin	then	uses	these	findings	to	
argue	that	a	computational	implementation	of	an	ethical	code	(together,	his	‘Artificial	
Conscience’163),	once	embedded	into	AWS’	control	sequences,	may	in	time	provide	enforceable	

																																																								
154	No	comparable	European	study	exists,	hence	use	here	of	another	US	study:	R	Swank,	Combat	neuroses:	Development	
of	Combat	Exhaustion,	Vol.	55,	(USA:	Archives	of	Neurology	and	Psychology,	1946),	pp.	236-47.	
155	Michael	Hanlon,	‘’Super	Solders’:	The	Quest	for	the	Ultimate	Human	Killing	Machine’,	The	Independent,	(17	November	
2011),	paras.	2-7	of	15	<https://www.independent.co.uk/news/science/super-soldiers-the-quest-for-the-ultimate-
human-killing-machine-6263279.html>	[accessed	10	January	2019].	
	
156	Grossman	study,	1995,	cit.	Arkin,	‘The	case	for	Autonomy	in	Unmanned	Systems’,	p.	9.		
157	Dr	Matthias	Strohn,	in	conversation	with	the	author,	January	2019.	
	

158	Samuel	Marshall,	Men	against	fire:	the	problem	of	battle	command	in	future	war,	(USA:	New	York,	William	Morrow	
Publishing,	1947),	generally.	
159	Parks	and	Neiss	Study,	1956,	cit.	Arkin,	‘The	case	for	Autonomy	in	Unmanned	Systems’,	p.	9.	The	Study	is	also	
discussed	by	Arkin	in	‘Human	Failings	on	the	Battlefield’,	cit.	Braden	Allenby,	The	Applied	Ethics	of	Emerging	Military	
and	Security	Technologies,	(USA:	Routledge,	December	2016),	chapter	12.		
160	Dave	Grossman,	On	Killing:	The	Psychological	Cost	of	Learning	to	Kill	in	War	and	Society,	(Black	Bay	Books,	1996),	
generally.	Despite	controversy	over	Marshall’s	WW2	survey	methodology,	Grossman	too	uses	Marshall’s	data	to	
evidence	soldiers’	reluctance	to	kill	their	opponents.		
161	Beth	Behn,	‘The	Stakes	are	High:	Ethics	Education	at	US	War	Colleges’,	Air	War	College	Publications,	Maxwell	Paper	
Number	73,	(2018),	p.	2	
<https://www.airuniversity.af.mil/Portals/10/AUPress/Papers/mp_0073_behn_stakes_high.pdf>.	Here,	Professor	
Lloyd	Clark	(in	conversation	with	the	author,	January	2019)	points	to	the	‘vibrant	and	long-running	debate	at	West	
Point,	RMAS,	the	US	War	College	and	UK	Staff	College	about	the	weighting	of	ethical	training’.		
162	Derived	from	Barbara	Ehrenreich,	‘Do	humans	have	a	role	in	the	robot	wars	of	the	future?’,	The	Guardian	Newspaper,	
11	July	2011	<https://www.theguardian.com/commentisfree/2011/jul/11/human-role-robot-war-future>	[accessed	2	
September	2017].		
163	Arkin,	Governing	lethal	behaviour,	p.	61.	
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limits	on	machine	actions	in	engagements.164	While	Arkin’s	construct	is	much	weakened	by	its	
underweighting	battlefield	intangibles	such	as	soldier	values,	leadership	and	other	behavioural	
variables,	the	point	remains	that	it	provides	an	important	and	outwardly	plausible	driver	
advocating	machine	(rather	than	human)	control	in	lethal	engagements.		

	
Questioned	in	military	circles165,	Arkin’s	structure	is	based	upon	several	assumptions,	not	least	

that	lines	of	code	will,	in	time	and	without	error,	be	able	to	undertake	the	complex,	interactive	tasks	
required	for	machines	to	assume	the	capabilities	currently	undertaken	by	human	soldiers.166	
Reviewing	the	feasibility	of	Arkin’s	construct	is	therefore	a	key	research	question	for	this	thesis	
that	occupies	much	of	its	subsequent	chapters,	in	particular	challenges	around	value	and	goal	
setting,	the	weapon’s	required	utility	function	and	whether	these	features	can	dynamically	be	
managed.	The	coding	complexity	around	ethical	precepts	is	particularly	challenging	given	that	such	
programming	must	incorporate	precepts	from	all	of	the	human	rights	conventions	in	order	to	be	
compliant	and	enable	the	AWS	to	consider,	in	real	time,	the	consequences	of	its	every	action.	While	
Arkin	acknowledges	that	it	is	‘too	early	to	determine	whether	this	software	device	is	practicable’167,	
this	is	not	necessarily	the	point:	The	issue	is	whether	his	construct	might	one	day	allow	better	
compliance	with	IHL	than	is	currently	capable	of	being	exercised	by	a	human.168	His	argument	more	
represents	a	prototype	and,	as	such,	‘a	preliminary	version	of	a	device	from	which	other	forms	may	
be	developed’169:	Robots,	after	all,	should	(at	least	theoretically)	be	able	to	process	more	
information	faster	than	humans,	heuristically	remain	uninfluenced	by	fear	or	anger170	while	at	the	
same	time	monitoring	the	ethical	behaviour	of	‘colleague’	humans	on	the	battlefield.171	In	this	
sense,	Arkin’s	argument	is	frustratingly	circular	to	those	questioning	its	legitimacy:	His	framework	
is	theoretical	without	having	either	to	develop	or	react	to	contextual	parameters	and,	suggests	
Clark,		‘relies	much	upon	what	the	construct	leaves	out	rather	than	what	is	put	in’.172	Instead,	it	is	

																																																								
164	The	test	here	is	that	such	limits	should	be	better,	or	at	least	as	good,	as	the	limits	achieved	by	human	soldiers	on	the	
battlefield.	Arkin’s	actionable	list	is	comprehensive	and	includes,	inter	alia,	acceptance	of	surrender	and	humane	
treatment	of	prisoners,	avoiding	unnecessary	suffering	and	damage	and	non-use	of	certain	weapons.	
165	Amitai	Etzioni	and	Oren	Etzioni,	‘Pros	and	Cons	of	Autonomous	Weapon	Systems’,	Military	Review,	(May-June	2017),	
74-77	<http://www.armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/May-June-2017/Pros-
and-Cons-of-Autonomous-Weapons-Systems/>	[accessed	16	January	2019].		
	
166	Arkin	‘Governing	Lethal	Behaviour’,	p.	4.	Arkin	justifies	his	framework	as	follows:	‘It	is	a	working	assumption,	
perhaps	naive,	that	the	autonomous	agent	ultimately	will	be	provided	with	an	amount	of	battlefield	information	equal	
or	greater	than	a	human	soldier	is	capable	of	managing.	This	seems	a	reasonable	assumption	with	the	advent	of	
network-centric	warfare	and	the	emergence	of	the	Global	Information	Grid’.	This	thesis’	Chapters	6	(Wetware),	7	
(Firmware)	and	8	(Software)	challenge	these	assumptions	and	the	technical	feasibility	necessary	to	realise	Arkin’s	
framework.		
167	Arkin,	Governing	Lethal	Behaviour,	p.	211.	
168	The	goal	of	Arkin’s	robotic	controller	design	is	to	ensure	that	unethical	responses	are	prohibited	through	an	Ethical	
Governor	and,	through	an	Ethical	Adaptor,	‘prevent	or	reduce	the	likelihood	of	[an	unethical	action]	via	an	after-action	
reflective	review	or	an	artificial	affective	function	(guilt,	remorse,	grief)’.	See:	Arkin,	‘Governing	Lethal	Behaviour:	
Embedding	Ethics	in	a	Hybrid	Deliberative/Reactive	Robot	Architecture’,	p.	20.	
169	Ibid.	
170	Olga	Khazan,	‘The	Best	Headspace	for	Making	Decisions’,	The	Atlantic,	Science,	19	September	2016	
<https://www.theatlantic.com/science/archive/2016/09/the-best-headspace-for-making-decisions/500423/>	
[accessed	6	March	2018].	
171	Arkin,	Governing	Lethal	Behaviour	in	Autonomous	Robots,	pp.	29-30.	
172	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019.	
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comprised	of	components	which,	individually	sound,	when	aggregated	to	craft	a	wholly	new	battle	
practice,	are	difficult	to	refute.		

	
Allen	and	Wallach	suggest	that	Arkin’s	notion	is	better	framed	‘from	the	engineer’s	perspective,	

[whereby]	making	AWS	sensitive	to	moral	considerations	will	add	further	difficulties	to	the	already	
challenging	ask	of	building	reliable,	efficient	and	safe	systems’.173	Arkin’s	framework	requires	
several	building	blocks	that	must	work	seamlessly	and	in	tandem.	In	addition	to	his	‘Ethical	
Governor’	and	‘Artificial	Conscience’,	Arkin	also	posits	a	‘Responsibility	Advisor’	to	‘make	clear	and	
explicit	just	where	responsibility	vests	should	an	unethical	action	be	undertaken	by	the	
autonomous	robot	or	the	robot	performs	an	unethical	act	due	to	some	representational	
deficiency’.174	As	explored	in	this	thesis’	later	analysis,	two	enduring	constraints	remain.	The	first	is	
the	cumulative	technical	feasibility	required	for	Arkin’s	mix:	In	discussing	the	challenges	to	action	
selection	in	machines,	Martin,	Secretary	of	the	AISB175,	observes:	‘I	don’t	mean	that	it’s	too	difficult	
like	“man	will	never	fly”	or	“man	will	never	land	on	the	moon”.	I’m	saying	it’s	hopelessly	misguided	
like	“man	will	never	dig	a	tunnel	to	the	moon”’.176	A	second	enduring	challenge	remains	AWS’	
inability	to	incorporate	contextual	analysis	within	the	application	of	these	technical	devices.	

	
Given	human	battlefield	failings	as	chronicled	by	Bourke,	AWS’	proponents	also	note	a	moral	

component	to	these	ethical	drivers.177	Slim	notes,	after	all,	that	‘armies,	armed	groups,	political	and	
religious	movements	have	been	killing	civilians	since	time	immemorial’178	and,	notes	Ohlin,	
shortcomings	in	jus	in	bello	clearly	abound.179	Indeed,	Arkin	highlights	exactly	such	battlefield	
lapses	to	justify	AWS	deployment.180	Cummings	similarly	points	out	that	current	human-in-the-loop	
bombing	practices	still	create	unacceptably	high	civilian	collateral	damage181,	an	inference	being	
that	human-out-of-the-loop	machines	might	be	able	to	perform	better	than	(or	certainly	as	well	as)	
current	in-loop	and	on-loop	systems.	In	this	way,	Bourne	provides	support	for	AWS’	deployment	
arguing	that	their	adoption	will	create	a	set	of	circumstances	whereby	‘combatants	[are]	able	to	
maintain	an	emotional	distance	from	their	victims	largely	through	the	application	of…	
technology’.182	That	argument,	however,	is	not	new;	used	first	in	the	nineteenth	century	around	

																																																								
173	Cornelia	Dean,	‘A	Soldier	Taking	Orders	from	its	Ethical	Judgement	Center’,	New	York	Times,	24	November	2008,	
para.	16	<http://www.nytimes.com/2008/11/25/science/25robots.html>	[accessed	7	March	2018].		
174	Arkin,	Governing	Lethal	Behaviour:	Embedding	Ethics	in	a	Hybrid	Deliberative/Reactive	Robot	Architecture,	p.	21.	
175	Source:	Society	for	the	Study	of	Artificial	Intelligence	and	Simulation	of	Behaviour	
<https://www.gold.ac.uk/news/tungsten-goldsmith-ai/>	[accessed	17	March	2017].		
176	Andrew	Owen	Martin,	senior	technical	analyst	at	the	Tungsten	Network,	cited	in	Ben	Sullivan,	‘Elite	scientists	have	
told	the	Pentagon	that	AI	won’t	threaten	humanity’,	Motherboard	magazine,	19	January	2017	
<https://motherboard.vice.com/en_us/>	[accessed	17	March	2017].	
177	J	Bourke,	An	Intimate	History	of	Killing,	(Basic	Books,	1999),	generally.	See	also:	Walker,	Killer	Robots,	pp.	59-60.	A	
corollary	here	might	be	that	such	‘human	failure’	is	an	immutable	state	of	the	nature	of	war	(not	just	the	character	of	
war).	The	theoretical	significance	of	Arkin’s	system	is	therefore	that	it	changes	not	just	battle’s	character	but	also	its	
nature.		
178	H	Slim,	Killing	Civilians:	Methods,	madness	and	morality	in	war,	(USA:	Columbia	University,	New	York,	2008),	p.	3.	
179	Jens	David	Ohlin,	‘Is	Jus	In	Bello	in	Crisis?’,	Cornell	Law	Faculty	Publications,	(March	2013),	pp.	27-29	
<https://scholarship.law.cornell.edu/cgi/viewcontent.cgi?article=2475&context=facpub>	[accessed	4	August	2018].	
180	Arkin,	Governing	Lethal	Behaviour,	p.	2.	
181	Professor	Missy	Cummings,	Director,	Humans	and	Autonomy	Laboratory,	Duke	University,	in	conversation	with	the	
author,	Chatham	House	Conference,	February	2014.	
182	Bourke,	p.	xvii.	
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rapid-firing	artillery,	it	has	since	been	used	for	developments	in	tank,	aircraft	and	naval	assets.	
Arkin’s	proposals	therefore	create	an	interesting	dilemma:	In	suggesting	a	prospect	of	more	
humane	armed	conflict	(and,	with	it,	the	saving	of	lives),	restricting	battlefield	autonomy	by	legal	
means	‘could	[in	itself]	amount	to	not	properly	protecting	life’.183	Notwithstanding	that	such	
constraints	would	presumably	vanish	in	the	event	of	major	war,	the	embracing	of	autonomy	might	
thus	be	construed	as	a	legal	imperative.		

	
Still	other	constituents	contribute	to	this	ethical	driver.	AWS,	notes	Zawieska,	might	be	able	to	

limit	their	intervention	to	an	‘appropriate’	amount	of	force	in	a	lethal	engagement.184	Autonomous	
technologies,	moreover,	might	be	capable	of	employing	‘creative	alternatives	to	lethality’185	such	as	
autonomous	precision186,	the	possibility	of	non-lethal	immobilization	as	well	as	the	disarming	of	
targets	that	might	otherwise	be	destroyed.	In	this	vein,	it	is	(again	theoretically)	possible	that	the	
programming	of	independent	weapons	might	leave	a	‘digital	trail’	that	could	allow	better	post-facto	
scrutiny	of	their	actions	and	thus	enhance	accountability.187	From	an	ethical	perspective,	it	might	
also	be	that	the	modus	operandi	of	AWS	will	be	better	suited	to	future	operations:	Metz	and	Coker	
separately	suggest	that	future	conflicts,	whether	symmetrical	or	asymmetrical,	will	tend	to	be	‘hide	
and	seek’	in	nature	rather	than	formal	force-on-force	affairs	into	which	AWS	technology	‘might	fit	
very	well’.188	In	this	vein,	Beres	suggests	that	any	such	deployment	of	self-directing	machines	might	
be	geospatially	constrained,	the	ethical	driver	being	that,	just	as	soldiers	are	given	defined	rules	of	
engagement,	AWS	may	be	disabled	once	in	a	specified	no-kill	zone.189	Finally	to	this	point,	ethical	
arguments	are	based	on	AWS’	ability	to	improve	battlefield	practices.	Economic	considerations	
apart,	unmanned	systems	may	not	‘need	to	protect	themselves’.190	As	noted	by	Kirsch,	self-
preservation	need	not	be	an	attribute	in	their	decision-making.191	This	has	two	ramifications.	It	may	
influence	weapons’	longstanding	design	equation	that	seeks	to	balance	an	armament’s	protection	
with	its	firepower	and	mobility.	They	can	act	also	conservatively.	Arkin	notes	that	AWS,	
appropriately	programmed,	might	be	operationally	superior	to	human	soldiers	in	programming	out	

																																																								
183	Heyns,	‘Report	of	the	Special	Rapporteur	on	extrajudicial,	summary	or	arbitrary	executions’,	p.	6.	See	also:	Paul	
Mitchell,	‘”Three	Laws	Safe?”	Autonomous	Robots	and	Warfare’,	Laurier	Centre	for	Military	Strategic	and	Disarmament	
Studies,	(15	October	2012),	paras.	8-12	<http://canadianmilitaryhistory.ca/three-laws-safe-autonomous-robots-and-
warfare-by-dr-paul-t-mitchell/>	[accessed	1	March	2018].	Also:	Damon	Beres,	‘The	Ethical	Case	for	Killer	Robots’,	
Huffpost,	3	June	2016	<http://www.huffingtonpost.co.uk/entry/lethal-autonomous-weapons-ronald-
arkin_us_574ef3bbe4b0af73af95ea36>	[accessed	12	March	2018].	
184	Karolina	Zawieska,	‘An	Ethical	Perspective	of	Autonomous	Weapons’,	cit.	Perspectives	on	Lethal	Autonomous	
Weapons,	(UN:	UNODA	Occasional	Papers,	Number	30,	November	2017),	pp.	49-56.	
185	Heyns,	‘Report	of	the	Special	Rapporteur	on	extrajudicial,	summary	or	arbitrary	executions’,	p.	10.	
186	See,	for	instance:	US	Patent	grant	US52607090A,	‘Autonomous	precision	weapons	delivery	using	synthetic	array	radar’	
<https://patents.google.com/patent/US5260709A/en>	[accessed	6	August	2018].	
187	Heyns,	Report	of	the	Special	Rapporteur	on	extrajudicial,	summary	or	arbitrary	executions,	p.	10	and	generally.	
188	Steven	Metz,	Armed	Conflict	in	the	Twentieth	Century:	The	Information	Revolution	and	Post-Modern	Warfare,	
(University	of	California	Libraries,	2000),	generally.	See	also:	Christopher	Coker,	Humane	Warfare,	(USA:	Routledge,	23	
August	2001)	and	London	School	of	Economics	
<http://www.lse.ac.uk/researchandexpertise/experts/profile.aspx?KeyValue=c.coker%40lse.ac.uk>	[accessed	2	March	
2016].	
189	Damon	Beres,	The	Ethical	Case	for	Killer	Robots,	paras.	19-20.	
190	Andreas	Kirsch,	‘Autonomous	Weapons	will	be	Tireless,	Efficient	Killing	Machines	–	and	there	is	no	way	to	stop	
them’,	Quartz	News,	(23	July	2018),	generally	<https://qz.com/1332214/autonomous-weapons-will-be-tireless-
efficient-killing-machines-and-there-is-no-way-to-stop-them/>	[accessed	12	August	2018].	
191	Ibid.	
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the	human	heuristic	of	‘scenario	fulfillment’	whereby	expectation	on	how	a	set	of	circumstances	
will	unfold	leads	directly	to	bias	in	subsequent	decision	making.192	Tonkins	similarly	points	to	
robots	being	built	without	faulty	psychological	dispositions	(that	might	otherwise	lead	humans	
towards	immoral	actions).193	AWS	may	also	be	able	to	disseminate	information	under	fire	to	
colleague	machines	and	command	structures	without	exaggeration,	distortion	or	contradiction.	
This,	notes	Clark,	may	then	materially	affect	the	location	of	principal	decision-makers.194	The	
corollary	is	that	such	improvements	in	battlefield	decision-making	should	improve	outcomes	in	the	
widest	sense.	Just	as	Arkin	advocates	AWS	deployment	as	a	means	to	reduce	civilian	casualties195,	
Freedman	reworks	a	long-standing	military	aspiration	of	‘victimless’	warfare	based	instead	upon	
remote,	pilotless	and	autonomous	technology	that	delivers	victory	‘through	disruption	rather	than	
destruction’.196	The	ethical	facets	of	removing	human	supervision	in	weapons	may	remove	certain	
political	pitfalls:	In	the	case	of	a	downed	Reaper,	for	instance,	there	is	no	high	value	pilot	to	kill	or	to	
take	hostage.		

 Operational drivers  
	
Deployment	of	AWS	might	also	facilitate	the	regaining	of	‘operational	initiative’	given	(as	Worcester	
identifies	in	the	case	of	the	US)	a	gradual	erosion	in	technical	dominance	enjoyed	until	the	early	
2000s	in	areas	such	as	high-end	sensors,	guided	weapons	and	stealth	processes.197	In	setting	out	its	
future	procurement	trends,	the	US	Department	of	Defense’s	2013	Roadmap	defines	a	broad-ranging	
role	for	autonomous	weapons	operating,	it	envisages,	in	seamless	groups	that	benefit	from	
integrated	communications	and	shared	targeting	data	while	dynamically	integrating	ever	more	
information	from	ever	more	sources.198	The	operational	driver	here	is	that	refinement	to	weapons’	
accuracy	will	improve	engagement	outcomes.	This,	moreover,	should	come	with	much	greater	
speed	(as	part,	perhaps,	of	the	US	Army’s	current	network-centric	warfare	concept)	than	could	be	
handled	by	the	human	operator.199	The	purpose	of	this	final	section	is	therefore	to	consider	
operational	benefits	of	deploying	AWS	including	cost	advantage,	technical	advantage	and	as	a	
pathway	to	protecting	friendly	troops.	It	is	then	the	role	of	this	thesis’	later	chapters	to	consider	
AWS’	feasibility	what	particularly	is	lost	in	removing	human	supervision	from	weapon	control.		
	

																																																								
192	Arkin,	‘The	Case	for	Ethical	Autonomy	in	Unmanned	Systems’,	Journal	of	Military	Ethics,	9.4,	(2010),	333	
<https://smartech.gatech.edu/bitstream/handle/1853/36516/Arkin_ethical_autonomous_systems_final.pdf>.	
193	Ryan	Tonkens,	‘The	case	against	Robotic	Warfare’,	Journal	of	Military	Ethics,	Vol	11,	No	2,	(August	2012),	155.	
194	Professor	Lloyd	Clark,	in	conversation	with	the	author,	December	2018.	
	
195	Ronald	Arkin,	‘Warfighting	Robots	Could	Reduce	Civilian	Casualties	so	Calling	for	a	Ban	is	Premature’,	IEEE	Spectrum,	
(5	August	2015)	<https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/autonomous-robotic-weapons-
could-reduce-civilian-casualties>	[accessed	8	September	2018].	
196	Lawrence	Freedman,	Information	warfare:	Will	battle	ever	be	Joined?,	(USA:	International	Centre	for	Security	
Analysis,	October	1996),	p.	6.	
197	Worcester,	p.	2.	See	also:	A	and	O	Etzioni,	‘Pro	and	Cons	of	Autonomous	Weapon	Systems’,	Military	Review,	(May-June	
2017)	<http://www.armyupress.army.mil/Portals/7/military-review/Archives/English/pros-and-cons-of-
autonomous-weapons-systems.pdf>.		
198	See,	generally:	Department	of	Defense,	Unmanned	Systems	Integrated	Roadmap	FY2013-2038.		
199	DARPA	(Defence	Advanced	Research	Projects	Agency)	Announcement	07-52,	‘Scalable	Network	Monitoring’,	cit.	
International	Governance	of	Autonomous	Military	Robots,	(USA:	Columbia	Science	and	Technology	Law	Review,	Vol	XII	
2011),	p.	280	<www.stlr.org>	[accessed	2	September	2018].	See	also:	David	Doria	and	others,	‘Fast	Computation	on	the	
Modern	Battlefield’,	US	Army	Research	Laboratory,	(April	2015),	p.	1	and	pp.	4-5	
<https://www.arl.army.mil/arlreports/2015/ARL-TR-7276.pdf>.	
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It	is	instructive	first	to	consider	the	increasing	pace	in	the	means	of	combat	and	how	this	acts	
as	a	driver	for	removing	humans	from	the	engagement	loop.200	As	satellite	and	surveillance	
technology	has	developed,	Hampton	notes	that	the	availability	of	real-time	battlefield	information	
has	grown	exponentially.201	While	this	might	suggest	like-for-like	increases	in	the	speed	of	combat	
operations	202,	such	accessibility	has	also	increased	‘both	the	fog	and	friction’	of	such	combat.203	By	
identifying	that	decision-making	must	‘still	exceed	this	new	speed	of	war’,	US	Marine	General	
Dunford	acknowledges	the	operational	problems	that	such	developments	entail.204	The	UK’s	
Ministry	of	Defence’s	Strategic	Programme:	Future	Character	of	Conflict205	agrees,	listing	as	its	first	
theme	the	enduring	truism	that	‘future	conflict	will	not	be	an	exact	science’.206	Adams	is	thus	
capturing	a	broadly	accepted	operational	driver	in	his	own	conclusion	that	‘more	and	more	aspects	
of	war	are	not	only	leaving	the	realm	of	human	senses	but	also	crossing	outside	the	limits	of	human	
reaction	times’.207	Notwithstanding	that	it	is	war’s	unchanging	aspects	(the	‘nature	of	war’	as	
discussed	in	the	previous	chapter208),	that	provides	a	benchmark	for	this	exercise,	there	is	little	
disagreement	in	either	primary	or	secondary	sources	that	weapon	autonomy	will	certainly	
accelerate	the	speed	of	data	availability.209	Statistics	illustrate	the	point.	The	human	fighter	pilot	
needs	some	0.3	seconds	to	respond	to	a	simple	stimulus	and	more	than	twice	as	long	to	make	a	
choice	between	several	possible	responses.210	A	robotic	system	faced	with	the	same	decision	may,	
notes	Singer,	needs	less	than	a	millionth	of	one	second	to	make	that	same	action	selection.211	The	
challenge,	of	course	,	is	that	quickening	response	times	(here,	the	speed	between	an	event	and	the	
autonomous	weapon’s	response)	does	not	equate	to	improvements	in	the	quality	of	that	response.	

	

																																																								
200	Edward	Smith,	Network-centric	Warfare:	What	is	the	point?,	Vol	LIV	#1,	(USA:	Naval	War	College,	Winter	2011),	p.	61.	
‘Pace’	here	refers	to	tempo,	velocity	and	rate	of	combat	and	not,	obviously,	to	the	marching	step	of	soldiers	on	a	parade	
ground.		
201	Jesse	Hampton,	‘Space	Technology	Trends	and	Implications	for	National	Security’,	Kennedy	School	Review,	(24	
January	2016)	<http://ksr.hkspublications.org/2016/01/24/space-technology-trends-and-implications-for-national-
security/>	[accessed	11	November	2017].	
202	For	UK-centric	narrative	on	future	conflicts	including	an	analysis	of	conflict’s	increasing	pace,	see:	Ministry	of	Defence,	
‘Strategic	Programmes:	Future	Character	of	Conflict’,	DCDC,	(2013)	
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/33685/FCOCReadactedFinalWeb.pdf>.	
While	the	document	avoids	definition	of	weapon	autonomy,	it	details	four	on-going	principles	of	battlefield	deployment:	i.	
Qualitative	advantage	cannot	be	assumed;	ii.	Future	conflict	will	not	be	a	precise	science;	iii.	The	battle	of	narratives	will	be	
key;	iv.	Maintaining	public	support	will	be	key.	The	report’s	conclusion	(p.	39),	moreover,	is	titled	‘The	UK	Must	Make	
People	its	Edge’	(not,	by	inference,	its	hardware	or,	specifically,	any	advantage	conferred	through	weapon	autonomy).	
203	Alex	Grynkewich,	‘The	future	of	air	superiority,	Part	IV:	Autonomy,	survivability,	and	getting	to	2030’,	War	on	the	
Rocks,	(18	January	2017),	para.	5	<https://warontherocks.com/2017/01/the-future-of-air-superiority-part-iv-
autonomy-survivability-and-getting-to-2030/>	[accessed	18	January	2018].	
204	Jim	Garamone,	‘Dunford:	Speed	of	Military	Decision-Making	must	Exceed	Speed	of	War’,	US	Department	of	Defense,	
(31	January	2017),	generally	<https://dod.defense.gov/News/Article/Article/1066045/dunford-speed-of-military-
decision-making-must-exceed-speed-of-war/>	[accessed	12	December	2018].	
	
205	Ministry	of	Defence,	‘Strategic	Programmes:	Future	Character	of	Conflict’,	pp.	4-6.	
206	Ibid.,	p.	6.	
207	T	Adams,	p.	1.	
208	See:	Introduction	to	Chapter	2	(Context).	
209	This	is	also	acknowledged	by	the	International	Committee	for	Robot	Arms	Control.	See,	generally	
<https://www.icrac.net/statements/>	and	<https://www.icrac.net/research/>[both	accessed	4	June	2018]	
210	Paul	Singer,	Wired	for	War:	The	Robotics	Revolution	and	Conflict	in	the	Twenty	First	Century,	(USA:	Penguin	
Publishing,	27	January	2011),	p.	127.	
211	Ibid.,	p.	131.	
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Speed	may	only	be	one	component	of	a	battle	plan	(together,	perhaps,	with	precision	and	the	
ability	to	differentiate	inputs	and	outputs	in	complex	environments),	but	it	is	also	a	component	
where	humans	have	increasing	difficulty	to	participate.212	The	development	of	autonomous	
technologies	posits	that	machines	will	‘now	out-speed	humans’.213	As	noted,	however,	by	Dunford,	a	
shortened	decision-space	‘adds	new	risk	with	the	ability	to	recover	from	earlier	missteps	being	
greatly	reduced’.214		A	further	example	evidences	this	driver.	The	OODA	Loop	(‘Observe,	Orient,	
Decide	and	Act’)	concerns	the	techno-strategic	concept	first	developed	by	fighter	pilot	and	
strategist	Boyd	during	his	time	at	Pentagon	consultant	in	the	1990s.215	Boyd’s	insight	was	that	
‘advantage	lies	with	the	fighter	whose	OODA	Loop	is	faster	and	more	accurate	than	his	opponent’s,	
and	who	is	able	to	throw	his	opponent’s	OODA	Loop	out	of	sync’.216	Just	as	aircraft	will	have	to	
manoeuvre	too	quickly	for	a	pilot	to	control,	so	too	will	its	weapons	have	to	be	used	at	the	same	
speed	in	order	to	match	the	‘beyond-human	speed	of	the	aircraft’s	own	systems’.217	The	operational	
driver	in	this	case	is	that	speed	becomes	the	imperative	if	friendly	forces	are	to	defeat	an	enemy’s	
similarly	autonomous	counter-systems.	Notwithstanding	‘claim	inflation’218	and	other	biases	that	
may	influence	assessment	of	new	weaponry219,	Adams	summarises	this	driver	by	noting	that	
‘military	systems	now	on	the	horizon	will	be	too	fast,	too	small,	too	numerous	and	will	create	an	
environment	too	complex	for	humans	to	direct’.220		
	

Operational	drivers	are	based	largely	upon	technical	advances	and	their	consequences.	It	is	the	
breadth	of	such	advances	that	then	becomes	a	contributory	driver	in	feeding	a	‘revolution	in	
expectation’221	and	the	suggestion,	notes	Gibbs,	that	weapon	autonomy	is	close	to	being	feasible.222	
An	inference,	however,	from	Blake,	MD	Research	at	Microsoft,	is	that	‘there	is	no	scientific	basis	for	
any	of	this’.223	A	conclusion	from	this	analysis	is	therefore	that	material	divergence	exists	between	

																																																								
212	Angam	Parashar,	‘How	Artificial	Intelligence	is	Outpacing	Humans’,	Linked	In,	Oped,	(11	July	2017)	
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2018].		
213	Walker,	‘Killer	Robots?’,	pp.	23-26.	
214	Jim	Garamone,	‘Dunford:	Speed	of	Military	Decision-Making	must	Exceed	Speed	of	War’,	para.	12	of	21.		
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219	Robert	Szczerba,	’15	Worst	Tech	Predictions	of	All	Time’,	Forbes	Magazine,	5	January	2015	
<https://www.forbes.com/sites/robertszczerba/2015/01/05/15-worst-tech-predictions-of-all-
time/#65c877e91299>	[accessed	5	June	2018].		
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Markman’s	Pivotal	Point,	(8	November	2017)	<https://www.markmanspivotalpoint.com/investing/laser-weapons-set-
boost-military-might-speed-light/>	[accessed	18	January	2018].		
221	Professor	Philip	Sabin	in	conversation	with	the	author,	29	June	2017.	
222	Samuel	Gibbs,	‘Elon	Musk	leads	116	Experts	calling	from	outright	ban	of	Killer	Robots’,	The	Guardian,	20	August	
2017,	para.	7	<https://www.theguardian.com/technology/2017/aug/20/elon-musk-killer-robots-experts-outright-
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the	hype	of	independent	weapons	and	the	reality	of	AI-driven	machines.	In	this	vein,	a	purpose	of	
this	final	section	is	to	examine	relevant	technical	initiatives	that	have	been	seeded	by	commercial	
parties.	Examples	abound	and	include,	for	instance,	battery	performance,	a	condition	precedent	to	
AWS	deployment	that	also	evidences	the	dual	role	of	the	private	sector	in	accelerating	advances	
that	are	relevant	to	AWS	development.	Mckinsey	notes	too	the	disruptive	progress	continuing	pell	
mell	in	power	storage	and	management.224	Lithium-air	batteries	as	at	2019	provide	a	viable	
alternative	to	lithium-ion	and,	safety	issues	notwithstanding,	lithium-air	units	already	generate	a	
similar	energy	density	to	that	of	gasoline.225	Other	power	advances	provide	a	similar	proxy	for	
operational	drivers	towards	AWS	adoption.	Researchers	at	George	Washington	University	in	2016	
created	a	molten	electrolyte	battery	using	vanadium	boride	enabling	a	battery	pack	to	produce	
thirty	times	more	energy	as	lithium	ion226.	Battery	disruption	(and,	through	this,	a	driver	to	
unmanned	weapon	platforms)	is	also	evident	from	lithium-sulphur	chemistry,	previously	
hamstrung	by	the	unwelcome	bi-product	of	lithium	sulphide	that	had	degraded	cell	capacity	even	
after	very	few	cycles.227	Power	innovation	over	the	past	five	years	has	similarly	seen	disruptive	
development	in	fuel	cells.	In	2016,	Lockheed	Martin	demonstrated	that	its	Stalker	XE	240	drone	
could	stay	airborne	for	up	to	eight	hours	using	propane-driven	cells.228	The	US	Navy’s	Ion	Tiger	
project	similarly	uses	a	Protonex	hydrogen	fuel	cell	that	can	already	fly	for	forty-eight	hours	using	a	
proprietary	cryogenic	storage	system.229	In	the	past	three	years,	commercial	companies	have	also	
pioneered	scavenging	technology	whereby	unmanned	weapons	might	perch	on	power	lines	and	
recharge	autonomously	enabling	missions	that	continue	indefinitely.230	It	is	the	enabling	of	UAVs	to	
carry	out	a	perpetual	sentry	role	that	brings	feasible	AWS	deployment	a	step	closer.	Commercial	
initiatives,	moreover,	continue	to	combine	to	ensure	that	power	constraints	are	unlikely	to	be	a	
technical	bottleneck	to	the	development	of	unsupervised	unmanned	platforms.	Each	such	technical	
breakthrough	acts	as	its	own	catalyst	to	AWS	deployment	given	that	relevant	innovation	is	
occurring	across	the	breadth	of	weapon	componentry.231	Finally	to	this	point,	commercial	advances	

																																																								
224	McKinsey	&	Company,	‘Disruptive	Technologies:	Advances	that	will	Transform	Life,	Business	and	the	Global	
Economy’,	McKinsey	Global	Forum,	(May	2013),	p.	5	and	generally	
<https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Dis
ruptive%20technologies/MGI_Disruptive_technologies_Executive_summary_May2013.ashx>	[accessed	23	May	2017].	
225	Singer,	Wired	for	War,	p.	123.	
226	L	Zyga,	‘Molten	Air	Battery	Storage	Capacities’	Phys.org	blog,	(19	September	2013)	<https://phys.org/news/2013-
09-molten-air-battery-storage-capacity-highest.html>	[accessed	23	March	2018].	
227	Hambling,	p.	124.	
228	Ibid.,	p.	125.	
229	Naval	Technology,	‘Ion	Tiger	Overview’	<http://www.naval-technology.com/projects/ion-tiger-uav/>	[accessed	12	
December	2016].	See	also:	Kelsey	Atherton,	‘Burning	Hydrogen	for	Fuel,	Navy	Drone	Flies	for	48	Hours	Straight’,	
Popular	Science,	(10	May	2013)	<https://www.popsci.com/technology/article/2013-05/burning-liquid-hydrogen-fuel-
navy-drone-flies-48-hours>	[accessed	12	December	2016].	
230	Gary	Mortimer,	‘Aurora	Awarded	AFRL	Urban	Beat	Cop	Program’,	SUAS	News,	(16	December	2011),	generally		
<http://www.suasnews.com/2011/12/aurora-awarded-afrl-urban-beat-cop-program/>	[accessed	12	December	2016].	
231	Similar	advances	continue	to	be	made	in	drone	solar	technology	towards	solving	the	key	conundrum	of	‘high	weight	
but	low	efficiency’	power	generation	in	unmanned	vehicles,	as	inferred	from:	Mark	Simon	and	others,	‘The	Relationship	
Between	Over-Confidence	and	the	Introduction	of	Risky	Products’,	The	Academy	of	Management	Journal,	46.2,	(April	
2003).	Zephyr,	for	instance,	is	part	of	DARPA’s	Vulture	project	and	has	a	seventy-foot	wingspan	which	can	fly	non-stop	
for	more	than	three	hundred	hours,	almost	two	weeks,	based	on	solar	power	alone.	See:	Alireza	Galahmar-Zavare	and	
others,	‘High	Efficiency,	Low	Size	and	Low	weight	Vehicle	Battery	Chargers’,	Power,	Electronics,	Drive	Systems	and	
Technologies	Conference,	PEDSTC,	IEEE,	(2015),	(‘Abstract’).	Developments	in	solar	power,	furthermore,	will	be	
particularly	suited	for	smaller	swarming	autonomous	drones	given	favourable	wing	area	ratios;	an	aircraft	that	is	half	
the	size	has	just	one	quarter	of	the	wing	area	and	hence	only	carries	a	quarter	as	many	solar	cells.	It	also	has	just	one-
eighth	the	weight	to	support.	Solar	cell	efficiency	at	the	time	of	writing	has	also	increased	to	more	than	thirty	percent	
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in	miniturisation	have	also	opened	new	possibilities	across	the	range	of	AWS	componentry.	A	laser	
target	designator	that	weighed	more	than	forty	pounds	in	2004	now	weighs	less	than	a	golf-ball.232	
Similarly,	much	smaller	target	designators	have	considerably	increased	the	range	of	autonomous	
roles	for	unmanned	units	including	low	altitude	operation	beneath	cloud	cover.	Miniturising	
electronics	have	made	much	broader	military	options	available.233	Here,	Hambling	notes	that	laser-
based	radar	can	at	the	time	of	writing	be	a	key	component	in	autonomous	weapons	and	works	by	
bouncing	a	laser	off	thousands	of	points,	calculating	the	distance	to	each	point	and	then	building	up	
a	three-dimensional	map	of	the	weapon’s	surroundings:	Such	units	work	in	darkness,	fog	and	
smoke,	are	available	with	no	moving	parts	and	cost	a	few	thousand	dollars,	a	fraction	of	the	price	of	
earlier	systems.234		
	

In	particular,	it	is	technology	arising	from	the	ubiquitous	smartphone	that	has	acted	as	a	driver	
to	the	military’s	general	introduction	of	autonomy.	In	2007,	twenty	million	smartphones	were	sold.	
By	2015,	more	than	two	billion	smartphone	units	were	in	operation.235	Smartphone	adoption	
conforms	to	the	same	S-curve	model	of	technology	implementation	earlier	posited	by	this	chapter’s	
discussion	of	disruptive	AWS	deployment.236	A	central	context	for	AWS	deployment	is	that,	while	it	
took	landlines	forty-five	years	to	reach	half	of	US	households,	smartphones	have	achieved	the	same	
penetration	in	just	seven	years.237	Apple	and	Samsung	each	spent	some	$14	billion	on	research	and	
development	in	2016	alone.238	As	noted	by	Kroll	and	Klaus,	smartphone	development	has	
accelerated	improvements	in	algorithm	construction,	a	central	component	to	any	AWS	
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233	John	McHale,	‘Power	Electronics	Design	Trending	Smaller	and	More	Efficient’,	Military	Embedded	Systems,	undated	
<http://mil-embedded.com/articles/power-trending-smaller-more-efficient/>	[accessed	3	July	2018].		
234	The	Economist,	‘Cheap	lasers’,	(29	November	2012),	generally	
<http://www.economist.com/blogs/babbage/2012/11/cheap-sensors>	[accessed	22	December	2017].	
235	Hambling,	p.	161.	
236	Tony	Seba,	‘Clean	Disruption’.	Seba	identifies	a	14%	improvement	in	Lithium	battery	performance	per	$1	from	1995	
to	2010	and	a	20%	improvement	thereafter;	later,	at	33’	18”:	in	2000	one	teraflop	of	processing	power	cost	$46,000,000	
and	required	housing	in	150	square	metres’	space.	In	2016,	2.3	teraflops	cost	just	$59	and	was	available	as	a	personal	
hard	drive.	By	2019,	it	is	expected	that	20	teraflops,	the	performance	criterion	for	autonomous	vehicles,	will	be	
available;	and	32’	18”:	the	Light	detecting	and	Radar,	LIDAR,	unit	that	cost	$150,000	in	2012	currently	costs	just	
$250.This	is	expected	to	fall	to	$90	in	2019.		
237	Michael	DeGusta,	‘Are	Smartphones	Spreading	Faster	than	Any	Technology	in	Human	History?’,	MIT	Review,	(May	
2012)	<https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-
human-history/>	[accessed	6	March	2018].		
238	Bruce	Upbin,	‘Apple	is	about	to	become	the	biggest	R&D	spender	in	the	world’,	Tribune	Interactive,	(March	2018)	
<https://phys.org/news/2018-03-apple-biggest-spender-world.html>	[accessed	7	May	2018].		
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deployment.239	An	example	is	relevant.	The	replacement	in	2013	of	the	H264	data	compression	
standard	by	HEVC	(High	Efficiency	Video	Coding)	means	that	four	times	as	much	data	could	by	
2017	be	transmitted	over	an	identical	bandwidth	than	was	the	case	twenty	years	ago.240	Similarly,	a	
ten-fold	improvement	has	taken	place	in	the	rate	achieved	by	the	‘Fourier	Transform’,	a	pivotal	
mathematical	process	that	will	be	used	by	AWS	in	converting	signals	from	digital	to	analog	and	
back.241		
	

Author	and	technologist	Suarez	highlights	adjunct	but	quite	different	operational	drivers	to	
removing	human	oversight,	noting	a	deluge	of	video	output	arising	from	military	systems	that	
outstrip	humans’	ability	to	analyse	the	resulting	data.	In	2004,	just	seventy-one	hours	of	video	from	
UAVs	was	produced	for	analysis.	By	2011	this	had	increased	to	more	than	three	hundred	thousand	
hours	of	output.242	Cummings	reported	in	2014	that	less	than	ten	percent	of	such	UAV	footage	was	
then	being	analysed.243	A	relevant	precursor	to	empirical	AWS	sensor	fusion	is	provided	by	the	
Pentagon’s	Gorgon	Stare	and	Argus	programmes	introduced	in	2014	that	provide	for	as	many	as	
sixty-five	camera	eyes	on	each	unmanned	vehicle	requiring	sophisticated	visual	intelligence	
software	to	scour	the	output	for	potentially	interesting	sites.244	This	exacerbates	the	problem	sixty-
five	times245	with	AI	already	being	required	to	aid	humans	what	to	look	for	in	those	datasets.246	
Suarez	also	points	to	the	fragility	of	current	military	hardware	given	the	threat	of	electro-magnetic	
jamming	and	subsequent	severing	of	communications	between	unmanned	weapon	and	operator.247	
The	capture	by	Iran	in	2011	of	an	American	RQ	170	Sentinel	drone	(after	adversarial	compromise	
of	its	GPS)	has	also	demonstrated	the	susceptibility	of	weapons	to	hostile	action.248	An	overarching	
driver	must	therefore	be	to	move	decision-making	further	onto	the	weapon	platform	in	order	to	
remove	this	requirement	for	third	party	communication.	The	corollary,	after	all,	is	that	autonomous	
AWS	can	ignore	radio	signals	and	send	out	few	of	their	own.	The	operational	driver,	cites	Adams,	is	

																																																								
239	Dennis	Kroll	and	Klaus	David,	‘Measuring	the	Capability	of	Smartphones	for	Executing	Contextual	Algorithms’,	
Informatics	LNI,	Bonn,	(2017),	pp.	1591-1592	<https://dl.gi.de/bitstream/handle/20.500.12116/3924/B20-
1.pdf?sequence=1&isAllowed=y>	[accessed	7	June	2018].	
240	Alexander	Fox,	‘Why	is	HVEC	better	than	H.264?’,	Apple	Gazette,	15	August	2018	
<http://www.applegazette.com/mac/why-is-hevc-better-than-h-264/>	[accessed	8	July	2018].	
241	L	Hardesty,	‘The	Faster-than-Fourier	Transform’,	MIT	News,	18	January	2012	<http://news.mit.edu/2012/faster-
fourier-transforms-0118>	[accessed	17	May	2017].	
242	Ted	Johnson	and	Charles	Ward,	‘The	Military	Should	Teach	AI	to	Watch	Drone	Footage’,	Wired	Magazine,	26	
November	2017	<https://www.wired.com/story/the-military-should-teach-ai-to-watch-drone-footage/>	[accessed	12	
September	2018].	
243	Professor	Missy	Cummings,	Humans	and	Autonomy	Laboratory,	Duke	University	in	conversation	with	the	author,	
Chatham	House	Conference,	February	2014.	See	also:	Tim	Klassen,	‘The	UAV	Video	Problem’,	Military	Aerospace,	(1	July	
2009)	<https://www.militaryaerospace.com/articles/print/volume-20/issue-7/features/viewpoint/the-uav-video-
problem-using-streaming-video-with-unmanned-aerial-vehicles.html>	[accessed	12	May	2017].	
244	Stephen	Trimble,	‘Sierra	Nevada	Fields	ARGUS-IS	Upgrade	to	Gorgon	Stare	Pod’,	Flight	Global,	2	July	2014	
<https://www.flightglobal.com/news/articles/sierra-nevada-fields-argus-is-upgrade-to-gorgon-stare-400978/>	
[accessed	18	March	2018].	
245	Open	forum,	Chatham	House	Conference	on	Autonomous	Weapons,	February	2014.	
246	Walker,	‘Killer	Robots?’,	p.	26.	
247	JR	Wilson,	‘Electronic	Warfare	Evolves	to	Meet	New	Threats’,	Military	&	Aerospace,	(1	August	2017)	
<https://www.militaryaerospace.com/articles/print/volume-28/issue-8/special-report/electronic-warfare-evolves-
to-meet-new-threats.html>	[accessed	12	December	2017].	
248	Iran	has	subsequently	manufactured	a	clone	machine;	see:	RT	News,	‘Iran	Replicates	CIA’s	RQ-170	Sentinel	Drone’,	
RT	News,	11	May	2014	<http://rt.com/news/158272-iran-unveils-drone-copy/)	[accessed	23	April	2016>.	
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that	systems	will	need	ever	more	autonomy	in	order	just	to	survive249	entailing,	de	facto,	
incrementally	more	decision-making	being	built	into	the	UAV	to	facilitate	mission	independence	
but	simultaneously	requiring	appropriate	‘hand-off’	routines	in	order	to	clarify	the	provenance	of	
orders.250	
	

A	further	operational	driver	to	AWS	deployment	arises	from	the	attraction	of	‘force	
multiplication’.251	There	are	several	facets	to	this	driver,	as	noted	by	the	UK	Houses	of	Parliament’s	
Postnotes	in	its	discussion	on	the	transition	from	manned	battlespace	assets	to	unmanned	
autonomous	machines.252	Uncertainties	around	deployment	models	mean,	however,	that	predicting	
the	manpower	effect	of	AWS	adoption	is	challenging.	Ignoring	the	unfair	comparison,	SIPRI	goes	no	
further	than	noting	‘combat	aircraft	pilots	must	fly	in	real	conditions	to	be	properly	trained	and	to	
fly	between	ten	and	twenty	hours	a	month	to	maintain	their	skill	set…	unmanned	autonomous	
aircraft,	on	the	other	hand,	can	sit	on	a	shelf	for	extended	periods	of	time	without	losing	their	
operational	capability’.253	A	counterpoint	(and	the	basis	for	this	section’s	operational	driver)	is	
instead	articulated	by	the	US	Military’s	Future	Combat	System	project	(FCS)254	in	its	forecast	that	
AWS	will	provide	‘force	multipliers	in	order	to	empower	single	soldiers	on	the	ground	to	become	a	
nexus	working	a	cohort	of	divers	automated	weapon	systems’.255	Rather	than	a	prescription	on	
‘how’	and	‘how	many’,	a	further	operational	driver	is	that	weapon	autonomy	allows	that	single	
soldier	to	do	the	job	of	what	previously	had	taken	several	soldiers	(justifying	now	such	hackneyed	
terms	such	as	‘expanding	the	battle	space’,	‘extending	the	war-fighter’s	reach’,	‘autonomous	
casualty	reduction’256).	Lanchester’s	Square	Law	is	a	similarly	long-standing	but	now	relevant	
driver	for	AWS	deployment,	providing	a	heuristic	rule	of	thumb	for	the	advantage	of	quantity	
versus	quality	in	military	engagements.257		The	law	states	that,	all	things	being	equal,	having	twice	
as	many	units	in	a	fight	translates	to	a	fourfold	increase	in	combat	power	for	units	with	aimed-fire	

																																																								
249	Thomas	Adams,	p.	7.	
250	Patrick	Beautement,	‘Putting	complexity	to	work;	achieving	effective	human-machine	teaming’,	The	Abaci	
Partnership	LLP,	(2015),	p.	13.	See	also:	Chapter	8	(Software),	specifically:	8.7	(‘Action	Selection	Issues’).		
251	Tapan	Bagchi,	‘Force	Multiplier	Effects	in	Combat	Simulation’,	Proceedings	of	7th	Asia	Pacific	IEMS	Conference,	
Bangkok,	(December	2006),	pp.	1244-1245	
<https://www.researchgate.net/publication/228831999_Force_Multiplier_Effects_in_Combat_Simulation>	[accessed	
12	September	2017].		
252	Postnotes,	Automation	in	Military	Operations,	(UK:	Houses	of	Parliament,	Number	511,	October	2015),	p.	4.		
253	Boulanin	and	Verbruggen,	p.	63.	
254	Source:	‘Army	Future	Combat	System	(FCS)	‘Spin-Outs’	and	Ground	Combat	Vehicle	(GCV):	Background	and	Issues	
for	Congress’,	US	Congress	Information	Services,	RL32888,	(30	November	2009)	
<https://opencrs.com/document/RL32888/>	[accessed	13	January	2016].	
255	Taken	in	part	from:	Erin	McDaniel,	‘Robot	Wars:	legal	and	ethical	dilemmas	of	using	unmanned	robotic	systems	in	
21st	Warfare	and	beyond’,	Unpublished	thesis,	Fort	Leavenworth	Kansas,	(2008),	p.	77.	For	a	useful	primer	on	Force	
multiplication,	see:	Time	Magazine,	‘The	Reaper	Revolution	Revisited’,	27	February	2012	
<http://nation.time.com/2012/02/27/1-the-reaper-revolution-revisited/>	[accessed	15	February	2016].	
256	Gary	Marchant	and	others	(including	Ronald	Arkin),	‘International	Governance	of	Autonomous	Military	Robots’,	
Columbia	Science	and	Technology	Law	Review,	XII,	(2011),	p.	275	
<http://stlr.org/download/volumes/volume12/marchant.pdf>.	
257	Ronald	Johnson,	‘Lanchester’s	Square	Law	in	Theory	and	Practice’,	School	of	Advanced	Military	Studies,	Fort	
Leavenworth,	(1990)	<http://www.dtic.mil/dtic/tr/fulltext/u2/a225484.pdf>.	
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weapons.258	The	basis	for	the	rule	is	quite	simple.	Numerically	superior	forces	can	double	up	on	
attacking	enemy	units	while	the	numerically	inferior	force	can	only	attack	half	of	the	opposing	force	
at	any	one	time.	The	chief	value	of	mass	is	that	it	can	be	used	to	impose	costs	on	adversaries	
because	it	forces	them	to	encounter	large	number	of	systems.	Lowe	identifies	several	examples	of	
such	force	multiplication	around	unmanned	units	from	very-high-altitude,	ultra-endurance,	
‘loitering	theatre’	reconnaissance	units	to	blimps	to	‘itty-bitty,	teeny-weeny	UAVs’.259	Hambling	
similarly	cites	the	role	of	Apache	helicopter	pilots	using	Lockheed	Martin’s	VU-IT’s	collaboration	
with	partner	UAVs	as	a	remote	sensor	to	investigate	areas	too	hazardous	to	fly	the	helicopter.260	
The	point	is	again	that	emerging	technologies	are	clearly	creating	capabilities	that	are	required	if	
unsupervised	weapons	are	to	be	deployed.	
	

Any	analysis	of	drivers	should	also	review	commercial	factors	encouraging	the	adoption	of	
weapons	autonomy.	A	key	notion	is	set	out	by	Work	and	Brimley261	in	their	contention	that	‘the	
movement	toward	a	‘Robotic	Age’	is	not	being	led	by	the	military-industrial	complex’262	but	instead	
by	‘companies	focused	on	producing	consumer	goods	and	business-to-business	services	such	as	
advanced	computing,	big	data,	AI,	miniaturization,	additive	manufacturing	and	small	but	high	
density	power	systems’.263	This	may	be	a	departure	from	earlier	procurement	precedents	given	that	
AWS	technologies	are	now	coming	out	of	a	thriving	commercial	sector.264	This,	however,	is	not	
frictionless	with	commercial	drivers	fueling	their	own	proliferation	concerns.	The	threat	of	COTS	
(‘commercial	off	the	shelf’)	hardware	is,	in	an	age	of	3d	printing	and	Bitcoin,	that	‘unmanned	
systems	[can]	be	assembled	in	disturbing	anonymity’.265	A	further	driver	for	AWS	deployment	is	the	
proven	lobbying	powers	of	the	US	drone	industry.266	Similarly,	the	number	of	experimental	military	
autonomy	projects	(‘military’	projects	as	opposed	to	projects	explicitly	around	weaponisation)	
already	in	process	each	add	towards	a	cumulative	deployment	of	autonomous	technologies;	Singer	
notes,	for	instance,	that	the	Pentagon’s	Joint	Robotics	Programme	is	currently	developing	twenty-

																																																								
258	Paul	Scharre,	‘Robotics	on	the	Battlefield,	Part	II:	The	Coming	Swarm’,	Center	for	a	New	American	Security,	p.	18,	(15	
October	2014)	<https://www.cnas.org/publications/reports/robotics-on-the-battlefield-part-ii-the-coming-swarm>	
[accessed	17	January	2016].	
259	Christian	Lowe,	‘High	Flying	Secret	Drone	unveiled’,	www.defensetech.org,	(24	July	2006),	cit.	The	Changing	Nature	of	
War,	eds.	Hew	Strachan	and	others,	(Oxford:	OUP	Oxford,	May	2011),	p.	352.	
260	Hambling,	p.	70.	
261	Robert	Work	and	Shawn	Brimley,	‘20YY;	Preparing	for	War	in	the	Robotic	Age’,	CNAS,	(22	January	2014),	p.	6	
<https://www.cnas.org/publications/reports/20yy-preparing-for-war-in-the-robotic-age>	[accessed	12	August	2018].	
262	For	example,	missiles,	guided	munitions,	computer	networking,	satellites,	global	positioning	and	stealth	
technologies.	
263	Work	and	Brimley,	pp.	8-10.	
264	Walker,	‘Killer	Robots?’,	pp.	65-68.	
265	Bill	Powers,	Potomac	Institution	for	Policy	Studies,	in	conversation	with	the	author,	Chatham	House	Conference,	
February	2014,	Autonomy:	A	force	for	Good?	
266	See:	The	Association	for	Unmanned	Vehicle	Systems	International,	‘The	Economic	Impact	of	Unmanned	Aircraft	
Systems	Integration	in	the	United	States’,	(March	2013)	
<https://higherlogicdownload.s3.amazonaws.com/AUVSI/958c920a-7f9b-4ad2-9807-
f9a4e95d1ef1/UploadedImages/New_Economic%20Report%202013%20Full.pdf>.	The	AUVSI	report	cites	the	
economic	benefit	of	UAS	integration	suggesting	that	more	than	70,000	jobs	will	be	created	in	the	United	States	with	an	
economic	impact	of	more	than	$13.6	billion.	This	benefit,	it	claims,	will	grow	through	2025	when	the	trade	organisation	
foresees	more	than	100,000	jobs	created	and	economic	impact	of	$82	billion.	Europe	is	considerably	behind	the	US	in	
their	efforts	and	activity	as	evidenced	by	less	that	15%	of	AUVSI’s	membership	comes	from	outside	the	USA	
(Association	for	Unmanned	Vehicle	Systems	International).		
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two	different	prototype	‘intelligent	ground	vehicles’267	ranging	in	size	from	tiny	eight	pound	units	
to	an	autonomous	700-ton	robotic	dump	truck	that	can	move	more	than	two	hundred	tons	of	earth	
at	a	time.	Importantly,	emerging	examples	of	battlefield	robotics	will	also	be	‘new	and	improved’	
versions	of	existing	platforms	and	suddenly	capable	of	taking	on	wider	and	more	autonomous	
battlefield	roles.	Moreover,	such	autonomous	robots	will	increasingly	be	able	to	carry	out	multiple	
roles	that	will	likely	include	lethal	capabilities.268		

	
Finally	for	this	section,	it	is	the	considerable	scale	of	resources	devoted	to	unmanned	weapon	

programmes	that	becomes	a	clear	driver.	Over	the	five	years	to	2018,	the	US	budget269	for	
unmanned	systems	is	expected	to	total	US$24	billion.270	This	effort	is	well	established;	in	the	four	
years	to	FY	2010,	flight	hours	for	UAVs	increased	from	165,000	hours	to	more	than	550,000	hours	
and	the	inventory	of	systems	from	less	than	3,000	to	6,500.271	This	trajectory	has	been	cemented	
with	the	formal	embedding	of	UAVs	in	all	of	its	Brigade	Combat	Teams.272	There	is	also	
considerable	room	to	expand	further	these	unmanned	and	autonomous	efforts;	in	2009,	US	
spending	of	two	billion	dollars	per	year	on	UAVs	was	only	one	tenth	of	the	amount	that	the	US	
spends	on	space	capabilities	and	less	than	one	half	of	one	percent	of	the	US	Defence	budget	as	a	
whole.273	This	has	important	contextual	ramifications.	Militaries’	growing	experience	of	UAV	
creates	confidence	in	the	asset	class.274	Thus,	in	2010,	the	US	Air	Force	trained	more	unmanned	
pilots	than	traditional	pilots	for	the	first	time275	while,	in	2011,	the	University	of	North	Dakota	
chartered	its	first	four-year	degree	programme	in	UAV	piloting	(prompting	Singer’s	assertion	that	
battlefield	robotics	are	the	next	major	area	of	fundamental	change	in	how	warfare	is	carried	out).276		

	
There	is,	therefore,	a	wide	set	of	factors	which	separately	and	together	answer	the	‘why’	piece	

in	understanding	motivations	for	AWS	deployment.	Analysing	this	deployment	spur	provides	a	
pivot	to	this	thesis;	excepting	this	section	and	the	previous	chapter’s	exploration	of	AWS’	context	
(here,	‘how	to	understand	AWS	deployment’),	this	thesis	otherwise	focuses	on	AWS’	challenges	and	

																																																								
267	Singer,	Wired	for	War,	p.	110.	
268	Foster-Miller’s	latest	iteration	of	its	technology	is	called	MAARS,	the	Modular	Advanced	Armed	Robotic	System,	
capable	of	several	hardware	and	software	configurations.	A	recent	partnership	between	Carnegie	Mellon	University	and	
the	Marine	Corps	is	the	Gladiator,	the	world’s	first	‘multi-purpose	combat	robot’.	
269	Exact	figures	for	spend	appear	to	differ	depending	upon	authors’	definitions	of	particular	programmes;	see:	US	
Department	of	Defence,	‘Unmanned	System	Roadmap	2007-2032’,	p.	4.	
270	91%	of	this	will	be	allocated	to	aerial	UAS,	8%	to	maritime	unmanned	systems	with	the	small	balance	being	taken	up	
by	ground	systems.	
271	Evidence	from	Deputy	Director,	Unmanned	Warfare	(Office	of	the	Under	Secretary	of	Defence),	‘Committee	on	
Oversight	and	Governmental	Reform’,	(USA:	Congressional	Research	Service,	March	2010),	p.	4.	
272	Ibid.,	p.	5.	
273	Professor	Philip	Sabin,	‘The	Strategic	Impact	of	Unmanned	Aerial	Vehicles’,	cit.	Royal	Air	Force	Directorate	of	
Defence	Studies,	Air	Power;	UAVs:	The	wider	context,	(UK:	MAR/UAV/113/09,	2009),	p.	101.	
274	For	an	interesting	essay	on	the	effects	of	military	innovation	on	European	affairs	see:	David	Parrott,	‘The	Military	
Revolution	in	Early	Europe’,	History	Today,	Volume	42,	Issue	12,	(December	1992),	generally	
<http://www.historytoday.com/david-parrott/military-revolution-early-europe>	[accessed	2	February	2014].	
275	As	reported	to	the	Committee	on	Oversight	and	Government	Reform,	Hearing	on	‘The	Rise	of	Drones;	Unmanned	
Systems	and	the	Future	of	War’,	Committee	on	Oversight	and	Government	Reform,	Congressional	Research	Service,	
(March	2010),	generally	
<http://digitalcommons.wcl.american.edu/cgi/viewcontent.cgi?article=1002&context=pub_disc_cong>	[accessed	15	
June	2017].	
276	Singer,	Wired	for	War,	p.	179	and	p.	203.	
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constraints.	Chapter	Three	is	therefore	alone	in	chronicling	the	benefits	posited	by	removing	
supervision	from	lethal	engagements.	The	breadth	of	such	drivers	is	considerable	and	contributes	
directly	to	expectations	that	these	weapons	have	created	in	politicians	and	the	wider	public.277	That	
same	breadth	mirrors,	however,	a	wide	divergence	of	opinion	on	AWS	deployment	from,	on	the	
hand,	the	Future	of	Life	denouncing	self-directing	weapons	as	a	danger	to	humanity	to	academic	
and	other	practitioners’	broad	support	founded	on	moral,	ethical	and	operational	arguments	set	out	
above.278	Drivers,	therefore,	are	an	important	component	to	the	subject’s	contextual	framework	
against	which	the	remainder	of	this	thesis	and	its	focus	on	deployment’s	problems	can	better	be	
judged.		
	 	

																																																								
277	Michael	Horowitz,	‘Public	Opinion	and	the	Politics	of	the	Killer	Robot	Debate’,	Sage	Journals:	Research	and	Politics	
Series,	(16	February	2016)	<http://journals.sagepub.com/doi/pdf/10.1177/2053168015627183>	[accessed	17	August	
2018].		
278	Future	of	Life	Institute,	‘Autonomous	Weapons:	An	Open	Letter	from	AI	and	Robotics	Researchers’,	Future	of	Life,	
(2015)	<https://futureoflife.org/open-letter-autonomous-weapons/>	[accessed	6	April	2016].	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 91 | P a g e  

 
 

4. Deployment:	Models	for	the	removal	of	weapon	supervision	

Military	technology	has	been	automating	for	decades.	This	chapter	considers	a	range	of	likely	
deployment	models	for	AWS	implementation.	A	starting	point	is	States’	initiatives	to	enhance	their	
military	capacities	through	pairing	soldiers	with	technology.1	While	this	may	take	on	many	forms	
(not	all	of	which	presage	lethality),	such	deployment	models	are	generally	predicated	on	broad	
reduction	of	human	control	in	processes	and	procedures.2	Having	considered	drivers	accelerating	
the	move	to	automated	and	autonomous	weapons	in	Chapter	Three	(and	before	dissecting	the	
several	challenges	to	such	models,	the	aim	of	subsequent	chapters),	this	chapter	will	consider	how	
AWS	might	be	introduced	into	battlefield	practices.	Adams	highlights	a	dilemma.	The	difference	
between,	first,	a	weapon	that	can	search	target	areas,	assist	in	attack	decisions,	select	and	dispense	
munitions	and	then	report	results	and,	second,	‘a	machine	that	can	do	these	things	and	make	its	
own	attack	decisions’	is	increasingly	really	only	a	matter	of	programming.3		
	

This	chapter	is	an	important	scene-setter	in	this	thesis’	overall	consideration	of	AWS	
feasibility.4	Divided	into	four	sections,	it	first	discusses	current	models	around	the	deployment	of	
battlefield	autonomy	based	on	review	of	individual	capabilities	that	will	constitute	that	autonomy.	
As	part	of	this	overview,	the	chapter	is	governed	generally	by	a	test	of	‘reasonableness’.	It	also	
considers	possible	demarcation	between	offensive	and	defensive	weapon	systems	as	well	as	the	
weight	of	adoption	costs	on	the	shaping	of	deployment	models.	Deployment	is	then	considered	
from	its	proponents’	perspective.	Arkin,	for	example,	is	exactly	highlighting	the	importance	of	
deployment	conditions	when	he	posits	that	if	AWS	‘can	be	designed	appropriately	and	used	in	
situations	where	they	will	be	used	appropriately…	they	can	reduce	collateral	damage	significantly’.5	
In	doing	so,	however,	considerable	overlap	remains	between	the	‘how’	(here,	deployment)	and	the	
‘under	what	circumstances’	(here,	the	context	of	AWS	deployment).	Notwithstanding	that	future	
armed	conflict	is	unlikely	to	have	a	battlefield	in	its	traditional	sense6,	much	of	this	chapter	is	led	by	
what	Hickcok	terms	‘the	miring	effect	of	context	over	the	near-future	battleground’.7	Latiff	similarly	
points	to	the	1999	predictions	of	Chinese	colonels	Liang	and	Xiangsui	that	‘tomorrow’s	soldiers	will	
increasingly	be	computer	hackers,	financiers,	smugglers	and	agents	of	private	corporations	rather	
than	members	of	a	military’.8	Latiff	is	forecasting	that	it	will	be	machines	that	fight	battles	on	

																																																								
1	See:	RDECOM,	‘Future	Soldier	2030	Initiative’,	US	Army	Soldier	RD&E	Centre,	(February	2009),	generally	
<https://www.wired.com/images_blogs/dangerroom/2009/05/dplus2009_11641-1.pdf>.		
2	H	Waz	de	Czege,	‘Six	compelling	ideas	on	the	road	to	a	future	army’,	Army	Magazine,	Vol	51,	no.2,	(2015),	p.	3.	
3	Adams,	Future	Warfare	and	the	decline	of	human	decision-making,	(USA:	Parameters,	31.4,	2011)	pp.	57-71	(p.	61).	
4	In	so	doing,	the	purpose	of	Chapter	4	(Deployment)	is	not	to	question	AWS’	feasibility	(as	analysed	in	subsequent	
chapters)	but	instead	to	assume	that	appropriate	progress	is	achieved	in	the	capabilities	of	computer	vision,	natural	
language	processing,	machine	learning,	search	and	planning,	logical	and	symbolic	reasoning,	human-machine	
interaction,	manipulation,	power	issues	and	locomotion,	collaborative	intelligence	and	general	verification.		
5 Damon	Beres,	‘The	Ethical	Case	for	Killer	Robots’,	Huffington	Post,	3	June	2016,	para.	8	
<http://www.huffingtonpost.co.uk/entry/lethal-autonomous-weapons-ronald-arkin_us_574ef3bbe4b0af73af95ea36>	
[accessed	12	December	2017].	
6	Alexander	Kott	and	others,	Visualizing	the	Tactical	Ground	Battlefield	in	the	Year	2050,	(USA:	US	Army	Research	
Laboratory,	June	2015),	pp.	7-14	and	generally	<https://www.arl.army.mil/arlreports/2015/ARL-SR-0327.pdf>.	
7	William	Hickok,	‘Defining	War	in	Twenty-first	Century	America’,	School	of	Advanced	Military	Studies,	Fort	Leavenworth,	
(2010),	p.	27.	
8	Major	General	Robert	Latiff,	Future	War,	(USA:	Alfred	Knopf	Publishing,	2017),	p.	4.		
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humans’	behalf,	machines	that	watch	for	humans	and	think	for	humans,	that	‘fight	fast’	and,	
moreover,	that	are	‘not	be	well	defined	temporally’.9	Given	that	such	weapons	will	conduct	
operations	over	a	‘larger,	more	diffuse	battlefield’	and	that	that	sphere	of	battle	will	operate	‘where	
our	traditional	understanding	of	the	rules	of	war	will	be	challenged’,	it	remains	through	a	
contextual	lens	that	deployment	can	be	best	understood.10	The	chapter’s	analysis	also	pivots	
around	the	role	of	supervision	in	battle	planning	and	the	role	it	plays	in	shaping	emerging	machine-
machine	and	human-machine	teaming	models,	the	notion	of	flexible	autonomy	and	how	this	might	
be	practical	in,	for	instance,	models	involving	multiple	AWS	(here,	swarming).	In	so	doing,	any	
review	of	deployment	must	cover	the	costs	of	machine	failure	as	well	as	the	challenging	imperative	
of	AWS	testing	and	validation.		

	
Deployment	of	AWS	is	just	one	element	in	an	enduring	effort	to	enhance	a	commander’s	

frontline	options.	In	this	vein,	a	starting	point	for	this	chapter	is	to	isolate	autonomous	functions	by	
battlefield	assets.	Various	weapon	datasets11	exist	for	this	exercise	that	identify	autonomous	
capabilities	including,	inter	alia,	independent	data	sensing,	self-directing	software	to	interpret	that	
input	data,	programming	to	transform	resulting	output	into	plans	and	actions,	the	scope	(if	present)	
of	both	communication	routines	and	human-machine	interfaces	and,	finally,	independent	end-
effectors	that	physically	enable	such	self-directing	weapons	to	execute	derived	actions.12	As	above,	
the	Stockholm	International	Peace	Research	Institute	(SIPRI)’s	dataset	identifies	three	hundred	and	
eight-one	different	systems	in	their	2017	study	on	unmanned	weapon	systems	that	feature	degrees	
of	autonomy	in	their	critical	functions.13	That	number,	however,	is	meaningless	without	
understanding	the	dataset’s	context	and	methodology	for	recording	capabilities.	It	is	telling	to	note	
what	the	dataset	does	not	reveal.	It	cannot	account	for	task	complexity.	Given	that	autonomous	
systems	must	model	battlefield	tasks	mathematically,	a	deployment	challenge	must	be	the	degree	of	
difficulty	that	each	component	task	involves	relative	to	established	human	standards.	Nor	does	the	
dataset	reflect	the	precision	required	by	individual	autonomous	tasks.	It	ignores	permissible	leeway	
and	margin	of	error.	It	overlooks	any	coding	scale	whereby	the	more	ill-defined	that	task’s	
specification,	the	more	challenging	becomes	its	mathematical	formulation	for	the	AWS.	Datasets	
cannot	accurately	reflect	task	tangibility	(can	each	expected	outcome	of	the	independent	weapon	be	
qualified?),	dimensionality	(can	the	battlefield	task	be	carried	out	in	a	single	action	or	does	it	
require	sequential	decisions	and	actions?)	or	interaction	(are	additional	assets	required	in	order	to	
complete	the	task	and,	in	so	doing,	is	interaction	required	with	human	or	other	autonomous	
agents?).14	Just	as	the	nature	of	the	weapon’s	actions	must	be	competitive,	collaborative	or	based	on	
instruction,	each	of	these	heuristics	must	in	turn	affect	model	selection.	Finally,	the	SIPRI	dataset	
does	not	capture	the	dynamic	state	of	the	AWS’	operating	environment,	whether	it	is	observable,	
cluttered,	adversarial,	structured	or	stochastic	(does	the	AWS’	action	always	produce	the	same	

																																																								
9	Michael	Gross,	‘Ethics	on	the	Near-Future	Battlefield’,	Bulletin	of	the	Atomic	Scientists,	(December	2015),	generally	
<https://thebulletin.org/2015/12/ethics-on-the-near-future-battlefield/>	[accessed	5	January	2018].		
10	Robert	Latiff,	Future	War,	pp.	22-25.	
11	Ariel	Conn,	‘The	Problem	of	Defining	Autonomous	Weapons’,	The	Future	of	Life	Institute,	generally	(30	November	
2016)	<https://futureoflife.org/2016/11/30/problem-defining-autonomous-weapons/>	[accessed	14	April	2018].	
12	This	thesis	focuses	on	the	November	2017	work	out	of	the	Stockholm	International	Peace	Research	Institute	(SIPRI):	
Boulanin	and	Verbruggen,	‘Mapping	the	development	of	autonomy	in	weapon	systems’,	generally.	 
13 Boulanin	and	Verbruggen,	p.	19.	The	dataset	is	focussed	on	weapon	systems	rather	than	individual	munitions. 
14 Ibid.,	p.	13. 
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effect	on	it?).	A	key,	therefore,	is	that	each	of	these	variables	multiplies	task	complexity,	a	set	of	
relationships	that	cannot	be	ignored	by	such	datasets.		

	
Within	these	constraints,	what	then	is	the	current	picture	for	the	deployment	of	weapon	

systems	without	human	supervision?15	For	this,	it	is	important	to	understand	how	the	SIPRI	dataset	
is	divided.	Its	two	principal	segments	comprise	weapons	with	autonomous	mobility	(forty-eight	per	
cent	of	the	dataset16)	and	autonomous	targeting	(twenty-three	per	cent	of	the	dataset17).	These	two	
together	groups	comprise	seventy-one	per	cent	of	SIPRI’s	November	2017	dataset,	fully	two	
hundred	and	seventy	weapon	systems.	The	balancing	quarter	of	the	dataset’s	weapon	platforms	
also	exhibit	autonomous	characteristics	and	relate	to	intelligence	systems	(ten	per	cent),	
‘interoperability’	systems	(ten	per	cent)	and	health	management	systems	(six	per	cent).	
Irrespective	of	issues	around	data	classification,	SIPRI’s	breakdown	provides	a	relevant	starting	
point	from	which	both	to	review	AWS	deployment	as	well	as	to	identify	individual	weapon	
capabilities	that	must	comprise	that	deployment.	A	clear	heuristic	emerges.	Just	as	full	autonomy	is	
classified	at	one	end	of	a	capability	continuum18,	there	will	be	several	intermediate	and	transitional	
deployment	models	that	make	up	the	rest	of	that	continuum.19		

	
This	continuum	is	best	demonstrated	by	identifying	the	autonomous	capabilities	that	are	

contained	within	SIPRI’s	dataset.	Mobility-related	functions	that	are	relevant	to	understanding	
deployment	models	comprise	unsupervised	homing/follow-me	capabilities,	autonomous	
navigation	and,	in	time,	takeoff/landing	competences.	As	defined	by	Lekka,	autonomous	homing	is	
currently	associated	with	missile	technology	whereby	the	weapon	system	finds	and	track	targets.20	
Follow-me	capabilities	in	AWS	refer	to	the	weapon’s	ability	to	shadow	a	‘colleague	system’	or	
soldier.	In	both	cases,	the	AWS	model	involves	the	autonomous	directing	of	the	weapon	towards	a	
targeted	object	that	it	has	detected	and	is	tracking.	The	capability,	however,	masks	additional	
complexity.	Hall	notes	that	it	will	likely	require	automatic	sense-and-avoid	routines	to	prevent	

																																																								
15	195	(51%)	of	the	military	systems	identified	by	SIPRI	in	their	April	2017	dataset	to	be	incorporating	autonomy	were	
unarmed	systems.	175	(46%)	systems	were	armed.	11	systems	were	classified	as	‘unknown’.	Of	this	dataset	of	381	
weapon	systems	incorporating	autonomous	capability,	58%	were	air	systems,	24%	ground	systems	and	18%	maritime.	
225	of	the	381	systems	has	completed	their	development	while	131	were	still	undergoing	development.	The	
development	status	of	14	systems	was	unknown	and	11	systems	had	been	cancelled.	See:	Boulanin	and	Verbruggen,	p.	
20.	By	way	of	background,	the	dataset	is	comprised	of	three	categories	as	follows:	i.	Unmanned	weapon	systems	that	
features	some	autonomy	in	their	critical	functions	(that	is,	they	can	autonomously	search	for,	detect,	select,	track	or	
attack	targets);	ii.	Unmanned	weapon	Systems	that	do	not	have	autonomy	in	their	critical	functions	but	feature	
autonomous	functions	in	any	of	the	other	capability	areas	covered	by	the	study	(namely	mobility,	intelligence,	
interoperability	and	health	management);	iii.	Unmanned	and	unarmed	military	systems	(involved	in	intelligence,	
surveillance,	reconnaissance	and	logistics	missions).	
16	277	systems	of	which	30%	of	that	segment	comprises	armed	weapon	systems.	
17	153	weapon	systems	of	which	a	significant	85%	relates	to	armed	systems.	
18	See:	National	Academy	of	Science,	Engineering	&	Medicine,	‘Autonomies	for	civil	aviation:	Toward	a	new	era	of	flight’,	
IAP,	(2014),	pp.	12-19	(‘Autonomous	capabilities	and	vision’)	<https://www.nap.edu/read/18815/chapter/3>	[accessed	
12	July	2018].	
19	William	Marra	and	Sonia	McNeil,	‘Understanding	the	loop:	Regulating	the	next	generation	of	war	machines’,	Hartford	
Journal	of	law	and	public	policy,	volume	36,	(2012),	1173-1177	<http://www.harvard-jlpp.com/wp-
content/uploads/2013/05/36_3_1139_Marra_McNeil.pdf>.		
20	Anastasios	Lekka,	‘Guidance	and	path-planning	systems	for	autonomous	weapons’,	unpublished	thesis,	NTNU,	(April	
2014),	pp.	6-9	<http://fossen.biz/home/PhD/thesis/Lekkas%202014.pdf>.		
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collision	when	operated	in	a	cluttered	environment.21	Similarly,	AWS’	autonomous	navigation	will	
be	constrained	by	where	the	weapon	is	operating	(land,	sea,	air	or	together,	adversarial	or	
uncontested).	Notwithstanding	such	variants,	certain	capabilities	(for	instance,	navigation)	are	
essential	to	AWS	deployment	models.	Navigation	must	work	first	time,	every	time	to	ensure	that	
the	weapon	can	accurately	determine	its	position	in	order	both	to	plan	and	follow	a	route	without	
supervision.22	While	the	point	is	to	chronicle	these	capabilities	and	how	they	combine	to	support	
particular	deployment	models,	later	chapters	tackle	their	feasibility:	The	challenge	of	AWS’	
navigation	(as	noted	by	Cacca	and	others)	is	obviously	resolving	discrepancies	occasioned	by	
obstacles,	by	adversarial	activities,	by	enduring	inefficiencies	generic	to	vision-based	guidance	
systems23	as	well	as	by	the	complicating	requirement	that	AWS	dynamically	interacts	with	other	
possibly	unpredictable	autonomous	agents.	The	SIPRI	dataset	also	masks	how	it	is	particular	
battlefield	characteristics	that	influence	the	shape	of	AWS	deployment	models.24	Specific	tasks	have	
solicited	specific	autonomous	solutions	in,	for	instance,	the	detection	(and	subsequent	engagement)	
of	perimeter	intrusion,	the	pinpointing	of	delivery	coordinates	in	gunfire	as	well	as	remote	the	
identification	and	processing	of	objects	in	an	ISR	mission.25	This,	however,	is	to	ignore	that	
deployment	initiatives	will	remain	hamstrung	by	technical	difficulties	and	it	is	this	cumulative	set	
of	challenges	that	complicates	how	individual	AWS	‘solutions’	may	empirically	be	deployed.26	
While,	for	instance,	biometrics	and	object	recognition	techniques	have	improved	markedly	since	
Karpathy’s	2012	analysis,	it	still	holds	that	vision	technology	cannot	yet	infer	abstract	meanings	
from	images,	video	footage	or	real-life	situations.27	The	corollary	is	that	a	technology	which	remains	
fundamental	to	the	taking	away	of	weapon	supervision	also	remains	unable	to	detect	potential	
human	targets	based	on	the	behaviour	of	those	targets	in	a	manner	that	is	compliant	with	LOAC.28		

																																																								
21	Brian	Hall,	‘Autonomous	Weapon	System	Safety’,	Joint	Forces	Quarterly,	86,	generally,	(June	2017)	
<http://ndupress.ndu.edu/Media/News/Article/1223911/autonomous-weapons-systems-safety/>	[accessed	2	
February	2018].		
22	Several	systems	rely	on	‘waypoint	navigation’	and,	as	such,	may	not	be	truly	autonomous.	Similarly,	Northrop	
Grumman’s	MQ-4C	Triton	UAS	can	autonomously	plan	a	route	but	still	relies	on	a	human	operator	to	set	speed,	altitude	
and	mission	objectives.	
23	Massimo	Caccia	and	others,	‘Basic	navigation,	guidance	and	control	of	an	unmanned	surface	vehicle’,	Autonomous	
Robots,	Volume	25,	Issue	4,	Springer	US,	(2008),	pp.	349-365.	See	also:	Appendix	One:	‘Case	study:	Automatic	target	
recognition’.		
24	MC	Haas	and	SC	Fischer,	‘The	Evolution	of	Targeted	Killing	Practices:	Autonomous	Weapons,	Future	Conflicts	and	the	
International	Order’,	Contemporary	Policy,	38:2,	(August	2017),	pp.	284-286	and	286-288	
<https://www.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-
studies/pdfs/Haas&Fischer_2017_TargetedKillingPractices.pdf>.	
25	Examples	of	autonomy	in	intelligence	roles	include	Israel’s	Counter-IED	and	Mine	Suite	(CIMS)	developed	by	IAI,	
General	Dynamics’	unmanned	ground	system	called	Mobile	Detection	Assessment	and	Response	System	(MDARS,	
developed	for	the	US	Army),	Endeavour	Robotics’	RedOWL	artillery	targeting	system,	Boeing’s	ScanEagle	system	that	
can	autonomously	monitor	objects	of	interest	on	the	sea	surface	and,	on	a	research	basis,	the	US	Office	foro	Naval	
Research’s	collaboration	that	seeks	to	infer	intentions	and	threats	in	surveillance	imagery	through	its	Automated	Image	
Understanding	Thrust	(AIUT)	system.	
26	See:	case	study	on	ATR,	Appendix	One:	‘Case	study:	Automatic	Target	Recognition’.	
27	Andrej	Karpathy,	‘The	state	of	computer	vision	and	AI:	we	are	really,	really	far	away’,	Karpathy	blog,	(22	October	
2012)	<http://karpathy.github.io/2012/10/22/state-of-computer-vision/>	[accessed	12	December	2017].	These	
challenges	are	reviewed	in	detail	in	Chapters	7	(Firmware)	and	8	(Software).	See	also	Chapter	12	(Appendix),	
specifically:	‘Case	Study	on	Automatic	Target	Recognition’.	
28	Israel’s	Iron	Dome	missile	defence	system	can,	for	example,	calculate	where	incoming	missiles	will	detonate	and	
suggest	appropriate	countermeasures	based	on	that	analysis.	See:	Emily	Landau	and	Ariel	Bermant,	‘Iron	Dome	
protection:	Missile	defence	in	Israel’s	security	concept’,	Lessons	of	Operation	Protective	Edge,	(2014),	pp.	38-39	
<http://www.inss.org.il/he/wp-
content/uploads/sites/2/systemfiles/SystemFiles/Iron%20Dome%20Protection_%20Missile%20Defense%20in%20Is
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Isolating	autonomous	capabilities	in	this	manner	allows	Horowitz	and	Scharre	to	frame	AWS	

deployment	in	terms	of	the	division	of	human-machine	tasking.29	A	2025	vignette	in	the	US	Army’s	
Robotics	and	Autonomous	Strategy	highlights	broad	benefits	expected	in	urban	operations	from,	
inter	alia,	broad	autonomous	tasking	such	as	threat	avoidance,	risk-reduced	reconnaissance	and	
‘contact	made	on	our	own	terms’.30	Given	that	military	planning	is	often	evidenced	to	be	
cumbersome,	inflexible	and	slow31,	a	deployment	model	that	delegates	tasks	to	autonomous	
machines	may	be	an	appealing	first	step	to	removing	human	supervision	from	wider	battlefield	
tasking.32	Without	this	technical	lift,	staff	teams	must	continue	to	work	with	imperfect	information	
under	significant	time	constraints	in	order	to	arrive	at	what	are	very	consequential	battlefield	
decisions.	In	any	such	deployment	model,	there	are	clearly	degrees	that	exist	between	hybrid	
(albeit	non-lethal)	weapon	systems	that	may	employ	limited	autonomy	in	certain	quite	specific	
functions	and,	far	down	the	same	continuum,	fully	autonomous	weapon	systems	that	are,	by	
degree,	self-learning	and	designed	to	operate	without	mechanisms	involving	human	verification.33	
This	continuum	is	the	nub	of	the	deployment	challenge	confronting	the	introduction	of	AWS	onto	
the	battlefield.	The	balance	of	this	chapter	therefore	considers	how	such	degrees	of	autonomy	
might	find	their	way	into	battlefield	practices.		
	

In	dissecting	battlefield	deployment,	certain	architectural	tenets	are	important.	The	chapter’s	
focus	is	on	how	autonomy	within	a	weapon’s	individual	components	will	together	transform	human	
control	in	an	engagement	sequence.	This	thesis	therefore	approaches	deployment	based	on	
‘autonomy	within	individual	weapon	systems’	rather	than	autonomy	across	the	broad	weapon	type.	
Consideration	of	AWS	deployment	must	also	take	into	account	collaborative	uses	of	autonomy	
(including	swarming)	while	at	all	times	challenging	the	feasibility	of	what	practically	and	
technically	is	being	proposed.	It	is	for	this	reason	that	the	chapter	reviews	deployment	throughout	
with	an	eye	to	those	models’	reasonableness.34	A	starting	point	is	thus	to	frame	AWS	deployment	
specifically	by	‘the	type	and	quality	of	human	control	afforded	by	the	different	types	of	

																																																								
rael’s%20Security%20Concept.pdf>.	See	also:	Alexander	Wissner	Gross,	‘Datasets	over	Algorithms’,	Edge,	June	2017,	
paras.	3-6	<https://www.edge.org/response-detail/26587>	[accessed	2	February	2018].	
29	Michael	Horowitz	and	Paul	Scharre,	‘An	Introduction	to	Autonomy	in	Weapon	Systems’,	CNAS,	(13	February	2015),	p.	
3	<https://s3.amazonaws.com/files.cnas.org/documents/Ethical-Autonomy-Working-
Paper_021015_v02.pdf?mtime=20160906082257>	[accessed	1	June	2017].	See	also:	Ben	Rossi,	‘How	industry	4.0	is	
changing	human-technology	interaction’,	Information	Age,	11	November	2016	<http://www.information-
age.com/industry-4-0-changing-human-technology-interaction-123463164/>	[accessed	23	May	2017].	
30 US	Army,	‘Robotic	and	Autonomous	System	Strategy’,	Army	Capabilities	Integration	Centre,	(March	2017),	p.	6	
<http://www.tradoc.army.mil/FrontPageContent/Docs/RAS_Strategy.pdf>. 
31	Larry	Ground	and	others,	‘Coalition-based	Planning	of	Military	Operations:	Adversarial	Reasoning	Algorithms	in	an	
Integrated	Decision	Aid’,	arXiv	pre-print	arXiv:	1601.06069,	(2016),	p.	1	<https://arxiv.org/pdf/1601.06069.pdf>.	
32	Patrick	Talbot,	‘Military	Decision	Aids	–	A	Robust	Decision-Centred	Application’,	TRW	Systems,	Technology	Review	
Journal,	(Spring-Summer	2001),	83-84	<http://ellisinterstellar.com/DecisionAids.pdf>.		
33	Robin	Geiss,	The	International-Law	Dimension	of	Autonomous	Weapon	Systems,	(Germany:	Freidrich	Ebert	Stiftung,	
October	2015),	p.	8	<http://library.fes.de/pdf-files/id/ipa/11673.pdf>.	Examples	include	the	US	Navy	Phalanx	system	
which	can	autonomously	search,	detect	and	engage	targets.	Britain’s	‘fire	and	forget’	Brimstone	missiles	can	distinguish	
between	armoured	vehicles	and	civilian	transport	without	human	assistance	and	can	hunt	targets	autonomously	in	pre-
designated	areas.	Israel’s	Harpy	missiles	can	detect	and	autonomously	destroy	opponents’	radars.		
34 Neil	MacCormick,	‘Reasonableness	and	Objectivity’,	Notre	Dame	Law	Review,	74,	Issue	5,	Article	6,	(1999)	
<https://scholarship.law.nd.edu/cgi/viewcontent.cgi?article=1648&context=ndlr>	[accessed	29	October	2017].	 
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computerized	weapon	systems’.35	In	this	way,	classification	of	control	can	be	based	on	each	model’s	
specific	level	of	human	supervision	ranging	along	that	continuum	from	humans	engaging	and	
selecting	targets	prior	to	initiating	an	attack	(level	one),	algorithms	suggesting	targets	which	
humans	then	choose	which	to	attack	(level	two),	algorithms	selecting	targets	which	humans	must	
approve	before	an	attack	is	initiated	(level	three)	to	algorithms	selecting	targets	which	humans	
then	have	a	restricted	time	to	veto	(level	four).	A	final	level	five	classification	of	deployment	is	then	
apt	where	programmes	select	targets	and	initiate	attacks	without	human	involvement.36	While	this	
might	appear	compelling,	any	such	framework	is	nevertheless	empirically	vague.37	These	
boundaries	are	of	course	loose	and	indistinct.	The	more	operational	limitations	that	are	built	
around	each	hypothetical	deployment	model,	after	all,	the	more	theoretically	predictable	becomes	
that	unsupervised	weapon’s	use	of	force.	This,	however,	is	clearly	a	specious	relationship.38		

	
Toggling	between	different	deployment	models	on	that	continuum	also	disrupts	the	ability	to	

determine	cause	and	effect.	It	is	therefore	important	to	understand	the	control	triggers	that	will	
exist	between,	on	the	one	hand,	persistent	human	involvement	in	engagements	to,	on	the	other,	
complete	weapon	independence	and	the	code-based	management	of	those	weapons.	In	models	that	
are	based	upon	degrees	of	human	supervision,	Knuckey	summarizes	this	deployment	continuum:	
While	the	nature	of	the	human-machine	relationship	may	vary	model-by-model,	‘the	later	a	human	
leaves	the	loop,	or	the	more	human-limited	the	operational	context	is,	the	more	systems	may	be	
argued	to	be	under	effective	human	control’.39	For	the	purposes	of	this	thesis	(within	its	review	of	
AWS	feasibility),	this	is	also	because	the	weapon’s	task	of	selecting	and	engaging	targets	is	
comprised	of	a	complicating	variety	of	subtasks.40	Deployment	must	be	considered	case-by-case	
across	weapon	control	types	as	well	as	individual	weapon	capabilities,	processes,	context	and	task	
instructions.	The	point	is	that	it	is	inappropriate	to	create	one	overarching	set	of	deployment	rules.	
It	may,	for	instance,	be	enduringly	inappropriate	for	self-directing	weapons	to	be	deployed	
autonomously	in	a	complex	urban	setting	given	its	quite	different	set	of	challenges	to	a	remote	and	
controlled	battle	space	with	well-understood,	minimal	civilian	density.		

	
In	addition	to	empirical	battlefield	activities,	more	conceptual	aspects	of	AWS	tasking	have	an	

important	part	in	shaping	such	models.	Sartor	defines	certain	abstract	capabilities	that	must	
precede	AWS	deployment	including	the	weapon’s	broad	behavioural	competence	(its	ability	to	

																																																								
35	Noel	Sharkey,	Staying	in	the	loop:	human	supervisory	control	of	weapons’,	cit.	Nehal	Bhuta	and	others,	Autonomous	
Weapons	Systems:	law,	ethics,	policy,	(Cambridge:	Cambridge	University	Press,	2016),	p.	26.	Global	consequences	of	AWS	
deployment	(plausible	denial	in	first	use	of	AWS,	proliferation,	ethics	and	non-compliance)	are	generally	ignored	in	any	
consequentialist	analysis	but	form	a	key	basis	of	argument	in	Chapter	5	(Obstacles).	
36	Noel	Sharkey,	Staying	in	the	loop,	p.	26.	
37	Ariel	Conn,	‘The	Problem	of	Defining	Autonomous	Weapons’,	generally.	
37	US	Department	of	Defense,	‘Summary	of	the	National	Defense	Strategies	of	the	United	States	of	America:	Sharpening	
the	American	Militaries’	Competitive	Edge’,	US	DoD,	(2018)	
<https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf>	pp.	2-4.	
38	Paul	Scharre,	Autonomous	weapons	and	operational	risk,	pp.	8-15.	
39	Sarah	Knuckey,	‘Autonomous	weapon	systems	and	transparency:	towards	an	international	dialogue’,	cit.	N.	Bhuta	and	
others	(eds.),	Autonomous	Weapon	Systems,	p.	164.	
40	Sensory	data	must	first	be	acquired	and	processed.	Targets	must	be	then	identified	from	that	output	and	thereafter	
tracked,	selected	and	prioritised	before,	on	the	basis	of	engagement	rules,	an	engagement	decision	and	resulting	
application	of	force	can	be	undertaken.	Technical	ramifications	are	discussed	in	Chapters	7	(Firmware)	and	8	
(Software).		
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perform	all	required	actions	necessary	to	achieve	a	specific	task),	its	epistemic	competence	(its	
ability	to	extract	all	necessary	knowledge	in	order	to	act	effectively	and	proportionately	in	each	
given	context),	appropriate	action	selection	skills	(an	ability	to	design	and	select	a	plan	of	action	
that	matches	appropriately	the	weapon’s	goals)	as	well,	Sartor	concludes,	as	the	AWS’	ability	to	
comply	with	relevant	applicable	norms.41	Together,	these	must	comprise	a	set	of	guidelines	which	
informs	a	starting	point	for	the	introduction	of	AWS.42	MacCormick,	in	particular,	uses	a	
reasonableness	yardstick	as	a	legal	hurdle	to	deployment	and	points	to	the	invariable	requirement	
that	‘impartial	attention	to	competing	values	and	evidences’	be	ensured	in	order	to	achieve	
compliance.43	As	later	discussed,	this	looks	in	large	part	like	an	argument	for	maintaining	
meaningful	human	control	in	lethal	engagements	without	which	self-directed	weapon	functions	
come	at	the	price	of	reduced	predictability	and	reduced	accountability.44	

	
‘Reasonable’	deployment	is	also	a	central	contextual	matter	in	considering	AWS	adoption.	It	is	

therefore	relevant	to	rehearse	consequentialist	reasons	for	that	deployment.45	Any	such	model	
must,	after	all,	lever	the	promise	of	quicker,	less	expensive,	more	impactful	weapon	outcomes.46	
Given	accurate	targeting47	and,	perhaps,	a	more	conservative	decision	process	in	advance	of	
initiating	engagement,	use	of	autonomy	should	also	lessen	civilian	harm.48	This,	however,	is	only	
one	part	of	the	deployment	equation.	A	consequentialist	framework	throws	up	unexpected	
complications	that	must	influence	models.	Sharkey,	Professor	of	Robotics	at	Sheffield	University,	for	
example,	is	taking	a	broadly	consequentialist	view	when	he	points	out	that	fewer	friendly	casualties	
might	equate	to	fewer	State	disincentives	to	initiate	violence	and	start	wars.49	Similarly,	deploying	a	
swarm	of	aerial	AWS	may	raise	the	prospect	of	a	new	arms	race,	frightened	neighbouring	nations	
and	ensuing	global	destabilization.50	AWS	models	must	also	factor	in	the	disquieting	prospect	of	
																																																								
41	Sartor	and	Omicini,	cit.	N	Bhuta	et	al,	Autonomous	Weapon	Systems,	p.	63.	
42 MacCormick,	‘Reasonableness	and	Objectivity’,	generally. 
43	Ibid.,	p.	1575	and	p.	1581.		
44	For	an	analysis	of	the	challenges	to	maintaining	weapon	predictability	given	AI	use	in	weaponry,	see:	Chapters	7	
(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).	
45	Discussion	of	‘reasonableness’	is	prompted	by	Robert	Stone,	‘Puzzles	of	proportion	and	the	‘Reasonable	Military	
Commander’:	Reflection	on	the	law,	ethics	and	geopolitics	of	proportionality’,	Harvard	National	Security	Journal,	(2015),	
332-334	<http://harvardnsj.org/wp-content/uploads/2015/06/Sloane.pdf>.	A	detailed	review	of	drivers	towards	
weapon	autonomy	is	undertaken	in	the	previous	chapter	(Chapter	3,	Drivers).		
46	See,	generally:	Economist,	‘Autonomous	Weapons	are	a	Game-changer’,	Economist	Magazine,	25	January	2018	
<https://www.economist.com/special-report/2018/01/25/autonomous-weapons-are-a-game-changer>	[accessed	23	
July	2018].	
47	See:	Merel	Ekelhof,	‘Human	control	in	the	targeting	process’,	ed.	R.	Geiß,	Lethal	Autonomous	Weapons	Systems:	
Technology,	Definition,	Ethics,	Law	and	Security,	(Germany:	German	Federal	Foreign	Office,	Berlin,	2016),	pp.	66–75.	See	
also:	explanatory	slide	deck,	
<https://www.unog.ch/80256EDD006B8954/(httpAssets)/AE38DEFD5D4D1E2CC1257F94004D4E33/$file/Presentat
ion+CCW+M.+Ekelhof.pdf>.	The	model’s	dependence	upon	predefined	target	signatures	suggests,	in	this	instance,	that	it	
is	currently	more	automated	than	autonomous.	Similarly,	current	target	prioritisation	rules	are	based	on	predefined	
(and	not	dynamic)	criteria.	
48 Tamburrini,	p.	139. 
49 Noel	Sharkey,	‘Cassandra	or	the	false	prophet	of	doom’,	International	Review	of	the	Red	Cross,	Volume	94,	number	886,	
(Summer	2012)	<https://www.icrc.org/eng/assets/files/review/2012/irrc-886-sharkey.pdf>.	Tamburrini	highlights	
the	destabilising	potential	of	AWS	swarms	against	opponents’	nuclear	arsenals,	the	impairment	of	an	opponent’s	
second-strike	capability	and	the	breakdown	of	traditional	nuclear	deterrence	based	on	mutually	assured	destruction.		
50	Jason	Le	Miere,	‘Russia	developing	a	swarm	of	autonomous	drones	in	the	new	arms	race	with	US,	China’,	Newsweek,	
15	May	2017	<http://www.newsweek.com/drones-swarm-autonomous-russia-robots-609399>	[accessed	2	January	
2018].	Actually,	evidence	does	not	back	up	this	assertion	of	a	global	arms	race	in	autonomy;	see:	Boulanin	and	
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asymmetrical	warfare	and	poorer	risk	mitigation	under	these	scenarios.	Indeed,	Kalmanovitz	
develops	the	position	of	Sharkey	by	suggesting	that	the	most	troubling	aspects	of	AWS	deployment	
may	not	be	‘matters	of	deep	ethical	or	legal	principle	but,	rather,	the	lack	of	incentives	for	
implementing	effective	regulations	and	accountability’.51	As	noted	by	Asaro,	AWS	deployment	
models	cross	a	‘principled	boundary’	on	a	‘technological	slippery	slope’.52	On	these	bases,	it	at	once	
becomes	difficult	to	posit	a	‘reasonable’	deployment	scenario	where	human	supervision	is	not	a	
necessary	component	of	all	battlefield	processes.	An	analysis	of	targeting	procedures	corroborates	
this	observation.	As	noted	by	Roff,	target	lists	are	inherently	strategic	and	cannot	be	delegated	to	a	
machine	without	fundamental	repercussions	for	battlefield	command	and	organisational	
structure.53	Roff	terms	this	conundrum	‘the	Strategic	Robot	Problem’.		

 AWS' capabilities versus roles 
	
Deployment	models	are	also	dependent	upon	the	degree	of	technical	divergence	that	exists	
between	AWS	capability	and	AWS	role	and	the	significant	legal	and	operational	ramifications	that	
this	departure	has	for	AWS’	compliant	introduction.	Consider,	for	instance,	defence.	What	level	of	
safeguard	is	required	to	deploy	a	defensive	(albeit	unsupervised)	weapon	that	is	narrowly	
programmed	to	engage	specific	enemy	hardware	in	a	specific	battlefield	area?	Does	restriction	in	a	
weapon’s	tasking	(such	as	the	SGR-AI	discussed	in	Chapter	Two)	or	the	imposing	of	narrow	
defensive	purpose	influence	the	requirement	for	meaningful	human	control	in	lethal	engagements?	
Johnson	and	Axinn	conclude	that	an	AWS	securing	a	perimeter	may	be	portrayed	as	defensive	and	
perhaps,	therefore,	a	‘more	tolerable	application	of	autonomy’	as	opposed	to	hunter-killer	scenarios	
which	are	based	on	mobile	weapon	platforms	‘in	a	manner	that	are	spatially	unbounded’.54	Isolating	
the	defensive	and	offensive	capabilities	of	weapon	systems	might	appear	to	be	a	relevant	
component	in	shaping	deployment	models	for	self-directing	weapons.	Levy	similarly	cites	mobility	
and	striking	power	as	such	deployment	characteristics	for	an	offensive	weapon.55	A	third	trait	of	
protection	is,	in	the	case	of	AWS,	relegated	either	to	an	economic	denominator	(‘how	many	AWS	can	
we	afford?’)	or	to	a	logistic	denominator	(‘have	we	got	enough	and	appropriate	AWS	in	theatre?’).	
Within	this	argument,	therefore,	it	might	seem	sensible	to	isolate	AWS’	offensive	and	defensive	
characteristics	by	their	intrinsic	features	and,	in	so	doing,	ignore	battlefield	doctrines	that	would	
otherwise	determine	AWS	use.	Further	analysis	of	Levy	and	Cole,	however,	refutes	this	notion.	
Here,	it	is	not	the	characteristic	of	an	individual	weapon	but	rather	‘the	aggregate	impact	of	that	
weapon	system	in	a	given	arsenal’	that	should	be	the	deployment	determinant.56	This	conforms	to	
this	thesis’	general	emphasis	on	AWS’	cumulative	effects,	a	factor	that	merits	additional	weight	
given	the	likely	incremental	process	of	AWS	implementation	and	the	piecemeal	removal	of	human	
																																																								
Verbruggen,	p.	58.	For	a	useful	piece	on	the	tactical	appeal	of	unsupervised	weapons,	in	particular	weapons	configured	
as	a	swarm,	see:	Emily	Feng	and	others,	‘Drone	swarms	versus	conventional	arms:	China’s	Military	Debate’,	Financial	
Times,	24	August	2017,	generally.	See	also:	para.	4	of	32	for	an	historical	comparison	
<https://www.ft.com/content/302fc14a-66ef-11e7-8526-7b38dcaef6140>	[accessed	23	February	2018].	 
51 Kalmanovitz,	cit.	N.	Bhuta	and	others,	pp.	145-146.	
52	Peter	Asaro,	‘On	banning	autonomous	systems’,	p.	687	and	p.	707.	
53	Heather	Roff,	‘The	Strategic	Robot	Problem:	Lethal	Autonomous	Weapons	in	War’,	Journal	of	Military	Ethics,	Volume	
13,	Issue	3,	(17	November	2014),	211.		
54	AM	Johnson	and	S	Axinn,	‘The	morality	of	autonomous	robots’,	Journal	of	Military	Ethics,	12,	2,	(2013),	137-138.	
55	See:	BHL	Hart,	Aggression	and	the	problem	of	Weapons,	(English	Review,	55,	1932),	pp.	71-73;	and	JFC	Fuller,		
Armaments	and	History,	(New	York,	Charles	Schribner’s	Sons,	1945),	generally.	
56 Jack	Levy,	‘The	offensive/defensive	balance	of	military	technology:	A	theoretical	and	historical	analysis’,	pp.	225-226.	 
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oversight	over	a	number	of	battlefield	processes.57	Moreover,	a	lack	of	definite	milestones	also	
complicates	the	definition	of	discrete	deployment	models	which	presuppose	any	such	delineation	
between	the	defence	and	offence.	Boggs	cites	Clausewitz	to	demonstrate	the	distinction’s	faultline	
given	that	every	combat	engagement	whether	‘great	or	small,	is	defensive	if	we	leave	the	initiative	
to	the	enemy	and	wait	for	his	appearance	on	our	front	door’.58	

	
This	chapter’s	deployment	models	are	not,	however,	solely	a	mix	of	context	and	appropriate	

hardware.	Challenge	to	the	models	also	comes	from	the	prerequisite	that	both	IHL	and	IHLR	be	
factors	in	order	to	establish	which	legal	framework	applies	in	each	specific	set	of	engagement	
circumstances.59	This	points	to	a	further	issue	in	AWS	deployment.	In	no	circumstances	can	the	
AWS	make	legal	determination.60	Deployment	of	AWS	is	not	in	itself	an	automated	action	but,	
rather,	the	deliberate	decision	of	a	group	of	human	decision-makers.61	In	their	deliberations,	this	
group	(hereafter	termed	the	‘Delivery	Cohort’)	is	responsible,	both	morally	and	legally,	for	taking	all	
reasonable	steps	to	ensure	that	their	deployment	decisions	comply	with	legal	requirements.	AWS	
deployment	is,	after	all,	an	inescapably	human	matter.	This	observation	requires	that	the	Delivery	
Cohort	fully	understand	in	advance	what	is	involved	for	IHL-compliant	activation	of	their	AWS	as	
well	as	having	adequate	understanding	of	the	operational	boundaries	required	in	order	to	meet	
these	conditions.	This	is	a	complex	set	of	conditions	precedent62	given	that	such	models	must	be	
based	on	dependable	testing	and	validation.63	It	is	the	epistemic	uncertainties	(principally	
concerning	AWS	technical	feasibility	as	highlighted	later	in	this	thesis)	that	demonstrate	that	this	is	
a	challenging	assumption.	Indeed,	it	conceivably	follows	that	military	commanders	and	other	
constituents	of	the	Delivery	Cohort	should	refuse	to	deploy	such	weapons	if	material	deployment	
criteria	remain	unmet.	The	point	ignores	complexity	introduced	by	multi-national	command	as	well	
as	the	politicisation	of	AWS	deployment	and	other	effects	of	politicians	introducing	themselves	into	
this	decision-making.64	Finally	to	this	point,	cost	factors	also	constrain	deployment	models.	

																																																								
57	J	Michael	Cole,	‘When	Drones	Decide	to	Kill	on	their	own’,	The	Diplomat,	1	October	2012,	paras.	5-8	of	14	
<https://thediplomat.com/2012/10/why-killing-should-remain-a-human-enterprise/>	[accessed	12	October	2017].		
58 MW	Boggs,	Attempts	to	define	and	limit	‘aggressive’	armaments	in	Diplomacy	and	Strategy,	University	of	Missouri	‘s	
studies,	XVI,	Number	1,	(Columbia,	Missouri,	1941),	p.	68.	
59	Maya	Brehm,	‘Defending	the	Boundary;	constraints	and	requirements	on	the	use	of	autonomous	weapon	systems	
under	international	humanitarian	and	human	rights	law’,	Geneva	Academy	of	International	Humanitarian	Law	and	
Human	Rights,	Academy	briefing	No.9,	(2017),	p.	30.	See,	also:	Chapter	5	(Obstacles),	specifically:	5.1	(‘	Geneva	
Convention	and	the	Laws	of	Armed	Combat’).		
60	P	Asaro,	‘On	Banning	Autonomous	Weapon	Systems’,	pp.	2-4.		
61	The	term	Delivery	Cohort	is	coined	in	Chapter	6	(Wetware,	specifically	The	Delivery	Cohort)	to	describe	this	decision	
group.	It	likely	encompasses,	inter	alia,	the	following	constituents:	neurophysiologists	to	coordinate	AWS	networks,	
psychologists	to	coordinate	learning	and	cognition,	biologists	for	adaption	strategies,	engineers	for	control	routines,	
logisticians,	roboticists,	electrical	specialists,	behaviorists,	politicians,	NGOs,	sociologists,	lawyers,	company	directors,	
weaponists,	military	tacticians,	manufacturers,	professionals	involved	in	miniaturization,	simulation,	configuration,	
coding,	power	supply	and	modularity,	specialists	in	sensors,	in	distributed	and	decentralized	routines,	ethicists,	
specialists	in	tooling	and	calibration.	See	also:	D	Floreano,	‘Design,	Control	and	Application	of	Autonomous	Mobile	
Robots’,	Advances	in	International	Autonomous	Systems,	(1999),	pp.	159-186	
<https://link.springer.com/chapter/10.1007/978-94-011-4790-3_8>	[accessed	29	January	2017].		
62	See,	for	instance:	Kelly	Cass,	‘Autonomous	Weapons	and	Accountability:	Seeking	Solutions	in	the	Law	s	of	War’,	Loyola	
of	Los	Angeles	Law	Review,	(4	January	2015),	pp.	1031-1032	
<https://digitalcommons.lmu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=2941
&context=llr>	[accessed	15	August	2018].		
63 Tamburrini,	cit.	Bhuta	and	others,	p.	127.	 
64	Professor	Lloyd	Clark,	in	conversation	with	the	author,	June	2018.		
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Deployment	costs	exist,	after	all,	in	several	guises	from	economic	outlay,	loss	of	legitimacy	(should	
civilians	suffer	disproportionate	harm),	public	opinion	reversal	(in	cases	of	manifest	error	and	the	
compromising	of	information	security)	and,	clearly,	in	the	scale	of	effort	required	to	meet	legal,	
technical	and	operational	imperatives	for	inaugural	deployment	of	such	unsupervised	weaponry.	
Kalmanovitz	stretches	this	point	by	suggesting	a	further	constraint	on	States’	deployment	activities,	
that	of	common	interest	and	reciprocity;	There	is,	he	notes,	‘the	willingness	to	impose	limits	on	
one’s	own	military	means	out	of	the	expectation	that	one’s	enemies	may	resort	to	similar	meanings	
and	actions’.65	It	is	against	this	broad	context	that	specific	deployment	models	can	now	be	
reviewed.		

 Planning tools 

AWS	must	know	if	to	decide,	then	when	and	what	to	decide.66	Nearly	one	third	of	the	systems	
identified	in	the	SIPRI	dataset	already	use	Autonomous	Target	Recognition	(ATR)	as	an	
autonomous	‘decision	aid’	for	human	operators.67	For	the	purposes	of	identifying	possible	
deployment	models,	ATR	is	just	one	autonomous	process	that	must	be	in	place	in	order	for	the	
controlling	agent	(here,	the	commander	or,	eventually,	the	machine)	to	translate	aims,	goals	and		
vision	of	an	end	state	into	a	sequence	of	actionable	tasks.68	The	programming	challenge	is	that	
decision-making	is	both	science	and	art.	Several	aspects	of	military	operations	(for	instance,	
movement	rates,	fuel	consumption	and	weapons	effects)	may	be	quantifiable	and,	notes	O’Hanlon,	
reflect	a	science	of	war.69	Other	aspects	(the	impact	of	leadership,	the	general	complexity	of	
operations	and	uncertainty	regarding	enemy	intentions),	however,	belong	to	the	art	of	war.70	The	
nub	is	that	the	starting	point	to	such	models	may	be	the	removal	of	supervision	without	
compromising	overall	command	and	control	in	military	operations.	The	starting	premise,	after	all,	
is	that	operations,	target	selection	and	mission	assignments	will	be	significantly	quicker	using	
autonomy,	thereby	allowing	commanders	to	respond	better	to	changing	situations.71	What	
battlefield	tenets	then	shape	AWS	deployment	and	are	these	canons	equally	common	to	academics	
and	other	constituents	of	the	Delivery	Cohort?72	In	this	case,	Boulanin	and	Verbruggen	break	up	
AWS	deployment	into	a	series	of	defined	tasks	centering	on	five	decision	characteristics.	Their	
framework	is	based	on	speed	(tasks	involving	cyber	and	air	defence),	agility	(tasks	that	leverage	a	

																																																								
65 Kalmanovitz,	cit.	Bhuta	and	others,	pp.	161-162. 
66	US	Air	University,	‘The	Military	Decision	Making	Process’,	undated,	p.	51	
<http://www.au.af.mil/au/awc/awcgate/army/fm101-5_mdmp.pdf>.	
67 Boulanin	and	Verbruggen,	p.	26.	The	capability	is	both	pivotal	to	AWS	deployment	but	also	enduringly	challenging.	
See	Chapter	12	(Appendix),	specifically:	‘Case	Study	on	Automatic	Target	Recognition’.	
68	See	also:	GS	Gill	and	JS	Sohal,	‘Battlefield	Decision-Making:	A	Neural	Network	Approach’,	Journal	of	Theoretical	and	
Applied	Information	Technology,	(2008),	697-	698	<http://www.jatit.org/volumes/research-
papers/Vol4No8/5vol4no8.pdf>.	The	work’s	five	attributes	comprise	Manpower	Strength,	Food	and	Ammunition	
States,	Infantry	Support,	Air	Support	and	Casualty	Rates.		
69	Michael	O’Hanlon,	The	Science	of	War,	(US:	Princeton	University	Press,	2009),	pp.	1-4.	
	
70	Greg	Simons.	‘Understanding	Political	and	Intangible	Elements	in	Modern	Wars’,	Academia,	(2012),	generally	
<http://www.academia.edu/2070261/Understanding_Political_and_Intangible_Elements_in_Modern_Wars>	[accessed	
5	February	2019].		
	
71	Amir	Husain,		‘AI	on	the	battlefield:	a	framework	for	ethical	autonomy’,	Forbes	Technology	Council,	28	November	
2016,	para.	10	<https://www.forbes.com/sites/forbestechcouncil/2016/11/28/ai-on-the-battlefield-a-framework-for-
ethical-autonomy/#71cdcb2c5cf2>	[accessed	3	January	2018].		
72	Michael	Mosser,	Puzzles	versus	Problems:	The	Alleged	Disconnect	between	Academics	and	Military	Practitioners,	(USA:	
Reflections,	Volume	8,	Number	4,	December	2010),	pp.	1077-1084.		
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reduced	reliance	on	command	and	control)	and	persistence	(tasks	involving	constant	and	consistent	
performance	such	as	air	defence,	long	ISR,	enemy	weapon	countermeasures	and	tasks	deep	in	
enemy	territory).	Other	deployment	parameters	revolve	around	general	decision	problems	
concerning	reach	(in	communication	denied	environments)	and	coordination	(force	protection	and	
the	management	of	large	groups	of	weapons).73	Together,	such	parameters	then	comprise	a	
framework	within	which	models	can	properly	be	considered.	

In	considering	AWS	deployment,	two	relevant	system	categories	exist.	Weapon	systems	will	
either	incorporate	autonomy	at	rest	(operating	virtually,	in	software,	and	including	expert	advisory	
systems)	or	autonomy	in	motion	(stand-alone	machines	that	have	a	presence	in	the	physical	world	
including	robotics,	autonomous	vehicles	and	tangible	weapon	systems).74	Systems	at	rest	include,	
for	instance,	monitoring	and	evaluation	routines	providing	autonomous	assessment	to	
commanders,	a	key	verification	tool	that	can	assist	in	swift	in-loco	decision-making.	While	this	
category	of	autonomous	agent	(here,	an	‘aid’)	may	already	be	framing	the	actions	and	decisions	of	
the	commander,	there	exists	an	important	distinction	between	commander	use	and	commander	
reliance	on	such	decision	aids.75	In	A	History	of	the	Future	in	100	Objects,	Hon	highlights	what	might	
happen	when	that	line	is	crossed	between	reliance	and	over-reliance	on	technology.	His	illustration	
posits	the	finding	by	a	machine	learning	system	that	attack	is	imminent,	in	this	case	giving	the	local	
commander	just	six	seconds	to	launch	an	assault.	In	the	event,	human	judgement	is	exercised,	an	
armed	response	is	delayed	and	the	weapon’s	initial	assessment	is	found	to	be	plain	wrong.76		

Accepting,	then,	SIPRI’s	dataset	as	a	plausible	framework	with	which	to	consider	deployment	
models	(and	assuming	that	the	deployed	weapon	remains	otherwise	compliant),	it	is	valuable	to	
consider	practical	impediments	to	particular	models.	Given	that	an	issue	here	is	the	degree	to	
which	applicability	of	the	SIPRI	framework	can	be	assumed	across	both	machine	and	capability	
type,	two	doctrinally	defined	products,	the	Course	of	Action	(COA)	sketch	and	statement,	provide	a	
relevant	foundation	to	such	analysis.	Empirically,	a	commander	develops	multiple	courses	of	action	
for	deliberation	prior	to	battlefield	action,	distinguishable	from	one	another	in	force	configuration	
and	application	as	well	as	the	designation	of	main	and	supporting	efforts.77	The	core	of	the	
deployment	model	arises,	of	course,	from	the	subjective	stages	of	the	COA	that	rely	on	the	‘art	of	
war’	such	that	each	decision	can	generally	be	deemed	feasible.78	Only	then	can	military	actions	and	
military	assets	be	coordinated	to	incorporate	mission	execution	and,	finally,	an	assessment	of	battle	
damage.	Until	this	decision	point,	autonomous	treatment	of	those	early	planning	stages	should	
plausibly	improve	results.	AWS’	deployment	challenge	thereafter	is	the	selection,	coding	and	
processing	of	qualitative	data	(here,	the	‘knowledge	of	war’79)	while	achieving	sufficiently	

																																																								
73	Boulanin	and	Verbruggen,	p.	62.		
74	US	Department	of	Defense,	Defense	Science	Board,	p.	5.	
75	Alexander	Kott	and	others,	‘Decision	Aids	for	Adversarial	Planning	in	Military	Operations’,	arXiv	preprint	arXiv	
1601.06108,	(2016),	p.	3.	
76	Adrian	Hon,	A	History	of	the	Future	in	100	Objects,	(USA:	Amazon/Kickstarter,	2016),	generally.	
77	Alexander	Kott	and	others,	‘The	decision	Aides	for	adversarial	planning’,	p.	4.	This	would	also	comprise	consideration	
of,	inter	alia,	terrain	and	resources,	identification	of	objectives,	target	selection,	intelligence	support	and	final	risk	
assessment.	
78	Ibid.,	pp.	4-6.	
79	John	Saldano,	‘The	Coding	Manual	for	Qualitative	Researchers’,	Sage	Publications,	(2009),	p.	2	
<https://www.sagepub.com/sites/default/files/upm-binaries/24614_01_Saldana_Ch_01.pdf>.		
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repeatable	outcomes	to	build	trust	between	commanders,	staff	and	the	deployed	weapon.	As	noted	
by	Siniscalchi,	even	autonomous	decision	aids	may	be	capable	of	state-defining	actions	that	are	not	
dissimilar	to	the	deployment	of	full	AWS	while	not	necessarily	directly	initiating	violence.80		

The	analogy	between	decision	aid	and	AWS	is	revealing	to	AWS	deployment	models.	The	
planning	role	of	weapons	autonomy	is,	after	all,	to	ascertain	the	feasibility	of	particular	courses	of	
action,	to	assess	their	likelihood	of	success	and	to	identify	a	range	of	possible	executable	actions	
and	points	of	synchronization	for	participants.81	Three	deployment	matters	must	therefore	be	
factored	into	deployment	models.	First,	the	process	is	complex,	resource	consuming	and	dependent	
upon	experiential	(and	thus	subjective)	inputs.	This	thesis’	later	technical	review	demonstrates	that	
this	is	then	difficult	for	a	machine	to	master	in	isolation.82	This	is	unsurprising:	Regardless	of	rank	
and	tasking,	command	and	action	selection	is	borne	out	of	military	experience	built	up	over	careers	
on	the	battlefield.	While	the	COA	is	intended	as	a	flexible	but	executable	operational	plan,	the	point	
is	that	it	is	the	product	of	heuristics	rather	than	strict	rules-based	processes.83	The	uncomfortable	
overlap	between	autonomous	decision	aid	and	wide	capability	AWS	is	best	illustrated	by	the	
number	of	battlefield	scenarios	that	defy	being	dealt	with	by	any	yes/no	set	of	set	of	rules.	Sharkey,	
moreover,	notes	that	‘the	number	of	such	circumstances	occurring	simultaneously	could	cause	
chaotic	robot	behaviour	with	deadly	consequences’.84		

 Machine and human teaming models 
	
Just	as	force	multiplication	is	a	driver	to	removing	human	supervision	from	weapon	routines,	it	also	
shapes	the	deployment	models	for	such	weapons.	Its	driver	is	founded	upon	the	anticipated	
resilience,	cost-efficiency	and	flexibility	of	additional	autonomous	hardware	and,	in	order	for	such	
multiplication	to	be	realised,	Pellerin	argues	that	it	must	first	be	harnessed	to	the	selection,	
training,	situational	awareness	and	experience	of	the	human	commander.85	Here,	then,	emerges	the	
basis	for	the	machine-human	deployment	model.	In	the	case	of	force	multiplication,	the	argument	is	
that	the	proven	effectiveness	of	the	trained	soldier	can	be	leveraged	by	contiguous,	accompanying	
hardware	(designed	as	‘companion	technology’)	that	is	designed	to	provide	additional	lethality.86	
The	model’s	aim	is	to	increase	materially	that	soldier’s	firepower	and	effectiveness.87	The	technical	
challenge	is	not	necessarily	obvious.	Mindell,	Professor	of	Aeronautics	and	Astronautics	at	the	MIT,	

																																																								
80	See:	Joseph	Siniscalchi,	‘Non-lethal	Technologies:	Implications	for	Military	Strategy’,	Air	University,	Maxwell,	
Occasional	Papers	Number	3,	(March	1998),	pp.	2-3.		
81	Kott	and	others,	p.	5.	
82 Saldano,	pp.	4-8.	See:	Chapter	7	(Firmware),	specifically:	7.4	(‘Attention	methodologies’).	Also:	Chapter	8	(Software),	
specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).	 
83	Terry	Wolff,	‘The	Operational	Commander	and	Dealing	with	Uncertainty’,	Army	Command	and	General	Staff,	Fort	
Leavensworth,	(19	April	1999),	pp.	6-13.		
84	Sharkey,	‘Automated	Killers	and	the	Computing	Profession’,	Computer,	40,	11,	(2007),	p.	122.	
85	Cheryl	Pellerin,	‘Work:	Human-Machine	Teaming	represents	Defense	Technology	Future’,	Department	of	Defense	
Subscription,	(8	November	2015),	paras.	1	and	3-5	<https://www.defense.gov/News/Article/Article/628154/work-
human-machine-teaming-represents-defense-technology-future/>	[accessed	1	September	2017].	
86	See:	Susanne	Biundot	and	others,	‘Companion-technology:	An	Overview’,	Kl-Kunstliche	Intelligenz,	30.1,	(2016),	pp.	
11-20.	
87	Cheryl	Pellerin,	‘Human-Machine	Teaming’,	paras.	5,	6-8.	See	also:	Appendix	E,	Measurement	of	Performance	and	
Measurement	of	Effectiveness,	cit.	Making	the	Soldier	Decisive	on	Future	Battlefields,	(US:	National	Academies	Press,	
2012),	pp.	166-170.	Alternative	source:	<https://www.nap.edu/read/18321/chapter/11#169>	[accessed	18	December	
2018].		
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notes,	however,	that	‘it	takes	more	sophisticated	technology	to	keep	humans	in-the-loop	than	it	
does	to	automate	them	out.	History	and	experience	show	that	the	most	difficult	problem	is	not	for	
autonomy	but	instead	for	the	mixing	of	human	and	machine	and	the	optimal	amount	of	automation	
to	offer	trusted,	transparent	collaboration’.88	This	points	to	further	inputs	for	the	model,	in	
particular	around	establishing	an	optimal	human-machine	ratio	(here,	the	teaming	ratio	as	it	
relates	to	teaming	human	soldiers	with	otherwise	autonomous	weapons).89	This	in	turn	is	
contingent	upon	the	type	and	number	of	tasks	to	be	executed,	the	nature	and	complexity	of	the	
team’s	operating	environment,	the	sophistication	of	participating	systems	as	well	as	the	cognitive	
workload	of	the	human	operator.90	As	noted	by	Li,	further	intricacy	is	added	to	this	challenge	by	
each	machine-human	ratio	being	highly	contextual.91	
	

Deployment	models	based	on	teaming	can	also	take	many	different	forms,	creating	subsidiary	
models	and	adding	to	deployment’s	complexity.	Notwithstanding	that	in	machine-machine	teaming,	
the	most	basic	expression	of	weapon	capability	might	be	information-sharing,	such	collaborations	
will	likely	be	armed,	capable	of	selecting	targets	and	initiating	violence.	‘Collaborative	autonomy’	
gives	rise	to	further	complexity.92	The	challenge,	notes	Clark,	is	also	reflected	in	commander	
selection	at	quite	junior	levels	in	order	to	identify	individuals	able	to	cope	with	the	demands	of	
teaming,	a	process	that	was	formerly	only	undertaken	at	General	Staff	level	and	above.93	As	
highlighted	by	Cuo,	the	model	must	also	incorporate	multiple	battlefield	systems	in	order	that	their	
actions	are	coordinated	to	achieve	common	goals.94	To	understand	the	nature	of	this	challenge,	the	
ratios	between	human	operators	and	deployed	colleague	systems	must	be	appreciated.	In	
unmanned	aerial	systems	this	is	currently	many:	1	(that	is,	many	human	operators	to	just	one	UAV)	
and,	for	ground	systems,	some	2:	1.	The	purpose	of	this	section	is	to	review	deployment	models	
where	those	ratios	now	move	either	to	1:	many	or	0:	many.	Mindell’s	concept	of	a	‘reliable	human-
machine	ratio’	points	to	what	is	a	material	impediment	to	empirical	incorporation	of	autonomous	
capabilities.		

	
A	further	constraint	particular	to	AWS	teaming	is	that	configuration	limits	must	be	clearly	

delineated.	This	is	not	straightforward	and,	as	noted	by	Chen	and	Barnes,	requires	implementation	
of	either	appropriate	collective	software	architecture	or	implementation	of	an	advanced	‘system	of	
systems’.95	The	implications	of	such	complexity	and	arising	‘technical	debt’	are	explored	in	later	
chapters.	Any	such	aggregation	must,	moreover,	be	sufficiently	sophisticated	to	control	a	mix	of	
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unmanned	aerial	and	surface	systems,	a	swarm	of	low-cost	systems	operating	as	a	coherent	entity	
or	the	allocation	of	specific	roles	to	each	of	that	group’s	systems	(thereby	dictating	an	appropriate	
collective	behaviour).96	Complexity	in	this	case	arises	from	machine-machine	capabilities	that	must	
comprise	coordinated	mobility97,	coordinated	tasking	and	ISR	(over,	presumably,	a	large	
geographical	area)	as	well	as	other	collaborative	actions,	all	undertaken	within	a	dynamic	anti-
access	and	area-denial	programme.98	Challenges	abound	given	that	AWS	must	also	be	capable	of	
distributed	attacks	whereby	a	higher-level	UAS	might	act	as	a	central	authority	that	is	able	to	
identify	targets	before	passing	them	off	to	lower-level	but	still	autonomous	units.		

	
An	emerging	model	derivative	is	therefore	one	that	is	based	upon	human-machine	teaming.	

Current	capabilities	in	this	deployment	category	are	quite	primitive,	either	restricted	to	
autonomous	track-and-follow	actions	or	the	execution	of	straightforward	pre-programmed	
manoeuvres	as	required	by	colleague	human	soldiers	or	other	pilots.99	SIPRI’s	database	found	no	
current	evidence	of	sophisticated	unmanned	systems	that	are	‘capable	of	acting	as	a	loyal	
wingman’.100		Indeed,	it	is	the	enduring	nature	of	these	outstanding	technical	challenges	which	
supports	HRW’s	contention	that	mastering	such	intricacy	remains	far-fetched.101	Nor	are	such	
challenges	restricted	to	broad	model	definitions.	SIPRI	notes	that	weapon	systems	incorporating	
human-machine	autonomy	include,	inter	alia,	air	defence	systems,	certain	active	protection	
systems,	robotic	sentry	systems,	certain	guided	munitions	and	loitering	weapons.	In	order	then	to	
understand	machine-human	models,	it	is	useful	to	review	certain	of	these	categories’	constituents.	
Such	platforms	can	be	quite	differentiated,	specifically	by	the	weapon	system’s	possible	range	of	
engagement;	in	this	way,	the	US’	Phalanx	System102	may	defend	a	ship	by	point	defence	while	a	
missile	defence	systems	such	as	Iron	Dome103	may	protect	a	more	substantial	geographic	block.		
How	then	do	these	precursor	systems	inform	the	introduction	of	broad-tasking	AWS?	Air	defence	
autonomy,	for	instance,	is	currently	restricted	to	the	support	of	its	host	weapon’s	targeting.104	
Additional	differentiation	instead	arises	from	both	the	type	of	targets	that	can	be	engaged	as	well	as	
the	range	of	autonomous	countermeasures	available	to	the	weapon	system.	The	point	is	that	
deployment	models	will	vary	by	weapon	type,	capability	and	tasking,	the	assets	involved	in	that	
collaboration	but	also	the	target	set	envisaged	for	that	weapon.	In	the	case	of	autonomous	air	
defence,	Turnbull	notes	that	such	model	variation	covers	target	detection	and	identification	

																																																								
96	‘Appropriate’	here	refers	to	both	the	teaming	model’s	efficacy,	its	operational	leverage	but	also	its	ability	to	remain	
LOAC	compliant.	
97	SIPRI	identifies	the	UTAP-22	UAS	developed	in	2016	by	Kratos	that	can	fly	autonomously	in	formation	in	several	
different	configurations.	
98	Here,	the	SIPRI	dataset	identifies	the	CARACaS	Project	architecture	(Control	Architecture	for	Robotic	Agent	Command	
and	Sensing)	enabling	a	boat	swarm	fleet	to	conduct	complex	surveillance	and	security	manoeuvres	autonomously.	
99	Boulanin	and	Verbruggen,	p.	33.	
100	Ibid.,	p.	34.	
101	Human	Rights	Watch	and	IHRC,	‘Fully	Autonomous	Weapons:	Questions	and	Answers’,	(October	2013),	p.	2	
<https://www.hrw.org/sites/default/files/supporting_resources/10.2013_killer_robots_qa.pdf>.		
102	See:	Raytheon	factsheet	on	Phalanx	land-based	weapon	system,	(2006),	generally		
<http://www.mobileradar.org/Documents/Ray_Phalanx.pdf>.	
103 See:	Rafael	factsheet	on	Iron	Dome	land-based	weapon	system,	2007-2012	
<http://www.rafael.co.il/SIP_STORAGE/FILES/6/3336.pdf,	2007-2012>	[accessed	23	February	2017]. 
104	J	O’Halloran	and	others,	Jane’s	Land-based	Air	Defence,	(UK:	IHS	Jane’s:	Coulsdon,	2010),	generally.	The	Russian	S-400	
Triumf	(sic)	can	reportedly	track	more	than	300	targets	and	engage	with	more	than	36	targets	simultaneously	at	a	
distance	of	up	to	250kms.		
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(typically	by	using	trajectory	and	velocity	to	ascertain	target	range	and	speed),	target	trajectory	
(tracking	if	the	incoming	weapon	sticks	to	its	predicted	path)	as	well	as	autonomous	target	
prioritisation	and	real-time	IFF	processes	(Identification,	Friend	or	Foe)	in	order	that	they	be	
integrated	into	subsequent	target	engagement.105	

	
Trying	to	construct	a	robust	set	of	deployment	models	is	therefore	complicated106	given	SIPRI’s	

observation	that	‘the	one	certainty	is	that	there	are	many	variables	which	need	to	be	taken	into	
consideration’.107	An	example	of	such	an	autonomous	variable	might	include	those	exhibited	by,	
say,	Active	Protection	Systems	(APS)	that	operate	on	a	similar	basis	to	air	defence	systems	
(combining	a	sensor	system,	a	tracking,	evaluation	and	classification	system	and	a	fire	control	
system)	in	order	to	protect	armoured	vehicles	against	incoming	hostile	munitions.	Similar	to	AWS,	
the	deployment	of	APS	will	rely	upon	data	from	on-board	sensors	in	order	to	understand	incoming	
threats	before	engaging,	usually	autonomously.108	Such	application,	however,	is	entirely	defensive.	
There	is	no	learning	component	to	APS.	These	variables,	however,	can	act	to	complicate	AWS	
deployment.	While	not	necessarily	lethal,	autonomous	countermeasures	include	actions	to	distort	
the	angle	of	an	incoming	missile’s	approach	(thereby	decreasing	the	chances	of	penetration)	or	to	
trigger	prematurely	the	incoming	projectile.109	After	all,	it	only	requires	a	small	operational	stretch	
before	the	deployment,	say,	of	robotic	sentry	platforms	and	gun	turrets	that	can	independently	
detect,	track	and	engage	targets.110	

	
Haas	and	Fischer	provide	clarification	to	this	deployment	question	by	highlighting	that	weapon	

autonomy	should	be	attached	not	to	whole	weapon	systems	but	rather	to	the	individual	tasks.111	In	
this	vein,	adjunct	autonomous	capabilities	are	important	as	they	both	affect	and	create	deployment	
models.	Attaching	autonomy	to	individual	tasks	does	not,	however,	reconcile	the	uncomfortable	
scenario	where	the	weapon	system	is	autonomous	‘until	a	human	intervenes’.112	This	is	to	ignore	
the	increasing	speed	of	machines	(that	empirically	must	leave	human	out-of-the-loop)	as	well	as	the	
challenging	imperative	that	autonomous	weapons	are	weapons	that	will	learn	from	their	

																																																								
105	Grant	Turnbull,	‘The	realities	of	autonomy	in	unmanned	aerial	systems	today’,	Army	Technology,	(9	February	2014),	
paras.	6,	14	and	28	of	33	<https://www.army-technology.com/features/featurethe-realities-of-autonomy-in-
unmanned-air-systems-today-4175047/>	[accessed	19	November	2017].		
106	George	Dvorsky,	‘Autonomous	Killing	`Machines	are	more	dangerous	that	we	think’,	Gizmodo,	29	February	2016,	
paras.	2-3	of	7	<https://gizmodo.com/autonomous-killing-machines-are-more-dangerous-than-we-1761928608>	
[accessed	12	January	2018].		
107	Boulanin	and	Verbruggen,	p.	57.	
108 Ibid.,	p.	44. 
109	See:	Battlefield	Wiki,	‘Active	Protection	Systems’,	<http://battlefield.wikia.com/wiki/Active_Protection>	[accessed	
21	July	2017].	Deployed	examples	include	Israel’s	Trophy	APS	on	its	Merkava	tanks.	SIPRI’s	dataset	lists	only	nine	
countries	developing	APS	Technology	and	seventeen	hard-kill	APS	products,	all	to	degrees	capable	of	autonomous	
target	detection,	identification,	prioritisation	and	target	engagement.	As	a	category,	APS	reaction	time	is	pivotal;	just	
300	milliseconds	is	available	to	intercept	an	anti-tank	missile	launched	from	400	meters.		
110	SIPRI’s	dataset	identifies	just	three	such	century	weapons	(Samsung’s	SGR-AI,	Raphael’s	Israeli	Sentry	Tech	and	
South	Korea’s	DODAAM	Super	aEgis	II.	Guided	missiles	are	excluded	from	this	analysis	as	the	sub-group	is	generally	
assigned	targets	in	advance	by	human	operators	and	only	use	autonomy	to	track,	navigate	or	engage	what	is	therefore	
already	a	pre-assigned	(and	therefore	not	autonomously	selected)	target.	
111	MC	Haas	and	SC	Fischer,	‘The	Evolution	of	Targeted	Killing	Practices:	Autonomous	Weapons,	Future	Conflicts	and	the	
International	Order’,	Contemporary	Policy,	38:2,	(August	2017),	pp.	283-286.	
112	Karen	Petersen,	‘General	Concepts	for	Human	Supervision	of	Autonomous	Robot	Teams’,	Technische	Universitat	
Darmstadt,	(23	May	2013),	p.	31	and	pp.	34-38	<http://tuprints.ulb.tu-darmstadt.de/3873/7/dissertation.pdf>.		
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surroundings.	Capabilities	such	as	a	‘readjustment	capacity’	(allowing,	for	instance,	flight	path	
adjustment	mid-flight)	as	well	as	autonomous	target	designation	styles	that	are	either	go-onto-
location-in-space	(a	particular	geographic	location)	or	go-onto-target	(based	on	signature,	heat/IR	
or	radar)	are	merely	a	matter	of	instruction.	They	may	evidence	component	autonomy	but,	for	the	
purposes	of	defining	deployment	models,	they	do	not	comprise	whole	weapon	autonomy.113	
Similarly,	weapon	tasking	might	permit	the	assignation	of	a	general	target	area	after	which,	in	line	
with	Haas	and	Fischer,	the	weapon	autonomously	find	targets	that	match	a	predefined	type.114	
Again,	however,	this	ignores	human’s	increasing	inability	to	intervene.	Moreover,	all	of	the	models	
thus	far	therefore	rely	on	what	are	human-imposed	criteria	to	manage	that	weapon’s	rules	of	
engagement.115		

 Developing models for autonomous weapons 
	
Casting	wider	for	deployment	models	that	are	still	akin	to	APS	and	sentry	platforms	leads	to	certain	
autonomous	loitering	weapons.	In	this	case,	operational	utility	is	derived	from	the	weapon’s	
offensive	tasking	and	its	ability	to	be	engaged	in	a	geographical	area	rather	than	at	a	predefined	
target.	While	SIPRI	defines	loitering	AWS	as	a	discrete	category	which	can	‘conduct	offensive	and	
defensive	missions	that	might	be	deemed	dangerous	or	risky’	for	other	weapon	types116,	Sharkey	
notes	that	it	is	still	the	commander	who	must	retain	‘contextual	and	situational	awareness	of	the	
target	area	at	the	time	of	initiating	any	specific	attack’.117	It	also	remains	the	local	commander	and	
his	delegating	staff	(and	dependent	upon	each	scenario’s	context)	who	must	‘perceive	and	react	to	
any	change	or	to	unanticipated	situations’	that	may	have	arisen	since	the	planning	of	that	attack	in	
order	dynamically	to	confirm	that	target’s	legitimacy.118	This	adds	complexity.	The	suggestion	is	
that	an	agent,	whether	the	machine	or	the	in-loco	commander,	must	have	active	cognitive	
participation	in	each	attack	as	well	as	sufficient	time	for	deliberation	on	the	nature	of	the	targets	as	
well	as	their	significance	in	terms	of	the	attack’s	overall	necessity	and	appropriateness.	In	this	case,	
Sharkey	is	arguing	that	the	agent	(again,	whether	machine	or	commander)	must	be	able	to	abort	or	
suspend	any	such	action.119	Similarly,	any	machine-human	teaming	should	not	prevent	meaningful	
assessment	of	incidental	effects	of	that	attack.		

	

																																																								
113	Horowitz	and	Scharre,	An	Introduction	to	Autonomy	in	Weapon	Systems,	p.	8.		
114	See:	RAF	factsheet,	‘Dual-mode	Brimstone’,	<https://www.raf.mod.uk/equipment/Brimstone.cfm>	[accessed	23	
June	2017].	
115	Kongsberg	Gruppen,	Naval	and	Joint	Strike	Missile	Update,	(USA:	Kongsberg,	13	March	2014),	pp.	18-22	
<https://www.kongsberg.com/en/kds/products/missilesystems/jointstrikemissile/>	[accessed	12	January	2017].		
116 Boulanin	and	Verbruggen,	p.	54.	Examples	include	the	development	(but	not	implementation)	of	the	US	Low	Cost	
Autonomous	Attack	System	(LCAAS),	the	US	Non-Line-of-Sight	Launch	System	(NLOS-LS)	and	the	UK’s	Battlefield	
Loitering	Artillery	Direct	Effect	System	(BLADE).	By	contrast,	the	Israeli	HARPY	system	(and	later	derivatives)	is	in	
operation	and	performs	in	complete	autonomy.	Once	launched,	HARPY	travels	to	a	predetermined	area	and	thereafter	
engages,	on	the	basis	of	GPS	and	pre-programmed	flight	plans,	potential	targets. 
117	Noel	Sharkey,	Staying	in	the	loop,	p.	28.	
118	Ibid.,	p.	30.	
119	Noel	Sharkey,	Staying	in	the	loop,	p.	28.		Paul	Scharre	has	highlighted,	however,	that	Sharkey’s	list	could	eliminate	a	
number	of	conventional	weapons	already	in	use.	The	point	here	might	be	to	look	forward	to	technical	developments	
and	‘upgrade	our	sensibility	to	civilian	harm	as	a	result	of	[those]	developments’.	
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A	further	challenge	to	this	human-machine	model	is	that	collaboration	must	be	based	on	
common	goals	as	well	as	appropriate	‘buy-in’	from	the	human	in	the	loop.120	The	concept	of	
‘centaur	war-fighting’	provides	a	relevant	analogy.	This	arises	from	the	game	of	chess	where	the	
player	(here,	the	human	commander)	uses	sophisticated	software	as	an	adviser	but	retains	control	
of	what	move	to	make.121	Translated	to	the	battlefield,	the	partnering	weapon	in	this	human-
machine	team	may	be	capable	of	lethal	engagement	but	with	the	soldier	performing	three	
simultaneous	roles.122	He	is	the	operator	whereby	the	weapon	system	cannot	effectively	complete	
engagements	without	his	participation.	He	is	also	the	moral	agent	making	dynamic	value-based	
judgments	about	whether	the	use	of	force	is	appropriate	and	whether	rules	of	engagement	have	
been	met.	This	too	is	not	straightforward.	Clark	interestingly	points	to	empirical	differences	(and	
the	challenges	arising)	in	decision-making	and	outcomes	between	male	and	female	soldiers.123	This	
evidences	a	critical	distinction	as	the	machine	is	enduringly	incapable	of	making	moral	judgement.	
Third,	technology	must	allow	the	human	to	act	as	fail-safe	using	his	ability	to	intervene,	alter	or	halt	
the	weapon	system’s	operation	should	it	fail	or	should	circumstances	change	such	that	the	original	
engagement	is	no	longer	appropriate.124	As	noted	by	Scharre,	however,	these	three	role	categories	
are	not	easy	to	maintain	within	the	model.	Removing	completely	the	human’s	role	as	both	moral	
agent	and	fail-safe	in	this	relationship	is	challenging	as	‘humans	have	moral	and	legal	judgments,	
responsibility	and	accountability,	making	their	role	as	moral	agents	important	for	many	tasks	in	
war.	Humans	also	have	greater	value	as	fail-safes,	with	the	ability	flexibly	to	respond	to	a	range	of	
unplanned	scenarios’.125	In	any	deployment	model,	after	all,	human-machine	teaming	is	subject	to	
the	same	legal,	ethical	and	practice	constraints	that	are	in	place	for	stand-alone	soldiery.	This	
linkage	is	important.	As	currently	drafted,	US	Department	of	Defence	Directive	3000.09126	requires	
that,	in	the	event	of	degraded	or	lost	communications,	weapon	systems	do	not	autonomously	select	
or	engage	targets	that	have	not	previously	been	selected	by	an	authorized	human	operator.127	
While	this	may	appears	unambiguous,	system	design	round	human-machine	teaming	must	
minimize	the	consequence	of	failure	that	could	otherwise	lead	to	unintended	engagement	or	to	
other	losses	of	control	over	that	teaming	system.128		

	
How	then	can	this	collaboration	model	work	in	practice	and	what	are	its	ramifications	to	

weapon	compliance?	In	the	first	instance,	the	model	for	machine-human	teaming	might	instead	be	

																																																								
120	Jeff	Boss,	‘The	Army’s	New	Decision-Making	Model’,	Forbes,	8	August	2014,	generally	
<https://www.forbes.com/sites/jeffboss/2014/08/08/the-armys-new-decision-making-model/#63585c991537>	
[accessed	8	December	2017].	
121	Sydney	Freedberg,	‘Centaur	Army:	Bob	Work,	Robotics.	&	The	Third	Offset	Strategy’,	Breaking	Defense,	9	November	
2015,	paras.	4	and	9-14	<https://breakingdefense.com/2015/11/centaur-army-bob-work-robotics-the-third-offset-
strategy/>	[accessed	2	September	2017].		
122	This	chapter’s	analysis	assumes	such	lethal	capabilities.	
123	Professor	Lloyd	Clark,	in	conversation	with	the	author,	February	2019.		
	
124	Paul	Scharre,	‘Autonomous	weapons	and	operational	risk’,	p.	42.	See	also:	Rami	Debouck	and	others,	‘Safety	Strategy	
for	Autonomous	Systems’,	Critical	System	Labs	Inc,	Vancouver,	undated,	pp.	5-7	<http://www.system-
safety.org/conferences/2011/papers/Safety%20Strategy%20for%20Autonomous%20Systems.pdf>.		
125	Scharre,	‘Autonomous	Weapons	and	Operational	Risk’,	p.	42.	
126	See:	Cryptome.org,	<https://cryptome.org/dodi/dodd-3000-09.pdf>.	
127	As	above:	Department	of	Defense,	DoD	Directive	3000.09:	Autonomy	in	All	Weapon	Systems,	(USA:	Washington,	21	
November	2012)	<https://www.hsdl.org/?abstract&did=726163>	[accessed	15	October	2017].	
128	Paul	Szoldra,	‘An	Ex-Pentagon	Official	thinks	‘Killer	Robots’	need	to	be	stopped’,	Business	Insider,	9	March	2016,	
paras.	1-3	<http://uk.businessinsider.com/pentagon-autonomous-warfare-2016-3>	[accessed	12	October	2017].	
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based	around	narrow-tasked	machine-centric	partnership.	Pellerin	then	suggests	that,	further	
along	this	continuum,	a	model	might	comprise	human-driven	collaboration	whereby	those	
weapons	draw	on	several	sources	for	their	operating	priorities.129	The	purpose,	after	all,	must	be	
that	autonomy	enables	weapons	to	integrate	goals	and	actions	in	tandem	with	external	information	
arising	from	the	partnering	human’s	background	knowledge,	his	experience	and	situational	
awareness.130	Such	soldier-machine	teaming,	however,	remains	far	removed	from	any	model	of	
AWS	acting	as	properly	‘social	agents’.	A	relevant	metric	is	the	degree	by	which	AWS	action	is	
independently	shaped	by	wider	battlefield	context	and	deep	background	knowledge.131	As	noted	by	
Chen	and	Barnes,	the	challenge	is	always	to	remove	inconsistencies	given	that	human-machine	
teaming	is	de	facto	based	upon	human	intervention.132	In	the	event	of	communications	being	
momentarily	lost	between	human	supervisor	and	an	otherwise	autonomous	system,	at	what	point	
should	the	teaming	weapon	halt	an	engagement	sequence	(or,	indeed,	otherwise	continue	engaging	
targets	as	a	fully	autonomous	machine)?	Similar	contradictions	arise	in	determining	protocol	
should	the	teaming	weapon	identify	ambiguities	or	conflicts	in	its	collaboration	with	its	human	
colleague.	The	dichotomy	here	is	that	disrupted	communications	act	both	as	a	complication	to	
weapon	teaming	as	well	as	a	key	driver	towards	weapon	autonomy.133	Weapon	reaction	in	the	
event	of	broken	contact	therefore	becomes	a	relevant	marker	in	deciding	upon	a	particular	
deployment	model.	In	this	way,	teaming	weapons	once	isolated	might	be	designed	to	stop	activity	
(failsafe	mode).	It	may	also	fail	dangerous	whereby	the	machine	continues	to	engage	targets	that	
have	been	pre-authorised	by	human	controllers.	Furthermore,	fail-deadly	modes	would,	notes	
Masandu,	allow	the	isolated	weapon	to	engage	‘emergent	targets	of	opportunity’	that	have	not	
specifically	been	approved	by	human	operators.134	Fail-deadly	mode	might	also	permit	lethal	force	
in	defence.	Seemingly	straightforward	human-machine	teaming	therefore	masks	deployment	
complexity.	Notwithstanding	outward	participation	of	the	human	operator	in	teaming	models,	
conflict	in	this	case	arises	exactly	because	of	complicating	issues	(breakdown	in	communication	
and	thus	a	requirement	to	act	alone)	that	put	the	machine	in	a	position	where	whole-weapon	
autonomy	may	be	required.	As	noted	by	Beautement,	not	only	are	these	relationships	neither	
delineated	nor	static	but	they	also	do	not	lend	themselves	to	in-field	monitoring	given	their	
mutability	and	the	extent	of	overlap.135	

 Flexible autonomy 
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[accessed	3	September	2017].		
133	Paul	Scharre,	‘Presentation	at	the	United	Nations	Convention	of	Certain	Conventional	Weapons’,	Lecture,	Informal	
Meeting	of	Experts	on	Lethal	Autonomous	Weapons,	Geneva,	(13	April	2015),	p.	3	
<https://www.unog.ch/80256EDD006B8954/(httpAssets)/98B8F054634E0C7EC1257E2F005759B0/$file/Scharre+p
resentation+text.pdf>.	
134	Nyagudi	Musandu,	‘Humnitarian	Algorithms:	A	Codified	Key	Safety	Switch	Protocol	for	Lethal	Autonomy’,	Nairobi,	
arXiv	preprint	arXiv	1402.2206	(2014),	p.	6	and	p.	11	<https://arxiv.org/pdf/1402.2206.pdf>.	
135	Beautement,	p.	6.	
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Given	the	challenges	of	teaming	an	otherwise	autonomous	weapon	to	on-the-ground	soldiers,	a	
deployment	model	based	instead	on	flexible	autonomy	might	therefore	be	feasible	whereby	control	
of	battlefield	tasks,	functions,	and	sub-systems	might	be	passed,	in	theory,	back	and	forth	between	
soldier	and	weapon	system	as	dictated	by	changing	circumstances.	The	model	continues	to	be	
widely	investigated	by	parties136	whereby	a	portfolio	of	frontline	functions	may	be	supported	by	
varying	levels	of	autonomy	from	fully-manual,	decision-aiding,	human-on-the-loop	supervisory	
control	to	one	that	operates	fully	autonomously	without	any	human	intervention.	Here,	the	
commander	will	theoretically	make	informed	choices	about	where	and	when	to	invoke	such	
autonomy	based	on	the	considerations	of	trust	in	his	teaming	machine,	the	ability	to	verify	its	
operation,	the	level	of	risk	and	risk	mitigation	available	for	operations	and	the	degree	to	which	
partnering	models	are	appropriate.137	The	issues,	however,	remain	those	of	control	(at	what	
command	level	may	these	decisions	be	made	and	within	what	timescales?),	feasibility,	reliability	
and	compliance.	In	circumstances	when	disaster	is	imminent,	this	same	model	posits	that	control	
will	be	removed	automatically	from	the	in-situ	soldier	and	handed	instead	to	the	teaming	weapon.		
	

In	order	to	assess	the	feasibility	of	flexible	autonomy	as	a	model,	it	is	useful	to	review	its	
operational	characteristics.138	Any	such	minimum	features	might,	after	all,	be	required	across	two,	
three	or	many	teaming	parties,	raising	issues	around	operator	capabilities	including	situational	
awareness,	informed	trust,	manageable	workload	levels	and	ease	of	interaction	between	colleague	
weapon	and	human	party.	Beautement	uses	the	metaphor	of	the	machine	as	a	team	player,	‘a	
purposeful	entity	capable	of	contributing	effectively	(sic)’.139	Two	variables	exist	for	this	model.	The	
teaming	system	may	or	may	not	be	directly	lethal.	Given,	moreover,	that	the	model	is	predicated	on	
flexible	passing	of	control	between	man	and	machine,	different	levels	of	autonomy	are	likely	to	be	
appropriate	at	different	times	and	within	different	teams.	As	such,	the	model	contains	several	
enduring	challenges.	How,	for	instance,	can	autonomy	be	wrested	back	from	machine	to	human	if	
that	machine	is	incommunicado	or	autonomously	engaged?	Sharkey	rightfully	borrows	from	
Kahneman	to	question	whether	the	toggling	of	control	between	weapon	and	soldier	can	ever	be	
workable	given	the	very	different	methods	of	reasoning	that	these	two	teaming	components	will	
use	in	mediating	such	changes	of	control.140	Several	points	arise	from	this	uncertainty.	This	thesis’	
later	analysis	identifies	material	challenges	to	basing	weapon	reasoning	upon	any	machine	learning	
framework	with,	inter	alia,	ML’s	inappropriate	suppression	of	doubt,	disregard	of	ambiguity	and	
poor	inference	of	causes	and	intentions.	Sharkey	is	particularly	clear	on	this	point	around	
reasoning:	‘An	unambiguous	answer	pops	up	immediately	and	does	not	allow	doubt.	[It]	does	not	
search	for	alternative	interpretations	and	does	not	examine	uncertainty…	If	something	looks	like	it	
might	be	a	legitimate	target	in	ambiguous	circumstances,	automatic	reasoning	will	be	certain	that	it	
is	legitimate’.141		

																																																								
136	US	Air	Force,	‘Autonomous	Horizons;	system	autonomy	in	the	air	force	–	a	path	to	the	future	–	human-autonomy	
teaming’,	Office	of	the	Chief	Scientist,	AF/ST	TR	15-01,	(June	2015),	pp.	9-15	
<https://www.af.mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf>.	
137	US	Air	Force,	Office	of	the	Chief	Scientist,	‘Autonomous	horizons’,	p.	v.	
138	IHLS,	‘Global	Powers	at	the	Edge	of	Autonomous	Battlefield	Innovation’,	IHLS,	(18	November	2017),	para.	4	
<https://i-hls.com/archives/79787>	[accessed	30	December	2017].	
139	Beautement,	pp.	3-6.	
140	D	Kahneman,	Thinking,	Fast	and	Slow,	(London:	Penguin,	2011),	generally.	
141	Sharkey,	‘Staying	in	the	loop:	human	supervisory	control	of	weapons’,	cit.	Bhuta	and	others,	pp.	32-33.	Also,	in	
conversation	with	the	author,	17	July	2017.	
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Research	also	endorses	Sharkey	in	three	important	respects	regarding	the	impact	upon	

deployment	models	based	on	flexible	autonomy.	Lord,	for	instance,	notes	that	decision	aids	
founded	upon	automated	reasoning	will	tend	to	promote	automation	bias	(uncritical	acceptance	of	
suggested	outcomes)	and	confirmation	bias	(seeking	and	then	accommodating	specific	information	
to	confirm	a	prior	belief).142	Parasuraman	points	out	that	the	more	reliable	human	operators	judge	
their	weapon	system,	the	less	rigourous	will	be	their	monitoring	of	those	systems	once	deployed.143	
Finally	to	this	point,	research	imputes	that	automatic	reasoning	will	tend	to	return	a	suggested	
outcome	without	first	considering	contextual	information	that	might	be	missing	from	inputs	which	
are	required	in	order	for	that	engagement	decision	to	be	compliant.144	In	determining	that	
automatic	reasoning	performs	poorly	where	there	is	contradictory	information	on	target	
legitimacy,	Sharkey	borrows	Kahneman’s	term	WYSIATI	(‘What	You	See	Is	All	There	Is’)	to	describe	
this	fault	line.	The	essence	of	the	problem	becomes	the	behavioural	issue	of	calibrating	human	
control	while	still	ensuring	that	the	weapon	remains	a	compliant	and	reliable	battlefield	asset.	This	
is	fundamentally	a	human	challenge.	Commenting	generally	on	friendly-fire	incidents,	the	US	Army	
Research	Laboratory	admits	‘how	do	you	establish	vigilance	[after]	twenty-three	hours	and	fifty-
nine	minutes	of	boredom	followed	by	one	minute	of	panic?’145	It	is	also	a	machine	challenge	to	the	
extent	that	appropriate	protocols	are	necessary	in	order	to	release	control	back	to	human	parties.	

	
Flexible	autonomy	models	require	that	weapon	control	should	always	be	partially	manual.	It	is	

the	human	operator	who	must	choreograph	the	task’s	overall	performance	while	the	weapon	in	
turn	carries	out	specific	tasks.	This	may	make	theoretical	sense	but	does	not	equate	to	weapon	
autonomy.	Given	these	constraints,	deployment	models	must	also	remain	based	upon	coterminous	
generation	of	‘situation	awareness	support’	given	that	sensed	data	is	required	in	the	partnership	to	
drive	decisions	and	goal	states.146	Under	this	refinement,	further	components	are	then	required	in	
order	to	allocate	where	control	sits	(between	weapon	and	human)	at	every	juncture.	First,	the	
weapon	should	autonomously	provide	a	list	of	potential	options	and	perhaps	rank	these	options	
into	a	recommended	target	list	or	COA	assessment.	A	second	component	must	be	robust	
supervisory	control	whereby	the	human	operator	sets	goals	but	otherwise	allows	the	weapon	to	
control	all	aspects	of	function	autonomously.147	A	final	component	for	flexible	autonomy	might	see	
the	machine	component	of	the	teaming	system	having	full	control	over	all	aspects	of	an	engagement	

																																																								
142	CG	Lord	and	others,	‘Human	decision	makers	and	automated	decision	aids:	made	for	each	other?’,	Raja	Parasuraman,	
ed,	Automation	and	human	performance:	Theory	and	applications,	(USA:	Mahwah,	NJ,	Laurence	Erlbaum	Associates,	
1996),	pp.	201-220.		
143	See:	Raja	Parasuraman	and	others,	‘Performance	consequences	of	automation-induced	‘complacency’’,	International	
Journal	of	Aviation	Psychology,	3,1,	(1993).	See	also:	Mica	Endsley,	‘Designing	for	Situational	Awareness’,	(Boca	Raton,	
CRC	Press,	19	April	2016),	19-20	and	24	(‘Goals	and	Situational	Awareness’).		
144	Claudio	Bettini	and	others,	‘A	Survey	of	Context	Modelling	and	Reasoning	Techniques’,	Elsevier,	(27		March	2008),	pp.	
3,	8	and	12	<http://ssltest.cs.umd.edu/class/spring2013/cmsc818g/files/bettinisurvey.pdf>.	
	
145	John	Hawley,	‘Automation	and	the	Patriot	air	and	missile	defence	system’,	Centre	for	a	New	American	Security,	
Washington,	(25	January	2017),	p.	6	<https://www.cnas.org/press/press-release/cnas-releases-report-on-automation-
and-the-patriot-air-and-missile-defense-system>	[accessed	17	November	2017].	
146 US	Air	Force,	Office	of	the	Chief	Scientist,	‘Autonomous	Horizons’,	pp.	6-7	and	pp.	15-18. 
147	Ibid.,	p.	11.	
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function	but	with	proven	human	ability	to	intervene.148	In	this	manner,	flexible	use	of	autonomy	
becomes	in	theory	a	dynamic	process	dependent	upon	given	battlefield	tasks.	The	challenge,	
however,	is	that	the	level	of	that	autonomy	must	change	very	rapidly	according	to	battlefield	
developments.	The	model’s	basis	should	therefore	be	that	the	weapon	system	can	be	trusted	to	
perform	predictably	the	task	at	hand,	where	it	is	possible	to	confirm	dynamically	the	autonomous	
system’s	performance	and	where	probability	of	outsized	negative	risk	is	mitigated.		
	

Flexible	autonomy	relies	on	the	human	operator	being	able	to	interact,	understand	but	also,	
crucially,	to	predict	his	partnership	with	the	autonomous	system.149	This	prediction	element	is	
severally	addressed	in	subsequent	chapters.	As	noted	by	Hyndman,	prediction	routines	remain	
enduringly	difficult	for	machines	and,	for	the	purposes	of	determining	deployment	models,	depend	
on	important	associations.150		How	well	understood,	for	instance,	are	causal	factors	between	the	
weapon’s	several	data	feeds	and,	second,	how	comprehensive	and	relevant	is	the	sensed	data	
collectable	by	the	AWS	for	these	prediction	routines?	A	further	constraint	to	this	model	then	arises	
from	such	routines	becoming	circular	whereby	the	weapon’s	output	(the	projections	arising	from	
its	prediction	routine)	in	turn	affects	the	issue	that	the	weapon	is	trying	to	forecast.	Resolution	here	
must	take	place	notwithstanding	that	one	or	more	(or	all)	of	the	weapon	components	(and,	
moreover,	the	soldier)	might	be	‘operating	outside	its	design	assumptions’	during	certain	combat	
operations.151	Controlling	a	group	of	robotic	weapons	platforms	creates	further	challenges	to	
deployment	models	that	are	based	around	flexible	autonomy.	As	inferred	from	Niccolini,	
fundamental	uncertainty	arises	from	multiple	units	having	first	to	coordinate	and	then	to	process	
an	exponentially	larger	(and	not	necessarily	linear)	set	of	weapon	data	points.152	Regardless	of	the	
model,	a	requirement	remains	for	complex	interaction	to	make	sense	of	what	is	an	inherently	
dynamic	environment	in	which	teaming	weapons	must	cooperate.153	In	this	sense,	it	is	difficult	to	
envisage	a	commander	having	to	substitute	his	group	of	traditionally	trained	soldiers	for	a	troop	of	
independent	weapons.	While	a	single	robot	must	contend	with	uncertainty	from	sensors,	effectors	
and	representational	conflicts,	multiple	robots	deployed	as	a	troop	must	also	process	uncertainty	
about	partner	robot	states,	partner	actions	and	intentions,	communications	and	plans.	If	the	model	
is	to	be	accretive	to	the	Delivery	Cohort,	then	rule	sets	must,	after	all,	be	sufficiently	flexible	to	
benefit	from	the	experience	and	situational	awareness	that	the	human	commander	brings	to	the	
partnership.	Teams	of	weapons	are	otherwise	likely	to	interfere	with	each	other’s	efficient	
battlefield	operation,	both	in	terms	of	physical	space	and,	more	importantly,	through	goal	conflict	
and	other	tasking	noise.154	Predicting	and	managing	in	real-time	this	interference	therefore	become	
a	key	deployment	challenge.	

																																																								
148	The	F-16’s	Automatic	Ground	Collision	Avoidance	System,	for	instance,	continuously	monitors	for	impending	ground	
impacts	and	will	execute	recoveries	at	the	last	possible	instant	before	returning	control	to	the	pilot.	This,	however,	
ignores	counter-measures	and	adversarial	actions.		
149	US	Air	Force,	Office	of	the	Chief	Scientist,	‘Autonomous	Horizons’,	p.	12.	
150	Rob	Hyndman,	‘Why	are	some	things	easier	to	forecast	than	others?’,	Hyndsight,	(18	September	2012),	generally	
<https://robjhyndman.com/hyndsight/hardforecasts/>	[accessed	23	June	2017].	
151	Daniel	Serfarty	and	others,	‘Adaption	to	Stress	in	Team	Decision-making	and	Coordination’,	Proceedings	of	the	
Human	and	Ergonomics	Society,	37,	(1	October	1993),	pp.	1228-1229.		
152	Marta	Niccolini	and	others,	‘Cooperative	control	for	multiple	autonomous	vehicles	using	descriptor	functions’,	
Journal	of	Sensor	and	Actuator	Networks,	3,	(2014),	27.		
153	Maja	Mataric,	The	Robotics	Primer,	TJ211.M3673,	(USA:	Massachusetts	Institute	of	Technology,	2007),	p.	234.	
154 Arquilla	and	Ronfeldt,	‘Swarming	and	the	future	of	conflict’,	pp.	45-47. 
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Nevertheless,	flexible	autonomy	clearly	posits	operational	advantages.	In	certain	cases	

(operations	requiring	that	large	areas	be	monitored,	occupied	or	denied),	the	SIPRI	dataset	
suggests	that	a	teaming	model	may	out-perform	in	certain	battlefield	tasks.155	Similarly,	team	
operations	may	theoretically	be	better	suited	to	multiple	weapon	platforms	working	in	tandem.	The	
model	may	also	increase	overall	task	robustness	resulting,	in	part,	from	permitted	redundancy.156	
As	set	out	by	Lachow,	flexibly	autonomous	teaming	might	either	be	homogenous	(multiple	similar	
systems	requiring	less	high-level	coordination)	or	heterogeneous	(with	quite	different	and	non-
interchangeable	weapon	‘members’).157	Teams,	however,	whether	loosely	or	tightly	coupled,	will	
still	generate	idiosyncratic	complexity.	Specifically,	weapon	platform	relationships	may	change	
dynamically,	either	sequentially	with	new	battlefield	tasks	or,	more	complicatedly,	in-task	
depending	on	progress	with	that	task.	Teaming	weapons	in	this	model	must	either	be	deployed	
according	to	a	global	plan	(itself	a	complication	in	a	rapidly	changing	combat	environment)	or	must	
create	an	ad	hoc	plan	as	team	members	(here,	the	human	commander	and	colleague	robotic	
weapons)	coordinate	their	tasks	and	toggle	autonomy	accordingly.	Task	fluidity	similarly	
complicates	the	deployment	model.	The	human	operator	who	is	engaged	elsewhere	must	
unexpectedly	take	back	control	from	an	autonomous	colleague	system	that	has	encountered	a	
process	or	task	problem.	Termed	the	human	out-of-the-loop	control	problem,	Shahriari	evidences	
that	human	bandwidth	is	particularly	poor	if	the	commander	is	suddenly	required	to	change	mental	
gears	and	diagnose	a	complex	problem	that	was	previously	being	addressed	by	the	partnering	
machine.158	

	
Two	further	challenges	arise	from	the	coupled	nature	of	this	model	that	questions	its	

feasibility.	As	inferred	from	Chen,	communication	breakdown	or	incomplete	data	will	have	
disproportionately	adverse	effect	in	the	performance	of	weapons	or	teams	of	weapons	operating	in	
a	flexible	model.159	This	is	unsurprising.	It	is,	after	all,	the	layering	of	communication	(which	
weapon	receives	what,	which	weapon	received	what)	that	is	a	central	deployment	conundrum	for	
planner	and	commander	especially	in	an	environment	where	an	intelligent	adversary	is	employing	
spoofing,	decoys,	cyber	or	electronic	attack.	As	communication	channels	degrade,	messages	or	parts	
of	messages	are	likely	to	be	lost	or	corrupted.160	Given	that	data	sharing	is	a	fundamental	precept	of	
flexible	autonomy,	it	follows	that	its	deterioration	must	affect	weapon	outcomes.	A	second	
deployment	problem	is	highlighted	by	Simmons	and	arises	through	the	requirement	for	weapon	

																																																								
155	Boulanin	and	Verbruggen,	p.	36.	
156	R	Arkin,	‘Governing	lethal	behaviour:	Embedding	ethics	in	a	hybrid	deliberate/reactive	robot	architecture’,	pp.	115-
119.	
157	Irving	Lachow,	‘The	upside	and	downside	of	swarming	drones’,	Bulletin	of	the	Atomic	Scientists,	73:2,	(February	
2017),	p.	96	and	pp.	98-99	
<http://www.tandfonline.com/doi/pdf/10.1080/00963402.2017.1290879?needAccess=true>	[accessed	25	June	
2017].	
158	Bobak	Shahriari	and	others,	‘Taking	the	human	out	of	the	loop:	A	review	of	Baysian	optimisation’,	Proceedings	of	the	
IEEE,	104:1,	(2016),	pp.	148-150	<https://www.cs.ox.ac.uk/people/nando.defreitas/publications/BayesOptLoop.pdf>.		
159	Min	Chen	and	others,	‘Machine	to	machine	communications:	Architecture,	Standards	and	Applications’,	Transactions	
on	the	Internet	and	Information	Systems,	6,	2,	(February	2012),	p.	481	
<https://www.researchgate.net/profile/Jiafu_Wan2/publication/264846553_Machine-to-
Machine_Communications_Architectures_Standards_and_Applications/links/550b9af60cf265693cef8967/Machine-to-
Machine-Communications-Architectures-Standards-and-Applications.pdf>.		
160	Mataric,	The	Robotics	Primer,	p.	243.	
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coordination	in	teaming	tasks.	This	is	a	longstanding	dilemma	in	machine	control	and	task	
delegation.161	Using	centralized	control	to	enforce	teaming	will	require	precise	information	
management	whereby	sensed	data	is	collected,	filtered,	cleansed,	checked	and	then	prioritised	
before	being	distributed	from	a	single	source	to	all	partnering	entities.	This	is	a	complicated	
obligation	that	will	add	to	the	weapon’s	fragility.	While	this	approach	may	allow	team	machines	to	
compute	an	optimal	solution	to	each	problem	in	place,	it	empirically	makes	the	centralized	
controller	an	unacceptable	bottleneck	in	the	model.	More	appropriate,	therefore,	might	be	the	
deployment	of	further	layering	that	allows	for	decentralized	collation	and	processing	of	that	
information.	In	such	distributed	control,	each	deployed	weapon	might	then	use	its	own	controller	
to	decide	autonomously	its	own	course	of	action.162	Theoretically,	teaming	that	involves	
autonomous	agents	will	then	be	unaffected	as	a	team	grows	or	changes	in	size.	Conversely,	
however,	a	deployment	model	based	on	distributed	battlefield	control	requires	appropriate	
collective	behaviours	to	be	defined,	itself	a	bottleneck	and	additional	source	of	error.	Furthermore,	
Mataric	is	clear	that	such	deployment	behaviours	should	ideally	be	generated	in	a	decentralized,	
non-planned	fashion	and	directly	through	the	interactions	of	individual	weapon	platforms	that	
make	up	the	team.163	Finally	to	this	point,	this	type	of	deployment	model	(involving	multiple	
agents)	will	be	disproportionately	affected	by	what	are	local	weapon	behaviours	that	are	being	
generated	in	order	to	optimize	dynamics	between	the	teaming	units.	Given	the	overriding	
importance	of	prediction	to	this	model,	it	is	precisely	this	extrapolation	of	team	behaviour	in,	for	
instance,	an	autonomous	weapon	swarm	(the	subject	of	the	following	section)	that	will	become	
ever	more	difficult	to	manage.	In	this	case,	Woods	highlights	the	complexity	of	decision	points,	end	
points	and,	of	course,	the	toggling	of	control	requiring	feedback	and	propagation	mechanisms	that	
must	be	shared	throughout	the	team	and	other	relevant	control	polities.164		

	
A	final	deployment	weakness	for	this	model	is	identified	by	Mericli	whereby	post	facto	

reconciliation	of	weapon	activities	and	(given	the	model’s	inherently	non-linear	human	
intervention)	and	impact	is	difficult	to	attribute.165	As	inferred	from	El	Deeb,	the	generally	small	
number	of	weapon	units	comprising	a	teaming	group	will	mean,	moreover,	that	the	data	universe	
collected	will	likely	be	statistically	irrelevant	and	likely	prone	to	noise	and	error.166	Just	as	toggling	
autonomous	control	between	parties	will	impede	team	predictability,	moving	from	local	rules	(one	
machine)	to	global	behaviour	(a	swarm	of	machines)	poses	similar	challenges.	Egerstedt	notes	that	

																																																								
161	See:	Reid	Simmons,	‘Structured	control	of	autonomous	robots’,	IEEE	Transactions	on	Robots	and	Automation,	10,1,	
(February	1994)	<https://www.cs.cmu.edu/~reids/papers/structured.pdf>.		
162	Simmons,	pp.	36-38.	
163	Mataric,	‘The	Robotics	Primer’,	p.	247.	
164	David	Woods,	‘Decomposing	Automation:	Apparent	Simplicity,	Real	Complexity’,	Automation	and	Human	
Performance	Theory	and	Application,	Erlbaum,	(1996),	pp.	1-2	and	pp.	3-6	
<https://www.researchgate.net/profile/David_Woods11/publication/267402671_Decomposing_Automation_Apparen
t_Simplicity_Real_Complexity/links/546b62c60cf2f5eb18091bcd.pdf>.	
165 Cetin	Mericli	and	others,	‘Task	Refinement	for	Autonomous	Robots	using	Complementary	Corrective	Human	
Feedback’,	International	Journal	of	Advanced	Robotic	Systems,	8.2,	(2011)	
<http://www.cs.cmu.edu/~mmv/papers/11ijars-cetin.pdf>.	
166	Ahmed	El	Deeb,	‘What	to	do	with	“small”	data?’,	Rants	on	Machine	Learning,	5	October	2015	
<https://medium.com/rants-on-machine-learning/what-to-do-with-small-data-d253254d1a89>	[Accessed	2	January	
2018].		
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the	inverse	problem	(when	AWS’	global	behaviour	toggles	to	local	rules)	is	harder	still.167	The	
corollary	is	that	it	may	be	theoretically	impossible	to	produce	predictable	group	behaviour	(that	is	
required	under	LOAC)	in	a	system	based	on	ML	that	is	both	multi-party	and	flexible	except	in	role-
specific,	narrow-task	applications.168		

 Swarming model for AWS deployment 
	
One	such	role-specific	application	is	represented	by	the	automation	of	small	weaponised	units	into	
a	swarm	of	self-directed	armed	drones.169	Its	deployment	promise	is	that	while	individual	elements	
may	not	themselves	be	threatening,	they	can	be	deployed	autonomously	in	such	numbers	that,	it	is	
posited,	they	may	be	difficult	to	defeat.	Hambling	and	others	advocate	AWS	swarm	characteristics	
of	robustness,	low-cost	and	rapid	evolution	notwithstanding	that	several	of	the	control	challenges	
identified	in	the	previous	section	remain	unchanged.170	For	the	purposes	of	this	section,	swarming	
is	best	defined	as	a	convergent	attack	from	many	directions.	As	identified	by	Arquilla	and	Ronfeldt,	
‘swarming	is	seemingly	amorphous,	but	it	is	a	deliberately	structured,	coordinated,	strategic	way	to	
strike	from	all	directions,	by	means	of	a	sustainable	pulsing	of	force	and/or	fire’.171	How	then	might	
swarming	impact	upon	AWS	deployment	models?	Its	theoretical	advantages	appear	plausible.	As	
noted	by	Scharre,	multiple	weapon	systems	operating	as	an	autonomous	pack	could	return	‘mass’	
to	the	battlefield	by	augmenting	manned	combat	systems	with	a	large	number	of	low-cost	and	
unmanned	systems	that	expand	materially	the	number	of	sensors	and	shooters	in	the	fight.172	This	
in	itself	may	be	an	important	driver	given	ever-rising	large-platform	costs.173	Instead,	as	precision-
guided	munitions	proliferate	amongst	adversaries	(both	State	and	non-state)174,	Huis	notes	that	a	
shrinking	number	of	combat	assets	can	itself	become	a	strategic	liability	as	adversaries	concentrate	
increasingly	accurate	weapons	on	what	is	then	an	ever-smaller	number	of	principal	ships,	bases	
and	other	high-value	battlefield	assets.	Swarming	might	thus	provide	an	appealing	new	
paradigm.175	As	a	deployment	model,	it	hypothetically	combines	the	highly	decentralized	nature	of	
combat	with	mobility	of	manoeuvre	and	a	high	degree	of	organisation.	In	this	manner,	a	qualitative	

																																																								
167	Magnus	Egerstedt,	Control	of	Autonomous	Mobile	Robots,	Handbook	of	Networked	and	Embedded	Control	Systems,	
(USA:	Birkhauser	Boston,	2005),	pp.	532-534	
<https://pdfs.semanticscholar.org/37cf/ab5a80cbb726799e1ebf0f4827db7585a48f.pdf>.		
168	Derived	from:	Mataric,	Issues	and	approaches	in	the	design	of	collective	autonomous	agents,	(USA:	Robotics	and	
Autonomous	Systems,	16,	1995),	pp.	321-322	<http://crr.eng.auburn.edu/Bibliography/Mataric-
Issues%20and%20approaches%20in%20design%20of%20collective%20autonomous%20agents.pdf>.	
169	Evan	Ackerman,	‘Lethal	Microdrones,	Dystopian	Futures	and	the	autonomous	Weapon	Debate’,	IEEE	Spectrum,	(15	
November	2017)	<https://spectrum.ieee.org/automaton/robotics/military-robots/lethal-microdrones-dystopian-
futures-and-the-autonomous-weapons-debate>	[accessed	2	February	2018].		
170	Hambling,	p.	4.	
171	Arquilla	and	Ronfeldt,	‘Swarming	and	the	future	of	conflict’,	generally.		
172	Scharre,	‘Robotics	on	the	Battlefield,	Part	II:	The	Coming	Swarm’,	p.	6.	
173	For	a	useful	primer	on	Force	Multiplication,	see	Winslow	Wheeler,	‘Revisiting	the	Reaper	Revolution,	Time,	(27	
February	2012),	generally	<http://nation.time.com/2012/02/27/1-the-reaper-revolution-revisited/>	[accessed	15	
February	2016].		
174	Randy	Huis,	Proliferation	of	Precision	Strike:	Issues	for	Congress,	(USA:	Congress	Research	Services,	R42539,	14	May	
2012)	<https://fas.org/sgp/crs/nuke/R42539.pdf>,	pp.	7-8	and	pp.	13-15.		
175	See,	for	example:	Thales	Aerospace	Blog,	‘The	irresistible	attraction	of	the	drone’,	Thales,	5	April	2018,	generally	
<http://onboard.thalesgroup.com/irresistible-attraction-drone/>	[accessed	25	July	2018].	See	also:	Ed	Yong,	‘A	bird-
like	flock	of	autonomous	drones’,	National	Geographic,	27	February	2014	
<https://www.nationalgeographic.com/science/phenomena/2014/02/27/a-bird-like-flock-of-autonomous-drones/>	
[accessed	25	July	2018].		
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superiority	of	aggregate	forces	may	be	maintained	but	in	a	much-dispersed	environment	and	
across	a	greater	number	of	platforms.176	Swarming	systems,	moreover,	can	theoretically	take	
considerably	more	battlefield	risk,	balancing	survivability	against	cost.	As	above,	greater	numbers	
of	incoming	ordnance	complicate	an	adversary’s	targeting	priorities.	This	disaggregation	of	combat	
power	into	a	larger	number	of	less	complex,	less	costly	and	less	‘exquisite’	systems	also	allows	a	
‘family-of-systems’	approach	(in	procurement	terms)	thereby	increasing	system	diversity,	reducing	
technology	risk	and,	in	theory,	driving	down	costs.177	
	

Swarming	thus	sits	across	those	same	deployment	models	discussed	above,	able	to	deliver	
lethality	without	supervision	but	also	positing	fundamental	advantages.	The	swarm’s	ability	to	
absorb	casualties	is	a	clear	asset.		A	heuristic	is	that	the	morale	of	military	units	cracks	on	the	
battlefield	when	casualties	reach	a	tipping	point.	This	is	a	complex	subject.	Hambling	contentiously	
cites	a	rate	of	some	thirty	percent:178	When	some	third	of	troops	are	killed	or	incapacitated,	the	
inference	is	that	an	attack	empirically	falters	or	defenders	start	retreating.	With	AWS,	however,	
‘asset	casualties’	become	less	relevant.	Similarly,	while	a	single	broken	component	can	end	a	
Reaper’s	mission,	an	autonomous	swarm	can	continue	regardless	of	its	loss	ratio.	The	mathematics	
of	swarming	is	similarly	compelling.179	In	this	swarming	model,	combat	power	can	be	dispersed	in	
order	to	force	the	adversary	to	expend	more	munitions	on	more	incoming	targets.	Platform	
survivability	is	replaced	instead	with	a	concept	of	swarm	resiliency.180	As	noted	by	Scharre,	the	
mass	of	a	swarming	force	allows	the	user	to	exhibit	a	‘graceful	degradation	of	combat	power	as	
individual	platforms	are	attrited,	as	opposed	to	a	sharp	loss	in	combat	power	if	a	single,	more	
exquisite	platform	is	lost’.181	Similarly,	the	swarming	model	relies	largely	on	overwhelming	enemy	
defences	such	that	‘leakers’	get	through,	taking	out	the	target.	Notwithstanding	very	many	
variables,	the	model	also	posits	saturation	of	enemy	defences	in	order	to	exhaust	both	enemy	
logistics	and	replenishment.	An	adversary’s	guns	can,	after	all,	only	shoot	in	one	direction	at	any	
one	time	and	currently	require	several	seconds	of	engagement	to	deal	with	each	target.		

	
The	power	of	the	model	lies	in	more	than	just	the	mathematics	of	greater	numbers.	Swarming’s	

theoretical	coordination	is	based	on	maintaining	separation	from	nearest	neighbours,	steering	with	
regard	to	the	locus	of	neighbours	(while	attempting	to	move	towards	the	average	position	of	your	
neighbours)	thereby	keeping	the	swarm	weapon	flock	together.	Frei	points	to	the	swarm’s	‘self-
healing	networks’.182	In	this	vein,	Hambling	notes	that	none	of	its	members	need	be	in	overall	
charge	with	control	therefore	decentralized	resulting,	in	theory,	in	no	loss	of	cohesion	during	an	

																																																								
176	Arquilla	and	Ronfeldt,	‘Swarming	and	the	future	of	conflict’,	pp.	75-79.		
177	Scharre,	‘Robotics	on	the	Battlefield’,	p.	6.	
178	Hambling,	p.	182.	
179	Naval	Postgraduate	School	in	Monterey,	‘UAV	swarm	attack	protection	system:	Alternatives	for	destroyers’,	Monterey	
Publishing,	(2012)	<http://calhoun.nps.edu/handle/10945/28669>	[accessed	4/8/16].	The	modeled	outcome	of	just	
ten	incoming	autonomous	attack	drones	indicated	that	the	defences	of	the	destroyer	would	be	overwhelmed	by	at	least	
one	significant	hit.	
180	See:	Edwin	Ordoukhanian,	‘Resilience	Concepts	for	UAV	Swarms’,	CSSE,	USC	Viterbi,	(March	2016),	generally	
<https://pdfs.semanticscholar.org/presentation/c95f/e77e25df2093fac4a5da723b43062c7e4d24.pdf>.		
181	Scharre,	‘Robotics	on	the	Battlefield’,	p.	14.	
182	Regina	Frei	and	others,	‘Self-healing	and	self-repairing	technologies’,	International	Journal	of	Advanced	
Manufacturing	Technologies,	Springer,	(29	November	2012)	<http://cui.unige.ch/~dimarzo/papers/JAMT.pdf>.		
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engagement:	‘Half	a	swarm	is	still	a	swarm	and	still	capable	of	all	the	same	actions’.183	There	are	
also	range	benefits	to	swarming.	It	is	calculated	that	potential	distances	achievable	by	the	AWS	in	
swarm	formation	will	increase	by	the	square	root	of	the	number	of	flyers	in	the	formation.184	This	
important	model	feature	is	evidenced	by	research	from	the	US	Air	Force	Air	Vehicles	Directorate	
which	concludes	that	swarming	units	can	achieve	an	eighty	per	cent	increase	in	range	over	the	
distance	they	could	fly	alone.185	The	model’s	elasticity	posits	that	rules-based	operations	can	enable	
synchronized	attack	or	defence	as	well	as	more	efficient	allocation	of	combat	assets	over	a	
designated	area.	The	model	is	already	in	evidence:	The	US	Navy’s	low-cost	UAV	swarming	
technology	LOCUST	programme	can	manoeuvre	multiple	‘autonomous’	units	without	those	
machines	having	to	be	individually	controlled.186	The	U.S.	Navy	has	similarly	demonstrated	swarm	
control	software	to	manage	unmanned	surface	vessels:	Equipped	with	CARACaS	software	(Control	
Architecture	for	Robotic	Agent	Command	and	Sensing),	robotic	boats	dutifully	respond	as	a	swarm	
when	approached	by	a	potentially	threatening	enemy	ship.187	Finally	to	this	point,	Strohn	points	out	
that	Western	armies	do	not	currently	have	appropriate	air-defence	against	such	swarms.188		

	
Such	analysis,	however,	ignores	technical	and	behavioural	challenges	to	swarming	deployment.	

As	pointed	out	by	Lachow,	swarm	coordination	is	fundamentally	complicated	as	the	required	set	of	
actions	gives	rise	to	unexpectedly	complex	behaviour.189	The	model	also	muddies	attribution	of	
responsibility;	a	team	of	weapons	might	be	composed	of	individually	understand	units	which	
together,	as	a	swarm,	deliver	unanticipated	outcomes	(or	simply	fail).	For	this	reason,	swarm	
models	remain	in	beta	form.190	Challenges	to	this	model	are	also	behavioural	given	the	cognitive	
demands	that	will	be	placed	on	the	Delivery	Cohort	(including,	of	course,	the	ceiling	number	of	
units	that	can	be	effectively	be	controlled	without	general	autonomy).	Edwards,	after	all,	notes	that	
even	a	theoretically	optimal	swarm	model	for	command-and-control	is	neither	obvious	nor	
stable.191	This	arises	from	the	model’s	requirement	that	it	be	both	dynamic	while	still	matching	the	
level	of	swarm	intelligence	to	the	complexity	of	the	underlying	task.	Swarming	models	must	

																																																								
183	Hambling,	p.	187.	
184	Ibid.,	p.	194.	
185	See:	US	Air	Force	Research	Laboratory,	15	December	2014	
<http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104463/air-force-research-laboratory.aspx>	
[accessed	12	December	2016].	
186	See:	popsci.com	<http://www.popsci.com/navys-locust-launcher-fires-swarm-drones>	[accessed	5	October	2016].	
187	David	Smalley,	‘The	Future	is	Now:	Navy’s	Autonomous	Swarmboats	can	Overwhelm	Adversaries’,	Office	of	Naval	
Research,	Science	and	Technology,	(2014)	<http://www.onr.navy.mil/Media-Center/Press-
Releases/2014/autonomous-swarm-boat-unmanned-caracas.aspx>	[accessed	3	July	2016].	
188	Dr	Matthias	Strohn,	in	conversation	with	the	author,	January	2019.	See	also:	UAS	Vision,	‘Suppressing	Air	Defenses	
by	UAV	Swarm	Attack’,	UASVision.com,	(28	June	2018),	paras.	10	and	17	of	19	
<https://www.uasvision.com/2018/06/28/suppressing-air-defenses-by-uav-swarm-attack/>	[accessed	12	August	
2018].	
	
189	Irving	Lachow,	‘The	upside	and	downside	of	swarming	drones’,	Bulletin	of	the	Atomic	Scientists,	(4	March	2017),	pp.	
98-99	<https://thebulletin.org/2017/03/the-upside-and-downside-of-swarming-drones/>.	
190	For	example,	see:	Harvard	University,	‘Self	organizing	systems	research	group’	at	
<http:www.eecs.hardvard.edu/ssr>	[accessed	31	August	2016],	cit.	Scharre,	‘Robotics	on	the	Battlefield	part	II:	The	
coming	swarm’,	p.	55.	See	also:	Scott	Maucione,	‘Navy	Wants	to	Cut	Weapons	Testing	Time	with	Simulations	and	
Modelling’,	Federal	News	Radio,	12	January	2018,	generally	<https://federalnewsradio.com/defense/2018/01/navy-
wants-to-cut-weapons-testing-time-with-simulations-and-modeling/>	[accessed	6	June	2018].	
191	Sean	Edwards,	‘Swarming	and	the	Future	of	Warfare’,	Pandee	Rand	Graduate	School,	(2005),	pp.	104-105	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a434577.pdf>.		
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depend,	task	by	task,	on	appropriate	information	(arising,	in	this	case,	from	each	battlefield	brief	as	
well	as	the	consequences	of	that	brief).	To	retain	compliance	under	LOAC,	this	must	be	enacted	
upon	in	advance	of	each	mission.	It	must	also	account	for	any	state	changes	encountered	during	the	
mission,	the	speed	of	reaction	required	by	the	swarm	to	adapt	as	well	as	the	extent	to	which	
cooperation	among	swarm	components	is	required	in	order	to	complete	the	task.	Any	deployment	
model	must	thus	account	for	the	degree	of	risk	(both	in	terms	of	probability	and	consequences)	of	
task	failure.192	

	
Other	issues	combine	to	undermine	the	swarm	model.	A	trade-off	exists	between	a	swarm’s	

attribute	of	mass	and	coordination	on	the	one	hand	and	the	speed	of	decision-making	for	local	
commanders	and	policymakers	on	the	other.	Enduring	behavioural	obstacles	remain	
notwithstanding,	notes	Sadler,	that	swarming	methods	continue	to	undergo	material	development	
and	overhaul.193	The	challenge	here	to	removing	human	supervision	is	that	traditional	tasks	must	
then	be	defined	and	allocated	in	new	ways.194	The	US	military,	moreover,	is	heavily	invested,	both	
financially	and	bureaucratically,	in	its	current	in-the-loop	equipment	and	methods	of	fighting.	
Ferrell	notes	that	only	one	dollar	out	of	every	twenty	dollars	spent	by	the	US	Department	of	
Defense	on	R&D	and	procurement	currently	goes	into	developing	unmanned	systems.195	As	above,	
by	2018	global	spending	on	military	robotics	is	estimated	to	reach	$7.5bn	per	year	but	this	
compares	to	the	$43bn	that	is	spent	worldwide	on	commercial	and	industrial	robotics.	Sadler	
points	instead	to	the	flux	that	exists	around	swarming’s	command	and	integration	issues.196	Such	
mechanisms	also	require	reliable	high	bandwidth	to	move	data	and	instructions	between	host	and	
swarm.	As	Scharre	notes,	‘the	problem	[here]	is	that	the	enemy	gets	a	vote’.197	

 Operations and causes of failure in AWS models 
	
Deployment	models	must	also	be	reviewed	through	what	Ingersoll	terms	‘the	empirical	lens	of	
battlefield	practicality’.198	This	requires	taking	measure	of	relative	fragility	within	these	models	as	
well	as	the	likely	drivers	to	their	operational	failure.	It	requires	review	of	ramifications	arising	from	
testing	complexities	and	the	challenges	of	validating	and	maintaining	these	models’	integrity.	For	
the	purposes	of	this	section,	failure	may	occur	at	multiple	points	in	a	deployment	model.	There	is	
																																																								
192	Scharre,	‘Robotics	on	the	Battlefield’,	p.	40.	This	is	discussed	in	this	chapter’s	subsequent	section:	4.7	(‘Operations	
and	causes	of	failure’).	
193	Brent	Sadler,	‘Fast	Followers,	Learning	Machines,	and	the	Third	Offset	Strategy’,	National	Defense	University	Press,	
Joint	Force	Quarterly	83,	1	October	2016,	generally	<http://ndupress.ndu.edu/Media/News/Article/969644/fast-
followers-learning-machines-and-the-third-offset-strategy/>	[accessed	23	August	2018].		
194	Although	published	in	1993,	for	discussion	on	task	allocation	and	definition	challenges,	see:	Myron	Hura	and	others,	
‘Intelligence	Support	and	Mission	Planning	for	Autonomous	Precision-guided	Weapons’,	RAND,	United	States	Airforce,	
Library	of	Congress	Publishing,	(1993),	pp.	5-7,	14-16	and	42	<https://apps.dtic.mil/dtic/tr/fulltext/u2/a282344.pdf>.	
	
195	David	Klein,	‘US	the	Department	of	Defense	2015	budget	analysis’,	www.auvsi.org,	(May	2014)	
<www.auvsi.org/Mississippi/blogs/david-klein/2014/05/02/us-department-of-defense-2015-budget-analysis>	
[accessed	31	August	2016].	
196	Brent	Sadler,	generally.	Also,	Lloyd	Clark	in	conversation	with	the	author,	17	July	2018.	See	also:	Michael	Pilling,	
‘Issues	regarding	the	Future	Application	of	Autonomous	systems	to	Command	and	Control’,	Australian	Government	
Department	of	Defense,	Joint	Operations	Division,	DSTO-TR-3112,	pp.	11-12	(June	2015)	
<https://pdfs.semanticscholar.org/f4cd/63e3db777cc2f43d98aa82875802a9079494.pdf>.		
197	Scharre,	‘Robotics	on	the	Battlefield’,	p.	11.	
198	Geoffrey	Ingersoll	and	Robert	Johnson,	‘The	25	Most	Effective	Weapons	in	the	US	Arsenal’,	Business	Insider,	14	
December	2012	<https://www.businessinsider.com/most-effective-weapons-in-the-us-arsenal-2012-12?IR=T>	
[accessed	30	July	2018].	
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the	risk	of	practical	failure	(not	accomplishing	a	mission	and	therefore	being	a	waste	of	time	and	
resources),	technical	failure	(the	AWS	fails	to	behave	as	envisaged)	and	legal	failure	(whereby	LOAC	
and	civilians	are	excessively	compromised).199	Understanding,	also,	the	risks	of	low-probability,	
high-consequence	events	is	an	unlikely	key	to	analysing	AWS	deployment	models,	the	more	so	as	
militaries’	track	records	in	managing	risks	of	this	type	are	generally	poor.200	Commenting	on	
NASA’s	1986	Challenger	accident,	physicist	Feynman	highlights	the	wide	set	of	views	in	articulating	
the	probability	of	such	accidents	where	estimates	ranged	from	one-in-one	hundred	(engineering	
departments)	to	one-in-one	hundred	thousand	(management	departments).201	The	challenge	that	
emerges	is	that	it	is	difficult	to	quantify	such	risk.	For	AWS	deployment,	calculating	risk	of	accident	
actually	depends	on	that	risk	in	any	given	instance	multiplied	by	the	number	of	exposures	to	that	
risk	over	a	given	period.	Thus,	a	1-in-10,000	chance	of	fratricide	might	convert	into	an	impressive	
99.99%	safety	rate	which,	if	verified	by	testing,	might	lead	policymakers	to	conclude	that	such	a	
weapon	system	without	supervision	is	appropriately	safe.	If,	however,	the	number	of	potential	
weapon	interactions	with	friendly	forces	in	a	combat	environment	is	sufficiently	large	(the	case	
with	the	US	Patriot	system	and	certainly	the	case	with	roving	AWS),	this	would	translate	into	an	
actual	number	of	fratricides	in	the	hundreds,	enough	to	have	operational	impact	and	to	distort	
popular	contextualization	of	weapon	autonomy.	This	is	both	a	deployment	and	operational	point.	
Even	a	very	low	probability	of	failure	can	result	in	an	unacceptably	high	number	of	fratricides	if	the	
number	of	possible	interactions	with	friendly	systems	is	high.202	Akin	to	the	sale	of	lottery	tickets,	
there	exists	a	deployment	paradox	whereby	even	very	low	probability	events	can	become	
effectively	inevitable	given	enough	exposure	that	then	makes	unlikely	accidents	‘normal’	in	
complex	(and,	here,	autonomous)	systems.	As	Perrow	explains	of	AWS,	‘these	systems	are	currently	
too	complex	and	tightly	coupled	to	prevent	accidents	that	have	catastrophic	potentials.	We	must	
live	and	die	with	their	risks,	shut	them	down	or	radically	redesign	them’.203	
	

This	coupling	phenomenon	is	pivotal	to	understanding	deployment	risk	within	AWS	models.	
Ever	more	complex	weapons	are	potentially	vulnerable	to	system	failure	simply	due	to	their	
components	interacting	in	unexpected	ways	whether	within	the	system	itself,	within	human	
operators	or	within	the	weapon’s	deployment	environment.	Collins	and	Thompson	point	here	what	
they	term	as	‘risk	non-linearity’	to	be	a	key	challenge.204	The	phenomenon	must	influence	the	
practical	shape	of	deployment	models,	the	subject	of	this	section.	The	tightly	coupled	nature	of	AWS	
technology	removes,	for	instance,	any	time	slack	in	its	routines,	impinging	on	the	exercise	of	
external	judgement	or	the	‘bending’	of	rules	that	might	otherwise	alter	AWS’	behaviour.	The	
challenge	is	that	system	failures	within	the	AWS	may	rapidly	cascade	from	one	silo	to	the	next	with	
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no	chance	for	external	agents	either	to	react,	reboot	or	otherwise	intervene.	In	this	environment,	
accidents	will	be	inevitable	and,	suggests	Scharre,	become	the	new	deployment	‘normal’.205	Gu’s	
analysis	using	‘normal	accident’	theory	suggests	that	in	tight	coupled	complex	systems,	accidents	
may	not	only	be	likely	but	will	be	inevitable	over	a	sufficient	time	horizon	and,	given	unpredictable	
interactions	within	the	AWS	subsystems,	the	rate	of	such	accidents	is	likely	to	be	understated	in	
advance.206	Perrow’s	point	is	also	that	hidden	failure	modes	may	lurk	undetected.207	Underlining	
the	issue’s	significance,	UNIDIR	has	undertaken	specific	work	to	identify	examples	of	potential	
failure	paths	in	AWS,	looking	at	interactions	at	machine,	user	and	operator	levels.208	Their	finding	is	
that	any	of	these	factors	might	interact	with	any	other	(or	others)	to	compound	an	initial	failure.	It	
is	not,	notes	Borrie,	solely	the	machine	or	machine	code	that	is	the	relevant	determinant	in	
predictable	weapon	performance.209	
	

Systemic	weaknesses	across	deployment	models	are	not	simply	conjectural.	Even	by	2006,	
seventy-seven	robot-related	incidents	were	reported	in	the	UK	in	that	year.210	A	worked	example	is	
helpful.	The	USS	Vincennes	is	a	Ticonderoga	Class	Cruiser	equipped	with	the	Aegis	Special	Weapon	
System	intended	to	counter	multiple	air,	surface	and	sub-surface	targets	with	variable	autonomy	in	
its	prioritising	of	these	targets.211	In	July	1988,	its	systems	wrongly	identified	an	inbound	civilian	
aircraft	carrying	nearly	three	hundred	passengers	as	an	Iranian	F-14	fighter	plane.212	The	systems	
then	engaged	the	aircraft	and	there	were	no	survivors.	Subsequent	investigations	found	that	
procedural	errors	had	failed	to	reset	the	Aegis	computer	which	was	still	displaying	data	relating	to	
an	earlier	grounded	F-14.	Nor	did	this	event	represent	‘peak	complexity’.213	As	detailed	above,	AWS	
will	operate	in	exponentially	more	complex	environments	that	will	increase	materially	the	ways	in	
which	failures	can	occur,	whether	through	incidents	of	incomplete	information,	the	accelerated	
pace	of	interaction,	unanticipated	connections	between	component	systems	or	through	adversarial	
meddling.214	The	Vincennes	tragedy	thus	provides	a	further	marker	for	what	might	go	wrong	with	
weaponry	without	supervision.	It,	as	well	as	the	2010	Flash	Crash	in	the	US	equity	markets,	act	as	
reminders	that	interactions	between	individually	simple	components	can	produce	complicated	and	
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unexpected	effects.215	Systemic	risk	can,	moreover,	build	up	in	system	configurations	as	new	
elements	are	introduced	comprising	risks	that	are	not	obvious	until	after	deployment	and	after	
something	goes	wrong	(and,	notes	Bostrom,	sometimes	not	even	then).216	Context	suggests	that	
such	coupling	is	inevitable.	While	personal	computer	software	used	to	be	crammed	onto	just	1	MB	
of	RAM	memory,	the	same	processing	and	spreadsheet	tasks	now	require	a	minimum	of	256	MB	of	
RAM	memory.217	Windows	95	required	just	4	MB	of	RAM	at	launch	but	this	increased	to	32	MB	on	
the	introduction	of	Windows	2000.	Windows	8	currently	requires	1,000	MB	of	memory	simply	to	
turn	on	the	computer.218	Just	as	the	general	issue	of	‘technical	debt’	informs	much	of	this	thesis’	
later	review	on	feasibility,	it	is	also	an	important	factor	in	deciding	deployment	models.	
	

Risk	of	malfunction	is	therefore	a	key	deployment	consideration,	framing	the	purpose	of	this	
thesis’	technical	review	into	AWS’	intrinsic	faultlines.	Malfunction	in	all	its	forms	is,	however,	only	
one	further	component	of	the	Cohort’s	deployment	equation.	An	adjunct	complication	is	provided	
by	enemy	actions	designed	to	foil	such	deployment.	As	inferred	from	Gherman,	AWS	
communications,	navigation,	logistics	and	engagement	processes	all	depend	on	reliable	access	to	
the	battlefield’s	electromagnetic	spectrum.219	Koerner’s	conclusion	is	that	it	is	only	command	of	this	
spectrum	that	allows	combatants	to	operate	hardware	from	a	remote	location.220	The	models’	
converse	is	that	preventing	enemies	from	using	this	asset	remains	a	critical	goal.	As	highlighted	by	
Paul,	the	point	here	for	AWS	deployment	is	that	adversaries	have	strong	incentives	to	hack	into	
combat	systems,	either	directly	through	malware	or	via	behavioural	interference	to	turn	them	on	
friendly	forces.221	While	humans	can	exhibit	inherent	resilience	against	such	hacking	(after	all,	they	
can	ignore	orders	and	use	common	sense	to	adapt	to	the	situation	at	hand),	autonomous	systems	
will	likely	lack	flexibility	to	consider	any	such	broader	context.222	In	this	case,	effects	might	include	
compromised	system	integrity	and	unintentional	system	availability,	occasioning	errors	in	
judgement,	missed	opportunities,	inappropriate	targeting,	return-to-base	sequences	and	other	
measures	of	poor	performance.	Additionally,	an	adversary	may	target	AWS’	behaviours	whereby	
engineering	a	misleading	set	of	circumstances	might,	notes	Garfinker,	‘mis-train’	that	weapon’s	
systems.	Hacking	might	also	compromise	system	confidentiality	(matters	of	intelligence	value	such	
as	command	intent,	mission	orders,	doctrine,	rules	of	engagement	and	target	parameters).223	This	
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may	be	exacerbated	by	AWS’	modular	nature	and	the	broad	manufacturing	provenance	of	their	
components	that	have	often	been	procured	from	commercial	suppliers	whose	rewards	are	
determined	by	designing	in	capabilities	rather	than	designing	out	vulnerabilities.	
	

How	might	deployment	models	be	impacted	by	such	adversarial	actions?	The	technique	of	
spoofing	involves,	inter	alia,	the	creation	of	false	GPS	signal	in	order	to	trick	the	UAV	on	both	
location	and	time.224	Moreover,	the	price	of	waging	spectrum	warfare	has	become	cheaper	in	step	
with	technical	sophistication	within	retail	electronics.225	The	battlefield	consequences	of	quite	
simple	electronic	assault	on	AWS	might	therefore	result	in	silent	radios,	inoperable	drones	and	
smart	bombs	that	fail	to	find	targets.226	Weaknesses	are	similarly	highlighted	in	the	US	National	
Security	Agency’s	leaked	report,	Threats	to	Unmanned	Aerial	Vehicles,	that	sets	out	the	risks	to	UAV	
deployment	of	commercially	available		‘lasers	and	dazzlers’	in	disabling	drones	by	blinding	cameras	
and	sensors.227	A	second	deployment	complication	arises	from	jamming,	broadly	defined	as	
rendering	electronically	either	a	circuit	or	network	unusable	through	disruption.228	Such	attack	can	
be	directed	against	any	segment	of	the	AWS’	communication	system	and	be	of	variable	duration.	It	
is	often	difficult	for	the	weapon	platform	to	distinguish	between	adversarial	jamming	and	other	
information	flow	disruptions	caused	by	malfunction,	cryptographic	reset,	system	management	
changes	or	other	quite	natural	phenomena.	This	is	a	material	deployment	consideration.	More	than	
eighty	per	cent	of	current	military	transmission	still	travels	on	vulnerable	commercial	satellite	
communications	channels	and,	as	evidenced	by	Forest,	only	one	per	cent	of	defence	communication	
is	protected	against	even	modest	jamming.229	Indeed,	given	exogenous	influences,	‘failure’	instances	
are	rarely	easy	to	diagnose.	Signal	fratricide,	after	all,	occurs	when	friendly	antennas	
unintentionally	overpower	other	friendly	communications.	Spectrum	management	is	complex,	
contextual	and	requires	laborious	intelligence	before	mapping	of	an	enemy’s	electromagnetic	
activity	can	be	undertaken.230	Whitlock	similarly	notes	that	lost	link	incidents,	triggered	when	a	

																																																								
224	Cockrell	School	of	Engineering,	‘School	researchers	demonstrate	first	successful	spoofing	of	UAVs’,	27	July	2012	
<http://www.engr.utexas.edu/features/humphreysspoofing>	[accessed	10	July	2016].		
225	Communications	jammers	can	be	readily	assembled	using	power	amplifiers	and	other	off-the-shelf	components.	
Similarly,	GPS	spoofers	are	universally	available.	For	a	useful	discussion	on	spectrum	warfare,	see:	Brendan	Koerner,	
‘Inside	the	New	Arms	Race	to	Control	Bandwidth	on	the	Battlefield’,	Wired	Magazine,	18	February	2014,	generally	
<https://www.wired.com/2014/02/spectrum-warfare/>	[accessed	12	April	2018].		
226	Koerner,	‘Inside	the	new	arms	race	to	control	bandwidth	on	the	battlefield’.	By	2009,	Iraqi	insurgents	were	using	a	
commercially	available	program	called	SkyGrabber	to	intercept	video	feeds	from	Predator	UAVs	requiring	American	
forces	to	encrypt	its	files	on-going	and	introducing	further	complexity	into	battlefield	drone	operations.	
227	Barton	Gellman,	‘US	documents	detail	Al	Qaeda	efforts	to	fight	back	against	drones’,	Washington	Post,	3	September	
2013 <https://www.washingtonpost.com/world/national-security/us-documents-detail-al-qaedas-efforts-to-fight-
back-against-drones/2013/09/03/b83e7654-11c0-11e3-b630-36617ca6640f_story.html?utm_term=.83448110bc4c>	
[accessed	12	December	2017].	The	report	also	predicts	that	both	State	and	non-state	players	might	use	rudimentary	
acoustic	receivers	to	detect	drones	before	interfering	with	their	navigation	and	communication	through	simple	jammer	
techniques.	
228	Ronald	Wilgenbusch	and	Alan	Heisig,	‘Command	and	control	of	vulnerabilities	to	communications	jamming’,	JFQ,	
ndupress.ndu.edu,	Issue	69,	(June	2013)	<http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-69/JFQ-69_56-
63_Wilgenbusch-Heisig.pdf>.	
229		Benjamin	Forest,	An	analysis	of	the	military	use	of	commercial	satellite	communications,	(USA:	Naval	Postgraduate	
School,	Monterey,	California,	September	2008),	pp.	14-19	
<https://calhoun.nps.edu/bitstream/handle/10945/3991/08Sep_Forest.pdf?sequence=1>.	
230	See:	Walker,	Killer	Robots?,	pp.	82-85.	In	addition	to	tracking	emissions	of	every	piece	of	friendly	military	hardware,	
spectrum	managers	‘must	compile	dynamic	frequency	lists	that	account	for	a	galaxy	of	cheap	civilian	devices	also	used	
by	friendly	forces’.	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 122 | P a g e  

 
 

satellite	moves	out	of	range	or	a	machine	otherwise	drops	such	signal,	are	already	common.231	AWS	
deployment	models	must	recognise	that	spectrum	supremacy	can	never	be	more	than	fragile	and	is	
difficult	to	ascertain	when	it	has	even	been	attained;	as	noted	by	Koerner,	‘there	is	no	quick	formula	
for	evaluating	when	an	enemy	has	been	entirely	ejected	from	an	immense,	invisible	battle	space’.232	
Equally,	even	a	reeling	opponent	can	rebound	quickly	given	that	an	electromagnetic	counter-attack	
requires	technical	(and	invariably	human)	capital	rather	than	high-value	hardware.	The	importance	
of	the	problem	to	compliant	deployment	is	illustrated	by	DARPA’s	current	call	for	software	that	can	
recognise	when	radio	waves	are	encountering	interference.233	

	
Lastly,	all	such	deployment	models	must	factor	in	operational	in-field	challenges	such	as	

appropriate	AWS	re-supply,	ammunition	replenishment,	inventory	control	and,	as	above,	in-situ	
servicing.234	Given	that	AWS	will	be	sensor	and	software-intensive,	deployment	considerations	
must	include	the	requirement	for	frequent	subsystem	upgrades	in	order	to	maintain	military	
advantage	while	also	beta-testing	(with	appropriate	safeguards)	new	capabilities.	The	conclusion	is	
therefore	that	deployment	models	must	themselves	be	challengingly	dynamic.	Likewise,	they	must	
be	suitably	flexible	to	reflect	AWS	reliance	on	rapidly	developing	technologies	that	include	cyber	
warfare235,	protected	communications236,	advanced	computing	and	big	data.	Deployment	models	
must	thus	ensure	that	such	integration	occurs	without	any	performance	variability	and	upon	the	
invariable	basis	that	autonomous	weapons	will	be	fault-free	from	their	first	deployment	on	the	
battlefield.237	Operational	conditioning,	otherwise	termed	trial	and	error,	is	clearly	an	
inappropriate	basis	for	AWS	deployment.	Several	pre-cursor	systems	appear,	moreover,	to	work	
well	in	some	but	not	all	aspects	of	their	operation.	An	example	is	the	US	Department	of	Defence’s	
request	for	more	than	$8bn	to	fund	its	semi-autonomous	Reaper	procurement	programme	between	
2010	and	2015.238	Several	fault	lines	would	appear	to	disqualify	the	current	system	from	fitting	the	
deployment	models	set	out	in	this	chapter.	To	this	point,	the	Reaper	remains	incapable	of	detecting	
other	aircraft	while	in	flight.	Its	operation	must	be	curtailed	in	high	winds,	snow	and	rain.	As	a	
deployment	model,	it	is	unknown	how	the	system	will	perform	in	a	hostile	airspace	and	the	issue	of	
its	integration	with	manned	aircraft	also	remains	outstanding.	The	example	highlights	the	
importance	of	this	chapter’s	findings	that	AWS	deployment	depends	upon	layers	of	contextual	and	
technical	challenge.	It	is	upon	this	foundation	that	this	thesis	can	now	turn	to	consider	other	levels	

																																																								
231	Craig	Whitlock,	‘US	military	drone	surveillance	is	expanding	to	hot	spots	beyond	declared	combat	zones’,	The	
Washington	Post,	20	July	2013	<https://www.washingtonpost.com/world/national-security/us-military-drone-
surveillance-is-expanding-to-hot-spots-beyond-declared-combat-zones/2013/07/20/0a57fbda-ef1c-11e2-8163-
2c7021381a75_story.html?tid=a_inl>	[accessed	10	June	2016].	
232	Koerner,	‘Inside	the	new	arms	race	to	control	bandwidth	on	the	battlefield’,	generally.		
233	Jamie	Lantino,	‘DARPA	to	reinvent	GPS	navigation	without	the	use	of	satellites’,	DARPA	Information	Bulletins,	
undated	<http://www.darpa.mil/program/adaptable-navigation-systems>	[accessed	16	July	2016].	
234	Walker,	‘Killer	Robots?’,	pp.	100-101.	
235	For	an	excellent	overview,	see:	PW	Singer	and	Allan	Friedman,	Cybersecurity	and	Cyberwar:	What	everyone	needs	to	
know,	(New	York:	Oxford	University	Press,	2013),	generally.	
236	See:	Todd	Harrison,	‘The	Future	of	MILSATCOM’,	(Washington:	Centre	for	Strategic	and	Budgetary	Assessments,	
2013),	generally.	See	also:	Kenneth	Neil	Cukier,	Big	Data:	A	revolution	that	will	transform	how	we	live,	work	and	think,	
(New	York:	H.M.	Harcourt,	2013),	generally.	
237	Inferred	from:	Jeff	Guo,	‘Google’s	new	artificial	intelligence	can’t	understand	these	sentences.	Can	you?’,	Independent,	
Indy100,	(May	2016)	<https://www.indy100.com/article/googles-new-artificial-intelligence-cant-understand-these-
sentences-can-you--Zy9gs38g7Z>	[accessed	20	May	2017].		
238	US	Department	of	Defence,	‘Unmanned	System	Roadmap	2007-2032’,	p.	16.	
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of	constraint	that	challenge	AWS	deployment.	Chapter	Five	(Obstacles)	reviews	legal,	behavioural,	
moral	and	ethical	difficulties	to	AWS	adoption	before	the	thesis	then	turns	in	its	following	four	
chapters	to	consider	technical	obstacles	frustrating	compliant	removal	of	human	supervision	from	
machines	initiating	violence.	
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5. Obstacles:	General	challenges	to	the	removal	of	weapons	supervision		

There	are	reasons	to	assume	that	progress	towards	weapons	autonomy	will	actually	be	quite	
muted.1	This	thesis’	next	five	chapters	seek	to	dissect	fault-lines	likely	to	impact	on	AWS	
deployment.	The	aim	of	this	first	chapter	is	to	consider	deployment	impedimenta	that	are	not	
rooted	in	technology.2	Its	first	two	sections	assess	the	existing	legal	framework	facing	States	
considering	AWS	deployment.	In	subsequent	sections	it	is	then	able	to	review	political,	behavioural	
and	contextual	factors	that	will	impact	the	removal	of	human	supervision	from	battlefield	weapons	
while	still	remaining	compliant	to	that	legal	basis.	The	chapter	concludes	by	considering	challenges	
to	AWS	deployment	that	are	created	by	proliferation,	by	ethical	constraints	and,	finally,	by	the	
overarching	requirement	for	accountability	if	autonomous	weapons	are	to	be	used.	In	order	to	
isolate	these	behavioural	and	often	intangible	faultlines,	the	current	chapter	is	making	an	
assumption,	later	to	be	undone,	that	AWS	deployment	is	technically	feasible	in	order	to	question	
whether	the	politician	or	battlefield	commander	can	reasonably	devolve	responsibilities	to	
independent	weapons.	Sartor	and	Omicini	capture	the	two	opposing	ends	of	this	argument:	‘On	the	
one	hand,	it	has	been	claimed	that	autonomous	weapons	may	be	as	good	as	humans	in	
implementing	the	laws	of	armed	combat…	On	the	other	hand,	it	has	been	observed	that	few	
machines	can	today	proficiently	replicate	human	cognitive	skills	that	are	needed	in	many	contexts	
to	use	force	consistently’.3		
	

An	underlying	premise	for	this	thesis	is	that	of	an	ongoing	transformation	in	the	character	of	
warfare	with	evermore	control	of	weapons	being	delegated	to	computer	systems.4	The	magnitude	
of	this	assumption	and	what	it	may	entail	comprises	much	of	the	discussion	below.	Chapter	Four,	
for	instance,	discusses	several	halfway	houses	from	task-specific	autonomy	taking	place	in	specific	
weapon	sub-components	to	wholly	unsupervised	weapons	operating	independently	whereby	
several	choices	of	action	are	available.	AWS	function	is	neither	linear	nor	obvious	along	that	
continuum.	This	chapter	therefore	aims	to	demonstrate	that	different	factors	come	in	and	out	of	
play	as	an	individual	weapon’s	tasking	changes,	often	in	direct	response	to	legal,	technical	and	
behavioural	constraints	upon	its	deployment	model.	This,	moreover,	can	happen	moment	by	

																																																								
1	Walker,	Killer	Robots?,	pp.	75-78	and	pp.	103-107.	
2	These	subsequent	five	chapters	review	AWS	feasibility	and	comprise	Chapters	5	(Obstacles),	6	(Wetware),	7	
(Firmware),	8	(Software)	and	9	(Hardware).		
3 Sartor	and	Omicini,	cit.	Bhuta	et	al	(eds),	p.	66.	Sartor	notes	that	machines	already	excel	in	a	number	of	LOAC-relevant	
cognitive	skills	including	the	calculation	of	positions	and	trajectories,	recognizing	relevant	patterns	in	large	data	sets	as	
well	as	applying	complex	rules	to	a	given	situation.	Conversely,	the	author	also	notes	machine	weakness	in	reading	
peoples’	intentions	and	attitudes,	anticipating	behaviours,	reacting	creatively	to	unexpected	circumstances,	applying	
latitude	and	rule-deviation	in	exceptional	circumstances	and	then	assessing	significance	in	battlefield	gains,	losses	and	
other	attributes.	
4	Models	for	this	control	shift	are	discussed	throughout	chapter	5	(Deployment),	specifically:	4.3	(‘Machine	and	human	
teaming	model’)	and	4.5	(‘Flexible	autonomy’).	Here,	the	mechanics	of	human-machine	autonomies,	hybrid	systems,	
joint-cognitive	systems,	co-agency	and	other	interaction	models	severally	complicate	any	such	deployment.	See:	E	
Hollnagel	and	DD	Woods,	Joint	Cognitive	Systems,	(New	York:	Basic	Books,	2005) <https://epdf.tips/joint-cognitive-
systems-patterns-in-cognitive-systems-engineering.html>	[accessed	1	July	2018].	Hollnagel	and	Woods	consider	in	
detail	the	matter	of	agency	and	the	importance	of	weapon	configurations	in	determining	relationships	between	
operator	and	technology.	For	consideration	of	the	nature	and	developing	character	of	war,	see:	Chapter	2	(Context),	
specifically:	chapter	introduction.		
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moment.5	It	is	such	discussion	of	non-technical	challenges	that	is	complicated	throughout	this	
continuum	by	difficulties	around	definition	of	terms	and	processes.	This	is	unavoidable	given	the	
pace	of	innovation	in	AWS	componentry	as	well	as	the	maze	of	possible	deployment	models	for	
independent	weapon	systems	which,	notes	Sharkey,	‘no	one	yet	knows	how	to	create’.6		

	
At	least	one	overarching	factor	acts	as	an	anchor	for	this	chapter’s	analysis:	What	is	the	legal	

bar	that	an	unsupervised	weapon	must	achieve	in	order	to	ensure	that	a	target	is	properly	
legitimate?	Weizmann	from	Geneva	Academy	provides	appropriate	narrative	with	which	to	frame	
the	issue	of	these	legal	obligations	whereby	the	AWS	must	be	able	‘to	evaluate	a	person’s	
membership	in	the	State’s	armed	forces	(as	distinct	from	a	police	officer),	his	or	her	membership	in	
an	armed	group	(with	or	without	a	continuous	combat	function),	whether	or	not	he	or	she	is	
directly	participating	in	hostilities,	and	whether	or	not	he	or	she	is	hors	de	combat…	[The	weapon]	
would	also	need	to	be	able	to,	first,	recognise	situations	of	doubt	that	would	cause	a	human	to	
hesitate	before	attacking	and,	second,	refrain	from	attacking	objects	and	persons	in	those	
circumstances’.7	Given	these	difficulties	around	clear	demarcation,	discussion	on	parameters	and	
their	place	in	this	analysis	is	relevant	to	understanding	the	complexity	of	AWS’	compliance.8	In	the	
first	place	(and	as	evidenced	in	the	previous	chapter),	analysis	of	weapons	autonomy	should	not	
distinguish	between	AWS	in	a	defensive	mode	and	those	intended	for	hostile	application.		
Targeting,	furthermore,	should	be	defined	as	the	weapon’s	determination	between	several	
presented	objects	as	to	which,	when	and	where	to	engage	chosen	targets	with	chosen	force.	A	
requirement	for	AWS	analysis	requires,	after	all,	that	lethality	take	place	without	human	
involvement.	This	reading	excludes	remotely	control	weapons	systems	where	a	human	operator	
has	undertaken	prior	determination	as	part	of	a	whole	engagement	process.9	This	is	not	always	
clear	and,	for	the	purposes	of	this	chapter,	is	taken	to	mean	where	the	human	operator	has	(or,	in	
the	case	of	pushing	a	button,	has	not)	meaningful	participation	in	the	process.10	Similarly,	it	is	
useful	to	restrict	parameters	around	the	engagement	process.	Instances	where	autonomous	
technologies	do	not	compromise	LOAC	(such	as	the	autonomous	refueling	and	autonomous	
navigation)	are	not	relevant	to	this	analysis.	This	treatment	generally	accords	with	broad	
commentary.11	In	order	now	to	review	legal	challenges,	deployment	models	are	also	ignored	where	
a	weapon	is	activated	without	supervision	but	in	a	very	limited	environment	without	civilian	

																																																								
5	Paul	Scharre,	‘Making	Sense	of	Rapid	Technological	Change’,	Center	for	a	New	American	Security,	(19	July	2017),	
generally	<https://www.cnas.org/publications/commentary/making-sense-of-rapid-technological-change>	[accessed	3	
July	2018].		
6	Noel	Sharkey,	‘Staying	in	the	loop:	human	supervisory	control	of	weapons’,	cit.	Bhuta	and	others,	p.	23.		
7	Nathalie	Weizmann,	‘Autonomous	weapon	systems	under	international	law,	Academy	briefing	8’,	Geneva	Academy,	
(2014),	p.	14 <https://www.geneva-academy.ch/joomlatools-files/docman-
files/Publications/Academy%20Briefings/Autonomous%20Weapon%20Systems%20under%20International%20Law
_Academy%20Briefing%20No%208.pdf>.		
8	For	a	useful	overview,	see:	Christopher	Ford,	‘Autonomous	Weapons	and	International	Law’,	University	of	South	
Caroline	Law	Review,	69.	5.	Car.	413,	(11	April	2017),	pp.	413-424.	
9	This	accords	with	definitions	of	weapon	autonomy	in	Chapter	1	(Introduction).	See,	also:	Robert	Sparrow,	‘Robots	and	
respect:	Assessing	the	case	against	Autonomous	Weapon	Systems’,	Ethics	and	International	Affairs,	30,	1,	(2016),	p.	97.		
10	Mark	Horowitz	and	Paul	Scharre,	‘Meaningful	Human	Control	and	Weapon	Systems:	A	Primer’,	Centre	for	a	New	
American	Security,	Working	Paper,	(March	2015),	p.	2	and	pp.	4-5.		
11	Robert	Sparrow,	‘Robots	and	Respect’,	generally.		
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exposure	or	where	the	weapon	can	be	deactivated	should	targeting	parameters	change	mid-
engagement.12	

 The Geneva Convention and Laws of Armed Conflict 
	
The	St.	Petersburg	Declaration	of	1868	was	the	first	formal	treaty	prohibiting	the	use	of	certain	
weapons	in	war,	in	this	case	banning	exploding	bullets	weighing	less	than	four	hundred	grammes.13	
Since	that	date,	the	international	community	has	attempted	two	structures	to	regulate	new	
technologies	in	warfare.14	International	Humanitarian	Law	(IHL)	broadly	consists	of	a	body	of	
rules15	that	apply	during	armed	conflict	with	the	aim	of	protecting	persons	who	do	not,	or	no	
longer,	participate	in	the	hostilities.16	Such	rules	regulate	the	conduct	of	hostilities.17	IHL	sets	limits	
on	armed	violence	in	order	at	least	to	reduce	suffering	and,	notes	the	ICRC,		‘is	based	on	long-
standing	norms	that	are	rooted	in	the	tradition	of	all	societies’.18	The	rules	of	IHL	have	been	
developed	and	codified	over	the	past	century	in	international	treaties,	notably	the	1949	Geneva	
Conventions	and	their	Additional	Protocols	of	1977.19	Droege	notes	widespread	acceptance	that	
human	rights	protection	does	not	cease	in	times	of	armed	conflict	and	that	IHL	and	International	
Human	Rights	legislation	(IHRL)	apply	concurrently.20	Certain	of	these	rights	(including,	inter	alia,	
the	right	to	life)	are,	moreover,	not	subject	to	derogation,	whatever	the	circumstances.	The	crux	in	
this	case	is	that	the	extent	to	which	AWS	can	legally	be	deployed	therefore	depends	on	this	
interplay	between	IHL	and	IHRL.21	The	distinction	is	relevant.	IHL,	for	instance,	tends	to	provide	

																																																								
12	Christopher	Ford,	‘Autonomous	Weapons	and	International	Law’,	p.	419.	
13	For	a	full	text	of	the	agreement,	see:	IHL	<https://ihl-databases.icrc.org/ihl/INTRO/130?OpenDocument>		[accessed	
23	July	2018].	The	origin	of	the	restriction	was	in	Russia’s	1863	invention	of	a	bullet	exploding	on	contact	with	soft	
substances.	Given	that	such	ordnance	would	have	been	‘an	inhuman	instrument	of	war’,	the	Russian	Government	
suggested	that	its	use	be	banned	by	international	statute.	 
14	Jakob	Kellenberger,	‘International	Humanitarian	Law	and	New	Weapon	Technology’,	ICRC,	34th	Round	Table,	(10	
September	2011),	pp.	1-3	<http://www.icrc.org/eng/resources/documents/statement/new-weapon-technologies-	
statement-2011-09-08.htm>	[accessed	2	January	2017].	
15	As	set	out	in	its	introduction,	this	dissertation	focuses	exclusively	on	State	players	(that	is,	nations)	and	their	LOAC-
compliant	involvement	of	weapon	autonomy.	This	is	appropriate	given	current	absence	of	evidence	for	non-State	
involvement.	It	is	also	beyond	the	scope	of	this	paper	to	consider	in	detail	‘hybrid	warfare’	(see:	Lt	Gen	James	Mattis	and	
Lt	Col	Frank	Hoffman,	‘Future	Warfare:	The	rise	of	Hybrid	Wars’,	USNI,	Proceedings	Magazine,	Volume	132/11/1233,	
(November	2005)	<http://milnewstbay.pbworks.com/f/MattisFourBlockWarUSNINov2005.pdf>.	It	is	noteworthy	that	
the	role	for	weapon	autonomy	within	these	doctrines	has	yet	to	be	set.	
16	For	example,	civilians	and	wounded,	sick	or	captured	combatants.	
17	The	published	work	of	the	International	Review	of	the	Red	Cross	is	a	key	reference	for	this	study;	in	particular,	see:	
International	Committee	of	the	Red	Cross,	‘A	guide	to	the	legal	review	of	new	weapons,	means	and	methods	of	warfare:	
Measures	to	implement	Article	36	of	Additional	Protocol	I	of	1977’,	ICRC,	Geneva,	88,	864,	(December	2006),	p.	932.	
18	International	Committee	of	the	Red	Cross,	‘The	Basics	of	International	Humanitarian	Law	–	December	2017’,	ICRC,	(27	
January	2018)	<https://shop.icrc.org/l-039-essentiel-du-droit-international-humanitaire-2507.html>	[accessed	1	May	
2017].	
19	These	are	complimented	by	a	number	of	other	treaties	dealing	with	specific	matters	such	as	international	criminal	
justice	and	certain	weapons.	
20	Cordula	Droege,	‘The	interplay	between	International	Humanitarian	Law	and	Human	Rights	Law	in	situations	of	
armed	conflict’,	Israel	Law	Review,	40	(02),	(2007),	p.	311.	
21	For	a	discussion	on	how	IHL	and	IHRL	can	be	applied	jointly	in	a	complementary	fashion,	see:	G	Gaggioli	and	R	Kolb,	
‘A	right	to	life	in	armed	conflict?	The	contribution	of	the	European	Court	of	Human	Rights’,	Israel	Yearbook	on	Human	
Rights,	(2007),	pp.	115-161.	
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stronger	protection	than	IRHL	against	lethal	force	and	the	destruction	of	civilian	property.22	

The	purpose	of	this	section	is	to	provide	sufficient	foundation	to	enable	legal	challenges	to	
AWS	deployment	to	be	understood.	It	is	not	to	do	more	than	this,	as	the	subject	is	complex	and	well	
documented.23	Instead,	this	section	focuses	on	the	two	frameworks	as	they	relate	to	AWS	
deployment.	It	looks	at	obligations	conferred	by	the	Geneva	Conventions.24	It	also	considers	the	
nexus	that	exists	between,	on	the	one	hand,	specific	legal	requirements	arising	from	IHL	and	IHRL	
and,	on	the	other,	relevant	technical	bottlenecks	that	exist	to	the	fulfillment	(in	AWS	operation)	of	
those	parallel	requirements.	In	this	vein,	the	Hague	Conventions	of	1899	and	1907	are	a	series	of	
international	declarations,	the	first	formal	statement	of	the	laws	of	war	and	war	crimes	in	the	body	
of	secular	international	law.25	They	define	the	qualifications	of	belligerents	including	what	must	
comprise	AWS	characteristics	such	as	acceptably	proportionate	methods	of	engaging	the	enemy	
and,	tangentially,	the	prohibition	of	pillage	within	seized	territory	as	a	result	of	war.	The	Geneva	
Conventions	then	comprise	four	treaties	and	three	additional	protocols	that	establish	standards	
within	the	international	transaction	of	war.	Signed	in	1949	by	195	countries,	the	documents	define	
the	basic,	wartime	rights	of	prisoners	(Convention	I),	protections	for	the	wounded	(Convention	II)	as	
well	as	for	civilians	in	a	combat	zone	(Convention	IV).	The	combined	corpus	is	relevant	to	AWS	
deployment	as	a	set	of	rules	maintaining	human	dignity	and	protecting	the	vulnerable	and	
defenceless	during	conflict.	The	point	is	that	it	is	these	restrictions	which	directly	comprise	the	
legal	framework	to	which	AWS	must	comply.	Sitting	underneath	these	two	conventions	is	the	Law	
of	War,	a	legal	term	of	art	that	refers	to	that	aspect	of	international	law	that	concerns	acceptable	
justifications	to	engage	in	war	(jus	ad	bellum26)	and	the	limits	to	acceptable	conduct	once	war	is	
being	fought	(jus	in	bello	and	International	Humanitarian	law,	the	IHL	detailed	above).27	An	

																																																								
22	International	Committee	of	the	Red	Cross,	‘The	Basics	of	International	Humanitarian	Law	–	December	2017’,	ICRC,	
(27	January	2010)	<https://reliefweb.int/sites/reliefweb.int/files/resources/0850_002-IHL_web.pdf>.		
23	For	a	useful	overview,	see:	Jarna	Petman,	‘Autonomous	Weapon	Systems	and	International	Humanitarian	Law:	‘Out	of	
the	Loop’?’,	Helsinki,	pp.	24-52	
<https://um.fi/documents/35732/48132/autonomous_weapon_systems_an_international_humanitarian_law__out_of_t
he>	[accessed	12	May	2017].	For	a	compendium	of	reports	since	2012,	see	also:	Human	Rights	Watch	and	Harvard	Law	
School	International	Human	Rights	Clinic,	‘The	Need	for	New	Law	to	Ban	Fully	Autonomous	Weapons’,	Memorandum	to	
Convention	for	Conventional	Weapons	Delegates,	(November	2013),	pp.	2-3	
<https://www.hrw.org/sites/default/files/supporting_resources/11.2013_memo_to_ccw_delegates_fully_autonomous_
weapons.pdf>.	
24	For	a	primer	of	the	Conventions,	see:	International	Committee	of	the	Red	Cross,	‘Geneva	Conventions	and	
Commentaries’,	ICRC,	undated	<https://www.icrc.org/en/war-and-law/treaties-customary-law/geneva-conventions>	
[accessed	12	May	2017].		
25	By	way	of	context,	Convention	II	of	the	Hague’s	1899	document	specifies	the	treatment	of	prisoners	of	war,	forbids	the	
use	of	poisons	and	killing	combatants	who	have	surrendered	as	well	as	the	attack	of	undefended	towns.	Convention	IV	
codifies	‘the	prohibition	of	the	discharge	of	projectiles	and	explosives	from	balloons	or	by	other	new	analogous	
methods’,	‘the	prohibition	of	the	use	of	projectiles	spreading	asphyxiating	poisonous	gases’	and	‘the	prohibition	of	
bullets	which	can	easily	expand	or	change	their	form	inside	the	human	body’.	
26	Comprising	‘proper	authority	and	public	declaration’,	‘just	cause’,	‘proportionality’,	‘last	resort’,	‘reasonable	
probability	of	success’	and	‘right	intention’;	See	also:	Keigh	Abney,	‘Autonomous	Robots	and	the	Future	of	Just	War	
Theory’,	cit.	Routledge	Handbook	of	Ethics	and	War,	eds.	Fritz	Allhoff	et	al,	(UK:	Routledge,	Oxford,	2013),	p.	340.	The	
definition	of	jus	in	bello	is	best	provided	by	the	International	Committee	of	the	Red	Cross;	see:	Jasmine	Moussa,	‘Can	“Jus	
ad	Bellum”	override	“Jus	in	Bello”?	Reaffirming	the	Separation	of	the	two	Bodies	of	Law’,	ICRC,	(31	December	2008),	
generally	<https://www.icrc.org/en/international-review/article/can-jus-ad-bellum-override-jus-bello-reaffirming-
separation-two-bodies>	[accessed	4	May	2017].	Jus	in	Bello’s	position	here	is	set	out	in	the	peer-reviewed	
Encyclopaedia	of	Philosophy:	<http://www.iep.utm.edu/justwar/>	[accessed	13	May	2017].	
27	For	a	useful	discussion	of	Just	War	Theory,	see:	Keith	Abney,	‘Autonomous	Robots	and	the	Future	of	Just	War	Theory’,	
cit.	Routledge	Handbook	of	Ethics	and	War,	p.	339.	
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understanding	of	these	concepts	is	therefore	important	to	evaluate	and	then	weight	challenges	to	
the	compliant	deployment	of	unsupervised	weapons.	Assessing	then	the	technical	feasibility	of	
lethal	machines	conforming	to	LOAC	then	comprises	the	basis	of	subsequent	chapters.	
	

Conforming	to	such	principles	provides	a	broad	obstacle	to	compliant	AWS	deployment.28	In	
the	first	place,	action	selection	for	self-directing	weapons	must	be	capable	of	distinguishing	
between	combatants	and	civilians.29	Similarly,	combatants	who	surrender	must	be	spared	from	
harm.	The	Conventions	forbid	methods	(here,	AWS	action	sequences)	that	inflict	unnecessary	
human	suffering	or	physical	destruction.	Even	if	an	affirmative	obligation	is	retained	by	colleague	
humans,	AWS	routines	must	still	adhere	to	such	obligations	facilitating,	for	instance,	the	provision	
for	wounded	combatants	and	the	sick	to	medical	attention.30	Similarly,	AWS	procedures	must	
acknowledge	that	captured	combatants	and	civilians	are	protected	against	acts	of	violence.	As	
noted	by	Petman,	the	empirical	implementation	of	these	measures	is	complicated	by	lack	of	
definition.31	The	LOAC	framework	is	rarely	unambiguous	given	its	lengthy	evolution	and,	as	
recognised	in	the	US	Army	Field	Manual,	the	‘customary’	nature	of	its	treaty	law.32	An	example	test	
from	the	US	Army’s	Field	Manual	would	be	that	an	unsupervised	weapon	must	‘refrain	from	
employing	any	kind	or	degree	of	violence	which	is	not	actually	necessary	for	military	purposes	and	
that	they	conduct	hostilities	with	regards	to	the	principles	of	humanity	and	chivalry’.33	While	LOAC	
may	not	specify	that	decision-making	must	be	carried	out	by	a	human,	a	series	of	quite	definite	
decisions	is	nevertheless	required	to	verify	targets	before	they	are	attacked,	to	establish	how	each	
target	is	to	be	attacked,	to	minimise	civilian	collateral	damage,	to	confirm	that	each	attack	is	
proportionate,	to	establish	that	the	prioritisation	of	targeting	is	in	line	with	military	advantage	and	
necessity34	and,	finally,	to	incorporate	assessment	whether	any	attack	should	be	suspended	in	light	
of	the	latest	intelligence	available.35		
	

The	challenge,	however,	is	that	ambiguity	characterises	much	of	the	decision	process	which	
precedes	an	engagement	sequence.	Interpretation	of	legal	frameworks,	of	operational	norms	and	
the	constituents	of	the	targeting	sequence36	are	complex	and,	as	discussed	in	later	chapters,	not	at	
all	conducive	to	coding.	This	uncertainty	is	itself	an	obstacle.	Either	those	tenets	have	not	recently	
been	tested	(whether	in	a	combat	environment	or	in	a	court	of	law)	or	the	existing	legal	
frameworks	just	do	not	cover	emerging	practices	and	technology.	Dimitovski	notes	in	this	instance	
																																																								
28	International	Committee	of	the	Red	Cross,	‘History	of	Humanitarian	Law:	The	Essential	Rules’,	ICRC,	(2004),	generally	
<https://www.icrc.org/eng/resources/documents/misc/5zmeem.htm>	[accessed	23	July	2017].	
29	International	Committee	of	the	Red	Cross,	‘Basic	Rules	of	the	Geneva	Convention	and	Additional	Protocols’,	ICRC,	
(December	1988),	generally	<https://www.icrc.org/eng/assets/files/other/icrc_002_0365.pdf>.		
30	Combatants	(in	this	case,	the	AWS)	must	also	be	able	to	distinguish	the	universal	Red	Cross	with	combat	engagement	
on	facilities	and	vehicles	displaying	this	universal	symbol	being	forbidden.	
31	Petman,	pp.	15-24.	
32	US	Army,	‘Field	Manual,	FM	27-10	as	amended’,	Department	of	the	Army	Field	Manual,	(6	April	1976)	
<https://www.loc.gov/rr/frd/Military_Law/pdf/law_warfare-1956.pdf>,	paragraph	1.	
33	Ibid.,	paragraph	3.	
34	For	ICRC’s	discussion	on	‘military	necessity’	and	its	sanction,	see;	International	Committee	of	the	Red	Cross.	‘Military	
necessity’,	ICRC	Casebook,	undated	<https://casebook.icrc.org/glossary/military-necessity>	[accessed	18	July	2017].			
35	Royal	Air	Force	Directorate	of	Defence	Studies,	Air	Power	–	UAVs:	The	wider	context,	p.	72.	
36	For	the	purposes	of	this	dissertation,	the	targeting	sequence	is	comprised	of	three	components	that	run	in	succession:	
the	identification	of	a	target,	the	selection	of	a	target	to	engage	and	the	deployment	of	lethal	force	to	kill	that	selected	
target.		
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that	several	parameters	(operating	at	different	levels	of	the	engagement	sequence)	comprise	each	
‘kill	chain’	and	each	decision	tree.37	Furthermore,	these	engagement	parameters	tend	to	multiply	
quicker	than	the	decision	waterfalls	running	these	parameters	can	manage.38	As	evidenced	in	the	
preceding	chapter,	the	degrees	of	human	input	across	these	chains	will	be	both	variable	and	ill-
defined	as	well	as	being	dependent	upon	the	technologies	involved	in	each	such	engagement.	It	is	
for	this	reason	that	Schulzke	points	to	the	impact	that	such	instability	(here,	AWS	inconsistency	
where	behaviours	and	outcomes	are	the	variable	consequence	of	the	weapon’s	machine	learning)	
can	have	upon	operator	confidence	given	this	explosion	of	parameters	that	must	be	incorporated	in	
the	engagement	sequence.39	This	constraint	is	well	captured	by	the	Department	of	Defense’s	2012	
Directive	on	Autonomy	in	Weapon	Systems	whereby	‘persons	who	authorise	the	use	of,	direct	the	use	
of,	or	operate	autonomous	and	semi-autonomous	weapon	systems	must	do	so	with	appropriate	
care	and	in	accordance	with	the	law	of	war,	applicable	treaties…	and	applicable	rules	of	
engagement’.40	The	conundrum	is	also	evidenced	by	the	counter-factual	(put	forward	by	Moyes		
and	others)	that	the	level	of	casualties	still	inflicted	on	non-combatants	in	armed	conflict	testifies	to	
the	on-going	ambiguity,	limitation	and	constraint	of	both	IHL	and	its	current	framework.41		

	
In	weighting	legal	constraints	on	AWS	deployment,	Moyes	also	notes	that	previous	control	

regimes	have	had	a	poor	reputation.42	In	previously	deployed	weapon	types,	subsequent	legal	
restrictions	have	tended	to	be	weak,	ineffective	or	illusory.43	The	ICJ’s	inconclusive	1996	ruling	on	
nuclear	weapons	is	an	example	of	an	institutional	posture	‘not	to	decide’.44	This	section	therefore	
focuses	on	the	Convention’s	existing	provisions	that	are	relevant	to	compliant	deployment	of	AWS,	
in	particular	the	strictures	it	creates	that	are	based	on	proportionality	and	distinction.	This	gives	
rise	to	a	further	conundrum.	While	the	rules	of	proportionality	can	be	written	down	on	a	piece	of	

																																																								
37	Romy	Dimitovski,	‘Removing	Humans	from	the	Kill	Chain:	the	Legality	of	(Semi-)	Autonomous	Weapon	Systems	
under	International	Law’,	University	of	Tilburg,	Law	Faculty,	(June	2017),	pp.	19-20	
<http://arno.uvt.nl/show.cgi?fid=142798>.	For	additional	discussion	on	this	term	and	its	ramifications,	see:	Directorate	
of	Defence	Studies,	‘Unmanned	Aerial	Vehicles	–	the	legal	perspectives’,	Wg	Cdr	Allison	Mardell,	cit.	Air	Power	–	AUV:	the	
wider	Context,	p.	68.		
38	Walker,	Killer	Robots?,	pp.	47-49.	
39	Marcus	Schulzke,	‘Autonomous	Weapons	and	Distributed	Responsibility’,	Philosophy	and	Technology,	SpringerLink,	
26,	2,	(June	2013),	pp.	203-219.	
40	Department	of	Defense	Directive,	‘Autonomy	in	Weapon	Systems’,	p.	3.	
41	Brian	Rappart,	Richard	Moyes	and	Thomas	Nash,	‘The	roles	of	civil	society	in	the	development	of	standards	around	
new	weapons	and	other	technologies	of	war’,	International	Review	of	the	Red	Cross,	94,	886,	(Summer	2012),	p.	767.	
42	Tommi	Koivula	and	Katariina	Simonen,	‘Arms	Control	in	Europe:	Regimes,	Trends	and	Threats’,	National	Defence	
University,	Helsinki,	Series	1,	Research	Publication	16,	(2017),	pp.	116-117	
<http://www.doria.fi/bitstream/handle/10024/144087/Arms%20control%20in%20Europe_netti.pdf?sequence=1>	
[accessed	15	July	2017].	
43	For	example,	nuclear	weapons	are	not	subject	to	an	explicit	legal	prohibition.	The	International	Court	of	Justice	in	July	
1996	reported	as	follows	on	the	issue:	‘The	threat	or	use	of	nuclear	weapons	would	generally	be	contrary	to	the	rules	of	
international	law	applicable	in	armed	conflict,	in	particular	the	principles	and	rules	of	humanitarian	law.	However,	the	
Court	cannot	conclude	definitively	whether	the	threat	or	use	of	nuclear	weapons	would	be	lawful	or	unlawful	in	an	
extreme	circumstance	of	self-defence…	so	while	the	threat	or	use	of	nuclear	weapons	was	generally	held	to	be	against	
international	law,	the	judges	could	not	determine	that	it	would	always	be’.	See:	ICJ,	‘Legality	of	the	threat	or	use	of	
Nuclear	Weapons’,	ICJ	Reports,	(1996),	p.	266.	
44	Louis	G	Maresca,	‘20	Years	since	the	ICJ	advisory	opinion	and	still	difficult	to	reconcile	with	international	
humanitarian	law’,	Humanitarian	Law	and	Policy,	blog,	8	July	2016	<http://blogs.icrc.org/law-and-
policy/2016/07/08/nuclear-weapons-20-years-icj-opinion/>	[accessed	12	April	2018].		
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paper45,	the	empirical	calculation	that	must	precede	authorisation	of	an	engagement	(and	under	
which,	for	instance,	an	autonomous	weapon	must	assess	in	advance	civilian	collateral	damage)	is	
intrinsically	complicated.	In	practice,	the	real-time	analysis	required	to	determine	whether	an	
attack	is	proportionate	is	profoundly	contextual	and	cannot	reliably	be	captured	by	current	coding	
models.46	The	regime	requires,	inter	alia,	the	attachment	(as	well	as	dynamic	amendment)	of	
variable	values	to	targets,	objects	and	even	categories	of	human	beings	before	calculating	
probabilistic	assessments	that	must	account	for	almost	limitless	contextual	factors.47	Similar	to	
military	necessity,	Brown	highlights	that	proportionality	also	pivots	on	subjective	assessment	of	
tactical	advantage.48	The	whole	process	of	analysis	that	attempts	to	define	this	advantage	evidences	
the	subject’s	complexity.49	As	noted	by	Driggs-Campbell,	such	processes	revolve	around	
probabilities	and	smart	prediction.50	This	then	posits	a	question	of	policy	on	how,	where	and	how	
often	such	confidence	thresholds	should	be	reset	in	AWS	routines.	The	complexity	also	
encompasses	the	embedding	of	control	routines	that	refine	these	inputs	in	real-time.	Lede	points	
out,	furthermore,	that	such	recalibration	will	be	particularly	challenging	in	an	environment	where	
communications	have	likely	been	denied.51		

 Proportionality and distinction in AWS deployment 
	
Proportionality	is	a	fundamentally	dynamic	construct.	Priorities	and	available	assets	change	
moment-by-moment.	Kalmanovitz	notes	the	complexity	that	such	flux	introduces	into	judgement	of	
proportionality:	battlefield	situations,	he	posits,	are	‘context	specific	because	both	civilian	risk	and	
military	advantage	are	highly	situational,	uncertain,	complex	and	dynamic,	and	they	are	holistic	
because	the	military	advantage	of	tactical	actions	has	to	be	assessed	relative	to	broader	strategic	

																																																								
45	Weapons	Law	Encyclopaedia,	‘Proportionality	in	attacks	(under	International	Humanitarian	Law)’,	
<http://www.weaponslaw.org/glossary/proportionality-in-attacks-ihl>	[accessed	12	April	2018]:	‘The	international	
humanitarian	law	of	proportionality	in	attack	holds	that	in	the	conduct	of	hostilities	during	and	armed	conflict	parties	to	
the	conflict	must	not	launch	an	attack	against	lawful	military	objectives	if	the	iPAQ	and	may	be	expected	to	result	in	
excessive	civilian	harm	(death,	injuries	or	damage	to	civilian	objects,	or	a	combination	thereof)	compared	to	the	
concrete	and	direct	military	advantage	anticipated.	If	conducted	intentionally,	a	disproportionate	attack	may	constitute	
a	war	crime’.	
46	See:	Chapter	8	(Software),	specifically	8.1	(Coding	methodologies).	PAX	uses	the	equation	of	‘one	low-level	terrorist	
versus	three	children?’	to	illustrate	this	conundrum;	moreover,	a	slight	change	in	circumstances	(is	the	soldier’s	hands	
up	in	surrender?)	might	fundamentally	change	the	legally-compliant	response.	See	also:	Walker,	Killer	Robots?,	pp.	47-
59:	‘How,	for	instance,	will	a	collection	of	autonomous	machines,	each	self-learning	based	on	individually	set	confidence	
limits	and	working	without	external	interference,	independently	and	identically	assess	the	likely	harm	that	may	be	
caused	to	civilians	and	then	decide	on	an	engagement’s	proportionality	in	relation	to	any	anticipated	military	advantage	
before	undertaking	that	lethal	action?’	
47	Based,	for	instance,	on	uniform,	posture,	actions,	geographical	position,	trajectory	and	associations.	
48	Bernard	Brown,	‘The	Proportionality	Principle	in	the	Humanitarian	Law	of	Warfare:	Recent	Efforts	at	Codification’,	
Cornell	International	Law	Journal,	10,	1,	(December	1976),	Article	5,	140-142.	
49	See:	UK	Army,	‘Land	Operations’,	Land	Warfare	Development	Centre,	Army	doctrine	publication	AC	71940,	
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/605298/Army_Field_Manual__AFM
__A5_Master_ADP_Interactive_Gov_Web.pdf>	Chapters	5	and	8.	See	also:	Nobuo	Hayashi,	‘Contextualizing	Military	
Necessity’,	Emory	International	Law	Review,	27,	(2013),	pp.	192-195.	
50	Katherine	Driggs	Campbell,	‘Tools	for	Trustworthy	Autonomy:	Robust	Prediction,	Intuitive	Control	and	Optimized	
Interaction’,	Electronic	Engineering	and	Computer	Science,	UCAL	Berkeley,	(9	May	2017),	pp.	5-9	
<https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-41.pdf>.		
51	See:	Jean-Charles	Lede,	‘Collaborative	Operations	in	Denied	Environment’,	DARPA,	undated	
<https://www.darpa.mil/program/collaborative-operations-in-denied-environment>	[accessed	10	September	2018].	
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considerations’.52	The	importance	of	an	opposition	leader	identified	by	an	AWS	in	a	crowded	
market	square	is	not	a	constant	and	is	likely	to	change	on	several	levels	as	a	battle	unfolds.53	The	
process	requires	flexibility,	without	which	it	will	be	compromised.	Indeed,	proportionality		is	
already	a	difficult	matter	for	the	human	chain	of	command	to	decide,	usually	requiring	real-time	
inputs	from	several	agencies.54	It	is	for	this	reason	that	the	US	Air	Force	Judge	Advocate	General	
focuses	on	the	matter	of	context	when	assessing	the	authorization	of	violence:	As	set	out	in	Air	
Force	Operations	and	the	Law,	proportionality	is	‘an	inherently	subjective	determination’.55	This	is	
unsurprising	given	that	tactical	advantage	is	connected	first	to	strategy	and	thence	directly	to	
political	(and	therefore	human)	goals.	As	notes	in	this	instance	by	Clark,	tactics	generally	serve	
operational	ends	and	can	often	appear	dislocated	from	strategic	ambitions.56	Later	chapters	will	
also	argue	that	is	likely	infeasible	for	an	algorithm	to	make	such	system	adjustments	that	are	
nevertheless	appropriately	anchored	to	such	a	changing	landscape.57	It	is	for	this	reason	that	
Kalmanovitz	concludes	that	‘AWS	estimates	[must]	necessarily	belong	to	narrow	tactical	actions’.58	
	

The	issue	is	one	of	empirics	and	reasonableness.	Anderson	and	Waxman	point	out	that	the	
AWS’	ability	to	assess	proportionality	is	both	a	technical	issue	(the	design	of	software	capable	of	
measuring	predicted	civilian	harm)	as	well	as	an	ethical	issue	whereby	weightings	must	be	attached	
to	relevant	variables.59	How	many	individuals	should	make	up	that	grouping	in	that	market	square	
before	the	autonomous	weapon	considers	it	sufficiently	significant	to	amend	its	action	selection?60	
The	setting	of	these	threshold	values	would	indicate	that	human	judgement	should	remain	an	
imperative	in	the	process.	It	should	also	factor	in	potential	effects	from	AWS	malfunction.	It	is,	after	
all,	not	the	weapon	that	is	making	such	judgement	but	human-made	algorithms	and	human	choices	
on	threshold	values	that	will	frame	weapon	outcomes.61	It	will	be	a	matter	of	indifference	to	victims	
whether	the	threat	they	are	exposed	to	comes	from	manned,	unmanned,	supervised	or	

																																																								
52	Kalmanovitz,	pp.	150-151.	This	is	corroborated	by	the	ICRC’s	conclusion	that	‘an	attack	carried	out	in	a	concerted	
manner	in	numerous	places	can	only	be	judged	in	its	entirety’.	
53	Here,	for	instance,	on	local,	tactical	and	strategic	levels	as	well	as	the	prioritising	of	assets	given	limited	resources	and	
risk-tolerance	levels	for	own	force	engagements.	See	also:	Adam	Rawnsley,	‘CIA	Drone	Targeting	Techniques’,	Wired,	7	
August	2009 <https://www.wired.com/2009/07/infrared-beacons-guiding-cia-drone-strikes-qaeda-claims/>	
[accessed	1	April	2018].		
54	International	Committee	of	the	Red	Cross,	‘Decision	making	in	military	combat	operations’,	ICRC	Publications,	
(October	2013),	pp.	13-14	(‘Commander’s	direction	and	review’)	and	p.	15	(‘Evaluation	of	factors’)	
<https://www.icrc.org/eng/assets/files/publications/icrc-002-4120.pdf>.	See,	also,	plot	summary	of	Gavin	Hood’s	Eye	
in	the	Sky	movie,	2016,	at	<https://www.imdb.com/title/tt2057392/plotsummary>	[accessed	12	September	2018].		
55	Tonya	Hagmaier,	Air	Force	Operations	and	the	Law;	a	Guide	for	Air	and	Space	Forces,	(USA:	Air	Force	Advocate	
General’s	School	Press,	First	Ed.,	2002),	generally.		
56	Professor	Lloyd	Clark,	in	conversation	with	the	author,	January	2019.		
	
57	The	issue	here	of	anchoring	relates	to	the	degree	of	change	that	is	appropriate	given	system	experience	and	
subsequent	amendment	to	system	settings.		
58 Kalmanovitz,	p.	151. 
59	Anderson	and	Waxman,	Law	and	Ethics	for	Autonomous	Weapon	Systems,	p.	23.	
60	See,	for	example:	Human	Rights	Watch,	‘A	wedding	that	became	a	funeral:	US	drone	attack	of	marriage	procession	in	
Yemen’,	(2013),	generally	<https://www.hrw.org/report/2014/02/19/wedding-became-funeral/us-drone-attack-
marriage-procession-yemen>	[accessed	12	May	2018].		
61	This	of	course	holds	for	machine	learning	in	AWS	routines.	See:	Chapter	7	(Firmware),	specifically:	7.2	(Firmware	
ramifications	of	machine	learning’)	and	7.3	(‘Reasoning	and	cognition	methodologies’).		
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unsupervised	weapons.62	Establishing	then	whether	such	machine-generated	predictions	are	
reasonable	will	be	intractably	complex63	and	minimally	demands	that	the	weapon	can	navigate	
with	acceptable	care	between	contradictory	values	and	interests	on	what	is	a	fast-moving	and	
contested	battlefield.64	It	is	also	legally	challenging	to	define	reasonableness	ex-ante	an	event.	Nor	
can	it	be	sufficient	that	the	rules	of	engagement	for	an	AWS	rely	solely	on	the	test	of	a	‘reasonable	
attacker’	as	proposed	by	Schmitt	and	Thurnher.65	This	is	difficult	ground	as	it	assumes	that	the	
unsupervised	weapon	has	processed	all	appropriate	information	for	such	a	decision	process.	The	
relevant	question	for	any	such	reasonableness	test	is	therefore	‘not	what	the	machine	should	do	but	
rather	what	the	human	beings	who	plan	or	decide	upon	an	attack	should	do	it	before	deploying	
AWS’.66	Given	the	probabilistic	nature	of	distinction	and	proportionality	assessments,	Schutzke	is	
correct	in	noting	that	AWS	routines	must	be	governed	by	confidence	levels	that	are	anchored	to	
relevant	contexts,	relevant	eventualities	and	missions.67	It	is	the	nature	of	such	weightings	that	they	
be	dynamic,	changing	minute-by-minute,	hour-by-hour.	As	inferred	from	McNeal,	the	critical	
decision	for	AWS’	Design	Cohort	(here,	the	engineers,	commanders	and	policy-makers)	is	once	
again	how	and	how	often	these	levels	should	re-based.68	Ignoring	for	a	moment	the	technical	
complexity	of	this	requirement,	this	is	not	straightforward	on	any	practical	level.	Will,	moreover,	
thresholds	be	set	differently	for	democratic	States	than	non-democratic	states?	To	what	degree	
should	popular	opinions	be	factored	into	these	thresholds?	Will	UK	AWS	have	exactly	similar	
threshold	levels	to	French	AWS?69	How	are	differences	to	be	understood	and	communicated?	

	
The	empirics	of	AWS’	legal	compliance	also	give	rise	to	contextual	complications.	Game	theory	

might	posit	a	consequence	whereby	a	State,	in	time,	judges	itself	legally	compelled	to	deploy	its	
AWS	assets	if	such	weapons	are	deemed	to	confer	military	superiority	to	the	side	that	first	uses	
them.	Krishnan	notes	in	this	the	possibility	of	‘a	new	international	dynamic	whereby	war	becomes	
both	increasingly	automated	and	increasingly	recurrent	simply	by	the	principle	of	necessity’.70	A	
second	constraint	arises	from	human	rights	protection	of	life	and	physical	integrity	requiring	not	
only	that	parties	must	refrain	from	arbitrary	deprivation	of	life	but	also	that	positive	steps	must	be	

																																																								
62	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
63 Kalmanovitz,	p.	152.	
64	For	a	useful	primer	of	such	adversarial	combat	environments,	see:	Alexander	Kott,	‘Challenges	and	Characteristics	of	
Intelligent	Autonomy	for	Internet	of	Battle	Things	in	Highly	Adversarial	Environment’,	US	Research	Laboratory,	Adelphi	
MD,	arXiv	preprint	arXiv:	1803.11256,	(2018),	unnumbered,	generally	<https://arxiv.org/pdf/1803.11256.pdf>.	
65	Michael	Schmitt	and	Jeffrey	Thurnher,’	Out	of	the	loop:	autonomous	weapon	systems	and	the	law	of	armed	combat’,	
Harvard	National	Security	Journal,	4,	(2012),	279-281	<http://harvardnsj.org/wp-content/uploads/2013/01/Vol-4-
Schmitt-Thurnher.pdf>.		
66	Kalmanovitz,	p.	152.	
67	Marcus	Schulzke,	‘Autonomous	Weapons	and	Distributed	Responsibility’,	Philosophy	and	Technology,	26,	2,	(2013),	
pp.	203-219.	
68	Gregory	McNeal,	‘Are	Targeted	Killings	Unlawful?	A	case	study	in	Empirical	Claims	without	Empirical	Evidence’,	cit.	
Claire	Finkelstein,	Jens	David	Ohlin,	eds.,	Targeted	Killings:	Law	and	Morality	in	an	Asymmetrical	World,	(Oxford:	Oxford	
University	Press,	2012),	pp.	327-346.	
69	Clearly	the	application	of	force	has	much	to	do	with	the	politics,	national	morale,	historical	tradition	and	cultures	of	
warring	states.	See,	for	instance,	the	different	stances	adopted	towards	Germany	by	France	and	Great	Britain	between	
1919	and	1939	(Professor	Lloyd	Clark,	in	conversation	with	the	author,	13	September	2014).		
70	Armin	Krishnan,	Killer	Robots,	UG479.	K75	(UK:	Ashgate	Publishing,	2009),	p.	91.	
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taken	to	secure	the	right	to	life	within	States’	jurisdiction.71	The	upshot	is	that	AWS	deployment	
must	adhere	to	States’	duty	to	control	the	use	of	lethal	force	including	‘careful	assessment	of	
surrounding	circumstances’.72	This	then	becomes	an	important	dynamic	in	States’	deployment	
decision.	An	obligation	of	States,	after	all,	might	be	to	control	their	security	actions	so	as	to	
minimise	recourse	to	legal	force	and	incidental	loss	of	life.73	Case	law,	moreover,	extends	this	
obligation	to	conducting	investigation	upon	individuals’	deaths	in	order	to	secure	accountability.74	
The	obstacle	for	AWS	deployment	is	that	failure	to	fulfill	these	positive	obligations	constitutes	a	
human	rights	violation.	Legal	and	ethical	assessment	cannot	simply	be	binary	(is	the	system	
acceptable	or	unacceptable?)	but	instead	must	be	contextual	and	specific	to	each	environment.		

	
	 In	order	to	incorporate	the	concept	of	distinction	into	AWS	routines,	parties	to	a	conflict	
‘must	at	all	times	distinguish	between	civilians	and	combatants.	Attacks	may	only	be	directed	at	
combatants.	Attacks	must	not	be	directed	against	civilians’.75	While	this	appears	a	straightforward	
obligation,	compliance	is	complicated.	As	noted	by	Mattis	and	Hoffman,	moves	from	State-on-State	
warfare	to	conflict	types	that	are	characterised	instead	by	urban	battles	between	civilian	
populations	(but	still,	of	course,	bound	by	those	legal	constraints	under	LOAC)	have	made	the	
distinction	between	legitimate	targets	and	non-combatants	very	difficult.76	Combatants	in	
unconventional	armed	conflict	may	not	be	wearing	uniforms	or	insignia,	making	it	testing	for	
weapon	routines	to	judge	whether	an	individual	(or,	more	difficult	still,	an	individual	within	a	body	
of	persons)	should	be	categorised	as	a	relevant	combatant.	Krishnan	is	succinct:	‘Distinguishing	
between	a	harmless	civilian	and	an	armed	insurgent	would	be	beyond	anything	machine	perception	
could	(sic)	possibly	do.	In	any	case,	it	would	be	easy	for	terrorists	or	insurgents	to	trick	these	
robots	by	concealing	weapons	or	by	exploiting	their	sensual	and	behavioural	limitations’.77	
Unambiguous	definition	of	this	‘civilian’	within	the	legal	principle	of	distinction	does	not	exist	and,	
again,	frustrates	any	compliant	paring	of	recognition	algorithm	and	recognizing	sensor.78	In	
considering	civilian	populations,	the	1949	Geneva	Convention	instead	requires	the	use	of	‘common	

																																																								
71	Jean-Francios	Akandji-Kombe,	‘Positive	Obligations	Under	European	Conventions	on	Human	Rights’,	Directorate	
General	of	the	Human	Rights	Council	of	Europe,	Strasbourg,	(January	2007),	pp.	7-10	
<https://www.echr.coe.int/LibraryDocs/dg2/hrhand/dg2-en-hrhand-07(2007).pdf>.	For	further	analysis	of	positive	
obligations,	see:	Sandra	Krahenmann,	‘Positive	obligations	in	human	rights	treaties’,	Graduate	Institute	of	International	
studies,	Geneva,	PhD	Thesis	no.	949,	(2012),	generally.	
72	ECtHR,	‘Natchova	et	al	vs	Bulgaria’,	European	Court	of	Human	Rights,	App.	nos	43577/98	and	53579/98,	Judgement,	
(6	July	2005).	
73	Theresa	Reinold,	‘Sovereignty	and	the	responsibility	to	protect’,	Routledge	Advances	in	International	Relations	and	
Global	Politics,	(2013),	p.	50	(‘The	responsibility	to	protect’)	and	p.	119	(‘The	duty	to	prevent’).		
74	ECtHR,	‘McKerr	vs	United	Kingdom’,	European	Court	of	Human	Rights,	App.	no	28883/95,	(4	May	1995)	and	ECtHR,	
‘Al-Skeini	vs	United	Kingdom’,	European	Court	of	Human	Rights,	App.	no	55721/07,	Grand	Chamber,	Judgement,	(7	July	
2011),	para.	164.	See	also:	this	chapter,	specifically:	5.8	(‘Ethical	and	accountability	constraints’).			
75	Rule	1,	St	Petersburg	Declaration,		<www.icrc.org>	[accessed	30	December	2013].	Now	codified	in	Articles	48,	51	and	
52	of	Additional	Protocol	I	of	the	Geneva	Regulations	(against	which,	interestingly,	no	objects	or	reservations	have	been	
made).	
76	HRW,	Losing	Humanity,	the	Case	against	Killer	Robots,	p.	30.	As	above,	it	is	beyond	the	scope	of	this	paper	to	consider	
in	detail	hybrid	warfare.	See	instead:	Lt	Gen	James	Mattis	and	Lt	Col	Frank	Hoffman,	‘Future	Warfare:	The	rise	of	Hybrid	
Wars’,	USNI,	Proceedings	Magazine,	(November	2005),	Vol	132/11/1,233.	
77	Armin	Krishnan,	Killer	Robots,	p.	99.	
78	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	lawful	
autonomy’,	p.	4	
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sense’	while	the	1977	Protocol	1	defines	a	civilian	in	the	negative	sense	as	someone	who	is	not	a	
combatant.79		
	

A	further	confounding	variant	arises	from	whether	a	combatant	has	become	hors	de	combat,	a	
key	tenet	of	battlefield	law.80	Under	Article	41	of	Protocol	I,	an	individual	is	considered	to	be	hors	de	
combat	if	he	is	in	the	power	of	an	adverse	party,	has	clearly	expressed	an	intention	to	surrender	or	
has	been	incapacitated	by	wounds	and	is	therefore	incapable	of	defending	himself	(provided	in	all	
cases	that	that	person	abstains	for	hostile	acts	and	refrains	from	escaping).81	The	test,	in	order	to	be	
LOAC	compliant,	is	that	the	unsupervised	weapon’s	targeting	routines	must	perform	these	tasks	at	
least	as	well	as	a	human	soldier;	it	cannot	be	assumed	that	everyone	present	in	a	war	zone	is	a	
combatant.	What	then	are	the	empirical	challenges	for	AWS	deployment?	The	self-directing	weapon	
must	at	once	be	able	to	attribute	intention	to	those	in	its	immediate	arena.	Sharkey	notes	in	Killing	
Made	Easy	that	‘humans	understand	one	another	in	a	way	that	machines	cannot;	cues	can	be	very	
subtle	and	there	are	an	infinite	number	of	circumstances	where	lethal	force	is	inappropriate’.82	
Obligations	for	distinction,	moreover,	contain	a	further	complication	to	AWS	deployment.	Adopting	
Goodman’s	position	(whereby	‘[t]he	purpose	of	military	hostilities	in	warfare	is	per	se	not	to	kill	
combatants’83	but	to	defeat	the	enemy,	even	if	this	requires	the	killing	of	combatants’),	this	posits	
AWS	routines	that	can	comprehend	tactics,	wider	strategy	and	planning.	It	would	obviate	
deployment	models	based	on	reflexive,	cursory	instructions	that	occasion,	for	instance,	that	there	
be	‘no	survivors’	or	for	weapons	to	conduct	hostilities	on	that	basis.84		

	
Sharkey	points	out	that	the	principle	of	distinction	is	a	particularly	subjective	process.85	HRW’s	

Killer	Robots	lists	several	scenarios	to	illustrate	such	engagement	dilemmas,	epitomized	by	the	
frightened	mother	running	after	her	two	children	who	are	playing	with	toy	guns	near	a	soldier.86	
Adjuncts	to	this	challenge	arise.	Unable	to	‘identify’	with	humans,	Adams	notes	that	AWS	will	be	
incapable	of	showing	compassion,	a	likely	check	(suggests	Adams)	on	the	willingness	to	kill.87	In	
this	manner,	while	an	AWS	might	self-authorise	engagement	of	a	child	holding	what	is	identified	as	
a	gun,	a	human	soldier	in	the	same	circumstances	might	remember	his	own	children	and	hold	fire,	

																																																								
79	Article	50	(1)	of	the	Protocol	additional	to	the	Geneva	conventions	of	12	August	1949	and	relating	to	the	protection	of	
the	victims	of	international	armed	conflicts,	(8	June	1977).	
80	ICRC,	‘Customary	IHL:	Rule	47,	Attacks	against	Persons	Hors	de	Combat’,	IHD	Database,	undated	<https://ihl-
databases.icrc.org/customary-ihl/eng/docs/v1_rul_rule47>	[accessed	2	August	2018].		
81	Protocol	I,	Article	41(2);	the	ICJ	in	its	case	‘Legality	of	the	Threat	or	Use	of	Nuclear	Weapons’	affirmed	the	importance	
of	the	Martens	Clause	‘whose	continuing	existence	and	applicability	is	not	to	be	doubted’	(Advisory	opinion,	8	July	1996,	
para	87).	The	judges	also	found	that	the	Martens	Clause	represents	customary	international	law:	Ibid.,	para	84.		
82	Noel	Sharkey,	‘Killing	made	easy’,	Lin,	Abbey	and	Bekey,	eds.,	Robot	Ethics,	(USA:	MIT	Press,	3	January	2012),	
generally.	

118.	A	useful	summary	of	the	topic	can	also	be	found	at:	David	J.	Gunkel,	Joanna	J.	Bryson,	and	Steve	Torrance,	‘The	
Machine	Question:	AI,	Ethics	and	Moral	responsibility’,	Society	for	the	Study	of	Artificial	Intelligence	and	Simulation	of	
Behaviour,	978-1-908187-21-5,	(2013)	<http://www.cs.bath.ac.uk/~jjb/ftp/MQ2012-frontmatter.pdf>.	
83	Ryan	Goodman,	‘The	Power	to	kill	or	capture	Enemy	combatants’,	European	Journal	of	Law,	24,	2,	(2013),	819–853.		
84	Director	General	for	External	Policies,	European	Parliament,	‘Human	Rights	issues	of	the	usage	of	drones	and	
unmanned	robots	in	warfare’,	DROI	(2013),	para	3.1.4,	p.	26.	
85	Walker,	Killer	Robots?,	p.	51.	
86	Human	Rights	Watch,	‘Losing	Humanity	–	the	Case	against	Killer	Robots’,	p.	46.	
87	Thomas	Adams,	Future	warfare	and	the	Decline	of	Human	Decision	Making,	(USA:	Parameters,	2001),	pp.	4-6	and	p.	8	
<http://ssi.armywarcollege.edu/pubs/parameters/articles/2011winter/adams.pdf>.		
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seek	the	child’s	capture	or	avoid	that	child.	While	the	issue’s	complexity	may	be	well	understood,	
technical	solution	to	the	hurdle	is	enduringly	challenging.	In	this	vein,	the	International	Committee	
of	the	Red	Cross	took	until	2009	to	provide	what	is	still	convoluted	guidance	on	how	best	to	classify	
civilians	engaging	in	hostilities88:		

	
In	order	to	avoid	erroneous	or	arbitrary	targeting	of	civilians,	parties	to	a	conflict	must	take	all	
feasible	precautions	in	determining	whether	a	person	is	a	civilian	and,	if	that	is	the	case,	
whether	he	or	she	is	directly	participating	in	hostilities.	In	case	of	doubt,	the	person	in	question	
must	be	presumed	to	be	protected	against	direct	attack.89		
	

This	is	clearly	a	difficult	judgement	for	an	experienced	human	soldier	to	undertake.90	It	becomes	a	
question	of	technical	feasibility,	explored	in	later	chapters,	for	machine	systems	to	perform	the	
same.		

	
Other	obligations	arise	from	the	Conventions	that	cumulatively	create	enduring	obstacles	to	

AWS	deployment.	As	above,	the	matter	of	proportionality	in	violent	engagement	is	covered	by	
Article	51	which	states	that	‘an	attack	which	may	be	expected	to	cause	incidental	loss	of	civilian	life,	
injury	to	civilians,	damage	to	civilian	objects,	or	a	combination	thereof,	which	would	be	excessive	in	
relation	to	the	concrete	and	direct	military	advantage	anticipated	is	forbidden’.91	Its	legal	basis	is	
corroborated	by	subsequent	precedent:	Under	the	Statute	of	the	International	Criminal	Court,	
‘intentionally	launching	an	attack	in	the	knowledge	that	such	an	attack	will	cause	incidental	loss	of	
life	to	civilians	or	damage	to	civilian	objects…	which	would	be	clearly	excessive	in	relation	to	
concrete	and	direct	overall	military	advantage	anticipated…	constitutes	a	war	crime’.92	State	
practices,	furthermore,	establish	this	ruling	as	a	norm	of	customary	international	law,	applicable	in	
both	international	and	non-international	armed	conflict.93	The	deployment	issue	for	AWS	is	
therefore	unambiguous.	How	can	the	constituents	of	proportionality	be	coded	such	that	an	
independent	machine	can	comply	with	these	legal	requisites?	How	can	these	constituents	then	be	
appropriately	governed	within	the	situational	awareness	that	is	mandatory	for	proportionality’s	
satisfactory	practice?	The	deployment	challenge	is	best	summarized	by	the	ICRC’s	own	definition	
that	proportionality	is	fundamentally	subjective	and	‘above	all	must	be	a	question	of	common	sense	

																																																								
88	Chris	Cole,	‘Towards	the	Next	Defence	and	Security	Review	on	the	use	of	armed	Unmanned	Aerial	Vehicles’,	
Submission	from	Drone	Wars	UK	to	the	Defence	Select	Committee	Inquiry,	7th	Report	of	the	Session,	2013-14,	2,	(18	
December	2013)	<https://publications.parliament.uk/pa/cm201314/cmselect/cmdfence/197/197vw.pdf>,	p.	6.	
89	ICRC,	‘Direct	participation	in	hostilities:	questions	and	answers’,	(2	June	2009),	cit.	Chris	Cole,	‘Towards	the	Next	
Defence	and	Security	Review	on	the	use	of	armed	Unmanned	Aerial	Vehicles’,	Submission	from	Drone	Wars	UK	to	the	
Defence	Select	Committee	Inquiry,	p.	6.	
90	Frans	Osinga,	Targeting:	The	challenges	of	Modern	Warfare,	ed.	Paul	Ducheine	and	Michael	Schmitt,	(USA:	Asser	
Press/Springer,	3	November	2015),	pp.	193-195	(‘9.5.2	Subjectivity	in	targeting’).		
91	The	principle	of	proportionality	in	attack	is	also	contained	in	Protocol	II	and	Amended	Protocol	II	to	the	Convention	of	
Certain	Conventional	Weapons.	
92	ICC	Statute,	Article	8(2)(b)(iv),	UNTAET	Regulation	2000/15.	
93	ICRC,	Rule	14,	Proportionality	in	Attack	<www.icrc.org>	[accessed	30	December	2016].	
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and	good	faith	for	military	commanders’94	and,	as	noted	by	HRW	in	Losing	Humanity,	any	such	test	
requires	‘more	than	a	balancing	of	quantitative	data’.95		

 Accountability in AWS deployment 
	
Legal	obligations	together	comprise	what	Beard	terms	AWS’	‘framework	of	responsibility’.96	In	this	
vein,	Sartor	identifies	clear	accountability	as	the	essential	component	in	responsible	weapon	
operation,	linking	functional	failure	with	causality:	‘Harm	would	not	have	resulted	had	the	
responsible	component	correctly	exercised	the	function	attributed	to	it’.97	A	second	notion	within	
this	responsibility	framework	relates	to	‘blameworthiness’	when	harm	occurs	through	a	system	
fault	(‘a	substandard	behaviour	in	a	moral	agent’,	here	defined	as	the	AWS	designer).98	Other	
footings	exist	to	this	framework.	Tort	law,	for	instance,	widely	extends	liability	into	areas	that	clash	
with	removal	of	human	supervision.	These	include	causality	of	harm	(strict	liability),	ownership	or	
custody	of	the	weapon	that	caused	the	harm,	being	‘principal	to	the	agent	who	caused	the	harm’	
(vicarious	liability)	as	well	as	to	general	product,	design,	negligence	and	organisational	liabilities.	
Davey	also	points	out	that	AWS’	intent	will	be	very	difficult	to	determine	given	the	human’s	
increasing	remoteness	and	the	consequent	diffusion	of	agency	that	blurs	any	attribution	of	
purpose.99	Animus	belligerendi	(the	intention	of	a	party	to	fight	against	a	chosen	opponent,	in	this	
case	an	armed	AWS	that	has	been	specifically	tasked)	cannot	be	proved	without	impracticable	real	
time	analysis.	Establishing	direct	connection	between	action	and	intention	will	likewise	be	
complicated	when	these	means	of	warfare	are	either	‘spatially	distributed’	or	‘temporally	
deferred’.100	As	noted	by	Marauhn,	AWS’	independence	means	that	it	will	also	be	impossible	to	rely	
on	robust	legal	links	between	AWS	actions	and	State	intent,	itself	a	prerequisite	in	establishing	
violation	of	international	law.101	With	action	sequences	depending	upon	precise	deployment	
models,	Marauhn	notes	that	an	erroneous	lethal	engagement	by	an	AWS	in	a	neighbouring	territory	
would	not	necessarily	constitute	a	legal	trigger	for	conflict	where	that	mistake	was	due	solely	upon	
insufficient	care	being	taken	on	that	weapon’s	targeting	parameters.102	Moreover,	AWS	
programming	must	ensure	throughout	that	those	action	sequences	are	governed	by	IHRL	standards	
on	the	use	of	force	and	not	just	by	the	law	of	hostilities.	For	the	law	of	hostilities	to	govern	that	use	
of	force,	sufficient	control	over	the	weapon’s	actions	must	be	demonstrable	in	order	to	have	that	

																																																								
94	ICRC,	Rule	14,	Proportionality	in	Attack	and	attendant	ICRC’s	authoritative	commentary	on	the	1977	Additional	
Protocol	(See:	http://www.loc.gov/rr/frd/Military_Law/pdf/Commentary_GC_Protocols.pdf)	generally	but	specifically	
pp.	231-237	(‘Identification’)	and	237-241	(‘Neutrals’). 

95	Ibid.	This	author’s	italics	for	emphasis.		
96	Jack	Beard,	‘Autonomous	Weapons	and	Human	Responsibility’,	University	of	Nebraska,	Georgetown	Journal	of	
International	Law,	617,	(2014),	642.	
97 Sartor	and	Omicini,	p.	62. 
98 Ibid.,	p.	62.	The	definition	here	of	‘fault’	is	broad;	it	may	relate	to	design,	the	machine’s	inability	to	exercise	with	the	
abstract	function	attributed	to	it,	faulty	integration	or	inappropriate	specification.	
99	Tucker	Davey,	‘Who	is	Responsible	for	Autonomous	Weapons?’,	Future	of	Life	Institute,	(21	November	2016),	para.	7	
of	23	<https://futureoflife.org/2016/11/21/peter-asaro-autonomous-weapons/>	[accessed	12	January	2018].		
100	The	link	is	also	difficult	to	establish	when	the	weapons	systems	are	‘victim-activated’	such	in	the	case	of	proximity	or	
contact-mines.	
101	See:	Thilo	Marauhn,	‘An	analysis	of	the	potential	impact	of	lethal	autonomous	weapons	systems	on	responsibility	and	
accountability	for	violations	of	international	law’,	Presentation,	CCW	Meeting	of	Experts	on	Lethal	Autonomous	Weapons	
Systems,	Geneva,	(May	2014),	pp.	1-2	<http://bit.ly/2dGUOzc>	[accessed	12	March	2017].		
102	Marauhn,	p.	5.	
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weapon	classified	as	a	targeted	‘means	of	warfare’	against	another	party.	Brehm’s	point	is	that	
empirical	deployment	of	unsupervised	weapons	makes	it	difficult	to	determine	when	AWS	(or	parts	
thereof)	are	being	used	as	that	relevant	‘means	of	warfare’	(used	by	Brehm	to	denote	the	method	of	
lethal	engagement).103	This	challenge	is	also	exacerbated	by	the	increasingly	blurred	distinction	
between	war-fighting,	policing	and	other	State	uses	of	violence.104	
	

In	considering	the	laws	of	hostilities	as	a	constraint	to	AWS	deployment,	two	questions	arise.	
When	does	AWS	deployment	constitute	a	legal	use	of	a	means	of	warfare?	Second,	in	the	use	of	an	
AWS,	what	constitutes	an	attack	to	which	legal	rules	on	targeting	then	apply?	Establishing	in	real	
time	the	appropriate	framework	(within	which	the	laws	on	hostilities	must	apply)	therefore	
becomes	a	further	constraint	on	lawful	deployment;	the	difficulty	is	that	AWS’	actions	will	be	both	
context-dependent	and,	crucially,	not	under	direct	human	control.	The	framework	around	‘means	
of	warfare’	is	more	tied	to	the	IHL	notion	of	‘attack’	to	which,	mutatis	mutandis,	apply	the	full	rules	
of	targeting	including	obligations	around	proportionality,	distinction	and	the	need	to	demonstrate	
precautions	in	attack.105	It	is	for	this	reason	that	Moyes	questions	how	compliance	can	be	ensured	
when	neither	scope	nor	context	(nor,	indeed,	the	spatial	or	temporal	boundaries	of	specific	acts	of	
violence)	can	be	understood	from	the	outset	of	AWS’	deployment.106	Notwithstanding	that	several	
legal	precepts	in	IHL	and	IHRL	may	remain	ill-defined	or	in	conflict	with	one	another107,	States	
remain	bound	by	obligations	regardless	of	circumstance,	a	further	intractable	challenge	to	AWS	
deployment	models.108	It	is	therefore	important	to	this	analysis	to	acknowledge	the	overlapping	
components	that	constitute	this	legal	framework.		

	
At	a	supra-national	level,	it	is	the	UN	Charter’s	‘collective	measures’109	and	arms	control	

treaties	that	address	how	Nation	States	either	initiate	or	forbid	armed	conflict,	‘harmonizing	the	
actions	of	nations	in	the	attainment	of	common	ends’.110	These	have	clear	consequences	on	the	use	
of	AWS	and	complicate	their	deployment.	Would,	for	instance,	cross-border	use	of	autonomous	
weapons	amount	to	control	of	that	area	such	that	the	agent	who	is	responsible	for	that	weapon	has	
established	a	jurisdictional	link	for	extra-territorial	application	of	IHRL	treaties?	By	way	of	context,	
Brehm	frames	the	issue	as	whether	precursor	use	of	unsupervised	drones	constitutes	sufficient	

																																																								
103	Brehm,	p.	24.	
104	Keith	Krause,	‘War,	Violence	and	the	State’,	Securing	Peace	in	a	Globalised	World,	(2009),	pp.	183-184	and	generally	
<http://graduateinstitute.ch/files/live/sites/iheid/files/sites/admininst/shared/doc-
professors/forthcoming%20war,violence%20and%20state%20HW70_ch9_krause_corrected%5B1%5D.pdf>.	
105	Such	conditionality	also	includes	feasible	measures	to	cancel	or	suspend	that	attack	should	a	target’s	legality	or	
proportionality	become	questionable.	
106	Richard	Moyes,	‘Key	Elements	of	meaningful	human	control’,	Article	36	Briefing	Paper,	CCW	Meeting	of	Experts	on	
Lethal	Autonomous	Weapon	Systems,	(April	2016),	p.	3	<http://article36.org/wp-content/uploads/2016/04/MHC-
2016-FINAL.pdf>.		
107	The	onus	is	on	the	State	to	show	that	exceptional	circumstances	exist	that	limits	its	responsibilities.	See:	ECtHR,	
‘Sargsyan	vs	Azerbaijan’,	European	Court	of	Human	Rights,	App.	no	40167/06,	Grand	Chamber,	Judgement,	(16	June	
2016),	paras.	126-131.	
108	D.Hart,	‘War	remains	inside	the	courtroom:	Jurisdiction	under	ECHR’,	UK	Human	Rights	Blog,	11	September	2016	
<https://ukhumanrightsblog.com/2016/09/11/war-remains-inside-the-court-room-jurisdiction-under-echr/>	
[accessed	18	June	2017].	The	US,	however,	has	always	rejected	that	ICCPR	applies	outside	its	own	borders.		
109	In	particular,	Sections	1	and	7,	UN	<http://www.un.org/en/documents/charter/index.shtml>	for	full	text	[accessed	
12	June	2017].	
110	See:	United	Nations	Charter	2006,	Section	3	<http://www.un.org/en/sc/repertoire/2012-2013/Part%20III/2012-
2013_Part%20III.pdf>.	
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control	over	either	area	or	individuals	that	would	otherwise	be	akin	to	effecting	custody.111	Use	of	
AWS	thus	creates	new	legal	complexity.	This	is	evidenced	by	Melzer	who	notes	that	‘a	State	
exercising	sufficient	control	or	power	to	carry	out	a	targeted	killing	will	also	exercise	sufficient	
factual	control	(sic)	to	assume	legal	responsibility	for	its	failure	to	respect	with	the	right	to	life	of	
the	targeted	person’.112	A	premise	for	compliant	deployment	of	AWS	may	be	that	‘seeing	and	
knowing	triggers	obligations’	on	the	basis	that	sufficient	control	over	territories	and	persons	
evidently	exists.	As	such,	extra-territorial	application	of	human	rights	law	would	be	triggered	by	
AWS	deployment,	greatly	complicating	the	placement	of	independent	weapons	without	human	
supervision	and	leading	Haas	and	Fischer	to	argue	that	the	entire	process	of	targeting	represents	a	
form	of	control	by	very	definition.113	In	arguing	the	violation	of	LOAC	regardless	of	deployment	
model,	Brehm	points	to	broad	legal	consensus	that	neither	the	level	of	lethality	nor	the	duration	of	
hostilities	affect	the	immediate	application	of	IHL	to	armed	conflict.114		

 Martens Clause 
In	considering	legal	impediments,	two	further	legal	nuances	require	review.	The	Martens	Clause115	
has	formed	a	part	of	the	laws	of	armed	conflict	since	its	appearance	in	the	preamble	to	the	1899	
Hague	Convention.116	Protocol	I	Article	1(2)	states	that	means	of	warfare	(and,	by	extension,	AWS	
deployment)	must	be	evaluated	according	to	the	‘principles	of	humanity’	and	the	‘dictates	of	public	
conscience’.	While	there	is	no	certain	interpretation	of	the	Clause117,	at	its	most	restricted	it	serves	
as	evidence	that	customary	international	law	is	over-arching	and	continues	to	apply	in	all	
battlefield	circumstances.118	A	wider	interpretation	of	the	Clause	is	that	conduct	in	armed	conflict	
should	not	only	be	judged	according	to	treaties	and	custom	but	also	to	the	principles	of	
international	law	as	referred	to	by	the	Clause.119	This	interpretation	is	borne	out	by	the	
International	Law	Commission’s	1999	statement	that	the	Martens	Clause	‘provides	that	even	in	
cases	not	covered	by	specific	international	agreements,	civilians	and	combatants	remain	under	the	
protection	and	authority	of	the	principles	of	international	law	derived	from	established	customs,	
from	the	principles	of	humanity	and	from	the	dictates	of	public	conscience’.120	Building	upon	this	
clarification,	Queguiner	then	highlights	other	requirements121	whereby	commanders	must	follow	
legal	precautions	in	order	to	remain	LOAC-compliant.122	It	is	Article	57	that	deals	widely	with	the	

																																																								
111	Brehm,	p.	20.		
112	Nils	Melzer,	Targeted	Killing	in	International	Law,	(Oxford:	Oxford	University	Press,	2008),	p.	20.		

113	Haas	and	Fischer,	generally.	
114	Brehm,	p.	22.	
115	Walker,	Killer	Robots?,	p.	57.	
116	See:	International	Committee	of	the	Red	Cross	Resource	Centre,	<www.icrc.org>	[accessed	30	November	2015].	
117	Human	Rights	Watch,	‘Heed	the	Call:	A	moral	and	Legal	Imperative	to	Ban	Killer	Robots’,	HRW	Publications,	pp.	9-11	
(September	2018)	<https://www.hrw.org/report/2018/08/21/heed-call/moral-and-legal-imperative-ban-killer-
robots>	[accessed	12	October	2018].	
118	Human	Rights	Watch,	‘Heed	the	Call’,	pp.	13-16	(‘Applicability	and	Significance	of	the	Martens	Clause’).		
119	HRW,	‘Losing	humanity;	the	case	against	killer	robots’,	p.	35.	
120	UN	Report	of	the	International	Law	Commission,	‘Work	of	its	46th	Session’,	UN	Publications,	GAOR	A/49/10,	(May-
July	1994),	p.	317.	See,	also:	Human	Rights	Watch,	‘Heed	the	Call’,	p.	3.	
121	Jean-Francois	Queguiner,	‘Precautions	under	the	law	governing	the	conduct	of	hostilities’,	International	Review	of	the	
Red	Cross,	88,	864,	(December	2006)	<http://www.icrc.org/eng/assets/files/other/irrc_864_queguiner.pdf>.	
122	Source:	Article	36	<http://www.article36.org/weapons-review/autonomous-weapons-meaningful-human-control-
and-the-ccw/>	[accessed	12	March	2017].	
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protection	of	civilians	in	a	conflict	situation.	How	might	this	affect	AWS	deployment?	Its	first	section	
requires	that	‘constant	care	shall	be	taken	to	spare	the	civilian	population,	civilians	(sic)	and	
civilian	objects’.	In	this	case,	AWS’	Delivery	Cohort	must	ensure	compliance	with	a	portfolio	of	legal	
prerequisites	that	are,	in	programming	terms	(as	well	as	in	semantics),	fundamentally	abstruse:123	
To	this	point,	Article	57(2)	requires	that	‘all	feasible	precautions	in	the	choice	of	means	and	
methods	of	attack’	be	taken	in	order	either	to	avoid	or	to	minimise	loss	of	civilian	life,	injury	and	
damage	to	civilian	objects’.124	Article	57(2)	b	then	stipulates	that	an	attack	shall	be	cancelled	if	it	
becomes	apparent	that	the	object	is	not	a	military	one,	or	that	the	attack	may	be	expected	
(following	due	analysis125)	to	cause	incidental	loss	of	civilian	life,	injury	to	civilians	and	damage	to	
civilian	objects	that	would	be	excessive	in	relation	to	the	direct	military	advantage	anticipated.	
While	this	thesis’	later	chapters	address	the	technical	challenges	that	such	requirements	entail126,	
these	ancillary	constraints	must	govern	AWS’	operational	deployment.	Article	57(3),	for	instance,	
stipulates	that	when	a	choice	is	possible	between	several	military	objectives,	then	the	objective	to	
be	selected	shall	be	the	attack	that	is	expected	to	cause	the	least	danger	to	civilian	life	and	civilian	
objects.	Certain	conditions,	moreover,	appear	to	represent	a	direct	proscription	to	AWS	
deployment.	Article	54(b)(4)	of	Protocol	1	bans	inherently	indiscriminate	weaponry	while	Article	
35(2)	of	Protocol	1	rules	against	weapons	that	cause	unnecessary	suffering	or	superfluous	injury.	
Notwithstanding	arguments	on	the	constitution	of	a	target127,	a	weapon,	after	all,	may	be	deemed	
indiscriminate	simply	if	it	cannot	be	aimed	specifically	at	that	target.128		

 Article 36 and LOAC-compliant weaponry 
	
Other	legal	hurdles	exist	that	complicate	States’	attempts	to	develop	compliant	AWS.	Article	36	of	
Additional	Protocol	I	to	the	Geneva	Conventions	confers	the	obligation	on	States	signatories	to	
evaluate	new	or	modified	weapons	in	order	to	ensure	their	compliance	with	the	provisions	of	
humanitarian	law.129	States’	deployment	of	AWS	must	be	managed	within	the	prescriptions	of	such	
weapon	reviews.	These	should	also	be	a	continuous	procedure	taking	place	throughout	States’	
procurement	processes.	Given	that	Article	36	forms	part	of	the	agreed	Conventions	(signed	by	196	
States	signatories),	much	of	HRW’s	Case	against	Killer	Robots130	rests	on	this	assertion	of	best	

																																																								
123	For	a	discussion	here	of	programming	challenges,	see:	Chapter	8	(Software),	specifically:	8.1	(‘Coding	
methodologies’),	8.6	(‘Value	setting	issues’)	and	8.8	(‘Behaviour	setting	and	coordination’).		
124	ICRC	IHL	database,	‘Rule	14	–	Proportionality	in	Attack’,	<https://ihl-databases.icrc.org/customary-
ihl/eng/docs/v1_cha_chapter4_rule14>	[accessed	23	September	2018].	
125	Eva	Svoboda	and	Emanuela-Chiara	Gillard,	(eds.),	‘Protection	of	Civilians	in	Armed	Conflict:	Bridging	the	Gap	
between	Law	and	Reality’,	Humanitarian	Policy	Group,	Overseas	Development	Institute,	(2015),	p.	3	and	generally	
<https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9876.pdf>		
126	See:	chapters	6	(Wetware),	7	(Firmware)	and	8	(Software).	
127	For	a	detailed	discussion	on	targeting’s	ramifications	to	compliant	AWS	deployment,	see:	Chapter	10	(Oversight),	
introduction	and	10.1	(‘Meaningful	human	control’).		
128	Autonomous	weaponry	must	also	comply	with	this	rule	but	the	mere	feature	of	autonomy	does	not	per	se	determine	
either	compliance	or	non-compliance	if	sufficiently	robust	targeting	algorithms	are	in	place	and	work	all	of	the	time.	
129	Protocol	1	Additional	to	the	Geneva	Conventions	of	12	August	1949,	and	Relating	to	the	Protection	of	Victims	on	
International	Armed	Conflicts	(Protocol	1)	adopted	June	8,	1977,	1125	UNTS	3	(entered	into	force,	7	December	1978).	
130	For	a	useful	distillation	of	the	arguments	see:	Denise	Garcia,	‘The	Case	Against	Killer	Robots’,	Foreign	Affairs	
magazine,	10	May	2014	<http://www.foreignaffairs.com/articles/141407/denise-garcia/the-case-against-killer-
robots>	[accessed	2	March	2014].	For	the	original	report,	see:	Bonnie	Docherty,	‘Losing	Humanity	–	the	Case	against	
Killer	Robots’,	Human	Rights	Watch,	(2012)	<http://www.hrw.org/reports/2012/11/19/losing-humanity-0>	[accessed	
2	June	2015].	
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practice.	Removing	weapon	supervision	will	thus	require	that	States	undertake	formal	impact	
assessments131	regardless	of	whether	specific	weapon	systems	are	yet	available.132		
	

Boulanin	notes	that	few	States	have	appropriate	review	mechanisms	in	place.133	Were	Protocol	
1’s	Article	36	to	be	properly	enforced,	it	would	impose	material	conditionality	upon	AWS’	
deployment	and,	as	such,	merits	further	analysis	in	order	to	evaluate	the	significance	of	that	
challenge.134	Under	the	Article,	the	‘study,	development,	acquisition	or	adoption	of	a	new	weapon,	
means	or	method	of	warfare’	places	any	States	party	‘under	an	obligation	to	determine	whether	its	
employment	would,	in	some	or	all	circumstances,	be	prohibited’,	either	by	Protocol	1	or	by	‘any	
other	rule	of	law	applicable’	to	such	party.135	The	scope	of	an	Article	36	legal	review	is	broad136	
covering	weapons	of	all	types137	and	the	way	in	which	these	weapons	are	to	be	used.138	It	also	
captures	any	weapon	in	a	State’s	arsenal.139	Review	under	Article	36	requires	legal	analysis	identify	
where	and	under	what	legal	limitations	the	use	of	that	weapon	is	lawful	and,	in	so	doing,	Anderson	
and	Waxman	note	that	States	must	consider	whether	the	use	of	these	new	technologies	would	be	
contrary	to	international	law	in	some	or	all	circumstances.140	Sandoz	highlights	that	failure	to	do	
this	renders	a	State	internationally	responsible	for	a	breach	of	its	obligations	vis-à-vis	the	other	
parties	to	that	Additional	Protocol	1.141	For	those	States	that	are	not	signatories	to	Additional	
Protocol	1,	Rappart	and	Moyes	argue	that	such	review	should	still	be	undertaken	‘as	a	corollary	to	
other	international	obligations’142	and	as	a	matter	of	best	practice.143	Article	36,	moreover,	refers	to	
‘any	other	rule	of	international	law	applicable’	to	the	State	including	weaponry	already	subject	to	a	

																																																								
131	The	effect	of	both	the	weapon	and	the	ways	that	the	weapon	can	be	used	are	subject	to	this	mandated	review.	
132	HRW,	‘Killer	Robots,	the	Case	against	Killer	Robots’,	p.	3.		
133	Boulanin	and	Verbruggen,	‘Article	36	Reviews’,	SIPRI,	(December	2017),	p.	15.		
	
134	According	to	the	ICRC’s	Commentary	on	the	Additional	Protocols,	Article	36	‘implies	the	obligation	to	establish	
internal	procedures	for	the	purpose	of	elucidating	the	issues	of	legality	and	the	Other	Contracting	Parties	can	ask	to	be	
informed	on	this	point’.		
135	US	Defense	Department	lawyers	have	rejected	various	proposed	new	weapons	on	this	basis	including	blinding	laser	
weapons	in	the	1990s	and,	reportedly,	various	cyber-technologies	for	use	in	cyber-conflict.	See:	‘Legal	reviews	of	
weapons	and	cyber	capabilities’,	Air	Force	Instructions,	number	51-402,	(27	July	2011)	
<http://www.fas.org/irp/doddir/usaf/afi51-4w02.pdf>.	
136	International	Review	of	the	Red	Cross,	‘A	guide	to	the	legal	review	of	new	weapons,	means	and	methods	of	warfare:	
Measures	to	implement	Article	36	of	Additional	Protocol	I	of	1977’,	ICRC	Geneva,	88,	864,	(December	2006),	p.	938.	
137	‘lethal’,	‘non-lethal’	or	‘less	lethal’.	
138	Pursuant	to	military	doctrine,	tactics,	rules	of	engagement,	operating	procedures	and	counter-measures.	
139	It	is	useful	to	provide	evidence	for	Article	36’s	scope:	‘All	weapons	to	be	acquired’,	‘further	to	research	and	
development’	or	‘off-the-shelf’,	‘acquired	for	the	first	time	without	necessarily	being	new	in	a	technical	state’,	‘and	
existing	weapon	that	is	modified	in	a	way	that	alters	its	function’,	‘and	existing	weapon	where	a	State	has	joined	a	new	
treaty’;	when	in	doubt,	moreover,	Article	36	stipulates	that	legal	advice	should	be	sought.	
140	Anderson	and	Waxman,	‘Law	and	Ethics	for	Autonomous	Weapon	Systems:	Why	a	ban	won’t	work	and	How	the	
Laws	of	War	Can’,	National	Security	and	Law	Essay,	Hoover	Institute,	Stanford	University,	(2013),	p.	11.	
141	Yves	Sandoz,	ed.,	Commentary	on	the	Additional	Protocols	of	8th	June	1977	to	the	Geneva	Conventions	of	12	August	
1949,	(Geneva:	Martinus	Nijhoff	Publishers,	1987),	p.	423.	
142	Brian	Rappart,	Richard	Moyes	and	Thomas	Nash,	‘The	roles	of	civil	society	in	the	development	of	standards	around	
new	weapons	and	other	technologies	of	war’,	International	Review	of	the	Red	Cross,	94,	886,	(Summer	2012),	p.	779.	
143	International	Committee	of	the	Red	Cross,	‘A	Guide	to	the	Legal	Review	of	New	Weapons,	Means	and	Methods	of	
Warfare:	Measures	to	Implement	Article	36	of	Additional	Protocol	1	of	1977’,	p.	940.	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 141 | P a g e  

 
 

ban.144	Article	36	is	therefore	deliberately	catch-all.145	As	well	as	examining	the	legality	of	the	
weapon’s	design	and	characteristics146,	the	reviewing	authority	must	also	look	at	how	the	weapon	
under	review	might	be	used.147	The	reviewing	body	must	thus	take	into	consideration	a	wide	range	
of	military,	technical,	health	and	environmental	factors148	in	their	commission.149	There	are,	indeed,	
several	ways	for	a	weapon	system	to	fail	its	Article	36	review.150	Testing,	however,	is	time-
consuming.	As	noted	by	Cummings,	it	is	‘thankless,	expensive	and	empirically	offers	little	benefit	to	
the	budgetary	constraints,	tactical	interests	or	sense	of	urgency	of	deploying	States’.151	It	has	
therefore	been	tempting	for	States	to	opt	for	expediency	and	short	cuts.152	The	process	contains	
several	practical	difficulties.	Its	conditions	are	problematic	to	enforce	as	they	exactly	counter	
States’	efforts	to	gain	technical	advantage	over	adversaries.	They	have	also	been	flouted	since	their	
inception	with	neither	specific	policing	nor	sanctions	included	in	their	definition.153	Empirically,	

																																																								
144	In	chronological	order,	the	following	specific	weapons	have	been	considered	under	international	instruments:	1868	
–	explosive	projectiles	under	400g	weight,	1899	–	Asphyxiating	gases,	1899	–	expanding	or	dum-dum	ammunition,	
1907	–	poisoned	weapons,	1907	–	automatic	submarine	contact	mines,	1907	–	Martens	Clause:	weapons	according	to	
‘principles	of	humanity	and	the	dictates	of	public	conscience’,	1925	and	1972		–	biological	weapons,	1976	–	
Environmental	modification	techniques,	1977	–	means	of	warfare	unable	to	be	directed	precisely	at	a	specific	military	
objective	and	might	thus	include	civilians	and	civilian	objectives	without	distinction,	1977	–	bombardment	which	treats	
as	a	single	military	objective	a	number	of	clearly	separated	military	objectives	located	in	a	town,	city,	village	or	other	
area	containing	a	similar	concentration	of	civilians	or	civilian	objects,	1977	attacks	expected	to	cause	excessive	damage	
to	civilians	and	civilian	objects	(excessive	in	relation	to	concrete	and	direct	military	advantage	anticipated	(‘rule	of	
proportionality’),	1980	–	non-detectable	fragments,	1980	–	mines,	booby-traps,	1980	–	incendiary	weapons,	1993	–	
chemical	weapons,	1995	–	Blinding	lasers,	1997	–	anti-personnel	mines,	1998	–	International	Criminal	Court	definitions	
on	poisons,	weapons	causing	superfluous	injury	or	unnecessary	suffering,	2003	–	Explosive	remnants	of	war.	2008	–	
Treaty	to	ban	cluster	munitions.	Mary	Wareham	notes	that	such	weapons	in	this	list	have	not	been	prohibited.	For	
instance,	non-detectable	fragments	(CCW	Protocol	I)	are	not	regarded	as	a	weapon.	Nor	are	such	statutes	watertight.	
CCW	Protocol	II	and	Amended	Protocol	II	do	not	prohibit	antipersonnel	mines	or	anti-vehicle	mines.	CCW	Protocol	III,	
for	instance,	prohibits	the	use	of	air-delivered	incendiary	weapons	in	the	civilian	areas	but	not	gound-incendiary	
weapons.	
145	Vincent	Boulanin,	‘Implementing	Article	36	Weapon	Reviews	in	the	Light	of	Increased	Autonomy	in	Weapon	
Systems’,	SIPRI,	2015/1,	(November	2015),	generally	
<https://www.sipri.org/sites/default/files/files/insight/SIPRIInsight1501.pdf>.	
146	The	‘means’	of	warfare.	
147	The	‘method’	of	warfare,	bearing	in	mind	that	any	weapon’s	effects	will	result	from	a	combination	of	its	design	and	
the	manner	in	which	it	is	used.	
148	Action	2.5.2	of	Agenda	for	Humanitarian	Action	adopted	by	the	28th	International	Conference	of	the	Red	Cross	and	
Red	Crescent	notes	the	importance	of	ensuring	a	multi-disciplinary	approach	to	the	review	of	weapons	
149	It	is	telling	that	the	US	Department	of	Defense’s	2012	Directive	on	autonomous	weapons	contains	a	separate	
enclosure	defining	such	a	set	of	review	guidelines	for	future	AWS	development.	See:	Department	of	Defense	Directive,	
‘Autonomy	in	Weapon	Systems’,	US	DoD,	Number	3000.09,	Enclosure	3,	(21	November	2012)	p.	7.	These	specify	policies	
on	system	capabilities,	doctrines,	training,	appropriate	levels	of	human	judgement	and	care	in	deploying	these	systems	
as	well	as	security	and	testing	of	the	systems.	
150	Examples	include	predicted	reliability	of	targeting	mechanisms,	evidence	that	the	foreseeable	effects	of	an	
unsupervised	weapon	can	be	limited	to	the	target	and	can	be	controlled	in	time	or	space.	Similarly,	the	Article’s	
prescriptions	on	precise	injury	and	damage	levels	are	complicating,	especially	in	their	treatment	of	mortality	rates	and	
‘whether	the	weapon	would	cause	anatomical	injury	or	anatomical	disability	or	disfigurement’.	
151	Professor	Missy	Cummings,	Director,	Humans	and	Autonomy	Laboratory,	Duke	University,	in	conversation	with	the	
author	(Chatham	House	Conference,	‘Autonomous	Military	Technologies:	Policy	and	Governance	for	Next	Generation	
Defence	Systems’,	February	2014).	
152	Harold	Hutchinson,	‘Russia	says	it	will	ignore	any	ban	of	killer	robots’,	Business	Insider	Tech,	30	November	2017	
<http://uk.businessinsider.com/russia-will-ignore-un-killer-robot-ban-2017-11?r=US&IR=T>	[accessed	3	March	
2018].	
153	As	an	example,	see:	Charles	Clover,	‘Chinese	ships	accused	of	breaking	sanctions	on	North	Korea’,	Financial	Times,	27	
November	2017	<https://www.ft.com/content/21a0407e-eadd-11e7-bd17-521324c81e23>	[accessed	23	August	
2018].	
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they	are	weakened	too	by	their	basis	that	‘all	relevant	scientific	evidence	pertaining	to	the	
foreseeable	effects	on	humans	has	been	gathered’	including	empirical	(rather	than	desktop)	
evidence	on	‘what	is	the	expected	field	mortality’	as	well	as	consequences	that	account	for	
‘alteration	to	the	victims’	psychology	or	physiology’.154	
	

Deployment	processes	are	also	challenged	by	current	legal	frameworks	becoming,	notes	HRW,	
increasingly	unfit	for	purpose.155	There	are,	for	instance,	practical	problems	of	definition.	The	
iRobot	Warrior	is	an	example	of	an	unmanned	weapon	that	falls	outside	the	UN	Register’s	technical	
specifications156	of	either	‘Battle	Tanks’	or	‘Armoured	Combat	Vehicles’.	Revision	and	the	
contentious	updating	of	these	legislative	listings	is	clearly	required.157	Identifying	circumvention	of	
Article	36	is	also	complicated	by	the	pace	of	weapon	development	as	well	as	the	modular	nature	of	
their	procurement.	Nor	is	there	a	set	manner	(that	can	then	be	regulated	by	statute)	in	which	new	
weapons	are	developed	and,	given	multiple	contractor	relationships,	no	common	build	system	or	
indexing	procedure,	no	repository	for	source	code	nor	any	recognised	(and	continuous)	testing	
infrastructure.	Procurement	of	the	US	Raven	UAV158	demonstrates	this	compliance	challenge:	As	
noted	by	Hambling	(and	characteristic	of	a	spiral	development	process),	Raven’s	deployment	has	
followed	a	portfolio	of	incremental	developments	that	have	been	shaped	by	rapidly	changing	end-
user	requirements	and	technology	rather	than	any	traditional	Version	1	release	being	followed	by	a	
Version	2.159		

	
Legal	ambiguity	may	also	lead	to	policy	ambiguity.	The	US	Department	of	Defense’s	Directive	

Number	3000.09	was	published	in	November	2012	and	is	the	first	significant	policy	announcement	
by	a	developed	State	on	the	development	of	semi-autonomous	and	autonomous	weaponry.160	The	
document	instigates	a	temporary	ten-year	moratorium161	under	which	the	DoD	should	only	
develop	autonomous	systems	that	deliver	non-lethal	force.162	That	suspension,	however,	is	not	
clear-cut.	There	is	a	carve-out,	for	instance,	that	allows	a	waiver	‘in	cases	of	urgent	military	need’.163	
The	Directive	also	defines	wide	testing	requirements.	Given	the	challenges	in	testing	unsupervised	

																																																								
154	States	generally	agree	that	suffering	which	has	no	military	purpose	is	generally	a	legal	violation.	
155	Human	Rights	Watch	and	Harvard	Law	School	International	Human	Rights	Clinic,	‘The	Need	for	New	Law	to	Ban	
Fully	Autonomous	Weapons’,	Memorandum	to	Convention	for	Conventional	Weapons	Delegates,	(November	2013),	pp.	2-
3	
<https://www.hrw.org/sites/default/files/supporting_resources/11.2013_memo_to_ccw_delegates_fully_autonomous_
weapons.pdf>.	
156	It	does	not	have	the	‘high	cross-country	mobility’	or	75mm	bore	canon	of	the	tank	nor	is	it	able	to	‘transport	a	squad	
of	four	or	more	infantrymen’.	See:	(UNODA	(n.d.),	‘Categories	of	equipment	and	their	definitions’	
<http://www.un.org/dept/ddar/Register/Categories.html>	[accessed	9	March	2018].	
157	For	instance,	the	Switchblade	and	Fire	Shadow	weapon	systems	currently	fall	into	a	grey	area	between	‘munitions’	
(under	the	less	tightly	controlled	Article	3	of	the	treaty)	and	a	‘combat	aircraft’.	
158	See:	Global	Security,	‘RQ-11	Raven	Procurement’,	undated,		
<https://www.globalsecurity.org/intell/systems/raven.htm	[accessed	6	March	2018].		
159	Hambling,	p.	70.	
160	Department	of	Defense	Directive,	‘Autonomy	in	Weapon	Systems’,	Number	3000.09,	21	November	2012,	generally.		
161	Section	7	of	the	Directive	states	that	it	must	be	‘reissued,	cancelled	or	certified	current	within	5	years	of	its	
publication’	or	will	expire	on	21	November,	2022	(10	years	after	it	took	effect).	
162	Department	of	Defense	Directive,	‘Autonomy	in	Weapon	Systems’,	generally.	
163	This	term	remains	undefined	in	the	Directive’s	text.	
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weapons164	(and	the	requirement	that	this	be	undertaken	within	a	‘realistic	operational	
environment’),	HRW	rightly	points	out	that	significant	practical	difficulties	arise	in	the	directive.165	
Given	also	that	the	point	of	AWS	trialing	‘is	precisely	to	determine	the	probabilistic	range	of	action	
without	which	no	appropriate	limits	can	be	defined	ex-ante’,	Kalmanovitz	highlights	the	
implausibility	of	any	‘test-as-you-go’	regime.166	The	conflict	in	this	case	is	that	any	elasticity	of	
standards	only	underpins	the	requirement	for	human	judgement	in	what	is	the	deployment	of	
independent	weapons	without	human	judgement.	Finally,	the	Directive	only	relates	to	the	US	DoD	
and	notably	excludes	other	procuring	parties	such	as	the	Central	Intelligence	Agency.	

 Behavioural constraints to AWS deployment 
	
As	noted	by	Mickeviciute	in	Lessons	from	the	Past	for	Weapons	of	the	Future,	legal	challenges	to	AWS	
deployment	tend	to	coalesce	around	behavioural	constraints	against	their	adoption.167	History	
suggests	that	adoption	of	new	methods	of	war	is	rarely	straightforward,	not	least	the	raising	of	
‘unprecedented	issues	that	make	the	legality	of	an	attack	more	complex’.168	Lorber	might	therefore	
concur	with	this	thesis’	Chapter	Two	that	AWS	deployment	will	also	be	challenged	by	the	
experiences	of	past	procurement	programmes	where	technical	developments	have	empirically	
failed	to	deliver	on	promised	performance.169	Even	where	military	technologies	may	have	made	a	
decisive	contribution	to	defeating	an	enemy,	measuring	the	effects	of	individual	weapon	innovation	
is	tricky.	This	missing	correlation	between	weapon	system	and	outcome	is	important.170	A	further	
aim	of	this	section	is	therefore	to	identify	behavioural	forces,	exogenous	and	often	socio-political,	
that	should	constrain	removal	of	human	supervision	in	lethal	engagements.171	Chapter	Two,	after	
all,	argues	that	the	role	of	context	in	creating	impedimenta	to	that	removal	(in	what	Black	terms	
‘new	military	history’,	the	social	context	arising	from	the	‘position,	experience	and	relationships	of	
the	rank	and	file’172)	are	similarly	important	to	technical	hurdles	considered	in	this	thesis’	

																																																								
164	See:	Chapter	10	(Deployment),	specifically:	10.2	(‘Validation	and	testing’).			
165	Human	Rights	Watch	and	IHRC,	Harvard,	‘Review	of	the	2012	US	Policy	on	Autonomy	in	Weapon	Systems’,	April	2013,	
p.	5.	
166 Kalmanovitz,	cit.	Bhuta	and	others	(eds.),	p.	160. 
167	Neringa	Mickeviciute,	Lessons	from	the	Past	for	Weapons	of	the	Future,	(USA:	International	Comparative	
Jurisprudence,	2,	Elsevier,	2016),	pp.	99-100.	
168	For	discussion	on	‘new	methods	of	warfare’	see:	ICRC,	‘International	Review	of	the	Red	Cross’,	ICRC	Publications,	886,	
94,	(2012)	pp.	457-467	<https://www.icrc.org/en/international-review/new-technologies-and-warfare>	[accessed	24	
September	2016].	See	also:	Chapter	2	(Context),	specifically	2.2	(‘The	role	of	context	in	AWS'	argument').		
169	Azriel	Lorber,	Misguided	Weapons:	Technological	failure	and	surprise	on	the	battlefield,	(USA:	Potomac	Books,	January	
2003),	generally.	An	interesting	narrative	to	this	point	is	provided	at:	Judy	Dutton,	‘Nine	Bizarre	Weapons	that	Failed	
Spectacularly’,	Mental	Floss	Blog,	(29	April	2014)	<http://mentalfloss.com/article/30669/9-weapons-failed-
spectacularly-and-1-possibly-didn%E2%80%99t>	[accessed	24	February	2015].	
170	See,	for	example:	Defence	Synergia,	‘UK	Air	Defence:	A	forgotten	capability	gap’,	National	and	Defence	Strategies	
Research	Group,	(4	February	2014)	<http://www.defencesynergia.co.uk/uk-air-defence-a-forgotten-capability-gap/>	
[accessed	3	March	2018].	
171	Terry	Moe,	‘Vested	Interests	and	Political	Institutions’,	Department	of	Political	Science,	Stanford	University,	(May	
2014),	pp.	1-2	
<https://politicalscience.stanford.edu/sites/default/files/images/vested%20interests_psq%20final%20June%202014.
pdf.		
172	Jeremy	Black,	‘Military	Organisations	and	Military	Change	in	Historical	Perspective’,	The	Journal	of	Military	History,	
Lexington,	62,	4,	(1	October	1998),	871.		
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subsequent	chapters.173	This	behavioural	analysis	is	underpinned	by	Tilford’s	conclusion	that	the	
battlefield’s	changing	character	is	‘about	people,	not	systems.	Armies,	Air	Forces,	and	Navies	
function	with	people	who	use	and	employ	machines	and	weapons’.174	
	

States’	militaries	have	often	failed	to	exploit	technical	innovation.	In	relative	terms,	Boot	notes	
that	the	Mongols	missed	the	Gunpowder	revolution,	the	Chinese,	Turks	and	Indians	let	pass	the	
Industrial	Revolution	while	the	Soviets	missed	the	Information	Revolution.175	The	behavioural	
point	for	AWS	adoption	is	that	military	procurement	is	rarely	a	straightforward	exercise	and	that	
inertia	is	to	be	expected	not	least	because	past	performance	is	no	guarantee	to	future	returns	in	
defence	planning.	As	noted	by	Penna,	priorities	in	a	military	budget	are	not	obvious	in	a	landscape	
of	fast-moving	technologies.176	To	this	point,	Brannen	highlights	that	while	the	US	may	enjoy	a	
current	lead	in	unmanned	technology177,	there	is	no	certainty	that	this	will	continue.	It	may	be	that	
a	rival	State	(or	even	non-state	grouping)	introduces	new	variants	or	counter-measures	that	
fundamentally	and	very	quickly	alters	the	current	balance	of	power	around	such	technologies.	It	
may	also	be	that	a	particular	State	devotes	resources	to	besting	a	new	weapon	class;	in	this	vein,	
Weinberger	in	Foreign	Policy	contends	that	the	US	has	already	lost	its	edge	in	drone	technology.178	
Strohn	notes,	moreover,	that	‘it	is	not	only	about	procurement	but	the	philosophy	behind	this:	The	
French	had	tanks	in	1940	but	used	them	incorrectly’.179	It	is,	therefore,	as	much	about	the	
conceptual	component	of	procurement	as	it	is	about	the	physical.	A	challenge	to	the	adoption	of	
AWS	is	thus	the	basic	difficulty	of	predicting	the	trajectories	in	battlefield	technologies	and,	in	the	
case	of	AWS	as	noted	by	Kovic	in	The	Strategic	Paradox	of	Autonomous	Weapons,	their	certain	place	
in	battlefield	structures.180	A	feature	of	AWS	deployment	is	therefore	that	behavioural	imperatives	
will	challenge	its	procurement.	Rudichhauser	from	Germany’s	Federal	Academy	for	Security	Policy	
highlights	here	that	certain	applications	of	weapon	autonomy	will	be	‘close	to	impossible	to	control	
because	they	often	represent	off-the-shelf	civilian	technology	with	nearly	infinite	purposes’.181	
Similarly,	the	deployment	of	other	new	and	easy-to-disseminate	weapon	technologies	(germs,	

																																																								
173	Scharre,	‘Autonomous	weapons	and	operational	risk’,	pp.	6-8.	For	detailed	review	of	technical	issues	facing	
compliant	removal	of	human-weapon	supervision,	see:	chapters	6	(Wetware),	7	(Firmware)	and	8	(Software).	
174	Earl	Tilford,	Reviewing	the	Future,	(USA:	Parameters.	2002),	p.	151.	The	point	is	made	in	a	different	manner	by	Toby	
Walsh:	'There	isn't	this	separate	part	of	the	world	called	the	battlefield	that's	signposted	"Battles	over	here	please".	
Battles	are	fought	in	cities	right	where	we	live'.	TedX	Berlin,	'How	can	you	stop	Killer	Robots?',	12.40	minutes,	8	October	
2015,	<https://www.youtube.com/watch?v=c277ynyRPgs>	[accessed	12	October	2017].	
175	Max	Boot,	War	Made	New;	Weapons,	and	the	Making	of	the	Modern	World,	(USA:	Gotham,	Penguin,	New	York,	2006),	
generally.	
176	Charles	Penna,	‘A	Reality	Check	on	Military	Spending’,	Issues	in	Science	and	Technology,	XXI,	4,	(Summer	2005),	
generally	<http://issues.org/21-4/pena/>	[accessed	19	June	2018].	
177	Samuel	Brannen	and	others,	‘Sustaining	the	US	Lead	in	Unmanned	Systems’,	Center	for	Strategic	and	International	
Studies,	(27	February	2014),	pp.	1-4	<https://csis-prod.s3.amazonaws.com/s3fs-
public/legacy_files/files/publication/140227_Brannen_UnmannedSystems_Web.pdf>.		
178	Sharon	Weinberger,	‘China	Has	Already	Won	the	Drone	Wars’,	Foreign	Policy,	10	May	2018	
<https://foreignpolicy.com/2018/05/10/china-trump-middle-east-drone-wars/>.	
179	Dr	Matthias	Strohn,	in	conversation	with	the	author,	January	2019.	
	
180	Marko	Kovic,	‘The	Strategic	Paradox	of	Autonomous	Weapons’,	Zurich	Institute	of	Public	Affairs	Research,	(22	
February	2018),	p.	11	<https://zipar.org/policy-brief/strategic-paradox-autonomous-weapons/>	[accessed	24	June	
2018].		
181	Wolfgang	Rudwichhauser,	‘Autonomous	or	Semi-Autonomous	Weapon	Systems:	A	Potential	New	Threat	of	
Terrorism’,	Federal	Academy	for	Security	Policy,	Security	Working	Papers	23,	(2017),	p.	2	
<https://www.baks.bund.de/sites/baks010/files/working_paper_2017_23.pdf>.		
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chemicals,	cyber-viruses?)	will	likely	obfuscate	what	passes	for	the	status	quo	and	what	should	
therefore	inform	States’	procurement	priorities.182	As	noted	by	Boot,	‘the	end	can	come	with	
shocking	suddenness	even	after	a	long	streak	of	good	fortune’.183		
	

A	second	diminishing	heuristic	for	AWS	deployment	is	that	the	introduction	of	new	battlefield	
technology	rarely	gives	lasting	advantage.184	Parties	facing	autonomous	weaponry	without	
technical	or	budgetary	wherewithal	to	field	similar	weapons	must	instead	pursue	Brodie’s	logic,	
developing	in	its	place	battlefield	behaviour	‘that	works	well	enough,	be	it	ever	so	inelegant	and	
probably	decidedly	irregular’	in	order	to	defeat	that	new	technology.185	This,	after	all,	is	a	repeated	
theme	characterising	the	deployment	of	disruptive	weaponry.186	In	the	case	of	the	air	power	
theorists	of	the	1930s,	Douhet	grossly	under-estimated	the	neutralising	effect	of	a	defending	air	
force	and	anti-aircraft	fire	on	attacking	bombers.187	MacIsaac	similarly	notes	that	planners	
persistently	over-estimated	the	effect	of	bombing.188	Defeat	has	also	often	been	a	spur	to	
innovation.189	The	Israelis	almost	lost	to	Egyptian	and	Syrian	anti-tank	and	anti-aircraft	missiles	in	
the	1973	Yom	Kippur	War	having	beaten	them	just	six	years	previously.	Technologies	and	scientific	
concepts	rarely	remain	the	property	of	one	power	for	a	protracted	length	of	time.	In	this	vein,	Boot	
points	out	that	France	matched	the	needle	gun	less	than	four	years	after	Konniggratz,	Germany	
matched	Britain’s	Dreadnoughts	some	three	years	after	their	first	launch	while	the	USSR	had	its	
own	atomic	bomb	four	years	after	Hiroshima.190	Just	as	Douhet’s	advocacy	of	pre-emptive	aerial	
attack	was	compromised	by	the	arrival	of	radar,	an	argument	is	that	AWS	may	be	compromised	by	
the	introduction	of	some	other	quite	exogenous	technology.191	In	the	same	way	that	trench	systems	
were	to	offset	the	impact	of	artillery	and	quick-firing	machine	guns	(and	improvements	in	radar	
negate	the	edge	enjoyed	by	first-generation	stealth	aircraft192),	combatants	have	a	portfolio	of	
alternative	tactics	to	blunt	a	State’s	investment	in	autonomous	technologies.	Margaritoff	highlights	
that	this	may	take	on	several	guises,	from	neutrino	beams,	electromagnetic	pulsing,	flux	
compression	technologies,	microwave	and	other	high	frequency	interference,	energy	lasers	and	

																																																								
182	Ibid.,	pp.	2-3.		
183	Max	Boot,	‘What	the	Past	Teaches	About	the	Future’,	JFQ,	44,	(2007),	p.	109	
<http://indianstrategicknowledgeonline.com/web/MIL%20HIS%20JFQ44%20boot.pdf>.	
184	‘Lasting’	is	defined	here	as	enduring	over	the	course	of	a	campaign	(such	timescale	continues	to	be	compressed	by	
increases	in	the	‘pace’	of	warfare	discussed	earlier	in	this	chapter.	For	definition	of	this	thesis’	timelines,	see:	Chapter	1	
(Introduction)	and	thereafter).	See	also:	Walker,	Killer	Robots?,	pp.	71-72.	
185	Gray,	‘Another	Bloody	Century’,	p.	52.	
186	See:	Introduction	to	Chapter	2	(Context).	
187	David	MacIsaac,	Voices	from	the	Central	Blue:	The	Air	Power	Theorists,	p.	634.	
188	Ibid.	See	also:	Tammi	David	Biddle,	Rhetoric	and	Reality,	(USA:	Princeton	University	Press,	10	January	2009),	pp.	69-
128.		
189	See,	for	instance:	Kenneth	Miller,	‘Is	China	Winning	the	Innovation	Race?’,	LeapsMag,	19	June	2018	
<https://leapsmag.com/is-china-winning-the-innovation-race/>	[accessed	6	September	2018].	
190	Greg	Satell,	‘4	Innovation	Lessons	from	the	History	of	Warfare’,	Forbes,	14	March	2015,	generally	
<https://www.forbes.com/sites/gregsatell/2015/03/14/4-innovation-lessons-from-the-history-of-
warfare/#508dec4e73f3>	[accessed	6	March	2018].	
191	MacIsaac,	p.	630.	
192	David	Szondry,	‘Quantum	Radar	to	Render	Stealth	Technologies	Obsolete’,	New	Atlas,	(26	April	2018)	
<https://newatlas.com/quantum-radar-detect-steath-aircraft/54356/>	[accessed	6	September	2018].	
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signal	jamming.193	Parties	that	find	themselves	challenged	by	new	technologies	will	hunt	for	
asymmetrical	and	equalizing	tactics,	operations	and	strategies.	In	this	vein,	Gray	notes	that	parties	
who	create	slender	advantage	in	a	narrow	(albeit	relevant)	combat	field	are	likely	to	be	able	to	stall	
others’	more	general	technical	superiority194	and,	on	this	basis,	it	may	be	wrong	to	‘conclude	that	
high	tech	can	only	be	defeated	by	similar	high	tech’.195	This	argument	is	supported	by	Clark	(the	
example,	for	instance,	of	orders	in	December	1944	being	disseminated	by	hand-written	note	as	
opposed	to	Ultra196)	and	also	by	what	Boot	terms	‘psychological	nullification’	in	which	he	notes	‘the	
first	time	an	army	faces	a	major	new	weapon	–	the	needle	gun	at	Konniggratz,	the	machine	gun	at	
Omdurman,	the	tank,	the	smart	bomb	in	the	Gulf	War	–	it	is	likely	to	be	caught	off	guard…	The	next	
time	the	other	side	is	likely	to	be	less	impressed’.197	The	behavioural	constraint	for	AWS	
deployment	is	that	a	series	of	quickly-learned	tactical	innovations	by	an	adversary	will	likely	dull	
the	effect	of	weapons	autonomy.198	Indeed,	it	is	AWS’	psychological	facets	(better	characterised	by	
Pollick	as	‘behavioural	aspects’199)	that	complicate	the	role	of	the	Delivery	Cohort	in	considering	
AWS’	several	fragilities.		
	

In	identifying	behavioural	challenges	to	AWS	feasibility,	further	cause-and-effect	examples	are	
relevant.200	While	Handel	argues	that	high-tech	confrontation	(taken	here	as	a	proxy	for	AWS	
deployment)	will	typically	be	most	effective	in	major,	conventional	warfare	against	an	enemy	who	
takes	a	similar	approach201,	Hoffman	instead	points	to	the	growing	toolkit	of	distinctly	low-tech	
adversaries.	In	this	case,	‘conventional,	irregular,	catastrophic,	disruptive…	or	[custom-build]	
hybrid	strategies’	might,	by	inference,	reduce	materially	the	effect	of	unsupervised	weaponry	and	
its	realistic	deployment.202	Lonsdale	highlights	the	Serbian	use	of	UN	hostages	as	human	shields	in	

																																																								
193	For	a	general	discussion,	see:	Marco	Margaritoff,	‘The	Seven	Most	Significant	Anti-Drone	Weapons’,	The	Drive,	(21	
June	2017)	<http://www.thedrive.com/aerial/11505/the-7-most-significant-anti-drone-weapons>	[accessed	12	April	
2018].		
194	Gray,	Another	Bloody	Century,	p.	52.	
195	Dan	Clavin,	‘These	Were	The	Most	Unfair,	Technologically-Lopsided	Battles	in	History’,	Warped	Speed,	20	September	
2016	<http://www.warpedspeed.com/these-were-the-most-unfair-technologically-lopsided-battles-in-history/>	
[accessed	8	September	2018].		
196	Lloyd	Clark,	in	conversation	with	the	author,	September	2018.	See:	Richard	Hayes	and	others,	‘The	State	of	the	Art	
and	the	State	of	Practice,	Battle	of	the	Bulge:	The	Impact	of	Information	Age	Command	and	Control	on	Conflict	–	Lessons	
Learned’,	CCRTS,	(2006)	<http://www.dodccrp.org/events/2006_CCRTS/html/papers/206.pdf>.	
197	Caroline	Houck,	‘New	Report	Notes	Erosion	of	Pentagon’s	Technological	Advantage’,	Defense	One,	22	February	2018	
<http://www.defenseone.com/threats/2018/02/new-report-quantifies-erosion-pentagons-technological-
advantage/146162/>	[accessed	24	April	2018].		
198	Walker,	Killer	Robots?,	p.	71.	See	also:	Rosa	Brooks,	‘Why	Sticks	and	Stones	Will	Beat	Our	Drones’,	Foreign	Policy,	4	
April	2013	<http://foreignpolicy.com/2013/04/04/why-sticks-and-stones-will-beat-our-drones/)	[accessed	5	April	
2018>.	Measures	here	might	include	electromagnetic	pulsing,	simple	spray	paint	on	drone	sensors,	improved	frequency	
jamming,	innovative	camouflage,	ghosting,	low-cost	deception	and	obstacle	building.	
199	Amy	Pollick,	‘Behavioural	Science	and	National	Security’,	Association	for	Psychological	Science,	(1	June	2008)	
<https://www.psychologicalscience.org/observer/behavioral-science-and-national-security>	[accessed	1	April	2018].		
200	See:	Economist	Magazine,	‘The	Last	Manned	Fighter’,	Economist,	14	July	2011	
<http://www.economist.com/node/18958487>.	
201	Michael	Handel,	Masters	of	War,	p.	xxii.	
202	Frank	Hoffman,	‘Complex	Irregular	warfare:	The	Next	Revolution	in	Military	Affairs’,	Foreign	Policy	Research	
Institute,	Orbis,	(Summer	2006),	p.	398	
<http://indianstrategicknowledgeonline.com/web/hoffman.complexirregularwarfare.pdf>.	
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Bosnia203	to	illustrate	how	a	simple	although	asymmetrical	act	can	quickly	negate	the	advantages	
conferred	by	investment	in	technologically	advanced	equipment.204	The	difficulties	in	assessing	
cause-and-effect	are	demonstrated	by	Brooks’	citing	Einstein’s	advice	to	President	Truman:	‘I	know	
not	what	weapons	World	War	Three	will	be	fought	but	World	War	Four	will	be	fought	with	sticks	
and	stones’.205		

	
Roff	identifies	a	similar	challenge	to	AWS	feasibility	in	what	might	be	a	reluctance	by	parties	to	

set	up	and	engage	in	decisive	battle.	‘The	rub’,	she	concludes,	‘is	that	if	two	countries	have	roughly	
equal	military	capabilities,	any	subsequent	fight	would	be	long,	drawn	out	and	may	not	bend	to	
either	side’s	favour	–	that	is,	it	would	end	up	being	a	war	of	attrition’.206	Quintana	cites	innovations	
such	as	cyber	and	electronic	counter-measures	to	suggest	that	effects	of	AWS	technology	may	be	
similarly	blunted;207	the	evidence,	after	all,	is	that	‘game-changing’	military	technology	is	
disseminated	quickly	and	widely.208	Boot’s	notion	of	nullification209	therefore	echoes	Gray’s	
corollary	that	‘the	history	of	war	is	not	primarily	the	history	of	weaponry	but	instead	of	the	history	
of	the	person	who	wields	that	weapon’.210	Deployment	of	AWS	will	clearly	require	material	
adjustments	in	the	way	States	organise	their	military	efforts	in	order	properly	to	integrate	the	
technologies’	capability.	While	the	US	Third	Offset	may	demonstrate	considerable	flux	taking	place	
in	strategic	direction211,	little	‘near-future’	defence	work	exists	in	the	public	domain	on	these	grass	
root	organisational	and	battlecraft	changes	that	AWS	deployment	will	require.212	This	is	perhaps	
unsurprising	given	current	lack	of	definition	around	the	weapons’	classes	but,	as	noted	by	Conn,	
this	also	extends	to	the	political	sphere	where	complications	await	politicians	trying	to	frame	the	
deployment	of	AWS.213		

	
AWS	deployment	is	complicated	by	how	States	organise	their	strategic	imperatives.	The	US	has	

chosen	to	be	strong	in	every	area	of	combat	–	land,	sea,	air	and	cyber-space	–	in	order	to	defeat	a	

																																																								
203	Joel	Br,	‘Bosnian	Serbs	seize	more	UN	troops’,	Washington	Post,	29	May	1995	
<https://www.washingtonpost.com/archive/politics/1995/05/29/bosnian-serbs-seize-more-un-troops/991628ef-
8469-436d-8759-470fe4ab11d4/?utm_term=.d6bb7243d9e3>	[accessed	4	April	2017].	
204	Lonsdale,	cit.	Strachan	and	Herberg-Rothe,	p.	242.	
205	Rosa	Brooks	‘Why	Sticks	and	Stones	Will	Beat	Our	Drones’,	Foreign	Policy,	(4	April	2013)	
<https://foreignpolicy.com/2013/04/04/why-sticks-and-stones-will-beat-our-drones/>	[accessed	6	April	2017].	
206	Heather	Roff,	‘Killer	Robots	on	the	Battlefield’,	Slate,	New	America,	(7	April	2016)	
<http://www.slate.com/articles/technology/future_tense/2016/04/the_danger_of_using_an_attrition_strategy_with_au
tonomous_weapons.html>	[accessed	27	February	2018].		
207	Elizabeth	Quintana,	Director,	Military	Sciences,	Royal	United	Services	Institute,	in	conference	with	author	(Chatham	
House	Conference,	‘Autonomous	Military	Technologies:	Policy	and	Governance	for	Next	Generation	Defence	Systems’,	
February	2014).	
208	Boot,	War	Made	New,	generally.	
209	Boot	here	uses	the	term	nullification	to	refer	to	new	methods,	hardware	and	work-round	solutions	annulling	existing	
technical	advances.	
210	Gray,	Another	Bloody	Century,	p.	61.	
211	Paul	McCleary,	‘The	Third	Offset	May	Be	Dead	But	No	One	Know	What	Comes	Next’,	Foreign	Policy,	18	December	
2017	<https://foreignpolicy.com/2017/12/18/the-pentagons-third-offset-may-be-dead-but-no-one-knows-what-
comes-next/>	[accessed	2	September	2018].	
212	Logistics	(distributed	replenishment	and	service	facilities),	control	and	monitoring,	tactical	incorporation.	
213	Ariel	Conn,	‘The	Problem	of	Defining	Autonomous	Weapons’,	The	Future	of	Life	Institute,	(30	November	2016)	
<https://futureoflife.org/2016/11/30/problem-defining-autonomous-weapons/>	[accessed	17	April	2018].		
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portfolio	of	different	potential	foes	(from	a	rising	superpower	in	China,	medium-sized	powers	such	
as	North	Korea	and	Iran,	to	non-State	actors	such	as	al	Qaeda).214	In	so	choosing,	it	must	be	ready	
for	every	type	of	warfare	from	peace-keeping	to	high-intensive	conflict.	The	behavioural	constraint	
is	that	this	leads	to	funding,	prioritisation	and	allocation	challenges	that	then	might	dilute	efforts	to	
integrate	AWS	into	States’	battlecraft.215	Such	dilution	has	consequences,	not	least	a	likely	
compromise	in	the	setting	of	common	standards	and	ethical-legal	criteria	that	are	a	prerequisite	for	
compliant	removal	of	weapon	supervision.	Black	thus	points	to	challenges	arising	from	the	
integration	of	wholly	new	procedures,	from	vested	interests	within	particular	military	services	and	
from	new	command	structures	that	must	be	integrated	in	order	to	maximize	weapon	effectiveness	
by	being	able	to	synchronize	attacks	in	time	and	space.216		
	

A	quite	different	set	of	behavioural	challenges	arises	from	the	tight	correlation	that	will	exist	
between	intended	weapon	function	and	that	weapon’s	transparency	and	accountability.	In	this	vein	
it	is	impossible	to	punish	a	lethal	robot	for	unlawful	acts	that	it	carries	out.	HRW	highlights	that	
AWS	would,	by	definition,	be	free	from	human	supervision	and,	lacking	emotion,	they	can	feel	no	
remorse	that	might	change	subsequent	behaviour.217	As	noted	by	Cummings,	unless	the	weapon	
can	‘understand’	(not	merely	respond	to	certain	impulses	as	a	blind	trigger	for	subsequent	action)	
that	it	will	be	admonished	for	breaking	IHL	then	its	decisions	will	not	be	influenced	by	the	threat	of	
that	accountability.218	Suarez’	work	is	based	on	the	principle	that	transparency	and	responsibility	
are	the	‘long-held	cornerstones	of	representative	government	and	that	both	of	these	pillars	are	
undermined	by	autonomous	weaponry’.219	His	point	(and	a	further	challenge	to	AWS	deployment)	
is	that	removal	of	human	supervision	paradoxically	invests	too	much	power	concentrated	in	the	
hands	of	too	few	unseen	hands:	Binary	deployment	decisions	become	the	preserve	of	a	small	
cohort.	For	Suarez,	transparency	is	the	key	behavioural	challenge	to	AWS	deployment:	‘No	robot	
should	have	the	expectancy	of	privacy	in	a	public	place’.220		This	points	to	a	further	paradox	arising	
from	machine	autonomy.	As	Epstein	notes,	‘the	irony	is	that	the	military	want	the	robot	to	be	able	
to	learn	and	react	in	order	to	do	its	mission	well	but	won’t	want	it	to	be	too	creative.	But	once	you	
reach	a	space	where	it	is	really	capable,	how	do	you	limit	them?	To	be	honest,	I	don’t	think	that	we	

																																																								
214	US	Department	of	Defense,	‘Summary	of	the	National	Defense	Strategies	of	the	United	States	of	America:	Sharpening	
the	American	Militaries’	Competitive	Edge’,	US	DoD,	undated,	pp.	2-4	
<https://www.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf>.		
215	See:	Joe	Anselmo,	‘Defense	Contractors	need	looser	R&D	purse	strings’,	Aviation	Week	and	Space	Technology,	23	April	
2014	<http://aviationweek.com/defense/opinion-defense-contractors-need-looser-rd-purse-strings>	[accessed	20	
April	2018].	
216	Jeremy	Black,	‘Military	Organisations	and	Military	Change	in	Historical	Perspective’,	Journal	of	Military	History,	62,	4,	
(1998),	871-892.	
217	HRW,	‘Losing	humanity’,	p.	44.	HRW	are	careful	to	phrase	this	as	a	conditional	for	the	reason	that	fully	autonomous	
weapons	are	not	yet	deployed.		
218	Missy	Cummings,	‘The	Human	Role	in	Autonomous	Weapon	Design	and	Deployment’,	University	of	Pennsylvania,	
undated,	pp.	4-5	<https://www.law.upenn.edu/live/files/3884-cummings-the-human-role-in-autonomous-weapons>	
[accessed	23	April	2016].	
219	Daniel	Suarez,	‘The	kill	decision	shouldn’t	belong	to	a	robot’,	Ted	Talk,	(June	2013)	
<https://www.ted.com/talks/daniel_suarez_the_kill_decision_shouldn_t_belong_to_a_robot?language=en>	[accessed	15	
April	2016].	
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can’.221	Current	use	of	unmanned	technology	has	been	restricted	to	benign	environments	largely	
free	from	electronic	counter	measure	or	sophisticated	electronic	attack;	questioned	about	this	
correlation	between	AWS	function	and	accountability,	one	such	drone	pilot	told	Der	Spiegel	in	2010,	
‘we	operate	in	a	war	that	highlights	the	strengths	of	remotely-piloted	aircraft;	their	weaknesses	are	
not	much	of	a	problem	right	now’.222	
	

There	is	also	overlap	between	behavioural	and	technical	challenges	and	how	these	intersect	
with	AWS’	likely	operational	routines.	To	this	point,	Leboucher	notes	the	‘extraordinary	complexity’	
that	arises	from	the	simple	dynamic	that	targets	move,	especially	if	that	movement	is	oblique	to	the	
AWS’	visual	sensors.223	Moving	targets	and	their	treatment	create	a	further	unexpected	and	
behavioural	hurdle	which	Durlach	and	others	term	‘change	blindness’,	categorized	here	as	the	
weapon’s	systemic	failure	to	react	to	what	should	otherwise	be	obvious	visual	changes	in	how	that	
autonomous	weapon	sees	its	immediate	environment.224	The	point	is	behavioural	as	the	
phenomenon	is	likely	to	arise	from	how	AWS	focus	is	managed.	Durlach	notes	that	it	may	occur	
because	of	some	visual	transient	which	has	occurred	at	the	same	time	that	masks	the	relevant	
visual	change.	Such	circumstances	are	already	difficult	for	human	operators	to	master.225	Quite	
different	from	the	human	brain,	AWS’	visual	scenery	will	not	be	stored	as	sequences	of	actual	
imagery	but	instead	only	as	general	ideas	about	‘what	is	where’.226	The	point	here	is	that	change	
blindness	is	particularly	prevalent	in	code-based	processes	characterised	by	complex,	layered	
tasks.227	While	its	associated	technical	constraints	form	the	basis	of	later	chapters228,	AWS’	
tendency	towards	change	blindness	arise	in	large	part	from	quite	behavioural	functions	that	are	
intrinsic	to	AWS	deployment	including	the	need	for	human	programmers	to	manage	
‘meaningfulness’	in	the	autonomous	weapon’s	sensed	data.229		
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weapon’s	management	of	priorities,	a	phenomenon	that	Durlach	terms	‘exogenous	attentional	capture’.	
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A	further	behavioural	tenet	is	that	predicting	the	human	workload	around	AWS	deployment	
models	will	be	challenging.230	Kania	notes	that	AWS’	independence	does	not,	of	course,	‘equate	on	
the	ground	to	absence	of	human	engagement’.231	Calculating	such	capacity	is	a	variable	over	
different	parts	of	the	same	task	and,	notes	Stimpson,	will	vacillate	widely	depending	on	that	task’s	
contingencies.232	Indeed,	if	AWS’	deployment	models	do	not	deliver	materially	more	efficient	task-
loading,	then	why	should	a	commander	allocate	resource	or	permissions	to	such	assets?	
Forecasting	workloads	in	AWS	deployment	is	complicated	by	subtle	shifts	from	observable	manual	
tasks	to	not	so	observable	cognitive	tasks	and,	in	the	case	of	flexible	autonomy,	by	erratic	changes	
in	the	supervisory	demands	of	human	handlers.233	Endsley	and	Jones	question	such	human	
involvement	in	otherwise	autonomous	engagements	citing	handlers’	likely	biased	understanding	of	
given	battlefield	situations.234	This	is	all	unhelpful	to	AWS’	Delivery	Cohort	and,	by	challenging	the	
notion	of	workload/autonomy	correlation,	it	rightly	complicates	decisions	to	deploy	unsupervised	
weapons.	Deci	and	Flaste	instead	point	to	a	material	increase	in	the	time	required	by	human	parties	
to	make	decisions	in	scenarios	where	autonomy	is	deployed	given	that	those	operators	must	now	
factor	additional	unknowns	and	sources	of	information	into	their	processes.235	An	associated	
behavioural	twist	arises	from	what	Harford	terms	the	automation	conundrum	whereby	the	better	a	
system’s	autonomy,	the	more	out-of-practice	a	human	operator	quickly	becomes	and	the	more	
extreme	the	situations	he	or	she	will	have	to	face.236	As	noted	by	the	psychologist	Reason,	author	of	
Human	Error,	mixing	human	and	autonomous	agents	clearly	creates	behavioural	complexity:237	

	
Manual	control	is	a	highly	skilled	activity,	and	skills	need	to	be	practiced	continuously	in	order	
to	maintain	them…	yet	an	automatic	control	system	that	fails	only	rarely	denies	operators	the	
opportunity	for	practicing	these	basic	control	skills.	When	manual	takeover	is	necessary	

																																																								
230	Jack	Beard,	‘Autonomous	Weapons	and	Human	Responsibility’,	University	of	Nebraska-Lincoln,	College	of	Law	Faculty	
Publications,	196,	(2014),	pp.	614-625	
<https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=http://scholar.google.co.uk/&httpsredir=1&article=119
6&context=lawfacpub>.	
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November	2017),	generally	<https://thebulletin.org/2017/11/the-critical-human-element-in-the-machine-age-of-
warfare/>	[accessed	4	September	2018].	
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Proceedings	of	the	Human	Factors	and	Ergonomics	Society	Annual	Meeting,	(15	September	2016),	675	
<http://journals.sagepub.com/doi/pdf/10.1177/1541931213601155>	[accessed	3	May	2018].	
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teaming’,	Office	of	the	Chief	Scientist,	AF/ST	TR	15-01,	(June	2015),	p.	7.	
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and	Francis,	Second	Edition,	2012).	See	also:	Nicolas	Cote	and	others,	‘Integrating	the	human	recommendations	in	the	
decision	process	of	autonomous	agents’,	Robot	Teamwork	in	Dynamic	Adverse	Environment,	Papers	from	the	2011	AAAI	
Fall	Symposium,	(2011),	pp.	2-3	
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Science	Magazine,	Science	AAAS,	(13	April	2017).		
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<www.theguardian.com/technology/2016/oct/11/crash-how-computers-are-setting-us-up-for-disaster>	[accessed	12	
October	2016].	
237	Chapter	4	(Deployment),	specifically:	4.7	(‘Operations	and	causes	of	failure’).			
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something	has	usually	gone	wrong.		Operators	need	to	be	more	rather	than	less	skilled	in	order	
to	cope	with	atypical	conditions.238		
	

Merely	automatic	systems	may	‘accommodate’	incompetence	by	being	easy	to	operate	and,	as	
highlighted	by	Kinni,	by	remotely	correcting	mistakes.239	A	behavioural	consequence	is	that	inept	
operators	and	erroneous	practices	can	function	for	some	time	before	systemic	incompetence	
becomes	apparent.	A	further	challenge	is	that	automatic	and	then	autonomous	systems	erode	skills	
by	removing	the	need	for	practice	even	if	operators	were	once	expert.240	Riegler	instead	points	to	
the	challenge	of	goal	divergence	arising	from	imbedded	conflict	between	machine	(a	focus	on	the	
control	of	input	states)	and	human	engineer	(a	corresponding	focus	on	what	Riegler	terms	‘output	
of	artifacts’).241		Autonomous	systems,	after	all,	will	tend	to	fail	either	in	unusual	situations	or	in	
ways	that	produce	unusual	situations.242	In	either	case,	an	unrealistically	skillful	response	is	
required	from	the	human	intervening	to	correct	that	failure	in	what	will	be	a	bewildering	evidence	
set.	While	the	technical	foundation	for	these	behavioural	constraints	forms	the	basis	of	later	
chapters,	Weiner’s	Laws	of	Aviation	provides	a	useful	generalisation	noting	that	a	digital	device	
‘tunes	out	small	errors	while	creating	opportunities	for	large	errors’.243	Further	context	to	this	
point	is	provided	by	Harford’s	observation	that	a	computer	(which	is	broadly	one	hundred	times	
more	accurate	than	a	human	and	one	million	times	faster)	will	statistically	still	make	ten	thousand	
times	as	many	mistakes.244		
	

Still	other	behavioural	constraints	create	challenges	to	AWS	deployment.	The	adoption	of	
autonomy	may	be	influenced	by	the	phenomenon	of	threat	inflation	whereby	‘national	commentary	
represents	threats	as	much	larger	than	they	truly	are’.245	Milliman’s	Psychological	Rationales	for	
Threat	Inflation	explains	this	behavioural	challenge	as	a	consequence	of	preeminent	States	having	
no	locally	relevant	enemies	but	nevertheless	being	‘suffused	by	an	inherent	insecurity’	whereby	the	
mere	existence	of	a	threat,	in	this	case	weapon	autonomy,	cannot	ever	be	eliminated.246	Any	sudden	
embrace	of	compensating	technologies	must	also	have	regard	for	economic	factors.	Even	in	the	
relatively	benign	environments	that	remote	weapons	have	thus	far	been	operating,	semi-
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autonomous	UAVs	are	reported	to	be	suffering	a	‘disproportionately	significant’	accident	rate.247	
Assuming	for	this	purposes	AUVSI’s	calculations	that	the	capital	cost	of	a	UAV	is	broadly	one	third	
less	than	its	manned	equivalent248,	Carpenter	notes	that	losses	at	several	times	the	rate	of	the	
manned	equivalent	might	quickly	erode	any	cost	benefit.249	Crash	rates	vary	by	aircraft	type	but	
magazine	Drone360	estimates	that	the	US	military’s	larger	UAV	‘crash	three	times	more	often	than	
the	remainder	of	the	fleet’250;	to	this	point,	Hanson	reports	that	more	than	four	hundred	large	
military	UAVs	crashed	between	2001	and	2016.251		

	
Deployment	constrains	are	also	created	by	political	considerations.	In	considering	the	use	of	

State	force,	‘maximum	operational	efficiency’	is	rarely	achieved	in	battlefield	assets.252	In	this	vein,	
van	Riper	and	Scales	argue	that	removing	human	supervision	from	battlefield	weapons	may	
similarly	provoke	political	sensitivities	‘routinely	precluding	the	unconstrained	employment	of	
military	means’.253	A	behavioural	upshot	for	AWS	deployment	is	therefore	captured	by	Lonsdale	
whereby	‘the	mere	possession	of	advanced	technology	is	no	guarantee	of	its	practical	utility’.254	
Concern	over	casualties	in	Kosovo	obliged	ground	attack	bombers	to	fly	above	fifteen	thousand	feet	
thereby	reducing	greatly	their	effectiveness.255	Other	political	restrictions	in	that	conflict,	reports	
Lonsdale,	arose	from	the	coalition-nature	of	that	war	whereby	clear	decision-making	was	
complicated	by	NATO’s	unanimity	principle	and	similar	constraints	are	likely	to	compromise	
deployment	of	AWS.256	Lonsdale	observes	the	irony	in	politicians’	desire	for	stand-off,	autonomous	
weapons	while	political	restrictions	on	their	operation	may	diminish	their	chances	of	success.	The	
first	high	profile	mistake	involving	unsupervised	weapons	is	likely	to	be	front-page	news	
precipitating	hiatus	in	their	deployment.257	This	political	dimension	has	further	effects.	Given	that	
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autonomous	machines	can,	presumably,	continue	to	work	indefinitely,	it	follows	that	combat	
involving	AWS	(at	this	level,	without	human	involvement)	‘cannot	practically	be	won	or	lost’.258	On	
a	battlefield	dominated	by	AWS,	once	machines	have	defeated	opposing	machines,	humans	will	still	
need	to	move	onto	that	battlefield	to	negotiate	and	settle	the	dispute	themselves.259	It	is	for	this	
reason	that	Beard	notes	that,	while	legal	and	ethical	issues	of	AWS	deployment	are	widely	
covered260,	there	is	little	secondary	source	material	yet	available	on	empirically	how	autonomous	
weapons	may	be	used	on	the	battlefield.261	Two	quite	separate	points	arise.	Gray	notes	the	
‘inescapable	reality	of	geography	and	the	ubiquitous	nature	of	the	elements’.262	Clausewitz,	after	all,	
highlights	that	‘geography	and	the	character	of	the	ground	bear	a	close	and	ever-present	relation	to	
war’.263	A	second	exogenous	challenge	comes	from	the	psychological	cost	of	AWS	deployment.	UAV	
pilots	are	showing	signs	of	equal	or	greater	stress	from	combat	compared	to	traditional	pilots;	
although	an	over-simplification,	the	stress	of	fighting	a	war	several	thousand	miles	away	then	
joining	one’s	family	at	the	dinner	table	is	already	presenting	significant	mental	health	challenges.264	
In	this	vein,	Sharkey	similarly	that	operating	a	drone	is	already	akin	to	a	video	game	in	its	
detachment	from	the	act	of	killing.265		

 Proliferation constraints 
An	adjunct	constraint	arises	from	the	challenges	of	UAV	and	AWS	proliferation.266	Just	as	Krupp,	
Winchester	and	Armstrong	were	happy	to	sell	advanced	munitions	to	competing	nations,	the	
marketplace	for	drone	manufacturers	is	already	global,	an	inference	here	being	that	States	will	be	
able	to	level	any	technical	playing	field	by	purchasing	comparable	AWS	technology.267	Boyhan,	after	
all,	notes	that	States	who	fail	to	adopt	such	new	technologies	may	be	disadvantaged	as	autonomy	
spreads	in	weaponry.268	Moreover,	horizontal	proliferation	(that	is,	to	other	countries)	of	UAV	
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exports	rising	from	$5.2bn	in	2013	to	$8.4bn	in	2018.	See	also:	Jason	Koebler,	‘Oregon	Company	To	Sell	Drone	Defence	
Technology	to	Public’,	US	News,	15	March	2013	<http://www.usnews.com/news/articles/2013/03/15/oregon-
company-to-sell-drone-defense-technology-to-public>	[accessed	9	June	2017].	
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technologies	is	already	widespread;	research	from	Dortmund	University	suggests	that	some	twenty	
countries	as	at	2019	export	such	systems.269	Horizontal	proliferation	already	takes	the	form	of	
qualitative	improvements	to	UAV	technology	through	collaborative	development	(such	as	between	
Israel	and	India).	Technology	development	and	collapse	in	cost	curves,	both	characteristics	
underpinning	Seba’s	S-Curve	adoption	model,	are	also	evident.	270	The	proliferation	issue	here	is	
that	an	air-frame	can	already	be	built	on	a	3D	printer271	and	a	cheap	version	of	Hobby	King	
Software	can	provide	users	with	a	useable	software	skeleton	to	create	an	autonomous	flight	path.272	
Unregulated	proliferation	of	AWS’	underlying	technologies273	is	thus	clearly	widespread.	A	further	
proliferation	challenge	arises	from	the	ease	with	which	adversaries	might	duplicate	and	improve	on	
weapon	capabilities	through	espionage,	graft,	State-sponsored	malfeasance	or	an	AWS	being	
captured.274	Examples	abound.275	The	Chukar,	a	target	drone	system	used	by	the	US,	provided	the	
basis	for	the	Israeli	unmanned	aerial	system	having	crashed	in	the	waters	off	Tel	Aviv	in	1968	and	
immediately	reverse-engineered	to	provide	the	basis	for	future	Israeli	efforts	in	the	technology.276	
Sharkey	similarly	points	to	developments	in	AWS	technologies	that	have	been	helped	by	easy	
availability	of	physical	parts	as	well	as	the	increasing	cross-border	ease	of	sourcing	necessary	
components.277		
	

An	obvious	proliferation	concern	is	that	unmanned	and,	eventually,	autonomous	technology	
might	be	exploited	by	terrorist	and	non-state	players.278	Notwithstanding	that	‘threat	inflation’279	
plays	its	part	in	keeping	that	possibility	in	the	public	eye,	assassination,	dissemination	of	chemical	
and	biological	agents	and	unmanned	access	into	secure	areas	are,	notes	Masters,	likely	to	become	
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272	Paul	Scharre,	Director,	20YY	Warfare	Initiative,	Centre	for	a	New	American	Security,	in	conversation	with	the	author,	
February	2014	Chatham	House	conference	on	Autonomous	Weaponry.	
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<https://www.economist.com/news/special-report/21737420-making-vehicles-drive-themselves-hard-getting-easier-
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274	Sharon	Weinberger,	‘China	Has	Already	Won	the	Drone	Wars’,	Foreign	Policy,	10	May	2018,	para.	4	of	11	
<https://foreignpolicy.com/2018/05/10/china-trump-middle-east-drone-wars/>.		
275	For	an	early	discussion	on	relevant	structural	changes	in	the	arms	industry,	see:	Richard	Bitzinger,	‘The	Globalization	
of	the	Arms	Industry:	The	Next	Proliferation	Challenge’,	International	Security,	19,	2,	(Fall	1994),	170-198.		
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279	The	role	of	‘threat	inflation’	in	accelerating	AWS	development	is	widely	discussed	whereby	constituencies	
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ever	easier	for	such	non-State	parties	to	undertake.280	Michelson	also	points	out	that	such	
capabilities	are	unlikely	now	to	disappear	given	that	unmanned	systems	are	increasingly	based	on	
universally	available	platforms.281	The	hazard	is	acknowledged	by	the	US	Department	of	Defense	in	
its	2012	Directive	on	Autonomous	Weaponry	that	requires	clear	‘safeties’	and	‘anti-tamper	
mechanisms’282	in	the	event	of	a	loss	of	system	control	to	‘unauthorised	parties’.	In	this	vein,	
Altmann	argues	that	proliferation	of	AWS	might	induce	States	to	start	wars	with	greater	ease,	
particularly	in	industrialised	democracies	where	casualties	may	quickly	erode	support	for	such	
action.283	This	trend	reinforces	what	is	an	age-old	security	dilemma:	Each	State	must	build	up	its	
own	AWS	forces	and,	by	doing	so,	increases	the	threat	to	its	neighbours	who,	in	turn,	adopt	this	
new	technology.	The	behavioural	challenge	is	that	security	is	decreased	for	all.284	

 Ethical constraints to AWS deployment 
	
Ethical	arguments	around	the	removal	of	human	decision-making	in	lethal	engagements	are	
similarly	polarized	but,	as	evidenced	broadly	by	Lin,	comprise	a	key	challenge	to	AWS	
deployment.285	Tonkens	and	Arkin	occupy	the	opposite	reaches	of	this	debate.	While	Arkin’s	
advocacy	of	an	Ethical	Governor	and	Artificial	Conscience	is	explored	in	this	thesis’	Chapters	Three	
and	Eight286,	Tonkens’	rebuttal	posits	that	lethal	robots	on	the	battlefield	will	instead	create	new	
levels	of	uncertainty.287	Robots,	moreover,	will	not	be	capable	of	morally	praiseworthy	behaviour	
such	as	courage	(both	moral	and	physical)	or	the	ability	to	go,	as	Tonkens	explains,	‘above	and	
beyond	duty’.288	At	its	core	(and	validated	in	later	chapters289),	his	argument	is	that	critical	ethical	
notions	are	incapable	of	capture	by	machine	code.	These	tenets	include	heuristics	fundamental	to	
battlefield	function	(and,	argue	Sturchler	and	Slergrist,	pivotal	to	the	compliant	use	of	force290)	such	
as	guilt,	empathy,	responsibility,	duty	and	restraint.	The	list	includes	precepts	such	as	concern,	
unease,	disquiet	and	compassion.	This	analysis	is	not	to	argue	that	all	human	soldiers	unerringly	
display	such	characteristics	but	rather	that	AWS	will	fail	to	meet	appropriate	benchmarks	from	the	
outset.		
																																																								
280	Jonathon	Masters,	‘Targeted	killings’,	Council	on	Foreign	Relations,	Backgrounders,	(May	2013)	
<http://www.cfr.org/counterterrorism/targeted-killings/p9627>.	
281	Robert	C.	Michelson,	‘Micro	Flyers	and	Aerial	Robots,	Missions	and	Design	Criteria’,	Georgia	Tech	Research	Institute,	
(2009)	<http://www.dtic.mil/dtic/tr/fulltext/u2/p010759.pdf>.	
282	Department	of	Defense	Directive,	‘Autonomy	in	Weapon	Systems’,	para	4	(Policy),	point	2.		
283	Jurgen	Altmann,	‘Preventive	Arms	Control	for	Uninhabited	Military	Vehicles’,	AKA	Verlag	Heidelberg,	(2009),	70	
<https://e3.physik.tu-dortmund.de/p&d/pubs/0909_ethics_and_robotics_altmann.pdf>.	
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286	See:	Chapter	3	(Drivers),	specifically:	3.4	(Ethical	drivers)	and	8	(Software),	specifically:	8.1	(Coding	methodologies).	
287	Tonkens,	p.	149.	
288	Ibid.,	p.	151.		
289	See:	Chapter	8	(Software),	generally	but	specifically:	8.1	(‘Coding	methodologies’)	and	8.4	(‘Software	processing	
functions’).	
290	Nikolas	Sturchler	and	Michael	Slergrist,	‘A	‘Compliance-base’	Approach	to	Autonomous	Weapon	Systems’,	Blog	of	the	
European	Journal	of	International	Law,	(1	December	2017)	<https://www.ejiltalk.org/a-compliance-based-approach-
to-autonomous-weapon-systems/>	[accessed	7	May	2018].	Also:	Major-General	Patrick	Cordingley,	in	conversation	
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In	considering	deployment	challenges,	it	is	therefore	instructive	to	unpick	certain	of	the	ethical	

drivers	discussed	in	Chapter	Three.291	First,	Atkin’s	arguments	around	AWS’	inevitability’	are	
unfounded	given	that	humans	always	retain	the	choice	in	practice	to	retain	human	supervision.	The	
entire	human	chain	around	AWS	deployment	(those	comprising	the	Delivery	Cohort,	here	the	
battlefield	commander,	the	maintenance,	control	and	logistics	staff292)	must,	after	all,	be	governed	
by	its	own	set	of	values,	standards	and	experiences,	each	affecting	how	and	to	what	ends	autonomy	
is	deployed.	Nor	does	AWS’	monitoring	of	the	battlefield	(and,	implicitly,	Arkin’s	notion	of	
reprimand	in	cases	of	unethical	behaviour)	actually	require	the	autonomous	machine	to	have	its	
own	independent	lethal	capability.293	This	is	a	specious	connection.	Indeed,	the	shortcomings	of	
Arkin’s	framework	are	recognised	with	its	author	acknowledging	that	finding	ways	for	AWS	to	
adhere	to	LOAC	remains	an	‘outstanding	issue’294	and	that	the	challenge	for	AWS	to	distinguish	a	
soldier	from	a	civilian	is	one	of	several	‘daunting	problems’.295	Controversy	also	exists	within	the	
issue	of	what	comprises	a	‘correct’	ethical	framework	for	AWS	protocols	given	the	multiple	
candidates	in	available	philosophies.296	Different	States,	different	politicians	and	different	
programmers	are	unlikely	to	have	a	consistently	similar	ethical	framework,	an	acute	deployment	
issue	given	the	importance	of	dynamically	tuning	the	weapon’s	dynamic	thresholds	and	confidence	
levels	discussed	in	later	chapters.297	
	

It	is	also	relevant	to	review	ethical	challenges	in	their	empirical	context.	Arkin’s	model	does	not	
suggest	AWS	might	reliably	prevent	humans	committing	atrocities.298	Indeed,	it	can	be	assumed	
that	most	instances	of	human	unethical	activity	will	occur	‘out	of	sight’	of	the	autonomous	machine.	
Improving	the	moral	calibre	of	battlefield	combat	is,	moreover,	already	irrelevant	if	the	use	of	AWS	
takes	place	in	a	war	that	is	unjust	in	the	first	place.	This	portents	clear	difficulty	for	AWS	
deployment	that	is	highlighted	by	Volker,	former	US	Permanent	Representative	to	NATO,	in	his	
2012	conclusion	that	‘drone	strikes	allow	our	opponents	to	cast	our	country	as	a	distant,	high-tech,	
amoral	purveyor	of	death.	It	builds	resentment	and	alienates	those	we	should	seek	to	inspire’.299	As	
noted	by	Dworkin,	ethical	challenges	to	removing	weapon	supervision	are	thus	properly	
fundamental.300	There	are,	of	course,	ways	other	than	autonomy	of	improving	ethical	behaviour	on	

																																																								
291	Chapter	3	(Drivers),	specifically:	3.6	(‘Ethical	drivers’).		
292	Together,	the	‘Delivery	Cohort’;	see:	Chapter	6	(Software),	specifically:	6.3	(‘Delivery	Cohort’).		
293	See:	Arkin,	Governing	Lethal	Behaviour,	p.	39.	
294	Ibid.,	p.	126	and	p.	211.	
295	Arkin,	‘The	Case	for	Ethical	Autonomy	in	Unmanned	Systems’,	pp.	11-12	<https://www.cc.gatech.edu/ai/robot-
lab/online-publications/Arkin_ethical_autonomous_systems_final.pdf>.	
296	Unitarian,	Kantian,	Social	Contract,	Virtue	Ethics,	Cultural	Relativism	et	al.	Arkin’s	answer	to	this	is	to	start	from	a	
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298	Indeed,	Arkin	identifies	specific	problems	to	the	creation	of	ethically	sensitive	machines	including	the	abstract	
nature	of	laws,	codes	and	principles	of	military	law,	the	variety	of	interpretation	of	these	laws	depending	on	context	and	
the	frequent	conflict	that	exists	between	these	abstract	rules.	See:	Tonkens,	p.	158.	
299	Kurt	Voller,	‘What	the	US	risks	by	relying	on	drones’,	Washington	Post,	26	October	2012	
<http://articles.washingtonpost.com/2012-10-26/opinions/35500650_1_drone-strikes-drone-attacks-guantanamo-
bay>	[accessed	12	April	2014].	
300	Gerald	Dworkin,	The	Theory	and	Practices	of	Autonomy,	(Cambridge:	Cambridge	University	Press,	20	August	1988),	
pp.	62-65.		
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the	battlefield301	such	as	shorter	tours,	improving	therapeutic	resources,	tightening	up	on	soldiers’	
psychological	screening	(indeed,	even	under	the	US	Surgeon	General’s	research302,	more	than	
ninety	per	cent	of	soldiers	have	displayed	conduct	that	is	acceptable)	by	improved	training	and,	as	
well,	by	revising	rules	of	engagement.	More	importantly,	it	is	unfounded	to	state	without	doubt	that	
AWS	will	be	‘ethically	more	sound’	than	human	soldiers,	the	more	so,	notes	Widdows,	given	the	
number	and	scope	of	morally	indeterminate	situations	that	arise	in	battle.303	It	is	for	this	reason	
that	Schulzke	highlights	an	enduring	fit	between	human	participants	(as	opposed	to	machines)	and	
LOAC	where	combat	is	based	upon	an	ethical	‘do-the-best-you-can’	framework.304		
	

A	further	ethical	constraint	then	arises	from	humans’	investigative	role	should	violations	of	
IHL	take	place.	Under	the	Geneva	Conventions,	the	notion	of	accountability	is	central	to	deterring	
future	harm	to	civilians	while	providing	victims	with	a	means	of	retribution:305	Critics	can	thus	
argue	that	autonomous	weapons	should	be	banned	because	they	‘inherently	preclude	the	fair	
attribution	of	responsibility.	Fair	criminal	liability	presupposes	that	commanders	can	foresee	the	
outcome	of	[AWS’]	actions’.306	In	this	vein,	Kalmonovitz	concludes	that	deploying	lethal	AWS	under	
‘complete	uncertainty	would	clearly	be	wrong,	comparable	to	releasing	a	toxic	substance	in	
inhabited	environment’.307	Primarily,	facility	must	exist	to	identify	responsible	parties	when	AWS	
processes	go	awry.	The	corollary	(taken	together,	the	transparent	and	collective	responsibility	of	
AWS’	Delivery	Cohort308)	is	captured	by	former	UN	Special	Rapporteur	Heyns	when	he	notes	that	
‘[t]here	is	clearly	no	point	in	putting	a	robot	in	jail’.309	This	matter	of	responsibility	gives	rise	to	
important	ancillary	challenges.	Even	when	constituents	of	that	Cohort	are	judged	to	exercise	
material	control	over	AWS,	uncertainty	will	exist	‘whether	each	or	any	individual	should	be	held	to	
account	in	a	specific	case’.310	After	all,	if	everyone	(in	this	case,	the	Delivery	Cohort)	is	deemed	to	be	
responsible,	then	no	one	is	responsible.	Heyns	also	notes	the	ethical	constraint	that	it	is	unclear	
who	will	investigate	civilian	deaths	following	erroneous	engagement	by	an	AWS.	Uncertainty	
around	accountability	otherwise	creates	an	unacceptable	‘responsibility	gap’.311	Either	the	AWS	has	

																																																								
301	See:	Peter	Olsthoorn,	Military	Ethics	and	Virtues:	An	interdisciplinary	approach	for	the	twenty-first	century,	(USA:	Cass	
Military	Studies,	Routledge,	2011),	p.	81	and	generally <https://philpapers.org/archive/OLSMEA.pdf>.	
302	Surgeon	General’s	Office,	Mental	Health	Advisory	Team,	‘IV	Operation	Iraqi	Freedom	05-07,	Final	Report’,	MHAT,	
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advice/#19c3ac7d5e5e>	[accessed	2	August	2017]. 
305	HRW,	‘Losing	humanity;	the	case	against	killer	robots’,	p.	42.	
306	Kalmanovitz,	cit.	Bhuta	and	others,	p.	154.	
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308	See:	Chapter	6	(Software),	specifically:	6.3	(‘Delivery	Cohort’).		
309 Christof	Heyns,	‘Autonomous	Weapon	Systems:	living	in	a	dignified	life	and	dying	a	dignified	death’,	cit.	Nehal	Bhuta	
and	others,	p.	12.		
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been	deployed	unlawfully	or	its	programming	is	unlawfully	careless	or	it	has	been	illegally	
designed	or	neglectfully	maintained.312		

	
The	current	process	of	determining	accountability	in	examples	of	AWS	malfunction	is	also	

ambiguous.	Protocol	I,	Article	85(3)	of	the	Geneva	Conventions,	specifies	that	individuals	can	only	be	
held	liable	if	any	such	carelessness	is	‘willful’	and	intentional.	Manufacturers	have	empirically	gone	
unpunished	for	how	their	weapons	have	been	used,	particularly	having	first	disclosed	during	their	
procurement	the	risks	associated	with	those	weapons.	It	is	the	unpredictable	bases	of	AWS	that	will	
ensure	manufacturers	set	out	the	widest	possible	specification	caveats.	Prosecution	of	product	
liability	also	entails	a	civilian	lawsuit	that	puts	the	onus	to	act	upon	the	victims,	often	wretched	and	
displaced	by	conflict.	Boulanin	and	Verbruggen	note,	furthermore,	that	it	is	AWS’	technical	
conformation	which	creates	accountability	challenges;313	while	it	may	be	theoretically	possible	to	
separate	out	obligations	attached	a	particular	software	engineer	(or,	post	facto,	to	identify	those	
responsible	for	discrete	elements	of	the	system’s	componentry),	Sparrow	points	out	that	these	
individuals	cannot	be	expected	to	predict	the	weapon’s	subsequent	learning	or	its	decision	
outcomes	in	battle.314	After	all,	‘the	possibility,	however	far-fetched,	that	an	autonomous	system	
will	make	choices	other	than	those	predicted	and	encouraged	by	its	programmers	is	inherent	in	the	
claim	that	it	is	autonomous’.315	In	highlighting	the	large	number	of	agencies	comprising	AWS’	
Delivery	Cohort316,	Epstein	is	making	the	ethical	and	behavioural	point	that	the	absolute	numbers	
involved	may	collectively	make	an	accident	more	likely	as	well	as	blurring	the	lines	of	responsibility	
when	that	accident	occurs.317	It	is	also	unworkable	that	any	one	element	of	this	Delivery	Cohort	can	
conceptualize	all	of	the	complexities	that	are	involved	either	in	AWS	deployment	or	in	the	
battlespace	in	which	that	machine	must	properly	operate.318	McDaniel	thus	notes	that	‘steady	
advances	in	technology	will	reveal	legal	and	ethical	issues	that	are	currently	unimaginable’.319	An	
ethical	adjunct	to	the	matter	of	accountability	is	the	notion	of	‘plausible	denial’,	a	circumstance	that	
will	occur	when	no	single	State	then	admits	to	a	lethal	engagement	using	AWS	or	when	it	is	difficult	
to	determine	whose	weapon	system	is	responsible	in	an	attack,	an	unwelcome	consequence,	notes	
Suarez,	of	States’	moves	to	independent	weapons.320	Such	an	anonymous	act	of	war	has	the	
potential	to	disrupt	the	geopolitical	balances	and	turn,	perhaps,	‘States’	long-standing	onus	from	
defence	into	one	of	attack’.321	
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beyond’,	unpublished	MA,	Military	Art	and	Science,	(Fort	Leavensworth,	2008),	p.	70.	
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A	final	argument	for	this	section	is	provided	by	the	notion	of	‘human	dignity’	acting	as	an	
umbrella	concept	which,	according	to	Birnbacher,	

	
…	bridges	seemingly	insurmountable	ideological	gulfs	[and	provides]	a	basis	for	consensus	and	
compromise	as	a	foundational	principle	that	overarches,	as	it	were,	all	constitutional	and	other	
political	principles,	a	common	reference	point	that	is	beyond	the	controversy	and	conflict	and	
plays	the	role	of	an	a	priori	to	which	all	other	political	ideas	are	subject.322		
	

An	ethical	issue	is	also	whether	autonomous	weapons	and,	specifically,	the	removal	of	human	
supervision	from	lethal	violence,	infringes	human	dignity.	In	judging	AWS	to	be	mala	in	se	under	
Just	War	theory	(‘evil	in	themselves’),	Horowitz	cites	Asaro’s	overarching	conclusion	that	‘justice	
cannot	be	delegated	to	automated	processes’.323	The	construct	is	given	weight	by	UNIDIR’s	
discussion	of	‘an	instinctual	(sic)	revulsion	against	the	idea	of	machines	“deciding”	to	kill	
humans’324,	prompting	Birnbacher	to	posit	human	dignity	as	a	basic	challenge	to	AWS	deployment	
given	the	‘openness	of	its	content’	and	human	dignity’s	‘independence	of	any	particular	
metaphysical	background	theory’.325	This	‘openness’	is	relevant	precisely	because	human	dignity	
cannot	be	pigeonholed	by	definitions	around	human	rights.326	Furthermore,	unlike	the	concept	of	
morality	(that	comprises	both	rights	and	duties),	human	dignity	implies	rights	against	others	but	no	
duties	against	others.	In	this	sense,	there	is	obvious	disconnect	between	human	dignity	and	lethal	
engagement	undertaken	by	unsupervised	weaponry.	The	context	of	human	dignity,	moreover,	is	
unlimited	as	it	contains	‘an	intrinsic	evaluative	component’	which,	notes	Birnbacher	again,	gives	to	
human	beings	an	exclusive	value	‘on	which	the	exceptional	normative	status	of	human	beings	is	
assumed	to	depend’.327	The	ethical	challenge	in	this	case	is	that	such	value	is	incapable	of	
appropriate	capture	in	machine	code.328		

	
The	human	rights	that	are	implied	by	human	dignity	(and	which	will	likely	be	compromised	by	

AWS	function)	include	the	right	to	avoid	humiliation,	the	right	to	a	minimum	freedom	of	action	and	
decision,	to	receive	support	in	situations	of	severe	need,	the	right	to	a	minimum	quality	of	life	and	
the	relief	of	suffering	and,	crucially,	the	right	not	to	be	treated	merely	as	a	means	to	other	people’s	

																																																								
322	Dieter	Birnbacher,	‘Are	Autonomous	Weapons	a	threat	to	human	dignity?’,	cit.	Bhuta	et	al,	p.	105.	The	concept	of	
human	dignity	was	first	introduced	into	Article	1	of	the	United	Nations	Universal	Declaration	of	Human	Rights	in	
December	1948	(UN	GA	Res	217	III	A).	Similarly,	the	Vienna	Declaration	of	the	1993	World	Conference	on	Human	
Rights	affirmed	that	‘all	human	rights	derive	from	the	dignity	and	worth	inherent	in	the	human	person’.		
323	Michael	Horowitz,	‘The	Ethics	and	Morality	of	Robotic	Warfare:	Assessing	the	Debate	over	Autonomous	Weapons’,	
American	Institute	of	Arts	and	Sciences,	(February	2016),	pp.	12-14	
<http://www.michaelchorowitz.com/Documents/HorowitzLAWSEthicsDraftFeb2016.pdf>.	See	also:	Asaro,	‘On	
Banning	Autonomous	Weapon	Systems’,	p.	710.		
324	UNIDIR,	‘Safety,	Unintentional	Risk	and	Accidents	in	the	Weaponization	of	Increasingly	Autonomous	Technologies’,	
UNIDIR,	5,	(2016),	p.	9	<http://www.unidir.org/files/publications/pdfs/safety-unintentional-risk-and-accidents-en-
668.pdf>		
325	Birnbacher,	pp.	105-107.		
326	Human	Rights	Watch,	‘Heed	the	Call’,	pp.	19-22	(‘Humane	treatment’)	and	23-27	(‘Respect	for	Human	Life	and	
Dignity’).	
327	Birnbacher,	pp.	105-107.	
	
328	Birnbacher,	p.	106.	See	also:	Chapter	8	(Software),	specifically:	8.1	(‘Coding	Methodologies’)	and	8.5	(‘Anchoring	and	
Goal	Setting	Issues’).		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 160 | P a g e  

 
 

ends.329	Human	dignity	incorporates	a	civilian’s	right	to	privacy	as	well	as	rights	to	live	without	
severe	harm	or	risk	of	harm.330	The	deployment	challenge	in	this	instance	is	that	removing	weapon	
supervision	instead	risks	making	civilians	‘the	mere	means	of	aims	that	are	in	no	way	their	own	
aims,	with	the	risks	of	serious	harm	to	life	and	physical	and	mental	integrity’.331	This	manifests	
itself	in	three	ways.	As	noted	by	Heyns,	AWS	are	‘invulnerable	by	being	free	from	fear’,	with	their	
deployers	carrying	‘no	cost	except	the	economic’.332	Second,	AWS’	intrinsic	unpredictability	as	well	
weapons’	likely	randomness	of	attack	exacerbates	the	threat	to	civilians.	Finally	to	this	point,	
Sharkey	notes	that	AWS’	‘illusion	of	accuracy’	will	foster	over-confidence	and	distort	the	Delivery	
Cohort’s	judgement.333	A	corollary,	therefore,	to	this	chapter’s	analysis	of	AWS’	legal	and	
behavioural	challenges	is	articulated	by	Brehm.	It	is	the	degree	of	control	that	military	commanders	
exercise	over	their	weapons,	and	the	challenges	arising	from	that	relationship,	which	will	‘affect	
their	ability	and,	by	extension,	that	of	the	State	on	whose	behalf	they	act,	to	perform	their	legal	
duties	and	to	be	accountable	for	the	consequences’.334	It	is	this	portfolio	of	legal,	political,	ethical	
and	behavioural	constraints	(as	well	as	their	intrinsic	intractability)	that	underpins	civil	society's	
opposition	to	AWS	deployment335	and	which	now	provides	relevant	narrative	to	the	remainder	of	
this	thesis’	analysis,	the	identification	of	technical	bottlenecks	that	challenge	the	compliant	
adoption	of	AWS.		

																																																								
329	See,	generally:	‘Human	Rights	and	Armed	Conflict’,	Icelandic	Human	Rights	Centre,	
<http://www.humanrights.is/en/human-rights-education-project/human-rights-concepts-ideas-and-fora/human-
rights-in-relation-to-other-topics/human-rights-and-armed-conflict>	[accessed	3	May	2018].	
330	Articles	8	and	21	of	the	Rome	Statute	of	the	International	Criminal	Court	prohibit	and	make	punishable	‘committing	
outrages	upon	personal	dignity,	in	particular	humiliating	and	degrading	treatment’.	
331 Birnbacher,	p.	116.	Birnbacher	focuses	in	particular	on	the	asymmetry	of	facing	forces	if	autonomous	weapons	are	
employed	only	on	one	side.	‘Morally,	symmetry	and	asymmetry	are	crucial	moral	variables’,	he	claims,	‘and	they	are	
deeply	influenced	by	the	use	of	robots’.	
332	Christof	Heyns,	‘Report	of	the	Special	Rapporteur’,	p.	12.		
333 Noel	Sharkey,	‘Automating	warfare:	lessons	learned	from	the	drone’,	Journal	of	Law,	Information	and	Science,	(2012),	
12	<www.austlii.edu.au/au/journals/JlLawInfoSci/2012/8.html>	[accessed	12	January	2018].	See	also	Chapter	6	
(Software),	specifically:	6.3	(‘The	Delivery	Cohort’).	
334	Maya	Brehm,	‘Defending	the	Boundary;	constraints	and	requirements	on	the	use	of	autonomous	weapon	systems	
under	international	humanitarian	and	human	rights	law’,	Geneva	Academy	of	International	Humanitarian	Law	and	
Human	Rights,	Academy	briefing	No.9,	(2017),	p.	19.	
335	Peter	Asaro,	'Why	the	World	Needs	to	Regulate	Autonomous	Weapons,	and	Soon',	Bulletin	of	the	Atomic	Scientists,	27	
April	2017,	<https://thebulletin.org/2018/04/why-the-world-needs-to-regulate-autonomous-weapons-and-soon/>	
[accessed	15	May	2018].		
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6. Wetware:	Design	challenges	to	AWS	function	

Having	assessed	‘why’	and	‘how’	a	weapon	without	human	oversight	might	be	deployed,	this	thesis	
now	considers	technical	obstacles	to	compliant	deployment	of	weapons-directing	artificial	
intelligence.	Only	once	such	‘build’	challenges	have	been	identified	can	a	review	of	operational	
considerations	to	AWS	deployment	reasonably	be	carried	out.1	This	technical	analysis	is	therefore	
undertaken	in	the	next	four	chapters	titled	Wetware,	Firmware,	Software	and	Hardware.	Three	
assumptions	underlie	the	review.	Sartor	and	Ominici	define	a	teleological	system	(here,	the	AWS)	
by	its	cognitive	states	having	a	definable	representation	such	as	goals	(objectives	to	be	achieved	by	
the	weapon),	beliefs	(the	tracking	of	its	environment)	and	plans	(paths	specifying	how	to	reach	the	
goals,	given	the	beliefs,	through	actions	of	the	weapon	within	a	belief-desire-intention	
architecture).2	Any	faultlines	so	identified	are	deemed	to	be	agnostic	to	the	precise	degree	of	
autonomy	in	the	underlying	weapon	platform.	For	the	purposes	of	this	thesis,	the	test	remains	the	
‘absence	of	meaningful	human	control’3	in	an	engagement	sequence	described	by	Air	Force	Colonel	
Riza	as	‘the	string	of	events	[that]	we	technological	warriors	facetiously	call	the	“consecutive	
miracles”	that	comprise	the	effective	functioning	of	technologically	advanced	weapon	systems’.4	
The	purpose	of	this	chapter	is	thus	to	review	AWS’	most	fundamental	technical	basis,	the	
transforming	of	data	from	its	battlefield	environment	into	purposeful	plans	and	compliant	actions	
based	on	appropriate	integration	of	capabilities	that	sense,	decide	and	then	act	in	an	independent	
and	lethal	manner.5	The	outwardly	similar	models	used	by	Russell	and	Norvig	to	classify	such	
‘intelligent’	agents	(here,	reactive	rule-based	systems	or	deliberative	goal-based	systems)	highlight	
the	complexity	masked	by	this	standpoint	whereby	very	different	decision	outcomes	may	arise	
from	exactly	similar	input	data.6	This	is	a	key	assumption	for	this	thesis	as	AWS	deployment	may	
take	many	forms7	
	from	individual	independent	componentry	within	an	otherwise	supervised	platform	to,	Oberhaus	
posits,	an	off-the-shelf	drone	kit	where	targets	are	selected	according	to	broad	search	instructions	
(ethnicity,	location,	gender,	gait,	age,	even	‘target	reaction’).8	That	these	represent	just	two	points	of	

																																																								
1	This	comprises	the	subject	of	Chapter	4	(Deployment),	generally.	
2	Sartor	and	Omicini,	p.	51.	Sartor	and	Omicini	usefully	state	that	‘in	order	to	realise	its	desires	(goals),	the	system	
constructs	plans	of	action	on	the	basis	of	its	model	of	the	relevant	facts	(beliefs)	and	commits	itself	to	act	according	to	
the	chosen	plans	(intentions).	Note	that	by	using	the	terminology	of	beliefs,	desires	and	intentions	to	denote	cognitive	
structures	of	artificial	systems,	we	are	not	assuming	that	such	structures	are	similar	to	those	existing	in	the	human	
mind’.	This	is	a	pivotal	distinction.	
3 For	analysis	of	this	notion,	see:	Chapter	10	(Oversight),	specifically	10.1	(‘Meaningful	human	control’).	
4	Shane	Riza,	Killing	without	Heart,	(USA:	University	of	Nebraska	Press,	Potomac	Books,	2013),	p.	4.		
5	Boulanin	and	Verbruggen,	p.	7.	Capabilities	around	sensing		(to	complete	a	task	autonomously,	the	weapon	must	be	
able	to	perceive	the	battlefield	environment	in	which	it	operates),	around	deciding	(data	from	the	weapon’s	
surroundings,	once	processed	by	the	machine’s	sensing	software,	then	serves	as	input	for	the	AWS’	decision-making	
processes	which	in	turn	are	overlooked	and	‘assured’	by	its	control	systems)	and	around	acting	(the	decisions	made	by	
the	AWS’	control	systems	are	then	executed	through	computational	or	physical	means)	may	provide	the	skills	basis	for	
autonomous	AWS	but	this	masks	considerable	technical	uncertainty	and	likely	differences	to	be	overcome	before	a	
working	set	of	machine	routines	can	be	achieved.	
6	Stuart	Russell	and	Peter	Norvig,	Artificial	Intelligence:	A	modern	Approach,	(UK:	Pearson	Education,	Harlow,	2014),	p.	
35	and	p.	49.		
7	See:	Chapter	4	(Deployment),	generally.	
8	Daniel	Oberhaus,	‘Watch	‘Slaughterbot’:	A	Warning	about	the	Future	of	Killer	Robots’,	Motherboard,	(13	November	
2017)	<https://motherboard.vice.com/en_us/article/9kqmy5/slaughterbots-autonomous-weapons-future-of-life>	
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what	is	an	evolving	continuum	is	evidenced	by	debate	in	the	UN’s	CCW	that	after	five	years	of	
discussions	cannot	yet	agree	on	a	working	definition	on	what	constitutes	a	lethal	autonomous	
weapon.9	More	likely,	it	looks	like	a	colleague	machine	with	autonomous	and	lethal	capabilities	but,	
as	part	of	a	human-machine	‘team’,	operating	nevertheless	with,	in	theory,	a	human	overlay	
whereby	control	is	then	toggled	between	human	and	weapon	‘according	to	circumstance’.10		
	

How	then	are	these	four	chapters	organised?	First,	in	Wetware,	this	chapter	isolates	basic	
complexities	arising	from	the	plausible	fundamental	architecture	in	autonomous	weapons.	Its	aim	
is	to	establish	likely	architectural	bases	for	AWS	in	order	to	underpin	the	analysis	of	subsequent	
chapters.	What	might	an	appropriate	artificial	intelligence	look	like	for	an	independent	weapon	
system?	Given	that	this	weapon	is	being	tasked	with	independent	lethal	operation,	how	might	its	
high-level	architecture	learn,	reason	and	undertake	cognition	in	order	to	fulfill	such	assignment?	
Firmware	(Chapter	Seven)	then	develops	this	analysis	to	review	the	architectural	bases	that	may	
comprise	AWS	function.	For	the	purposes	of	this	thesis,	firmware	here	relates	to	the	permanent	
routines	(weapon	learning,	reasoning	and	direction)	underpinning	AWS’	architecture.	In	Software	
(Chapter	Eight),	the	thesis	then	identifies	fault	lines	arising	from	the	weapon’s	volatile	operational	
routines	that	are	likely	to	comprise	its	function.11	Finally,	in	Hardware	(Chapter	Nine),	challenges	
arising	from	AWS’	physical	properties	are	discussed.	Only	then	is	assessment	possible	on	whether	
unsupervised	weapons	can	be	fit	for	purpose	given	the	nexus	between	compliant	operation,	
technical	challenge	and	the	role	expected	of	AWS.	Taken	together,	the	review	seeks	to	pinpoint	
discrepancies	that	exist	between	capabilities	that	may	be	feasible	and	tasks	that	will	be	required	of	
unsupervised	weapons.		
	

Wetware12	is	vernacular	to	describe	the	human	element	of	information	technology	
architecture.	The	human	brain	is	composed	of	some	seventy-five	per	cent	water.13	The	term	is	
useful	in	describing	programmers’	efforts	to	replicate	the	essentials	of	human	intelligence	and,	
crucially,	to	effect	this	through	code.14	Indeed,	the	narrative	to	the	next	four	chapters	is	informed	by	

																																																								
[accessed	17	November	2017].	For	video	presentation,	see:	<https://www.youtube.com/watch?v=2CYvjjOwcWQ>	
[accessed	17	November	2017].	‘Slaughterbots’	is	presented	by	Professor	Stuart	Russell,	Director	of	Computing	at	
Berkeley	University,	who	concludes	‘this	is	not	speculation.	It	is	the	result	of	integrating	and	miniaturizing	technologies	
that	we	already	have’.	The	theme	also	frames	much	of	the	introduction	to	Chapter	2	(‘Context’).		
9	Campaign	to	Stop	Killer	Robots,	(17	November	2017),	paras.	5	and	7	of	10	
<https://www.stopkillerrobots.org/2017/11/gge/,	17	November	2017>	[accessed	18	November	2017].	HRW’s	Mary	
Wareham	points	out	that	the	CCW	has	met	six	times	since	2014.	She	also	notes	that	the	stated	goal	of	the	CCW	
deliberations	has	not	been	to	produce	a	working	definition.		The	consensus-agreed	2018	CCW	GGE	Report	finds	that:	
‘For	some	delegations,	a	working	definition	of	lethal	autonomous	weapons	systems	is	essential	to	fully	address	the	
potential	risks	posed.		For	others,	absence	of	an	agreement	on	a	definition	should	not	hamper	discussions	or	progress	
within	the	CCW.		Characterisation,	or	working	definitions,	should	neither	predetermine	nor	prejudge	policy	choices;	
they	should	be	universally	understood	by	the	stakeholders’	(Mary	Wareham,	Director,	HRW	Arms	Division,	in	
conversation	with	the	author,	December	2018).	
10	See:	Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	human	teaming	models’)	and	4.5	(‘Flexible	autonomy’).	For	
definitions	of	in-the-loop,	on-the-loop	and	out-of-the-loop	weapon	controls,	see:	Chapter	1	(Introduction)	p.	16.	See	also:	
‘Superbots’	at	<https://www.stopkillerrobots.org/2017/11/gge/>	[accessed	5	October	2017].	
11	Volatility	in	this	case	relates	to	the	weapon’s	temporary	generation	of	outcomes.	Unlike	the	AWS’	firmware	(and	
arising	from	the	weapon’s	set	of	battlefield	inputs),	this	is	obviously	liable	to	rapid	change.	
12	See:	Urban	Dictionary	<http://www.urbandictionary.com/define.php?term=wetware>	[accessed	12	August	2017].	
13	USGS,	para.	2	of	8	<https://water.usgs.gov/edu/propertyyou.html>	[accessed	18	August	2017].	
14	One	component	of	AWS’	‘Delivery	Cohort’.	For	the	purposes	of	this	thesis,	the	broad	Delivery	Cohort	describes	the	
several	parties	responsible	for	the	design,	implementation	and	deployment	of	AWS.	The	term	is	deliberately	undefined	
but	will	include,	inter	alia,	the	following	tasks:	neurophysiologists	to	coordinate	AWS	networks,	psychologists	to	
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AWS’	independent	and	learning	capabilities	and,	it	is	posited,	an	element	of	sentient	initiative.	
Given	its	basis	around	cognitive	traits	of	the	human	brain,	wetware	is	thus	a	central	component	in	
weapon	feasibility.	The	aim,	however,	of	the	chapter	is	really	to	evaluate	Krishnan’s	suggestion	that	
this	basic	construct	is	simply	‘a	holy	grail	in	AI	research;	highly	desirable	but	unattainable’.15	
Sharkey	concurs	in	reckoning	that	developing	the	required	independent	intelligence	will	‘remain	
science	fiction	–	at	least	for	the	next	one	hundred	years	and	maybe	always’.16	This	thesis’	technical	
review	is	generally	framed	by	citing	Moravec's	paradox17	and	the	challenging	links	that	exists	
between	a	weapon’s	low-level	sensor-motor	skills,	the	requirement	for	disproportionate	
computational	resources	and	the	ensuing	fragility	that	this	entails.18	The	relevant	context	is	that	
‘[i]t	is	comparatively	easy	to	make	computers	exhibit	adult	level	performance	on	intelligence	tests	
or	playing	checkers,	and	difficult	or	impossible’	concludes	Moravec	‘to	give	them	the	skills	of	a	one-
year-old	when	it	comes	to	perception	and	mobility’.19	The	same	context	is	noted	by	Pinker:	‘The	
mental	abilities	of	a	four-year-old	that	we	take	for	granted	–	recognizing	a	face,	lifting	a	pencil,	
walking	across	a	room,	answering	a	question	–	are	in	fact	solve	some	of	the	hardest	engineering	
problems	ever	conceived’.20	It	recently	took	Berkeley	University’s	towel-folding	robot	more	than	
ten	hours	to	replicate	the	human	folding	of	just	twenty-five	towels.21	This	wetware	issue	is	common	
to	AWS	and	arises	from	‘complexity	layering’.22	Independent	weapons	must	be	reliably	capable	of	
actioning	known	tasks	and	known	unknown	tasks	but	must	also	have	routines	immediately	
available	to	process	and	derive	actions	from	unknown	unknown	tasks.	Various	factors	require	
emphasis	in	this	introduction.	Technical	delineation	between	subject	matters	in	chapters	Six	
through	Nine	(Wetware,	Firmware,	Software	and	Hardware)	is	not	clear-cut;	after	all	(and	as	
inferred	from	Nwana),	the	role	of	software	components	throughout	AWS	operation	is	pervasive.23	
Finally	to	this	point,	the	chapters	are	intended	to	plot	a	likely	but	not	definite	set	of	weapon	
architectures	and	do	so	from	a	deliberately	behavioural	rather	than	technical	perspective:	the	

																																																								
coordinate	learning	and	cognition,	biologists	for	adaption	strategies,	engineers	for	control	routines,	logisticians,	
roboticists,	electrical	specialists,	behaviorists,	politicians,	NGOs,	sociologists,	lawyers,	company	directors,	weaponists,	
military	tacticians,	politicians,	civil	servants	and	diplomats,	manufacturers,	professionals	involved	in	miniaturization,	
simulation,	configuration,	coding,	power	supply	and	modularity,	specialists	in	sensors,	in	distributed	and	decentralized	
routines,	ethicists,	specialists	in	tooling	and	calibration.	See	also:	6.3	(‘The	Delivery	Cohort’). 
15	Krishnan,	Killer	Robots,	UG479.K75,	(UK:	Ashgate	Publishing,	2009),	p.	48.	
16	Human	Rights	Watch,	‘Losing	Humanity’,	p.	29.	
17	Kelly	Clancy,	‘A	Computer	to	Rival	the	Brain’,	New	Yorker	Magazine,	15	February	2017,	para.	2	of	9	
<http://www.newyorker.com/tech/elements/a-computer-to-rival-the-brain>	[accessed	16	August	2017].	For	a	
discussion	of	the	Paradox,	see:	introduction	to	Chapter	9	(Hardware).	
18	Sally	Doherty,	‘Narrow	versus	General	AI	–	Is	Moravec’s	Paradox	still	relevant?’,	Graphcore	Magazine,	January	2017,	
para.	4	of	7	<https://www.graphcore.ai/posts/is-moravecs-paradox-still-relevant-for-ai-today>	[accessed	16	August	
2017].		
19	Hans	Moravec,	Mind	Children,	(USA:	Harvard	University	Press,	1988),	generally.		
20	Steven	Pinker,	The	Language	Instinct,	(USA:	William	Morrow,	1994),	p.	191	
<http://www.unc.edu/~moeng/teaching/Pinker%20-%20Language%20Instinct.pdf>.	
21	Elizabeth	Kolbert,	‘Our	Automated	Future’,	The	New	Yorker	Magazine,	19	December	2016,	p.	7.	
22	Aiciel	blog,	‘Does	Using	Machine	Learning	Mean	More	Layers	of	Complexity	in	Scientific	Study?’,	undated,	paras.	3-6	of	
12	<https://aicial.com/blog/does-using-machine-learning-mean-dealing-with-more-layers-of-complexity-in-scientific-
study>	[accessed	3	March	2017].	
23	Hyacinth	Nwana,	‘Software	Agents:	An	Overview’,	Knowledge	Engineering	Review,	II,	3,	(October	1996),	pp.	205-208.	
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sections	are	about	concepts,	abstracts	and	structures	rather	than	coding	lines	and	detailed	
composition.24	
	

Further	narrative	is	useful	to	frame	this	chapter.	As	noted	by	Parloff,	developments	in	multi-
layer	neural	networks	has	transformed	the	field	of	AI.25	These	advances	are	relatively	new	(Parloff	
cites	2011	as	the	relevant	turning	point)	and	have	been	occasioned	by,	first,	progress	in	fast	
hardware	graphics	processor	units	(GPUs)26	allowing	the	training	of	larger	and	much	deeper	
networks27	and,	second,	by	very	large	labelled	datasets	available	at	the	time	of	writing	as	training	
test	beds.	It	is	their	combination,	notes	Wang	and	colleagues,	that	has	permitted	recent	progress	in	
Deep	Learning	(DL)	on	deep	neural	networks	(DNN).28	Their	relevance	to	AWS	deployment	is	that	
deep-learning	processes	attempt	to	mimic	human	brain	activity,	specifically	the	neuron	layers	of	
the	human	neo-cortex,	the	‘crinkly	eighty	per	cent	of	the	brain’,	cites	Hof,	where	human	thinking	
takes	place.29	The	issue	for	this	chapter	is	that	AWS’	various	deployment	models	(the	use	of	
software	learning	to	leverage	patterns	in	digital	representations	of	sounds,	images	and	other	data)	
is	easily	stated	but	very	complex	to	effect.	Given	also	that	DL	methods	already	outdo	humans	in	
certain	types	of	image	recognition,	language	recognition	and	game	playing,	it	is	this	thesis’	
assumption	that	DL	represents	an	inflexion	point	in	AI.30	As	inferred	from	Ackerman’s	work	on	
autonomous	driving,	it	is	advances	in	reinforcement	learning,	in	graphical	and	probabilistic	
modeling	(as	well	as	in	file	manipulation	enabling	machine	training	to	be	undertaken	with	
materially	smaller	data	sets)	that	support	a	premise	that	DL	has	reached	a	pivot-point	whereby	the	
technology	might	now	be	a	relevant	foundation	for	weapon	autonomy.31	It	is	the	jump,	however,	
between	DL’s	place	within	AI	and	that	same	facility	being	a	determinant	for	removing	weapon	
supervision	that	occupies	much	of	the	following	technical	analysis.	In	challenging	this	link,	O’Neil,	
author	of	Weapons	of	Math	Destruction,	notes	that	‘some	call	this	form	of	capability	“artificial	
narrow	intelligence”	but	here	the	word	“intelligent”	is	being	used	much	as	Facebook	uses	“Friend”	

																																																								
24	See:	Richard	Taylor,	‘Software	architecture:	Foundations,	theory	and	practice’,	School	of	Information	and	Computer	
Science,	UCal	at	Irvine,	(October	1999)	<https://www.ics.uci.edu/~taylor/Architecture.pdf>.	
25	Roger	Parloff,	‘Why	Deep	Learning	is	suddenly	changing	your	life:	Decades-old	discoveries	are	now	electrifying	the	
computing	industry’,	Fortune,	28	September	2016,	paras.	1-5	<http://fortune.com/ai-artificial-intelligence-deep-
machine-learning/>	[accessed	12	August	2017].	
26	H	Mujtaba,	‘NVIDIA	Pascal	shatters	3	GHz	GPU	frequency	record	–highest	clock	speed	ever	recorded	on	a	graphics	
chip’,	WCCFTech,	(18	December	2016),	paras.	4-7	<http://wccftech.com/nvidia-pascal-gpu-frequency-world-record-3-
ghz/>)	[accessed	18	August	2017].	
27	Ang	Li,	‘GPU	performance	Models	and	Optimization’,	Technische	Universiteit	Eindoven,	(18	October	2016),	pp.	vii-viii	
(‘Abstract’)	<https://pure.tue.nl/ws/files/39759895/20161018_Li.pdf>.	
28	Linnan	Wang	and	others,	‘SuperNeurons:	Dynamic	GPU	Memory	Management	for	Training	Deep	Neural	Networks’,	
Proceedings	of	23rd	ACM	Symposium	on	Parallel	Programming,	(2018),	pp.	1-3	<https://arxiv.org/pdf/1801.04380.pdf>.	
For	a	useful	discussion	on	developments	in	military	AI,	see:	JASON	program,	‘Perspectives	on	research	in	artificial	
intelligence	and	artificial	general	intelligence	relevant	to	DoD’,	US	Department	of	Defense,	JSR-16-Task-003,	(January	
2017),	pp.	1-5.	
29	Robert	Hof,	‘Deep	Learning:	with	the	massive	amounts	of	computational	power,	Machines	can	now	recognise	objects	
and	translate	speech	in	real	time.	Artificial	intelligence	is	finally	getting	smart’,	TechnologyReview.com,	(June	2016),	
paras.	3-4	<https://www.technologyreview.com/s/513696/deep-learning/>	[accessed	16	August	2017].	
30	Brenden	Lake	and	others,	‘Building	Machines	that	Learn	and	Think	Like	People’,	Behavioural	and	Brain	Sciences,	
(2016),	pp.	6-8,	(‘Cognitive	and	Neural	Inspiration	in	Artificial	Intelligence’)	<https://arxiv.org/pdf/1604.00289.pdf>.	
See	also:	Robert	Hof,	‘Deep	Learning’,	para.	5.	
31	E	Ackerman,	‘How	Drive	AI	is	mastering	autonomous	driving	with	deep	learning’,	IEEE	Spectrum,	(11	March	2017),	
paras.	1-3	<http://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-
autonomous-driving-with-deep-learning>	[accessed	24	August	2017].	
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to	imply	something	safe	and	better	understood	than	it	is.	Why?	Because	the	machine	has	no	context	
for	what	it’s	doing	and	can’t	do	anything	else…	We	might	as	well	call	an	oil	derrick	or	an	aphid	
intelligent’.32	It	is	this	dichotomy	that	forms	the	basis	for	this	thesis’	next	three	chapters.		

	
Given	such	divergence,	additional	context	is	relevant.	The	role	of	DL	in	AWS	deployment	might,	

after	all,	be	‘just	an	aggressive	system	of	statistics’	and,	suggests	Asaro,	merely	similar	to	other	uses	
of	arithmetical	logic	in	battlefield	engagements.33	In	considering	the	link	between	DL	and	compliant	
deployment	of	AWS,	the	US	Department	of	Defense’s	recent	JASON	programme	also	notes	caution34:	
‘DNN	are	function	approximators	that	perform	in	a	very	high	dimensional	space.	The	manifolds	
whose	shape	and	extent	they	are	attempting	to	approximate	are	almost	unknowably	intricate,	
leading	to	failure	modes	for	which	currently	there	is	very	little	human	intuition	and	even	less	
established	engineering	practice’.35	As	a	basis	to	this	thesis’	technical	analysis,	this	is	a	key	
observation	from	which	two	vectors	arise.	First,	it	is	necessary	to	explain	why	an	approximate	
answer	is	not	good	enough	for	the	purposes	envisaged	for	unsupervised	weapons.36	The	previous	
chapter’s	analysis	of	deployment	challenges	identifies	predictability	and	robustness	as	key	weapon	
requirements	if	AWS	deployment	is	to	be	compliant	under	LOAC.37	Second,	while	breakout	
technologies	may	promise	disruption	through	a	‘golden	age	of	AI’38,	it	is	necessary	to	underline	that	
progress	in	AI	is	fundamentally	different	from	advances	in	Artificial	General	Intelligence	(AGI).	As	
discussed	in	this	chapter’s	following	sections,	it	is	AGI	and	the	advent	of	genuinely	general	cognitive	
abilities	that	comprise	those	capabilities	required	for	human	supervision	to	be	removed	from	lethal	
engagements.39	In	this	vein,	the	overarching	context	is	provided	by	Stanford	University’s	
Department	of	Computer	Science	that	that	‘there	are	no	present	signs	of	any	corresponding	
revolution	in	AGI’.40	Its	2015	report,	Artificial	Intelligence	and	Life	in	2030,	concludes	that	‘no	
machines	with	self-sustaining	long-term	goals	and	intent	have	been	developed,	nor	are	they	likely	
to	be	developed	in	the	near	future’.41	

																																																								
32	Cathy	O’Neil,	cit.	Andrew	Smith,	‘Franken-algorithms:	the	deadly	consequences	of	unpredictable	code’,	The	Guardian,	
30	August	2018	<https://www.theguardian.com/technology/2018/aug/29/coding-algorithms-frankenalgos-program-
danger>	[accessed	12	September	2018].		
33	Peter	Asaro,	see:	<http://www.peterasaro.org>	in	conversation	with	the	author,	UN	CCW	GGE	Meeting,	16	November	
2017.		
34	Federation	of	American	Scientists,	Fas.org	<https://fas.org/irp/agency/dod/jason/>	[accessed	3	May	2017].		
35	JASON	program,	p.	2.	
36	Ibid.	The	JASON	Study	was	sponsored	by	the	Assistant	Secretary	of	Defence	for	Research	and	Engineering	within	the	
DoD.		
37	See:	Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Combat’).	
38	Dom	Gohd,	‘Amazon’s	CEO	Says	We’re	Living	in	the	Golden	Age	of	AI’,	Futurism,	(9	May	2017)	
<https://futurism.com/amazons-ceo-says-were-living-in-the-golden-age-of-ai/>	[accessed	12	October	2017].	
39	See:	Chapter	8	(Software),	specifically:	(‘Value	Setting	and	Anchoring’).	See	also:	Cassio	Pennachin	and	Ben	Goertzel,	
Contemporary	Approaches	to	Artificial	General	Intelligence,	(USA:	AGIRI,	Springer	Publishing,	XVI,	2007),	p.	509.	
40	Source:	Stanford	University	<https://ai100.stanford.edu>	and,	for	an	executive	summary	of	the	Stanford	University	
report	on	the	future	of	AI,	see:	Stanford	University	<https://ai100.stanford.edu/2016-report/executive-summary>	
[accessed	3	March	2017].	
41	Stanford	University,	‘Artificial	Intelligence	and	Life	in	2030’,	2015	study	panel,	(June	2016)	
<https://ai100.stanford.edu>	[accessed	4	March	2017].	For	a	useful	discussion	on	long-term	planning	considerations,	
see:	D	Stojkovic	and	B	Dahn,	‘Methodology	for	long-term	Defence	Policy’,	Norwegian	Defence	Research	Establishment,	
(28	February	2007)	<http://www.ffi.no/no/Rapporter/07-00600.pdf>.	
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 Software ‘versus’ intelligence 
	
While	this	thesis	refers	throughout	to	the	term	AI,	this	distinction	between	AI	and	AGI	in	AWS	
deployment	is	therefore	key.	The	International	Panel	on	the	Regulation	of	Autonomous	Weapons	
(IPRAW)	even	suggests	that	the	umbrella	term	of	AI	as	applied	to	AWS	should	‘be	used	with	
prudence	and	parsimony’.42	The	terms	AI	and	ML	imply	a	deeper	meaning	behind	what	are,	after	
all,	statistical	methods,	leading,	notes	Angelov	and	Sperduti,	to	the	false	impression	of	intention	and	
purpose.43	For	this	reason,	Burgess	therefore	prefers	the	umbrella	term	‘computational	methods’.44	
As	inferred	from	Kruchtren,	even	the	most	sophisticated	range	expansion	of	battlefield	tasks45	(as	
undertaken	by	AI	routines)	does	not	approach	even	the	most	basic	representation	of	artificial	
general	intelligence.46	Indeed,	Yampolskiy	and	Fox	note	that	popular	demarcation	between	AI,	AGI	
and	‘enhanced’	software	is	inappropriately	imprecise.47	For	the	purposes	of	this	thesis,	AI	refers	
just	to	computational	methods	that	have	more	generally	applicable	problem-solving	capacities	than	
conventional	software.	This	falls	considerably	short	of	Muehlhauser’s	definition	of	AGI	which,	
adopted	by	this	thesis,	is	‘the	ability	to	achieve	complex	goals	in	complex	environments	with	limited	
computational	resources’.48	The	assumed	trajectory,	after	all,	for	weapon	processes	is	one	of	
seamless	progression	(mirroring,	for	instance,	the	same	timeline	that	Deloitte	conjectures	in	
business	applications)	from	rules-specific	conventional	software	to	machine-learning	AI	to	
independent	and	then	sentient	AGI.49	It	is	this	promise	of	software	(that	it	can	learn	on	its	own	to	
do	new	tasks)	which	then	provides	the	catalyst	for	weapon	models	where	human	can	be	moved	
out-of-the-loop.50	Its	theoretical	attractions	are	that	such	systems	may	learn	and	plan	and,	
importantly,	do	so	in	a	powerful	and	robustly	cross-domain	manner.		
	

In	line	with	Braga	and	Logan,	a	purpose	of	this	section	is	to	evidence	that	AI	capability	does	not	
presage	machine	cognition,	sentience	or	reasoning.51	As	noted	by	Yampolskiy,	while	AI	is	orientated	

																																																								
42	International	Panel	on	the	Regulation	of	Autonomous	Weapons	(IPRAW),	‘Executive	Summary	Number	2’,	
Computational	Systems	in	the	Context	of	Autonomous	Weapon	Systems,	November	2017,	generally	<https://www.swp-
berlin.org/en/projects/international-panel-on-the-regulation-of-autonomous-weapons-ipraw/>	[accessed	17	August	
2017].	
43	Plamen	Angelov	and	Alessandro	Sperduti,	‘Challenges	in	Machine	Learning’,	European	Symposium	on	Artificial	Neural	
Networks	ESANN,	(2016),	pp.	490-491	
<https://pdfs.semanticscholar.org/4e9a/7debe3df64e0bd8e861f7680dc6aa42ab954.pdf>.	
44	Matt	Burgess,	‘Killer	Autonomous	Weapons	are	coming,	but	they’re	not	here	yet’,	Wired	magazine,	Technical	opinion,	
12	August	2017,	paras.	4	and	6	of	10	<http://www.wired.co.uk/article/killer-robots-elon-musk-autonomous-weapon-
systems-uk>	[accessed	2	November	2017].		
45 Philippe	Kruchtren	and	others,	‘Technical	Debt:	From	Metaphor	to	Theory	and	Practice’,	IEEE	Software,	University	of	
British	Columbia,	(2012)	<https://www.computer.org/csdl/mags/so/2012/06/mso2012060018.pdf>. 
46	Nick	Bostrom,	Superintelligence;	Paths,	dangers,	strategies,	p.	151.	
47	For	a	general	discussion,	see:	Ibid.,	pp.	16-23.	Also:	Roman	Yampolskiy	and	Joshua	Fox,	‘AI	versus	AGI’,	(Singularity	
Hypotheses,	Springer,	Berlin,	2012),	pp.	130-131	<https://intelligence.org/files/AGI-HMM.pdf>.	
48	Luke	Muehlhauser,	‘What	is	AGI?’,	MIRI	Machine	Intelligence	Research	Institute,	(11	August	2013)	
<https://intelligence.org/2013/08/11/what-is-agi/>	[accessed	2	February	2017].		
49	Deloitte,	‘Artificial	Intelligence	Innovation	Report’,	Deloitte	Innovation,	(2016),	p.	2	
<https://www2.deloitte.com/content/dam/Deloitte/at/Documents/human-capital/artificial-intelligence-innovation-
report.pdf>.		
50	See,	generally:	Chapter	4	(Deployment).	
51	Adriana	Braga	and	Robert	Logan,	‘The	Emperor	of	Strong	AI	Has	No	Clothes:	Limits	to	Artificial	Intelligence’,	
Information,	8,	156,	(2017),	pp.	1-3	and	generally.	The	intelligent	decision-making	of	such	machines,	notes	Dr	Hongbo	
Du,	fundamentally	consists	of	a	function	sequence	comprised	largely	of	pre-processing	of	input	data,	extraction	of	useful	
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towards	specific	tasks,	this	is	considerably	removed	from	the	general	cognitive	abilities	that	are	
assumed	for	AGI.52	Some	context	is	useful	on	this	point.53	The	US	Military’s	JASON	programme	
concludes	that	‘on	account	of	this	ambitious	goal,	AGI	has	a	high	visibility,	disproportionate	to	its	
size	and	present	level	of	success,	among	futurists,	science	fiction	writers,	and	the	public’.54	In	this	
vein,	Proctor	coins	the	term	‘agnotology’	to	describe	the	study	of	the	‘cultural	production	of	
ignorance	and	its	effect	on	both	individual	and	collective	decision-making	processes.’55	This	is	
analogous	to	Sabin’s	‘Revolution	in	Expectation’.56	Public	embrace	of	AI	and	AGI	is	also	promoted	by	
what	Tamburrini	terms	a	‘temporal	framing	mechanism’	where	there	is	common	misunderstanding	
on	timescales	around	necessary	technological	development.57	This	arises	in	part	from	a	failure	to	
convey	clearly	the	distinction	between	long-term	and	visionary	research	goals	versus	expected	
short-term	outcomes	from	such	research.	In	considering	AGI,	the	implausibility	of	this	is	evidenced	
by	the	work	of	Grace	and	colleagues	and	their	clear	demonstration	of	the	dispersion	in	expectations	
about	AGI’s	arrival;	in	collating	evidence	on	timelines	from	experts	in	this	field,	Grace	finds,	for	
instance,	that	Asian	communities	forecast	high-level	machine	intelligence	(HLMI)	a	telling	forty-
four	years	earlier	than	their	US	counterparts.58	
	

Four	characteristics	should	be	assumed	for	independent	weapon	platforms	that	are	to	operate	
without	human	oversight.59	The	autonomous	weapon	should	be	independent.	It	should	be	capable	
of	intrinsic	and	robust	analysis	based	on	comprehensive	data	and	able	to	operate	without	
supervision	based	on	this	data.	The	weapon	must	then	have	a	capacity	to	deduce	and	decide	
courses	of	action	driven	by	this	data.	The	machine	must	also	be	‘aware’	of	its	surroundings	and,	
based	on	data	analysis,	will	be	able	to	carry	out	tasks	that	prioritise	mission	performance	rather	

																																																								
features	from	that	input	data	stream	and	then	a	decision-making	or	classification	routine	concerning	the	input	stimuli:	
‘Such	sequential	structure	of	these	systems	means	that	any	small	error	in	its	early	stages	will	propagate	into	larger	
errors	as	the	stages	unfold.	The	more	complex	is	the	processing	function,	the	more	probable	of	such	error	occurrence’.	
Here,	Du	notes	that	self-correction	of	such	errors	is	challenging	given	that	each	discrete	stage	is	handling	a	different	
type	of	‘sub-problem’.	Initiatives	to	combine	neural	networks	in	order	to	merge	such	stages	into	‘an	end-to-end	solution’		
confound	attempts	then	to	explain	how	and	where	these	errors	are	corrected.	It	is,	notes	Du,	‘premature	to	even	
conclude	that	such	an	architecture	will	overcome	this	problem	at	all’.	Source:	Dr	Hongbo	Du,	School	of	Computer	
Science,	Buckingham	University,	in	conversation	with	the	author,	January	2019.		
52	Roman	Yampolskiy	and	Joshua	Fox,	‘Artificial	General	Intelligence	and	the	human	mental	model’,	Machine	
International	Research	Institute,	(2012),	p.	7	<https://intelligence.org/files/AGI-HMM.pdf>.	
53	See:	Dave	Michels,	‘AI	Heading	Back	to	the	Trough:	Expectations	Over	Artificial	Intelligence	are	Becoming	Too	
Inflated’,	Networld	World,	(11	July	2017)	<https://www.networkworld.com/article/3206313/internet-of-things/ai-
heading-back-to-the-trough.html>	[accessed	12	March	2018].	
54	JASON	program,	p.	1.	See	also:	Richard	Potember,	‘Perspectives	on	Research	in	Artificial	Intelligence	and	Artificial	
General	Intelligence	Relevant	to	DoD’,	US	Department	of	Defense	Publications,	JRR-16-Task-003,	p.	2	and	pp.	28-32	(‘Why	
the	“Ilities”	may	be	intrinsically	hard	for	Machine	Learning’)	<https://fas.org/irp/agency/dod/jason/ai-dod.pdf>.	The	
‘ilities’	here	refer	to	‘reliability,	maintainability,	accountability,	verifiability,	evolvability	and	attackability’.	Potember	in	
this	case	concludes	that	‘ML	is	weak	on	the	“ilities”’.	
55	Robert	Proctor,	‘A	missing	term	to	describe	the	cultural	production	of	ignorance’,	in	Proctor	and	Schiebinger,	eds.,	
Agnotology:	The	making	and	unmaking	of	Ignorance,	(USA:	Stanford	University	Press,	2008),	p.	1.		
56	Professor	Philip	Sabin,	Professor	of	Strategic	Studies	at	KCL,	in	conversation	with	the	author,	29	June	2017.	
57 Guglielmo	Tamburrini,	‘On	banning	autonomous	weapon	systems:	From	deontological	to	wide	consequentialist	
reasons’,	cit.	Bhuta	and	others,	p.	134. 
58	Katja	Grace	and	others,	‘When	Will	AI	Exceed	Human	Performance?		Evidence	from	AI	Experts’,	arXiv	preprint	arXiv:	
1705:08807,	(2017),	pp.	3-4	and	generally	<https://arxiv.org/pdf/1705.08807.pdf>.	
59	The	analysis	of	AWS	system	fundamentals	is	then	relevant	to	this	thesis’	review	of	firmware	(chapter	7),	software	
(Chapter	8)	and	hardware	(Chapter	9).		
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than	simpler	mission	execution.60	Macdonald	suggests	that	it	will	be	the	combination	of	these	two	
characteristics	that	provides	AWS	with	elements	of	sentience	and	self-awareness	based	on	system	
sensing,	system	perceiving	and	self-learning.61	A	third	tenet	that	requires	restatement	is	that	the	
AWS	must	still	obey	the	same	physical	laws	that	govern	all	the	physical	polities:	It	cannot	change	
shape	and	size	arbitrarily,	it	must	use	the	effectors	to	move	itself	around	based	on	reason-based	
rules,	it	requires	an	energy	source	to	think,	sense	and	move,	and	when	moving,	it	will	take	time	to	
speed	up	and	slow	down.62	A	final	characteristic	relates	to	its	internal	models	of	the	world.	In	order	
for	such	unsupervised	weapons	to	be	battlefield-ready,	units	must	rely	upon	and	be	able	to	
manipulate	and	search	through	broad	possible	solutions	that	are	based	on	these	statistical	and	logic	
models.63	AWS’	performance	must,	after	all,	be	based	upon	its	ability	to	solve	problems	by	referring	
first	to	internal	current	models	and	then	to	the	dynamic	updating	of	these	models.	A	constraint	to	
emerge	is	thus	the	balancing	between	model	and	sensed	data,	a	set	of	processes	that,	in	large	
measure,	will	determine	AWS	feasibility	once	deployed.64		

	
The	issue	for	this	review	is	therefore	the	extent	of	the	platform’s	tasking	and	the	correlation	

between	the	weapon’s	empirical	competences	and	that	tasking.	In	order	to	understand	whether	a	
weapon	might	act	outside	the	boundaries	of	that	initial	tasking,	it	is	necessary	first	to	understand	
the	basis	of	such	autonomous	capabilities.65	In	this	vein,	Chalmers	defines	machine-autonomy	as	
the	faculty	‘to	discriminate,	characterise	and	react	to	environmental	stimuli;	the	integration	of	
information	by	a	cognitive	system;	the	reportability	of	mental	states;	the	focus	of	attention	and	
deliberate	control	of	behaviour’.66	Extending	this	to	the	battlefield,	a	deduction	(also	inferred	from	
Kaspersen)	must	be	that	compliant	removal	of	weapon	supervision	requires	more	than	rules-based	
routines.67	While	Chalmers’	characterization	might	depict	a	high-level	model	of	a	weapons	
platform,	the	parallel	still	ignores	important	deficiencies	facing	weapons-directing	architecture,	
principally	the	absence	of	‘qualia’	(the	feel	of	precepts),	the	concept	of	learned	experience	and,	
literally,	the	requirement	in	independent	weapons	of	‘phenomenal	consciousness’.68	It	is	these	
tenets	that	define	the	scope	of	subsequent	chapters.	They	also	inform	this	thesis’	conjecture	that	

																																																								
60	For	the	avoidance	of	doubt,	the	terms	‘weapon’,	‘machine’	and	‘platform’	often	refer	throughout	this	analysis	to	a	
deployed	autonomous	weapon	system	(AWS).		
61	Fiona	MacDonald,	‘A	robot	has	just	passed	a	classic	self-awareness	test	for	the	first	time’,	Science	Alert,	(17	July	2015),	
paras.	2-4	of	13	<https://www.sciencealert.com/a-robot-has-just-passed-a-classic-self-awareness-test-for-the-first-
time>	[accessed	3	February	2016].		
62	Vincent	Boulanin	and	Maaike	Verbruggen,	‘Mapping	the	development	of	autonomy	in	weapon	systems’,	SIPRI,	
(November	2017),	pp.	7-11	(‘Unravelling	the	machinery’)	<https://www.sipri.org/sites/default/files/2017-
11/siprireport_mapping_the_development_of_autonomy_in_weapon_systems_1117_0.pdf>.	
63	Bernard	Marr,	‘What	is	the	Difference	between	Artificial	Intelligence	and	Machine	Learning?’,	Forbes	Magazine,	
Technology,	6	December	2016	<https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-
between-artificial-intelligence-and-machine-learning/#1a4e99432742>	[accessed	14	October	2017].		
64	See	Chapter	7	(Software),	specifically:	8.5	(‘Anchoring	and	gaol-setting	issues’).		
65	It	is	noteworthy	that	States	comprising	the	Group	of	Government	Experts	(GGE)	at	the	UN’s	CCW	have	not	yet	agreed	
on	a	definition	of	what	constitutes	an	AWS	after	meeting	annually	since	2014.	
66	See,	generally:	Nick	Bostrom,	Superintelligence,	pp.	200-219.	
67	Anja	Kaspersen,	‘We’re	on	the	brink	of	an	artificial	intelligence	arms	race.	But	we	can	curb	it’,	World	Economic	Forum,	
(15	June	2016),	paras.	7-9	of	41	<https://www.weforum.org/agenda/2016/06/should-we-embrace-the-rise-of-killer-
robots/>	[accessed	18	August	2017].		
68	Pentti	Haikonnen,	The	cognitive	approach	to	conscious	machines,	(UK:	Imprint	academic,	2003),	p.	145.	
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the	prerequisite	of	workable	AGI	is	a	key	constraint	to	removing	human	supervision.69	Here,	Lu	and	
Gamez	also	challenge	the	elided	claim	that	machine	intelligence	equates	to	machine	
consciousness.70	Rossi,	member	of	IBM’s	AI	Ethics	Committee,	dismisses	here	the	notion	that	
machines	will	‘one	day	wake	up	and	change	their	minds	about	what	they	will	do’.71	This	argument	
has	been	used	by	the	British	Foreign	Office	to	underpin	its	opposition	in	the	UN’s	CCW	to	statutory	
controls	over	AWS	deployment.72	In	this	case,	Empty	hangar	syndrome	suggests	that	certain	
scenarios	are	too	far-fetched	to	warrant	current	consideration	or	statutory	documentation	and	
unrealistic,	in	this	case,	for	a	commander	to	wander	into	the	weapons	hanger	to	find	that	his	AWS	
has	decided	under	its	own	volition	to	depart	unexpectedly	on	an	unsupervised	mission.73	The	
inference	relevant	is	that	human	engagement	must	always	remain	fundamental	in	weapon	use.		

 Architectural approaches to AWS deployment 
	
A	pervasive	challenge	for	compliant	deployment	of	autonomous	weapons,	identified	by	Melli,	is	the	
quantity	of	components,	routines	and	techniques	that	must	reliably	be	in	place	to	realise	this	
state.74	This	evidences	a	broad	architectural	conundrum	in	AWS	deployment.75	Failures	anywhere	
in	this	sequence	will	likely	impact	weapon	performance	in	a	material	(perhaps	catastrophic)	
manner	and,	central	to	this	thesis,	prejudice	that	weapon’s	legal	compliance.76	This	section’s	
purpose	is	to	demonstrate	that	none	of	the	architectures	envisaged	to	remove	human	oversight	is	
straightforward.77	A	common	starting	point	is	the	human	mind	as	it	is	this	that	must	be	substituted	
by	machine	processes	in	AWS.	A	recent	estimate	for	the	human	brain	is	that	the	cerebral	cortex	
contains	some	thirty	billion	neurons	in	the	part	of	the	brain	associated	with	consciousness	and	
intelligence.	Those	neurons	in	turn	contain	some	one	thousand	trillion	synapses,	the	connections	

																																																								
69	Economist	Magazine	Special	Report,	‘Artificial	intelligence:	From	not	working	to	neural	networking’,	Economist,	25	
June-1	July	2016,	p.	13.	
70	See,	for	instance:	Clara	Lu,	‘Why	We	are	Still	Light	Years	Away	from	Full	Artificial	Intelligence’,	TechCrunch,	(2016),	
generally	<https://techcrunch.com/2016/12/14/why-we-are-still-light-years-away-from-full-artificial-intelligence/>	
[accessed	5	March	2018].	Although	written	in	2008,	see	also:	David	Gamez,	‘Progress	in	Machine	Consciousness’,	
Consciousness	and	Cognition,	17.2,	(2008),	pp.	12-16	(‘Criticism	of	Machine	Consciousness:	Hard	problems	of	
consciousness’)	<http://davidgamez.eu/papers/Gamez07_ProgressMachineConsciousness.pdf>.	
71	Source:	Francesca	Rossi,	IBM’s	AI	Ethics	committee,	cit.	Economist,	‘Artificial	intelligence’,	pp.	13-15.	
72	Until	publication	in	August	2018	of	‘Human	Machine	Touchpoints:	The	United	Kingdom’s	perspective	on	human	
control	over	weapon	development	and	targeting	cycles’,	the	Foreign	Office	had	adopted	a	broadly	negative	negotiating	
position	in	discussions	on	banning	weapons	autonomy	at	the	UN’s	Convention	for	Conventional	Weapons,	2014-2017.	
See:	United	Nations	Office	at	Geneva,	(8	August	2018)	
<https://www.unog.ch/80256EDD006B8954/(httpAssets)/050CF806D90934F5C12582E5002EB800/$file/2018_GGE
+LAWS_August_WP_UK.pdf>.	
73	The	concept	is	discussed	in	Chapter	11	(Conclusion).		
74	A	useful	primer	is	provided	in	Roberto	Melli,	‘Artificial	Intelligence	in	Component	Design’,	Exergy	(sic);	energy	system	
analysis	and	optimization,	III	<http://www.eolss.net/sample-chapters/c08/E3-19-04-04.pdf>.		
75	Vera	Lucia	Menezes	de	Oliveira	and	others,	‘The	Complex	Nature	of	Autonomy’,	Delta	Online,	(2008),	pp.	442-445	and	
pp.	445-449 <http://www.scielo.br/pdf/delta/v24nspe/04.pdf>.		
76	See:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).	
77	US	Air	Force,	Office	of	the	Chief	Scientist,	‘Autonomous	horizons;	System	autonomy	in	the	Air	Force	–	a	path	to	the	
future	–	human-autonomy	teaming’,	AF/ST	TR,	15-01	(June	2015),	p.	4.	See	also:	Isabelle	Guyon	and	others,	Active	
Learning	Challenge:	Challenges	in	Machine	Learning,	Volume	6,	(USA:	Microtome	Publishing,	2012),	generally	
<http://www.mtome.com/Publications/CiML/CiML-v6-book.pdf>.	
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between	neurons.78	While	it	might	appear	feasible	for	a	machine	eventually	to	‘copy’	that	mind,	
Epsten	disagrees	and	notes	that	the	infant	brain	neither	arrives	with	nor	subsequently	develops	
‘lexicons,	representations,	algorithms,	programmes,	processors,	subroutines,	encoders	or	buffers’.79	
Unlike	idealized	connections	that	are	typical	of	an	artificial	neural	network,	human	synapses	are	
particularly	variable	in	nature	based	upon	different	and	quite	undifferentiated	neurotransmitters	
with	different	cycle	times.80	Information	data	in	the	human	brain,	more	than	a	megabyte	for	each	
connection	that	is	being	generated	by	each	synapse,	is	being	processed	in	real	time	within	each	
synapse	cycle,	itself	more	than	one	thousand	bursts	per	second.81	How	can	this	magnitude	best	be	
understood	in	the	context	of	machines	copying	such	a	model?	If	each	such	synapse	were	handled	by	
the	equivalent	of	only	a	single	line	of	code,	the	programme	to	simulate	a	human	cerebral	cortex	
would	be	some	twenty-five	million	times	larger	than	reputedly	the	largest	software	product	written	
to	date,	Microsoft	Windows,	which	is	estimated	to	be	some	fifty	million	lines	of	code.82	Given	
Kassan’s	conclusion	that	the	probability	of	successfully	completing	such	emulation	is	‘effectively	
zero’,	this	then	becomes	the	appropriate	marker	for	subsequent	discussion	on	creating	weapons-
directing	intelligence.83		
	

As	posited	by	Bringsford	and	Arkoudas,	there	are	different	methods	envisaged	for	AWS	
machine	intelligence	which	justify	architectural	analysis.84	Engineers	can	look	to	replicate	entirely	
the	brain,	copy	certain	characteristics	of	the	brain	or	apply	theoretical	neural	processing	in	order	to	
ape	brain	processes.	No	such	methodology	is	trivial	and,	argues	Bindi,	none	is	currently	remotely	
available.85	Less	conventional	approaches	might	instead	tackle	machine	intelligence	using	
massively	parallel	computers	in	an	effort	to	force	biological	cognition	through	superfast	iterations	
that	run,	perhaps,	genetic	algorithms.86	Reddy,	however,	notes	the	considerable	gulf	that	exists	

																																																								
78	Gerald	Edelman	and	Giulio	Tononi,	‘A	Universe	of	Consciousness:	How	Matter	Becomes	Imagination’	(cit.	Kassan,	‘AI	
gone	awry:	futile	quest	for	artificial	intelligence’,	The	Skeptics	Society	and	Skeptic	Magazine,	undated,	pp.	3-9	
<http://www.skeptic.com>	[accessed	14	September	2016).		
79	Robert	Epstein,	‘The	Empty	Brain’,	Aeon,	(18	May	2016),	generally	<https://aeon.co/essays/your-brain-does-not-
process-information-and-it-is-not-a-computer>	[accessed	6	July	2018].	Epstein’s	article	provides	a	useful	primer	on	
challenges	to	machine	emulation	of	brain	function.	
80	Doo	Seok	Jeong	and	others,	Towards	Artificial	Neurons	and	Synapses:	A	materials	point	of	view,	(RSC	Publishing,	DOI	
10.1039/c2ra22507g,	undated),	Abstract	and	generally.	
81	Helen	Philips,	‘Introduction:	The	Human	Brain’,	New	Scientist,	(4	September	2006),	generally	
<https://www.newscientist.com/article/dn9969-introduction-the-human-brain/>	[accessed	7	July	2018].	
82	Charles	Choi,	‘Too	Hard	for	Science:	Simulating	the	Human	Brain’,	Scientific	American,	(9	May	2011),	generally	
<https://blogs.scientificamerican.com/guest-blog/too-hard-for-science-simulating-the-human-brain/>	[accessed	9	July	
2018].	See	also:	Code.org,	para.	1	of	6	<https://code.org/loc>	(accessed	2	August	2017].	Also;	Cade	Metz,	‘Google	is	2	
Billion	Lines	of	Code	–	and	It’s	All	in	One	Place’,	Wired,	16	June	2015,	generally,	
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/>	[accessed	12	July	2018].	
83	Kassan,	p.	2.	
84	Selmer	Bringsford	and	Konstantine	Arkoudas,	‘The	Philosophical	Foundations	of	Artificial	Intelligence’,	Department	of	
Cognitive	Science,	RRI,	Troy	NY,	(October	2007),	pp.	2-6	<http://kryten.mm.rpi.edu/sb_ka_fai_aihand.pdf>.		
85	Tas	Bindi,	‘True	Artificial	Intelligence	cannot	be	developed	until	the	‘brain	code’	has	been	cracked’,	zdnet.com,	(9	
August	2017),	paras.	6-8	of	35	<http://www.zdnet.com/article/true-ai-cannot-be-developed-until-the-someone-
cracks-the-brain-code-starmind/>	[accessed	24	August	2017].		
86	Source:	Mathworks	<https://www.mathworks.com/discovery/genetic-algorithm.html>	[accessed	2	February	2017].	
A	genetic	algorithm	is	a	way	to	solve	optimization	problems	based	on	a	natural	selection	process	mimicking	biological	
evolution	whereby	an	algorithm	repeatedly	modifies	a	population	of	individual	solutions.	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 171 | P a g e  

 
 

between	desktop	and	in-field	applications	of	these	approaches.87	Similarly,	Bindi	focuses	on	the	
absent	qualitative	relationships	that	must	underpin	such	models	in	order	to	demonstrate	the	far-
fetchedness	of,	for	example,	expecting	computers	artificially	to	evolve	machine	intelligence	through	
a	process	of	raw	iteration.88	Schulman	and	Bostrom	concur	and	note	that	the	computational	
resources	needed	to	copy	the	relevant	evolutionary	processes	that	produced	our	own	human-level	
intelligence	‘are	severely	out	of	reach’.89	A	simple	honeybee	brain	has	some	ten-to-the-power-of-six	
neurons.90	Regardless	of	the	level	of	detail	included	in	that	simulation,	the	current	computational	
cost	of	simulating	just	a	single	neuron	suggests	that	any	approach	based	on	superfast	iteration	is	
unfeasible	even	as	a	premise	upon	which	to	remove	supervision	from	machine	actions.91	It	is	
therefore	necessary	to	look	elsewhere	for	AWS’	feasible	architecture.92			

	
How	else	then	might	appropriate	weapon	AI	be	constructed?	Most	methodologies	still	start	

with	that	human	brain	as	a	template	for	machine	intelligence.	This	might	comprise	‘whole	brain	
emulation’	(WBE)	through	meticulous	scanning	and	close	modeling	of	the	computational	structure	
of	a	biological	brain	in	order	then	to	create	a	serviceable	facsimile	in	the	independent	weapon.93	As	
above,	the	route	is	unlikely	to	be	practicable.94	Pennachin	and	Goertzel	note	that	the	process	will	
require	considerably	advanced	enabling	technologies,	not	yet	available	even	in	the	laboratory,	
including	high-throughput	scanning	detection,	automated	image	translation	and	deep	simulation	
processes.95	Nor	does	the	existence	today	of	very	simple	prototypes	constitute	proof	of	eventual	
success	in	the	endeavour.	Sharkey	highlights	a	clear	difference	between	creating	a	single	
laboratory-based	machine	with	autonomous	traits	versus	the	deployment	of	multiple	AWS	based	
on	that	same	intricate	technology.96	Instead,	the	process	will	be	dogged	by	what	Sandberg	and	
Bostrom	term	‘chaotic	dynamics’,	already	a	feature	in	test	systems	with	just	a	handful	of	neurons.97	
Mitchum	also	evidences	that	simple	mapping	of	neuron	connections	in	the	brain	does	little	to	
advance	weapons-ready	machine	intelligence.98	The	challenge,	after	all,	is	to	achieve	structural	

																																																								
87	Raj	Reddy,	‘Foundations	and	Grand	Challenges	of	Artificial	Intelligence’,	AI	Magazine,	9,	4,	(Winter	1988),	p.	8	and	pp.	
17-18.	
88	Bindi,	paras.	19-20	of	35.	
89	Carl	Shulman	and	Nick	Bostrom,	‘How	hard	is	Artificial	Intelligence?	Evolutionary	arguments	and	selection	effects’,	
Journal	of	Consciousness	Studies,	19,	7-8,	(2012),	17-18.	
90	Nick	Bostrom,	Superintelligence,	p.	24.	
91	Kurzweil	Accelerating	Intelligence,	‘IBM	simulates	530	billion	neurons,	100	trillion	synapses	on	supercomputer’	(19	
November	2012)	<http://www.kurzweilai.net/ibm-simulates-530-billon-neurons-100-trillion-synapses-on-worlds-
fastest-supercomputer>	[accessed	2	March	2017].	
92	ZH	Zhou,	‘Machine	Learning	Challenges	and	Impact:	An	interview	with	Thomas	Dietterich’,	National	Science	Review,	5,	
1,	(January	2018).	Dietterich	is	Professor	of	Computer	Science	at	Oregon	State	and	former	President	of	the	AAAI.		
93	Nick	Bostrom,	Superintelligence,	p.	29.	
94	Anders	Sandberg	and	Nick	Bostrom,	‘Feasibility	of	Whole	Brain	Emulation’,	Future	of	Humanity	Institute,	Theory	and	
Philosophy	of	Artificial	Intelligence,	SAPERE,	Berlin,	Springer,	(2013),	p.	3		
95	Cassio	Pennachin	and	Ben	Goertzel,	p.	17	and	p.	19.		
96 Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017. 
97	Sandberg	and	Bostrom,	‘Feasibility’,	p.	19.	
98	Rob	Mitchum,	‘Can	the	Connections	between	the	100	Billion	Neurons	in	the	Brain	be	Mapped?’,	Forefront,	University	
of	Chicago	Medicine,	(1	June	2018),	https://www.uchicagomedicine.org/neurosciences-articles/can-100-billion-
neurons-be-mapped>	[accessed	15	July	2018].	See	also:	The	Human	Connectome	Project,	
<http://www.humanconnectomeproject.org>	[accessed	5	March	2017].	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 172 | P a g e  

 
 

validity	as	opposed	to	just	replicative	validity.	Weapon	designers	using	this	methodology	would	
need,	for	example,	to	understand	which	synapses	may	be	excitatory	and	which	are	inhibitory.	They	
would	then	need	to	model	exactly	the	strength	of	these	connections	as	well	as	understand	the	
dynamical	properties	of	underlying	brain	subsystems.99	As	inferred	from	Frankel,	it	should	not	be	
assumed	that	WBE	models	can	scale	to	battlefield	applications.100	Cattell	and	Parker,	moreover,	
note	that	WBE	approaches	more	resemble	‘extended’	software	rather	than	any	expression	of	
machine	intelligence.101	This	is	because	code-based	artificial	neurons	act	more	as	generalized	
Boolean	logic	gates	(characterised	by	an	underlying	rules-driven	basis)102	than	actual	neurons.103	
More	fundamental	to	these	models,	it	is	insufficient	to	ascribe	single	weightings	to	each	such	
artificial	neuron	in	order	to	manage	its	threshold	or	to	each	synapse	in	order	to	reflect	a	new	signal	
strength:	As	noted	by	Seaok	Jeong,	these	linear	relationships	just	do	not	exist.104	While	a	human	
synapse	has	an	estimated	minimum	of	ten	thousand	connections	(just	to	be	able	to	undertake	this	
capability),	Kassan	highlights	that	this	is	‘at	least	six	hundred	billion	times	more	complicated	than	
any	artificial	neural	network	yet	devised’	in	the	case	of	the	whole	human	cortex.105	Finally	to	this	
point,	Sandberg	notes	the	extensive	list	of	technologies	still	outstanding	if	WBE	is	to	be	effected	
including	general	data	‘interpolation’,	geometric	‘adjustment’,	parameter	‘estimation’	as	well	as	
resolution	‘controls’.106	Again,	therefore,	it	is	necessary	to	look	elsewhere	for	a	feasible	architecture.	

There	is	no	obvious	path	to	search	as	an	inescapable	challenge	to	all	learning	models	is	that	of	
scaling.	Wolpert’s	No-Free-Lunch	theorem,	still	observed	after	two	decades107,	states	that	general-
purpose	learning	algorithms	cannot	exist	‘in	the	sense	that	for	every	learning	model	there	is	a	data	
distribution	on	which	it	will	fare	poorly	on	both	training	and	test’.108	Marsh,	in	Can	Man	Ever	Build	a	
Mind,	points	to	two	systemic	logjams	to	this	approach:	The	‘Binding	Problem’	questions	‘how	does	
all	of	this	disparate	neuronal	activity,	spread	out	in	both	time	and	space,	produces	coherent	
experience’.109	‘Von	Neuman’s	Bottleneck’	then	arises	from	the	extraordinary	electrical	

																																																								
99	Nick	Bostrom,	Superintelligence,	p.	35.	
100	Stuart	Frankel,	‘Data	Scientists	don’t	scale’,	Harvard	Business	Review,	(22	May	2015),	paras.	2	and	5-6	of	15	
<https://hbr.org/2015/05/data-scientists-dont-scale>	[accessed	12	December	2016].		
101	Rick	Cattell	and	Alice	Parker,	‘Challenges	for	Brain	Emulation:	Why	is	it	so	difficult?’,	Natural	Intelligence,	INNS,	1,	3,	
(2012),	pp.	18-19	<https://pdfs.semanticscholar.org/a0d4/71388ae0db850419c7e854e603b8198f8930.pdf>.	
102	Brighthub	Engineering	blog,	‘Logic	gates	–	the	gateways	to	intelligence	in	machines’,	(8	July	2008)	
<http://www.brighthubengineering.com/diy-electronics-devices/3349-logic-gates-the-gateways-to-intelligence-in-
machines/>	[accessed	25	October	2017].	
103	For	a	useful	overview	on	gates	and	gate	functions	see:	The	University	of	Surrey,	Department	of	Electrical	and	
Electronic	Engineering	<http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/gatesfunc/>	[accessed	2	January	
2017].	
104	Doo	Seok	Jeong	and	others,	Towards	Artificial	Neurons	and	Synapses:	A	materials	point	of	view,	DOI	
10.1039/c2ra22507g,	(USA:	RSC	Publishing,	undated),	Chapter	5	and	generally.	
105	Kassan,	p.	2.	
106	Sandberg	and	Bostrom,	‘Feasibility’,	p.	18.	
107	Leon	Fedden,	‘The	No	Free	Lunch	Theorem	(or	why	you	can’t	have	your	cake	and	eat	it)’,	Medium.com	blog,	(6	
October	2017)	<https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c>[accessed	8	January	
2018].	
108	David	Wolpert,	‘The	lack	of	distinction	between	learning	algorithms’,	Neural	Computations,	8,	7,	(1996),	1341-1390	
<http://www.mitpressjournals.org/doi/abs/10.1162/neco.1996.8.7.1341>	[accessed	23	November	2017].	
109	Henry	Marsh,	‘Can	Man	Ever	Build	a	Mind?’,	Financial	Times,	(10	January	2019),	para	9	of	24	
<https://www.ft.com/content/2e75c04a-0f43-11e9-acdc-4d9976f1533b>	[accessed	2	February	2019].	
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requirements	of	the	approach	whereby	‘an	exascale	computer,	capable	of	a	quintillion	calculations	
per	second,	scaled	up	to	the	size	of	a	human	brain,	would	consume	hundreds	of	megawatts	[of	
power]’.110	A	ramification	for	AWS	development	is	also	that	every	one	of	its	learning	models	must	
contain	restrictions	on	the	class	of	functions	that	it	can	learn	and	it	cannot	therefore	be	assumed	
that	basic	algorithms	can	be	scaled	in	AWS	deployment	without	material	performance	cost.	Bengio	
and	LeCun	demonstrate	in	this	case	that	current	scaling	approaches	to	AI	remain	very	limited.111	In	
particular,	‘kernel	methods’	that	avoid	assumptions	about	frequency	distribution	must	all	be	
founded,	observes	Copeland,	on	inappropriately	‘shallow’	architecture.112	While	learning	models	
are	considered	below113,	a	relevant	deduction	is	that	the	basis	of	trainable	coefficients	supporting	
layers	of	template	matchers	is	fundamentally	inefficient	and	incapable	of	scale.114	To	this	point,	
Bengio	and	Lecun	highlight	their	‘depth-breadth	trade-off’	and	‘curse	of	dimensionality’	and,	as	
demonstrated	by	Simonite,	architectures	become	exponentially	more	far-fetched	as	laboratory-
based	prototype	is	transitioned	to	scaled-up	emulation.115	Engineers,	moreover,	are	unlikely	to	
understand	in	advance	just	how	many	flaws	persist	in	late	beta	versions	of	their	models.116	While	
Moore’s	Law	might	be	invoked,	doubling	speed	and	capacity	does	not	technically	solve	problems	
posed	by	system	complexity.	A	second	Law,	attributed	this	time	to	Wirth,	is	perhaps	more	
relevant.117	Wirth	instead	suggests	that	‘software	gets	slower	faster	than	hardware	gets	faster’.118	
While	Moore’s	Law	suggests	that	the	personal	computer	should	be	some	hundred	thousand	times	
more	powerful	than	it	was	twenty-five	years	ago,	the	computer’s	word	processor	certainly	is	not.	
The	inference	is	that	Moore’s	law	does	not	apply	to	weapon	software.119		

																																																								
110	Henry	Marsh,	‘Can	Man	Ever	Build	a	Mind?’,	para	20	of	24.		
	
111	Yoshua	Bengio	and	Yann	LeCun,	‘Scaling	Learning	Algorithms	towards	AI’,	Large	Scale	Kernal	Machines,	MIT	Press,	
(2007),	pp.	16-18	<http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf>.	
112	Michael	Copeland,	‘What’s	the	difference	between	artificial	intelligence,	machine	learning	and	deep	learning?’,	nvidia	
blog,	(29	July	2016)	<https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-
learning-deep-learning-ai/>	[accessed	2	October	2017].	Shallow	networks	have	fewer	hidden	network	layers	(and	can	
function	with	a	single	layer)	but	require	unwieldy	multiplicity	of	data	points.	
113	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Firmware	ramifications	of	learning	methodologies’).	
114	Yoshua	Bengio	and	Yann	LeCun,	‘Scaling	Learning	Algorithms	towards	AI’,	MIT	Press,	(2007),	p.	1	(‘Abstract’),	pp.	12-
14	(‘Depth-Breadth	tradeoff’),	p.	16	ff	(‘Fundamental	limitations	of	local	learning’)	and	p.	21	ff	(‘Curse	of	dimensionality’)	
<http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf>.	
115	Tom	Simonite,	‘Thinking	in	Silicon’,	MIT	Technology	Review,	(December	2013)	
<https://www.technologyreview.com/s/522476/thinking-in-silicon/>	[accessed	15	March	2017].		
116	Source:	Wikipedia,	‘List	of	unsolved	problems	in	neuro-science’	
<https//:en.wikipedia.org/wiki/List_of_unsolved_problems_in_neuroscience>	[accessed	28	December	2016].		
117	Source:	Public	Archive	of	the	IEEE	Computer	Society	History	Committee	
<http://history.computer.org/pioneers/wirth.html>	[accessed	21	August	2017]	
118	Kassan,	p.	2.	
119	J	Vincent,	‘These	are	three	of	the	biggest	problems	facing	today’s	artificial	intelligence’	The	Verge,	(10	October	2016),	
paras.	1-4	of	5	<https://www.theverge.com/2016/10/10/13224930/ai-deep-learning-limitations-drawbacks>	
[accessed	7	July	2017].	
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 The AWS’ Delivery Cohort 

AI	frameworks	based	on	probabilistic	modelling	have	emerged	as	the	lead	theoretical	approach	for	
designing	machines	that	learn120	and,	by	extension,	a	principal	pipework	upon	which	to	build	
independent	weapons.	A	faultline	is	noted	by	Kalmonovitz	whereby	AWS	will	be	‘non-deterministic	
and	non-scripted	to	various	degrees,	in	all	cases	their	range	of	action	should	be	both	bounded	and	
probabilistically	estimated.	Deploying	them	under	second-levels	of	uncertainty	(uncertainty	about	
the	probabilistic	range	of	action)	would	create	in	inestimable	levels	of	risk	on	a	civilian	population	
and	would	consequently	be	illegal’.121	Put	otherwise,	all	parts	of	all	weapon	chains	(unsupervised	
and	supervised)	must	(legally)	have	reasonable	epistemic	confidence	about	the	precise	range	of	
weapon	action.	From	this	notion	arises	the	concept	of	‘role	responsibility’122,	the	subject	of	this	
section,	and	the	implication	that	it	is	a	broad	cohort	who	are	involved	in	the	deployment	of	new	
weapons	technologies.	Those	fielding	AWS123	might	assume	that	their	superiors	and	legal	experts	
have	appropriately	overseen	those	involved	in	the	design,	programming	and	testing	of	the	weapon.	
It	is	a	class	effort.	The	notion	of	an	AWS	design	and	implementation	‘team’	is	referred	throughout	
this	thesis	as	the	Delivery	Cohort.		

This	important	piece	of	shorthand	refers	to	the	extended	group	of	experts	and	other	parties	
that	will	be	needed	to	implement	independent	weaponry.124	It	masks	certain	procurement	
shortcomings	including	the	diffusion	of	responsibility	between	a	raft	of	participating	agencies	to	
the	point	that	any	meaningful	attribution	has	been	obscured.	As	evidenced	by	section	sub-
headings125	to	Chapters	Six	to	Nine	of	this	thesis,	the	list	of	required	competencies	and	the	control	
mechanisms	necessary	to	deliver	these	capabilities	is	very	broad.126	The	role	of	this	Delivery	Cohort	
in	the	deployment	of	compliant	AWS	is	correspondingly	wide.	It	must	manage	both	those	high-level	
software	and	hardware	challenges	identified	in	these	chapters	in	order	to	field	a	weapon	that	is	
appropriate	to	local	commander	and	wider	community.	The	Cohort’s	responsibility	is,	after	all,	
highly	complex.127	It	must	ensure	its	unsupervised	weapon	can	synthesise	all	key	tenets	that	
characterise	human	supervision	including,	inter	alia,	reliable	scaling	of	weighting	factors	and	the	

																																																								
120	For	a	useful	primer,	see:	Z	Ghahramani,	‘Probabilistic	Machine-learning	and	Artificial	Intelligence’,	Nature,	521	
University	of	Cambridge,	28	May	2015),	pp.	452-459	
<https://www.repository.cam.ac.uk/bitstream/handle/1810/248538/Ghahramani%202015%20Nature.pdf>.		
121 Kalmanovitz,	cit.	Bhuta	and	others,	p.	156. 
122	H	Hart	and	J	Gardner,	Punishment	and	Responsibility:	Essays	in	the	Philosophy	of	Law’,	2nd	Edition,	(Oxford:	Oxford	
University	Press,	2008),	p.	212.		
123	For	the	purposes	of	this	thesis,	the	notion	of	the	Delivery	Cohort	includes,	inter	alia,	the	following	tasks:	
neurophysiologists	to	coordinate	AWS	networks,	psychologists	to	coordinate	learning	and	cognition,	biologists	for	
adaption	strategies,	engineers	for	control	routines,	logisticians,	roboticists,	electrical	specialists,	behaviorists,	
politicians,	NGOs,	sociologists,	lawyers,	company	directors,	weaponists,	military	tacticians,	manufacturers,	professionals	
involved	in	miniaturization,	simulation,	configuration,	coding,	power	supply	and	modularity,	specialists	in	sensors,	in	
distributed	and	decentralized	routines,	ethicists,	specialists	in	tooling	and	calibration.	
124	For	an	introduction	to	these	required	tasks,	see:	D	Floreano,	‘Design,	Control	and	Application	of	Autonomous	Mobile	
Robots’,	Swiss	Federal	Institute	of	Technology,	Lausanne,	undated	<https://infoscience.epfl.ch/record/63893/files/aias>	
[accessed	7	July	2017].		
125	See:	Contents,	pp.	2-4	of	this	thesis.	
126	See:	Note	123	above.	See	also:	Floreano,	pp.	159-186.	
127	For	a	useful	primer	of	such	responsibilities,	see:	Ezio	Nucci	and	Filippo	Santoni	(eds),	‘Drones	and	Responsibility:	
Legal,	Philosophical	and	Socio-technical	Perspectives	on	Remote	Controlled	Weapons’,	Routledge,	(2016),	Part	III	
(‘Design	and	socio-technical	perspectives’)	and	Part	IV	(‘Autonomous	Killer	Drones’).	
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calculation	of	prior	probabilities	to	each	possible	battlefield	outcome	and	at	any	given	time.128	How	
might	this	work	in	practice?	Those	more	likely	‘favoured’	worlds	(the	multiple	set	of	actions	that	
most	closely	align	weapon	outcome	to	the	Delivery	Cohort’s	intended	purposes)	will	be	given	
higher	probabilities	by	the	Cohort.129	Later	chapters,	however,	demonstrate	that	this	process	is	not	
obvious130	and	demands	compromise,	negotiation	and	management	by	the	Cohort.131	It	will,	
moreover,	be	similarly	non-trivial	to	achieve	technical	consensus	between	the	Cohort’s	competing	
parties	as	well	as	for	them	to	define	intended	outcomes	in	appropriate	detail.	The	role	of	the	
Delivery	Cohort	at	both	design	and	deployment	stages	is	therefore	fundamental.		

It	is	also	the	dynamic	nature	of	the	Cohort’s	task	that	creates	challenge.	Datasets,	the	central	
element	to	machine	learning,	are	dynamic	and,	Shah	notes,	prone	to	rapid	but	ambiguous	
obsolescence.132	The	complex	systems	of	an	AWS	will	be	nested,	that	is	they	‘unfold	from	and	are	
enfolded	in	other	another’133	and	their	network	of	dynamic	processes	must	be	both	integrated	into	
a	dynamic	whole	and	rely	on	inbuilt	capacity	to	adapt	to	changes	in	those	datasets.	Given	that	
battlefield	events	will	be	chaotic,	such	changes	are	unlikely	to	be	linear	and	effects	rarely	
proportionate	to	outcomes.134	In	this	case,	fractional	changes	in	a	weapon’s	set	‘initial	conditions’	
may	drastically	alter	the	long-term	behaviour	of	that	weapon.135	The	dynamic	nature	of	the	Cohort’s	
task	requires	it	layer	the	AWS	with	feedback	mechanisms	either	to	identity	performance-variation	
or	confirm	adherence	to	its	intended	goal	state.	It	is	such	feedback	routines,	notes	Sculley,	that	
complicate	its	operation.136	They	also	lead	to	‘system	patching’	in	order	for	the	Cohort	to	deal	with	
new	and	evolving	modes	of	AWS	operation.137	As	noted	by	Smith	and	colleagues,	patching	is	
empirically	complicated.138	At	best,	it	should	involve	unambiguous	identification	of	coding	
problems,	creation	of	an	unambiguous	fix	to	that	issue,	delivery	of	the	patch	and	then	application	of	
that	patch	once	it	has	been	dispatched	to	all	host	weapons.	Patch	management	then	becomes	a	key	
Cohort	activity	to	coordinate	weapon	stability,	version	control,	feedback	facilitation	and	the	

																																																								
128	Dinesh	Nirmal,	‘How	to	Decide:	Machine	Learning	and	the	Science	of	Choosing’,	Medium.com	blog,	(20	March	2017)	
<https://medium.com/inside-machine-learning/how-to-decide-machine-learning-and-the-science-of-choosing-
7a0d70059079>	[accessed	4	September	2018]:	‘If	you	choose	not	to	decide,	you’ve	still	made	a	choice’.	
129	Ibid.	Inferred	from	Nirmal’s	analysis.	
130	MP	Huerta,	‘Assessing	Difficulties	of	Conditional	Probability	Problems’,	University	of	Valencia,	EDU/2008-03140/Edu	
Project,	(2012),	p.	4	<http://www.cerme7.univ.rzeszow.pl/WG/5/CERME_Huerta-Cerdan-Lonjedo-Edo.pdf>.		
131	See:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt).	
132	Tarang	Shah,	‘About	Train,	Validation	and	Test	Sets	in	Machine	Learning’,	Towards	Data	Science,	(6	December	2017)	
<https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7>	[accessed	6	May	2018].	
133 Lucia	Menezes	de	Oliveira	and	others,	pp.	447-448. 
134	Inferred	from:	Soham	Chatterjee,	‘Good	Data	and	Machine	Learning’,	Towards	Data	Science,	24	August	2017		
<https://towardsdatascience.com/data-correlation-can-make-or-break-your-machine-learning-project-
82ee11039cc9>	[accessed		4	September	2018].	
135	See:	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).		
136 D	Sculley	and	others,	‘Machine	learning:	The	high-interest	credit	card	of	technical	debt’,	Google	Inc,	SE4ML:	Software	
Engineering	for	Machine	Learning,	NIPS,	(2014),	p.	3	
<https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf>.	
137	Kemal	Altinkemer	and	others,	‘Vulnerabilities	and	Patches	of	Open	Source	Software:	An	empirical	study’,	Journal	of	
Information	System	Security,	4.2,	(2008),	5-7	
<https://www.krannert.purdue.edu/academics/mis/workshop/papers/ars_092305.pdf>.		
138	Edward	Smith	and	others,	‘Is	the	Cure	Worse	Than	the	Disease?	Over-fitting	in	Automated	Program	Repair’,	
Proceedings	of	the	2015	10th	Joint	Meeting	on	Foundations	of	Software	Engineering,	ACM,	(2015),	Abstract	
<https://www.cs.cmu.edu/~clegoues/docs/smith15fse.pdf>.	
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synchronising	of	subsequent	intervention.	Patching,	points	Sculley,	is	a	recognised	source	of	
machine	variability	that	downgrades	overall	cohesion	of	a	system.139	The	issue	for	the	Cohort	is	that	
it	also	reduces	system	predictability	given	the	universe	of	new	tasks	(and	an	increased	vulnerability	
to	the	system)	that	this	entails.140	

 AWS learning architecture 
	
What	architecture	might	therefore	be	appropriate	for	weapons	where	human	supervision	has	been	
to	be	removed?141	The	assumption	for	this	review	is	inferred	from	McCarthy	that	AWS	must	at	least	
be	able	to	effect	deduction	and	interpretation	whereby	whatever	the	weapon	has	experienced	in	
prior	cases	should	inform	but	not	decide	what	the	weapon	should	expect	now.142	Booch,	chief	
scientist	on	IBM’s	Watson	programme,	concludes	that	such	‘reasoning	and	learning	are	the	litmus	
test	to	defining	an	AI’.143	Autonomous	weapons’	reasoning	capabilities	must	thus	encompass	not	
less	than	an	understanding	of	a	known	case	whose	relationships	can	then	be	carried	over	to	the	
present	case;	In	considering	the	issue,	Haikonnen	argues	that	two-plus-two	bananas	should	be	
analogous	to	two-plus-two	apples.144	The	nub	of	the	next	four	chapters	is	to	evidence	why	this	will	
be	particularly	complicated	for	AWS	routines.	Currently,	system	routines	in	machines	are	
handcrafted	whereby	human	programmers	are	responsible	for	defining	tasking	and	the	way	that	
solutions	are	to	executed.145	The	issue	for	AWS	deployment	(as	noted	by	Boulanin	and	Verbruggen)	
is	that	autonomy’s	inherent	limitations	are	only	revealed	as	an	environment	become	too	complex	to	
be	captured	in	such	models’	programming.146	It	is	for	this	reason	that	the	Delivery	Cohort	must	then	
rely	upon	ML	to	underpin	that	deployment.	Humans,	after	all,	are	evolutionarily	capable	of	
reasoning	when	available	information	is	imperfect,	formulating	deductions	that	are	based	on	
knowledge	that	is	‘generally	true’.	In	the	case	of	AWS,	working	with	incomplete	information	will	
require	cascading	through	multiple	routines	in	parallel	(each	with	their	own	filters,	error	bias	
screens,	weightings	and	confidence	predictions).147	Sombe	identifies	that	machine	outcomes	will	
also	be	‘inappropriately	transient’	as	weapon	sensors	contribute	new	data	to	refine	previously	
available	information	(without	necessarily	contradicting	it).148		
	

																																																								
139 Sculley	and	others,	p.	5.	See	also:	Chapter	10	(Oversight),	specifically	10.2	(Validation	and	testing’). 
140	US	Air	Force,	Office	of	the	Chief	Scientist,	‘Autonomous	horizons’,	p.	6.	
141 As	discussed	in	Chapter	One’s	Introduction,	this	thesis’	technical	analysis	assumes	the	deployment	of	broad-task	
unsupervised	machines	with	wide	weapon	autonomy	in	order	to	identify	the	widest	record	of	possible	procedural	
faultlines.	
142	John	McCarthy,	‘What	is	Artificial	Intelligence?’,	Stanford	University	Department	of	Computer	Science,	(12	November	
2007)	<http://www-formal.stanford.edu/jmc/whatisai/>	[accessed	20	January	2017].	
143	Grady	Booch,	Chief	Scientist,	IBM	Watson/M,	Department	of	Embodied	Cognition,	RUSI/Institute	for	Life	Conference	
Collaboration,	in	conversation	with	the	author,	8	November	2017.	
144	Haikonnen,	p.	93.	
145	For	a	useful	primer	on	the	ramifications	of	pervasive	software,	see:	James	Somes,	‘The	Coming	Software	Apocalypse’,	
The	Atlantic,	26	September	2017	<https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-
code/540393/>	[accessed	7	September	2018].	
146	Boulanin	and	Verbruggen,	p.	16.	
147	These	routines	are	generally	discussed	in	the	following	chapter.	See:	Chapter	8	(Software).		
148	Lea	Sombe,	‘Reasoning	under	incomplete	information	in	Artificial	Intelligence’,	International	Journal	of	Intelligent	
Systems,	5,	(September	1990),	423.	
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Several	issues	clearly	arise	from	this	review	of	AWS	architecture.	First,	it	is	not	obvious	which	
system	architecture	can	provide	those	capabilities	that	are	required	to	remove	machine	
supervision.149	Second,	architectures	must	facilitate	other	counterintuitive	capabilities	such	as	
detection	of	contradictions,	evaluation	of	significance	and,	complicatedly,	the	efficient	rejection	of	
those	alternatives	that	leave	the	weapon	with	foreseen	unsatisfactory	outcomes.	Given	this	
combinatorial	complexity,	a	material	leap	from	current	software	processes	is	required	for	AWS	
deployment	to	be	realised.	Since	such	computation	takes	up	time	and	memory,	such	architecture	
must	also	include	(as	inferred	from	Brom	and	Bryson)	appropriate	bias	in	order	to	constrain	
weapon’s	processes,	either	in	a	highly	distributed	manner	(whereby	that	bias	is	programmed	
across	the	weapon’s	principal	routines,	a	complicated	exercise	of	balance)	or	by	the	addition	to	
AWS	architecture	of	special	purpose	modules.150	Gosavi	notes	that	each	such	routine	introduces	
additional	‘noise’151	and	complexity,	either	from	the	weapon’s	reconciliation	of	disparate	data,	from	
integrating	subsequent	learning	output	in	its	succeeding	sequences	or,	lastly,	from	smoothing	
interventions	that	must	take	place	in	order	to	achieve	system	stability.152	Subsequent	chapters	
demonstrate,	after	all,	that	‘machine	learning	is	messy’153,	especially	when	it	involves	uncertain,	
dynamically	changing	environments	that	are	characterized	either	by	hidden	or	partially	observable	
states.154	Bosquet	notes	that	the	battlefield	demonstrates	exactly	this	lack	of	order.155		

	
An	inquiry	into	AWS	architecture	must	therefore	review	the	likely	programming	spine	of	AWS,	

the	artificial	neural	network	(ANN).156	Whether	this	spine	then	constitutes	machine	learning	or,	
notes	Warner	and	Misra,	other	similarly	‘statistical	tools’	is	less	relevant	to	an	analysis	on	machine	
feasibility	than	identification	of	enduring	technical	constraints.157	The	broad	construct	for	AWS	
deployment	must	nevertheless	be	for	a	general	information-processing	model	that	is	based	on	the	

																																																								
149	While	the	purpose	here	is	to	identify	high-level	system	challenges	in	AWS,	it	is	useful	to	list	current	research	
directions	in	order	to	highlight	the	complexities	involved	in	achieving	degrees	of	machine	reasoning.	These	include	
‘default	logic,	nonmonotonic	modal	logic,	auto-epistemic	logic,	circumscription	and	circumscription-like	approaches,	
supposition-based	logic,	conditional	logic,	logics	of	uncertainty	as	well	as	belief	functions,	numerical	quantifier	logic	and	
fuzzy	logic’.	
150	Cyril	Brom	and	Joanna	Bryson,	‘Action	Selection	from	Intelligence	Systems’,	European	Network	for	the	Advancement	
of	Cognitive	Systems,	(2006)	
<https://pdfs.semanticscholar.org/3419/955ab2c59b029dcda41904d46b763018de79.pdf>.		
151	Abhijit	Gosavi,	‘The	Effect	of	Noise	on	Artificial	Intelligence	and	Meta-heuristic	Techniques’,	Proceedings	of	the	
Artificial	Neural	Network	in	Engineering	Conference,	12,	(2002),	p.	1	and	p.	7.	
152	Gavin	Taylor	and	Ronald	Parr,	‘Value	Function	Approximation	in	Noisy	Environments’,	Cornell	University	Press,	arXiv	
preprint	arViv	1210.4898,	(2012)	<https://arxiv.org/abs/1210.4898>	[accessed	5	September	2017].	
153	Sculley	and	others,	p.	2.	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Firmware	ramifications	of	machine	learning’)	
and	7.3	(‘Reasoning	and	cognition	methodologies’).		
154	Carla	Brodley	and	others,	‘Challenges	and	Opportunities	in	Applied	Machine	Learning’,	AI	magazine,	Association	for	
the	Advancement	of	Artificial	Intelligence,	33,	(2012),	pp.	11-12.		
155	Antoine	Bousquet,	‘The	Scientific	Way	of	Warfare:	Order	and	Chaos	on	the	Battlefield	of	Modernity’,	LSE,	PhD	thesis,	
(2014),	p.	3	and	pp.	189-195	<http://etheses.lse.ac.uk/2703/1/U615652.pdf>.	
156	A	Google	search	using	‘autonomy’	and	‘artificial	neural	network’	returns	741,000	references	[accessed	25	March	
2017].	For	discussion	on	ANNs’	role	in	AWS,	see	also:	Ben	Farmer,	‘Prepare	for	the	rise	of	‘Killer	Robots’	says	former	
Defence	Chief’,	Telegraph	Newspaper,	17	August	2017,	paras.	4-7	
<http://www.telegraph.co.uk/news/2017/08/27/prepare-rise-killer-robots-says-former-defence-chief/>	[accessed	29	
August	2017].	
157	Brad	Warner	and	Manavendra	Misra,	‘Understanding	Neural	Networks	as	Statistical	Tools’,	American	Statistician,	50,	
4,	(November	1996),	p.	284	
<ftp://gis.msl.mt.gov/Maxell/Models/Predictive_Modeling_for_DSS_Lincoln_NE_121510/Modeling_Literature/Warner
%20and%20Misra_neural%20networks.pdf>.		
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way	biological	nervous	systems	process	information.	An	essential	element	to	this	paradigm	would	
be	the	novel	structure	of	the	weapon’s	processing	system	which	should	be	composed	of	very	many	
highly	interconnected	processing	elements	(neurones)	working	in	unison	to	solve	specific	
problems.158	The	architectural	intention	is	that	ANNs,	like	people,	learn	by	example.159	The	
unsupervised	weapon’s	network	will	then	be	configured	for	specific	individual	applications,	such	as	
pattern	recognition	or	data	classification,	through	a	learning	process	that	subsequently	knits	
together	outputs	in	order	to	generate	an	action	path.	While	learning	in	biological	systems	involves	
adjustments	to	the	synaptic	connections	that	exist	between	the	neurones,	this	process	is	then	to	be	
copied	in	machines	in	their	ANN	where,	in	the	case	of	AWS,	the	machine’s	neurons	can	either	be	in	
‘training’	or	‘using’	mode.	The	Cohort’s	goal	for	its	weapon	networks	is	that	it	recreates	a	learning	
system	in	machine	code	by	developing	specific	framework	programmes	to	tackle	specific	
problems.160	Translating	the	work	of	Stergio	and	Siganos	to	the	battlefield,	AWS’	models	will	rely	
upon	receiving	system	feedback	on	how	its	programme	routines	are	performing.161	The	weapon’s	
neural	network	can	theoretically	then	optimize	its	response	by	doing	the	same	problem	thousands	
of	times	and	adjusting	its	response	according	to	this	feedback.	A	computer,	in	this	case	the	routines	
within	an	AWS,	can	then	theoretically	be	given	a	different	problem	which	it	can	approach	in	the	
same	way	as	it	learned	from	the	previous	one.162	By	varying	the	problems	and	the	number	of	
approaches	to	solving	them	that	the	computer	has	learned,	the	theory	is	that	the	Delivery	Cohort	
can	teach	the	AWS	to	be	necessarily	generalist	and,	again	in	theory,	more	broadly	and	appropriately	
‘intelligent’	to	its	battlefield	surroundings	and	task	lists.163	Whether	this	is	achieved	through	
machine	learning	or	other	statistical	and	logic	tools	does	not	alter	the	architectural,	behavioural	
and	technical	issues	that	must	all	be	integrated	prior	to	the	weapon’s	compliant	deployment.164	

	
In	evaluating	AWS	deployment,	there	has	been	considerable	recent	progress	in	such	models.165	

Since	2009,	deep-learning	algorithms	based	on	ANNs	have	run	on	graphical	processing	units	
(GPUs),	specialized	chips	used	in	PCs	and	video	games	consoles.166	This	recent	marriage	has	

																																																								
158	RT	Networks,	‘Kalashnikov	develops	fully	automated	neural-network-based	combat	module’,	(5	July	2017)	
<https://www.rt.com/news/395375-kalashnikov-automated-neural-network-gun/>	[accessed	4	March	2018].		
159	For	a	primer	on	ANN,	see:	Christos	Stergio	and	Dmitrios	Siganos,	‘Neural	Networks’,	undated	
<https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html>	[accessed	12	March	2018].	
160	Anish	Talwar	and	Yogesh	Kumar,	‘Machine	Learning’,	pp.	3400-3402.	See	also:	Anish	Talwar	and	Yogesh	Kumar,	‘An	
Artificial	Intelligence	Methodology’,	International	Journal	of	Engineering	and	Computer	Science,	2,	12,	(2012),	Abstract.	
161	Stergio	and	Siganos,	‘Neural	Networks’,	generally.	See	also:	Vidushi	Sharma	and	others,	‘A	Comprehensive	Study	of	
Artificial	Neural	Networks’,	International	Journal	of	Research	in	Computer	Science	and	Software	Engineering,	278-279	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.9353&rep=rep1&type=pdf>.	
162	See,	generally:	Simon	Haykin,	Neural	Networks	and	Learning	Machines,	3rd	Edition,	(USA:	Person	Prentice	Hall,	1999),	
pp.	1-6.		
163	Techopedia	Staff,	‘What	Is	the	Difference	Between	Artificial	Intelligence	and	Neural	Networks?’,	(6	December	2017)	
<https://www.techopedia.com/2/27888/programming/what-is-the-difference-between-artificial-intelligence-and-
neural-networks>	[accessed	20	January	2017].	
164	Bernard	Marr,	‘What	is	the	Difference	between	Artificial	Intelligence	and	Machine	Learning?’,	Forbes	Magazine,	
Technology,	6	December	2016	<https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-
between-artificial-intelligence-and-machine-learning/#5c79a3082742>	[accessed	6	March	2018].		 
165	See,	for	instance:	Martin	Wielomski,	‘The	GPU:	Powering	the	Future	of	Machine	Learning	of	AI’,	Phoenix	NAP	
Publications,		(21	September	2018),	generally	<https://phoenixnap.com/blog/future-gpu-machine-learning-ai>	
[accessed	12	February	2019].	
	
166	M	Janakiram,	‘In	the	Era	of	Artificial	Intelligence,	GPUs	are	the	New	CPUs’,	Forbes	Magazine,	7	August	2017	
<https://www.forbes.com/sites/janakirammsv/2017/08/07/in-the-era-of-artificial-intelligence-gpus-are-the-new-
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increased	deep-learning	system	processing	nearly	a	hundredfold	and	allowed,	notes	the	Economist,	
the	training	of	a	multi-layer	neural	network	to	take	less	than	a	day,	a	procedure	which	had	
previously	taken	several	weeks.167	Such	deep-learning	systems	have	also	become	exponentially	
more	powerful	with	networks	of	double	digit	layers	currently	being	worked	upon	by	researchers.168	
Using	deep	networks,	the	JASON	Study169	reckons	that	the	error	rate	of	image	capture	has	fallen	
from	twenty-five	per	cent	to	some	three	per	cent.	This	is	better	than	the	accepted	figure	for	human	
performance	of	five	per	cent.	Difficulties,	however,	abound.	While	such	processes	may	be	
surprisingly	accurate	on	an	individually	equational	basis,	systemic	problems	arise	from	the	manner	
in	which	such	networks	misclassify	datasets.170	Nguyen	highlights	that	such	ranking	errors	are	
particularly	likely	to	occur	in	ways	that	are	unpredictable	and	unfamiliar	to	humans.171	In	this	case,	
the	architectural	issue	is	that	the	trait	will	likely	complicate	how	the	weapon’s	neural	network	and	
other	statistical	tools	might	classify	battlefield	objects	since	outcomes	arising	from	any	such	
cognitive	approaches	will,	as	inferred	from	Berreby,	likely	be	materially	different	from	those	
expected	by	the	Delivery	Cohort.172		

	
Weapon	architecture	that	is	based	upon	neural	networks	will	involve	intractable	complexity.	

The	AWS’	neural	network	must	have	a	number	of	inputs,	each	of	which	Haikonnen	notes	must	have	
three	characteristics.	First,	each	input	(here,	the	weapon’s	original	representation	or,	more	likely,	
subsequently	sensed	data	derived	from	its	battlefield	surroundings)	must	have	its	own	weight	(or	
synaptic)	value.	Second,	it	must	have	a	summing	function	and,	third,	it	will	have	a	threshold-based	
output	function.173	The	model’s	premise	is	that	all	such	inputs	are	largely	free	from	noise	and	
sufficiently	full	in	detail.174	A	further	challenge	is	that	these	weapon	inputs	are	the	right	inputs	
(indeed,	all	of	the	right	inputs)	necessary	(as	well	as	being	sufficiently	comprehensive)	to	allow	that	
weapon	to	derive	applicable	intelligence	from	its	battlefield	surroundings	and,	crucially,	to	divine	
meaning	from	those	inputs.	But	the	process	thus	far	is	incomplete.	Based	on	continuous	signals	
(that	each	have	variable	intensities),	the	value	of	each	input	signal	must	then	be	multiplied	by	its	
related	weight	value	with	the	results	then	summed	together.175	In	AWS	deployment,	this	is	complex	
given	the	intractable	imprecision	of	these	inputs	upon	which,	for	instance,	engagement	calculations	

																																																								
cpus/#705bb4955d16>	[accessed	3	September	2018].	See	also:	Simon	Haykin,	‘Neural	Networks	and	Learning	
Machines’,	pp.	21-24	(‘Network	architectures’)	and	94-100	(‘Unconstrained	optimization:	A	review’).		
167	Economist	Magazine	Special	Report,	‘Artificial	intelligence’,	Economist,	p.	4.	There	is,	however,	no	evidence	that	this	
learning	process	can	be	undertaken	in	real-time.	
168	Carole	Lundgren,	‘Recent	Development	in	Neural	Networks’,	Appen,	(23	March	2018),	generally	
<https://appen.com/recent-developments-neural-networks/>	[accessed	5	September	2018].	
169	JASON	program,	p.	5.	The	report	cites	networks	with	thirty	such	layers.		
170	Anh	Nguyen,	‘Deep	networks	are	easily	fooled:	high	confidence	predictions	for	unrecognizable	images’,	Computer	
vision	and	pattern	recognition,	IEEE,	(2015)	<http://arxiv.org/pdf/1412.1897v4.pdf>.	
171	Ibid.	
172	David	Berreby,	‘Artificial	intelligence	is	already	weirdly	inhuman:	what	kind	of	world	is	our	code	creating?’,	Nautilus,	
(6	August	2016)	<http://nautil.us/issue/27/dark-matter/artificial-intelligence-is-already-wierdly-inhuman>	[accessed	
12	May	2017]	
173	Haikonnen,	p.	31.	
174	Eugenio	Culurciello,	‘Neural	Network	Architectures’,	Towards	Data	Science,	(23	March	2017)	
<https://towardsdatascience.com/neural-network-architectures-156e5bad51ba>	[accessed	3	September	2017].	
175	Avinash	Sharma,	‘Understanding	Activation	Functions	in	Neural	Networks’,	Medium.com	blog,	(30	March	2017)	
<https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-
9491262884e0>	[accessed	3	September	2017].	
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must	be	based.	The	process,	notes	Dietterich,	is	neither	rapid	nor	real-time.176	To	enable	this	model,	
this	sum	value	is	then	integrated	with	the	weapon’s	threshold	circuit	with	an	artificial	numeral	
providing	appropriate	output	if	specific	thresholds	are	exceeded.	A	further	challenge	then	arises	
where	no	combination	of	weight	values	meets	the	thresholds	that	have	been	set	for	the	AWS	by	its	
Delivery	Cohort	(AI’s	Exclusive-Or	Problem).177 

 
It	is	also	useful	to	consider	how	these	statistical	tools	might	apply	in	a	battlefield	context.	178	

Within	the	weapon’s	network,	each	neural	unit	must	be	connected	with	innumerable	others	with	
such	statistical	links	either	having	an	enforcing	or	an	inhibitory	effect	on	the	activation	state	of	the	
weapon’s	neural	units.	As	above,	each	individual	neural	unit	will	have	a	broad	summation	function,	
a	threshold	function	or	a	limiting	function	on	each	connection	and	on	the	unit	itself.	In	this	way,	a	
battlefield	signal	must	exceed	a	limit	that,	in	theory,	has	be	defined	by	the	Cohort	before	being	able	
to	propagate	on	to	other	neurons.	It	is	thus	envisaged	that	the	unsupervised	weapon	system	will	
become	‘trained’	rather	than	being	explicitly	programmed.	A	constraint	inferred	from	Han	and	
others,	however,	is	that	the	unsupervised	weapon	must	minimally	have	its	architecture	fixed	before	
training	starts.	In	other	words,	training	cannot	subsequently	improve	the	weapon’s	architecture.179	
Nevertheless,	the	intended	benefit	in	this	case	is	that	machine-learning	will	enable	the	AWS	to	
‘excel	in	areas	where	the	solution	or	feature	detection	is	difficult	to	express	in	a	traditional	
computer	program’.180	How	then	might	this	work?	Neural	networks	typically	consist	of	multiple	
layers	(or	a	cube	design)	with	signal	paths	traversing	from	front	to	back.	This	is	necessary	given	
that	the	structure	will	be	predicated	on	training	the	AWS	by	running	and	re-running	very	large	sets	
of	‘experienced	data’	in	an	iterative	process.181	This	repeating	allows	those	layers	of	neurons	to	
adopt	and	refine	‘prioritizing	weights’	so	that	the	weapon	system	might	then	make	sense	of	new	
data	sets	on	the	same	basis	that	it	has	encountered,	honed	and	weighted	previous	training	sets	of	
data.	Back	propagation	is	therefore	a	vital	operation182	for	AWS	function	whereby	stimulation	is	
used	to	reset	weights	within	the	framework’s	neural	units.183	The	challenge	is	to	regiment	the	
weapon’s	network	connections	in	order	to	prevent	interaction	in	a	chaotic	and	complex	fashion,	the	

																																																								
176 Thomas	Dietterich,	‘Machine	Learning	for	Sequential	Data:	A	Review’,	Structural,	Syntactic	and	Statistical	Pattern	
Recognition,	(2002),	pp.	5-7	<http://web.engr.oregonstate.edu/~tgd/publications/mlsd-ssspr.pdf>.	 
177	Haikonnen,	p.	33.	
178	The	weapon’s	neural	network	will,	after	all,	be	a	connectionist	system	based	on	a	very	large	assemblage	of	artificial	
neural	units	that	are	loosely	modelled	on	the	way	a	human	brain	solves	problems.	See:	Jerry	Fodor	and	Zenon	Pylyshyn,	
‘Connectionism	and	Cognitive	Architecture:	A	critical	analysis’,	Rutgers	University,	undated,	pp.	2-4	<http://www-
cogsci.ucsd.edu/~sereno/170/readings/02-FodorPylyshyn.pdf>.		
179	Song	Han	and	others,	‘Learning	both	Weighting	and	Connections	for	Efficient	Neural	Networks’,	Advances	in	Neural	
Information	Processing	Systems,	(2015),	Abstract	<https://papers.nips.cc/paper/5784-learning-both-weights-and-
connections-for-efficient-neural-network.pdf>.	
180	See:	Royal	Society,	‘The	Power	and	Promise	of	Computers	that	Learn	by	Example’,	Royal	Foundation,	(April	2017)	
<https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf>.	For	
an	assessment	of	ML	deficiencies	see:	p.	30.		
181	Roumen	Trifonov	and	others,	‘Artificial	Neural	Network	Intelligent	Method	for	Prediction’,	AIP	Conference	
Proceedings,	(6	July	2017),	pp.	1-2	and	generally	<https://aip.scitation.org/doi/pdf/10.1063/1.4996678?class=pdf>.	
182	V	Preetham,	‘Back	Propagation	–	How	Neural	Networks	learn	Complex	Behaviours’,	Autonomous	Agents	#AI,	(9	
August	2016)	<https://medium.com/autonomous-agents/backpropagation-how-neural-networks-learn-complex-
behaviors-9572ac161670#.qwz64wcu6>	[accessed	2	February	2017].	
183	Yoshua	Bengio,	‘Challenges	of	Training	Deep	Neural	Networks’,	Montreal,	Course	notes	IFT6266,	(Winter	2012)	
<https://www.iro.umontreal.ca/~bengioy/ift6266/H12/html.old/deepchallenge_en.html>)	[accessed	3	August	2017]..	
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forming	of	new	connections	and	even	new	neural	units	while	disabling	others.184	Current	network	
projects,	furthermore,	work	with	up	to	a	few	million	neural	units	and	connections	which	equates	to	
the	computing	power	of	a	worm.185	For	this	reason,	Vincent	notes	the	challenge	presented	by	the	
massive	scaling-up	in	capability	that	is	required	if	human	supervision	is	to	be	amended.186		
	

In	order	properly	to	identify	architectural	constraints,	a	further	purpose	of	this	section	is	to	
impose	on	these	processes	an	empirical	lens	that	is	based	on	battlefield	practices.	Given	that	AWS	
learning	will	be	fundamentally	based	on	mathematical	techniques	involving	statistics	and	
probability,	several	challenges	can	be	inferred	to	any	widespread	use	of	this	model	on	the	
battlefield.187	For	a	weapon	network	that	will	operate	on	sensed	images,	each	visualization	input	
represents	a	single	pixel.	For	reference,	a	standard	single	TrueColour	digital	image	currently	
requires	thirty	megabytes	of	platform	memory.	An	HDTV	clip	from	just	one	sensor	and	at	just	1920	
x	1080	pixels	(capturing	its	environment	at	sixty	frames	per	second)	requires	more	than	twenty	
gigabytes	memory	for	every	minute	of	video	input.188	Operating	continually	in	real	time,	recording	
and	processing	input	from	multiple	visualization	camera	positions189,	this	equates	to	at	least	three	
hundred	gigabytes	of	relevant	information	per	minute	for	the	deployed	AWS.	Input	neurons,	
moreover,	have	the	broadest	application	and	may	also	represent	audio	sample	for	speech	
recognition,	character	sample	for	natural	language	understanding	or	chemical	sample	for	hazard	or	
some	other	olfactory	measure.	The	model	for	AWS	is	that	discrete	data	(here,	characters	or	
numbers)	must	be	represented	in	a	dynamic	series	of	one-shot	representations	where	a	separate	
neuron	is	used	for	each	possible	symbol	in	each	position.190	Given	the	number	of	individual	data	
points	that	will	comprise	a	single	engagement	sequence,	in	can	be	inferred	from	Sigh	and	Wood	
that	the	architectural	convolution	of	processing	this	information	(while	accounting	for	contextual	
sensitivities,	clutter,	bottlenecks	and	significance)	is	in	itself	an	intractable	proposition.191	A	
recurring	theme	of	this	thesis	is	that	maintaining	human	control	over	such	systems	is	not	simply	a	
matter	of	ensuring	compliance	but	is	a	matter	of	feasibility.	

	
Central	to	weapon	learning	capabilities	(again,	whether	by	neural	networks	or	other	logic	

framework)	will	be	its	training	processes	in	which	the	millions	of	weights	connecting	its	neurons	

																																																								
184	Stergio	and	Siganos,	‘Neural	Networks’,	generally.	
185	Artificial	Brains	blog,	‘OpenWorm’,	(14	August	2012)	<http://www.artificialbrains.com/openworm>	[accessed	12	
February	2017].	
186	See:	James	Vincent,	‘These	are	Three	of	the	Biggest	Problems	Facing	artificial	Intelligence’,	The	Verge,	10	October	
2016,	paras.	4-5	of	13	<https://www.theverge.com/2016/10/10/13224930/ai-deep-learning-limitations-drawbacks>	
[accessed	1	April	2017].		
187	Bengio,	‘Challenges	of	Training	Deep	Neural	Networks’,	paras.	2-3.	For	a	general	discussion	of	weapon	network	
architecture,	network	training	and	back-propagation,	see:	JASON	program,	pp.	6-19.	
188	The	TrueColour	photo	assumes	a	2736	x	3648	pixel	format.	See:	Ken’s	Image	Gallery	
<http://kias.dyndns.org/comath/44.html>	[accessed	3	November	2017].		
189	The	current	Tesla	S	Class	car	requires	8	cameras,	1	radar	unit	and	6	ultrasonic	units	just	to	auto-drive;	Electrek,	
<https://electrek.co/2016/10/20/tesla-new-autopilot-hardware-suite-camera-nvidia-tesla-vision/>	[accessed	12	
October	2017].		
190	LR	Medsker	and	LC	Jain,	‘Recurrent	Neural	Network	Design	and	Application’,	CRC	Press	International	Series	on	
Computational	Intelligence,	(20	December	1999),	p.	227.	
191	Inferred	from:	David	Wood	and	others,	‘Can	We	Ever	Escape	From	Data	Overload?	A	Cognitive	systems	Diagnosis’,	
Cognition,	Technology	and	Work,	4.1,	(2002),	p.	3	and	pp.	7-10.	See	also:	Shailesh	Singh	and	others,	‘Training	of	Artificial	
Neural	Networks	using	Information-Rich	Data’,	Hydrology,	1(1),	(2014),	p.	42	
<https://pdfs.semanticscholar.org/cbb2/38ded06c5d17ca8f749a917828ba57ab8c03.pdf>.		
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are	assigned	values.	Indeed,	the	only	adjustable	parameters	in	this	process	are	these	weights.	
Discovering	optimal	values	for	these	weights	will	occur	during	the	process	of	training	very	large	
data	sets	of	input/output	pairs.192	For	example,	in	order	to	train	a	weapon	network	to	recognise	
images,	the	x-input	function	might	be	intensity	values	of	the	image	pixels	while	the	y-input	function	
the	picture’s	description.	The	model	is	to	match	these	two	inputs.	The	architectural	challenge	to	
AWS	is	that	the	performance	of	individual	neurons	must	be	quantified	using	an	error	function	with	
the	goal	of	training	being	to	minimise	this	function.	In	AWS,	this	will	be	achieved	using	techniques	
such	as	a	gradient	descent	whereby	the	whole	network’s	weighting	is	updated	again	and	again	using	
the	gradient	of	the	error	function.193	The	architectural	model	in	this	case	is	for	such	iteration	to	
continue	repeatedly	until	the	weapons	network’s	weights	find	the	global	minimum	of	the	error	
function	averaged	over	all	of	that	training	data.	Nasiriany	and	others,	however,	note	that	additional	
routines	are	required:	As	part	of	this	process,	a	sub-set	of	the	weapon’s	original	raw	data	might	be	
hived	off	from	the	main	training	set	to	be	used	as	validation	data	in	order	to	measure	how	well	the	
training	has	progressed	and	to	determine	whether	it	is	necessary	to	adjust	parameters	such	as	
learning	rate	and	architecture.194	The	efficiency	of	this	process	depends	on	two	further	
characteristics.	There	must	be	an	ability	to	propagate	forwards	through	the	weapon’s	network	to	
calculate	the	current	values	of	the	weapon	system.	Repetton	then	notes	that	there	must	be	a	
subsequent	ability	to	propagate	backwards	the	error	function	through	the	network	in	order	to	
update	the	weapon’s	learning	weights.195	While	each	iteration	through	the	entire	set	of	training	
data	is	termed	an	epoch,	current	networks	are	targeted	at	a	single	pre-determined	task	which,	once	
learned,	require	that	network’s	connections	be	frozen	on	deployment.	As	again	noted	by	Repetton,	
this	creates	an	inappropriately	‘one	trick	pony’	with	no	facility	for	additional	learning.196			
Notwithstanding	the	static	nature	of	current	networks,	the	dynamic	nature	of	battlefield	conditions	
will	require	the	infeasible	collection	of	epochs	in	order	to	improve	the	weapon’s	error	function.		

	
What	then	might	the	operational	ramifications	be	of	such	data	training?	A	systemic	issue	can	

be	inferred	from	Angelov	and	Sperduti	that	such	networks	will	be	inappropriately	unpredictable	
for	battlefield	deployment.197	After	training,	some	neurons	become	demonstrable	problem	solvers	
while	others	empirically	do	not	perform	as	well.	As	above,	several	thousand	cycles	of	interaction	
must	typically	occur.	A	ramification	here	is	then	a	plateauing	in	performance	due	to	ever	reducing	
learning	gradients	and	ever-smaller	changes	to	the	model’s	weights.198	Each	new	layer	to	a	

																																																								
192	For	a	detailed	explanation	of	back-propagation	and	DNN	training,	see:	JASON	program,	pp.	61-68.	
193	Soroush	Nasiriany	and	others,	‘A	Comprehensive	Guide	to	Machine	Learning’,	University	of	California	at	Berkeley,	(13	
August	2016,	Section	4.3	(‘Gradient	Descent’),	pp.	82-88	<http://snasiriany.me/files/ml-book.pdf>.	
194	Several	online	resources	are	available	on	the	division	of	labelled	datasets	into	training	sets,	validation	sets	and	test	
sets.	See,	for	instance,	Stanford	University	videos	on	Machine	learning,	Coursera	
<https://www.coursera.org/learn/machine-learning/lecture/QGKbr/model-selection-and-train-validation-test-sets>	
[accessed	24	May	2017].	
195	Anthony	Repetton,	‘The	Problem	with	Back-Propagation’,	Towards	Data	Science,	(18	August	2017),	generally	
<https://towardsdatascience.com/the-problem-with-back-propagation-13aa84aabd71>	[accessed	29	July	2018].	
196	Ibid.,	para.	3	of	23.	
197	Plamen	Angelov	and	Alessandro	Sperduti,	‘Challenges	in	Deep	Learning’,	Proceedings	of	the	European	Symposium	on	
Artificial	Neural	Networks,	Bruges,	(April	2016),	pp.	489-491	
<https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-23.pdf>.	The	section	highlights	challenges	arising	
from	the	need	for	regularization	schemes,	system	complexity	and	a	requirement	to	use	off-line	methods	to	ensure	
computational	efficiency	(which	would	not	be	appropriate	for	AWS).		
198	Xavier	Girot	and	Yoshua	Bengio,	‘Understanding	the	Difficulties	of	Training	Deep	Feed-forward	Neural	Networks’,	
Proceedings	of	the	13th	International	Conference	on	Artificial	Intelligence	and	Statistics,	(2010),	p.	249	and	generally	
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weapon’s	neural	network	also	means	an	extra	layer	of	non-linearity	which,	inferred	from	Bengio,	
increases	the	difficulty	of	optimizing	the	weapon’s	learning	process.	Such	models,	moreover,	readily	
restrict	their	learning	to	just	the	network’s	top	layer	‘while	lower	layers	remain	random	
transformations	that	do	not	capture	much	input’.199	Gradients	are	also	prone	to	inherent	dilution	in	
these	lower	layers	and	may	provide	unpredictable	and	weak	guidance	to	the	overall	learning	
process.200	If	AWS	are	to	be	accretive	to	the	Delivery	Cohort,	it	is	machine	learning’s	intrinsic	
instability	that	questions	its	attraction	as	an	appropriate	technical	spine	for	AWS.		

	
The	efficacy	of	the	architecture	is	dependent	upon	the	fit	between	weapon	tasking	(image	

classification	or	sound	classification	or	written	word	manipulation)	and	weapon	training.201	As	
noted	by	Dohler	(and	evidenced	in	later	sections202),	a	marginally	different	set-up	or	a	marginally	
different	training	dataset	will	likely	lead	to	very	substantial	output	discrepancies.203	To	this	point,	
Murphey	confirms	that	identifying	scenario	variation	in	this	primary	data	is	beyond	human	
intervention	given	the	specificity	of	the	raw	dataset.204	Training	methodology	is,	after	all,	critical	to	
weapon	feasibility.	If	incorrectly	commissioned,	battlefield	features	with	only	a	small	number	of	
examples	in	that	training	set	(but	possibly	of	critical	importance)	may	likely	be	ignored	by	the	
process.	The	architecture	therefore	relies	on	very	clear	data	definition	which,	suggests	Sharkey,	is	
easily	confounded	by	Sun	Tzu’s	maxim	for	the	successful	commander	who	must	be	‘extremely	
subtle,	even	to	the	point	of	formlessness’.205	This	problem	of	discounting	evidence	is,	moreover,	
multifaceted.206	Singh	notes	that	it	may	be	caused	by	an	overwhelming	number	of	learning	
examples	in	one	set	of	the	weapon’s	sensor	data	undoing	the	training	effect	on	the	learning	
examples	in	a	different	data	set.	It	may	also	be	caused	by	incorrectly	set	model	sensitivity	
(‘detection	rate’)	and	incorrectly	set	model	specificity	(‘false	alarm	rate’).	Longer	time	series	data	
does	not,	furthermore,	equate	to	more	useful	information;	if	there	is	considerable	repetition	in	the	
weapon’s	sensed	data	then	the	AWS’	ANN	may	not	become	any	‘wiser’	from	additional	training.207		

																																																								
<http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi>	[accessed	23	July	2017].	See	also:	
Narayanan	Manikandan,	‘Software	design	challenges	in	time	series	prediction	using	parallel	implementation	of	artificial	
neural	networks’,	The	Scientific	World	Journal,	2016,	Article	ID	670	9352	<http://do.doi.org/10.1155/2016/6709352>	
[accessed	26	July	2018].	
199	Guillaume	Alain	and	Yoshua	Bengio,	‘Understanding	Intermediate	Layers’,	ICLR	Paper,	(2017),	pp.	7-8	(see	also	
‘Abstract’)	<https://pdfs.semanticscholar.org/2706/77b5c44ea0c93313f41db2f885fef305bbcc.pdf>.	
200	Bengio,	‘Challenges	of	Training	Deep	Neural	Networks’,	generally.	
201	Although	relating	to	the	medical	field,	see:	G	Auda	and	others,	‘Improving	the	accuracy	of	an	artificial	neural	network	
using	multiple	differently	trained	networks’,	Neural	Network	Proceedings,	IEEE	World	Congress	on	Computational	
Intelligence,	(1998),	2,	p.	1356	<http://ieeexplore.ieee.org/document/685972/>	[accessed	4	September	2017].	
202	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Firmware	ramifications	of	machine	learning’)	and	8	(Software),	
specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).		
203	Mischa	Dohler,	Professor	in	Wireless	Communications,	King’s	college,	London,	Fellow	IEEE	and	RSA,	in	conversation	
with	the	author,	20	January	2017.	
204	Yi	Murphey	and	others,	‘Neural	Learning	from	Unbalanced	Data’,	Applied	Intelligence,	21,	(2004),	pp.	117-118	
<http://sci2s.ugr.es/keel/pdf/specific/articulo/NL-Unbalanced-data.pdf>.	
205	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	See	also:	Eric	Jackson,	‘Sun	Tsu’s	Art	of	War’,	Forbes	Magazine,	23	May	2014	
<https://www.forbes.com/sites/ericjackson/2014/05/23/sun-tzus-33-best-pieces-of-leadership-
advice/#19c3ac7d5e5e>	[accessed	2	August	2018].		
206	Greg	Williams,	‘Wise	up,	Deep	Learning	May	Never	Create	a	General	Purpose	AI’,	Wired	Magazine,	28	January	2018,	
generally	<https://www.wired.co.uk/article/deep-learning-automl-cloud-gary-marcus>	[accessed	5	September	2018].	
207	Singh,	p.	42.	
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The	architectural	ramification	of	learning	instability	is	also	compounded	by	data	noise.	

Murphey	notes	that	minute	distortion	in	AWS	classification	of	its	sensed	data	will	likely	lead	to	
different	data	classes	being	inseparable	in	the	space	where	such	variables	are	processed.208	In	other	
words,	if	a	weapon’s	dataset	is	noisy,	the	class	boundary	that	separates	different	class	examples	is	
almost	impossible	for	the	weapon	to	define	and	separate	for	ongoing	statistical	analysis.	If,	as	
suggested	by	Beradi	and	Zhang,	such	misclassification	is	‘inevitable’209,	then	further	supervision	
sequences	are	required	in	order	to	train	the	AWS	to	make	‘favourable	classification	decisions	
towards	a	particular	class’.210	Termed	the	weapon’s	matching	challenge,	Forgy	highlights	that	it	is	
also	a	source	of	inappropriate	third-party	biases.211	An	instance	might	be	the	over-fitting	of	training	
data	that	will	render	the	weapon’s	training	model	brittle.	The	sequences	might,	for	instance,	
require	unknown	and	incremental	processing	steps	in	what	should	otherwise	be	a	seamless,	real-
time	action	series.	Other	processing	pitfalls	then	arise.	Given	that	as	much	as	ninety	per	cent	of	the	
weapon’s	run-time	might	be	taken	up	with	pattern	matching212,	Kirkpatrick	notes	that	part-
processed	data	might	also	be	hived	off	into	interim	(possibly	off-line)	storage	between	matching	
cycles.		In	this	case,	complicating	‘weight	decay’	routines213	may	then	be	required	to	regularize	
training	sequences	and	to	manage	what	Kirkpatrick	terms	‘catastrophic	forgetting’.214	Such	
ancillary	routines	usually	involve	compromise:	Adjusting	training	weights	may	make	the	weapon	
less	sensitive	to	noise	from	data	inputs	but	correspondingly	less	likely	to	learn	from	that	noise.		

	
Such	weapon	architecture	will	be	disproportionately	affected	by	biases.	As	highlighted	by	

Bullinaria,	they	may	push	the	weapon’s	neurons	into	saturation	which	then	desensitizes	those	
neurons	to	all	inputs.215	A	further	architectural	complication	then	arises	over	‘dropout’	whereby	
learning	routines	regularly	omit	randomly	selected	neurons	from	the	weapon’s	training	process	in	
order	to	reduce	over-fitting	and	false	correlation.216	This	additional	step	is	likely	to	impact	machine	
outcomes	and	so	introduce	inappropriate	added	variability	into	the	weapon’s	engagement	routines.		
It	is	also	unknowable	from	the	outset	if	the	weapon's	training	data	is	both	sufficiently	relevant	to	its	
y-function	(the	task	that	the	Delivery	Cohort	has	for	each	network)	or	of	sufficient	size	
appropriately	to	train	the	network.	Mu	and	others	note	that	the	architecture’s	descent	gradient	
(here,	determining	weapon	system	data	fit)	is	systemically	unstable	‘and	therefore	incapable	of	

																																																								
208	Murphey,	p.	118.	
209	Victor	Beradi	and	Peter	Zhang,	‘The	Effect	of	Misclassification	Costs	on	Neural	Network	Classifiers’,	Researchgate.net,	
(June	1999)	
<https://www.researchgate.net/publication/227807698_The_Effect_of_Misclassification_Costs_on_Neural_Network_Cla
ssifiers>	[accessed	5	May	2017].		
210	Murphey,	pp.	117-118.	
211	Charles	Forgy,	‘A	fast	algorithm	for	the	fast	pattern/many	object	pattern	match	problem’,	Artificial	intelligence,	19,	
(1982),	pp.	17-18	<https://pdfs.semanticscholar.org/464e/b245ff9822defa8db82c385ff1fd0b0b6ffe.pdf>.	
212	Forgy,	p.	22.	
213	James	Kirkpatrick	and	others,	‘Overcoming	Catastrophic	Forgetting	in	Neural	Networks’,	PNAS,	Proceedings	in	the	
Natural	Academy	of	Sciences,	14,	13,	(March	2017),	p.	3521	<http://www.pnas.org/content/114/13/3521.full.pdf>.	
214	Kirkpatrick	and	others,	pp.	3524-3525.	
215	For	a	general	primer,	see:	John	Bullinaria,	‘Biases	and	Variances,	Under-fitting	and	over-fitting’,	Birmingham	
University,	Lecture	9,	(2015)	<http://www.cs.bham.ac.uk/~jxb/NN/l9.pdf>.	
216	See:	Amar	Bughiaja,	‘Dropout	in	(Deep)	Machine	Learning’,	Medium.com,	(15	December	2016),	generally	
<https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-
deep-machine-learning-74334da4bfc5>	[accessed	8	September	2018].	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 185 | P a g e  

 
 

remediation’.217	This	is	unsurprising	given	that	such	gradients	are	derived	directly	from	the	product	
of	terms	in	all	subsequent	network	layers	and,	as	above,	the	product	of	many	of	these	terms	will	
themselves	be	similarly	volatile.	In	considering	the	architecture	of	AWS,	the	JASON	report	
concludes	that	‘different	layers	will	learn	at	different	rates,	and	the	learning	will	be	unbalanced.	
This	problem	becomes	worse	as	the	number	of	layers	becomes	large	and	is	thus	a	particular	
challenge	for	deep	neural	networks’.218	In	settling	that	weapon	learning	derives	‘an	approximate	
answer	[that]	is	usually	good	enough;	when	it	works,	it	is	not	necessary	to	understand	why	or	how’,	
JASON	is	unintentionally	confirming	the	unsuitability	of	machine	learning	as	the	AWS’	technical	
spine.219		
	

There	are	also	operational	difficulties	with	this	architectural	learning	model	that	are	relevant	
to	AWS	deployment.	This	is	unsurprising	given	JASON’s	conclusion	that	current	learning	technology	
‘has	not	systematically	addressed	the	engineering	priorities	of	reliability,	maintainability,	debug-
ability,	evolvability,	fragility	and	attackability’.220	That	report	also	questions	whether	existing	AI	
models	are	systematically	amenable	to	validation	or	verification.221	It	is	the	number	of	parameters	
(including	attendant	weights	and	biases)	that	is	operationally	problematic.	Outputs	will	depend	on	
the	training	data	used,	the	order	in	which	this	data	is	processed,	the	training	algorithm	employed	
and,	as	noted	by	Matthews,	the	frequency	with	which	machine	templates	are	updated.222	In	
highlighting	that	the	function	is	non-convex	(while	the	model’s	optimization	has	been	designed	for	
convex	problems	such	as	the	gradient	descent,	for	instance,	as	set	out	above),	Van	den	Berg	cites	
this	as	a	key	architectural	shortcoming.223	Moreover,	the	operational	significance	of	such	variability	
is	unlikely	to	be	spotted	and	remediated	in	any	timely	manner.	Regularization	routines	will	also	act	
as	an	aggressive	and	inappropriate	edit	on	the	AWS’	primary	sensed	data	while	Wei	Pan	notes	that	
the	practice	of	dropping	neurons	ignores	the	non-zero	weighting	of	all	such	connections.224	While	
Sharkey’s	conclusion	is	that	the	fragility	of	learning	networks	can	only	increase	as	that	model	is	
shoehorned	into	weapon	management225,	Bartlett	notes	that	sample	complexity	requires	that	‘the	
number	of	training	examples	should	grow	at	least	linearly	with	the	number	of	adjustable	

																																																								
217	Yadong	Mu	and	others,	‘Stochastic	Gradient	Made	Stable:	A	Manifold	Propagation	Approach	for	Large	Scale	
Optimisation’,	arXiv:1506.08350v2,	(12	January	2016),	pp.	1-2	<https://arxiv.org/pdf/1506.08350.pdf>.		
218	JASON	program,	p.	66.	
219	Ibid.,	p.	25.	
220	Ibid.,	p.	27.	
221	See:	Chapters	10	(Oversight),	specifically:	10.2	(‘Validation	and	testing’)	and	9	(Hardware),	specifically:	9.4	
(‘Operational	hardware	issues’).		
222	Iain	Matthews	and	others,	‘The	Template	Update	Problem’,	Robotics	Institute,	Carnegie	Mellon	University,	(2004),	pp.	
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Group,	ICLR,	(2016),	p.	1	and	p.	5	<https://arxiv.org/pdf/1606.04521.pdf>.	Linear	functions	are	convex.	Linear	
programming	problems	are	therefore	convex	problems	where	there	can	only	be	one	optimal	solution.	Non-convex	
problems	are,	reports	Berg,	more	complex	and	often	intractable.		

224	Wei	Pan	and	others,	‘DropNeuron:	Simplifying	the	Structure’,	arXiv,	(23	June	2016),	pp.	3-4	
<https://arxiv.org/abs/1606.07326>	[accessed	15	July	2017].		Other	strategies	include	pruning	datasets	based	on	a	test	
of	‘small	weighting’	and	amending	the	training	run’s	cost	function	based	on	‘sparse	regression’.		
225	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
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parameters	in	the	network’.226	Efficiencies,	therefore,	appear	unlikely	from	expanding	data	inputs	
in	these	weapon	processes.	Finally	to	this	point,	current	precedents	remain	laboratory-bound227	
and,	notes	Wray,	largely	restricted	to	limited	tasks	in	a	controlled	environment	that	is	amenable	to	
human	intervention	and	supervision.	Evidence	is	scarce	from	its	practical	deployment	in	settings	
that	are	subject	to	arbitrary	occurrences.228	The	conclusion	for	this	section	is	therefore	provided	by	
Asaro	whereby	‘the	decision	to	kill	a	human	can	only	be	legitimate	if	it	is	a	non-arbitrary	and	there	
is	no	way	to	guarantee	and	that	the	use	of	force	is	not	arbitrary	without	human	control,	supervision	
and	responsibility’.229		

 Missing pieces 
	
Another	way	to	look	at	the	feasibility	of	AWS’	likely	architectural	basis	is	to	consider	instead	those	
critical	technologies	that	currently	remain	outstanding.	Selam	notes	in	this	case	that	several	such	
capabilities	appear	out	of	reach	including,	inter	alia,	reliable	processing	of	abstract	imagery,	robust	
summarization	skills	as	well	as	proven	system	tools	that	permit	scene	and	episode	
understanding.230	As	noted	in	SIPRI’s	November	2017	report	(and	in	line	with	Sabin’s	‘Revolution	in	
Expectation’231),	‘delivery	of	such	technology	trails	behind	expectations’.232	In	particular,	Srinivasan	
highlights	that	computers	struggle	to	interpret	wider	context.233	Vision	software	may	identify	a	
soldier	walking	but	is	unable	to	determine	why	the	soldier	is	walking.234	Given	the	difficulty	of	
representing	abstract	relationships	between	objects	and	people	in	models	of	the	real	world,	the	
same	happens	in	computer	speech	recognition	where	the	computer	may	understand	what	is	said	
but	not	‘what	is	being	discussed’.235	This	likely	renders	autonomous	systems	particularly	vulnerable	

																																																								
226	Peter	Bartlett,	‘The	sample	complexity	of	the	pattern	classification	with	networks;	the	size	of	the	weights	is	more	
important	than	the	size	of	the	network’,	IEEE	Transactions	on	information,	44,	2,	(March	1998),	p.	1.	See,	also,	Chapter	1	
(Introduction),	specifically	1.7	('Statement	of	Methods').		
227	Barry	Wray	and	others,	‘An	artificial	neural	network	approach	to	learning	from	factory	performance	from	a	Kanban	
based	system’,	Journal	of	International	Information	Management,	12,	2,	article	7,	(2003)	generally.	
228	Jason	Brownlee,	‘How	to	Improve	Deep	Learning	Performance’,	Deep	Learning,	(21	September	2016)	
<https://machinelearningmastery.com/improve-deep-learning-performance/>	[accessed	2	August	2017].	
229	Peter	Asaro,	‘On	banning	Autonomous	Weapon	Systems:	Human	rights,	automation	and	the	dehumanisation	of	lethal	
decision	making’,	International	review	of	the	Red	Cross,	94,	886,	(Summer	2012),	p.	693	
<https://www.icrc.org/eng/assets/files/review/2012/irrc-886-asaro.pdf>.		
230	B	Selam	(moderator)	and	others,	‘Challenge	problems	for	Artificial	Intelligence’,	13th	National	Conference	on	AI,	AAAI-
96,	paras.	7-17	of	40	<http://erichorvitz.com/selman.htm>	[accessed	16	June	2017].	
231	See:	Chapter	1	(Introduction),	specifically:	1.7	(‘Statement	of	methods’).		See	also	introduction	to	Chapter	11	
(Conclusion).		
232 Boulanin	and	Verbruggen,	p.	65.	
233	See:	Venkat	Srinivasan,	‘Context,	Language	and	Reasoning	in	AI:	Three	Key	Challenges’,	MIT	Technology	Review,	(14	
October	2016)	<https://www.technologyreview.com/s/602658/context-language-and-reasoning-in-ai-three-key-
challenges/>	[accessed	12	September	20127].	Although	written	in	1999,	see:	Michael	Schrage,	‘The	Real	Problem	with	
Computers’,	Harvard	Business	Review,	(October	1997)	<https://hbr.org/1997/09/the-real-problem-with-computers>	
[accessed	8	September	2017].	
234	Ibid.,	p.	15.	
235	Venkat	Srinivasan,	‘Context,	Language	and	Reasoning	in	AI’,	generally.	Srinivasan	notes	that,	in	the	absence	of	
Natural	Language	Understanding	(NLU),	learning	systems	must	convert	text	into	data	and,	in	that	conversion	process,	
lose	all	context	within	that	text.		
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to	trickery.236	Commenting	on	such	missing	pieces,	Haikonen,	Principal	Scientist	at	Nokia	
Research’s	cognitive	technology	lab,	observes	of	AI	that	‘performance	has	varied	from	barely	
acceptable	to	outright	ridiculous.	As	for	general	intelligence	and	true	creativity,	there	has	been	
definitely	none’237	and	concluding	that	‘AI	and	the	networks	have	produced	some	remarkable	
results	but	these	approaches	do	not	excel	in	applications	where	a	true	understanding	is	needed’.238	
AWS,	after	all,	must	be	able	to	sense,	think	and	decide,	act	and	team.239	Without	a	facility	to	
generalize,	Cummings	concludes	that	AWS	deployment	must	be	limited	to	known	situations	and	
environments.240	It	is	also	inferred	from	Knight	that	AWS’	features	are	themselves	in	flux	with	
capabilities	under	development	including	‘culturally	informed’	and	values-based	reasoning	as	well	
as	an	ability	to	integrate	social	with	behavioural	models.241	There	are,	moreover,	seeming	
roadblocks	to	several	of	these	required	capabilities	where,	notes	Bodel,	progress	has	been	
nonexistent.242	An	example	is	the	enabling	of	statistical	and	logic	agents	to	display	creativity.	While	
Vego	argues	that	creativity	in	battlefield	routines	is	a	pivotal	advantage243,	very	little	relevant	
progress	is	evident	in	the	coding	and	assimilation	of	combinatory	creativity	(the	novel	and	likely	
improbable	amalgamation	by	the	weapon	of	otherwise	familiar	routines),	exploratory	creativity	
(the	generation	of	novel	strategies	through	adhoc	exploration	of	what	might	be	conceptual	spaces)	
or,	more	importantly,	transformational	creativity	(the	modification	of	arguments	allowing	new	
structures	to	be	generated	that	would	otherwise	not	have	been	available	to	the	weapon).244		

	
Any	such	absent	capabilities	must	also	all	be	available	at	the	moment	of	AWS	deployment	in	

order	for	that	weapon	to	be	feasible,	relevant	and	compliant.	While	navigation	and	routing	are	
already	established	framework	capabilities,	Ackerman	demonstrates	that	obstacle	avoidance,	
agility	and	dexterity	remain	work	in	progress.245	Navigational	intent	and	the	ability	to	exhibit	
independent	actuator	control	also	remain	outstanding	notwithstanding	their	importance	to	AWS	

																																																								
236	US	Army,	‘Robotic	and	Autonomous	System	Strategy’,	Army	Capabilities	Integration	Centre,	p.	4,	(March	2017)	
<http://www.tradoc.army.mil/FrontPageContent/Docs/RAS_Strategy.pdf>.	See	also:	Chapter	8	(Software),	specifically:	
8.2	(‘Coding	errors’).		
237	Haikonnen,	p.	3.	
238	Ibid.,	pp.	3-5.	
239	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	Defense	Science	Board,	Office	for	Acquisition,	Technology	
and	Logistics,	Washington,	(June	2016),	p.	11.	
240 Missy	Cummings,	‘Artificial	intelligence	and	the	future	of	warfare’,	Chatham	House,	Research	Paper	draft,	(January	
2017),	generally. 
241	Will	Knight,	‘5	Big	Predictions	for	Artificial	Intelligence	in	2017’,	MIT	Technology	Review,	(4	January	2017),	paras.	2	
and	6	of	16	<https://www.technologyreview.com/s/603216/5-big-predictions-for-artificial-intelligence-in-2017/>	
[accessed	30	August	2017].	See:	Chapter	7	(Firmware,	specifically:	‘Statistical	frameworks’).	For	specific	analysis	of	
technical	challenges	to	AWS	routines,	see:	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’)	and	
8.6	(‘Value	setting	issues’).	
242	Margaret	Bodel,	‘Creativity	and	Artificial	Intelligence’,	School	of	Cognitive	and	Computer	Science,	Brighton,	Artificial	
Intelligence,	103,	(1998),	p.	347.	
243	Milan	Vego,	‘On	Military	Creativity’,	ndupress,	70,	(Third	Quarter	2013),	pp.	83-86	
<http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-70/JFQ-70_83-90_Vego.pdf>.	
244	Bodel,	p.	348.	
245	Evan	Ackerman,	‘Algorithms	allow	Micro	Air	Vehicles	to	avoid	obstacles	with	single	camera	and	neuro-morphic	
hardware’,	IEEE	Spectrum,	(6	November	2012),	paras.	3	and	5	of	9	
<http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/algorithms-allow-mavs-to-avoid-obstacles-with-
single-camera>	[accessed	4	September	2017].	
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deployment.246	An	additional	challenge	is	that	the	weapon’s	sequence	of	observations	and	actions	
are	only	revealed	incrementally.247	Similarly	outstanding	is	an	architecture	that	can	reliably	capture	
qualia	within	weapon	systems.	For	the	purposes	of	this	thesis,	qualia	can	best	be	defined	as	the	
subjective	or	qualitative	properties	of	a	lethal	engagement.248	They	are	the	introspectively	
accessible,	phenomenal	aspects	of	what	might	be	the	human	operator’s	mental	sequences.	Zakaria	
notes	the	current	absence	of	either	an	agreed	definition	for	their	functional	characterization	or,	
more	importantly,	‘a	set	of	engineering	principles	for	[such]	synthetic	phenomenology’.249	The	
verso	is	what	Suchman	and	Weber	note	to	be	‘the	simplistic	and	shallow	[nature]	of	world	models’	
whereby	current	machine	representations	all	operate	at	a	‘metric	level	that	precludes	reasoning,	or	
at	a	cognitive	level	without	a	physical	grounding’.250		

 AWS control methodologies 
	
In	understanding	AWS	architecture,	it	is	helpful	in	this	chapter’s	final	section	to	consider	from	a	
technical	perspective	how	(and	where)	the	Delivery	Cohort	can	control	its	independent	AWS	which	
is	being	deployed,	after	all,	in	order	that	it	adhere	to	and	then	further	the	Cohort’s	broad	plans.	AWS	
actions	must	be	intentional	and	in	accordance	with	those	plans.251	The	contradiction	is	that	such	
systems	are	by	definition	independent.	Yampolskiy	and	Fox	note	here	that	there	are	several	
variants	to	such	intervention.252	The	Cohort	might	seek	to	exert	broad	capability	control	whereby	
undesirable	engagement	outcomes	might	be	avoided	by	limiting	what	a	weapons-directing	artificial	
intelligence	system	might	accomplish.	Physical	containment	does	not	equate	to	locking	the	weapon	
system	in	a	box.	Instead,	it	relates	to	suppression	of	certain	capabilities	in	preventing	its	interaction	
with	the	external	world	other	than	by	specific	and	restricted	input	and	output	channels.253	This	
clearly	contradicts	the	fundamentals	of	machine	learning	as	well	as	AWS’	practical	relevance.	Other	
restraints	must	therefore	be	investigated.		
	

It	might	instead	be	theoretically	possible	to	incorporate	strongly	specific	reasoning	into	the	
weapon’s	sequences	not	to	engage	in	harmful	behaviour	(incentive	method).	Again,	this	second	
model	fails	on	a	practical	level.	Human	values	regularly	contain	contradictions	that	may	not	be	
mutually	reinforcing;	many	people	enjoy	eating	meat	but	cannot	imagine	killing	animals	from	
whence	it	comes.	Implementing	any	such	control	structure	across	a	weapon’s	AI	will	be	intrinsically	

																																																								
246	Mor	Vered	and	Gal	Kahminka,	‘Online	recognition	of	navigational	goals	through	goal	mirroring’,	Proceedings	of	16th	
Conference	of	Autonomous	Agents	and	Multi-agent	Systems,	Extended	Abstract,	AA-MAS,	(2017),	p.	1748	
<http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p1748.pdf>.	
247	Fangzhen	Lin,	‘On	Moving	Objects	in	Dynamic	Domains’,	Association	for	the	Advancement	of	Artificial	Intelligence,	
(2012),	p.	1	<http://commonsensereasoning.org/2011/papers/Lin.pdf>.	
248	Source:	Stanford	Encyclopaedia	of	Philosophy	<https://plato.stanford.edu/entries/qualia/>	[accessed	23	August	
2017].	
249	Norodin	Zakaria,	‘Thoughts	of	Qualia	in	Machines’,	rxiv.org,	(2005),	pp.	2-4	<http://vixra.org/pdf/1505.0146v1.pdf>.		
250	Suchman	and	Weber,	‘Human-machine	autonomies’,	cit.	Bhuta	et	al	(eds),	p.	93.	
251	Lise	Verdiesen,	‘How	do	we	ensure	that	we	remain	in	control	of	our	autonomous	weapons?’,	AI	Matters,	3,	3,	p.	47	
and	generally	<https://sigai.acm.org/static/aimatters/3-3/AIMatters-3-3-11-Verdiesen.pdf>.	
252	Roman	Yampolskiy	and	Joshua	Fox,	‘Safety	Engineering	for	Artificial	General	Intelligence’,	Machine	International	
Research	Institute,	(2012),	p.	1	and	pp.	9-10	(Grand	Challenges’)	
<https://intelligence.org/files/SafetyEngineering.pdf>.<https://intelligence.org/files/SafetyEngineering.pdf>	
253	Yampolskiy	and	Fox,	pp.	7-8.	
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delicate	and	prone	to	error	and	unforeseen	outcomes.254	The	challenge	to	the	‘specification	route’	
comes	from	determining	which	rules	and	values	are	appropriate	and	then	expressing	them	in	
code.255	Borrowing	from	Russell,	‘everything	is	vague	to	a	degree	you	do	not	realise	until	you	have	
tried	to	make	it	precise’.256	An	adjunct	architectural	method	might	be	to	limit	the	internal	capacities	
of	the	weapon	platform	(stunting).	In	this	case,	however,	Bostrom	notes	that	too	much	stunting	
produces	a	weapon	platform	that	is	simply	‘another	piece	of	software’.257	Furthermore,	it	will	not	
be	obvious	which	information	should	be	rationed,	either	in	AWS’	data-gathering	phase	or	
subsequent	engagement	sequence.	Indeed,	Etzioni	and	Etzioni	correctly	point	out	that	expansive	
situational	awareness	requires	that	weapon	to	have	all	possible	information	at	its	immediate	
disposal.258	Given	this,	action	by	the	Delivery	Cohort	to	reduce	either	sensor	or	processing	
bandwidth	must	weaken	LOAC	compliance	and	oblige	review	elsewhere	for	an	appropriate	model	
of	control.		

	
Capability	control	methods	require	architecture	that	automatically	detects	and	reacts	to	

attempted	transgression	(termed	tripwires	by	Bostrom).259	An	overly	sensitive	tripwire,	however,	
will	interfere	with	intended	operations	and	reduce	weapon	certainty	while	too	much	latitude	might	
enable	poor	(and	therefore	illegal)	behaviour.	Furthermore,	the	Cohort’s	monitoring	must	be	
properly	powerful	in	order	to	scan,	for	instance,	all	of	the	weapon’s	cognitive	processes	for	
deception	or	other	coding	vulnerabilities.	Weapon	restraint	is	therefore	an	unexpected	
architectural	challenge	in	AWS	deployment.260	As	pointed	out	by	Boddens	Hosang,	containment	
strategies	involving	incentives,	curbs	or	tripwires	must	still	adhere	to	adopted	rules	of	
engagement.261	A	conundrum	then	arises	from	striking	balance	between	weapon	control	and	
weapon	functionality,	a	recurrent	thread	to	the	challenges	facing	the	removal	of	supervision	across	
autonomous	machines.262	Containment	strategies,	moreover,	may	generally	encourage	what	proves	
to	be	a	false	sense	of	security	in	the	unsupervised	weapon,	especially	in	times	of	battlefield	
stress.263	An	adjunct	method,	therefore,	might	be	informational	containment	which	would	aim	to	

																																																								
254	Verdiesen,	‘How	do	we	ensure	that	we	remain	in	control	of	our	autonomous	weapons?’,	pp.	49-50.	
255	See:	Chapter	8	(Software),	specifically:	8.1	(‘Coding	methodologies’).	
256	Bertrand	Russell,	The	Philosophy	of	Logical	Atomism,	The	Collected	Papers	of	Bertrand	Russell,	(Boston:	Allen	&	
Urwin,	1986),	p.	161	
257	Bostrom,	Superintelligence,	p.	136.	
258	A	and	O	Etzioni,	‘Pro	and	Cons	of	Autonomous	Weapon	Systems’,	Military	Review,	(May-June	2017),	p.	78	
<http://www.armyupress.army.mil/Portals/7/military-review/Archives/English/pros-and-cons-of-autonomous-
weapons-systems.pdf>.	
259	Bostrom,	SuperIntelligence,	p.	129.	
260	Boulanin	and	Verbruggen,	pp.	72-73.	
261 JFR	Boddens	Hosang,	‘Rules	of	Engagement;	rules	on	the	use	of	force	as	linchpin	for	the	international	law	of	military	
operations’,	UvA-DARE,	(8	February,	2017),	‘Military	Operational	Context’. 
262	Paulina	Hensman	and	David	Masto,	‘Impact	of	Imbalanced	Training	Data’,	Degree	project,	Royal	Institute	of	
Technology,	Stockholm,	(May	2015),	p.	5.	See	also:	Norman	Cook,	‘Correlations	between	Input	and	Output	Units	in	
Neural	Networks’,	Cognitive	Science,	19,	(1995),	pp.	563-564	and	pp.	573-574	
<http://onlinelibrary.wiley.com/store/10.1207/s15516709cog1904_4/asset/s15516709cog1904_4.pdf?v=1&t=j92drf
8l&s=e020a71c328cea489ebd9adda64fe63338ff9177>	[accessed	10	June	2017].	See	also:	Chapter	10	(Oversight),	
generally.	
263	Ryan	O’Hare,	‘Armed	drones	and	military	robots	have	‘limitless	potential	for	disaster’:	Experts	fear	that	we	are	being	
lulled	into	a	false	sense	of	security	by	autonomous	machines’,	Daily	Mail	newspaper,	4	March	2016	
<https://www.dailymail.co.uk/sciencetech/article-3476870/Armed-drones-military-robots-limitless-potential-
disaster-experts-warn.html>	[accessed	24	July	2018].	
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pre-filter	and	otherwise	control	what	information	is	allowed	to	exit	from	the	weapon.	Still	other	
capability	control	tools	exist	on	paper.	Reward	mechanisms	might	appear	unlikely	but	rely,	for	
instance,	upon	diffuse	‘social’	services264	to	reward	(as	well	as	mechanisms	that	penalize)	the	
weapon’s	AI.	These	models	currently	remain	untested	as	do	associated	mechanisms	that	require	
machine	validation	from	its	Delivery	Cohort	which	would	then	incentivise,	notes	Grossman	and	
Hart,	the	weapon	to	act	in	the	interests	of	that	principal.265	The	boundaries	of	weapon	interaction	
and	the	level	of	priority	given	to	such	intervention	(in	order	not	to	adulterate	the	weapon’s	wider	
independent	operation)	will	also	require	definition,	implementation	and	monitoring.	The	law	of	
unintended	consequences	lurks:	An	unexpected	outcome	here	might	be	the	AWS	taking	on	
disproportionate	risk	in	exchange	for	a	small	chance	of	increasing	its	sphere	of	influence.	It	can,	for	
instance,	be	inferred	from	Bostrom	that	it	would	be	‘expensive’	to	offer	a	weapons-directing	AI	any	
higher-than-expected	utility	as	a	reward	for	cooperation	than	the	weapon	could	itself	hope	to	
achieve	by	pursuing	a	nefarious	end.266	Restraint	thus	becomes	a	trial-and-error	matter	of	juggling	
confidence	levels	and	weightings	and,	as	such,	is	inappropriate	for	a	model	that	must	work	first	
time	and	every	time	in	order	for	the	Cohort	to	remain	compliant	with	LOAC.267	A	final	architectural	
alternative	exists	in	order	to	ensure	weapon	control.	Specifying	a	process	for	arriving	at	an	
appropriate	battlefield	standard	rather	than	specifying	the	standard	itself	might	in	theory	achieve	
appropriate	control	over	the	independent	weapon.	Under	such	indirect	normativity,	the	AWS	might	
then	be	motivated	to	carry	out	this	process	and	adopt	whatever	standard	the	process	has	
imputed.268	It	does,	however,	nothing	to	dilute	the	complexity	and	variability	of	specifying	and	then	
overseeing	such	systems.	Russell’s	concern	is	how	corruption	can	be	prevented	from	spreading	
throughout	AWS	action	routines	as	that	weapon’s	overall	cognitive	capabilities	theoretically	mature	
with	battlefield	experience?269	Any	enhancement	of	a	system’s	overall	cognition	(whether	through	
learning	routines,	from	external	updates	or	from	other	manipulation)	is	likely	to	affect	the	AWS’	
motivation	in	ways	that	are	impossible	either	to	predict	or	detect.		

	
Architectural	flux	is	therefore	a	key	challenge	to	AWS	deployment	and	one	that	is	compounded	

by	the	CACE	phenomenon	whereby	‘changing	anything	changes	everything’.270	CACE	renders	prior	
training	datasets	immediately	obsolete,	it	may	require	abrupt	reset	of	the	AWS	and	is	a	source	of	
machine	instability	and	operational	randomness.	Consequences	arising	from	such	flux	are	
exacerbated	by	deployment	experience	being	unique	to	each	unsupervised	weapon.	One	AWS	will	
																																																								
264	See:	Chapter	8,	specifically:	8.3	(‘Utility	Function’).		
265	Sanford	Grossman	and	Oliver	Hart,	‘An	Analysis	of	the	Principal-Agent	Problem’,	Econometrica,	51,	1,	(January	1983),	
p.	10	<http://brousseau.info/pdf/cours/grossman_hart_83.pdf>.	
266	Bostrom,	Superintelligence,	p.	132.	
267	Given	possible	incapacity	in	its	principal	(and	this	need	only	be	implied),	subsequent	disagreement	about	the	AWS’	
performance	or	any	change	in	its	‘agreed’	measurement	regime	might	lead	the	weapon’s	learning	mechanism	no	longer	
to	trust	that	principal	to	deliver	its	promised	rewards.	Finally	to	this	point,	neither	the	outcomes	produced	by	the	AI	nor	
the	end-state	of	those	outcomes	may	be	obvious	to	the	battlefield	commander	or	anyone	in	the	Delivery	Cohort.		
268	Nick	Bostrom,	‘Hail	Mary,	Value	Porosity,	and	Utility	Diversification’,	nickbostrom.com,	(19	December	2014),	p.	4	
<https://nickbostrom.com/papers/porosity.pdf>.	
269	Stuart	Russell	and	others,	‘Research	Priorities	for	Robust	and	Beneficial	Artificial	Intelligence’,	Association	for	the	
Advancement	of	Artificial	Intelligence,	(Winter	2015),	pp.	105-16	
<https://ocs.aaai.org/ojs/index.php/aimagazine/article/download/2577/2521>	[accessed	8	June	2017].	
270	See	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’)	and	7.2	(‘Firmware	ramifications	of	machine	
learning’).	Also:	Slav	Ivanov,	‘37	Reasons	your	Neural	Network	is	not	Working’,	M	Slav	blog,	(25	July	2017)	
<https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working-4020854bd607>)	[accessed	2	October	
2018].		
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be	materially	different	from	a	second	‘colleague’	weapon	within	moments	of	first	deployment.	This	
creates	immediate	heterogeneity	(both	within	and	without	autonomous	weapon	categories)	
reducing	perhaps	the	attraction	AWS	to	the	Delivery	Cohort	unless	those	weapons’	tasking	is	so	
tight	to	make	any	such	machine	sovereignty	almost	meaningless.	It	is	therefore	unclear	whether	an	
architectural	basis	is	empirically	available	for	the	Cohort	that	is	both	feasible	and	appropriate	for	
unsupervised	weapons.	For	this	reason,	this	thesis	now	considers	whether	firmware	and	software	
can	backfill	for	what	otherwise	will	remain	fundamental	challenges.	
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7. Firmware:	Embedded	process	challenges	to	AWS	function	

An	overarching	research	question	for	this	thesis	is	to	consider	whether	an	unsupervised	weapon	
system	can	feasibly	be	reliably	compliant	and	reliably	dependable.	Firmware	is	defined	as	the	
permanent	software	already	loaded	when	the	weapon’s	control	systems	start	up.1	For	this	purpose,	
it	is	considered	together	with	the	weapon’s	middleware,	the	software	that	acts	as	a	bridge	between	
the	weapon’s	operating	system	(or	databases)	and	its	several	applications,	the	subject	of	the	
following	chapter.2	While	middleware	is	specific	to	an	operating	system,	firmware	is	not	and	
together	they	are	used	here	as	a	proxy	for	AWS’	architectural	capability.3	It	is	the	combination	of	
firmware	and	middleware	that	provides	the	weapon’s	connectivity	enabling	multiple	processes	to	
run	on	one	or	more	independent	systems	and	allowing,	in	theory,	interaction	across	networks.	This	
chapter’s	purpose	is	therefore	to	identify	challenges	arising	from	AWS	architecture,	its	firmware	
and	middleware	upon	which	functions	the	weapon’s	application	software.	As	noted	by	Triska,	AWS	
firmware	will	define	its	solution	processes	regardless	of	weapon	tasking.4	The	challenge	arises	from	
the	tailoring	of	those	processes	(and	thus	weapon	firm	and	middleware)	to	the	capabilities	
specified	by	the	Design	Cohort	and,	as	evidenced	from	the	computer	games	industry,	the	difficulties	
that	such	subsequent	aggregation	entails.5	The	chapter	is	divided	into	four	sections	that	consider	
AWS’	sources	of	fragility,	specific	performance	and	behaviour	consequences	arising	from	the	
weapon’s	machine	learning	(ML)	spine	and,	finally,	ramifications	arising	from	how	it	is	expected	
that	AWS	will	reason,	understand	and	direct	its	attentions.	In	this	vein,	Bostrom	highlights	engineer	
practices	that	are	based	on	remote	code	libraries	which,	he	suggests,	will	further	compromise	AWS’	
design.6			

 Sources of technical debt 
	
This	chapter’s	enquiry	into	AWS	feasibility	starts	by	considering	how	firmware	might	escalate	
system	fragility.	The	concept	of	technical	debt	was	first	put	forward	by	Cunningham	in	1992	in	
order	to	quantify	costs	arising	between	speed	of	execution	and	quality	of	engineering.	Technical	
debt	is	therefore	a	metaphor	that	links	the	consequences	of	poor	software	design	to	accumulating	a	

																																																								
1	Jeff	Sieracki,	‘Machine	Learning	for	Embedded	Software	is	not	as	hard	as	you	may	think’,	Reality	AI,	(3	August	2016),	
paras.	6-7	of	12	<https://www.reality.ai/single-post/2016/08/03/5-tips-for-embedded-machine-learning>	[accessed	
10	October	2017].	Firmware	can	usefully	be	understood	as	that	permanent	software	that	is	programme	into	the	
weapon’s	read-only	memory.		
2	See:	Chapter	8	(Software),	specifically:	8.4	(‘Software	processing	functions’)	and	8.7	(‘Action	selection	issues’).		
3	Middleware	is	therefore	the	software	that	then	mediates	between	the	AWS’	assorted	application	software.	Middleware	
comprises	the	layer	that	resides	between	hardware	and	application	in	order	to	provide	critical	background	services.	
4	Ricardo	Triska,	‘Artificial	Intelligence,	classification	theory	and	the	uncertainty	reduction	process’,	Federal	University	
of	Santa	Catherina,	Brazil,	(2013),	pp.	479-480	<http://www.iskoiberico.org/wp-content/uploads/2014/09/479-
486_Triska.pdf>.	See	also:	Kristinn	Thorisson	and	others,	‘Why	artificial	intelligence	needs	a	task	theory.	And	what	it	
might	look	like’,	9th	International	Conference	on	AGI,	(2016),	pp.	2-3	
<http://people.idsia.ch/~steunebrink/Publications/AGI16_task_theory.pdf>.	
5	Cameron	Browne	and	others,	Towards	the	Adaptive	Generation	of	Bespoke	Game	Content,	(USA:	John	Wiley	Publishing,	
2012),	pp.	3-5	<http://ccg.doc.gold.ac.uk/wp-content/uploads/2016/10/browne_ieeechapter14-2.pdf>.		
6	Bostrom,	Superintelligence,	p.	152.	See	also:	Tjorisson,	p.	5.	and	Gerhard	Weiss,	‘Learning	to	coordinate	actions	in	
multi-agent	systems’,	Munich	Proceedings	if	the	International	Joint	Conference	on	Artificial	Intelligence,	(1993),	p.	311	
<http://www.ijcai.org/Proceedings/93-1/Papers/044.pdf>.	
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‘financial	debt’.7	It	will	be	an	assertion	of	this	chapter	that	such	‘debt’	is	particularly	relevant	to	
AWS	deployment;	as	a	loan	must	eventually	be	repaid,	with	compounding	interest,	so	too	hasty	
design	decisions	in	the	removal	of	human	supervision	must	be	paid	for	with	poor	weapon	
reliability,	re-factoring,	debugging,	fragility	and	complicated	testing.8	In	reviewing	AWS	firmware,	
an	aim	is	thus	to	review	the	premise	that	machine	learning	has	all	of	the	basic	code	complexity	
issues	that	may	be	found	in	normal	programming	but	also	‘a	larger	system-level	complexity	that	
can	create	hidden	debt’.9		
	

Causes	of	technical	debt	will	likely	include	(a	combination	of)	inappropriate	AWS	
architecture10,	shortcuts	arising	from	commercial	pressures,	a	lack	of	appropriate	testing	protocols	
or	appropriate	whole-system	understanding	and,	as	noted	by	Letovzey	and	Whelan,	lack	of	
ownership,	poor	technical	leadership	and	pervasive	specification	changes.11	Perry	also	notes	that	
debt	arises	from	‘counterparty	development’	whereby	isolated	software	routines,	once	developed,	
must	eventually	be	merged	into	a	single	source	base.12		Finally	to	this	point,	Richards	highlights	the	
effect	of	parallelism13	that	will	likely	exist	both	within	and	between	a	weapon’s	software	releases.	
Parallelism	prevents	tidy	separations	of	software	into	independent	work	units	and	decreases	both	
overall	awareness	and	distributed	knowledge	in	the	finished	product.	Scale,	furthermore,	
compounds	technical	debt	arising	by	increasing	both	interactions	and	interdependencies	among	
developers	and	the	Delivery	Cohort.	Technical	debt	occurs	as	projects	evolve.	In	this	case,	the	
practice	of	delayed	‘refactoring’	of	code	occurs	when	specific	routines	that	have	become	unwieldy	
must	then	be	largely	reworked.	Other	sources	of	debt	in	AWS	design	will	include	managing	the	
weapon’s	configuration	and	broader	integration,	resolving	semantic	conflicts,	determining	‘logical	
completeness’	and,	as	inferred	from	Perry,	evaluating	iterations	to	establish	the	product’s	unity	and	
fitness	for	purpose.14		
	

The	issue	here	is	how	the	weapon’s	firmware	may	add	to	such	debt.	First,	AWS	learning	models	
may	subtly	erode	the	weapon’s	abstraction	boundaries.15	Abstraction	is	the	reduction	of	AWS	
processes	to	their	set	of	essential	characteristics.	As	noted	by	Hearn,	strict	abstraction	boundaries	

																																																								
7	For	a	useful	primer	of	technical	debt,	see:	Philippe	Kruchtren	and	others,	‘Technical	Debt:	From	Metaphor	to	Theory	
and	Practice’,	IEEE	Software,	University	of	British	Columbia,	(2012),	pp.	18-19	
<https://www.computer.org/csdl/mags/so/2012/06/mso2012060018.pdf>.	
8	Zachary	Chase	Lipton,	The	high	cost	of	maintaining	machine-learning	systems’,	KD	Nuggets,	(January	2015),	generally	
<www.kdnuggests.com/2015/01/high-cost-of-maintaining-machine-learning-technical-debt.html>	[accessed	5	March	
2017].	
9	Sculley	and	others,	’Hidden	Technical	Debt	in	Machine	Learning	Systems’,	Advances	in	Neural	Information	Systems,	
(2015),	p.	1	<http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf>.	
10	See	previous	chapter,	specifically:	6.2	(‘Architectural	approaches’).	
11	Jean-Louis	Letovzey	and	Declan	Whelan,	‘Introduction	to	the	Technical	Debt	Concept’,	Agile	Alliance,	undated,	pp.	6-7	
<https://www.agilealliance.org/wp-content/uploads/2016/05/IntroductiontotheTechnicalDebtConcept-V-02.pdf>.	
12	Dewayne	Perry	and	others,	‘Parallel	changes	in	large-scale	software	development:	An	observational	case	study’,	
International	Conference	on	Software	Engineering,	ICSE98,	(2001),	p.	309	
<https://pdfs.semanticscholar.org/933a/98846a0adc29f2bf8f6557c9c15956562a07.pdf>.	
13	Andrew	Richards,	‘The	Challenges	of	Delivering	Massive	Parallelism	to	Real-World	Software’,	Codeplay	presentation,	
UKMAC,	(May	2016)	
<http://conferences.inf.ed.ac.uk/UKMAC2016/slides/Andrew_Richards_The_Challenges_of_Delivering_Massive_Parallel
ism_to_Real-World_Software.pdf>.	
14	Perry,	pp.	311-314.	
15	D	Sculley	and	others,	’Hidden	Technical	Debt	in	Machine	Learning	Systems’,	pp.	2-3.	
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help	define	software	variation,	facilitating	later	maintenance	in	the	field	and	simplifying	isolated	
changes	and	improvements.16	Abstraction	processes	are	not	straightforward	and,	as	inferred	
separately	from	Sculley	and	Dickson,	will	be	particular	problematic	in	AWS	deployment.17	In	
higher-level	models,	the	abstractions	used	will	often	have	no	relation	to	how	human	brains	work	
and	will	appear	illogical.	A	weapon’s	low-level	models18	may	conversely	lack	abstraction	rules	
notwithstanding	the	challenges	of	memory	management,	data	translation	and,	notes	Zhang,	
‘parameter	tuning’	and	‘code	reuse’.19	Technical	debt	in	machine-learning	models,	after	all,	will	be	
rooted	in	AWS’	reliance	on	both	external	and	divergent	information.	Indeed,	notes	Sculley,	‘desired	
behaviour	cannot	be	effectively	implemented	in	software	logic	without	dependency	on	external	
data’.20	The	firmware	significance	of	such	tight	coupling	(between	weapon	algorithm	and	remotely	
retrieved	digital	information)	concerns	the	degree	to	which	small	changes	in	the	AWS’	external	data	
then	alters	the	way	that	the	algorithm	(and	weapon)	behaves.21	Any	consequences	will	then	be	
compounded	where	data	acquisition,	processing	and	tuning	is	managed	by	different	firmware	in	
quite	different	systems	across	the	weapon.	This	is	not	an	obvious	process	and	is,	note	Sun	and	Giles,	
one	that	must	be	preceded	by	resolving	task	appropriateness,	data	comparison	(in	multiple	
domains)	as	well	as	the	mediation	of	weapon	assumptions	where	prior	knowledge	exists.22		

	
Frost	highlights	the	computational	challenge	of	ML	running	hierarchical	structures	that	are	

based	either	on	long-term	priors	or	on	loose	dependencies	that	are	tangential	and	therefore	hard	to	
code.23	The	consequence	for	AWS	deployment	is	that	the	weapon	must	then	make	correlations	that	
are	flat	(here,	non-hierarchical)	and	represented	as	simple	unstructured	lists	where	every	
correlated	feature	on	that	list	is	given	an	inappropriately	equal	footing	which	then	requires	
complex	proxies	(such	as	the	allocating	of	weightings	based	only	upon	the	sequence	or	positioning	
of	relevant	data	strings).24		Firmware’s	reliance,	furthermore,	upon	labelled	examples	leads,	notes	
Marcus,	to	systemic	inefficiency:	The	choice	for	the	Cohort	must	either	be	to	incorporate	an	almost	
unlimited	number	of	feature	detectors	on	the	weapon’s	grid	(that	must	themselves	grow	
exponentially)	or	to	increase	the	size	of	the	weapon’s	training	sets	in	a	similarly	exponential	

																																																								
16	Robert	Hearn,	‘Building	Grounded	Abstractions	for	Artificial	Intelligence	Programming’,	MIT	Press,	(June	2001),	pp.	7-
8	<https://groups.csail.mit.edu/mac/users/bob/grounded-abstractions.pdf>.	
17	D	Sculley	and	others,	pp.	2-4	(‘Entanglement,	correction	cascades,	undeclared	consumers,	unstable	and	underutilised	
data	dependencies	and	feedback	issues’).	See	also:	Ben	Dickson,	’The	Limits	and	Challenges	of	Deep	Learning’,	TechTalk,	
(27	February	2018),	paras.	8-9	<https://bdtechtalks.com/2018/02/27/limits-challenges-deep-learning-gary-marcus/>	
[accessed	6	September	2018].	
18 Rodney	Brooks,	‘Artificial	Intelligence	without	Representation’,	Artificial	Intelligence,	MIT	AI	Labs,	Elsevier,	47,	
(1991),	pp.	139-144	<http://www2.denizyuret.com/ref/brooks/brooks.pdf>.		
19	Ce	Zhang	and	others,	‘An	Overreaction	to	Broken	Machine	Learning	Abstraction’		HILDA	2017,	Chicago,	(14	May	2017)	
<http://pages.cs.wisc.edu/~wentaowu/papers/hilda17-easeml.pdf>	
20	Sculley	and	others,	p.	2.	
21	The	software	ramifications	of	coupling	is	discussed	in	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	
setting	issues’).	
22	Ron	Sun	and	C	Lee	Giles,	‘Sequence	Learning:	From	recognition	and	prediction	to	sequential	decision-making’,	IEEE,	
Intelligent	Systems,	(2001),	pp.	4-5	<http://www.sts.rpi.edu/~rsun/sun.expert01.pdf>.	
23	Christopher	Frost	and	others,	‘Generalized	File	System	Dependencies’,	SOSP,	(14	October	2007),	p.	1	and	p.	3	
<http://featherstitch.cs.ucla.edu/publications/featherstitch-sosp07.pdf>.	
24	Gary	Marcus,	‘Deep	Learning:	A	Critical	Appraisal’,	New	York	University,	arXiv:	1801:00631,	(2	January	2018),	pp.	9-10	
<https://arxiv.org/pdf/1801.00631.pdf>.	
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manner.25	The	firmware	conundrum	is	that	the	weapon	gets	caught	in	what	Marcus	terms	‘local	
minima’	whereby	its	system	gets	stuck	on	suboptimal	solutions	with	‘no	better	solution	appearing	
nearby	in	the	space	that	the	weapon’s	firmware	is	searching’.26	
	

The	weapon’s	firmware	is	essentially	a	tool	for	mixing	together	and	deriving	actions	from	a	
bank	of	data	sources.	Vincent,	however,	recasts	this	observation	to	suggest	that	AWS	firmware	is	a	
mechanism	for	creating	entanglement	whereby	the	isolation	of	individual	improvements	within	a	
self-learning	weapon	actually	becomes	impossible	as	none	of	the	AWS’	inputs	are	properly	
independent.27	As	above,	Sculley	terms	this	trait	the	CACE	principle,	whereby	Changing	Anything	
Changes	Everything.28	In	AWS,	this	relationship	will	likely	be	more	insidious:	While	it	may	be	
possible	for	the	Delivery	Cohort	to	predict	system	variation	arising	from	intended	developments	in	
code,	it	can	be	inferred	from	Dietterich	that	deviations	in	weapon	behaviour	will	likely	arise	from	a	
broad	universe	of	change	agents	such	as	variances	in	regularization	strength,	in	learning	settings,	in	
sampling	methods	and	convergence	thresholds.29	In	particular,	it	is	the	weapon’s	prediction	
sequences	that	may	have	nuanced	effects	on	action	selection.	Here,	the	weapon’s	firmware	must	
ensure	that	output	from	its	learning	routines	is	made	accessible	to	its	other	internal	subsystems,	
either	during	runtime	or	by	its	writing	to	logs	that	may	later	be	accessed	by	those	other	weapon	
systems.30	This	is	a	complex	matter	that	will	have	hidden	consequences.	Subsidiary	weapon	
subsystems	then	become	‘undeclared	consumers’,	consuming	the	output	of	a	particular	prediction	
as	input	to	another	component	of	that	overall	sequence.31	Given	its	modular	composition	and	
limited	computational	resource,	AWS	firmware	will	likely	recycle	and	repurpose	exactly	these	input	
signals	from	its	sensor	banks.	As	noted	by	UNIDIR,	unintended	feedback	loops	then	form	between	
weapon	algorithms	and	the	weapon’s	external	world.32	Such	loops	may	be	analogous	to	filter	
bubbles	in	social	networks	and	web	search	whereby	noise	suppression	mechanisms	inadvertently	
suppress	nonconforming	data.	This	feature	will	also	contribute	to	AWS	firmware	being	treated	as	a	
black	box,	resulting	in	considerable	‘glue	code’33	or,	worse	still,	calibration	layers	that	can	lock	in	
assumptions.	These	ramifications	are	discussed	later	in	this	chapter.34	

	

																																																								
25	Ibid.,	pp.	6-7.	
26	Ibid.,	p.	5.	
27	James	Vincent,	‘These	are	Three	of	the	Biggest	Problems	Facing	artificial	Intelligence’,	The	Verge,	10	October	2016	
<https://www.theverge.com/2016/10/10/13224930/ai-deep-learning-limitations-drawbacks>	[accessed	6	April	
2017],	generally.	
28	Sculley	and	others,	pp.	2-5.	
29	Thomas	Dietterich,	‘Learning	and	Reasoning’,	Department	of	Computer	Science,	Oregon	State	University,	(May	2003),	p.	
4	<http://web.engr.oregonstate.edu/~tgd/publications/mlsd-ssspr.pdf>.	
30	This	issue	is	sometimes	referred	to	as	visibility	debt.	For	discussion	on	action	selection,	see:	Chapter	8	(Software),	
specifically:	8.7	(‘Action	selection	issues’).		
31	Sculley	and	others,	p.	3.	
32	UNIDIR,	‘Safety,	Unintentional	Risk	and	Accidents	in	the	Weaponization	of	Increasingly	Autonomous	Technologies’,	
UNIDIR,	5,	(2016),	p.	6	and	pp.	7-9	<http://www.unidir.org/files/publications/pdfs/safety-unintentional-risk-and-
accidents-en-668.pdf>.		
33Azamat	Shakhimardanov	and	others,	‘Best	Practice	in	Robotics’,	BRICS	Collaborative,	(February	2013),	pp.	82-88	
(‘Interface	technologies’)	<http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf>.	
34	See	next	section:	7.2	(‘Firmware	ramifications	of	machine	learning’).	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 196 | P a g e  

 
 

This	phenomenon	of	the	‘undeclared	consumer’	creates	additional	technical	debt	with	costs	
arising	from	the	tight	coupling	of	a	particular	prediction	model	to	other	parts	of	the	weapon’s	
sensor	and	processing	stack.	Changes	within	those	routines	then	impact	other	system	processes,	
usually	in	ways	that	are	unintended	and	certainly	poorly	understood.	Empirically,	the	phenomenon	
actually	makes	it	problematic	to	make	any	changes	to	the	weapon’s	firmware	(here,	the	underlying	
model	of	the	AWS’	platform).	Pannu	and	Moore	point	also	to	the	secondary	costs	of	these	feedback	
loops	that	must	be	created	to	adjust	for	such	variations.35	A	battlefield	example	might	be	a	weapon	
subsystem	predicting	area-incursion	where	a	sub-routine	is	then	tasked	with	determining	entity-
size	in	possible	transgressors.	If	this	entity-size	module	then	starts	consuming	area-incursion	as	a	
discrete	input	signal	and	entity-size	has	an	effect	on	the	weapon’s	propensity	to	enter	the	area,	then	
the	inclusion	of	area-incursion	in	entity-area	adds	an	unwelcome	hidden	feedback	loop.	It	is	easy	to	
imagine	a	scenario	where	the	AWS	uncontrollably	recognises	increasingly	small	entity-size	
transgressors	(from	an	armoured	personnel	carrier	to	a	rabbit	to	a	flea)	in	its	output	generation.		
	

Dependencies	comprise	a	material	faultline	in	AWS	firmware.36	While	code	dependencies	may	
conceivably	be	spotted	via	static	analysis,	data	dependency	in	the	AWS	is	more	complicated	to	
identify	and	difficult	subsequently	to	untangle.	Why	is	this	an	issue?	Input	signals	may	themselves	
be	unstable,	meaning	that	they	qualitatively	change	behaviour	over	time.37	Rolling	out	
‘improvements’	to	that	particular	input	signal	will,	however,	likely	have	quite	arbitrary	effects	on	
weapon	performance.	A	mitigation	strategy	might	then	be	to	create	versioned	copies	of	given	
signals	within	the	weapon’s	logs	but	this,	notes	Sculley,	will	create	inappropriate	complexity	
(through	the	redundant	multiple	versions	of	data)	as	well	as	potential	staleness	within	AWS	data	
feeds.38	A	second	firmware	ramification	arises	from	underutilized	data	dependencies,	mostly	
unneeded	routines	within	the	weapon’s	programme	suites	that	provide	little	additional	accuracy.	
Examples	might	include	legacy	features,	bundled	features	or	additional	refinement	routines.	Each	
such	feature,	however,	adds	to	AWS	brittleness	as	the	weapon’s	firmware	will	assign	them	some	
weight	notwithstanding	their	redundancy.	Indeed,	Sculley	highlights	that	‘the	overall	system	is	
therefore	vulnerable,	sometimes	catastrophically	so,	to	changes	in	these	unnecessary	features’.39	
Subsequent	removal	of	these	routines	(for	instance,	a	weapon’s	dead	experimental	code-paths)	
may,	moreover,	be	a	further	source	of	system	error.	Vardi	points	here	to	the	general	difficulty	of	
performing	third-party	static	analysis	on	data	dependencies,	complicating	the	tracking	of	data	
throughout	the	weapon	system	and	action	sequences.40	In	the	interests	of	efficiency,	it	may	even	be	

																																																								
35	Adarsh	Pannu	and	Steve	Moore,	‘Three	Reasons	Machine	Learning	Models	Go	Out	Of	Sync’,	Inside	Machine	Learning,	
(27	November	2017)	<https://medium.com/inside-machine-learning/three-reasons-machine-learning-models-go-out-
of-sync-a101b2cdca54>	[accessed	12	September	2018].	
36	J	David	Morgenthaler	and	others,	‘Searching	for	build	debt:	experiences	managing	technical	debt	at	Google’,	
Proceedings	of	the	3rd	International	Workshop	on	Managing	Technical	Debt,	(2012),	p.	1	
<https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37755.pdf>.	
37	This	can	happen	implicitly	(a	signal	input	from	a	separate	model	updating	overtime	or	from	a	data-dependent	lookup	
table)	or	explicitly	(the	input	signal	is	imported	or	otherwise	separate	from	the	weapon	system).	
38	YB	Kim	and	Karl	Stratos,	‘Adversarial	Adaption	of	synthetic	or	Stale	Data’,	cit.	Proceedings	of	55th	AGM,	Association	of	
Computational	Linguistics,	Microsoft	AI	&	Research,	(2017),	pp.	1297-1298	
<http://www.karlstratos.com/publications/acl17adversarial.pdf>.	
39	Sculley	and	others,	p.	4.	
40	Moshe	Vardi	and	others,	‘The	Implication	Problem	for	Data	Dependencies’,	Hebrew	University	of	Jerusalem,	(January	
2006),	pp.	73-85	
<https://www.researchgate.net/publication/226509257_The_implication_problem_for_data_dependencies>	[accessed	
13	July	2017].	
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decided	to	stop	computing	a	particular	non-core	signal	within	the	weapon’s	automatic	targeting	
routines.	Even	if	there	are	no	references	to	that	routine	in	the	current	version	of	the	weapon’s	code,	
there	may	still	be	instances	with	older	binaries	referencing	that	input	and	leading	again	to	
unintended	outcomes.	
	

A	further	source	of	firmware’s	technical	debt	is	identified	by	Goeree	and	arises	from	the	
phenomenon	of	‘correction	cascade’.41	Such	cascades	typically	occur	when	machine	learning	models	
do	not	learn	as	predicted	requiring	an	external	fix	on	that	model’s	output.	Zavershynskyi	notes	that	
‘as	the	hot	fixes	pile	up	you	end	up	with	a	thick	layer	of	heuristics	on	the	ML	model’.42	In	short	
decision	cycles,	weapon	learning	will	be	reduced	as	its	routines	infer	nothing	new	from	the	
weapon’s	subsequent	observations.	Seemingly	minute	variations	in	a	training	dataset	might	justify	
re-running	the	earlier	training	but	this	time	with	a	small	learning	correction,	the	incentive	being	a	
fast,	low-cost	benefit	given	that	the	correction	should	be	immaterial	to	weapon	performance.	The	
issue,	however,	is	that	any	such	correction	is	likely	to	create	its	own	dependencies	within	the	
weapon’s	initial	dataset	making	it	challenging	then	to	attribute	on-going	improvement	in	weapon	
performance.	Bella	notes	that	this	will	be	aggravated	as	correction	is	applied	to	‘closely	related’	
(rather	than	precisely	delineated)	learning	such	as	calibrating	outputs	to	slightly	different	test	
distributions.43	Within	cascading,	a	further	challenge	is	also	for	the	weapon	to	factor	both	the	total	
but	also	the	distribution	of	this	error.	Cascading	can	then	produce	deadlock	whereby	the	local	
optimum	for	that	learning	system	becomes	circular	and	iterative	with	the	result	that	the	
component’s	routine	cannot	then	be	improved.44	While	humans	can	learn	relationships	from	a	very	
a	few	number	of	trials,	DeepMinds’	work	on	board	games	and	Atari	involved	billions	of	such	
examples.45	The	point	for	AWS	is	that	such	training	does	not	equate	to	understanding.	As	noted	
again	by	Marcus,	‘[Atari]	has	just	learnt	specific	contingencies	for	particular	scenarios’.46	Similarly,	
transfer	tests	(the	generalizing	of	conditions	that	are	different	from	those	encountered	during	
training)	demonstrate	that	machine	learning	outputs	are	often	extremely	superficial.47	This	is	
unsurprising	given	the	difficulty	of	evolving	machine	learning	from	interpolation	(effecting	
generalization	between	known	examples)	to	extrapolation	(the	requirement	to	advance	beyond	the	
space	of	known	training	examples).48	

																																																								
41	Jacob	Goeree,	‘Self-correcting	Information	Cascades’,	Review	of	Economic	Studies,	74.3,	(2007),	p.	733	
<http://pages.wustl.edu/files/pages/imce/brogers/casexp.pdf>.	
42	Maksym	Zavershynskyi,	‘Technical	Debt	in	Machine	Learning’,	Towards	Data	Science,	(1	July	2017)	
<https://towardsdatascience.com/technical-debt-in-machine-learning-8b0fae938657>	[accessed	3	November	2017].	
43	Antonio	Bella	and	others,	‘Calibrating	of	Machine	Learning	Models’,	University	of	Valencia,	undated,	pp.	1-3	
<http://users.dsic.upv.es/~flip/papers/BFHRHandbook2010.pdf>.	
44	Data	Science	blog,	‘Neural	Networks	getting	stuck	at	Local	Optima’,	September	2014	
<https://datascience.stackexchange.com/questions/2362/neural-networks-getting-stuck-at-local-optima>	[accessed	
12	May	2017].	See	also:	Akarachai	Atakulreka	and	others,	‘Avoiding	Local	Minima	in	Feed-forward	Neural	Networks	by	
Simultaneous	Learning’,	Springer	Publications,	Berlin,	(2007)	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.2375&rep=rep1&type=pdf>.		
45 Aman	Agarwal,	‘Explained	Simply:	How	DeepMinds	Taught	AI	to	Play	Video	Games’,	Medium.org	blog,	(27	August	
2017)	<https://medium.freecodecamp.org/explained-simply-how-deepmind-taught-ai-to-play-video-games-
9eb5f38c89ee>	[accessed	12	October	2017].	
46	Marcus,	p.	8.	
47	Sebastian	Ruder,	‘Transfer	Learning-Machine	Learning’s	New	Frontier’,	Ruder	blog,	(21	March	2017)	
<http://ruder.io/transfer-learning/>	[accessed	28	July	2017].	
48	Marcus,	p.	6.	
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AWS’	firmware	will	create	other	sources	of	technical	debt.	A	further	difficulty,	notes	Marcus,	is	

to	pollinate	deep	learning	models	with	prior	knowledge.49	These	models	can	neither	distinguish	
causation	from	correlation	nor	deal	with	open-ended	inference	(the	difference,	say,	between	‘John	
promised	Mary	to	leave’	and	‘John	promised	to	leave	Mary’).50	AWS	firmware	presumes	‘a	large,	
stable	world’	and,	as	inferred	from	Marcus,	even	if	ML	approximation	shows	promise,	the	Delivery	
Cohort	should	not	generally	trust	ML’s	output	given	that	such	learning	is	‘a	statistical	technique	and	
all	statistical	techniques	suffer	from	deviation	in	their	assumptions’.51	It	is	difficult	to	guarantee	
that	these	weapons	will	work	in	alternative	circumstances	with	novel	data	that,	after	all,	is	unlikely	
to	resemble	previous	data.	Bottou	compares	this	challenge	to	the	development	of	aeroplane	engines	
where	design	relies	upon	building	complex	systems	out	of	simple	subsystems;	while	it	may	be	
possible	to	create	secondary	guarantees	around	subsequent	performance,	the	passing	down	such	
performance	guarantees	is	not	an	appropriate	path	for	ML-based	AWS.52	

	
O’Rourke	notes	a	separate	challenge	that	arises	from	the	procurement	of	complex	systems	

from	disparate	commercial	parties	where	the	bundling	together	of	several	proprietary	routines	
results	in	a	system	design	that	is	held	together	by	‘glue’	(or	‘spaghetti’)	code.53	Glue	code	relates	to	
the	quantity	of	supporting	code	that	must	be	written	to	permit	data	transfer	in	and	out	of	these	
specific	software	packages.54	This	phenomenon	can	materially	contribute	to	system	fragility55,	not	
least	because	glue	code	tends	to	anchor	a	system	to	the	peculiarities	of	those	proprietary	packages	
being	glued.56.	Glue	code	has	other	ramifications	for	AWS	control	and	operation.	Fundamentally,	the	
feature	will	entrench	the	weapon’s	original	construction	in	‘supporting	code’	instead	of	embedding	
it	directly	into	components	that	have	been	designed	for	specific	weapon	routines.	Such	setup	
discourages	experimentation.	The	magnitude	of	the	problem	is	illustrated	by	Sculley’s	research	that	
mature	systems	empirically	end	up	being	five	per	cent	machine	learning	code	and	ninety-five	per	
cent	glue	code.57	An	adjunct	challenge	arises	from	the	occurrence	in	weapon	firmware	of	‘pipeline	
jungles’,	a	characteristic	which	Foreman	notes	often	typifies	the	move	from	prototype	to	
production	manufacture.58	Pipeline	complexity	is	likely	to	develop	organically	as	weapon’s	signals	
are	adjusted	and	new	information	routines	and	sensor	inputs	are	added.	Glue	code	and	pipeline	

																																																								
49 Ibid.,	pp.	10-11. 
50	Ibid.,	pp.	11-12.	
51	Ibid.,	p.	15.	
52	Leon	Bottou,	‘Two	Big	Challenges	in	Machine	Learning’,	ICML	2015,	presentation	papers,	(2015),	generally	
<https://icml.cc/2015/invited/LeonBottouICML2015.pdf>.		
53	Ronald	O’Rourke	and	others,	‘Multi-year	procurement	and	block	buy	contracting	in	Defence	Acquisition’,	
Congressional	Research	Service,	(8	August	2017),	p.	7	<https://fas.org/sgp/crs/natsec/R41909.pdf>.	
54	Neuromorphic	Technologies,	‘”Spaghetti	Code”:	Complexity	and	Artificial	Intelligence’,	Admin	blog,	(27	March	2018)	
<http://fernandojimenezmotte.com/mi-articulo/spaghetti-code-complexity-and-artificial-intelligence/>	[accessed	8	
September	2017].	
55	See:	Natali	Vlatko,	‘The	Dangers	of	Spaghetti	Code’,	JaxCenter	blog,	(5	June	2015)	<https://jaxenter.com/the-dangers-
of-spaghetti-code-117807.html>	[accessed	12	September	2017].	
56	Source:	Imperial	College	London,	Department	of	Computing	
<http://www.doc.ic.ac.uk/~np2/patterns/scripting/glue-code.html>	[accessed	12	September	2017].	
57	D	Sculley,	‘Hidden	Technical	Debt	in	Machine	Learning	Systems’,	p.	5.	
58	John	Foreman,	‘The	real	world	of	machine	learning	for	fun	and	profit;	pipeline	jungles	and	hidden	feedback	loops’,	
Foreman		Business	Blog,	1	May	2015	<http://www.john-foreman.com/blog/the-perilous-world-of-machine-learning-
for-fun-and-profit-pipeline-jungles-and-hidden-feedback-loops>	[accessed	2	September	2017].	
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jungles	may	also	arise	from	overly	separated	research	and	engineering	roles,	a	frequent	
characteristic	in	government	procured	weapons	hardware.59	While	the	resulting	firmware	may	be	
intended	to	facilitate	data	preparation,	it	may	instead	be	a	tangle	of	scrapes,	joins	and	other	
sampling	steps.	Such	pipelines	may	themselves	have	intermediate	file	output.	A	reaction	to	the	
difficulty	may	then	be	to	add	both	amendments	and	connecting	code	as	conditional	branches	within	
the	main	system	source	code.	Obsolete	and	experimental	code	parts	can	similarly	interact	with	each	
other	as	well	as	with	the	weapon’s	primary	system	in	unpredictable	ways.60	Xie	and	Engler	
highlight	programmers’	use	of	‘dead	flags’	as	a	further	source	of	system	fragility.61	It	is	the	
idiosyncracy	of	these	signposts	that	challenges	subsequent	intervention	by	the	Delivery	Cohort.	
Dead	code	that	may	has	been	moribund	for	an	extended	period	can,	notes	Linders,	be	awakened	by	
an	automatic	change	to	that	flag’s	value	with	significant	(but	unpredictable)	consequences	in	the	
weapon.62	
	

In	comprising	a	wide	portfolio	of	engineered	capabilities,	AWS	firmware	must	also	provide	
end-users	with	a	wide	range	of	‘configurable	options’	including,	inter	alia,	which	weapon	features	
are	available	to	the	Cohort,	how	data	is	selected	as	well	as	a	broad	gamut	of	learning	settings,	
logging	formats,	processing	routines	and	verification	methods.63	The	whole	process	of	system	
configuration	is	a	further	source	of	technical	debt.	A	portfolio	of	weapon	capabilities	requires	
accurate	third-party	alignment	and	confirmation.	System	configuration,	moreover,	is	not	an	obvious	
process	with	the	number	of	lines	of	‘configuration	code’	far	exceeding	the	number	of	instruction	
lines	behind	the	weapon’s	learning	processes.64	Each	such	line	has	the	potential	for	mistakes	given	
that	‘configurations	are	by	their	nature	ephemeral	and	less	well	tested’.65	Unpredictability	may	
arise	in	several	guises.	First,	weapon	systems	that	are	autonomous	still	require	a	myriad	of	decision	
thresholds	and	tradeoff	boundaries	that	must	be	mediated	by	humans	in	order	that	they	can	
appropriately	mirror	the	Cohort’s	aims.	As	noted	by	Kwang,	such	thresholds	must	be	manually	set	
as	no	proven	alternative	method	of	intervention	is	currently	available.66	AWS	configuration	will	
also	be	complex.	If	a	weapon	updates	on	new	data,	the	old	manually-set	thresholds	may	be	invalid.	
Updating	so	many	thresholds	across	different	models	(each,	moreover,	in	a	different	learning	state)	
will	be	time-consuming	and	brittle.	Further	fragility	then	arises	when	relationships	in	battlefield	
data	that	have	been	assumed	from	the	design	outset	no	longer	exist	on	the	ground	in	which	case	the	

																																																								
59	Inferred	from:	AIP,	‘Defense	Department	Reorganization	Aims	To	Foster	“Culture	of	Innovation”’,	American	Institute	
of	Physics,	(10	August	2017)	<https://www.aip.org/fyi/2017/defense-department-reorganization-aims-foster-‘culture-
innovation’>	[accessed	13	September	2017].	
60	Sculley	highlights	the	loss	by	trading	shop	Knight	Capital	of	$465m	in	45	minutes	that	was	attributed	to	unexpected	
behaviour	from	obsolete	experimental	code	paths.	
61	Yichen	Xie	and	Dawson	Engler,	‘Using	Redundancies	to	find	Errors’,	IEEE	Transactions	on	Software	Engineering,	
(2003),	p.	1	<https://web.stanford.edu/~engler/tse-redundant.pdf>.	
62	Ben	Linders,	‘Dead	code	must	be	removed’,	Info	Q,	(9	February	2017)	
<https://www.infoq.com/news/2017/02/dead-code	accessed>	[23	September	2017].	
63	See,	generally:	Holger	Hoos	and	others	(eds.),	‘Automated	Algorithm	Selection	and	Configuration’,	Report	from	
Dagstuhl	Seminar,	16412,	(2017)	
<http://drops.dagstuhl.de/opus/volltexte/2017/6956/pdf/dagrep_v006_i010_p033_s16412.pdf>.	
64	See	generally:	Alejandaro	Zacarias	and	others,	‘A	Framework	to	Guide	the	Selection	and	Configuration	of	Machine-
Learning-Based	Data	Analytics	Solutions	in	Manufacturing’,	Proceedings	CIRP,	72,	(2018),	pp.	153-158.	
65	Sculley	and	others,	p.	7.	
66	Kevin	Kwang,	‘Machine	Learning	needs	Human	Helping	Hand’,	ZDNedt,	(3	April	2014),	paras.	8-13	of	13	
<http://www.zdnet.com/article/machine-learning-needs-human-helping-hand/>	[accessed	27	July	2017].		
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weapon’s	prediction	and	behaviour	will	perform	unpredictably.67	Monitoring	and	addressing	
variation	in	the	associations	assumed	in	AWS	deployment	models	must	also	occur	in	real-time	
across	the	whole	of	the	weapon	system	in	order	for	that	weapon	to	be	both	compliant	and	valuable.	
The	challenge,	however,	is	what	metrics	the	AWS	should	monitor	given	that	a	purpose	of	its	
machine-learning	is,	after	all,	to	adapt	overtime.	In	this	way,	Osoba	and	Welser	note	that	it	is	
inappropriate	to	base	weapon	monitoring	on	prediction	biases	that	simply	forecast	average	values	
of	label	occurrences	without	regard	to	input	features.68	Firmware	interventions	must	therefore	be	
administered	manually,	they	must	be	fit	to	each	combat	scenario	and	they	may	require	their	own	
feedback	loop.	Finally	to	this	point,	legal,	social	and	political	constraints	will	agitate	that	such	limits	
are	set	conservatively	which,	should	the	action	limit	unexpectedly	trigger,	might	compromise	that	
weapon’s	operational	usefulness	to	the	Delivery	Cohort.69	

 Firmware ramifications of learning methodologies 
	
The	work	of	Rosenberg	and	Markoff	evidences	that	ML	is	pivotal	to	AWS	architecture.70	The	aim	of	
this	section	is	to	develop	this	thesis’	analysis	of	structural	challenges	that	are	inherent	in	the	
application	of	ML	to	unsupervised	weapons	and	assumes,	therefore,	that	AWS	architecture	will	
comprise	such	a	learning	framework	(be	it	a	neural	network,	enhanced	logic	or	other	statistical	
framework).71	The	aim	is	to	provide	a	primer	in	order	to	assess	frailties	across	learning	models	
notwithstanding	that	several	variants	are	currently	posited	for	AWS	operation.	The	context	for	this	
section	is	provided	by	Potember’s	2017	study	of	ML	(as	it	relates	to	the	US	DoD)	and	his	conclusion	
that	‘the	manifolds	whose	shape	and	extent	that	machine	learning	is	attempting	to	approximate	are	
almost	unnoticeably	intricate,	leading	to	failure	modes	from	which	there	is	very	little	human	
intuition	and	even	less	established	engineering	practice’.72	

	
In	this	vein,	weapon	learning	likely	breaks	down	into	a	set	of	distinct	firmware	types.73	

Supervised	learning,	as	detailed	later	in	this	section,	attempts	to	predict	an	output	when	given	an	
input;	an	example	might	be	multiple	data	points	from	an	AWS’	portfolio	of	sensors	being	processed	

																																																								
67	Causal	links,	for	instance,	between	observed	target	traits	and	triggering	lethal	engagement.	
68	Osonde	Osoba	and	William	Welser,	‘An	Intelligence	in	our	Image:	The	Risks	of	Bias	and	Errors	in	Artificial	
Intelligence’,	Rand,	(2017),	pp.	7-9	
<https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1744/RAND_RR1744.pdf>.		
69	See,	generally:	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’)	and	5.8	(‘Ethical	and	accountability	
constraints’).		
70	M	Rosenberg	and	J	Markoff,	‘The	Pentagon’s	‘Terminator	Conundrum’:	Robots	that	could	kill	on	their	own’,	New	York	
Times,	25	October	2016,	generally	<https://www.nytimes.com/2016/10/26/us/pentagon-artificial-intelligence-
terminator.html>	[accessed	3	August	2017].	
71	Economist	Magazine	Special	Report,	‘Artificial	intelligence’,	Economist,	p.	5.	For	a	general	discussion	on	abstraction	in	
machine	learning,	see:	N	Bredeche	and	others,	‘Perceptual	Learning	and	Abstraction	in	Machine	Learning:	An	
Application	to	Autonomous	Robots’,	IEEE	Transactions	on	Systems,	Man	and	Cybernetics:	Part	C,	36,	2,	(2006)	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3559&rep=rep1&type=pdf>.	For	a	commercial	
overview	of	this	field,	see	generally:	Katrina	Wakefield,	‘A	Guide	to	Machine	Learning	Algorithms	and	their	Application’,	
SAS.com,	undated	<https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html>	
[accessed	30	September	2017].	
72 Richard	Potember,	‘Perspectives	on	Research	in	Artificial	Intelligence	and	Artificial	General	Intelligence	Relevant	to	
DoD’,	Perspectives	on	Research	in	Artificial	Intelligence	and	Artificial	General	Intelligence	Relevant	to	the	DoD,	The	Mitre	
Corporation/McLean,	(2017),	JRR-16-Task-003,	p.	2	<https://fas.org/irp/agency/dod/jason/ai-dod.pdf>.	
73	For	an	introductory	overview,	see:	Anish	Talwar	and	Yogesh	Kumar,	‘Machine	Learning:	An	Artificial	Intelligence	
Methodology’,	IJECS,	2,	12,	(December	2013),	pp.	3400-3402	<http://www.ijecs.in/issue/v2-i12/11%20ijecs.pdf>.	
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to	deliver	target	selection	and	engagement.	Supervised	models	may	either	be	regressive	(seeking	
whole	numbers	and	clear	outcomes)	or	classifying	(seeking	class	labels,	trends	and	patterns).	
Reinforcement	learning,	also	discussed	below,	instead	encourages	the	weapon	to	select	actions	that	
maximize	a	payoff.	Finally,	the	weapon	may	learn	through	an	unsupervised	model	whereby	the	
machine	will	be	focused	to	discover	general	internal	representations	from	its	sensor	input.74	A	
further	assumption	for	this	section	is	that	there	is	no	appropriate	role	for	provisional,	probationary	
or	other	pilot	steps	in	delivering	lethal	violence.	Indeed,	the	term	‘exploration’	appended	to	
reinforcement	processes	points	to	a	central	challenge	of	learning	models:	Just	as	an	independent	
weapon	cannot	be	sure	it	has	found	its	best	action	for	each	state	until	it	has	tried	all	possible	actions	
in	all	states,	learning	models	are	too	iterative	and	ambiguous	to	manage	target	selection	without	an	
appropriately	definable	end-state.75	Any	error	in	the	weapon’s	sensing	of	its	current	state	will,	after	
all,	then	carry	forward	in	that	machine’s	future	learning	and	future	battlefield	actions.	A	further	
ramification	arises	should	either	the	AWS’	environment	or	combat	task	change	while	the	weapon	is	
in	a	learning	phase	in	which	case	much	of	what	it	has	learnt	may	be	invalid.	This	also	poses	the	
challenge	of	incorporating	un-learning	in	the	weapon’s	ML	routines	should	error	occur.76	The	trade-
off	between	‘constantly	learning’	versus	employing	what	is	already	known	to	work	(at	the	cost	of	
missing	out	on	further	improvement)	is	a	well-discussed	conundrum	(termed	by	Cohen	the	
‘exploration/exploitation	dilemma’).77	As	a	theoretical	challenge	to	the	process	of	removing	
weapon	supervision,	it	creates,	however,	another	intractable	set	of	problems	which,	suggests	
Lafrance,	is	also	fraught	with	agent-principal	risk.78	As	noted	by	Du,	‘to	what	extent	such	self-
learning	would	be	sufficient	for	AWS	to	make	better	decisions	is	fundamentally	unclear’.79	

	
This	exploration/exploitation	dilemma	generally	informs	firmware	setup	and	is	the	clearest	

example	of	the	interdependence	that	will	exist	between	weapon	architecture	and	the	software	
routines	that	sit	on	that	architecture.80	Complexity	arises	from	the	AWS	having	to	optimize	between	
its	control	policy	(the	reactive	rules	that	control	a	weapon	for	a	particular	goal)	and	its	use	of	an	
appropriate	value	function	(the	comparative	value	of	being	in	each	state	relative	to	the	weapon’s	
overarching	goal).81	This	complexity	carries	over	into	the	AWS’	firmware	which	must	facilitate	

																																																								
74	L	Busoniu	and	others,	‘Reinforcement	Learning	and	Dynamic	Programming	using	Function	Approximation’,	Delft	
Center	for	Systems	and	Control,	Netherlands,	(November	2009),	pp.	2-5	
<https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf>.	
75	Michael	Horowitz,	‘The	Promise	and	Perils	of	Military	Applications	of	Artificial	Intelligence’,	Bureau	of	the	Atomic	
Scientists,	(23	March	2018)	<https://thebulletin.org/landing_article/the-promise-and-peril-of-military-applications-of-
artificial-intelligence/>	[accessed	3	June	2018].		
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<https://www.allerin.com/blog/now-what-is-machine-unlearning-all-about>	[accessed	5	June	2018].	
77	Jonathan	Cohen	and	others,	‘Should	I	stay	or	should	I	go?	How	the	Human	Brain	manages	the	trade-off	between	
exploitation	and	exploration’,	Royal	Society	Publishing,	(May	2007)	
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430007/>	[accessed	12	September	2017].		
78	Adrienne	Lafrance,	‘Machine	Unlearning’,	The	Atlantic,	18	March	2016	
<https://www.theatlantic.com/technology/archive/2016/03/computers-brains-cybernetics/474273/>	[accessed	21	
September	2017].	
79	Dr	Hongbo	Du,	School	of	Computer	Science,	Buckingham	University,	in	conversation	with	the	author,	January	2019.		
	
80	See:	Chapter	8	(Software),	specifically:	8.3	(‘Utility	function;’),	8.5	(‘Anchoring	and	Goal	setting	issues’)	and	8.6	(‘Value	
setting	issues’).	
81	For	a	useful	primer,	see:	Tobias	Baer	and	Vishnu	Kamalnath,	‘Controlling	Machine	Learning	Algorithms	and	their	
Biases’,	McKinsey	and	Company,	(November	2017)	<https://www.mckinsey.com/business-functions/risk/our-
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evaluation	on	how	well	each	such	state-action	pairing	has	fared	and	then	absorb	the	outcome	of	
each	resulting	trial	in	running	subsequent	actions.	It	is	this	friction	that	exists	between	control	
tenets	(architecture)	and	value	tenets	(firmware	and	software	routines)	which	creates	a	further	
conflict	for	unsupervised	weapons.	This	will	be	exacerbated	in	a	multi-robot	environment	(or	an	
environment	where	several	polities	come	together	on	a	battlefield)	where,	notes	Chopra,	
identification	of	individual	outcomes	is	particularly	difficult	and	requires	unrealistic	attribution	
analysis.82	The	firmware	conundrum	of	allotting	credit	or	blame	to	feedback-generated	actions	is	
termed	AWS’	‘temporal	credit	assignment’.	In	the	case	of	weapons,	such	assignment	will	be	a	
particularly	intractable	task;	as	autonomous	system	behaviours	change	over	time	(given	that	
weapon’s	learning	patterns),	discrepancies	will	occur	between	actual	system	performance	and	
operator	expectations,	likely	leading	to	system	deadlock	and	certainly	preventing	useful	attribution	
analysis.83	It	might	also	lead	to	inappropriate	teammate	surprise	(and,	more	important,	to	
subsequent	loss	of	trust)	during	operations.84	Soldiers,	moreover,	do	not	perceive	their	
environment	in	terms	of	a	collection	of	labelled	objects.	Accordingly,	it	is	not	obvious	that	the	
Cohort	should	trust	symbolic	processing	that	underpins	ML	while	its	battlefield	decisions,	notes	the	
Army	Research	Laboratory,	must	instead	be	based	on	the	‘incorporation	of	all	opinions	and	
evidence’	(here,	numeric,	contextual	and	heuristic).85	The	frustration	for	this	section	is	obviously	
that	the	fundamental	bases	for	AWS	learning	models	are	evolving	very	quickly	and	are	not	yet	set	in	
stone.86	Progress	will	likely	continue	and	promising	work-rounds	will	arise.	Any	analysis	must	thus	
be	behavioural	and	subject	to	the	same	sense-check	that	machine	output	should	be	based.	It	is	
therefore	useful	to	return	to	machine	learning’s	four	primary	variants	which,	for	the	purposes	of	
assessing	their	feasibility	as	a	statistical	basis	for	AWS,	are	now	evaluated	in	order.		

	
First,	supervised	learning	may	be	used	to	train	a	weapon	with	the	aid	of	that	same	internal	

labelled	set	of	examples.	Here,	the	weapon	must	rely	upon	a	control	mechanism	in	order	to	direct	
what	is	being	sought.	The	standard	task	of	supervised	learning	is	to	master	a	decision-making	
policy	for	‘one-shot’	classification	tasks.	Under	this	scenario	(and	inferred	from	Dieternich),	the	
weapon	will	receive	an	input	observation	from	its	sensor	portfolio	and	must	then	make	what	will	
be	a	single	decision.87	In	this	case,	the	AWS	is	undertaking	only	one	evaluation	rather	than	a	
sequence	of	evaluations.	Using	such	a	database	approach,	the	supervised	weapon	will	work	through	
examples	and	adjust	the	weights	inside	its	network	to	improve	accuracy	in	its	tasks.	The	merit	of	
this	approach	is	that	there	is	no	need	for	a	human	first	to	draw	up	a	list	of	rules	or	for	the	Delivery	
Cohort	to	implement	them	through	intervention.	The	weapon	system	will	theoretically	learn	
directly	from	the	labelled	data.88	But	supervised	training	also	requires	adjunct	processes	in	order	to	

																																																								
82	S	Chopra,	‘Attribution	of	Knowledge	to	Artificial	Agents	and	their	Principals’,	International	Joint	Conference	of	
Artificial	Intelligence,	(August	2005),	19,	pp.	1175-1176	<http://www.sci.brooklyn.cuny.edu/~schopra/893.pdf>.	See	
also:	Chapter	4	(Deployment)	specifically:	‘Human-Machine	teaming’.	
83	Inferred	from:	Marvin	Minsky,	‘Steps	towards	Artificial	Intelligence’,	IRE,	(January	1961),	pp.	8-9	
<http://courses.csail.mit.edu/6.803/pdf/steps.pdf>.	
84	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	p.	18.	See,	also:	introduction	to	Chapter	10	(Oversight).		
85	Army	Research	Laboratory,	‘Research	Suggests	Uncertainty	May	Be	Key	to	Battlefield	Decision	Making’,	ARL,	(12	July	
2018)	<https://phys.org/news/2018-07-uncertainty-key-battlefield-decision.html>	[accessed	7	September	2018].	
86	The	role	of	context	and	assumption-building	is	reviewed	in	detail	in	Chapter	2	(specifically:	‘Introduction	to	key	
concepts’).	
87	Dietterich,	p.	4.	
88	Economist	Magazine	Special	Report,	‘Artificial	intelligence’,	p.	5.	
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deliver	outputs	including,	notes	Preetham,	back-propagation	algorithms	whose	purpose	is	
dynamically	to	adjust	the	weapon’s	weightings.89		This,	however,	gives	rise	to	possible	‘temporal	
dislocation’	as	the	weapon’s	filtering	routine	can	only	take	place	having	first	compared	actual	
outputs	with	desired	outputs	for	any	given	stimulus.	Furthermore,	Sun	points	out	an	unwelcome	
characteristic	of	general	connectionist	learning	(here,	relating	to	how	humans	learn	and	remember)	
that	such	weights	are	arbitrarily	influenced	by	network	connections	themselves.90	A	firmware	
ramification	is	that	considerable	variation	can	remain	around	how	strongly	individual	modes	
within	the	AWS	planner	might	be	connected	and	how	this	might	affect	subsequent	re-weighting	of	
inputs.	The	process	is	unstable	and	lacks	appropriate	predictability.		

Other	learning	types	highlight	the	complexity	involved.	An	autonomous	weapon	relying	
instead	on	unsupervised	learning	will,	theoretically,	train	its	network	by	exposing	itself	to	a	huge	
number	of	examples	but	without	control	mechanisms	telling	its	sensor	bank	what	to	search.	In	this	
model,	the	idea	is	that	the	weapon’s	network	will	learn	to	recognise	battlefield	features	and,	
suggests	Kosko,	to	cluster	similar	samples,	thus	revealing	hidden	groups,	links	or	patterns	within	
the	dataset.91	Unsupervised	learning	thus	posits	a	theoretical	model	that	is	capable	of	anomaly	
search	given	that	the	weapon	system	does	not	know	what	it	is	seeing.	But	such	sequences	must	still	
be	undertaken	within	the	‘fog	of	war’,	of	changing	conditions,	changing	priorities	and	with	
incomplete	knowledge	of	either	friendly	or	hostile	forces	and	their	respective	capabilities.92	
Battlefield	uncertainty	also	removes	delineation	in	the	weapon’s	input	data	features.	Without	such	
delineation,	the	weapon’s	network	must	establish	(and	then	rely	upon)	further	probability	
relationships	within	what	is	a	dynamic	dataset	in	order	to	drive	meaning	from	that	data,	creating	
additional	complexity	and	unwelcome	sources	of	technical	debt.	This	is	a	critical	observation.	The	
quality	of	input	data	into	neural	network	models	will,	after	all,	‘strongly	influence	the	results	of	the	
data	analysis’.93	A	pivotal	feature	turns	out	to	be	the	preparation	of	that	input	data:	Fifty	to	seventy	
per	cent	of	time	in	data	analysis	is	currently	taken	up	with	the	preparation	of	that	data,	a	facility	
that	will	be	unavailable	in	a	battlefield	setting	if	the	weapon	is	still	to	be	valuable.94	Improperly	
prepared	data,	it	turns	out,	can	make	analysis	‘difficult,	if	not	impossible’.95		

Workarounds	exist	in	an	effort	to	remediate	this	challenge.	The	focus,	for	instance,	of	
reinforcement	learning,	a	further	possible	variant	in	AWS	design,	will	be	to	train	the	weapon’s	
neural	network	to	interact	with	its	environment	with	only	occasional	system	feedback	(and	
involving	therefore	less	troublesome	data	handling)	which,	in	this	case,	will	be	presented	in	the	

																																																								
89	V	Preetham,	‘Back	Propagation	–	How	Neural	Networks	learn	Complex	Behaviours’,	Autonomous	Agents	#AI,	generally	
<https://medium.com/autonomous-agents/backpropagation-how-neural-networks-learn-complex-behaviors-
9572ac161670#.qwz64wcu6>	[accessed	4	October	2017].	
90	R	Sun,	‘Connectionist	and	Symbolic	Approaches’,	University	of	Missouri-Columbia,	(November	2000),	p.	3	
<http://www.cogsci.rpi.edu/~rsun/sun.encyc01.pdf>.		
91	Bart	Kosko,	‘Hidden	Patterns	in	Combines	and	Adaptive	Knowledge	Networks’,	Elsevier	Science	Publishing,	2,	(1988),	
p.	378	<http://ac.els-cdn.com/0888613X88901119/1-s2.0-0888613X88901119-main.pdf?_tid=245f5116-9b5e-11e7-
a4d0-00000aab0f6c&acdnat=1505621609_a7493474593fc9822b5484b3a9589e34>	[accessed	3	October	2017].	
92	Zheng,	pp.	3-5.	
93	Source:	Foreign	Exchange	Rate	forecasting	with	Artificial	Neural	Networks,	‘Data	Preparation	in	Neural	Network	Data	
Analysis’,	International	Series	on	Operations	Research	Management	Science,	pp.	39-62	
<https://link.springer.com/chapter/10.1007%2F978-0-387-71720-3_3>	[accessed	3	October	2017].	
94	Ibid.,	p.	39.	
95	Ibid.,	pp.	39-41.	
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form	of	a	‘reward	system’.	The	theory	is	that	the	weapon’s	learning	algorithm	gradually	constructs	
its	own	internal	evaluation	function	that	then	assigns	values	to	states,	state-action	pairs	or	policies	
in	an	engagement	sequence.96	In	essence,	training	will	involve	adjusting	network	weights	to	search	
for	an	action	strategy	that	consistently	generates	higher	rewards	for	the	unsupervised	weapon.97	
Two	shortcomings	immediately	arise.	First,	this	learning	approach	underscores	the	imprecise	
input/output	range	that	can	be	expected	from	such	models.	A	challenge	for	unsupervised	learning	
is	that	the	weapon’s	weight-adjusted	algorithm	may	eventually	cause	similar	inputs	to	have	the	
same	output	patterns.	Any	such	gradualism	is	clearly	unacceptable	for	battlefield	weapons.	As	
discussed	below,	all	deployment	models	will	require	an	impractically	large	set	of	example	inputs	as	
there	is	no	way	to	forecast	output	patterns	for	what	is	a	limitlessly	wide	(and	imprecise)	class	of	
battlefield	inputs.	It	should	also	be	inferred	from	Quinlan	that	models	based	on	expert	decision	
trees	are	inappropriate	for	battlefield	deployment	as	such	trees	are	feed-forward	structures.98	As	
proposed	by	Kosko,	they	have	no	‘dynamical	behaviour’.99	Indeed,	a	decision	tree	does	not	
represent	feedback.	A	ramification	is	that	search	time	increases	exponentially	with	tree	size;	the	
more	rules	or	branches	in	an	expert	system	tree,	the	longer	it	takes	to	make	an	inference	or	decide	
upon	an	action.	Real	time	running	is	therefore	infeasible	for	large	search	trees	as,	Petri	notes,	
models’	‘divide	and	conquer’	methods	means	that	they	perform	poorly	when	many	complex	
interactions	are	present	and	tend	towards	‘over-sensitivity	to	training	sets,	to	irrelevant	attributes	
and	to	noise’.100	Finally,	such	trees	do	not	naturally	combine.101	To	open	a	new	decision	tree	will	
require	the	weapon	to	remove	an	existing	edge	or	subset	of	an	edge	in	an	existing	tree.	The	
question	arises	as	to	which	edge	or	edges	as	edge	removal	is	empirically	ad	hoc.102	The	corollary	is	
that	neural	networks	do	not	exhibit	human	cognition103,	their	underlying	processes	are	iterative	
and	deliver	imprecise	outcomes.	It	can,	moreover,	be	inferred	from	Kamimura	that	this	will	be	
further	exacerbated	by	the	time	drag	occurring	between	AWS’	sensing	of	external	data	and	its	
computation	of	an	executable	action104	requiring	additional	(and	complex)	‘stopping’	routines	in	
order	to	sense-check	and	pause	weapon	routines.105		

Hybrid	firmware	in	ML	does	not	address	this	faultline.	In	this	case,	‘transfer	learning’	looks	to	
build	upon	previously	acquired	knowledge	rather	than	the	weapon	having	to	be	trained	from	
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scratch	each	time.106	‘Multitask	learning’	promises	instead	to	use	the	experience	of	one	layer	in	
order	to	improve	efficiencies	at	another	layer.	Two	further	issues	arise	from	such	hybrid	routes.	
First,	while	humans	may	have	numerous	representations	‘active’	at	any	one	time	(some	originating	
from	our	eyes	and	ears,	others	evoked	from	memory	or	initiated	by	internal	models),	a	weapon	
without	supervision	must	seamlessly	choose	to	process	only	relevant	associations	from	the	
available	dataset.	Another	difficulty	is	that	an	AWS’	firmware	will	have	to	limit	the	number	of	active	
signals	such	that	only	relevant	associations	arise.107	This	model	constraint	will	likely	impact	
unacceptably	upon	performance	unless,	perhaps,	that	platform’s	tasking	is	itself	suitably	narrow	
and	defined.108	Second,	of	course,	the	machine	purpose	of	DNN	is	to	enable	the	unsupervised	
weapon	to	perform	sound	reasoning	routines.109	An	adjunct	learning	basis	for	machine-learning	
weapons	might	therefore	be	by	imitation.	Mataric,	however,	notes	that	such	models,	whether	
driven	by	imitation	or	by	copying	from	demonstration,	remain	technically	demanding.110	Schaal	
highlights	here	that	it	is	difficult	to	separate	what	is	relevant	to	the	task	in	hand	from	that	which	is	
being	taught.111	As	inferred	again	from	Zheng,	the	enduring	challenge	for	AWS	remains	the	isolation	
of	relevant	battlefield	data	from,	for	instance,	recommendations	generated	from	its	internal	models	
or	data	points	that	are	either	divergent	or	tangential.112	As	part	of	this	balancing,	the	AWS	must	
then	check	its	learned	operation	parameters	for	appropriateness	in	order	to	ensure	conformity	and	
equilibrium	with	its	internal	representations.	The	challenge	is	then	how	best	to	solve	for	the	
weapon’s	design	priorities.	This	is	not	obvious.	To	this	point,	is	a	weapon’s	movement	generating	
mechanism	to	be	directly	employed	by	or	quite	separate	from	its	movement	recognition	sequences?	
An	adjunct	issue	reinforces	this	point.	How	might	the	intention	of	that	movement	be	recognised	
within	the	weapon’s	ML	to	be	converted	into	its	set	of	internal	goals?113	To	conclude	this	section,	it	
is	useful	to	emphasise	three	further	aspects	of	learning.	Most	such	learning	is	based	on	what	Du	
terms	a	‘closed	world	assumption’	whereby	one	decision	out	of	several	predefined	possible	
decisions	is	made	based	on	received	inputs.	In	real	life,	however,	humans	encounter	an	‘open	world’	
where	several	scenarios	have	never	before	been	encountered	and	where,	of	course,	the	trained	
model	is	unable	to	recognise	patterns.	In	AWS	design,	such	an	open-world	situation	should	lead	to	a	
safe	‘default’	decision	but	it	is	this	default	that	it	is	so	difficult	to	define.	Indeed,	the	reliability	of	
such	training	models	is	systemically	questionable	when	the	balance	between	the	number	of	
training	examples	(rows	of	a	data	set)	and	the	number	of	input	features	(columns	of	a	data	set)	is	
not	frictionless.114	Finally,	it	should	be	noted	that	reinforcement	learning	can	only	play	a	limited	
																																																								
106	Economist	Magazine	Special	Report,	‘Artificial	intelligence’,	p.	6.	
107	Inferred	from:	Jesse	Dunietz,	‘The	Fundamental	Limitations	of	Machine	Learning’,	Nautilus,	(20	September	2016)	
<http://nautil.us/blog/the-fundamental-limits-of-machine-learning>	[accessed	12	October	2017].	
108	Analysis	on	how	autonomy	may	be	delivered	onto	the	battlefield	is	the	subject	of	Chapter	4	(Deployment).	
109	Source:	Microsoft	Research,	‘From	machine	learning	to	machine	reasoning’,	<https://www.microsoft.com/en-
us/research/publication/from-machine-learning-to-machine-reasoning/>	[accessed	12	October	2017].	
110	Mataric,	p.	263.	
111	Stefan	Schaal,	‘Is	imitation	learning	the	route	to	humanoid	annoyed	robots’,	Trends	in	Cognitive	Science,	3,	6,	(June	
1999),	p.	283	<http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/PSYCO354/pdfstuff/Readings/Schaal1.pdf>.	
112	Yaling	Zheng,	‘Machine	Learning	with	Incomplete	Information’,	CSE	Technical	Reports,	143,	(December	2011),	pp.	3-5	
<http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1148&context=csetechreports>	[accessed	25	September	
2017].	
113	Schaal,	p.	248.	
114	Dr	Hongbo	Du	points	here	to	image-based	classifications	as	an	example	where	ISR	may	have	a	very	limited	number	
of	images	but	with	each	such	image	having	an	extremely	large	number	of	features	(in	the	millions	if	the	number	of	pixel	
intensity	values	are	taken	as	features).	Dr	Hongbo	Du,	in	conversation	with	the	author,	January	2109.	
	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 206 | P a g e  

 
 

role	in	modifying	the	weapon’s	learning	model	and	that	regular	re-training	is	unavoidable.	It	is	for	
this	reason	that	the	human’s	role	in	verifying	the	rightness	of	class	labels	remains	critical.	

 Reasoning and cognition methodologies 
	
The	balance	of	this	chapter	continues	to	assume	the	deployment	of	wide	capability,	wide	task	AWS	
and,	therefore,	that	the	weapon’s	learning	routines	must	facilitate	appropriate	reasoning.	A	
definition	of	reasoning	is	‘the	algebraic	manipulation	of	previously	acquired	knowledge	in	order	to	
answer	a	new	question’.115	For	AWS	to	reason,	Beautement	notes	that	the	weapon	must	be	capable	
of	complex	‘value	mapping’	to	establish	an	appropriate	code-based	equivalent	of	what	can	be	
sensed,	reasoned	about	and	implemented.116	Norman	posits	an	additional	requirement	whereby	a	
cognition	variant	(Norman	terms	this	feature	‘affect’)	must	also	be	present	in	order	to	evaluate,	
judge	and	then	moderate	actions	resulting	from	such	cognition.	This	distinction	highlights	the	
complexity	of	capabilities	that	together	(and	only	together)	must	comprise	appropriate	cognition	
for	weapons	without	supervision.	It	is	‘affect’,	after	all,	that	will	alert	the	weapon	of	possible	
dangers.117	As	a	starting	point,	AWS	cognition	must	be	able	to	accommodate	battlefield	hypotheses	
and	inferences	encompassing	‘the	mental	action	or	process	of	acquiring	knowledge	and	
understanding	through	thought,	experience,	and	the	senses’.118	Cognition	must	thus	comprise	very	
many	processes	(covered	in	this	and	subsequent	chapters)	including	knowledge	management,	
attention,	memory	and	working	memory119,	judgment	and	evaluation,	reasoning	and	computation,	
problem	solving	and	decision	making,	comprehension	and	production	of	language.120	It	is	a	wide-
ranging	machine	capability	that	is	key	to	the	deployment	of	broad-task	AWS,	the	assumption	of	this	
section.	
	

The	difficulty	is	that	cognition,	even	in	its	human	condition,	is	challenging	to	define.121	Human	
cognition	can	be	conscious	or	unconscious.	It	can	be	concrete	or	abstract	as	well	as	intuitive	
(‘knowledge’	of	a	language)	or	conceptual	(‘model’	of	a	language).	Moreover,	as	noted	by	Dietterich	
and	Michalski,	cognitive	processes	must	use	existing	knowledge	in	order	to	generate	new	

																																																								
115	Leon	Bottou,	‘From	machine	learning	to	machine	reasoning’,	Microsoft	Research,	arXiv:	1102.1808,	unnumbered,	
undated,	Section	1	(‘Introduction’)	and	3	(‘Reasoning	revisited’)	<https://www.microsoft.com/en-us/research/wp-
content/uploads/2011/02/tr-2011-02-08.pdf>.	
116	Patrick	Beautement,	‘Putting	complexity	to	work;	achieving	effective	human-machine	teaming’,	The	Abaci	
Partnership	LLP,	(2015),	p.	15.	
117	A	Norman	and	others,	‘Affect	and	Machine	Design:	Lessons	for	the	Development	of	Autonomous	Machines’,	IBM	
Systems	Journal,	22,	1,	(2003),	p.	38	<http://ai2-s2-
pdfs.s3.amazonaws.com/244f/65498b2acd07a25416527118a52b8924f6f6.pdf>.	
118	Examples	of	such	decision-making	heuristics	include	effort,	fluency,	naïve	diversification,	recognition,	scarcity,	social	
proof	and	simulation	heuristics.		
119	Doug	Black,	‘AI	Definitions:	Machine	Learning	vs.	Deep	Learning	vs.	Cognitive	Computing	vs.	Robotics	vs.	Strong	AI’,	
EnterpriseTech,	(19	January	2018)	<https://www.enterprisetech.com/2018/01/19/ai-definitions-machine-learning-vs-
deep-learning-vs-cognitive-computing-vs-robotics-vs-strong-ai/>	[accessed	8	May	2018].	
120	For	a	brief	primer	on	learning	and	decision-making,	see	Max	Bezerman,	‘Judgement	and	Decision	Making’,	
Harvard/Noba,	undated	<https://nobaproject.com/modules/judgment-and-decision-making#vocabulary-bounded-
rationality>	[accessed	6	June	2017].	
121	Marisa	Tschopp,	‘Human	Cognition	and	Artificial	Intelligence	–	A	Plea	for	Science’,	Medium.com,	(23	April	2018)	
<https://medium.com/womeninai/human-cognition-and-artificial-intelligence-a-plea-for-science-21a2388f6e7e>	
[accessed	8	May	2018].	
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knowledge.122	AWS	cognition	is	therefore	a	general	catchall	for	a	broad	but	poorly	demarcated	
collection	of	processes	that	will	be	pivotal	in	the	weapon’s	perceiving,	thinking	and	awareness.	
Indeed,	demarcation	difficulties	are	particularly	unhelpful	to	code-based	approaches.123	Four	snags	
may	arise.	Contamination	by	indeterminate	heuristics	in	a	weapon	system’s	executive	processes	
may	directly	contribute	to	this	lack	of	defined	boundaries.124	Given	that	the	weapon	must	use	
multiple	sensors	to	acquire	multiple	layers	of	information	about	its	environment	and	physical	
status,	insufficient	scripting	differentiators	will	lead	to	increased	system	noise	in	AWS	processes.125		
It	can	also	be	inferred	from	Haikonnen	that	system	noise	will	impair	the	knitting	together	of	sensed	
data	into	a	non-contradicting	interpretation	of	the	weapon’s	moment-to-moment	situation.126	Such	
AWS	datasets	must	be	incrementally	built	as	not	all	data	is	available	to	the	weapon	at	once.	Gil	notes	
the	data-priority,	allocation	and	denial	challenges	that	arise	in	such	ML	decision	routines.127	
Resource	bottlenecks	are	a	further	ramification	to	arise	from	ML.	Current	syntax	and	schema-based	
‘resource	matchmakers’	are	demonstrably	an	inappropriate	model	to	describe	the	weapon’s	likely	
workflows.128	In	this	vein,	Gil	notes	that	they	are	incapable	of	providing	an	appropriate	mechanism	
to	explore	trade-offs	in	the	machine’s	decision	space.129	Given	that	data	feeds	will	be	arriving	
progressively,	the	underlying	distribution	of	this	data	must	generally	evolve	with	time.	This	
contradicts	the	hypothesis	of	‘identically	distributed	data’130	upon	which	classic	data-mining	
algorithms	rely.131	AWS	sensor	outputs	must	all	be	capable	of	dependable	classification,	handing-
off,	and	sense	checking.132	This	is	non-trivial	given	that	weapon	inputs	will	are	being	acquired	from	
a	wide	universe	of	stimuli	and,	as	above,	must	accommodate	performance	knock-on	arising	from	
data	inconsistency	and,	notes	Hensman,	training	set	irregularities.133	Furthermore,	the	whole	model	

																																																								
122	See,	generally:	T	Dietterich	and	RS	Michalski,	‘A	Comparative	Review	of	Selected	Methods	for	Learning	from	
Examples’,	in	An	Artificial	Intelligence	Approach,	RS	Michalski	and	others	(eds),	(USA:	Tioga	Publishing,	Paulo	Alto,	
1983),	p.	41	and	pp.	43-45.	
123	Venkat	Gudivada	and	others,	‘Data	Quality	Considerations	for	Big	Data	and	Machine	Learning:	Going	Beyond	Data	
Cleansing	and	Transformation’,	International	Journal	on	Advances	in	Software,	10,1,	(2017),	1-3	
<https://www.researchgate.net/publication/318432363_Data_Quality_Considerations_for_Big_Data_and_Machine_Lear
ning_Going_Beyond_Data_Cleaning_and_Transformations>	[accessed	9	June	2018].	
124	CM	Teng,	‘Dealing	with	data	corruption	in	remote	sensing’,	Advances	in	Intelligent	Data	Analysis,	VI,	IDA,	Lecture	
notes	in	computer	science,	3646,	Springer,	(2005),	p.	453	<https://link.springer.com/chapter/10.1007/11552253_41>		
[accessed	7	July	2017].		
125		Tom	O’Haver,	‘A	Pragmatic	Introduction	to	Signal	Processing’,	University	of	Maryland	at	College	Park,	Department	of	
Chemistry	and	Bio-Chemistry,	(May	2017)	<https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html>	
[accessed	3	May	2017].	
126	Haikonnen,	p.	41.	
127	Yolanda	Gil	and	others,	‘Artificial	Intelligence	and	Grids:	Workflow	Planning	and	Beyond’,	IEEE	Intelligent	Systems,	
(February	20014),	p.	27	<https://scitech.isi.edu/wordpress/wp-content/papercite-data/pdf/gil2004ai.pdf>.		
128	Luo	Mai	and	others,	‘Optimizing	Network	Performance	in	Distributed	Machine	Learning’,	Hotcloud,	(2015),	pp.	1-3	
<https://www.usenix.org/system/files/conference/hotcloud15/hotcloud15-mai.pdf>.		
129	Gil	and	others,	p.	28.	
130	Source:	Statistics	How	To	blog	<http://www.statisticshowto.com/iid-statistics/>	[accessed	28	September	2017].		
131	Beatrice	Lopez	and	others,	‘Modeling	decisions	for	artificial	Intelligence:	Ninth	International	conference’,	MDAI	2012,	
Girona,	Spain,	(November	2012),	p.	235.	
132	George	Luger,	Artificial	Intelligence:	Structures	and	Strategies	for	Complex	Problem	Solving,	(UK:	Pearson,	6th	Edition,	
2009),	p.	193	<http://iips.icci.edu.iq/images/exam/artificial-intelligence-structures-and-strategies-for--complex-
problem-solving.pdf>.	
133	Paulina	Hensman	and	David	Masto,	‘Impact	of	Imbalanced	Training	Data	for	Convolutional	Neural	Networks’,	Degree	
project,	Kth	Royal	Institute	of	Technology,	Stockholm,	(May	2015),	p.	5	
<https://www.kth.se/social/files/588617ebf2765401cfcc478c/PHensmanDMasko_dkand15.pdf>.	
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remains	untested.	Indeed,	such	data	folding	(here,	preparation	and	handing-off)	will	require	its	
own	intermediate	pre-processing,	scrubbing	and,	depending	on	data	provenance	and	repair,	
filtering	to	reduce	noise	and	heuristic	error	(including	availability,	representation	and	base-rate	
routines).134	Nor	is	cognition	an	exact	science.	In	this	vein,	a	further	firmware	requirement	for	AWS	
deployment	is	that	deduction	and	reasoning	routines	factor	for	information	that	is	not	directly	
perceived.135	This	is	a	critical	capability	which	assumes	additional	judgement	processes	be	in	place	
in	order	to	garner	situational	awareness,	detect	battlefield	contradictions	and	evaluate	their	
significance.	Difficulties	around	defining	and	balancing	such	facility	demonstrate	how	human	
limitations	within	the	Delivery	Cohort	will	constrain	development	of	combat-based	machine	
learning,	cognition	and	awareness.136	Several	obstacles	exist.	First,	it	is	the	Cohort	who	must	define	
this	weapons	autonomy.	It	is	the	human	politician	and	field	commander	who	must	specify	its	
adoption	within	their	battlecraft.	It	is	then	the	human	soldier,	naval	rating	and	airman	that	must	
implement	the	technology	supporting	what	is	a	recurrent	theme	of	this	thesis	that	human	strengths	
likely	trump	machine	capabilities.137		
	

As	inferred	from	Grossman	and	Hart,	firmware	complexity	presents	humans	with	a	unique	
principal-agent	control	problem.138	The	characteristic	arises	when	a	human	entity	(here,	the	
principal	and,	in	the	case	of	AWS,	its	Delivery	Cohort)	appoints	another	to	act	in	the	former’s	
interest.	Military	procurement	and	command	‘might	worry	that	scientists	and	programmers	
implementing	a	particular	project	will	not	act	in	their	best	interest’.139	Recasting	Bostrom’s	
principal-agent	problem	then	questions	whether	an	AI	(in	this	case,	the	unsupervised	weapon’s	
control	suite)	may	compromise	a	project’s	broader	interests	(in	this	case,	battlefield	objectives	or	
broader	strategy).	The	complexity	of	agency	underlines	Pickering’s	metaphor	of	a	‘mangle’,	the	
argument	that	agency	will	always	be	‘temporally	evident’	in	ML	processes	rather	than	in	either	the	
subjects	or	objects	involved	in	that	process.140	On	this	matter,	Bostrom	and	Danahar	separately	
argue	that	agency	may	be	an	intractable	challenge	as	simple	observation	of	AWS’	behaviour	in	its	
development	phase	will	be	insufficient	given	the	ulterior	possibility	of	‘treacherous	turn	
syndrome’.141	Moreover,	Bowden	notes	that	small-scale	testing	of	weapon	AI	in	a	laboratory	will	be	
markedly	different	even	from	limited	field	study	that	must	precede	equipment	rollout	into	the	

																																																								
134	Source:	Study.com	<http://study.com/academy/lesson/heuristics.html>	[accessed	13	October	2017].	
135	Shashi	Phoha,	‘Machine	Perception	and	Learning	Grand	Challenge:	Situational	Intelligence	Using	Cross-Sensory	
Fusion’,	Frontiers	in	Robotics	and	AI	(Sensor	Fusion	and	Machine	Perception),	(6	October	2014)	
<https://www.frontiersin.org/articles/10.3389/frobt.2014.00007/full>	[accessed	18	October	2017].	
136	Don	Norman,	Things	That	Make	US	Smart:	Defending	Human	Attributes	in	the	Age	of	Machines,	(USA:	Diversion	Books,	
2	December	2014),	generally.		
137	Beautement,	p.	12.	For	a	discussion	on	context,	assumptions	and	the	relative	roles	of	social,	political,	cultural	and	
technical	drivers	to	the	debate	on	AWS	deployment,	see:	Chapter	2	(Context).		
138	Grossman	and	Hart,	p.	7.	
139	Inferred	from:	Bostrom,	Superintelligence,	p.	128.	
140	Andrew	Pickering,	‘Cybernetics	and	the	Mangle:	Ashby,	Beer	and	Pask’,	University	of	Illinois,	Department	of	Sociology,	
(March	2002),	pp.	1-7.	(Alternative	source:	Social	Studies	of	Science,	32,	3,	(2002)).	
141	Bostrom,	Superintelligence,	pp.	128-132.	Also:	John	Danahar,	‘Philosophical	Disquisitions’,	Danahar	blog,	(19	May	
2014)	<http://philosophicaldisquisitions.blogspot.co.uk/2014/07/bostrom-on-superintelligence-3-doom-and.html>	
[accessed	5	July	2017].	
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combat	environment.142	In	this	vein,	a	further	firmware	ramification	is	that	the	weapon’s	whole	
systems	must	comprise	intelligent	sub-parts	that	are	themselves	capable	of	agency;	each	weapon	
component	must	therefore	be	viewed	as	an	autonomous	agent	in	its	own	right.	This	is	a	central	
finding	that	raises	additional	complications.	Composite	agency	may,	after	all,	complicate	the	
weapon’s	motivational	selection.	This	complexity	is	unexpectedly	fundamental	in	AWS	deployment	
as	the	motivations	of	composite	systems	depend	not	only	on	the	impulses	of	their	constituent	sub-
agents	but	also	on	how	those	sub-agents	are	organised,	an	issue	that	is	unsuited	to	human	
assessment	(both	for	the	commissioning	Cohort	and	those	coding	its	processes).143		

 Attention methodologies in AWS 
	
A	final	firmware	issue	that	is	relevant	to	this	chapter	arises	from	the	framing	of	weapon	autonomy.	
How	can	the	system	be	structured	in	a	manner	that	AWS’	focus	can	appropriately	be	directed?	As	
inferred	from	Helgason,	constructing	a	suitable	architecture	within	which	to	manage	attention	
methodologies	will	be	a	basic	challenge	to	the	removal	of	weapon	supervision.144		The	human	brain	
appears	to	be	free	to	choose	what	it	looks	at,	listens	to	and	thinks	about.	In	benign	conditions,	
humans	can	focus	their	attention	as	they	please.	This	drift	of	information,	however,	if	not	limited	in	
any	way,	would	lead	to	memory	overflow,	interference	and	what	Haikonnen	terms	‘contradictory	
neural	cacophony’.145	Similar	to	the	human	brain,	the	AWS	platform	must	actively	select	the	source	
and	quantity	of	its	information,	what	to	process,	what	to	store	and	which	peripheral	information	
then	to	attenuate	in	its	decision	processes.	For	humans,	this	process	is	termed	attention	which,	
inter	alia,	controls	sensory	information	acquisition	and	subsequent	processing.		As	noted	by	James	
as	far	back	as	1890	in	his	The	Principles	of	Psychology,	‘attention	implies	withdrawal	from	some	
things	in	order	to	deal	effectively	with	others’.146	It	also,	he	continues,	‘has	a	real	opposite	in	what	is	
the	confused,	dazed,	scatterbrained	state	which	in	French	is	called	distraction	and	Zerstreutheil	in	
German’.	Helgason	notes	that	this	is	challenging	(and	possibly	intractably	so)	to	mimic	in	a	
machine.147	All	such	real-world	tasks	(especially	those	in	a	battlefield	setting)	come	with	time	limits	
and	it	is	the	managing	of	this	attention	feature	that	must	therefore	be	a	key	constituent	of	AWS	
processes.		
	

In	the	case	of	AWS	control,	a	ramification	of	machine	firmware	is	that	such	attention	must	be	
divided	into	that	which	is	sensory	(information	acquisition	from	its	senses)	and	that	which	relates	
to	inner	attention	(the	selection	of	relevant	inner	representations).148	For	instance,	AWS	attention	
																																																								
142	Gavin	Bowden,	‘Real-time	Deployment	of	Artificial	Intelligence	Network	forecasting	Models:	Understanding	the	
Range	of	Applicability’,	Water	Resources	Research,	(31	October	2012),	para.	6	of	40	
<http://onlinelibrary.wiley.com/doi/10.1029/2012WR011984/full>	[accessed	3	October	2017].		
143	Bostrom,	Superintelligence,	p.	23.	
144	Helgo	Pall	Helgason,	‘General	Attention	Mechanisms	for	Artificial	Intelligence	systems’,	University	of	Reykjavik,	PhD	
paper,	(June	2013),	generally	<https://en.ru.is/media/td/Helgi_Pall_Helgason_PhD_CS_HR.pdf>.	
145	Haikonnen,	p.	66.	
146	W	James,	Principles	of	Psychology,	1,	(USA:	Henry	Holt,	NY,	1890),	pp.	403-404.	
147	Helgason,	p.	2.	
148	Yi-Ling	Hwong,	‘Attention	in	Artificial	Intelligence	Systems’,	AGI.io	blog,	(22	September	2017)	
<https://agi.io/2017/09/22/attention-in-artificial-intelligence-systems/>	[accessed	28	September	2017].	See	also:	HP	
Helgason	and	others,	‘Towards	a	General	Attention	Mechanism	for	Embedded	Intelligent	Systems’,	International	Journal	
of	Computer	Science	and	Artificial	Intelligence,	4,	1,	(May	2014),	1-7	
<http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FC977A50C3C47BAD83BB0BC215F74E40?doi=10.1.1.694
.5003&rep=rep1&type=pdf>.	
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should	not	exclude	non-attended	information	completely,	the	so-called	‘cocktail	party	effect’	
whereby	it	is	possible	to	shift	attention	from	conversation	to	conversation	in	a	universe	of	broad	
noise.149	In	this	manner,	the	AWS	must	be	able	to	extract	any	attended	information	stream	from	
what	is	otherwise	background	noise	that	comprises	the	weapon’s	multiple	unattended	sensory	
streams.150	This	core	capability	must	be	agnostic	both	to	the	weapon’s	tasking	and	its	degree	of	
independence.	It	must	optimize	the	weapon’s	resource	allocation.	Dillel	points	out	that	attentional	
selection	in	AWS	must	be	further	divided	into	voluntary	and	involuntary	attention.151	Involuntary	
attention	takes	place	when	the	weapon’s	attention	is	captured	by	strong,	novel	or	significant	
stimuli.152	Given	their	battlefield	frequency,	this	creates	an	overarching	issue	of	priority.	What	
routine	can	appropriately	mediate	stimuli	in	order	to	determine	that	one	such	sensor	input	be	
preferred	over	others?	The	issue	distils	into	how	the	weapon’s	input	intensity	should	be	managed.	
It	would	be	inappropriate	for	AWS	input	strengths	simply	to	be	equalized	in	order	to	create	a	level-
playing	field.	This	is	an	important	operational	conundrum	where	a	solution,	Helgason	notes,	does	
not	lend	itself	to	being	embedded	into	a	weapon’s	machine	routines.153	It	is	also	a	pivotal	model	to	
AWS	deployment	given	that	battlefield	information	is	dynamic	where	its	importance	fluctuates	as	
events	unfold.	Martin,	Secretary	of	the	AISB154,	observes	of	these	attention	routines:	‘I	don’t	mean	
that	it’s	too	difficult	like	“man	will	never	fly”	or	“man	will	never	land	on	the	moon”.	I’m	saying	it’s	
hopelessly	misguided	like	“man	will	never	dig	a	tunnel	to	the	moon”’.155		

	
Weapon	attention	therefore	requires	delicate	ranking	given	that	it	must	be	subject	to	update	

and	robust	calibration	and	cannot	be	determined	simply	by	signal	intensity.	Battlefield	stimuli,	
moreover,	are	likely	to	be	quite	indistinguishable	with	often	overlapping	boundaries.	As	inferred	
from	Daotis,	this	complicates	coding	routines,	in	particular	in	those	sequences	designed	to	anchor	
particular	attention	traits	within	the	weapon’s	control	systems.156	Examples	of	inadequate	feature	
definition	might	include	tactical	curiosity,	battlefield	‘memories’	as	well	as	system	conflicts	arising	
from	AWS	goal	and	action	selection	and	the	a-priori	programmed	policies	of	the	Delivery	Cohort.157	
In	considering	its	ranking,	the	weapon’s	management	of	such	data	variables	creates	intractable	
challenges:	Two	variables	that	may	be	useless	by	themselves	can,	after	all,	be	useful	together.	

																																																								
149	Barry	Arons,	‘A	Review	of	the	Cocktail	Party	Effect’,	MIT	Laboratories,	undated,	pp.	1-2	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.8514&rep=rep1&type=pdf>.	
150	Denny	Britz,	‘Attention	and	Memory	in	Deep	Learning	and	Natural	Language	Processing’,	WILDML,	(3	January	2016)	
<http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/>	[accessed	28	September	
2017].	
151	L	Dillel	and	others,	‘Voluntary	and	in	voluntary	attention	have	different	consequences;	the	effects	of	perceptual	
difficulty’,	US	National	Library	of	Medicine,	On-line	resource,	undated	
<https://www.ncbi.nlm.nih.gov/pubmed/18609402>	[accessed	6	November	2017].	
152	Inferred	from:	Haikonnen,	p.	67.	
153	Helgason,	p.	9.	
154	Source:	Society	for	the	Study	of	Artificial	Intelligence	and	Simulation	of	Behaviour	
<https://www.gold.ac.uk/news/tungsten-goldsmith-ai/>	[accessed	17	November	2017].		
155	Andrew	Owen	Martin,	senior	technical	analyst	at	the	Tungsten	Network,	cited	in	Ben	Sullivan,	‘Elite	scientists	have	
told	the	Pentagon	that	AI	won’t	threaten	humanity’,	Motherboard	Magazine,	19	January	2017	
<https://motherboard.vice.com/en_us/>	[accessed	17	November	2017].	
156	Marios	Daoutis	and	others,	‘Knowledge	Representation	for	Anchoring	Symbolic	Concepts	to	Perceptual	Data’,	Bridges	
between	the	methodological	and	practical	work	of	the	robotic	and	cognitive	systems	community,	(2012),	pp.	2-3	
<http://www.aass.oru.se/~sci/chapter-11.pdf>.	See	also:	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	
setting	issues’).		
157	Ibid.,	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’)	and	8.7	(‘Action	selection	issues’).		
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Similarly,	Guyon	and	Elisseeff	note	that	a	single	variable	that	is	useless	by	itself	can	then	be	useful	
with	others.158	In	reviewing	firmware’s	handling	of	variables,	Verleysen	notes	further	coding	
quandaries	such	as	‘variable	complimentarity’,	the	‘curse	of	dimensionality’	as	well	as	issues	
around	variable	redundancy	and	variable	commensurateness.159	How,	indeed,	will	the	weapon’s	
attention	mechanism	decide	which	variable	(or	combination	of	variables)	to	focus	upon	in	any	data	
training?160	Walczak	and	Cerpa	then	point	to	the	additional	challenge	introduced	by	attention	
heuristics	being	present	in	the	weapon’s	decision	processes	(including,	inter	alia,	recency,	
availability,	representative,	conjunction,	anchoring	and	adjustment	heuristics).161	This	blurring	
complicates	AWS	attention	processing	and	adds	additional	agent-principal	challenge.		
	

Two	final	illustrations	serve	as	a	conclusion	to	this	section	by	highlighting	the	intractability	of	
this	attention	coding.	First,	the	precept	of	habituation	may	lead	to	programming	conflict	whereby	
the	weapon	system’s	response	is	coded	to	decrease	as	a	stimulus	is	repeated.162	For	AWS	operating	
in	a	battlefield	environment,	it	can	be	inferred	from	Haikonnen	that	not	all	repeating	stimuli	should	
lead	to	such	attention	habituation.163	The	associated	attribute	of	sensitization	actually	increases	a	
response	to	a	repeated	stimulus.164	The	illustration	captures	the	uncertainty	that	characterises	the	
coding	of	these	key	traits	requiring	instead	the	Delivery	Cohort	to	incorporate	additional	
associative	learning	sequences	that	mimic	links	between	stimulus,	representation	and	attention	
reaction.	This	is	unsustainable,	not	least	because	of	additional	require	feedback	loops	required	to	
ensure	their	appropriate	weighting,	attribution	and	function.	The	issue	highlights	another	firmware	
impediment.	Fletchy	notes	that	attention	models	must	depend	upon	clearly	defined	routines	
separating	‘memorization’	(‘Mary	had	a	little	lamb…’)	and	‘memory-making’,	the	act	of	imprinting	
episodic	recalls	into	memory.165	The	firmware	distinction	is	fundamental	whereby	semantic	
learning	involves	the	unsupervised	weapon	absorbing	a	definable	fact	while	procedural	learning	
will	involve	the	unit	learning	skill	routines,	mental	or	motor	sequences.	The	challenge	is	that	AWS	
firmware	must	incorporate	sufficient	adaptability,	generalization	and	an	ability	to	parse	
information	that	has	been	inductively	picked	up	by	the	AWS	in	different	situations	and	from	
different	sources.166	This	integration	piece	is	thus	pivotal	to	weapon	system	architecture:	A	
modular	system	that	contains	all	of	the	parts	identified	in	this	chapter	must	still	deliver	the	promise	

																																																								
158	Isabelle	Guyon	and	Andre	Elisseeff,	‘An	Introduction	to	Variable	and	Feature	Selection’,	Journal	of	Machine	Learning	
Research,	3,	(2003),	1165	<http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf>.	
159	M	Verleysen	and	others,	‘On	the	Effects	of	Dimensionality	on	Data	Analysis’,	IWANN,	(2003),	pp.	106-108	
<https://perso.uclouvain.be/michel.verleysen/papers/iwann03mv.pdf>.		
160	Guyon	and	Elisseeff,	p.	1157.	
161	Steven	Walczak	and	Narciso	Cerpa,	‘Heuristic	Principles	for	the	Design	of	Artificial	Neural	Networks’,	Information	
and	Software	Technology,	41	(2),	(1999),	pp.	6-8	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.9321&rep=rep1&type=pdf>.	
162	Stephen	Marsland,	‘Using	Habituation	in	Machine	Learning’,	Neurobiology	of	Learning	and	Memory,	92,2,	(2009,)	pp.	
260-266	(‘Abstract’	and	‘Introduction’).		
163	Haikonnen,	p.	75.	
164	Humans	learn	not	to	pay	attention	to	the	noise	of	traffic	or	other	repeating	background	sound	(habituation)	but	may	
instead	become	irritated	by	a	repeating	and	intense	noise	(sensitization).	
165	For	a	general	discussion	on	the	issue,	see:	G	Fletchy	blog	and	video,	(1	December	2014)	
<https://gfletchy.com/2014/12/01/from-memory-and-memorization-there-is-a-difference/>	[accessed	6	May	2017].		
166	Each	such	dataset,	moreover,	will	have	its	own	provenance	that	will	require	weighting.	This	might	include	
information	from	its	own	immediate	sensor	streams	versus	an	update	from	central	logistics,	peripheral	information	
from	colleague	robots	or	changes	to	its	utility	function	from	battlefield	command.	
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that	overall	system	performance	can	be	improved	by	changing	out	individual	modules.	This,	notes	
the	US	DoD,	must	be	possible	with	little	adverse	effects	on	the	whole	machine	and,	critically,	
without	the	need	for	repeated	full	regression	testing	of	the	entire	system.167	Although	it	is	intended	
that	AI	machines	learn	from	their	past	experiences	or	environments,	they	will	not	be	learning	all	of	
the	time.	This	will	be	a	complex	routine	for	AWS	given	the	intricacies	of	battlefield	attention	and	
situational	awareness.	Crucially,	for	a	weapon	to	be	compliant	and	still	valuable,	its	intended	end-
state	cannot	be	derived	through	ad	hoc	learning;	instead,	all	data	gathered	by	the	AWS	while	on	
mission	might	instead	be	‘sent	back	home’	and	used	subsequently	to	improve	the	unit’s	underlying	
model	which	then	has	to	be	redeployed.	In	this	way,	it	is	posited	that	no	individual	weapon	system	
can	learn	‘bad’	behavior	from	a	particular	environment	and	then	turn	rogue.	On	this	basis,	it	is	now	
possible	to	investigate	AWS	software	components	that	together	will	comprise	its	empirical	
operation	and,	to	intents	and	purposes,	AWS’	capabilities	that	rest	upon	the	weapon’s	firmware	and	
middleware.	

																																																								
167	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	p.	25.	
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8. 	Software:	Coding	challenges	to	AWS	function	

Having	considered	infrastructure	challenges	that	arise	from	the	removal	of	human	supervision	in	
lethal	weapons,	the	purpose	of	this	chapter	is	now	to	review	the	principal	software	routines	that	
will	sit	on	top	of	this	architecture	and	will	likely	comprise	AWS	operation.1	This	section	primarily	
unpicks	the	capturing	and	processing	of	the	unsupervised	weapon’s	immediate	environment.	As	
noted	by	Kamimura,	this	is	primarily	a	translation	challenge	between	the	weapon’s	current	sensor	
data	and	the	a-priori	signposts	that	comprise	the	machine’s	initial	setup	on	deployment.2	The	key	
for	this	chapter	is	therefore	to	determine	how	such	real-time	information	may	be	incorporated	into	
subsequent	decision	and	action	processes.	By	way	of	overview,	several	challenges	exist.	While	both	
data	capture	and	decision	routines	must	be	current,	it	is	also	necessary	for	the	weapon	to	toggle	
predictably	between	old	and	new	information	and,	within	a	framework	of	confidence	checks,	to	
ignore	and	remove	stale	data.	This	chapter’s	crux	comprises	its	discussion	on	the	weapon’s	likely	
utility	function3,	the	conditioning	of	that	function4,	how	that	function	is	anchored	and	then,	
crucially,	how	that	function	interacts	with	the	weapon’s	current	goals,	values	and	behaviours	before	
deciding	upon	actions.5	This	requires	a	review	of	possible	models	that	comprise	battlefield	
engagement	sequences	(and	the	restrictions	that	such	processes	enforce	upon	AWS	operation).	
Three	factors	again	require	emphasis.	Demarcation	between	the	subject	matter	of	chapters	Six	
through	Eight	(Wetware,	Firmware	and	Software)	is	not	clear-cut.	Moreover,	these	chapters	seek	to	
opine	on	cumulative	feasibility	in	AWS	operation.	Finally,	the	sections	plot	a	likely	but	not	definite	
architecture	for	the	weapon’s	software	routines	and	do	so	from	a	deliberately	behavioural	rather	
than	technical	perspective.		
	

As	indicated	in	the	preceding	chapter6	and	highlighted	by	the	US	DoD,	the	value	of	an	
autonomous	weapon	is	largely	reducible	to	how	well	its	software	routines	perform.7	An	overview	of	
design	issues	therefore	provides	relevant	preamble	to	the	chapter.	As	inferred	from	Grundspenkis,	
it	is	the	weapon’s	primary-level	‘representation’	that	will	prove	fundamental	to	compliant	
deployment	whereby	the	AWS	can	capture	its	immediate	‘world-state’	and	then	anchor	its	position	
relative	to	its	environment.8	For	this	to	take	place,	the	platform	must	gather	and	then	process	a	

																																																								
1	For	a	useful	primer	on	network	components	and	software	engineering	issues,	see:	Fabio	Beckenkamp,	‘A	Component	
Architecture	for	Artificial	Neural	Network	Systems’,	University	of	Constance,	Software	Research	Laboratory,	(June	2002),	
pp.	67-73	<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.9621&rep=rep1&type=pdf>.		
2	R	Kamimura,	‘Generation	of	Organised	Internal	Representations’,	Neural	Networks,	IJCNN,	(1992)	
<http://ieeexplore.ieee.org/document/287116/>	[accessed	12	June	2017].	As	in	previous	chapters,	unless	specified	the	
term	‘weapon’	is	used	interchangeably	with	‘unit’,	‘platform’	and	‘machine’	to	denote	an	autonomous	weapon	system.	
3	For	explanation	on	the	role	of	a	utility	function	in	AWS	operation,	see:	this	chapter,	specifically:	8.3	(‘Utility	function’).		
4	EC	Kulasekere	and	others,	‘Conditioning	and	Updating	Evidence’,	International	Journal	of	Approximate	Reasoning,	36,	
(2004),	76.	
5	This	chapter,	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’),	8.6	(‘Value	setting	issues’)	ad	8.7	(‘Action	selection	
issues’).		
6	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Sources	of	technical	debt’).		
7	US	Department	of	Defense,	‘The	Role	of	Autonomy	in	DoD	Systems’,	pp.	1-3,	pp.	15-17.	
8	For	a	useful	overview	on	knowledge	representation,	see:	J	Grundspenkis,	‘Fundamentals	of	artificial	intelligence;	
knowledge	representation	and	networked	schemes’,	Department	of	Systems	Theory	and	Design,	Riga	University,	Lecture	
7,	undated,	generally	<http://stpk.cs.rtu.lv/sites/all/files/stpk/lecture_7.pdf>.	
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wide	variety	of	data	points	and	types.9	Stonebroker	points	out	that	the	routines’	complexity	arises	
from	the	requirement	that	the	weapon	poll,	categorize,	classify	and	then	act	upon	what	must	be	a	
dynamic	yet	poorly	correlated	set	of	information.10	The	variety	of	(and	variation	in)	this	sensed	
data	must	be	counterweighed,	moment-by-moment,	through	compensatory	application	of	
confidence	levels	which,	notes	Culotta	and	McCallum	generally	of	ML	models,	must	then	be	attached	
to	each	of	the	weapon’s	data	strings	(dependent,	inter	alia,	upon	that	data’s	recency,	intensity,	
relevance,	substantiation,	completeness,	consistency	and	trustworthiness).11		This	is	an	intricate	
requirement	and	one	that	must	precede	any	subsequent	allocation	of	processed	data	output	into	
ensuing	routines	that	will	comprise	weapon	processes	such	as	that	platform’s	goals,	values	and	
behaviours.	Furthermore,	all	of	these	routines	must	be	incorporated	within	code-written	
instruction	notwithstanding	the	nuanced	nature	of	this	list	of	dependencies.12	Such	coding	must	
also	manage	the	complexities	of	anchoring	this	data	whereby	amendments	can	then	be	made	to	
weapon	settings	in	appropriate	degree	in	order	to	refine	the	nub	of	the	weapon’s	operation,	its	on-
going	representation.13		
	

In	order	to	remove	supervision	from	machine	systems,	the	challenge	is	that	the	weapon	must	
maintain	a	comprehensive	(and	now	independent)	understanding	of	its	environment.14	It	is	this	
function	that	generates	the	AWS’	‘representation’	and	provides	the	machine	with	what	Chaudri	and	
others	term	its	‘internal	model	of	its	world’.15	On	the	battlefield,	it	is	this	volatile	‘interpretation’	
that	enables	the	autonomous	weapon	to	apply	ML	in	order	to	solve	problems	by	considering,	
deciding	upon	and	actioning	possible	solutions.16	Representation	is	therefore	a	key	capability	in	
AWS’	intended	function	and,	as	deduced	from	Mataric,	is	based	on	efficient	manoeuvre	of	symbolic	
information	harvested	from	the	weapon’s	sensors.17	The	immediate	challenge,	however,	arises	from	
data	accuracy	and	fit.18	Dredze	notes	the	complication	that	such	models	are	founded	upon	a	
frequent	(possibly	continuous)	requirement	for	sensed	(in	this	case,	battlefield)	data	that	must	first	

																																																								
9	ISCA	Tutorial,	‘Hardware	Architecture	for	Deep	Neural	Networks’,	MIT	Press,	nvidia,	(24	June	2017)	
<http://www.rle.mit.edu/eems/wp-content/uploads/2017/06/ISCA-2017-Hardware-Architectures-for-DNN-
Tutorial.pdf>.	
10	For	discussion	on	data	polling	frequency	and	resolving	conflict	between	data	latency	and	storage,	see:	M	Stonebroker	
et	al,	‘The	8	requirements	of	real-time	stream	processing’,	MIT	Press/Brown,	(2008)	
<http://cs.brown.edu/~ugur/8rulesSigRec.pdf>.		
11	Aron	Culotta	and	Andrew	McCallum,	‘Confidence	Estimation	for	Information	Extraction’,	Proceedings	of	HTL-NAACL,	
Association	for	Computational	Linguistics,	(2004),	pp.	1-2	<https://people.cs.umass.edu/~mccallum/papers/crfcp-
hlt04.pdf>.		
12	This	chapter,	specifically:	8.1	(‘Coding	methodologies’)	and	8.2	(‘Coding	errors’).		
13	This	chapter,	specifically:	8.5	(‘Anchoring	issues’).		
14	See:	Chapter	6	(Wetware),	specifically:	6.1	(‘Software	versus	intelligence’)	and	6.2	(‘Architectural	approaches’).		
15	A	further	useful	resource	on	knowledge	representation	can	be	found	in	slide	format	at:	V	Chaudri,	‘Knowledge	
representation	and	reasoning’,	University	of	Stanford,	Class	slides	CS227,	(Spring	2011)	
<https://web.stanford.edu/class/cs227/Lectures/lec01.pdf>.		
16	Dietterich,	pp.	3-6.	
17	Mataric,	p.	13.	
18	Medium.com,	‘The	AI	data	Apocalypse’	<https://medium.com/@peopleio/the-ai-data-apocalypse-1375ac47ffe4>	
[accessed	5	July	2017].	
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be	subject	to	both	scaling	factors19	and	conviction	weightings.20	These	factors	must	appropriately	
reflect	the	confidence	level	attributable	to	particular	routines	(itself	a	dynamically	changing	
construct)	and	which	will	explicitly	influence	subsequent	weapon	outcomes.	This	is	a	non-trivial	
and,	considering	Hartemink,	a	possibly	intractable	prerequisite.21	To	this	point,	Tenk	points	out	
that	the	platform’s	treatment	of	sensed	data	will	be	prone	to	corruption.22	How	then	might	this	be	
managed	in	an	engagement	sequence?	Empirically,	the	weapon’s	sensed	data	with	least	variance	
will	be	given	additional	weighting	in	each	new	polling	iteration.	This	has	consequences.	Confidence	
weightings	may	have	the	unintended	effect	of	inappropriate	data	smoothing	until	that	data	(in	the	
case	of	an	engagement	sequence,	information	on	target	signature,	classification,	positioning,	
location,	movement,	threat,	obstacles	and	sensitivity	to	battlefield	clutter)	becomes	inappropriately	
scaled	to	the	mean.23	A	further	effect	is	that	other	sensed	data	may	receive	inappropriate	weighting,	
so	requiring	the	introduction	of	normalization	routines24	in	order	to	force	appropriate	accounting	
of	those	variances	in	the	weapon’s	routines.25	Finally,	a	weapon’s	sensed	data	must	be	comparable	
(both	temporally	and	structurally)	before	it	can	be	reliably	incorporated	in	an	engagement	
sequence.	The	challenge	is	that	smoothing	of	primary	data	might	also	obscure	underlying	data	
variations	which,	in	themselves,	may	be	pivotal	to	ensuring	weapon	efficiency	and	compliance.		

	
Allocating	a	high	confidence	level	to	an	AWS	dataset	should	then	translate	a	portfolio	of	

specific	(and,	by	definition,	vetted)	stimuli	into	a	highly	allied	response	action.26	For	this	to	occur,	
however,	first	requires	that	confidence	thresholds	change	dynamically	in	order	appropriately	to	
regulate	weapon	behaviour.27	A	difficulty	is	noted	by	Siddiqi	whereby	such	intervention	should	
apply	whether	AWS	design	is	top-down	(policies	that	are	programmed	into	the	weapon	whereby	
such	rules	are	executed	without	variation)	or	bottom-up	(weapons	based	upon	machine	learning	
including	deliberative	planning	as	well	as	interaction	with	humans).28	There	is	actually	quite	little	
operational	flexibility	in	the	scope	of	weapon	routine.	This	is	an	important	observation	as	narrow	
tolerances	are	themselves	a	source	of	inappropriate	system	brittleness	and	‘technical	debt’.29	

																																																								
19	To	be	applied	by	the	weapon	system	when	a	real	world	set	of	data	needs	to	be	represented	on	a	different	scale	in	
order	to	fit	a	specific	data	format.	
20	M	Dredze	and	others,	‘Confidence-weighted	linear	classifiers’,	Department	of	Computer	and	Information	Science,	
University	of	Pennsylvania	<https://www.cs.jhu.edu/~mdredze/publications/icml_variance.pdf>.		
21	A	Hartemink	and	others,	‘Maximum	likelihood	estimation	of	optimal	scaling	factors’,	MIT	Laboratory	for	Computer	
Science,	p.	1	<https://groups.csail.mit.edu/cgs/pubs/spie.pdf>.	The	research	reports	undesirable	variation	arising	from	
hybridization	of	sample	sets.		
22	CM	Teng,	‘Dealing	with	data	corruption	in	remote	sensing’,	Advances	in	Intelligent	Data	Analysis,	VI,	IDA,	lecture	notes	
in	Computer	Science,	Vol.	3646,	Springer,	(2005)	<https://link.springer.com/chapter/10.1007/11552253_41>	
[accessed	7	July	2017].	
23	US	Field	Manual,	Light	Cavalry	Gunnery:	Target	Acquisition,	(USA:	Field	Manual	Publications,	17-12-8,	February	1999)	
<http://www.globalsecurity.org/military/library/policy/army/fm/17-12-8/ch3.htm>	[accessed	12	August	2017].	
24	Normalization	is	the	weapon’s	process	of	reorganizing	data	so	that	it	meets	two	basic	requirements.	First,	there	may	
be	no	redundancy	of	data	(all	data	is	stored	in	only	one	place).	Second,	data	dependencies	may	all	be	logical	(in	which	
case	all	related	data	items	are	stored	together).	
25	Hartemink	and	others,	generally.	
26 Source: ISCA	Tutorial,	‘Hardware	Architecture	for	Deep	Neural	Networks’,	generally.	 
27	Human	judgement	will	therefore	be	a	critical	component	in	AWS	programming	with	the	degree	of	machines’	learning	
and	awareness	being	determined	by	how	humans	have	set	the	filters	and	weightings.		
28	Abdul	Ahad	Siddiqi,	‘Implications	of	using	Artificial	Intelligence	Technology	in	Modern	Warfare’,	ICCIT,	(2012),	p.	33.	
29	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Machine	learning	and	sources	of	technical	debt’).	
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Together,	after	all,	these	functions	will	inform	the	weapon’s	knowledge	representation.30	It	is	a	
fundamentally	complex	construct.31	Rather	than	being	a	matter	of	memory	management,	the	issue	
is	what	and	how	that	primary	data	is	represented	within	the	AWS’	representation.	An	example	
(again	relating	to	AWS	land-based	navigation)	is	useful	to	evidence	this	intricacy.	The	unsupervised	
weapon	may	be	programmed	to	remember	an	exact	odometric	path	to	a	target.32	Alternatively,	
Devlin	notes	that	the	platform	may	be	programmed	to	follow	a	sequence	of	moves	made	at	
particular	landmarks	in	its	immediate	environment.33	In	both	cases,	the	weapon’s	topological	map	
must	be	dynamic	and	always	current	if	the	AWS	is	to	rely	upon	such	an	instruction	dataset	
(whether	as	a	complete	sequence	or	as	a	series	of	movements	triggered	at	each	landmark).		In	
inferred	from	Cipar,	the	weapon’s	representation	is	thus	structurally	prone	to	obsolescence.34	It	
may	also	be	susceptible	to	camouflage,	start-state	confusion	and	other	muddling	noise.35	Distortion	
may	arise	in	data	points	from	elevation,	obstacles	and	other	fast-changing	battlefield	metrics.36	
Furthermore,	an	odometric	path	is	only	useful	if	the	AWS’	environment	is	itself	static	and	
understood.	It	similarly	relies	on	precise	tracking	of	distances	and	turn	angles.	As	confirmed	by	
Aquel,	the	procedure	is	non-obvious	and	challenging.37		

	
Once	so	deployed,	the	AWS	will	move	around	an	environment,	dynamically	polling	new	

information	from	its	sensors.38	The	challenge	is	that	the	weapon	must	use	this	refreshing	routine	to	
refine	its	own	probability	distributions	using	conditionalization.39	The	theory	is	that	the	weapon	is	
thus	computing	a	new	probability	for	its	immediate	world	that	is	consistent	with	new	information	
being	polled	from	its	sensors.	Any	inconsistent	probabilities	will	be	set	back	to	zero	and	then	
‘renormalized’	over	the	remaining	possible	outcomes.	The	weapon’s	model	for	conditionalization,	
however,	is	that	it	must	reliably	calculate	conditional	probabilities	for	each	set	of	possible	causes	
for	each	of	its	given	observed	outcomes.	The	intended	routine	is	for	the	weapon	to	construct	a	
complex	composite	comprised	of	the	received	probability	of	each	such	cause	and	the	conditional	

																																																								
30	Chaudri,	generally.	
31	Andreas	Engel	and	Wolf	Springer,	‘Temporal	Binding	and	the	Neural	Correlates	of	Situational	Awareness’,	Trends	in	
Cognitive	Science,	15,	1,	(January	2001),	pp.	16-17	<http://ieeexplore.ieee.org/document/287116/>	[accessed	12	
September	2017].		
32	The	use	of	data	from	motion	sensors	to	estimate	change	in	position	over	time,	usually	in	relation	to	a	starting	
position.		
33	For	a	useful	discussion	of	the	issues,	see:	H	Devlin,	‘Google	creates	and	artificial	intelligence	program	that	uses	
reasoning	to	navigate	the	London	tube’,	Guardian	Newspaper,	12	October	2016	
<https://www.theguardian.com/technology/2016/oct/12/google-creates-ai-program-that-uses-reasoning-to-
navigate-the-london-tube>	[accessed	4	February	2017].	
34	This	feature	presents	an	adjunct	challenge	whereby	every	slowdown	of	a	given	data	thread	can	delay	all	other	data	
threads	and	paralyse	weapon	processing.	Inferred	from:	James	Cipar	and	others,	‘Solving	the	Straggler	Problem	with	
Bounded	Staleness’,	HotOS,	13,	(2013),	pp.	1-3	<http://www.cs.cmu.edu/~seunghak/hotOS-13-cipar.pdf>.	
35	Although	written	in	1998,	see:	James	Llinas	and	others,	‘Studies	and	Analyses	of	Aided	Adversarial	Decision	Making:	
Phase	2	–	Research	on	Human	Trust	in	Automation’,	US	Air	Force	Research	Laboratory,	(April	1998),	generally	
<https://pdfs.semanticscholar.org/1424/5ae4ec038f3a3b9c737e40b9d289dc79a612.pdf>.	
36	DY	Kim	and	others,	‘Data	filtering	system	to	avoid	total	data	distortion	in	IOT	networks’,	MDPI,	(2017)	
<www.mdpi.com/journal/symmetry>	[accessed	2	March	2017].	
37	M	Aquel	et	al,	‘Review	of	odometry:	Types,	approaches,	challenges	and	applications’,	Springer,	(28	October	2016)	
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084145/>	[accessed	3	March	2017].	
38	J	Hendler	and	others,	‘Handbook	of	Knowledge	Representation’,	in	Foundations	of	Artificial	Intelligence,	978-0-444-
52211-5,	(USA:	Elsevier	Publishing,	2008)	<http://dai.fmph.uniba.sk/~sefranek/kri/handbook/handbook_of_kr.pdf>.	
39	Bostrom,	Superintelligence’,	p.	10.	
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probability	of	the	outcome	of	those	causes.	Challenges	emerge	from	conditionalized	data	streams40	
and	engineering	reliable	practical	application	of	a	conjectural	theorem	remains	enduringly	
complex.41	Furthermore,	the	process	must	be	driven	by	an	initial	set	of	error-free	(and	yet	
subjective)	decision	weightings.	The	process	involves	architectural,	language,	symbol	and	semantic	
complications,	each	component	of	which	may	likely	prove	intractable	with	any	hiccup	in	these	
operational	inputs	grossly	affecting	platform	performance.42	Furthermore,	as	the	weapon	makes	
additional	observations	under	this	model,	its	list	of	derived	probabilities	may	become	ever	more	
focused	on	a	shrinking	set	of	possible	worlds	that	nevertheless	remain	consistent	with	the	evidence	
being	provided	by	its	external	sensors:	This	condition	appears	an	intractable	feature	that	cannot	be	
designed	away.	The	weapon,	after	all,	is	generating	a	series	of	posterior	probability	distributions	
that	the	machine	uses	as	its	new	prior	in	every	next-time	step.	Finally	to	this	point,	a	weapon	system	
that	captures	data	from	its	immediate	environment	is	dependent	upon	appropriate	feedback	
loops.43	Notwithstanding	their	importance	to	the	AWS	model,	Norman	notes	that	such	pointer	
mechanisms	are	empirically	difficult	to	manage	and	that	such	underlying	routines	can	themselves	
create	hidden	loops	whereby	gradual	changes	may	not	be	apparent	from	quick	experimentation	
and	testing	by	the	weapon’s	software	routines.44	Indeed,	hidden	feedback	complicates	projected	
system	changes	and	obstructs	even	very	simple	correction	to	the	unsupervised	platform.45		

	
Within	this	general	framework,	it	is	then	possible	to	identify	software	shortcomings	in	AWS	

mapping.	It	is	relevant	to	revisit	first	principles.	Mapping	models,	notes	Wallgrun,	generally	require	
the	unsupervised	machine	to	remember	a	passage	by	creating	a	metric	map	of	its	immediate	
environment.46	Each	instance,	however,	requires	precisely	accurate	measurement	for	all	of	that	
passage.	Mararic	notes	the	substantial	storage,	management	and	processing	requirements	of	such	
datasets.47	The	model	type,	moreover,	is	particularly	prone	to	obsolescence	and	poor	stability.48	
This	arises	from	the	unavoidable	requirement	that	all	relevant	navigable	space	(which	is	accessible	
to	the	weapon)	must	first	be	identified,	then	processed	and	then	made	‘map-ready’	for	each	of	the	
machine’s	internal	representations.	The	resulting	representation	must	then	be	searched	in	real	

																																																								
40	Saad	Mohamad,	‘Active	Learning	for	Data	Streams’,	Bournemouth	University/IMT	Lille	Douai,	(October	2017),	Abstract	
<http://eprints.bournemouth.ac.uk/29901/1/MOHAMAD%2C%20Saad_Ph.D._2017.pdf>.	
41	Although	outside	the	remit	of	this	analysis,	see,	inter	alia:	narrative	on	intractability	of	the	Barman-Hartmanis	
conjecture,	the	P	versus	NP	conjecture,	Hodge’s	conjecture	and	Poincare’s	conjecture.		
42	See:	previous	chapter	(Firmware),	specifically:	7.2	(‘Machine	learning	and	technical	debt’),	7.3	(‘Firmware	
ramifications	of	learning	methodologies’)	and	7.4	(‘Attention	methodologies’).	
43	Y	Gatt,	‘Space	Mapping	and	Navigation	for	a	behaviour-based	Robot’,	University	of	Neuchatel,	PhD	thesis,	(1994),	pp.	
12-13	and	pp.	23-24	
<https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/integrated2/muller_mapping.pdf>.	
44	D	Norman,	‘The	Problem	of	Automation;	Inappropriate	feedback	and	interaction’,	ICS	Report	8904,	Institute	for	
Cognitive	Science,	University	of	California,	(1989)	
<https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900004678.pdf>.	
45	Sculley	and	others,	p.	3.	
46	A	useful	primer	on	robot	navigation	is	found	at:	JO	Wallgrun,	‘Spatial	Representation	and	Reasoning	for	Mobile	
Robots’,	Springer	Publishing,	DOI	10.1007/978-3-642-10345-2_2,	(2010),	p.	12.	
47	Mataric,	p.	147.	
48	James	Vincent,	‘The	Biggest	Headache	in	Machine	Learning?	Cleaning	Dirty	Data	off	the	Spreadsheets’,	The	Verge,	1	
November	2017,	generally	<https://www.theverge.com/2017/11/1/16589246/machine-learning-data-science-dirty-
data-kaggle-survey-2017>	[accessed	12	January	2018].	
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time	to	establish	available	paths	that	are	appropriate49	before	dynamically	computing	a	best	path	
for	the	AWS	and	then	reframing	the	weapon’s	goals	given	the	revised	fit	of	that	identified	path.50	
This	is	a	complicated	set	of	consecutive	routines	that,	given	sensor	and	environmental	noise,	will	
acutely	be	prone	to	error.51	Navigation	(the	example	used	throughout	this	analysis	to	illustrate	
model	complexity)	is,	after	all,	a	testing	process	for	a	human	operator	to	master.52		

	
Davis	and	colleagues	point	to	a	second	software	challenge	that	arises	in	representation-based	

models.53	Expected	unit	function	requires	that	comprehensive	information	is	available	to	the	
weapon’s	internal	routines.	Its	scope	must	include,	inter	alia,	data	on	the	AWS’	self	(stored	
proprioception	on	its	goals,	intentions,	plans	and	self-limitations),	its	battlefield	environment	
(navigable	spaces,	obstructions,	limitations	and	deviations),	its	objects,	actions,	outcomes	and	its	
combat	tasks	(objectives,	priorities,	alternatives,	goals).	These	components	themselves	comprise	
individual	sub-models.	Warwick	points	out	that	they	are	highly	elaborate,	variably	correlated	and	
likely	conflicting.54	Not	all	of	these	routines	are	intrinsic	to	core	operation.	Some	may	be	relatively	
quickly	constructed,	briefly	used	and,	crucially,	must	then	be	subject	to	appropriate	‘forgetting	
routines’	as	they	are	likely	quickly	discarded.55	This,	however,	adds	material	complexity	as	it	will	be	
intractably	challenging	to	classify,	process	and	then	migrate	sensed	data	between	types	and	stages	
of	the	representation	model.56	As	pointed	out	by	Hunicke,	dynamic	balancing	complicates	the	
programming,	maintenance	and	operational	anchoring	of	autonomous	systems	once	deployed.57	
This	point	is	worth	further	explanation.	In	the	first	instance,	it	is	unclear	which	constituent	of	the	
Delivery	Cohort	will	both	govern	and	then	manage	such	weightings.58	It	is	unclear	what	happens	if	

																																																								
49	For	a	useful	discussion	on	decision	waterfalls	for	autonomous	vehicle	motion,	see:	B	Paden	and	others,	‘A	Survey	of	
Motion	Planning	and	Control	Techniques	for	Self-driving	Urban	Vehicles’,	MIT	Press,	(25	April	2016),	generally	
<https://arxiv.org/pdf/1604.07446.pdf>.			
50	Although	written	for	a	financial	audience,	see:	S	Brassia,	‘Artificial	Intelligence	in	the	path	planning	of	mobile	agent	
navigation’,	SciVerse	ScienceDirect,	Elservier,	(2012)	<http://ac.els-cdn.com/S2212567112001475/1-s2.0-
S2212567112001475-main.pdf?_tid=6d536560-6611-11e7-9d94-
00000aab0f6c&acdnat=1499761249_fe59e466dd607005fe4ebe2da5722507>	[accessed	3	August	2017].		
51	Andreas	Birk,	‘A	Quantitative	Assessment	of	Structural	Errors	in	Grid	Maps’,	Autonomous	Robots,	Jacobs	University,	
28,		(2010)	,pp.	187-196		<https://pdfs.semanticscholar.org/aa32/bdb2fe20faf7585c2763bb70c3fb42f54196.pdf>.	
52	Directorate	Land	Warfare,	‘Operation	HERRICK	Campaign	Study’,	AD	LXC,	Warminster,	(2015),	generally.	See	again:	
Chapter	9	(Hardware),	specifically:	9.3	(‘Navigation	issues’).		
53	R	Davis	and	others,	‘What	is	Knowledge	Representation?’,	<http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html>	
[accessed	3	May	2017].	
54 For	a	general	discussion	on	AI	conflict	resolution,	see:	Kevin	Warwick,	Artificial	intelligence;	the	basics,	(UK:	
Routledge,	2012),	p.	34. 
55	The	complicated	role	of	forgetting	in	AWS	control	routines	is	considered	later	in	this	chapter.	Mapping,	for	instance,	
typically	entails	incremental	adjustment	of	an	internal	model	followed	immediately	by	the	discarding	of	that	sensed	
observation.		
56	S	Dash,	‘A	comparative	study	of	moving	averages:	Single,	weighted	and	exponential’,	Trade	Station	Labs,	(9	May	2012)	
<https://www.tradestation.com/~/media/Files/TradeStation/Education/Labs/Analysis%20Concepts/A%20Compara
tive%20Study%20of%20Moving%20Averages/Moving%20Averages.ashx>	[accessed	6	April	2017].	For	detailed	
discussion	on	hardware	sensors	and	ramifications	arising	from	sensed	data,	see:	Chapter	9	(Hardware),	specifically:	9.1	
(‘Hardware	and	sensor	fusion	for	the	AWS’).		The	process	will	require	data	sensing,	data	processing,	back	testing,	
memory	management	and	data	cleansing.	See:	this	chapter,	specifically:	8.1	(‘Coding	methodologies’).	
57	A	useful	comparator	here	comes	from	the	gaming	industry.	For	a	discussion	on	challenges	to	dynamic	adjustment	of	
computer	programmes,	see:	R	Hunicke	et	al,	‘Artificial	Intelligence	for	dynamic	difficulty	adjustment	in	games’,	
Northwestern	University,	undated	<http://www.cs.northwestern.edu/~hunicke/pubs/Hamlet.pdf>.	
58 For	the	purposes	of	this	thesis,	the	broad	Delivery	Cohort	is	used	throughout	the	thesis	to	describe	the	several	parties	
responsible	for	the	design,	implementation	and	deployment	of	AWS. 
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some	but	not	all	deployed	machines	receive	such	intervention.59	External	revision	of	scaling	factors	
will,	after	all,	be	more	difficult	in	a	battlefield	environment	where	communication	is	problematic	
and	data	collection	is	compromised.	Different	levels	of	interpolation	will	presumably	lead	to	
weapons	with	subtly	different	software	composition,	subtly	different	learning	traits	and,	over	time,	
ever	less	identical	profiles.	A	complication	might	even	arise	when	these	weapon	routines	result	in	
AWS	protocols	ignoring	attempts	by	parties	to	alter	these	weightings.60	Similarly,	difficulties	will	
arise	when	the	sizing	(and	revising)	of	scaling	factors	implies	directly	the	preferences	of	the	user.61		

 Coding methodologies 
	
A	key	software	faultline	relates	to	how	the	AWS	will	be	programmed.62	A	purpose	of	this	section	is	
therefore	to	review	the	efficacy	of	computer	code	as	an	appropriate	means	of	replacing	human	
supervision	over	weapons	through	unambiguous	machine	instruction.63	Knight	highlights	the	gap	
between	capabilities	that	can	be	expressed	through	software	script	and	the	tasking	required	of	
underlying	machine	models;	software	written	in	high-level	languages,	he	notes,	increasingly	
‘crushes’	transparency	and	subsequent	serviceability	in	these	models.64	The	challenge	to	AWS	
deployment	is	that	anticipating	the	full	execution	costs	of	weapon	code	is	increasingly	difficult.	
Wren	identifies,	for	example,	a	related	trend	in	the	use	of	inappropriate	higher-order	coding	tools,	
in	particular	‘object-orientated	methods	and	iterators	that	cannot	easily	be	described	and	
manipulated	in	weapon-specific	low-level	terms’.65	Nor	is	coding	efficiency	a	linear	construct;	as	
noted	by	Selman,	some	quite	involved	tasks	readily	break	down	into	programmable	kernels	while	
other	apparently	light	routines	appear	to	defy	expression.	It	is	well	documented	that	the	efficiency	
curve	of	coding	appears	very	variable	with	certain	routines	becoming	unexpectedly	iterative	and	
unsolvable.66	This	should	not	be	unexpected:	Godel,	after	all,	evidenced	as	early	as	the	1930s	that	
not	all	arithmetic	truths	that	exist	are	provable,	demonstrating	that	mathematical	statements	occur	

																																																								
59	The	issue	is	well	documented	(in	particular	by	service	providers).	See:	D	Moran,	‘Tackling	RF-Denied	Environments’,	
Harris	Corporation,	(9	March	2017)	<https://www.harris.com/perspectives/innovation/tackling-rf-denied-
environments>	[accessed	23	June	2017].		
60	This	is	less	to	do	with	Hawkins’	concerns	on	nefarious	robot	sentience	(see:	Appendix	Two:	‘The	issue	of	singularity	in	
AWS’)	and	more	to	do	with	individual	AI	agents	creating	overarching	software	priorities	that	cut	out,	for	instance,	
external	updating.	
61	Peter	Vas,	Artificial-intelligence	based	Electrical	Machines	and	Drives,	(Oxford:	Oxford	Science	Publications,	1999),	p.	
579.	See	also:	Sanford	Grossman	and	Oliver	Hart,	‘An	Analysis	of	the	Principal-Agent	Problem’,	Econometrica,	Vol.	51,	
Issue	1,	January	1983,	p.	10	<http://brousseau.info/pdf/cours/grossman_hart_83.pdf>.	
62	Jason	Tanz,	‘Soon	we	won’t	program	computers.	We’ll	train	them	like	dogs:	The	End	of	Code’,	Wired	Magazine,	
Business,	17	May	2016	<https://www.wired.com/2016/05/the-end-of-code/>	[accessed	23	September	2017].	
63	Robert	Harper,	‘Structure	and	Efficiency	of	Computer	Programming’,	Carnegie	Mellon	School	of	Computer	Science,	(23	
July	2014),	p.	2	<http://repository.cmu.edu/cgi/viewcontent.cgi?article=3673&context=compsci>	[accessed	18	October	
2017].	
64	Will	Knight,	‘AI’s	Language	Problem:	Machines	that	truly	understand	human	language	would	be	incredibly	useful.	But	
we	don’t	know	how	to	build	them’,	MIT	Technology	Review,	(9	August	2016)	
<https://www.technologyreview.com/s/602094/ais-language-problem/>	[accessed	3	September	2017].		
65 Alisdair	Wren,	‘Relationships	for	Object-Oriented	Programme	Language’,	University	of	Cambridge	Computer	
Laboratories,	Technical	Report	Number	702,	(November	2007)	<https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
702.pdf>.	This	is	considered	further	later	in	this	chapter.	
66	Bart	Selman,	‘Challenge	Problems	for	Artificial	Intelligence’,	13th	National	Conference	on	AI,	AAAI-96,	undated	
<http://erichorvitz.com/selman.htm>	[accessed	16	October	2017].		
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that	cannot	be	derived	from	arithmetic	axioms	by	arithmetic	rules	alone.67	The	effect	is	that	
situations	exist	that	cannot	be	captured	through	code-based	scripting.	Andersson,	moreover,	points	
to	the	breadth	of	(currently)	unsolved	coding	problems	including	several	capabilities	that	are	
prerequisites	to	AWS	deployment	such	as	‘closed	domain	solutions’,	‘common	sense	reasoning’,	
‘strong	generalization’,	‘essential	learning’,	as	well	as	counter-factual	reasoning,	intuitive	physics,	
intuitive	psychology	and	sensorimotor	problems.68	Andersson’s	list	thus	encapsulates	what	is	a	
systemic	challenge	to	the	removal	of	human	supervision	from	battlefield	weapons.69		
	

A	central	matter	is	therefore	to	understand	how	the	Delivery	Cohort	can	express	intention	in	
unsupervised	weapon	systems.70	An	etymological	primer	provides	useful	context	to	these	
challenges.	For	coding	purposes,	there	are	two	kinds	of	‘directive	construct’,	concrete	and	
abstract.71	The	‘concrete’	has	a	meaning	that	can	be	directly	perceived	and	indicated	such	as	a	seen	
object	(a	tank)	or	an	action	(engaging	the	tank).	Basili	notes	that	concrete	words	may	be	taught	by	
associating	the	word	with	the	entity	concerned.72	In	AWS	instruction,	the	meaning	of	a	concrete	
word	(here,	the	Cohort’s	intention)	must	be	linked	vertically	within	the	weapon	controller	to	a	
representation	on	one	of	the	AWS	model’s	learning	planes.	This	linkage	must	then	be	coded	in	a	
manner	that	one	such	associatively	connected	entities	can	evoke	another	in	particular	sequences.	In	
this	way,	the	meaning	of	an	instruction	will	not	be	restricted	to	just	one	association.	The	challenge	
arises	around	coding’s	capture	of	abstracts,	an	important	conjecture	that	is	reviewed	below.73	
Haikonnen	is	highlighting	a	key	issue	for	general	coding	when	he	notes	that	most	words	are	‘no	
more	or	less	abstract,	they	do	not	have	a	meaning	that	can	simply	be	pointed	out;	the	meanings	of	
abstract	words	are	defined	by	other	words’.74	It	is	the	complexity	of	a	command’s	construction	that	
complicates	coding.	For	the	unsupervised	weapon,	the	information	contained	within	a	command	
must	also	be	coupled	to	previously	given	information	as	well	as	to	information	that	is	to	follow.	This	
is	rarely	obvious.	In	particular,	associatively	connected	words	are	likely	to	create	ambiguity	in	the	
weapon’s	control	routines.75	Nested	structures	and,	notes	Danniels,	conditionals	that	are	common	

																																																								
67	Source:	Kurt	Godel,	‘Incompleteness	Theorem’,	<https://www.britannica.com/topic/Godels-first-incompleteness-
theorem>	[accessed	12	October	2017].	
68	Simon	Andersson,	‘Unsolved	Problems	in	Artificial	Intelligence’,	AI	Roadmap	Institution,	@goodAI	blog,	(3	February	
2017)	<https://medium.com/ai-roadmap-institute/unsolved-problems-in-ai-38f4ce18921d>	[accessed	3	September	
2017].		
69	Other	parties	prioritise	slightly	different	lists	of	outstanding	capabilities.	See	therefore:	The	Great	Debate,	
‘Determinism	and	Free	will	in	Science	and	Philosophy’,	generally	
<http://thegreatdebate.org.uk/determinismandfreewill.html>)	[accessed	28	August	2017].	
70 See:	Chapter	6	(Wetware),	Footnote	123:	For	the	purposes	of	this	thesis,	the	broad	Delivery	Cohort	describes	the	
several	parties	responsible	for	the	design,	implementation	and	deployment	of	AWS. 
71	Rohan	Paul	and	others,	‘Grounding	Spatial	Concepts	for	Language	Interaction	with	Robots’,	Proceedings	of	26th	
International	Joint	Conference	of	Artificial	Intelligence,	(2017),	p.	4929	
<https://www.ijcai.org/proceedings/2017/0696.pdf>.		
72	R	Basili	and	others,	‘Using	Word	Association	for	Syntactic	Disambiguation’,	Trends	in	Artificial	Intelligence,	Springer	
Verlag,	549,	(30	May	2005)	<https://link.springer.com/chapter/10.1007/3-540-54712-6_237>	[accessed	12	October	
2017].		
73	See,	generally:	John	Launchbury,	‘A	DARPA	perspective	on	Artificial	Intelligence’,	DARPA	slides,	undated	
<https://www.darpa.mil/attachments/AIFull.pdf>.	Launchbury	uses	the	examples	of	‘existence’	and	‘truth’	to	illustrate	
this	coding	constraint	with	capturing	abstracts.	
74	Haikonnen,	p.	135.	
75	Inferred	from:	Haikonnen,	p.	233.	
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to	complex	instructions	will	likely	create	similarly	challenging	syntactic	issues.76	It	is,	after	all,	
peculiarly	human	practice	to	be	able	to	understand	what	has	been	directed	without	having	to	figure	
out	exactly	the	meaning	of	the	words.	This	will	be	particularly	difficult	for	weapon	coding	where	
trusted	outcomes	are	vital	if	the	Delivery	Cohort	is	properly	to	exploit	AWS’	deployment;	while	
Henry	points	out	that	context-free,	rule-based	parsing	may	be	able	to	establish	who-is-doing-what-
to-whom,	this	is	insufficiently	comprehensive	as	either	an	allocation	or	a	tasking	basis	upon	which	
to	deploy	AWS.77	

	
Coding,	furthermore,	cannot	capture	context.	Here,	context	may	encapsulate	the	information	in	

adjacent	instructions,	from	non-associated	coding	routines	and	from	other	information	sources	
being	polled	from	the	battlefield.78		As	pointed	out	by	Suchman,	coding	must	facilitate	the	AWS’	
broad	situational	awareness	in	order	to	be	LOAC	complaint	but	also	in	order	for	the	independent	
weapon	actually	to	be	accretive.79	Code	cannot	simply	be	a	mechanism	to	parse	text	and,	in	order	to	
enable	empirically	autonomous	operation,	it	must	empower	exactly	those	challenging	processes	
identified	by	Andersson	such	as	perception,	memory	making,	subjective	interpretation,	
appreciation	of	temporal	order	and	the	emotional	evaluation	of	significance.80	In	this	vein,	rules	of	
engagement	are	not	binary	and	do	not	lend	themselves	to	binary	coding;	given	then	that	these	
routines	are	generally	comprised	from	knitted	together	sub-routines,	Crammer	notes	that	this	
property	has	material	potential	for	whole-machine	corruption.81	Moss	notes	that	conflicts	of	
interest	similarly	complicate	AWS	coding.82	Several	examples	exist.	It	will	be	necessary	to	
incorporate	different	categories	of	facts	within	AWS	syntax	including	indexical	facts,	normative	
facts,	strong	convictions,	observations,	hints,	clarifications,	reinforcements	as	well	as	basic	
ontological	statements.	The	challenge	is	that	such	categorization	will	itself	be	volatile	and	will	
change	unpredictably	according	to	sources	of	subsequently	gleaned	intelligence,	feedback	and	
input	from	the	AWS’	primary	sensors.	Nevertheless,	the	management	of	such	‘facts’	will	directly	
impact	AWS	priorities	and	actions.	Conflicts	may	then	arise	from	the	weapon’s	subsequent	
processes,	in	particular	its	interpretative	routines	in	what	Tanz	highlights	is	already	a	crowded	set	
of	system	processes.83	This	requires	further	comment.	Yao	notes	that	the	role	of	intermediate	
processing	is	to	update	machine	states	by	revising	dynamically	that	weapon’s	existing	set	of	

																																																								
76 Chip	Danniels	and	others,	‘Harnessing	Initiative	and	Innovation:	A	Process	for	Mission	Command’,	Military	Review,	
(September-October	2012),	p.	18	<http://www.armyupress.army.mil/Portals/7/military-
review/Archives/English/MilitaryReview_20121031_art006.pdf>.	On	nested	statements,	see:	Microsoft	Help	functions	
<https://www.techonthenet.com/excel/formulas/if_nested.php>	[accessed	28	October	2017].	
77	Winston	Henry,	Artificial	intelligence,	(USA:	Addison-Wesley	Publishing,	Reading,	MASS,	1984),	pp.	295-314.	
78	For	a	discussion	on	the	role	of	context	in	lethal	engagement	see:	Chapter	2	(Context),	specifically:	2.6	(‘The	role	of	
situational	awareness	and	uncertainty’).		
79 Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	lawful	
autonomy’,	pp.	6-7.	
80	Andersson,	pp.	1-2.	
81	Inferred	from:	Koby	Crammer	and	others,	‘Learning	from	Data	of	Variable	Quality’,	Advances	in	Neural	Information	
Processing	Systems,	(2006),	pp.	219-220	and	pp.	223-224	
<https://www.cis.upenn.edu/~mkearns/papers/vardata.pdf>.	For	discussion	on	battlecraft	and	how	AWS	deployment	
might	undertake	broad	combat	routines	see:	Chapter	4	(Deployment),	specifically:	4.3	(‘Human-Machine	teaming’)	and	
Chapter	10	(Operations),	generally.	
82	Richard	Moss,	‘Software	writing	Software	and	the	broader	challenge	of	computational	creativity’,	New	Atlas,	(3	March	
2015)	<https://newatlas.com/creative-ai-computational-creativity-challenges-future/36353/>	[accessed	12	October	
2017].		
83	Tanz,	‘Soon	we	won’t	program	computers.	We’ll	train	them	like	dogs:	The	End	of	Code’,	generally.	
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representations.84	As	inferred	from	Longa,	an	unavoidable	consequence	of	the	weapon’s	ML	is	likely	
conflict	arising	between,	inter	alia,	the	weapon’s	deployment	parameters,	its	representational	
model	on	deployment,	the	weapon’s	intended	end-state	and,	finally,	pointers	arising	from	sensed	
data85,	a	consequence	of	which	will	therefore	require	precise	arbitration	and	moderating	routines.86	
Arbitration	based	on	a	simple	recency	heuristic	is	unlikely	to	be	the	appropriate	tool	with	which	to	
adjudicate	sensor	inputs	in	an	engagement	sequence	given	the	battlefield’s	complex	temporal	
considerations.	What	constitutes	‘acceptable’	delay?	What	represents	urgency?	Other	arbitration	
strategies	are	similarly	challenging.	Averaging	protocols	that	select	weapon	actions	according	to	
where	the	most	conditions	have	been	satisfied	(also	referred	to	as	‘longest	matching’)	are	
inappropriate	as,	by	definition,	they	must	reduce	data	precision	(indeed,	what	data	is	being	lost?).	It	
can	be	inferred	from	Bullinaria	that	‘context	limiting’	rules	will	compromise	efficacy;	the	activity	of	
certain	grouped	conditions	(for	instance,	in	the	engagement	sequence)	may	be	turned	on	or	off	
according	to	the	perceived	fit	of	data	to	that	intended	action.87	
	

Embedded	conflicts	create	a	second	software	challenge.	As	inferred	from	Kon,	the	
unsupervised	weapon	must	first	be	coded	with	appropriate	initial	beliefs.88	The	AWS’	initial	
deployment	represents	a	definite	point	in	time	after	which	its	actions	will	be	determined	by	that	
initial	setting	as	amended	by	the	weapon’s	subsequent	cognitive	processes.89	Two	challenges	arise.	
The	first	comprises	the	degree	of	stepped	change	(the	increment	of	learning	termed	‘anchoring’)	
that	each	follow-on	process	then	exerts	on	the	weapon’s	immediately	prior	set	of	beliefs.90	A	second	
challenge	is	that	weapon	actions	must	reliably	compose	the	appropriate	reaction	to	every	
battlefield	stimulus.	To	this	point,	weapon	‘curiosity’	might	be	a	code-based	composite	of	the	two	
states	of	‘novelty’	and	‘attraction’	(with	each	state	occasioning	a	specific	and	often	conflicting	action	
routine	in	the	weapon).91	‘Astonishment’	might	be	the	combination	of	system	reactions’	‘attraction’,	
‘withdrawal’	and	‘curiosity’.	Fundamentally,	this	is	currently	how	the	weapon’s	Delivery	Cohort	will	
action	weapon	responses.92	Similarly,	within	the	AWS’	reward	system,	‘aspiration’	might	be	a	
combination	of	‘inclination’,	‘attraction’	and	‘arousal’	(again,	each	with	its	own	pre-determined	
portfolio	of	actions	which,	notes	Knight,	are	in	theory	then	blended	with	reference	to	machine-

																																																								
84	M	Yao,	‘Four	approaches	to	natural	language	processing	and	understanding’,	Topbots,	(31	March	2017)	
<http://www.topbots.com/4-different-approaches-natural-language-processing-understanding/>	[accessed	29	
September	2017].	See	also:	this	chapter,	specifically:	8.4	(‘Software	processing	functions’).	
85	Luca	Longa,	‘Argumentation	of	Knowledge	Representation,	Conflict	Resolution,	Defeasible	Inference	and	its	
Integration	with	Machine	Learning’,	Machine	for	Health	Informatics,	Computer	Science,	9605,	(10	December	2016)	
<http://www.topbots.com/4-different-approaches-natural-language-processing-understanding/>	[accessed	12	July	
2017].		
86	Source:	Study.com,	‘Problem	Solving	Methods;	Definitions	and	Types’,	Study.com,	Lesson	4,	
<http://study.com/academy/lesson/problem-solving-methods-definition-types.html>	[accessed	17	June	2017].	
87	John	Bullinaria,	‘Biases	and	Variances,	Under-fitting	and	over-fitting’,	Birmingham	University	School	of	Computer	
Science,	(2004)	<http://www.cs.bham.ac.uk/~jxb/NN/l9.pdf>.	See	also:	Kevin	Warwick,	Artificial	Intelligence;	the	
basics,	p.	34.	
88	Mark	Kon	and	others,	‘Statistical	Representations	of	Prior	`Knowledge	in	Machine	Learning’,	Artificial	Intelligence	
Applications,	(2005),	pp.	1-2	<http://math.bu.edu/people/mkon/B5Final.pdf>.	See	also:	Vincent	Vanhoucke	and	others,	
‘Improving	the	Speed	of	Neural	Networks	on	CPUs’,	Processor	Deep	Learning	and	Unsupervised	Feature	Learning,	NIPS	
Workshop,	1,	(2001)	<http://andrewsenior.com/papers/VanhouckeNIPS11.pdf>.	
89	Vanhoucke	and	others,	generally.		
90	See:	this	chapter,	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).	
91	See	also:	Chapter	11	(Conclusion),	specifically:	11.1	(‘The	nature	of	deployment	challenges’).	
92	Knight,	generally.	
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generated	weightings	that	are	appended	to	each	feature).93	The	point	in	this	case	is	to	illustrate	the	
approximating	nature	of	the	methodology	that	underlies	programming	combinations	which	are	
intended	digitally	to	synthesize	a	weapon’s	broad	spectrum	of	reactions.	Knight’s	analysis	points	to	
additional	difficulties.94	It	will	be	intractable,	for	example,	to	capture	any	reliably	temporal	
dimension	in	this	procedure:	Reactions	such	as	‘aggression’	and	‘submission’	require	the	AWS	to	
initiate	an	immediate	course	of	action.	How	then	does	weapon	coding	provide	for	the	notion	of	a	
delayed	response,	a	measured	response,	a	slight	deferral	while	additional	information	is	sought	and	
processed	or,	more	complicated,	a	variable	response?	These	aggregated	responses	must	also	be	
refined	in	the	AWS	over	time	(in	line	with	lessons	learned	on	the	battlefield).	As	noted	by	Moyes,	
this	is	unlikely	to	happen	in	lock-step	across	colleague	machines	leading	instead	to	unexpected	
idiosyncrasies	and	‘emergent’	behaviours	between	one	weapon	and	the	next.95	The	general	model	
requires,	furthermore,	that	these	‘emotional	ratings’	be	accurately	tagged	within	the	weapon’s	
internal	set	of	‘memories’	in	order	to	ascribe	appropriate	significance	(and	immediately	subsequent	
weighting)	to	relevant	happenings	received	from	its	sensor	array.96	Only	by	such	tagging	(which	
itself	will	require	appropriate	feedback	and	calibration	routines),	notes	Boros,	might	machine	
behaviour	be	appropriately	evolutionary.97	This	is	a	further	software	conundrum;	a	model	that	
reliably	allows	machines	to	allocate	worth	and	values	to	sensor-derived	experiences	has	yet	to	
emerge.98		

	
Conventional	programming	does	not	lend	itself	either	to	capturing	or	explaining	ambiguity.	

Human	communication	is	not	only	about	sending	a	message	that	can	be	recovered	and	enacted	
upon	by	the	receiver.	There	is	usually	a	gulf	between	the	written	word	and	the	intended	message.	
Communication	empirically	has	the	following	complicating	phases:	Translating	the	intended	
message	into	an	appropriate	form	of	expression,	subsequent	transmission,	reception	and	decoding,	
interpretation	and	understanding.	Three	primary	ambiguities	may	therefore	confound	the	
weapon’s	coding	process.99		Lexical	ambiguities	tend	to	concern	omitted,	imprecise	and	simply	
error-prone	script.	Syntactic	and	semantic	ambiguities	concern	interpretative	uncertainty.	Finally	
to	this	point,	pragmatic	ambiguity	characterises	communicating	parties	with	quite	separate	
contextual	bases.	All	three	areas	of	uncertainty	are	directly	relevant	to	AWS	programming	given	the	
requirement	that	unsupervised	weapons	be	situationally	aware	of	their	broadest	ecosystem.100	
Moreover,	as	the	coding	process	is	affected	by	noise	and	nuance,	Gosavi	notes	that	supplementary	

																																																								
93	Knight,	‘AI’s	Language	Problem’,	generally.	See	also:	this	chapter,	specifically:	8.3	(‘Utility	functions’).	See	also:	Daniel	
Dewey,	‘Reinforcement	Learning	and	the	Reward	Engineering	Principle’,	AAAI	Spring	Symposium	Series,	(2014),	pp.	1-4	
<http://www.danieldewey.net/reward-engineering-principle.pdf>.			
94	Haikonnen,	p.	116.	
95	Emergent	behaviour	is	dealt	with	later	in	this	chapter,	specifically:	8.8	(‘Behaviour	setting	and	coordination’).	See	also:	
Richard	Moyes,	‘Emergent	behaviour	and	Risk	–	a	sketch	for	a	risk	management	approach’,	Article	36,	(April	2017),	p.	
344.		
96	Stephan	Edelkamp,	‘Memory	Limitations	in	Artificial	Intelligence’,	Algorithms	for	memory	Hierarchies,	LNCS	2625,	pp.	
233-234	<http://www.csd.uoc.gr/~hy460/pdf/AMH/11.pdf>.		
97	Tiberiu	Boros	and	others,	‘Large	Tagset	Labeling	in	Feed	Forward	Neural	Networks’,	Researchgate,	9	August	2013,	pp.	
692-693	<https://aclweb.org/anthology/P/P13/P13-1068.pdf>.	
98	Inferred	from:	Haikonnen,	p.	116.	
99	For	a	general	discussion	on	coding	ambiguities	see:	SW	Developers,	Tripod.com	
<http://swdevelopers.tripod.com/english/language/chap4.html>	[accessed	27	February	2017].		
100	For	a	discussion	on	situational	awareness	in	AWS	see:	Chapter	5	(Constraints),	specifically:	5.1	(‘Geneva	Convention	
and	the	Laws	of	Armed	Combat’)	and	Chapter	10	(Operations),	generally.		
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routines	will	be	necessary	to	enable	the	AWS	to	repeat	certain	message	sections	as	well	as	to	seek	
affirmation	and	feedback	within	that	messaging.101	Such	procedures	will	be	complex	to	initiate,	
complex	to	manage	and	will	add	to	the	weapon’s	overall	technical	debt	as	disambiguating	either	
instructions	or	symbols	cannot	be	undertaken	without	extensive,	potentially	unlimited,	knowledge	
of	the	weapon’s	real	world.102	In	the	AWS,	however,	only	its	internal	state	models	are	available	for	
this	important	purpose	which	must,	by	coding	(and	mechanical)	definition,	be	partial	and	limited.	
As	inferred	from	Liang	and	Potts,	it	will	not	be	possible	for	the	weapon	to	analyse	meaning	from	an	
instruction	in	natural	language	syntactically	until	such	a	potential	source	of	ambiguity	has	been	
resolved	semantically.103	In	natural	language,	moreover,	the	boundaries	of	meaning	are	inherently	
indistinct.	The	margin,	for	instance,	between	day-time	and	night-time	is	unclear	and	can	be	
arbitrarily	set	according	to	particular	purposes.	Kassan	notes	that	this	conflicts	with	the	
computationalists’	assumption	(here,	underlying	AWS	programming)	that	‘the	world	consists	of	
unambiguous	facts	that	can	be	manipulated	algorithmically’.104	In	several	circumstances,	therefore,	
an	AWS’	output	may	only	be	partially	true,	again	requiring	the	control	suite	to	apply	that	
complicating	confidence	level	to	outputs.		
	

Ambiguity	will	have	material	bearing	in	the	weapon’s	coding	process.	Lapin	notes	that	decision	
rules	based	on	a	utility	function	but	where	values	are	compromised	by	imperfect	(and	thus	
ambiguous)	data	degrade	machine	performance.105	Given	that	lethal	action	must	be	initiated	on	a	
priority	basis	(whereby	decisions	are	made	according	to	the	AWS’	highest	expected	utility),	this	
posits	a	further	weakness.	The	weapon’s	dataset	(or,	more	complicatedly,	the	melding	of	several	
battlefield	datasets)	enabling	this	decision	may,	notes	Khemlani	and	Trafton,	be	insufficiently	
precise	to	enable	any	such	workable	utility	function.106	An	adjunct	challenge	her	is	then	that	the	
possible	range	of	battlefield	outcomes	is	too	broad	for	an	appropriate	utility	to	be	calculated.	
Instead,	the	independent	weapon	must	work	to	an	approximate	normative	model	that	may	or	may	
not	be	sufficiently	close	to	the	original	intention	of	the	Delivery	Cohort.	Does	the	weapon	pause	if	a	
computed	outcome	is	too	wide	of	this	normative	ideal	and	how	might	this	relationship	be	
dynamically	managed?107	A	further	challenge	can	be	inferred	from	the	work	of	Mikolajczyk	and	
Schmid	noting	the	inadequacy	of	sufficiently	rich	descriptors	to	capture	the	Delivery	Cohort’s	

																																																								
101	Abhijit	Gosavi,	‘The	Effect	of	Noise	on	Artificial	Intelligence	and	Meta-heuristic	Techniques’,	Proceedings	of	the	
Artificial	Neural	Network	in	Engineering	Conference,	12,	(2002)	p.	7.		
102	See:	Percy	Liang	and	Christopher	Potts,	‘Bringing	Machine	Learning	and	Compositional	Semantics	Together’,	Annual	
Review	of	Linguistics,	1.1,	(13	April	2014),	pp.	1-2	<https://web.stanford.edu/~cgpotts/manuscripts/liang-potts-
semantics.pdf>.		For	a	discussion	of	technical	debt	and	its	ramifications	to	AWS	operation,	see:	Chapter	7	(Firmware),	
specifically:	7.1	(‘Sources	of	Technical	Debt’).	
103	Ibid.	
104	Kassan,	p.	4.	
105	Maksim	Lapin,	‘Image	Classification	with	Limited	Training	Data	and	Class	Ambiguity’,	Saarland	University,	PhD	title,	
(June	2017),	p.	2	<http://scidok.sulb.uni-saarland.de/volltexte/2017/6909/pdf/lapin17phd.pdf.	For	a	discussion	on	
the	role	of	utility	functions,	see:	this	chapter,	specifically:	8.3	(‘Utility	functions’).	
106	Sangeet	Khemlani	and	JG	Trafton,	‘Percentile	Analysis	for	Goodness-of-Fit	Comparisons	of	Models	to	Data’,	Navy	
Center	for	Applied	Research	into	Artificial	Intelligence,	Proceedings	of	36th	Annual	Conference	of	the	Cognitive	Science	
Society,	(July	2014),	pp.	737-738	<https://www.nrl.navy.mil/itd/aic/content/percentile-analysis-goodness-fit-
comparisons-models-data>	[accessed	2	October	2017].		
107	The	concept	of	‘pause’	gives	rise	to	a	further	intractable	conflict	whereby	the	battlefield	performance	of	AWS	is	
directly	affected	by	the	weighting	strength	applied	to	any	such	intermission	routine.	This	introduces	several	
considerations.	Can,	for	instance,	the	battlefield	commander	rely	on	AWS	to	execute	if	arbitrary	late-stage	routines	exist	
to	break	that	weapon’s	engagement	sequence?	
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purpose.108	Nor	can	these	weapon	descriptors	be	described	in	terms	of	high-level	human	concepts	
or	other	philosophical	paraphrase:	As	Bostrom	points	out,	all	action	definitions	must	eventually	
bottom	out	in	terms	that	are	actually	defined	in	the	AI.109	Such	coding	definitions	must	be	scripted	
in	mathematical	primitives,	each	with	addresses	that	point	to	relevant	memory	registers	in	the	
AWS.110		
	

Such	software	challenges	may	be	summed	up	by	Sharkey’s	aphorism	that	‘the	AWS	is	nine-
tenths	code,	one-tenth	a	portfolio	of	hardware	bits.	To	paraphrase,	it’s	all	about	the	code,	stupid’.111	
The	breadth	of	tasking	necessary	for	both	productive	and	yet	still	compliant	weapon	deployment	
will,	moreover,	be	very	wide-ranging.	This	creates	several	challenges	with	Giordana	and	Serra	
pointing	out	that	a	machine	that	acts	illegally	must	also	‘learn’	from	its	mistakes.112	While	this	
feature	will	require	its	own	coding,	it	must	be	a	routine	that	immediately	and	appropriately	
influences	all	other	weapon	actions.	Feedback	loops	will	similarly	be	required	to	prevent	that	
mistaken	action	becoming	part	of	the	weapon’s	updated	set	of	operating	procedures.113	Russell	
observes	that	the	importance	of	such	routines	is	likely	to	be	understated	by	the	Design	Cohort	and	
to	be	lost	amongst	other	machine	priorities.114	The	trait	raises	basic	ethical	issues.	Are	‘occasional	
mistakes’	acceptable	on	the	basis	that	AWS	are	similarly	(and	legally?)	susceptible	to	ethical	
deficiencies	as	human	soldiers?115	Second,	is	a	lower	legal	bar	appropriate	for	machines	with	less	
lethality?	Several	coding	difficulties	arise	from	the	precepts	of	ethics	and	morality.116	In	this	matter,	
Haidt	has	tried	to	build	a	classification	of	those	moral	traits	relevant	to	weapons-directing	AI.117	
That	his	framework	(or	anyone	else’s	framework)	has	yet	to	be	settled	points	to	the	complexity	of	
this	task.	Nor	does	the	framework	currently	under	discussion	incorporate	emotions	such	as	guilt,	
embarrassment,	shame,	anger,	disgust	or	deceit,	all	of	which	would	appear	to	be	ethical	

																																																								
108	Krystian	Mikolajczyk	and	Cordelia	Schmid,	‘A	Performance	Evaluation	of	Local	Descriptors’,	IEEE	Transactions	on	
Pattern	Analysis	and	Machine	Learning,	27,	10,	(October	2005),	p.	1615	and	pp.	1616-1620	
<https://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_pami2004.pdf>.	
109	Inferred	from:	Bostrom,	Superintelligence,	p.	187.	
110	A	coding	adjunct	is	how	humans	will	be	able	physically	to	liaise	with	their	unsupervised	machines.	Human	behaviour	
means	that	the	spoken	word	must	remain	a	key	means.	In	practical	terms,	AWS	may	need	to	communicate	through	
spoken	or	hastily	written	descriptors	with	humans	on	the	battlefield.	This	too	is	complicated.	In	order	to	understand	
what	is	being	said,	the	weapon	will	need	to	evoke	relevant	(and	current)	connections,	concepts	and	ideas.	Even	then,	
battlefield	communication	must	be	hierarchic;	new	concepts	cannot	be	learnt	if	the	AWS	has	nothing	with	which	they	
may	be	associated.	Moreover,	these	verbal	descriptors	rely	heavily	on	limited	capacity	short-term	memory.	Such	
routines	will	also	require	suitable	feedback	loops	in	order	to	ensure	both	fitness	for	purpose	and	compliance.		
111	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
112	Attilio	Giordana	and	Alessandro	Serra,	‘Learning	from	Mistakes’,	Human	Machine	Perception,	Springer,	(2001),	pp.	
89-90	<https://link.springer.com/chapter/10.1007/978-1-4615-1361-2_7>	[accessed	18	August	2017].		
113	Isaac	Caswell	and	others,	‘Loopy	Neural	Nets:	Imitating	Feedback	Loops	in	the	Human	Brain’,	Stanford	Publishing,	
(2016),	p.	1	<http://cs231n.stanford.edu/reports/2016/pdfs/110_Report.pdf>.	
114 Inferred	from: Stuart	Russell	and	others,	‘Research	Priorities	for	Robust	and	Beneficial	Artificial	Intelligence’,	
Association	for	the	Advancement	of	Artificial	Intelligence,	(Winter	2015),	pp.	107-111	
<https://futureoflife.org/data/documents/research_priorities.pdf>.  
115	Tonkens,	p.	155.	
116	See:	Chapter	5	(Constraints),	specifically:	commentary	on	Article	57	and	the	protection	of	civilian	populations	in	a	
combat	zone:	5.1	(‘Geneva	Convention	and	the	Laws	of	Armed	Conflict’).		
117	Inferred	from:	Jonathan	Haidt,	‘The	Moral	Emotions’,	in	R	Davidson	et	al,	eds.,	Handbook	of	Affective	Sciences,	
(Oxford:	Oxford	University	Press,	2005),	generally.	
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components	of	the	AWS’	lethal	engagement.	118	Current	frameworks	also	ignore	the	precept	of	
gratitude.	Why	is	this	important?	ICRC	argues	that	the	responses	of	an	AI	agent	should	be	
appropriately	broad	in	order	to	execute	upon	an	engagement	decision	that	is	still	compliant	under	
LOAC.119	In	this	vein,	a	‘morals	portfolio’	(for	that	is	what	it	must	be)	should,	notes	Cowie,	include	
such	precepts	as	responsibility,	appraisal,	norm	violation	appraisal,	negative	self-evaluation,	worry	
and	motivation.120	Without	this,	tasking	of	an	unsupervised	weapon	must	be	correspondingly	
narrow	if	it	is	still	to	remain	compliant.121	AWS	coding,	moreover,	should	enable	‘restoration’	given	
the	consequences	of	collateral	damage	(in	particular	in	public	relations)	arising	from	AWS	error.122	
Might,	for	instance,	the	AWS’	learning	routines	be	unwittingly	discriminatory	against	particular	
parties?	Notwithstanding	a	comprehensive	test	programme,	Google	had	to	apologise	when	the	
automatic	tagging	system	in	its	photos	app	identified	certain	individual	traits	as	‘gorillas’.123		
	

In	particular,	it	is	the	coding	of	‘guilt’	that	demonstrates	the	coding	complexity	of	compliant	
AWS.124	The	programming,	for	example,	of	Arkin’s	‘Ethical	Adaptor’	(theoretically	working	in	
tandem	with	an	‘Ethical	Governor’,	an	‘Ethical	Behaviour	Control’,	a	‘Responsibility	Advisor’,	a	set	of	
constraints	and	reasons,	a	Commander	and	an	Operator)	requires	the	seamless	incorporation	of	an	
extraordinary	number	of	inputs.125	Several	non-obvious	inputs	must	be	in	place.	These	should	
include,	inter	alia,	current	data	on	friendly	casualties,	non-combatant	casualties	and	the	amount	of	
civilian	structural	damage.	Siddiqi	notes	that	this	last	input	requires	complex	calculation	based	

																																																								
118	Professor	Noel	Sharkey,	in	conversation	with	the	author,	12	January	2016.	
119	International	Committee	of	the	Red	Cross,	‘Law	of	Armed	Combat:	Basic	Knowledge’,	ICRC,	(June	2002),	pp.	3-4	
<https://www.icrc.org/eng/assets/files/other/law1_final.pdf>.	A	useful	summary	of	this	argument	can	be	found	at:	
Moral	Foundations,	23	March	2016	<http://www.moralfoundations.org/>	[accessed	4	June	2017].	
120	Roddy	Cowie	and	others,	‘Beyond	Emotion	Archetypes:	Databases	for	Emotion	Modelling	using	Neural	Networks’,	
Neural	Networks,	Elsevier	Publishing,	(19	May	2005),	pp.	2-3	
<https://www.researchgate.net/profile/Roddy_Cowie/publication/7782589_Beyond_emotion_archetypes_Databases_f
or_emotion_modelling_using_neural_networks/links/00b4951b63a63c205f000000/Beyond-emotion-archetypes-
Databases-for-emotion-modelling-using-neural-networks.pdf>.		
121	The	purpose	here	is	not	to	impose	any	value	judgement	on	the	scope	of	tasks	that	a	machine	is	suited.	Instead,	it	
should	inform	the	extent	to	which	such	tasking	must	be	limited	by	the	platform’s	capability	to	integrate	emotional	
precepts.	Narrow	emotional	capability	in	otherwise	autonomous	weapons	must	equate	to	narrow	taking.	For	a	
discussion	on	deployment	‘degrees’,	see:	Chapter	4	(Deployment).		
122	Jonathan	Haidt,	The	Moral	Emotion,	(USA:	University	of	Virginia,	Oxford	University	Press,	2003),	generally.	See	also:	
Siddiqi,	p.	33.	
123	Economist	Magazine	Special	Report,	‘Artificial	Intelligence’,	p.	15.	See	also:	M	Hutson,	‘Even	Artificial	Intelligence	can	
acquire	biases	against	race	and	gender’,	Science	Magazine,	Science	AAAM,	13	April	2017,	paras.	4-7	and	10	of	12	
<http://www.sciencemag.org/news/2017/04/even-artificial-intelligence-can-acquire-biases-against-race-and-
gender>	[accessed	26	May	2017].	
124	For	a	discussion	on	the	ethics	of	autonomous	weapons,	see:	Chapter	5	(Obstacles),	specifically:	5.8	(‘Ethical	and	
accountability	constraints’).	
125	Ronald	Arkin	and	others,	‘An	Ethical	Governor	for	Constraining	Lethal	Action	in	an	Autonomous	System’,	Georgia	
Institute	of	Technology	Robot	Lab,	Technical	Report,	GIT-GVU-09-02,	(2009),	pp.	1-2	
<https://www.cc.gatech.edu/ai/robot-lab/online-publications/GIT-GVU-09-02.pdf>.	Under	Arkin’s	model	for	ethical	
control,	robotic	behaviour	is	expressed	as	an	equation	that	includes	all	interpretable	stimuli	coming	from	the	machines	
on-board	sensors	as	well	as	from	externally	received	information,	a	limitless	number	of	possible	responses	both	in	
terms	of	their	strength	and	direction	of	action	and	an	ability	to	set	thresholds	above	which	a	response	will	be	generated.	
Additionally,	mapping	must	be	established	between	the	stimuli	and	the	overall	response	range	that	then	defines	the	
behavioural	function	to	be	triggered;	See	also:	‘Governing	Lethal	Behaviour:	‘Embedding	Ethics	in	a	Hybrid	
Deliberative/Reactive	Robot	Architecture’,	Georgia	Institute	of	Technology	Robot	Lab,	Technical	Report	GIT-GVU-07-11,	
(2011),	pp.	14-19.	
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upon	accurate	situational	awareness.126	He	notes	that	it	is	a	prerequisite	in	calculating	the	degree	
that	this	exceeds	what	is	allowed	under	the	test	of	Military	Necessity	in	lethal	engagement.	At	the	
very	least,	testing	any	such	Ethical	Governor	in	battlefield	conditions	will	involve	a	presumably	
unacceptable	process	of	trial	and	error	as	well	as	material	processing	delay,	undermining	Arkins’	
notion	of	a	real-time	and	independent	simulator	running	in	parallel	in	order	to	ensure	that	the	
unsupervised	weapon	is	working	within	statutory	rules.127		
	

Feasibility	is	not,	however,	simply	a	matter	of	appropriately	coded	instructions.	A	further	
difficulty	arises	from	the	firing	sequence	of	those	rules	that	will	comprise	AWS’	instructions.		Each	
rule	(and	the	pattern	created	by	those	rules)	will	result	in	quite	different	values	being	taken	
forward	at	any	given	point	of	a	sequence	by	the	AWS.	In	order	to	provide	a	single	end-value	upon	
which	to	generate	an	appropriate	battlefield	action,	the	challenge	is	that	the	unsupervised	weapon	
must	first	aggregate	these	values.	As	noted	by	Osmeyer	and	Cowell,	this	will	comprise	a	complex	
weighted	average	(‘centre	of	gravity’)	routine.128	Such	models	increase	AWS’	‘technical	debt’	given	
ML’s	inherent	limitation	of	reading	one	symbol	at	a	time	(with	each	such	symbol	being	processed	
on	information	collected	from	previous	symbols).129	The	difficulty	is	that	weightings	must	be	time-
dependent	in	order	to	influence	which	rule	the	AWS	fires	first.	A	more	manageable	challenge	exists	
given	that	the	measures	of	quantity	for	the	weapons’	key	data	inputs	may	each	be	different	(the	
weapon’s	voltages,	temperatures	and	flow	rates	all	measure	quite	differently	and	in	quite	different	
units).	Each	such	weapon	value	may	therefore	require	real-time	translation	requiring	additional	
complexity	(and	what	Warwick	terms	‘learning	latitude’).130		
	

A	recurring	software	challenge	relates	to	the	quality	of	AWS	underlying	data.	O’Kane	notes	that	
algorithmic	tools	demonstrably	become	less	useful	as	uncertainty	grows	around	scenarios	
(whether	through	incomplete	data,	inappropriate	coding	routines	or	simple	enemy	feint).131	
Uncertainty,	of	course,	is	everywhere:	The	wheels	of	weapons	may	spin	and	battlefield	obstacles	
move	unpredictably.	Rasmussen	notes	two	relevant	types	of	uncertainty	which	can	be	extrapolated	
to	AWS.	First,	prediction	uncertainty	arises	when	the	effects	of	actions	are	not	fully	predictable	
(here,	uncertainty	about	the	weapon’s	future	states).	Second,	sensing	uncertainty	relates	to	
ambiguity	about	the	weapon’s	current	state.132	How	then	might	AWS’	software	optimize	outcomes	
given	these	constraints?	How	the	Delivery	Cohort	tasks	AWS	unsurprisingly	starts	with	as	
assessment	of	the	weapon’s	skills-based	behaviours	(well-understood	sensory-motor	actions	that,	

																																																								
126	Siddiqi,	p.	34.	
127	Arkin,	‘An	Ethical	Governor	for	Constraining	Lethal	Action	in	an	Autonomous’,	pp.	1-2.	In	this	way,	Atkins	envisages	
incoming	command	sequences	first	being	run	on	this	simulator	to	ensure	that	any	outcome	meets	an	established	rule-
set	prior	to	any	autonomous	action	sequence.	See	also:	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	p.	34.	
An	Ethical	override	might	theoretically	provide	for	appropriate	in-situ	ghosting	to	filter	malicious	commands,	
theoretical	erasure	of	key	data	should	the	machine	be	compromised	and	a	block	on	malign	reverse	engineering.	
128 Jared	Osmeyer	and	Lindsay	Cowell,	‘Machine	Learning	on	Sequential	Data	using	a	Recurrent	Weighted	Average’,	
Cornell	University	Library,	(4	May	2017)	<https://arxiv.org/abs/1703.01253>	[accessed	4	October	2017]. 
129	Osmeyer	and	Cowell,	‘Machine	Learning	on	Sequential	Data	using	a	Recurrent	Weighted	Average’,	generally.		
130	Warwick,	pp.	43-44.	
131	Jason	O’Kane	and	others,	‘Algorithms	for	Planning	under	Uncertainty	in	Prediction	and	Sensing’,	Autonomous	Mobile	
Robots:	Series	in	Control	Engineering,	University	of	Illinois,	(2005),	501-547,	(pp.	501-504)	
<http://msl.cs.illinois.edu/~lavalle/papers/OkaTovCheLav06.pdf>.		
132	J	Rasmussen,	‘Skills,	Rules	and	Knowledge:	Signals,	signs	and	symbols,	and	other	distinctions	in	human	performance	
models’,	IEEE	Transactions	on	Systems,	Man	and	Cybernetics,	13,	3,	(1983),	pp.	257-266.	
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for	soldiers,	become	highly	automatic	after	a	period	of	appropriate	training).133	In	demonstrating	
battlefield	skills,	AWS’	software	challenge	is	to	incorporate	a	sufficiently	robust	classifier	that	can	
correctly	predict	classes	of	‘new’	objects	(and	tasks)	given	the	weapon’s	prior	training	undertaken	
on	datasets	of	‘old’	objects.134	Such	classifiers	must	overcome	the	battlefield	problem	of	significant	
sequential	correlation	whereby	nearby	x	and	y	values	are	almost	certain	to	be	closely	related	to	
each	other.135	As	task	complexity	increases,	the	treatment	of	such	classifiers	must	change	from	
rules-based	routines	to	knowledge-based	routines	and	finally	to	sequences	that	require	palpable	
expertise.136		

	
How	then	might	this	tasking	continuum	create	software	challenges	in	AWS	deployment?	While	

O’Kane	notes	that	those	tasks	which	are	‘highly	repetitive	with	inherent	feedback	loops	that	can	be	
controlled	through	mathematical	statement’	may	lend	themselves	to	coding,	additional	
confirmatory	routines	become	necessary	as	task	complexity	intensifies.137	In	a	battlefield	context,	
there	are	too	many	solutions	to	too	many	possible	problems.	Cummings	also	notes	that	more	
interpretation	is	required	as	the	complexity	of	battlefield	tasks	increases,	‘especially	in	cases	of	
multiple	and	compound	problems’.138	The	challenge	is	for	coding	routines	to	determine	which	rule	
type	may	best	apply	as	uncertainty	mounts	in	a	sequence.139	Why	does	this	create	an	important	
crossroad?	In	situations	that	are	characterised	either	by	incomplete	data	or	by	ambiguous	sensor	
input,	algorithms	are	unlikely	to	understand	sufficiently	the	weapon’s	solution	space.140	In	this	case,	
Smith	points	to	code’s	inability	to	generalize	and	the	resulting	obligation	of	AWS’	Delivery	Cohort	to	
base	its	weapon’s	decision	processes	on	what	are	imperfect	variables.141	This	notion	of	‘mounting	
difficulty’	is	supported	by	Gal	who	notes	that	such	complication	unsurprisingly	peaks	at	the	point	of		
‘maximum’	uncertainty	in	the	AWS’	data	set.142		This	represents	the	point	where	AWS’	ML	spine	is	
at	its	most	inappropriate	and	when	expert	behaviours	are	required	that	instead	leverage	

																																																								
133	Thomas	Dietterich,	‘Machine	Learning	for	Sequential	Data:	A	Review’,	Structural,	Syntactic	and	Statistical	Pattern	
Recognition’,	Oregon	State	University,	(2002),	pp.	1-2	<http://web.engr.oregonstate.edu/~tgd/publications/mlsd-
ssspr.pdf>.		
134 Here	broadly	relating	to	new	events,	sequences,	actions,	target	types,	order	configuration,	new	parties	and	
behaviours.  
135	Dietterich,	‘Machine	Learning	for	Sequential	Data:	A	Review’,	generally.	
136	Missy	Cummings	uses	human	pilots	as	an	example	of	such	skills-based	activity;	human	pilots	train	to	interpret	their	
cockpit	dials	before	adjusting	aircraft	controls	appropriately	to	ensure	the	aircraft’s	actual	state	matches	the	intended	
state.	See:	Missy	Cummings,	‘Artificial	intelligence	and	the	future	of	warfare’,	Chatham	House,	Research	Paper	draft,	
(January	2017),	pp.	5-6.	
137 Jason	O’Kane	and	others,	‘Algorithms	for	Planning	under	Uncertainty	in	Prediction	and	Sensing’,	p.	3. 
138	Cummings,	p.	6.	
139	Leslie	Kaelbling	and	others,	‘Planning	and	Acting	in	Partially	Observable	Stochastic	Domains’,	Artificial	Intelligence,	
Elsevier,	101,	(May	1998),	pp.	100-101	<https://ac.els-cdn.com/S000437029800023X/1-s2.0-S000437029800023X-
main.pdf?_tid=c7163328-a68c-11e7-b7f0-
00000aacb35e&acdnat=1506851102_e13f50110d2bfa5bfd9cb5e6bab83d35>	[accessed	12	October	2017].		
140	Cummings,	p.	7.	
141	Inferred	from:	PJ	Smith	and	others,	‘Brittleness	in	the	design	of	cooperative	problem-solving	systems:	The	effects	on	
user	performance’,	IEEE	Transactions	on	Systems,	Man	and	Cybernetics,	Part	A:	Systems	and	Humans,	27,	3,	(1997),	pp.	
360-371.		
142	Yarin	Gal,	‘Uncertainty	in	Deep	Learning’,	Department	of	Engineering,	Cambridge,	PhD	submission,	(September	
2016),	p.	7	<http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf>.	Uncertainty	here	is	a	cumulative	feature	arising	from,	
inter	alia,	out-of-distribution	test	data,	‘aleatoric’	factors	(measurement	imprecision),	uncertainty	in	model	parameters	
as	well	as	from	structural	uncertainty	(termed	by	Gal,	model	or	epistemic	uncertainty).	
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judgement,	intuition	and	time-critical	quick	assessment	of	that	situation.	It	is	at	this	point	where	
Cummings	notes	that	algorithms	fall	short	of	the	human	expert	who	is	instead	able	to	make	difficult	
decisions	‘in	a	fast	and	frugal	manner,	since	comparing	all	possible	plan	alternatives	is	time-
intensive,	especially	in	the	face	of	uncertainty’.143	The	point	may	be	that	at	such	higher	levels	of	
expertise,	battlefield	commanders	do	not	even	recognise	that	they	are	making	decisions;	rather,	
they	are	fluidly	interacting	with	a	changing	situation	and	responding	to	patterns	that	they	
recognise.	Training,	experience,	subjectivity,	biases,	personality	and	a	wide	grasp	of	context	are	
(among	several	factors)	critical	attributes	that,	as	noted	by	Wang,	cannot	reliably	be	captured	by	
code.144	It	is,	after	all,	these	same	characteristics	that	best	express	the	practical	application	of	
situational	awareness.	The	crux	is	software’s	inherent	‘symbol	grounding	problem’	whereby	each	
miscellaneous	symbol	that	is	employed	to	instruct	the	weapon	is	itself	defined	using	other	such	
symbols,	the	consequence	being	that	it	is	difficult	to	relate	meaning	to	these	real	world	
situations.145	This	points	again	to	the	circular	challenge	to	such	code-based	models:	How	does	the	
weapon	determine	which	of	its	internal	representations	is	relevant	to	the	scenario	that	is	
immediately	unfolding?	It	is	this	general	issue	of	having	to	work	to	an	appropriate	context	that	is	
collectively	termed	AI’s	‘frame	problem’.146	

 Coding errors  
	
The	preceding	analysis	suggests	that	coding	limitations,	whether	in	a	class	or	cumulative	basis,	
create	intractable	challenges	to	the	removal	of	weapon	supervision.	Such	analysis	assumes	
acceptable	coding	accuracy	throughout	these	weapon	routines.	A	further	attribute	to	compliant	
deployment,	however,	must	be	the	successful	management	of	coding	errors,	the	subject	of	this	
section.	The	matter	is	not	straightforward	as	coding	accuracy,	automatic	bug	repair	as	well	as	
automated	machine	programming	continues	to	evolve	and	relevant	precedent	is	thus	difficult	to	
establish.147	Certain	observations	on	AWS’	coding	can,	however,	be	made.	Empirical	experience	of	
software	development	suggests	that	even	veteran	programmers	unknowingly	write	one	mistake	
into	every	ten	lines	of	code.148	How	might	this	datum	relate	to	battlefield	systems?	The	F-35	fighter	
jet	has	more	than	twenty	million	lines	of	code,	eight	million	of	which	relate	solely	to	its	missile	and	
threat	management	systems.149	Error	rates	occur	regardless	of	current	quality	controls	that	seek	to	
mitigate	system	risk,	provide	redundancy	and	deliver	reliability.	Error	risk,	moreover,	is	unlikely	to	
diminish	given	that	weapon	platforms	(and,	by	extension,	AWS)	will	increasingly	be	comprised	of	
multiple	sub-systems	produced	by	multiple	manufacturers,	each	with	different	testing	regimes,	
																																																								
143	Cummings,	p.	6.	
144	Yingxu	Wang,	‘On	Abstract	Intelligence:	Towards	a	Unifying	Theory	of	Natural,	Artificial,	Machinable	and	
Computational	Intelligence’,	International	Journal	of	Software	Science	and	Computational	Intelligence,	1(1),	(January	
2009),	1-3	<http://www.ucalgary.ca/icic/files/icic/24-IJSSCI-1101-AbstractInt.pdf>.		
145	Kassan,	p.	4.	
146	Murray	Shanahan,	‘The	frame	problem’,	MIT	Press,	(February	1997),	‘Abstract’.	
147	Larry	Hardesty,	‘Automatic	bug	repair:	System	fixes	bugs	by	importing	functionality	from	other	programs	without	
access	to	source	code’,	MIT	News,	(29	June	2015),	paras.	2-4	and	9-10	and	17	<http://news.mit.edu/2015/automatic-
code-bug-repair-0629>	[accessed	24	June	2017].	
148	Dan	Mayer,	‘Continuously	Deployed’,	Blog,	(11	November	2012)	
<https://www.mayerdan.com/ruby/2012/11/11/bugs-per-line-of-code-ratio>	[accessed	5	October	2017].	Although	
written	in	2002,	see	also:	Andy	Chou	and	others,	‘An	Empirical	Study	of	Operating	System	Errors’,	ACM	SIGOPS	
Operating	System	Review,	35,	5,	(2002),	Abstract	and	generally	
<https://pdos.csail.mit.edu/archive/6.097/readings/osbugs.pdf>.	
149	Source:	Drone	Mag,	(April/May	2016),	p.	62	<www.drone360mag.com>.		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 230 | P a g e  

 
 

verification	and	control	standards.	Collaboration	outcomes	in	the	AWS’	supply	chain	will	only	be	as	
good	as	individual	routines	that	knit	together	the	weapon’s	overall	processes.150	The	US	
Department	of	Defense	recognises	this	issue	of	coding	error	in	its	software	procurement;	‘in	
algorithms,	patterns-of-life	[integrated	routine	practices]	are	critical	and	must	be	managed	
properly	to	ensure	accuracy	and	correctness	in	subsequent	decision-making	process’.151	Singer	
notes	that	such	military-civilian	collaboration	(with	each	party’s	different	incentives	in	this	
process)	adds	fragility	to	the	procurement	chain;	currently	seventy-five	per	cent	of	the	
maintenance	and	weapons	loading	for	drone	systems	has	been	outsourced	to	private	contractors	
‘with	patchy	results	at	best’.152	These	error	rates	are	quite	broadly	corroborated.	Other	sources	
judge	the	minimum	number	of	software	errors	observed	at	some	‘two-and-a-half	errors	per	
function	point’;	at	this	rate,	notes	Kassan,	a	software	program	large	enough	to	simulate	the	human	
brain	would	contain	some	twenty	trillion	errors.153		
	

This	analysis	ignores	the	ramifications	arising	from	coding	error	and	coding	brittleness154,	a	
characteristic	of	ML	systems	identified	by	Cox	and	Perlis	where	there	is	a	tendency	for	coding	to	
break	when	confronted	with	input	deviation	from	situations	anticipated	by	their	designers.155	AWS	
will	require	robust	diagnostics	(and	malleable	action	selection)	if	it	is	to	identify	that	designed	
functions	are	either	operating	erroneously	or,	as	inferred	from	Gange,	no	longer	being	
performed.156	As	noted	by	Prior,	a	further	error	dynamic	will	likely	arise	from	the	adding	of	
software	patches	or	other	repair	sequences:	‘Patched	software	is	impenetrable	software’	and	will	
likely	make	code	verification	more	challenging.157	The	attraction	of	AI	may	be	that	it	is	‘greater	than	
the	sum	of	its	parts’158	but	such	hidden	interactions	among	what	is	a	myriad	of	sub-systems	
manifestly	increase	the	likelihood	of	coding	error.159	Finally,	such	analysis	ignores	the	human	
context	of	AWS	coding	errors	where	service-level	understanding	of	autonomous	and	other	‘go-

																																																								
150	Walker,	pp.	22-31.	
151	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY	2013-2038’,	p.	67.	The	matter	is	further	
discussed	in	Chapter	9	(Hardware),	specifically:	9.2	(‘Calibration	issues’)	and	Chapter	10	(Deployment),	specifically:	10.2	
(‘Validation	and	testing’).	
152	Peter	Singer,	‘Statement	to	US	House	of	Representatives	Committee	on	Oversight	and	Governmental	Reform’,	cit.	Rise	
of	the	Drones,	Unmanned	Systems	and	the	Future	of	War,	(USA:	Congressional	Research	Service,	Nimble	Books	LLC,	
March	2010),	p.	2;	Army	systems	operating	in	Iraq	have	been	described	as	‘government-owned-contract-operated’.	
153	Kassan,	p.	3.	
154	For	a	detailed	discussion	on	brittleness	in	AWS	routines,	see:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	
technical	debt’)	and	7.2	(‘Firmware	ramifications	of	learning	methodologies’).		
155	Michael	Cox	and	Don	Perlis,	‘Self-adjusting	autonomous	systems’,	Awareness	magazine,	10.22417,	2011,	pp.	1-2	
<http://awareness-mag.eu/pdf/003951/003951.pdf>.	 	
156	Graeme	Gange	and	others,	‘Interval	Analysis	and	Machine	Arithmetic:	Why	‘Signedness’	Ignorance	is	Bliss’,	ACM	
Transactions	on	Programming	Languages	and	Systems,	37,	1,	(January	2015),	p.	1	and	p.	3	
<http://cliplab.org/~jorge/docs/ACM-TOPLAS-wrapped.pdf>.	For	general	discussion	of	the	issue	(and	potential	
solutions),	see:	Matthew	Schmill	and	others,	‘The	Role	of	Metacognition	in	Robust	AI	Systems’,	aaai.org,	(2008)	
<http://www.aaai.org/Papers/Workshops/2008/WS-08-07/WS08-07-026.pdf>.	
157	For	a	discussion	on	AWS	verification	and	validation	procedures,	see:	Chapter	10	(Oversight),	specifically:	10.2	
(‘Verification	and	testing’).	See	also:	Dark	Reading,	<http://www.darkreading.com/vulnerability/microsoft-patch-
problems-underline-trade/240160244>	[accessed	1	March	2017].	
158	Fil	Macias,	‘The	test	and	evaluation	of	unmanned	and	autonomous	systems’,	ITEA	Journal,	29,	(2008)	388.	See	also:	
Benjamin	Alan	Pryor,	‘Assessing	the	Army’s	Software	Patch	Management	Process’,	Defense	Acquisition	University,	
Aberdeen	MD,	(4	March	2016),	p.	3	(‘Problem	Statement’)	<http://www.dtic.mil/dtic/tr/fulltext/u2/1040604.pdf>.	
159	Richard	Selby,	‘Analyzing	Error-Prone	System	Structure’,	IEEE	Transaction	of	Software	Engineering,	17,	2,	(February	
1991),	141	<http://cgis.cs.umd.edu/~basili/publications/journals/J42.pdf>.		
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through’	processes	is	rarely	reducible	to	a	single	level	of	explanation.	Coding	error	creates	one	
further	material	conflict.	Battlefield	AI	must	throughout	prioritise	avoiding	the	possibility	of	high-
regret	outcomes,	more	likely	in	a	contested	environment	where	an	adversary	is	intent	on	
neutralizing	assets	either	through	deception,	through	direct	force	or	through	meddling	to	cause	
collateral	damage.160		

 Utility function 
	
How	then	might	such	software	processes	manage	the	unsupervised	weapon’s	action	sequence?	In	
order	to	understand	challenges	arising,	it	is	again	useful	to	consider	a	brief	process	narrative.	AWS’	
action	sequences	will	be	arbitrated	according	to	an	‘optimality	notion’,	each	unique	to	a	specific	
weapon	class	and	set	by	the	Delivery	Cohort	as	an	initial	set	of	decision	rules.161	It	is	this	internal	
‘aide	memoire’	that	will	dictate,	inter	alia,	the	confidence	premium	(here,	‘weighting’)	to	be	
attributed	to	each	of	the	weapon’s	possible	worlds	as	set	out	above.	Bartak	notes	the	instability	of	
this	function	which	must	rank	the	desirability	of	possible	outcomes	in	order	to	establish	a	set	of	
basic	preferences	for	the	weapon.162	In	this	way	and	at	each	step,	the	weapon	will	select	an	action	
with	the	highest	expected	utility.	Various	challenges	arise	from	this	utility	model.	The	margin	for	
error	is	considerable	and,	in	the	case	of	an	autonomous	and	lethal	engagement	sequence,	comes	
with	the	possibility	of	high-regret	outcomes.163	To	find	the	action	with	the	highest	expected	utility,	
the	AWS	must	first	run	an	internal	computation	on	all	possible	actions,	a	considerable	task	given	
the	almost	limitless	number	of	battlefield	parameters	including	target	status	and	risks	arising	from	
poor	execution.	The	utility	function	must	also	regulate	what	constitutes	appropriate	use	of	force,	
the	involvement	of	colleague	assets,	consideration	of	next	steps,	a	data	audit	ahead	of	an	action	
sequence	as	well	as	post-event	communication	of	each	engagement.	Assuming	satisfaction	of	these	
prerequisites	(and	after	iterative	conditionalizing	as	set	out	above),	only	then	can	the	weapon	
identify	its	suitable	(and	legal)	priority	by	calculating	the	expected	value	of	an	action	as	the	sum	of	
the	value	of	each	possible	world	multiplied	by	the	conditional	probability	of	that	world	given	the	
action.	Humans	do	this	innately.164	A	challenge	for	AWS	is	usefully	expressed	by	machine	action	in	
the	event	of	a	tie	in	that	function	after	which	the	weapon	then	resorts	to	picking	a	random	action	in	
order	to	achieve	its	expected	utility	which	is	likely	to	be	unacceptable	both	from	a	compliance	and	
utility	perspective.165		
	

																																																								
160	Richard	Moyes,	‘Emergent	behaviour	and	risk	–	A	sketch	for	a	risk	management	approach’,	Article	36	article,	(April	
2017),	p.	13.	See	also:	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	p.	14.	
161 Paul	Christiano,	‘The	Reward	Engineering	Problem’,	AI	Alignment,	(31	May	2016),	pp.	3-5	<https://ai-
alignment.com/the-reward-engineering-problem-30285c779450>	[accessed	24	July	2017].	 
162	R	Bartak,	‘Artificial	intelligence’,	KTIML	course,	lecture	slides,	(2016),	generally	
<http://ktiml.mff.cuni.cz/~bartak/ui2/lectures/lecture05eng.pdf>)	[accessed	5	July	2017].		
163	Dennis	Galliland	and	others,	‘A	Note	of	Confidence	Interval	Estimation	and	Margin	of	Error’,		Journal	of	Statistics	
Education,	18,1,	(2010)	
<https://amstat.tandfonline.com/doi/pdf/10.1080/10691898.2010.11889474?needAccess=true>	[accessed	29	July	
2017].	
164	Diana	Gitig,	‘Humans	have	an	innate	ability	to	assess	probability	but	odds	are	we’re		bit	off’,	Genetic	Literacy	Project,	
(19	May	2016),	generally	<https://geneticliteracyproject.org/2016/05/19/humans-have-innate-ability-to-assess-
probability-but-odds-are-were-a-bit-off/>	[accessed	18	March	2017].	
165	D	Poole,	‘Probabilistic	Conflicts	in	a	Search	Algorithm	for	Estimating	Posterior	Probability	Problems	in	Bayesian	
Networks’,	Department	of	Computer	Studies,	University	of	BC,	Vancouver,	(May	1996)	
<http://www.cs.ubc.ca/~poole/papers/seaalg.pdf>.	
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There	is	risk	that	the	Delivery	Cohort’s	epistemological	specifications	for	this	function	may	be	
plain	wrong	(or	even	slightly	wrong	or,	more	likely,	may	subsequently	drift	away	from	the	day’s	
battlefield	priorities).	Nor	does	the	process	lend	itself	to	arbitration	or	adhoc	intervention.	It	
wrongly	assumes	whole-system	predictability	while,	as	inferred	from	Lopez-Paz,	subtle	disparities	
in	AWS’	prior	probabilities	will	grossly	affect	how	the	weapon	behaves.166	The	AWS	might	work	to	a	
prior	that	assigns	zero	probability	to	enemy	forces	being	delivered	by	land	transport:	No	matter	
how	much	the	battlefield	evidence	it	accrues	to	the	contrary,	that	weapon	may	stubbornly	rejected	
any	sensor-based	intelligence	to	the	contrary	and	make	dangerous,	unpredictable	choices	as	a	
consequence.	

 Software processing functions 
	
AWS	feasibility	fundamentally	depends	on	its	ability	to	process	information.	A	basic	challenge	
therefore	arises	from	what	Sun	terms	‘the	absence	of	attached	meaning’	in	machine	routines.167	
Instead,	weapon	sequences	will	likely	be	based	on	the	lowest	possible	level	of	symbology	to	both	
external	and	internal	entities,	actions	and	relationships.	Why	might	this	be	unacceptable	in	AWS	
design?	In	order	for	that	unsupervised	weapon	to	be	compliant	and	valuable,	sensor	input	should	
trigger	wide	and	unpredictable	associations	between	the	weapon’s	external	environment	and	that	
weapon’s	future	actions.168	This	requires	the	machine	to	make	wide	extrapolation	of	outcomes	from	
available	data	sets.	For	this	reason,	the	richest	possible	symbology	is	therefore	important	if	the	
weapon	is	to	operate	effectively	but	still	within	the	boundaries	(be	they	goal-based,	value-based,	
territorial,	action-based	or	peripheral)	as	defined	by	the	Delivery	Cohort.	In	this	vein,	a	complicated	
environment,	a	conflicting	list	of	tasks	as	well	as	mildly	clashing	goals	or	priorities	must	
compromise	weapon	function.	As	Haikonen	concludes,	‘purposeful	operation	calls	for	order	and	
priorities	as	everything	cannot	be	attended	to	at	once’169	and,	as	inferred	from	Dietterich	in	the	case	
of	AWS,	this	is	further	complicated	given	that	the	only	relevant	product	of	its	processes	is	as	
intermediate	results	that	must	themselves	then	be	presentable	for	further	processing.170	A	key	
challenge	is	posited	by	the	weapon’s	control	processes,	by	definition,	being	dynamic	and	unstable	
as	there	is	no	obvious	end-state	for	the	independent	weapon.	Jones’	inquiry	on	how	often	the	
machine	should	poll	its	sensors	highlights	a	similarly	fundamental	challenge	to	AWS	deployment	
given	operational	requirements	to	refresh	that	end-state	and	undertake	update	routines.171	Is	this	a	
millisecond	occurrence	(in	order	to	approximate	the	human	brain)	or	is	it	necessary	to	introduce	

																																																								
166 David	Lopez-Paz,	‘Towards	a	Learning	Theory	of	Cause-Effect	Inference’,	arXiv.1502.02398,	(9	February	2015),	p.	1	
<https://arxiv.org/pdf/1502.02398.pdf>. 
167	R	Sun,	‘Connectionist	and	Symbolic	Approaches’,	University	of	Missouri-Columbia,	(November	2000),	generally	
<http://www.cogsci.rpi.edu/~rsun/sun.encyc01.pdf>.	For	the	purposes	of	this	section,	‘information’	here	refers	to	data	
provided	by,	inter	alia,	range	sensors,	state	sensors	as	well	as	sensors	monitoring	environmental,	storage,	hardware	and	
operational	parameters.	
168	In	contrast	to	narrowly	defined	factory	applications.	Actions	available	to	the	weapon	should	reflect	an	unconstrained	
range	of	goal-directed	tasks	that	are	only	then	tempered	by	limitations	imposed	by	its	environment	as	well	as	
boundaries	imposed	by	the	Delivery	Cohort.	
169	Haikonnen,	p.	168.	
170	Dietterich,	‘Machine	Learning	for	Sequential	Data:	A	Review’,	pp.	230-233.	
171	This	is	a	complex	procedure	given	that	sensors	may	be	passive/active,	mobile/static/remote	and	vary	in	complexity,	
power	and	modes	of	operation.	Its	complexity	may	require	that	game	theory	is	needed	to	ensure	‘best	group	
performance’	in	an	AWS’	sensor	portfolio.	See:	P	Jones,	‘An	Iterative	Algorithm	for	Autonomous	Tasking	in	Sensor	
Networks’,	Decision	and	Control,	IEEE	Conference	paper,	(2006)	<http://ieeexplore.ieee.org/document/4177379/>	
[accessed	8	July	2017].		
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buffering	to	prevent	data	overload	and	allow	more	extensive	processing	but	thereby	increase	the	
risk	of	performance	stutter?	Given	AWS’	twin	requirements	of	compliance	and	utility,	the	decision	
mechanism	to	determine	when	the	weapon’s	intermediate	results	become	final	results	is	a	further	
complexity.	
	

Similarly	intractable	are	the	set	of	sub-routines	necessary	then	to	support	the	weapon’s	
processing	functions.	While	a	simple	switch	sensor	might	indicate	its	state	by,	perhaps,	voltage	
variation	in	its	control	circuit,	AWS’	actions	will	depend	on	extensive	processing	of	data	drawn	
from	multiple	sensors,	from	internal	memory,	from	external	feeds	and	all	across	what	must	remain	
an	undefined	time	continuum.172	The	weapon	must	incorporate	subroutines	in	order,	notes	
Housien,	to	amplify	(or	deny),	filter,	scrub,	classify	and	manage	such	data	before	progressing	
towards	decision	and	execution.173	This	creates	sequencing	issues.	Middleware	processes	are	
particularly	processing-intensive.174	As	pointed	out	by	Abdulhafiz,	scrubbing	routines	generate	
material	complexity	given	data	noise,	missing	values	(as	well	as	the	dynamic	need	to	bridge	data	in	
order	‘to	fill	holes’),	data	inconsistencies,	uncertain	data,	ambiguous	and	conflicting	data	and	
duplicated	data.175		The	weapon’s	data-handling	(termed	ETL	or	Extraction,	Transformation	and	
Loading)	can	be	further	corrupted	during	data	merging	as	well	as	process	effects	from	representing	
what	may	be	very	similar	and	therefore	unexpectedly	undifferentiated	information.	Similarly,	
Yadav	notes	that	currently	available	scrubbing	methodologies	(Nearest	Neighbour,	Clustering,	
Greedy	and	Rules-based	routines176)	each	introduce	specific	deficiencies	into	machine	data	
preparation	including	memory	constraints,	degraded	run-time	performance,	certain	‘common	
variant	problems’	that	cannot	yet	be	solved,	premature	and	local	convergence	of	data,	random	
handling	of	cluster	data	and	even	the	requirement	for	manual	intervention.177	To	this	point,	Zhao	
questions	whether	this	is	yet	a	properly	automated	process.178	Furthermore,	the	imprecise	and	
heterogeneous	nature	of	such	primary	data	makes	machine	output	particularly	prone	to	error.179	
The	slowest	and	most	general	phase	of	the	signal-to-symbol	process	(especially	given	the	scope	of	
competing	datasets	generated	either	on-board,	from	colleague	machines	or	received	externally),	
data	scrubbing	is	likely	to	be	an	enduring	constraint	in	the	development	of	unsupervised	weapons.		
	

																																																								
172	See:	Chapter	9	(Hardware’),	specifically	9.1	(‘Hardware	and	sensor	fusion	issues	for	AWS’).		
173	HI	Housien	and	others,	‘A	comparison	study	of	data	scrubbing	algorithms	and	frameworks	in	data	warehousing’,	
International	Journal	of	computer	applications,	Central	Southern	University,	Changsa,	China,	(0975-8887),	68,	25,	(April	
2013)	<http://research.ijcaonline.org/volume68/number25/pxc3887406.pdf>.	
174	Economist	Magazine,	‘Intel	on	the	Outside:	The	rise	of	artificial	intelligence	is	creating	variety	in	the	chip	market’,	
Economist,	25	February	2017	<http://www.economist.com/news/business/21717430-success-nvidia-and-its-new-
computing-chip-signals-rapid-change-it-architecture>	[accessed	2	August	2017].	See:	introduction	to	Chapter	7	
(Firmware).	Middleware	here	is	defined	as	the	software	mediating	between	the	weapon’s	permanent	and	application	
software.	
175	W	Abdulhafiz,	‘Handling	Data	Uncertainty	and	Inconsistency	Using	Multi-sensor	Data	Fusion’,	Siemens,	Cairo,	
Academic	Paper,	(27	May	2013),	generally	<https://www.hindawi.com/journals/aai/2013/241260/>	[accessed	6	July	
2017].		
176	Pankaj	Yadav	and	others,	‘Nearest	Neighbour-based	Clustering	Algorithms	for	Large	Datasets’,	arXiv.1505.05962,	(22	
May	2015),	p.	2	<https://arxiv.org/pdf/1505.05962.pdf>.		
177	HI	Housien	and	others,	pp.	1-5.	
178	S	Zhao,	‘Manual	versus	Automated	Data	Validation’,	Siemens	commercial	blog,	(9	February	2016),	para.	5-7	of	11	
<https://www.edq.com/blog/manual-vs.-automated-data-validation/>	[accessed	6	July	2017].		
179	Osoba	and	Welser,	generally.	For	a	military	perspective,	see:	S	Russell	and	others,	‘Human	Information	Interaction,	
Artificial	Intelligence	and	Errors’,	US	Army	Research	Laboratories,	(2016),	‘Association	for	the	advancement	of	AI’.			
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This	balance	between	processing	speed	and	data	accuracy	is	similarly	a	constraint	to	their	
deployment.	What	additional	costs	arise	from	this	balance?	Given	that	the	weapon	must	work	in	
real-time,	speed	may	be	gained	by	dividing	the	machine’s	sensed	datasets	into	specific	subroutines	
that	can	each	be	processed	at	a	lower	and	thus	faster	level.	This	too	has	a	validation	and	calibration	
cost.	As	noted	by	Levy	(and	Borrie),	it	also	increases	the	likelihood	of	weapon	failure	through	
‘coupling	contagion’	requiring	additional	mediation	routines	to	arbitrate	any	sewing	together	of	
data	sources.180	Weapon	processes	might	instead	require	division	into	smaller-packet	commissions	
to	be	performed	by	sensors	that	are	best	suited	for	that	task.	AWS	might	be	configured	to	limit	
dynamic	polling	to	relevant	sensory	information	(action-oriented	protocols,	termed	‘active	
sensing’)	in	order	to	refine	(although	likely	compromise)	the	weapon’s	sensory	inputs.181	In	this	
case,	weapon	sensors	would	be	directed	in	a	direction	where	information	is	most	needed	or	
available	(termed	task-driven	attention).	The	model,	however,	remains	theoretical.	Nor	does	the	
model	mitigate	the	fundamental	complexity	of	data	scrubbing	discussed	above.	While	partition	of	
the	weapon’s	immediate	world	into	perceptual	categories	might	aid	data	conversion,	it	will	require	
the	Delivery	Cohort	to	introduce	suitable	negotiation	and	sense-testing	routines.	A	battlefield	
equivalent	might	involve	basing	people	detection	on	the	use,	for	example,	of	simple	temperature,	
movement,	colour	or	distance	sensing:	Such	sensors	might	be	materially	simpler	than	
comprehensive	vision	technology	(and	require	substantially	less	processing)	but	such	paring	down	
risks	compromising	overall	system	efficacy.	It	is,	after	all,	the	combination	of	sensor	inputs	that	will	
facilitate	autonomous	operation	by	providing	appropriately	granular	information	for	the	AWS	to	
‘understand’	its	immediate	environment.	This	process	concept	is	termed	sensor	fusion	to	which	this	
thesis	now	turns.182		
	

The	set	of	routines	that	comprise	a	weapon’s	state	representation	cannot	materially	be	
simplified.183	As	pointed	out	by	Suchman,	the	terms	‘world’	and	‘representation’	are	‘a	very	general	
gloss	for	an	open	horizon	of	potentially	relevant	circumstances’.184	Data	feeds,	furthermore,	may	be	
complicated	by	human	heuristics	and	biases	unwittingly	incorporated	by	the	broad	Delivery	Cohort	
into	the	weapon’s	AI	routines.185	Termed	the	Paradox	of	Artificial	Intelligence,	this	contradiction	
increases	system	intricacy.186	First,	Wang	notes	the	complexity	of	data	patterns	arising	from	the	
scale	of	available	data	from	multiple	sensors	will	tend	to	encourage	routine	compartmentalization	

																																																								
180	A	Levy,	‘Combining	Artificial	Intelligence	and	Databases	in	Data	Integration’,	AI	Today,	Lecture	notes	in	Computer	
Science,	1600,	Springer,	(1999),	pp.	249-268	<https://link.springer.com/chapter/10.1007%2F3-540-48317-9_10>	
[accessed	2	April	2017].	A	consequence	of	increasing	complexity	is	the	emergence	of	tight,	little	understood	and	non-
intuitive	system	associations	that	are	likely	to	take	place	between	sensor	inputs,	processing	routines	and	subsequent	
action	output	in	AWS	platform.	See:	John	Borrie,	‘Security,	unintentional	risk	and	system	accidents’,	Panel	presentation,	
United	Nations	Institute	for	Disarmament	Research,	Geneva,	(15	April	2016).	This	is	discussed	in	Chapter	7	(Firmware),	
specifically:	7.1	(‘Sources	of	technical	debt’).	
181	W	Matthews	and	A	Gheorghu,	‘Repetition,	expectation	and	the	perception	of	time’,	ScienceDirect,	(16	February	2016),	
pp.	110-11	<http://www.sciencedirect.com/science/article/pii/S2352154616300420>	[accessed	12	February	2017].		
182	Inferred	from:	Mataric,	p.	79.	
183	Osoba	and	Welser,	pp.	17-21.	
184	Suchman	and	Weber,	‘Human-machine	autonomies’,	p.	92.	
185	There	are	several	methods	of	identifying	such	biases.	WEAT	(Word	Embedded	Association	tests)	and	IAT	(Implicit	
Association	Tests)	are	recognised	tools	for	isolating	otherwise	hidden	inferences.	A	useful	example	is	symbology	that	
fails	to	differentiate	between	steam	and	ice	given	their	proximity	(but	semantic	opposite)	from	plain-state	water.		
186	Brian	Bergstein,	‘The	Great	AI	Paradox’,	MIT	Technology	Review,	(12	December	2017)	
<https://www.technologyreview.com/s/609318/the-great-ai-paradox/>	[accessed	3	March	2018].		
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in	an	effort	to	create	usable	data	structure.187	Second,	the	smoothing	practice	of	removing	
‘confounding	covariates’	in	weapon	datasets	introduces	inappropriate	hazard	by	filtering	out	
statistically	volatile	data	points	in	order	to	regulate	whole-dataset	sensitivity.188	Other	biases	will	
likely	arise	from	data	commingling,	from	sample	size	disparity	(one	sensor	dataset	versus	another),	
from	reward	functions	in	particular	AWS	sensor	routines	being	incongruent	and,	finally,	
straightforward	cultural	differences	in	interpreting	different	output	categories	arising	from	this	
sensor	fusion.189	Examples	abound,	after	all,	of	risk-estimating	algorithms	being	based	on	plainly	
incorrect	probabilistic	models.190	Additional	challenges	arise.	Different	sensors,	for	instance,	will	
collect	quite	separate	types	of	battlefield	information	requiring	pre-processing	in	order	to	re-work	
datasets	into	homogenous,	comparable	file	types	that	are	then	serviceable.191	

	
It	can	be	inferred	from	Lansner	that	‘associative	processing’	will	be	necessary	for	appropriate	

identification,	selection	and	engagement	of	targets	if	the	weapon	is	to	integrate	‘associative	
evocations’	of	battlefield	representations	with	other	representations,	even	incomplete	ones.192	In	
this	way,	the	weapon	must	directly	attribute	its	sensed	battlefield	experience	with	a	portfolio	of	a-
priori	signals	that	depict	and	then	define	properties	of	that	entity	or	association.193	Garfield	defines	
such	transient	linking	of	representations	(here,	battlefield	shapes,	characteristics	and	identities)	as	
the	central	matter	of	machine	attention.	It	is	certainly	complicated	but	also	a	pivotal	capability	if	
datasets	are	to	be	classified	by	the	AWS	according	to	common	features.	The	challenge	is	that	these	
representations	are	not	equipped	to	represent	properties	numerically	and	can	only	generally	
inform	whether	that	designated	property	(here,	a	battlefield	feature)	is	either	present	or	not	
present.	This	gives	rise	to	difficulties.	Should	a	particular	representation	be	volatile	(and	thus	
forgotten	after	processing)	or	is	it	essential	to	the	AWS’	current	goal	set	and	therefore	to	be	written	

																																																								
187	R	Wang,	‘Active	Sensing	Data	Collection	with	Autonomous	Mobile	Robots’,	International	Conference,	Robotics	and	
Automation,	IEEE,	Carnegie	Mellon	University,	(2016)	
<http://www.contrib.andrew.cmu.edu/~rpw/MyBioWebpage/ICRA16.pdf>.	
188	Osoba	and	Welser,	p.	21.	
189	Osoba	and	Welser,	p.	17.	See	also:	M	Hurston,	‘Even	Artificial	Intelligence	can	acquire	Biases	against	Race	and	
Gender’,	Science	Magazine,	Science	AAAS,	13	April	2017,	generally.	
190	S	Ashby,	‘The	2007-2009	Financial	Crisis:	Learning	the	Risk	Management	Lessons’,	University	of	Nottingham,	
(January	2010)	
<https://www.nottingham.ac.uk/business/businesscentres/crbfs/documents/researchreports/paper65.pdf>.		
191	See:	Chapter	9	(Hardware),	specifically:	9.1	(‘Hardware	and	sensor	fusion	issues	in	AWS’).	A	battlefield	example	is	
useful.	Using	reflected	light	might	appear	to	offer	a	simple	sequencing	solution	to	detecting	the	presence	of	a	target	
object,	the	distance	to	that	target,	some	detail	on	that	target’s	surface	and	to	recognise	other	embedded	features.	A	
weapon’s	reflectance	sensor,	however,	is	unexpectedly	complicated.	Light	reflectivity	is	affected	by	the	target’s	colour,	
smooth	or	rough	texture	and	other	surface	properties.	Light	reflection	depends	upon	surface	colour	and	is	therefore	
less	reliable	in	detecting	dark	objects.	Similarly,	the	reflectance	sensor	must	ignore	ambient	light	in	order	to	be	sensitive	
only	to	its	own	emitter’s	reflected	light.	While	this	single	subroutine	may	be	undertaken	by	the	weapon	using	multiple	
sensor	readings,	the	level	of	processing	then	required	(for	what,	after	all,	is	a	single	component	of	a	very	complex	
sequence)	demonstrates	how	difficult	it	will	be	to	process	even	quite	basic	datasets	into	a	useable	form.	This	would	be	
effected	by	undertaking	one	pass	with	the	emitter	on	and	one	with	it	off	and	then	subtracting	one	from	the	other	having	
first	adjusted	the	data	in	order	not	to	conclude	with	a	negative	light.	A	useful	primer	on	reflectance	can	be	found	at:	
‘Basic	Principles	of	Surface	Reflectance’,	generally	<https://www.cs.cmu.edu/afs/cs/academic/class/15462-
f09/www/lec/lec8.pdf>.	
192	A	Lansner,	‘Associative	Processing	in	Brain	Theory	and	Artificial	Intelligence’,	Springer	Link,	Conference	paper,	
(1986)	<https://link.springer.com/chapter/10.1007/978-3-642-70911-1_12>	[accessed	4	May	2017].		
193	J	Garforth,	‘Executive	Attention,	Task	Selection	and	Attention-Based	Training	in	a	Neurally	Controlled	Simulated	
Robot’,	Neurocomputing,	69.16,	(2006),	pp.	1923-1945.	
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to	the	weapon’s	updated	action	list?	The	challenge	is	that	the	detail	and	intensity	of	such	
representations	are	just	not	consistent	between	(or,	actually,	throughout)	engagement	routines.		

	
AWS	planning	routines	must	look	ahead	to	the	outcomes	of	possible	actions,	prioritising	and	

incorporating	this	analysis	in	order	to	create	a	sequence	of	actions	that	moves	the	weapon	towards	
the	desired	(yet	still	compliant)	goal	of	the	Delivery	Cohort.	The	complicating	software	feature	of	
autonomous	planning	routines	is	noted	by	McNaughton:	They	must	of	course	be	parallel-running	as	
well	as	being	reliably	complimentary	to	the	weapon’s	currently	set	goals.194	This	planning	cycle	is	
not	simple.	To	this	point,	a	search	routine	by	the	weapon’s	navigation	kernel	may	prioritise	the	
shortest	path	for	AWS	movement	given	time	and	battery	power	considerations.	But	other	action	
criteria	such	as	safety,	isolation,	proximity	to	friendly	forces	as	well	as	other	topographical	
advantages	(concealment	and	feint)	must	also	form	part	of	that	planning	and	optimization	
routine.195	Any	such	search	must	look	for	multiple	and	parallel	solutions	but,	as	the	number	of	
possible	available	states	becomes	ever	larger,	planning	becomes	inappropriately	slower	and	less	
reliable.	In	this	vein,	a	planning	sequence	that	takes	longer	to	solve	might	then	be	based	on	a	
weapon’s	dataset	that	may	itself	already	be	outdated.	For	humans,	this	is	instinctively	dealt	with	by	
experience.	There	will	similarly	exist	incongruous	incentive	for	the	weapon	to	exercise	planning	
sequences	as	infrequently	as	possible	(in	order	to	reduce	lag	and	error)	which	is	likely	to	
compromise	further	the	weapon’s	IHL	compliance.	Furthermore,	AWS’	decision	routines	assume	
that	the	weapon’s	immediate	environment	remains	in	tolerance	with	set	probabilities	and	does	not	
change	during	mid-sequence	in	a	way	that	affects	outputs.	It	can	similarly	be	inferred	from	Simpson	
that	AWS	routines	will	need	to	include	detailed	rules	for	all	possible	scenario	combinations	in	order	
to	ensure	that	no	such	mutually	exclusive	conditions	are	created,	the	combinatorial	effects	of	which	
will	generate	unmanageable	complexity.196		

 Anchoring and goal setting issues 
	
The	software	challenges	identified	thus	far	stem	primarily	from	the	weapon’s	data	capture	and	
processing	sequences	rather	than	subsequent	action	or	feedback	routines.	One	such	function	
relates	to	the	‘anchoring’,	the	degree	by	which	the	weapon’s	current	representation	is	amended	to	
reflect	recently	polled	data.	Anchoring	is	also	susceptible	to	a	cognitive	bias	whereby	the	
independent	weapon	relies	too	heavily	upon	an	initial	piece	of	information	when	making	
engagement	decisions.197	An	adjunct	of	the	bias	is	that	the	weapon	attaches	too	much	importance	to	
one	aspect	of	a	circumstance	(here,	a	battlefield	episode)	causing	error	in	that	weapon’s	

																																																								
194	For	an	example	of	parallel	decision	processes	in	robotics,	see:	M	McNaughton,	‘Planning	algorithms	for	real-time	
motion	planning’,	Carnegie	Mellon	University,	Dissertations,	7-2011,	Paper	179,	undated	
<http://repository.cmu.edu/cgi/viewcontent.cgi?article=1180&context=dissertations>	[accessed	9	May	2017].	
195	Such	processes	must	be	themselves	be	undertaken	by	specific	software	routines	that	will	each	require	mediation	
before	integration	into	decision	and	action	sequences.	
196	E	Simpson	et	al,	‘Dynamic	Bayesian	Combination	of	Multiple	Imperfect	Classifiers’,	Decision	Making	and	Imperfection,	
474,	(2013),	pp.	1-35	<http://www.robots.ox.ac.uk/~sjrob/Pubs/galaxyZooSN_simpson_etal.pdf>.	An	example	of	such	
conflict	might	arise	from	basing	AWS	control	routines	upon	design-time	rather	than	run-time	whereby	a	complete	set	of	
rules	must	be	pre-programmed	into	the	weapon	notwithstanding	the	difficulties	of	ensuring	that	this	set	of	rules	is	both	
appropriate	and	current.	
197	Amos	Tversky	and	Daniel	Kahneman,	‘Judgement	under	Uncertainty:	Heuristics	and	Biases’,	Science,	New	Series,	185,	
4157,	(27	September	1974),	pp.	1124-1131	
<http://www.its.caltech.edu/~camerer/Ec101/JudgementUncertainty.pdf>.	
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subsequent	prediction	of	utility	of	a	future	outcome.198	For	the	purposes	of	this	section,	such	
anchoring	processes	must	execute	the	appropriate	degree	of	change	between	what	is	the	current	
weapon	state	and	an	amended	updated	weapon	state	that	is	suggested	by	the	platform’s	application	
layer.199	The	heuristic,	notes	Kahneman,	has	ancillary	effects,	several	of	which	will	be	directly	
relevant	to	the	Delivery	Cohort’s	prescriptions	for	AWS	control	routines:	In	order	(again)	to	be	
valuable,	weapon	processing	must	be	appropriately	sensitive	to	sample	size,	to	prior	probabilities	
of	outcomes	(here,	‘base	rate	frequency’)	as	well	as	the	roles	of	chance	and	relevant	probability	
distribution.200	Similarly,	the	unsupervised	machine	must	be	insensitive	to	illusory	correlation	and	
biases	of	‘retrievability’	and	‘imaginability’	(termed	by	Kahneman	‘the	availability	heuristic’).		
	

Anchoring	in	AWS	will	be	complicated	by	a	requirement	that	the	weapon	‘knows’	how	and	
where	it	is	located	at	any	(and	every)	point	in	its	decision	process.201	In	the	human	brain,	the	
soldier’s	vantage	point	arises	from	his	ability	to	attribute	sensations	to	a	point	of	origination.	This	
capability	is	complicated,	however,	to	mimic	in	a	weapon	as	it	requires	the	machine	to	detect	visual	
and	auditory	stimuli	(including	directions	and	distances)	and	then	incorporate	that	data	as	dynamic	
digital	features	into	its	routines.202	It	will	involve	the	weapon	managing	mental	maps	and,	inferred	
from	Haikonnen,	an	ability	to	toggle	between	externally	and	internally	generated	sensations.203	The	
common	challenge	is	to	fix	the	weapon	into	what	Dragan	terms	‘a	localized	observer’	in	order	to	
ensure	that	all	routines	treat	the	implied	locus	of	the	weapon	in	a	homogenous	manner.204	This	
construct	raises	fundamental	questions.	Bonarini	notes	that	it	is	computationally	challenging	for	
the	weapon	to	perceive	the	origination	point	of	such	stimuli	as	being	somewhere	other	than	the	
point	of	that	particular	on-board	sensor.205	Inappropriate	adjustment	of	the	weapon’s	anchoring	
routines	will	also	impact	how	the	AWS	fixes	itself	within	those	surroundings	as	well	as	likely	
creating	iterative	conflict.206	Challenge	in	this	instance	is	evidenced	by	the	required	extent	of	
processing	during	which	any	of	these	heuristics	can	interfere	with	the	Delivery	Cohort’s	
intentions.207	A	further	complication,	identified	by	Sculley	and	discussed	in	the	previous	chapter,	is	
																																																								
198	This	aspect	of	the	heuristic	is	termed	the	‘focusing	effect’.	See:	Daniel	Kahneman	and	others,	‘Would	You	Be	Happier	
if	You	Were	Richer?	A	Focusing	Illusion’,	CEPA	Working	Paper,	125,	(May	2006),	generally	
<http://www.morgenkommichspaeterrein.de/resources/download/125krueger.pdf>.	
199	Edward	Teach,	‘Avoiding	Decision	Traps’,	CFO,	(17	June	2004),	generally	<http://ww2.cfo.com/human-capital-
careers/2004/06/avoiding-decision-traps/>	[accessed	12	May	2017].	
200	Tversky	and	Kahneman,	‘Judgement	under	Uncertainty’,	generally.	
201	This	aspect	of	the	heuristic	is	termed	the	‘adjustment	effect’,	and	empirically	suggests	such	incremental	adjustments	
are	usually	insufficient.	See:	Tversky	and	Kahneman,	‘Judgement	under	Uncertainty’,	p.	1128.	
202	Gretchen	Chapman	and	Eric	Johnson,	‘Anchoring,	Activation	and	the	Construction	of	Values’,	Organizational	
Behaviour	and	Human	Decision	Processes,	79,	2,	(August	1999),	p.	115	(‘Abstract’).	
203	Inferred	from:	Haikonnen,	p.	74.		
204	A	Dragan	and	others,	‘Integrating	Human	Observer	Inferences	into	Robot	Motion	Planning’,	Robotic	Institute,	
Carnegie	Mellon	University,	in	Autonomous	Robots,	Springer	37.3,	(2014)	
<http://www.ri.cmu.edu/pub_files/2014/7/legibility_AURO14.pdf>.		
205	Andrea	Bonarini	and	others,	‘Concepts	for	Anchoring	in	robots’,	Congress	of	the	Italian	Association	for	artificial	
intelligence,	conference	paper,	(September	2001)	<https://link.springer.com/chapter/10.1007/3-540-45411-X_34>	
[accessed	23	May	2017].		
206	Hanan	Shteingart	and	others,	‘The	Role	of	First	Impressions	in	Operant	Learning’,	Journal	of	Experimental	Psychology,	
142,	2,	(2013),	476-477	<https://elsc.huji.ac.il/sites/default/files/476.pdf>.	Here,	weapon	routines	may	be	
compromised	by	a	‘primacy	effect’	whereby	recall	of	primary	(initial)	information	is	more		
207	Haikonnen,	p.	71.	This	primarily	comprises	weapon	distinction	between	precepts	dating	to	its	deployment-day	
settings,	between	precepts	subsequently	acquired	from	sensor	feedback,	from	its	immediate	external	world	and,	finally,	
from	output	that	is	either	generated	by	subsequent	ML	or	received	from	external	sources.	Finally	to	this	point,	
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introduced	by	ramifications	arising	from	any	such	changes	(here,	the	CACE	Principle	whereby	
Changing	Anything	Changes	Everything).208	The	conclusion	is	that	this	breadth	requires	human	
intervention	in	order	to	provide	a	governable	means	whereby	these	changes	in	weapon	state	can	be	
regulated,	under-scrutinized	data	dependencies	can	be	mediated	and	erosion	of	the	Cohort’s	
intended	boundaries	can	be	managed.		
	

Similarly	intractable	is	the	Cohort’s	need	to	set	goals	to	impose	the	weapon’s	priorities,	
responses	and	action	selection.209	Pollock	distinguishes	here	between	values	and	goals	in	machine	
autonomy:	Goals,	he	argues,	prompt	an	intelligent	system	to	develop	plans	of	action	while	values	
enable	it	to	assess	the	comparative	merits	of	such	plans.210	If	this	process	is	inappropriately	
undertaken,	the	weapon	will	either	be	illegal	or	useless.	The	difficulty	is	to	ensure	that	goal	
satisfaction	mirrors	the	intentions	of	the	defining	Delivery	Cohort.	This	and	the	following	section	
now	consider	two	such	dynamics	in	configuring	artificial	intelligence-directed	weapon	systems:	
First,	the	issue	of	setting	and	updating	goals	for	such	machines	and,	second,	the	issue	of	setting	and	
maintaining	values	under	which	such	weapons	should	operate.	AWS	tasking,	after	all,	will	generally	
be	determined	by	a	generated	priority	order	that	governs	what	must	be	undertaken	at	once,	what	
should	be	undertaken	next,	the	resumption	of	a	task	that	was	previously	discontinued	and,	more	
complex	for	the	weapon,	what	actions	should	subsequently	take	place	based	on	sensor	feedback	in	
order	to	capitalize	on	battlefield	opportunities.211	As	noted	by	Verschule,	goal	setting	is	not	simply	a	
process	of	tuning	the	machine’s	reward	signal	as	several	issues	exist	to	complicate	this	
relationship.212	A	primer	on	the	scope	of	weapon	goals	can	be	seen	in	the	set	up	required	in	
configuring	friendly-forces	in	an	on-line	video	war-game.213	Configuration	steps	are	complicated	by	
the	cascading	and	interrelated	nature	of	that	process.	Furthermore,	errors	in	goal	setting	may	have	
unforeseen	battlefield	ramifications	including	logistical	bottlenecks	whereby	‘more	ammunition	
requires	more	logistics	requires	more	infrastructure	requires	more	safe	areas’.214	Inappropriate	
goal	setting	may	also	compromise	weapon	priorities	with	similar	operational	implications	(‘wider	
engagement	parameters	will	require	more	intelligence	will	require	more	data	processing	which	will	

																																																								
anchoring must	also	take	into	account	the	effects	of	data	entanglement,	correction	cascades	and	undeclared	data	
consumption.	
208	Sculley	and	others,	pp.	2-4.	See	also:	discussion	on	CACE,	Chapter	7	(Firmware),	specifically:	7.1	(‘Technical	debt’).	
209	P	King	and	others,	‘Intelligence	is	turning	out	to	be	a	computational	problem.	What	about	goal-setting?	Is	that	a	
uniquely	human	endeavour?’,	Quora	magazine,	6	May	2016	<https://www.quora.com/Intelligence-is-turning-out-to-be-
a-computational-problem-What-about-goal-setting-Is-that-a-uniquely-human-endeavor>	[accessed	2	July	2017].	For	a	
discussion	on	human-robot	decision	waterfalls,	see:	P	Schermerhorn	and	others,	‘Dynamic	robot	autonomy;	
investigating	the	effect	of	robot	decision	making	in	a	human-robot	task	team’,	ICMI-MLMI,	(2009)	
<https://hrilab.tufts.edu/publications/schermerhornscheutz09icmi.pdf>.		
210	JL	Pollock,	Thinking	about	acting:	Logical	foundations	for	rational	decision-making,	(Oxford:	Oxford	University	Press,	
2006),	generally.	See	also:	Angie	Hunt,	‘Are	‘Machine	Values’	Replacing	our	Principles?’,	Futurity	blog,	(19	April	2017),	
generally	<https://www.futurity.org/technology-machine-values-1406692-2/>	[accessed	15	January	2019].		
211	Scott	Drew	Pendleton	and	others,	‘Perception,	Planning,	Control,	and	Coordination	for	Autonomous	Vehicles’,	MDPI,	
Machines,	5.1,	6,	(2017),	pp.	16-13	(‘Section	Three,	Planning’).		
212 Inferred	from:	P	Verschule	and	others,	‘The	why,	what,	where,	when	and	how	of	goal-directed	choice:	Neuronal	and	
computational	principles’,	Philos	Trans	Royal	Society	London,	1655-20130483,	(5	November	2014)	
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186236/>	[accessed	12	July	2017].		
213	See,	for	example:	Mihir	Sheth,	’16	Expert	Tips	for	Conquering	God	of	War’s	Difficulty	Mode’,	PlayStation	Blog,	(16	May	
2018)	<https://blog.eu.playstation.com/2018/05/16/16-expert-tips-for-conquering-god-of-wars-brutal-give-me-god-
of-war-difficulty-mode/>	[accessed	2	October	2018].		
214 Derived	from	Sheth.	The	analysis	clearly	assumes	the	deployment	of	very	broad	task	weapon	autonomy. 
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require,	counter	intuitively,	more	human	intervention	and	intermediate	engagement	steps’).	
‘Infrastructure	profusion’,	for	instance,	relates	to	a	machine	unexpectedly	transforming	
disproportionately	large	parts	of	its	reachable	resources	into	the	service	of	an	inappropriate	
internal	goal.215	In	the	case	of	AWS,	such	requisitioning	behaviour	would	have	the	side-effect	of	
unbalancing	resource	allocation	across	the	battlefield	and	is	best	illustrated	by	Bostrom’s	paperclip	
analogy.216	Such	error	has	consequences	given	that	there	is	likely	no	reason	(or,	indeed,	
mechanism)	for	the	AWS	to	cease	activity	on	achieving	that	flawed	goal.	On	the	contrary,	it	can	be	
inferred	from	Bostrom	that	the	weapon,	if	it	is	a	logical	Bayesian	agent,	will	‘never	assign	exactly	
zero	probability	to	the	hypothesis	that	it	has	not	yet	achieved	its	goal’.217		
	

Russell	notes	that	complexity	in	the	weapon’s	goal-setting	is	also	evidenced	by	current	
workarounds	that	are	intended	to	solve	the	issue.218	It	may	be	that	a	goal	definition	directs	the	AWS	
to	look	no	further	once	it	has	identified	a	course	of	action	that	it	gives	a	probability	of	success	that	
exceeds,	perhaps,	a	threshold	of	ninety-five	per	cent.	This	satisficing	approach	is	plainly	
inappropriate.	It	fails,	notes	Stimpson,	to	ensure	that	the	weapon	will	select	any	humanly	intuitive	
or	empirically	sensible	way	of	achieving	that	goal.219	Omohundro	observes	that	ML	goal	generation	
which	is	based	on	probability	thresholds	is	‘more	likely	to	build	in	suboptimal	behaviour’.220	
Grandon-Gill	even	conjectures	that	the	machine’s	drive	towards	self-improvement	will	tend	
towards	inherent	instability	in	its	goal	setting	as	all	of	its	objects	are	increasingly	represented	as	
‘economic’	utility	functions	that	are	inappropriate	for	AWS’	compliant	deployment.221	It	will	also	be	
challenging	to	allocate	reliable	thresholds	in	what	is	likely	to	be	a	set	of	unfolding	events:	Should	
then	a	slightly	diluted	set	of	actions	being	coded	for,	say,	a	ninety	per	cent	threshold?	How	too	can	
the	whole	scope	of	an	engagement	sequence	be	captured	in	that	threshold?222	Finally	to	this	point,	a	
learning	weapon	platform	might	prioritise	internal	processes	that	have	‘moral	status’	
(notwithstanding	the	coding	and	ambiguity	ramifications	of	such	precepts)	leading	Yudkowsky	to	

																																																								
215	For	a	discussion	on	possible	failure	modes	in	unsupervised	robots,	see:	Lesswrong.com,	‘Superintelligence	12:	
Malignant	Failure	Modes’,	(2	December	2014)	
<http://lesswrong.com/lw/l9t/superintelligence_12_malignant_failure_modes/>	[accessed	3	June	2017].		
216	Inferred	from:	Bostrom,	Superintelligence,	p.	123.	Again,	this	analysis	assumes	the	deployment	of	very	broad	task	
weapon	autonomy.	Here,	an	AI,	designed	to	manage	production	in	a	factory,	is	given	the	final	goal	of	maximizing	the	
manufacture	of	paperclips	and	then	proceeds	to	convert	the	whole	Earth	into	paperclips.	
217	Ibid.,	p.	125.	
218	For	a	useful	discussion	on	the	role	of	goal-setting	in	AI	control,	see:	S	Russell,	‘Rationality	and	Intelligence:	A	brief	
update’,	Berkeley	University	School	of	Computer	Science,	undated	
<https://people.eecs.berkeley.edu/~russell/papers/ptai13-intelligence.pdf>.		
219	Inferred	from:	J	Stimpson	and	others,	‘Learning	to	cooperate	in	a	social	dilemma;	a	satisficing	approach	to	
bargaining’,	Proceedings	of	the	20th	International	Conference	on	machine-learning,	Brigham	Young	University,	ICML-03,	
(2003)	<https://www.aaai.org/Papers/ICML/2003/ICML03-095.pdf>.		
220	S	Omohundro,	‘The	Basic	AI	Drives’,	Self-aware	Systems,	Paulo	Alto,	California,	pp.	1-4	
<https://selfawaresystems.files.wordpress.com/2008/01/ai_drives_final.pdf>.	Omohundro’s	work	on	AI	agents	
protecting	their	economic	utility	function	is	developed	further	in	his	paper	to	the	2007	Singularity	Summit:	‘The	Nature	
of	Self-Improving	Artificial	Intelligence’	<https://selfawaresystems.com/2007/10/05/paper-on-the-nature-of-self-
improving-artificial-intelligence/>	[accessed	6	April	2017].		
221	T	Grandon	Gill,	‘A	Psychologically	Plausible	Goal-Based	Utility	Function’,	Informing	Science:	The	International	Journal	
of	an	Emerging	Transdiscipline,	11,	(2008),	228.	Inferred	from:	Omohundro,	p.	1	and	pp.	3-5.	
222	Source:	‘UK	Tactical	Aide	Memoire	(TAM)	Part	2’,	Issue	3.0,	(1998);	in	particular,	fire	discipline	parameters	including	
arcs	of	fire,	authority	routines	before	opening	fire,	STAP,	priority	of	targets,	controlled	rates	of	fire,	ammunition	
conservation	and	target	indication.	
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highlight	that	such	routines	may	be	particularly	prone	to	value-loading.223	This	is	complicated	on	
several	levels,	not	by	an	operational	imperative	that	weapon	goals	be	both	dynamic	and	emergent.	
Indeed,	it	will	be	impossible	to	test	a-priori	the	validity,	utility	or	entirety	of	such	weapon	goals.224		

	
Similarly,	goal-setting	will	have	broad	deployment	ramifications.	While	a	soldier’s	actions	are	

influenced	by	complex	and	often	impossible-to-define	tenets	such	as	leadership,	empathy,	
experience,	training	and	team	dynamics,	the	weapon’s	behaviour	must	instead	be	directed	through	
code-based	machine	learning.	In	this	vein,	Konidaris	specifies	a	‘motivational	framework’	based	on	
a	numerically	comparable	reward	mechanism	but	such	goal	setting	models	remain	theoretical.225	
AWS,	for	instance,	will	have	complicating	short	term	and	long-term	goals	with	each	such	object	
calving	sub-goals,	each	with	their	own	hierarchical	targets	that	require	moderation	and	prioritising.	
For	this	reason,	Bikakis	notes	the	challenging	prerequisite	of	an	appropriate	governor	to	mediate	
between	goal	conflicts.226	Finally	to	this	point,	a	reliable	‘fatigue	process’	is	then	necessary	which	
allows	the	unsupervised	weapon	to	recognise	setbacks,	to	re-prioritise	data	feeds	and	adjust	
subsequent	weightings,	introduce	appropriate	inhibition	routines	as	well	as	inform	(without	
compromising)	the	weapon’s	overall	goal	regime.227	

 Value setting issues 

Developing	a	model	that	integrates	values	into	decision	sequences	will	be	similarly	challenging,	
particularly	in	a	manner	that	allows	the	weapon	to	learn	and	dynamically	refine	those	values,	a	key	
component	(inferred	from	Cohn	and	others)	of	AWS	function	in	a	battlefield	setting.228	In	order	to	
appreciate	its	challenge,	it	is	useful	to	rely	on	Cooper’s	value	assessment	for	the	deployed	AWS:	At	
one	end	is	a	values-based	framework	based	on	general	probabilistic	inference	while	at	the	other	
end	is	a	portfolio	of	special-case,	average-case	and	other	approximation	algorithms.229	Neither,	

																																																								
223	For	a	discussion	on	value	loading	in	AI	agents	see:	E	Yudkowsky,	‘The	Value	Loading	Problem’,	Machine	Intelligence	
Research	Institute,	undated	<https://www.edge.org/response-detail/26198>	[accessed	17	June	2017).	A	second	more	
existential	challenge	emerges:	In	running	a	huge	array	of	simulations,	the	weapon	might	then	discard	earlier	
programmed	iterations,	‘gloriously’	altering	its	initial	setup	under	what	Bostrom	calls	‘mind	crime’.	See:	Bostrom,	
Superintelligence,	p.	139.	On	ML	ramifications	to	this	point,	see:	Chapter	7	(Firmware),	specifically:	7.2	(‘Firmware	
ramifications	of	learning	methodologies’).	
224	Although	written	in	1987,	see:	P	Ranky,	‘A	summary	of	Robot	Test	Methods	with	Examples’,	University	of	Michigan,	
RSD-1-87,	1987,	p.	7.	An	adjunct	here	is	that	goal	setting	must	incorporate	a	reliable	temporal	dynamic.	Furthermore,	
the	construct	of	‘perverse	instantiation’	posits	a	possible	conflict	between	a	weapon’s	theoretical	rush	to	achieve	its	
goals	notwithstanding	its	Delivery	Cohort’s	a-priori	intentions.	
225	G	Konidaris,	‘An	Adaptive	Robot	Motivational	System’,	University	of	Massachusetts	at	Amherst,	undated	
<http://www-anw.cs.umass.edu/pubs/2006/konidaris_b_SAB06.pdf>.		
226	A	Bikakis,	‘Alternative	strategies	of	conflict	resolution	in	multi-context	systems’,	International	Federation	for	
Information	Processing,	Conference	paper,	296,	Springer,	Boston	MA,	(2009),	p.	4	
<https://link.springer.com/chapter/10.1007/978-1-4419-0221-4_6>	[accessed	12	May	2017].	See	also:	M	Muraven,	
‘Goal	Conflict	in	Designing	Autonomous	Artificial	Systems’,	University	of	Albany,	(18	March	2017),	pp.	1-5	
<https://arxiv.org/pdf/1703.06354.pdf>.	
227	A	Wigfield,	‘Expectancy	Value	Theory	of	Achievement	Motivation;	a	developmental	perspective’,	Educational	
Psychology	Review,	6,	1,	(1994),	p.	50.	Wigfield	discusses	the	relative	acceptability	to	a	party	(inferred	as	the	AWS)	of	
succeeding	or	failing	at	that	task.		
228	For	a	useful	discussion	on	values	in	AI,	see:	A	Cohn,	‘How	do	we	align	artificial	intelligence	with	human	values?,	
Future	of	Life	Institute,	(3	February	2017)	<https://futureoflife.org/2017/02/03/align-artificial-intelligence-with-
human-values/>	[accessed	13	December	2017].		
229	G	Cooper,	‘The	Computational	Complexity	of	Probabilistic	Inference	Using	Bayesian	Belief	Networks’,	Knowledge	
System	Laboratories,	Stanford	University,	(1990),	p.	1	<http://www2.stat.duke.edu/~sayan/npcomplete.pdf>.	
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however,	provides	an	appropriate	value	framework	for	AWS	deployment.	The	first	is	intractably	
complicated	(if	the	battlefield	asset	is	to	retain	utility	and	trust	within	the	Delivery	Cohort)	while	
the	second	relies	on	approximation	procedures	that	are	ill-suited	to	ensuring	LOAC	compliance.230		

Current	value-setting	for	autonomous	agents	is	predicated	either	upon	a	simple	scaffolding	
approach	(based	upon	a	series	of	interim	values	en-route	to	the	weapon	‘landing’	on	a	final	set	of	
values)	or,	more	likely,	a	model	that	instead	retains	an	unchanging	set	of	values	throughout	the	
weapon’s	learning	and	then	operational	phases.	In	this	way,	subsequent	experience	does	not	
change	the	AWS’	final	goal	with	learning	routines	instead	conditioning	the	weapon’s	beliefs	about	
the	Cohort’s	values	and	goal.231	This,	however,	creates	challenge.	Again,	human	context	is	
important.	As	noted	by	Wired,	‘[w]hen	engineers	peer	into	a	deep	neural	network,	what	they	see	is	
an	ocean	of	math:	a	massive,	multilayer	set	of	calculus	problems	that—by	constantly	deriving	the	
relationship	between	billions	of	data	points—generate	guesses	about	the	world’.232	How	can	
diverging	goals	and	value	settings	be	understood	by	the	battlefield	commander	or	Delivery	Cohort	
given	the	complexity	of	determining	which	experiences	should	update	goal	and	weapon	values?233	
Moreover,	how	are	AWS	values	and	goals	to	be	calibrated	when	individual	weapons	may	be	at	
materially	different	stages	of	development?	Similarly,	what	mechanisms	are	available	to	bring	the	
AWS	back	into	line	should	erroneous	goal	development	lead	to	general	(even	slight)	malfunction?	A	
trivial	aberration	(perhaps	a	wrinkle	en	route	to	an	updated	goal)	might	otherwise	develop	into	a	
material	divergence	from	the	Delivery	Cohort’s	intentions	for	its	weapon.		

Value	setting	creates	its	own	idiosyncratic	issues.	As	inferred	from	Nof,	it	is	empirically	
implausible	that	front-line	mechanics	can	reliably	reconfigure	the	AWS’	value	calibration,	especially	
if	unable	to	communicate	with	that	platform.234	Adjustment	to	weapon	value	settings	will	therefore	
require	several	unlikely	routines.235	Adjustment,	after	all,	must	account	for	all	of	the	weapon’s	
conditional	probabilities	and	all	expected	utility	outcomes	with	the	mechanic	then	repeating	his	
procedures	for	every	possible	course	of	action	facing	the	AWS.236	This	is	currently	infeasible	with	
no	visibility	on	when	such	capabilities	might	be	possible.237	It	questions	how	the	learning	AWS	will	

																																																								
230	L	Busoniu	and	others,	‘Reinforcement	Learning	and	Dynamic	Programming	using	Function	Approximation’,	Delft	
Center	for	Systems	and	Control,	Netherlands,	(November	2009),	p.	2	
<https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf>.	See	also:	Chapter	7	(Firmware,	specifically:	
‘Machine	learning	and	sources	of	technical	debt’	and	‘Firmware	ramifications	of	learning	methodologies	and	Reasoning	
and	Cognition	Methodologies’).	
231	Inferred	from:	Bostrom,	Superintelligence,	p.	192.	
232	Tanz,	pp.	1-5.	
233	Laurent	Orseau	and	Mark	Ring,	‘Self-Modification	and	Mortality	in	Artificial	Agents’,	International	Conference	on	
Artificial	General	Intelligence,	Lecture	Notes	on	Computer	Science,	6830,	(2011),	Springer,	Berlin,	‘Abstract’	and	
generally.		
234	Maintenance	challenges	are	well	illustrated	by:	S	Nof,	Handbook	of	Industrial	Robotics,	(USA:	John	Wiley	&	Sons,	
1999,	generally.	For	discussion	of	command	and	control	in	a	communications-denied	environment,	see:	Ramon	Ahrens,	
‘Mission	Control	in	a	Communications	Denied	Environment’,	Air	War	College,	(16	February	2011),	generally	
<http://www.dtic.mil/dtic/tr/fulltext/u2/1036912.pdf>.	
235	Considerations	here	arise	from	on-line	and	off-line	repair	processes,	field	repairs	and	servicing,	replenishment	and	
restocking,	routine	maintenance,	system	updating	and	unit	retrieval	processes.		
236 Inferred	from: Nick Bostrom,	‘Hail	Mary,	Value	Porosity,	and	Utility	Diversification’,	nickbostrom.com,	(19	December	
2014),	p.	4	<https://nickbostrom.com/papers/porosity.pdf>. 
237	James	Somers,	‘The	Coming	Software	Apocalypse’,	Atlantic,	(26	September	2017),	generally	
<https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/>	[accessed	6	
December	2018].	
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pursue	exactly	those	values	intended	by	its	Delivery	Cohort.	The	weapon’s	values	‘must	act	
according	to	an	appropriate	incentive	system	as	the	repository	of	an	appropriate	final	value’.238	
This,	however,	posits	a	circular	argument;	in	retrospect,	the	weapon’s	values	framework	must	
similarly	be	revisable	as	the	weapon	refines	its	own	representation	on	the	basis	of	amended	
intelligence	about	its	world	and	environment.239	This	learning	characteristic	is	pivotal	and	presents	
the	weapon	with	at	least	three	further	goal	and	value	quandaries.	First,	it	will	be	difficult	for	the	
unsupervised	weapon	to	incorporate	new	data	if	it	must	remain	slaved	to	an	unchanging	final	value	
that	is	coded	from	its	initial	deployment.	Second,	it	is	unfeasible	for	the	Delivery	Cohort	to	specify	
reliably	a	set	of	value	actions	for	every	such	scenario.240	Finally	to	this	point,	the	impact	on	the	
broad	value-loading	problem	from	these	descriptors	is	cumulative.241		

Christiano	notes	that	‘reward	maximisation’	is	an	inadequate	basis	for	defining	these	values.242	
In	this	case,	the	intention	is	for	a	reward	framework	to	screen	the	weapon’s	battlefield	and	
environmental	experiences	prior	to	selective	update	of	that	weapon’s	value	system.	The	model	is	
challenging.243	How,	notes	Song,	can	sufficient	priority	be	coded	for	complementary	stimuli	in	the	
process?244	Its	weaknesses	are	clear-cut:	While	humans’	ability	to	effect	a	workable	goal-acquiring	
is	innate,	it	is	not	reducible	to	coding.	Similarly,	while	the	Delivery	Cohort	may	be	able	to	articulate	
on	paper	a	values	waterfall	to	guide	AWS	operation	on	deployment,	the	untested	challenge	(as	
inferred	from	Alami)	is	its	reliable	translation	into	lines	of	code	in	a	manner	that	is	not	immediately	
lost	in	that	weapons’	subsequent	learning.245	LeCerra	and	Bingham	conclude	that	such		learning	
models	are	‘so	closely	tailored	to	human	neurocognitive	architecture	that	it	is	not	transferable	
across	machine	intelligences	except	where	those	platforms	would	one	day	be	based	on	whole	brain	
emulation’.246		

It	is	also	unlikely	that	the	Delivery	Cohort	would	want	to	construct	weapon-controlling	AI	with	
exactly	the	same	value	disposition	as	a	human.	Zawieska	notes,	after	all,	that	flawed	human	nature	
is	subject	to	arbitrary	(and	even	evil)	traits	inappropriate	to	LOAC-compliance.247	The	Cohort’s	

																																																								
	
238	Daniel	Dewey,	‘Learning	What	to	Value’,	MIRI,	(2011),	p.	3	<http://www.danieldewey.net/learning-what-to-
value.pdf>.	
239	Eliezer	Yudkowsky,	‘Complex	Value	Systems	in	Friendly	AI’,	International	Conference	on	Artificial	General	
Intelligence,	Lecture	Notes	on	Computer	Science,	6830,	(2011),	Springer,	Berlin,	Heidelberg,	‘Abstract’	and	generally.	
240	Bostrom,	Superintelligence,	p.	185.	
241	Eliezer	Yudkowsky,	‘2015:	What	do	you	think	about	machines	that	think?’,	The	Edge,	2015,	generally	
<https://www.edge.org/response-detail/26198>	[accessed	5	May	2017].	
242	Paul	Christiano,	‘The	Reward	Engineering	Problem’,	AI	Alignment,	(30	May	2016)	https://ai-alignment.com/the-
reward-engineering-problem-30285c779450>	[accessed	6	May	2017].	
243	Ibid.	
244	HF	Song	and	others,	‘Reward-based	Training	of	Recurrent	Neural	Networks	for	Cognition	and	Value-based	Tasks’,	
ELife,	(13	January	2017),	generally	<https://elifesciences.org/articles/21492>	[accessed	4	May	2017].		
245	R	Alami	and	others,	‘Toward	Human-Aware	Robot	Task	Planning’,	LAAS-CNRS,	American	Association	for	Artificial	
Intelligence,	(2006)	<http://www.aaai.org/Papers/Symposia/Spring/2006/SS-06-07/SS06-07-006.pdf>.	For	a	detailed	
discussion	on	coding	and	issues,	see:	this	chapter,	specifically:	8.1	(‘Coding	methodologies’)	and	8.2	(Coding	errors’).		
246	Peggy	LaCerra	and	Roger	Bingham,	‘The	Adaptive	Nature	of	Human	Neurocognitive	Architecture:	An	Alternative	
Approach’,	PNAS,	(September	1998) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC21635/>	[accessed	18	August	
2017].		
247	K	Zawieska,	‘Do	Robots	Equal	Humans?	Anthropomorphic	Terms	in	LAWS’,	Industrial	Research	Institute	for	
Automation	and	Measurement,	PIAP,	undated	
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choice	of	weapon	values	must	instead	navigate	through	a	thicket	of	philosophical	problems.	This	is	
particularly	true	when	the	weapon’s	decision	context	is	unfamiliar.	In	deciding	upon	action	paths,	
should	the	AWS	use	causal	decision	theory,	evidential	decision	theory,	‘updateless’	decision	theory	
or	something	quite	else?	The	consequence	of	giving	a	lethal	autonomous	weapon	either	flawed	or	
inappropriate	decision	rules	is	likely	to	be	significant.	Similarly,	the	Cohort’s	value	definition	must	
be	consistent	with	‘understood’	and	normative	battlefield	standards	in	order	to	avoid	heterogeneity	
and	maverick	action.248	Getting	this	wrong	might	occasion	irrevocably	bad	decisions	including,	inter	
alia,	the	weapon	rewriting	itself	to	run	thereafter	on	an	unforeseen	basis.	Harman	notes	that	coding	
values	are	difficult	precisely	because	human	goal	representations	are	so	complex,	imprecise	and	
evolutionary.249	Nor	is	the	model	complimentary	to	how	humans	work:	Human	goals,	after	all,	may	
or	may	not	develop	from	prior	actions	with	values	then	acting	(or	not)	as	triggers	and	with	goal	
upgrades	happening	either	in	real-time	of	after	an	indeterminate	delay.	Value-setting	in	machines,	
notes	Bostrom,	is	enduringly	inexact	and	not	at	all	reducible	to	code.250		

 Action selection issues 
	
How	then	might	such	goals	and	values	be	calibrated	within	AWS’	tasking?	The	desired	state	of	the	
weapon,	also	known	as	its	goal	state,	is	the	benchmark	to	which	the	Delivery	Cohort	will	set	its	
weapon	system.	The	challenge	is	that	the	AWS	will	require	elaborate	feedback	in	order	to	achieve	
and	then	maintain	that	set-point	by	continuously	comparing	its	current	battlefield	state	with	this	
desired	state.251	Furthermore,	once	an	action	task	is	completed,	the	AWS	must	then	conclude	that	
particular	delivery	routine	by	integrating	appropriate	lessons	and,	as	necessary,	feedback	to	the	
Cohort.	Maintenance	tasks,	conversely,	require	ongoing	active	work	(including	arbitration	and	
resource	allocation)	by	that	weapon.	Such	clear	delineation	between	these	actions	is	unlikely	to	be	
obvious,	requiring	complicating	arbitration	in	order	to	mediate	the	process.252	The	difference	
between	the	current	and	desired	states	will	be	the	weapon’s	observed	error.253	The	goal	of	the	
AWS’	action	selection	will	then	be	to	minimize	that	error.	A	sequence	of	feedback	controls,	each	an	
individual	routine	that	must	be	integrated	into	weapon	goal-setting	and	action	selection,	will	then	

																																																								
<http://www.unog.ch/80256EDD006B8954/(httpAssets)/369A75B470A5A368C1257E290041E20B/$file/23+Karolin
a+Zawieska+SS.pdf>.		
248	Larry	Lewis,	‘Redefining	Human	Control:	Lessons	from	the	Battlefield	for	Autonomous	Weapons’,	CNA	Washington,	
(March	2018),	pp.	i-vi	<https://www.cna.org/cna_files/pdf/DOP-2018-U-017258-Final.pdf>.	
249	For	a	useful	primer	on	philosophical	pitfalls,	see:	G	Harman,	‘Artificial	Intelligence	and	some	Philosophical	Issues’,	
University	of	Princeton,	(4	October	2005)	
<https://www.cs.princeton.edu/courses/archive/fall05/cos402/readings/harman.pdf>.		
250	Bostrom,	Superintelligence,	p.	186;	Bostrom’s	narrative	is	useful	to	evidence	this	infeasibility:	‘From	a	noisy	time	
series	of	two-dimensional	patterns	of	nerve	findings,	the	visual	cortex	must	work	backwards	to	reconstruct	and	
interpret	three-dimensional	representations	of	external	space.	A	sizeable	portion	of	our	precious	one	square	meter	of	
cortical	real	estate	is	required	to	process	visual	information,	billions	of	neurons	of	working	ceaselessly	to	accomplish	
this	task…		how	could	our	programmer	transfer	this	complexity	into	a	utility	function?’	
251	See:	Hado	van	Hasselt,	‘Reinforcement	Learning	in	Continuous	State	and	Action	spaces’,	Reinforcement	Learning,	
Springer,	Berlin,	Heidelberg,	(2012),	pp.	1-2	and	p.	6	(‘Function	Approximation’)	
<https://www.researchgate.net/profile/Hado_Van_Hasselt2/publication/239843999_Reinforcement_Learning_in_Cont
inuous_State_and_Action_Spaces/links/0c9605220e5949a8a4000000/Reinforcement-Learning-in-Continuous-State-
and-Action-Spaces.pdf>.	Also	see:	Mataric,	p.	121.		
252	See:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’)	and	7.2	(‘Firmware	ramifications	of	machine	
learning).	
253	For	a	useful	discussion	on	error	types	and	their	ramification	on	function	in	AI,	see:	D	Allchin,	‘Error	types’,	
Perspectives	on	Science,	9:	38-59,	undated	<http://members.tcq.net/allchin/papers/e-types.pdf>.		
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compute	an	output	range	in	order	to	assist	the	unit	in	maintaining	goal	state.254	Two	issues	arise.	
The	pace	of	such	error	correction	is	not	obvious	and	depends	on	how	often	the	error	is	computed	
and	how	much	correction	is	then	made	on	each	feedback	loop.255	While	feedback	control	may	play	a	
role	at	low	level	tasking	(continually	moving	actuators,	for	example)	it	is	also	significantly	less	
adroit	at	modifying	the	weapon’s	higher-level	action	selection	such	as	navigation,	longer-term	
coordination,	environmental	interaction,	collaboration	and	human-robot	interaction.256	Finally	to	
this	point,	in	selecting	actions,	the	weapon	controller	must	be	front-facing	and	determine,	
therefore,	its	system	state	based	on	sub-goals	set	for	itself	ahead	of	time.257	This	too	appears	an	
intractable	challenge	given	that	closed-loop	feedback	systems	rely	upon	homogeneity	in	in	the	
weapon’s	immediate	environment:	As	that	environment	becomes	less	anticipatable,	weapon	
performance	will	certainly	degrade.258		

	
A	further	key	to	AWS	feasibility	is	therefore	its	ability	to	determine	action	selection.	Its	

controller	must,	after	all,	select	one	such	output	action	or	a	defined,	well-understood	combination	
of	actions.	The	AWS’	internal	routines	to	decide	this	are	termed	fusion	and	arbitration.259	Fusion	is	
the	weapon’s	combining	multiple	candidate	actions	into	a	single	action	output.	Kam	notes,	however,	
that	the	procedure	remains	an	enduring	constraint	in	robotics.260	The	AWS	must	then	monitor	
possible	action	sets	concurrently	in	order	always	to	be	ready	to	respond	to,	or	modify,	its	actions.	
Several	hurdles	exist	as	changes	to	the	weapon’s	immediate	environment	may	occur	at	any	time.	
Process	roadblocks,	notes	Lewis,	may	arise	at	several	junctures	in	an	AWS’	action	sequence	
including	degradation	in	the	weapon’s	primary	information	through	spoofing	and	camouflage,	
system	gridlock,	sensor	overload	and	other	sources	of	data	congestion.261	Weapon	systems	must	
therefore	be	able	to	support	parallelism,	the	complex	ability	to	monitor	and	execute	multiple	
actions	at	once.262	Sequential	processing	would	otherwise	risk	missing	events	that	might	be	critical	
to	compliant	combat	operation.	For	this	reason,	other	action	sequence	models	must	exist	for	the	
AWS.263	It	might	then	be	a	hybrid	control	model	that	appears	to	offer	the	best	of	both	worlds;	as	
observed	by	Abraham,	the	AWS	would	thus	benefit	from	‘the	speed	of	reactive	control	and	the	

																																																								
254	Jessica	Taylor	and	others,	‘Alignment	for	Advanced	Machine	Learning	Systems’,	MIRI,	(2016),	p.	3	(‘Motivations’)	
<https://intelligence.org/files/AlignmentMachineLearning.pdf>.	
255	Source:	University	of	Salzburg	Center	for	Human-Computer	Interaction,	‘To	err	is	robot:	How	robots	learn	to	
recognise	error’,	<https://hci.sbg.ac.at/outputs/hri-error-situations/>	[accessed	10	July	2017].		
256	Inferred	from:	Mataric,	p.	129.	
257	A	technical	analysis	on	feed-forward	control	theory	is	set	out	by:	Control	Guru	<http://controlguru.com/the-feed-
forward-controller/>	[accessed	4	December	2016].	
258	Ion	Stoica	and	others,	‘	A	Berkeley	View	of	System	Challenges	for	AI’,	arXiv.1712:	05855v1,	(12	December	2017),	
para.	3	(‘Trends	and	Challenges’)	<https://arxiv.org/pdf/1712.05855.pdf>.	See	also:	Paragraph	3.4	(‘AI	Demands	
Outpacing	the	Moore’s	Law’)	and	4.2	(‘Secure	AI’).		
259	Mataric,	p.	167.	See	also:	Monica	Nicolescu	and	others,	‘Learning	Behaviour	Fusion	from	Demonstration’,	Interaction	
Studies,	9.2,	(2008),	pp.	319-320.		
260	M	Kam,	‘Sensor	Fusion	for	mobile	robot	navigation’,	Proceedings	of	IEEE,	85,	1,	undated,	generally.		
261 Lewis,	‘Redefining	Human	Control:	Lessons	from	the	Battlefield	for	Autonomous	Weapons’,	pp.	21-22. 
262	Nuno	Amando	and	others,	‘Exploiting	Parallelism	in	Decision	Tree	Induction’,	Proceedings	for	the	ECML/PKDD	
Workshop	on	Parallelism	and	Distributed	Computing	for	Machine	Learning,	LIACC,	(2003),	pp.	1-2	
<https://www.dcc.fc.up.pt/~fds/FdsPapers/w2003_ECMLW7_namado.pdf>.	
263	Warwick,	p.	111.	
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brains	of	deliberate	control’.264	In	terms	of	LOAC	compliance	and	practical	feasibility,	however,	
hybrid	control	is	challenging	to	achieve.	It	requires	the	amalgamation	of	fundamentally	different	
control	protocols,	different	time-scales	(short	for	reactive,	long	for	deliberative)	and	different	
representational	models	(none	for	reactive,	explicit	and	elaborate	world	models	for	deliberate).265	
Additionally,	Flach	points	out	that	not	all	relevant	information	in	AWS	routines	necessarily	flows	
from	the	‘bottom	up’	(that	is,	from	the	reactive	layer	to	the	deliberative	layer)	with	often-repeated	
situations	likely	stored	away	in	the	weapon’s	internal	‘contingency	tables’.266	Such	action	models	
are,	by	definition,	parsimonious	in	order	to	avoid	strong	a-priori	assumptions	introducing	bias.267	
The	issue	is	that	it	remains	uncertain	how	a	weapon	without	supervision	can	reconcile	off-line	
planning	with	dynamically	generated	in-line	planning.	

	
Finally,	in	reviewing	AWS’	action	selection,	it	is	relevant	to	consider	bottlenecks	in	a	weapon’s	

planning	routines.	A	theoretical	model	might	be	as	follows:	Pre-compiled	battle	plans	are	
incorporated	into	the	AWS	intended	for	certain	narrow	engagement	tasks	to	be	undertaken	without	
supervision;	such	domain	knowledge	should	require	neither	internal	reasoning	nor	expensive	real-
time	processing.	What	then	are	the	relevant	issues?	Practically,	the	state	space	required	under	this	
methodology	is	simply	far	too	large.	It	is	unworkable	to	keep	such	plans	appropriately	current	
given	a	shifting	battlefield	(the	state	space,	after	all,	of	the	AWS).	Similarly,	Konecnik	notes	that	any	
change	in	the	AWS’	goal	set	will	empirically	require	real-time	modification	of	the	platform’s	entire	
internal	rule	set.268	Unsupervised	toggling,	moreover,	between	goal-determined	processed	actions	
and	pre-defined	rules	will	be	precarious	and,	as	inferred	from	Vershule,	must	anyway	be	
compromised	in	a	communications-denied	environment.269	Furthermore,	Bengio	states	that	any	
such	alternating	middle	layer	within	a	machine’s	control	suite	is	hard	to	design	and	harder	to	
implement.270	It	would	tend	towards	being	very	special-purpose	and	designed	for	specific	platform	
architectures	thereby	requiring	infeasible	reengineering	for	almost	every	new	robotic	weapon	and	
mission,	an	example	perhaps	of	Harari’s	adage	that	‘designing	artificial	intelligence	to	be	the	best	of	
all	worlds	can	end	up	being	the	worst	of	all	worlds’.271		

	
Multisensory	integration	might	also	appear	to	be	a	straightforward	task	of	binding	together	

battlefield	datasets	but	their	integration	into	a	weapon’s	control	routines	(first	by	data	
amalgamation	and	then	by	data	consolidation)	is	problematic,	an	unsurprising	characteristic	given	
that	each	such	dataset	must	influence	the	perception	processes	of	all	other	modalities	in	that	

																																																								
264	A	Abraham,	‘Hybrid	Intelligent	Systems:	Evolving	Intelligence	in	Hierarchical	Layers’,	Soft	Computing.net:	Do	Smart	
Adaptive	Systems	Exist?,	(2005),	pp.	159-179	<http://www.softcomputing.net/gabrys.pdf>.	
265	Mataric,	p.	177.	
266	Peter	Flach,	‘Machine	Learning:	The	Art	and	Science	of	Algorithms	that	Make	Sense	of	Data’,	University	of	Bristol,	(25	
August	2012),	generally	<http://www.cs.bris.ac.uk/~flach/mlbook/materials/mlbook-beamer.pdf>.	
267	L	Kenal	and	others,	‘Uncertainty	in	Artificial	Intelligence’,	Elsevier,	(28	June	2014),	p.	384	and	generally.		
268	Inferred	from:	K	Konecnik,	‘Pre-programming	Artificial	Intelligence	is	a	risky	business’,	Daily	Kos,	10	November	2016	
<https://www.dailykos.com/blog/Kenneth%20Konecnik>	[accessed	12	August	2017].		
269	P	Verschule	and	others,	‘The	why,	what,	where,	when	and	how	of	goal-directed	choice:	Neuronal	and	computational	
principles’,	Philos	Trans	Royal	Society	London,	1655-20130483,	(5	November	2014)	
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186236/>	[accessed	12	July	2017].		
270	Yoshua	Bengio,	‘Learning	Deep	Architecture	for	AI’,	pp.	30-34.		
271	Mataric,	p.	183.	See	also:	Yuval	Noah	Harari,	‘Homo	Sapiens	as	we	know	them	will	disappear	in	a	century	or	so’,	
Observer,	19	March	2017	<https://www.theguardian.com/culture/2017/mar/19/yuval-harari-sapiens-readers-
questions-lucy-prebble-arianna-huffington-future-of-humanity>	[accessed	15	June	2017].		
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weapon’s	sequencing.	272	Given	data	conflicts,	however,	it	is	not	simply	a	matter	of	summing	data	
inputs.	A	review	then	of	how	the	weapon	might	then	manage	such	divergence	signposts	the	
challenges	arising	from	this	final	combinatory	stage	of	the	AWS’	processing	routine.	Here,	
resolution	strategies	will	likely	be	based	on	rule	matching	routines:	Bikakis	notes	that	these	will	
either	be	forward-chaining	(using	deduction	routines)	or	backward-chaining	(using	expert	
premises	as	additional	sub	goals	that	will	then	determine	data	fit).273	The	complexity	of	these	rules	
(the	responsibility	of	the	Delivery	Cohort)	is	a	further	challenge	to	appropriate	weapon	function.	
The	weapon’s	rule	set	must	either	be	deterministic	(in	an	ideal	but	unrealistic	world	where,	at	
most,	no	more	than	one	rule	is	matched	in	each	resolution	cycle)	or,	more	likely,	non-deterministic	
(where	multiple	rule	matching	occurs	in	the	engagement	sequence,	requiring	the	intricate	
introduction	of	an	‘inference	engine’	in	order	to	provide	interpretation	before	determining	a	
decision	path	that	is	based	on	up-to-the-second	battlefield	data).274	As	Yao	points	out,	comparing	
one	data	string	to	another	will	lead	to	widely	different	outcomes.275	The	challenge	is	underlined	by	
Haikonen	who	similarly	concludes	that	repeated	combining	of	sensed	inputs	soon	means	that	
meaningful	resemblance	to	primary	battlefield	data	is	lost	as	amalgamated	data	is	blunted	by	the	
summing	of	numerous	prior	combinations.276	Combinatory	routines	introduce	one	additional	(and	
potentially	pivotal)	challenge:	As	particular	properties	of	the	weapon	change,	the	complex	
requirement	to	anchor	other	properties	has	already	been	noted	in	order	to	prevent	wholesale	
alteration	of	the	weapon’s	function.277		

 Behaviour setting and coordination 
	
This	thesis’	analysis	into	AWS’	deployment	challenges	demonstrates	the	prerequisite	of	dependable	
behaviour	if	independent	weapons	are	to	be	both	compliant	and	valuable.278	In	this	vein,	system	
behaviour	is	how	the	deployed	AWS	acts	and	reacts.	The	complexity	is	that	behaviours	are	time-
extended	and	not	instantaneous.	Their	review,	therefore,	is	appropriate	as	a	final	section	on	AWS	
software	challenges	precisely	because	they	will	be	a	complex	amalgam	of	weapon	values,	goals,	
utility	function	and	learning	processes	that	are	covered	above.	A	relevant	precept	to	illustrate	their	
complexity,	borrowed	from	Neukart,	is	by	reviewing	AWS’	likely	abstraction,	the	handling	and	
transformation	of	available	data	in	that	weapon’s	given	representation	(whether	captured	directly	

																																																								
272	Defense	Technology	Information	Center,	‘Artificial	Intelligence	and	Sensor	Fusion’,	International	Conference	on	
Integration	of	Knowledge	Intensive	Multi-Agent	Systems	ADP021440,	unclassified,	(October	2003),	p.	595.	The	paper	
concludes	that	the	definition	and	development	of	multi-sensor	ontology	remains	entirely	work-in-progress.		
273	Bikakis,	‘Alternative	strategies	of	conflict	resolution	in	multi-context	systems’,	generally.		
274	For	a	primer	on	conflict	resolution	in	AI	systems,	see:	Study.com,	‘Problem	Solving	Methods;	Definitions	and	Types’,	
Study.com,	lesson	4	<http://study.com/academy/lesson/problem-solving-methods-definition-types.html>	[accessed	12	
June	2017].	
275	M	Yao,	‘Four	approaches	to	natural	language	processing	and	understanding’,	Topbots,	(31	March	2017),	pp.	3-5	
<http://www.topbots.com/4-different-approaches-natural-language-processing-understanding/>	[accessed	23	June	
2017)	The	balance	of	the	article	usefully	covers	the	complexity	of	instruction	language.		
276	Inferred	from:	Haikonnen,	p.	57.	
277	S	Coradeschi	and	A	Saffiotti,	‘An	Introduction	to	the	Anchoring	Problem’,	Article	for	Robotics	and	Autonomous	
Systems,	Department	of	Technology,	Orebro	University,	Sweden,	(2003)	pp.	89-94	
<https://www.cs.utexas.edu/~kuipers/readings/Coradeschi-ras-03.pdf>.	See	also:	This	chapter,	specifically:	8.5	
(‘Anchoring	and	goal-setting	issues’)	and	its	discussion	of	the	phenomenon	of	Changing	Anything	Changes	Everything.	
See	also:	Carson	Khan,	Uber’s	head	of	Machine	Learning,	Twitter	
<https://twitter.com/carsonkahn/status/735526311305699328>	[accessed	3	June	2017].	
278	See,	generally:	Chapter	4	(Deployment),	
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from	the	weapon’s	sensors	or	the	product	of	a	weapon’s	subsequent	action	routine)	prior	to	that	
data	becoming	the	basis	for	the	software	routines	outlined	above.279		
	

As	inferred	from	Holte	and	Fan,	it	is	abstraction	that	will	cement	(or	not)	the	weapon’s	ability	
to	hop	between	these	different	data	sources	while	still	preserving	that	data’s	useful	properties	in	an	
action	sequence.280	Abstraction	also	comprises	the	weapon’s	ability	to	deal	with	‘ideas’	rather	than	
battlefield	events	and,	for	the	purposes	of	this	final	section,	is	a	convenient	proxy	to	distill	the	
foregoing	software	challenges	into	a	general	behavioural	consequence	for	AWS	deployment.	Dorigo	
notes	that	it	remains	untested	how	to	organise	such	abstraction	within	an	AI	agent	(here,	the	
unsupervised	weapon)	and	how	then	to	arbitrate	its	weightings	within	moment-by-moment	control	
routines.281	This	uncertainty	has	several	consequences	for	AWS	behaviour.	Individual	behaviours	
must	operate	on	compatible	timescales:	Incorrect	calibration	may	compromise	a	weapon’s	
sequences	when,	for	instance,	hopping	between	fast	and	slow	behaviours	is	required.	Weapon	
behaviour,	after	all,	will	be	a	direct	product	of	AWS	inputs	(either	from	internally	generated	actions	
or	from	external	validated	sources)	and,	as	such,	is	contingent	upon	the	same	processes	of	data	
efficacy,	mediation	and	anchoring	called	into	question	above.	In	the	AWS,	abstraction	and	
behaviours	will	also	be	complicated	by	the	platform	never	reaching	an	‘immutable’	or	final	state.282	
The	consequence	is	that	individual	weapon	behaviours	may	be	in	conflict	with	other	behaviours	
and,	certainly,	colleague	machine	behaviours.	As	highlighted	by	Bonarini,	machine	behaviours	will	
likely	remain	fuzzy,	hard	to	isolate	and,	on	account	of	such	different	timescales	and	learning	paths,	
intractably	difficult	to	coordinate	across	multiple	machine	platforms.283	The	same	instabilities	
inherent	in	AWS’	ML	model	will	be	exactly	evidenced	across	weapon	behaviour.284	Similarly,	
subsequent	modification	of	AWS	behaviour	will	reflect	those	same	complexities	evidenced	in	the	
amending	of	headline	goals	and	values	once	the	weapon	is	deployed	in	the	battlefield.	A	
counterfactual	is	noted	by	Scharre	whereby	independent	weaponry	would	otherwise	be	susceptible	
to	hacking	by	adversaries	should	AWS	behaviour	be	entirely	predictable.285		
	

Finally	to	this	point,	weapon	behaviour	requires	a	workable	process	of	‘data	forgetting’	if	the	
platform	behaviour	is	not	to	be	compromised	either	by	information	overflow	or	the	retention	of	

																																																								
279	F	Neukart,	‘A	Machine	Learning	Approach	for	Abstraction	based	on	the	idea	of	Deep	Learning	Belief	Artificial	Neural	
Networks’,	24th	DAAAM	International	Symposium	of	International	Manufacturing	and	Automation,	(2013),	pp.	1499-
1508.		

280	R	Holte	and	G	Fan,	‘State	Space	Abstraction	in	Artificial	Intelligence	and	Operations	Research’,	AAAI	Workshop,	
University	of	Alberta,	(2015),	p.	55	
<https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/download/10134/10234>	[accessed	3	May	2017].	
281	Marco	Dorigo	and	others,	‘Evolving	Self-Organizing	Behaviours	for	a’	Swarm-Bot’’,	Autonomous	robots,	17.1,	(2004),	
pp.	3-4	<http://people.idsia.ch/~luca/swarmbot-control.pdf>.		
282	For	a	useful	discussion	on	shared	control	protocols	and	hardware	immutability,	see:	T	McConaghy,	‘Blockchains	for	
Artificial	intelligence’,	Bigchain,	undated	<https://blog.bigchaindb.com/blockchains-for-artificial-intelligence-
ec63b0284984>	[accessed	13	June	2017].		
283	A	Bonarini,	‘Learning	to	compose	fuzzy	behaviours	for	Autonomous	Agents’,	International	Journal	for	Approximate	
Reasoning,	17,	4,	(1997),	409-432	<http://www.sciencedirect.com/science/article/pii/S0888613X97000029>	
[accessed	3	May	2017].	
284	See,	generally:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’)	and	7.2	(‘Firmware	ramifications	of	
learning	methodologies’).		
285	Paul	Scharre,	‘Autonomous	weapons	and	operational	risk’,	Centre	for	a	New	American	Security,	(2016),	p.	36	
<https://www.files.ethz.ch/isn/196288/CNAS_Autonomous-weapons-operational-risk.pdf>.	
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sub-optimal	(or	wrong)	data.286	Although	a	main	competency	for	feasible	AWS,	Foster	questions	
whether	there	is	an	obvious	model	for	this.287	Several	challenges	exist.	It	is	enduringly	difficult	to	
create	filtering	or	significance	criteria	to	manage	a	‘delete	sequence’	that	is	still	appropriate	to	the	
embedded	deployment	of	unsupervised	weapons.288	It	is	complex	to	validate	such	binary	routines	
(durable	data	versus	erased	data?)	and	for	the	weapon	to	decide	what	constitutes	primary	visual	
evidence	versus,	for	example,	peripheral	(and	therefore	contextual)	information.	Ishikawa	notes	
one	final	hitch	exists.	While	forgetting	is	a	necessary	capability	in	behaviour	setting,	the	AWS	
should	not	generally	forget	acquired	skills,	a	conundrum	noted	by	Fratto	that	she	terms	
‘catastrophic	forgetting,	one	of	the	fundamental	limitations	of	neural	networks’.289	The	issue,	
moreover,	has	several	levels.	How	should	data	age	conflate	with	data	redundancy?290	The	frequency	
of	such	routines’	data	polling	will	impact	the	weapon’s	redundancy	calculations.	Under	what	
battlefield	circumstances	should	the	AWS	be	able	to	retrieve	‘forgotten’	information?	

	
The	inference	used	here	is	that	machine	behaviour	is	a	useful	proxy	through	which	to	evidence	

the	cumulative	effects	of	AWS’	software	complexity.	As	Rahwan	points	out	‘we	cannot	certify	that	an	
AI	is	ethical	by	looking	at	its	source	code	any	more	than	we	can	certify	that	humans	are	good	by	
scanning	their	brains’.291	This	is	relevant	given,	as	above,	weapon	behaviours	derive	directly	from	
the	software	components	and	controls	that	comprise	such	machines.	As	autonomy	becomes	more	
pervasive,	Nikerson	and	Reilly	note	the	verso	where	machine	output	might	conflict	with	output	
from	human	decision-makers.292		Unsurprisingly,	therefore,	the	challenge	throughout	is	contextual	
and	distills	down	to	the	relative	confidence	assigned	by	the	Delivery	Cohort	to	each	such	conflicting	
source	of	advice.	The	conclusion	for	this	chapter	is	that	intricacy	is	an	inherent	and	unavoidable	
property	of	AI	agents	that	together	will	be	tasked	with	enabling	weapon	independence:	Gershgorn	
notes	that	emergent	behaviour	and	the	inescapable	consequences	of	AWS’	ML	basis	leads	to	system	
behaviour	that	‘will	actually	be	impossible	to	predict	even	by	its	own	programmers’.293	More	
																																																								
286	For	a	general	primer	on	unlearning	issues,	see:	Yinzhi	Cao	and	Junfeng	Yang,	‘Towards	Making	Systems	Forget	with	
Machine	Unlearning’,	IEEE	Symposium	on	Security	and	Privacy,	(20	July	2015),	generally	
<https://ieeexplore.ieee.org/Xplorehelp/#/ieee-xplore-training/working-with-documents#interactive-html>	
[accessed	7	May	2017].	
287	N	Foster	and	others,	‘Is	awareness	all	the	ability	to	forget	(and	to	remember)	critical	for	demonstrating	directed	
forgetting?’,	University	of	Illinois-Champaign,	(November	2016),	generally	
<https://experts.illinois.edu/en/publications/is-awareness-of-the-ability-to-forget-or-to-remember-critical-for>	
[accessed	2	March	2017].		
288	Natalie	Fratto,	‘Machine	Un-learning:	Why	Forgetting	Might	be	Key	to	AI’,	Hackernoon.com,	(31	May	2018)	
<https://hackernoon.com/machine-un-learning-why-forgetting-might-be-the-key-to-ai-406445177a80>	[accessed	6	
June	2018].	In	reviewing	the	use	in	unlearning	of	Long	Short	Term	Memory	Networks	(LSMN),	Elastic	Weight	
Consolidation	(EWD)	and	the	use	of	Bottleneck	Theory	(the	squeezing	of	data	through	code	bottlenecks	in	order	to	
retain	only	those	features	most	relevant	to	general	concepts),	Fratto	notes	the	inappropriate	fitting	and	compressing	of	
data	that	underlines	such	techniques.	
289 Matsumi	Ishikawa,	‘Structural	Learning	with	Forgetting’,	Neural	Networks,	9,	3,	(April	1996),	pp.	509-521.		
290 Ibid.,	pp.	509-511. 
291		Iyad	Rahwan	and	Manuel	Celbrian,	‘Machine	Behaviour	Needs	to	be	and	Academic	Discipline’,	Nautilus,	(29	March	
2018)	<http://nautil.us/issue/58/self/machine-behavior-needs-to-be-an-academic-discipline>	[accessed	7	October	
2018].	
292	Jeffrey	Nikerson	and	Richard	Reilly,	‘A	Model	for	Investigating	the	Effects	of	Machine	Autonomy	on	Human	
Behaviour’,	Proceedings	of	the	37th	International	Conference	in	Security	Science,	(2004),	generally	
<https://web.stevens.edu/jnickerson/ETSIB01.PDF>.	
293	Dave	Gershgorn,	‘AI	is	now	so	Complex	its	Creators	can’t	Trust	why	it	Makes	Decisions’,	Quartz,	7	December	2017	
<https://qz.com/1146753/ai-is-now-so-complex-its-creators-cant-trust-why-it-makes-decisions/>	[accessed	9	
October	2018].	
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importantly,	shortcomings	in	AWS’	individual	componentry	(the	capture,	perhaps,	of	battlefield	
behaviour’s	basic	tenets	such	as	goals,	values	and	utility)	means	that	currently	posited	software,	in	
the	balance	of	probability,	is	likely	incapable	of	generating	appropriate	actions	to	an	extent	that	can	
win	the	trust	of	its	procuring	Delivery	Cohort.294	It	is	against	this	background	that	this	thesis	can	
now	consider	the	hardware	upon	which	those	routines	must	operate	and	certain	of	the	challenges	
that	physical	configurations	create.

																																																								
294	See:	this	chapter,	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’)	and	8.6	(‘Value	setting	issues’).	
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9. 	Hardware:	Build	challenges	to	AWS	function		

The	foregoing	analysis	demonstrates	that	preconditions	must	be	met	before	a	machine	can	function	
autonomously.1	The	conclusion	from	previous	chapters	is	also	that	it	will	be	AWS	design	that	
determines	the	weapon’s	physical	or	‘affect’	characteristics.2	This,	however,	is	not	a	fixed	
relationship.3	Nor	is	there	a	distinct	division	between	hardware	and	software.4	Instead,	Impagliazzo	
predicts	that	hardware	complexity	(sensor	capabilities	and	the	management	of	multiple	systems)	
will	grow	exponentially	as	software	capabilities	appear	and	weapon	tasking	moves	towards	
autonomy	including	abilities	that	encompass	‘reflection’	and	the	sensor	fusion	that	this	entails.5	
Notwithstanding,	then,	what	may	be	an	increasingly	artificial	divide	between	wetware	and	
firmware	and	now	between	hardware	and	software	(they	obviously	work	in	tandem),	the	aim	of	
this	chapter	is	to	review	distinct	hardware	constraints	that	challenge	AWS	deployment,	in	
particular	those	complexities	that	arise	from	posited	combinations	of	physical	equipment	required	
for	compliant	(yet	still	expedient)	weapon	operation.	The	intention	is	to	highlight	cumulative	
bottlenecks	that	stem	from	machine	deployment	in	the	harshest	of	conditions.6	In	this	vein,	there	is	
a	long-established	trade-off,	identified	by	Ferrell	in	1994	but	nevertheless	still	pertinent	to	AWS	
deployment:	
	

Having	many	sensors	and	actuators	is	a	double	edge	sword.	Multiple	sensors	provide	for	
reliable	sensing	and	a	richer	view	of	the	world.	More	actuators	provide	more	degrees	of	
freedom.	However,	more	components	also	mean	there	is	more	that	can	fail	and	subsequently	
degrade	performance…		mechanical	failure,	and	electrical	failure	or	sensor	failure.7	

	
Such	causes	of	failure	have	changed	little	in	the	intervening	quarter	century	(as	evidenced	in	the	
case	of	Ferrel’s	Hannibal	robot	by	sensor	signal	drift,	‘graceful	degradation’	in	its	hardware	

																																																								
1	Haikonnen,	p.	169.	See:	Chapter	1	(Introduction),	generally.		
2	Specifically:	Chapters	6	(Wetware),	7	(Firmware)	and	8	(Software).	
3	Donald	Norman,	Andrew	Ortony	and	Daniel	Russell,	‘Effect	and	Machine	Design:	Lessons	for	the	Development	of	
Autonomous	Weapons’,	paper	prepared	for	IBM	Systems	Journal,	Northwestern	University,	(22	July	2002),	2-4	
<https://s3.amazonaws.com/academia.edu.documents/30792296/10_22_Norman5.8F.pdf?AWSAccessKeyId=AKIAIW
OWYYGZ2Y53UL3A&Expires=1526204286&Signature=LJnPY02sH0nXttxfQLPiox1WBt8%3D&response-content-
disposition=inline%3B%20filename%3DAffect_and_machine_design_Lessons_for_th.pdf>.	Norman	questions	here	
where	AWS	will	sit	on	Norman’s	Reaction,	Routine,	Reflection	continuum.	
4	P	Niranjan,	‘Software	and	Hardware	for	Autonomous	Robots	Using	Distributed	Embedded	System’,	International	
Journal	of	Computer	Applications,	55,	11,	(October	2012),	31-32.	See	also:	Rick	Osterloh,	‘The	Best	Hardware,	Software	
and	AI	–Together’,	The	Keyword,	Google	Company	Blog,	(4	October	2017)	<https://www.blog.google/technology/ai/the-
best-hardware-software-and-ai-together/>	[accessed	15	May	2017].	Osterloh	is	a	Senior	Vice	President,	Hardware	at	
Google.		
5	Russell	Impagliazzo	and	others,	‘Which	Problems	Have	Strong	Exponential	Complexity?’,	Journal	of	Computer	and	
System	Science,	63,	(2001),	512-513	<https://cseweb.ucsd.edu/~russell/ipz.pdf>.		
6	For	useful	parallels	in	the	deployment	of	autonomous	cars,	see,	for	instance:	Darrel	Etherington,	‘Ford	Details	Some	of	
the	Big	Hardware	Challenges	to	Overcome	in	Self-Driving’,	TechCrunch,	(9	March	2017),	para.	5	of	6	
<https://techcrunch.com/2017/03/09/ford-details-some-of-the-big-hardware-challenges-to-overcome-in-self-
driving/>	[accessed	7	March	2018].		
7	Cynthia	Ferrel,	‘Fault	Recognition	and	Fault	Tolerance	of	an	Autonomous	Robot’,	Adaptive	Behaviour,	2.4,	(1994),	pp.	
4-5	<http://web.media.mit.edu/~cynthiab/Papers/Breazeal-AB94.pdf>.		
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performance	and	challenges	arising	from	subsequent	patches	in	efforts	to	confine	those	errors).8	By	
way	of	context,	Gent	relegates	overall	hardware	challenges	of	robotics	behind	those	of	software,	
control,	of	deployment	and	ethical	constraints	and,	to	a	degree,	this	chapter’s	relative	brevity	
acknowledges	the	possible	transience	of	hardware	challenges	as	technologies	mature,	certainly	
compared	to	the	systemic	software	constraints	identified	in	preceding	chapters.9	Particular	
technologies,	however,	pose	enduring	challenge.	In	this	vein,	National	Instruments	identifies,	for	
instance,	progress	in	battery	and	actuator	components	as	key	constraints	holding	back	delivery	of	
fully	autonomous	machines.10	Bourque	further	suggests	that	technical	progress	is	not	uniform	
across	such	hardware	challenges.11	The	aim	of	this	section	is	therefore	to	identify	specific	hurdles	
within	what	is	a	broad	portfolio	of	hardware	componentry	that	will	be	required	for	reliable	
deployment	of	AWS.		
	

While	Jaeger	characterises	the	opportunity	of	machine	autonomy	as	a	revolution	in	machines’	
ability	to	predict,	the	hardware	componentry	for	AWS	to	achieve	such	competence	is	substantial	
and	includes	a	wide	variety	of	on-board	assets	that	must	sense,	garner	and	process	the	data	behind	
such	prediction.12	These	processes	remain	fundamentally	a	hardware	matter	based	upon	apposite	
physical	sensors,	the	nature	of	which	will	depend	on	the	deployment	model	(and	hence	tasks)	to	be	
carried	out	by	that	weapon.13	It	is	AWS	sensors,	after	all,	that	will	allow	the	robot	to	know	its	state,	
the	general	physical	notion	describing	itself	at	any	point	in	time	notwithstanding,	notes	Mataric,	
that	such	states	may	be	visible,	partially	hidden	or	hidden	(unobservable).14	This	points	to	a	general	
constraint.	As	noted	by	Degutis,	Director	of	Product	Management	at	Bosch,	‘all	of	these	sensors	
have	strengths	and	weaknesses’,	a	general	work-round	being	that	the	Delivery	Cohort	will	opt	to	
incorporate	multiple	such	sensors	in	an	effort	to	design	out	these	weaknesses	but,	in	so	doing,	
building	in	technical	debt	and	the	need	for	systemic	mediation	whereby	those	states	may	then	be	
discreet	(up,	down,	blue,	red)	or	continuous	(a	thousand	miles).15		

																																																								
8	Ferrel,	pp.	5-6.		
9	Ed	Gent,	‘The	Ten	Grand	Challenges	Facing	Robotics	in	the	Next	Decade’,	SingularityHum.com,	(6	February	2018)	
<https://singularityhub.com/2018/02/06/the-10-grand-challenges-facing-robotics-in-the-next-
decade/#sm.001hc0z0a1azad5etv91d6at6w0df>	[accessed	10	May	2018].	Hardware	considerations	concern	power	
and	energy	efficiencies,	progress	in	new	materials	and	fabrication	schemes.	See	also:	Matt	Simon,	‘Want	Awesome	
Robots?	You’ll	Have	to	Best	These	Challenges’,	Wired	Science,	(2	May	2018)	<https://www.wired.com/story/want-
awesome-robots-youll-have-to-best-these-challenges/>	[accessed	19	May	2018].	See	also:	Economist,	‘After	Moore’s	
Law:	The	Future	of	Computing	–	The	Era	of	Predictable	Improvement	in	Computer	Hardware	is	Ending.	What	Comes	
Next?’,	Economist	Magazine,	(12	March	2016)	<https://www.economist.com/leaders/2016/03/12/the-future-of-
computing>	[accessed	12	May	2018].		
10	Source:	National	Instruments,	27	July	2017	<http://www.ni.com/newsletter/50878/en/>	[accessed	10	May	2018].		
11	Brad	Bourque,	‘The	Tables	Have	Turned.	Hardware	Finally	has	to	Catch	up	with	Software’,	Digital	Trends,	(7	January	
2017)	<https://www.digitaltrends.com/computing/hardware-vs-software-ces-2017/>	[accessed	12	May	2018].	
12	Herbert	Jaeger,	Jacobs	University	in	Bremen,	cit.	Natalie	Wolchover,	‘Machine	Learning’s	‘Amazing’	Ability	to	Predict	
Chaos’,	Wired	Science,	(21	April	2018),	para.	3	of	10	<https://www.wired.com/story/machine-learnings-amazing-
ability-to-predict-chaos/>	[accessed	23	April	2018].		
13	See,	generally:	Chapter	4	(Deployment).	
14	Mataric,	p.	22.	
15	Charles	Degutis,	Product	Director,	Bosch,	cit.	Charles	Pickering,	‘How	AI	is	Paving	the	Way	for	Autonomous	Cars’,	
Engineer,	(15	August	2017)	<https://www.theengineer.co.uk/ai-autonomous-cars/>	[accessed	12	May	2018].	‘All	of	
these	sensors	have	strengths	and	weaknesses.	Radar	can	bounce	of	tunnels	and	bridges	and	can	struggle	to	differentiate	
small	and	closely	spaced	objects.	Video	can	be	blinded	by	glare.	Lidar	can	degrade	in	high	moisture	situations’.	For	a	
primer	on	this	relationship,	see	also:	Niranjan,	‘Software	and	Hardware	for	Autonomous	Robots	Using	Distributed	
Embedded	System’,	p.	33.	On	technical	debt,	see	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 252 | P a g e  

 
 

	
Sensors,	of	course,	are	just	one	part	of	the	hardware	portfolio	enabling	machine	autonomy.16	

Effectors,	for	instance,	enable	the	weapon	to	undertake	physical	actions	including	locomotion	and	
manipulation.17	A	complexity	is	that	manipulators	(robot	arms	and	grippers),	in	broad	terms,	must	
move	in	one	or	more	dimensions.	This	characteristic,	notes	Mataric,	introduces	a	further	robotic	
difficulty	around	‘degrees	of	freedom’	(DOF),	the	minimum	number	of	coordinates	required	to	
specify	completely	the	motion	of	a	mechanical	system.18	Challenges	arising	from	DOF	are	discussed	
in	this	chapter’s	next	section	but,	while	simple	actuators	such	as	motors	control	a	single	motion	
(up-down,	left-right)	of	the	weapon’s	effector,	Correll	points	out	that	more	complex	effectors,	such	
as	a	weapon’s	robotic	arms,	have	exponentially	more	DOF	that	then	require	more	complicated	
actuators	with	exponentially	more	complex	control	mechanisms.19	It	would	be	ideal	if	a	robot	
included	an	actuator	for	every	DOF	but	this	is	rarely	the	case	and	would	result	in	unacceptable	
machine	complexity.	A	further	effector	challenge	arises	from	the	weapon’s	power	requirements	
without	it	being	loaded	down	with	heavy	batteries.20	Its	electronics,	moreover,	should	be	isolated	
from	its	sensors	and	effectors	and	steps	taken	to	prevent	loss	of	performance	as	power	levels	drop	
or	there	is	a	sudden	spike	in	power	demand.	In	this	vein	and	depending	upon	tasking,	it	can	be	
inferred	from	Ieropoulis	that	AWS	will	need	to	replenish	that	power	in	a	similarly	autonomous	
fashion.21	In	order	to	satisfy	this	constraint,	the	weapon’s	Delivery	Cohort	must	enable	its	machine	
to	get	to	a	particular	location	following	a	particular	path:	As	evidenced	by	Fanucchi	and	others,	
motion	planning	(here,	a	combined	effector	and	control	issue)	will	be	a	computationally	complex	
process	involving	a	search	and	evaluation	through	all	possible	trajectories	in	order	to	decide	upon	a	
path	that	satisfies	all	requirements.22	The	relevance	of	the	example	becomes	apparent:	Depending	
on	that	task,	Hachoun	notes	that	several	components	will	be	required	to	finding	the	very	best	route	
(shortest,	safest,	most	efficient,	least	challenging)	that	also	takes	into	account	the	machine’s	own	
geometry	(shape,	turning	radius)	and	steering	mechanism	(the	AWS’	holonomic	properties).23		
	

All	of	these	issues	may	eventually	be	solvable	but,	as	evidenced	by	Sitte	and	Winzer,	hardware	
issues	nevertheless	place	clear	constraints	upon	deployment.	Much	of	AWS’	hardware	challenge	
relates	to	the	enduring	complexity	of	‘the	last	meter’	whereby	hardware	components	must	manage	

																																																								
16	Aku	Pietikainen	and	others,	‘Design	of	the	Mechanics	and	Sensor	System	of	an	All-Terrain	Robot	Platform’,	
International	Conference	on	Robotics	and	Automation,	IEEE,	(2008),	pp.	1-2	
<https://pdfs.semanticscholar.org/eca8/532658ae4864c3e9a4a264af107e3cc0ed69.pdf>.	
17	For	a	primer	on	robotic	parts,	see:	CCSI,	‘Parts	of	a	Robot’,	
<http://www.mind.ilstu.edu/curriculum/medical_robotics/parts_of_robots.php>	[accessed	12	May	2018].	
18	Mataric,	p.	39.	
19	For	a	useful	primer	on	robots’	physical	challenges,	see:	Niklaus	Correll	and	others,	‘Analysis	and	Observations	on	the	
Frist	Amazon	Picking	Challenge’,	arXiv.1601.05484v3,	(22	September	2017),	pp.	2-5	and	generally	
<https://arxiv.org/pdf/1601.05484.pdf>.	
20	For	a	general	discussion	on	battery	development,	see:	Chapter	3	(Drivers),	specifically:	3.2	(‘Technology	creep	and	
dual	use	drivers’).		
21	For	a	discussion	on	developments	in	autonomous	power	replenishment	in	robots,	see:	Ioannis	Ieropoulos	and	others,	
‘Energetically	Autonomous	Robots’,	University	of	West	of	England,	Bristol,	undated	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.739&rep=rep1&type=pdf>.		
22	D	Fanucchi	and	others,	‘An	Overview	and	Ideas	on	Autonomous	Robot	Path	Planning	Algorithms’,	Wits	University,	
(2010),	pp.	53-56	(Section	2.4:	‘Overview	of	Methods’)	<https://www.wits.ac.za/media/migration/files/cs-38933-
fix/migrated-pdf/pdfs-2/2009AutonomousRobotpathplanning.pdf>.	
23	O	Hachoun,	‘Path	Planning	of	an	Autonomous	Robot’,	International	Journal	of	Systems	Application,	Engineering	and	
Development,	4,	2,	(2008),	178-181	<http://www.wseas.us/journals/saed/saed-45.pdf>.	
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the	difficult	interaction	between	host	weapon	and	its	immediate	environment.	Lida	attributes	this	
challenge	to	that	interaction’s	characteristics	of	poor	predictability,	low	programmability,	the	
plethora	of	emergent	battlefield	scenarios	as	well	as	the	frequently	delicate	and	idiosyncratic	tasks	
required	of	that	process.24	Trajectory	planning	also	provides	a	relevant	proxy.	Calculating	a	best	
path,	after	all,	becomes	exponentially	more	complex	in	three-dimensions	(the	case	with	a	weapon’s	
robotic	arms).25	Manipulation	is	particularly	challenging	given	the	AWS’	requirement	to	compute	in	
real	time	the	free	space	of	each	manipulator	(the	space	in	which	movement	is	possible)	in	order	
then	to	model	that	space	for	a	particular	action	sequence	or	combat	task.26	All	such	routines,	
moreover,	must	be	preceded	by	precursor	sequences	including,	for	instance,	whether	each	such	
effector	action	is	both	goal	and	value-compliant?27		

	
Johnson	points	out	that	sensors	and	effectors	may	have	separate	controllers	requiring	further	

levels	of	internal	coordination	and	feedback	on	the	weapon’s	location	and	state.28	As	above,	an	
effector	is	the	hardware	device	on	the	autonomous	platform	that	has	most	physical	effect,	impact	
and	influence	on	the	weapon’s	immediate	environment.	Just	as	sensors	must	correspond	to	the	
weapon’s	task,	so	must	the	effectors	be	similarly	matched,	each	with	a	conforming	actuator	that	
enables	the	effector	to	execute	that	action	or	movement.	Yin	and	others	note	the	complication	that	
such	actuating	will	likely	be	undertaken	in	several	quite	different	non-conforming	modes,	whether	
by	electric	motors,	hydraulics,	pneumatics	or	by	using	dissimilar	materials	which	may	be	photo-
reactive,	chemically	reactive,	thermally	reactive	or	piezoelectric.29	A	deployment	consequence	is	
the	amount	of	idiosyncratic	management	and	security	(individual	programming	languages,	bespoke	
instruction	routines,	custom	feedback	loops)	required	for	each	component’s	appropriate	

																																																								
24	Dr	Fumiya	Lida,	Department	of	Engineering,	Cambridge	University,	Prowler.io	Decision	Summit,	(15	November	2018)	
and	in	conversation	with	the	author.	
	
25	Joaquin	Sitte	and	Petra	Winzer,	‘Mastering	Complexity	in	Robot	Design’,	Proceedings	of	2004	IEEE	International	
Conference	on	Intelligent	Robots	and	Systems,	(2004),	1815-1816	
<https://groups.csail.mit.edu/drl/journal_club/papers/robot-design-iros2004.pdf>.		
26	Mataric,	p.	61.	
27	IEEE	Global	Initiative	for	Ethical	Consideration	in	Artificial	Intelligence	and	Autonomous	Systems,	‘Embedding	Values	
into	Autonomous	Intelligent	Systems’,	IEEE,	undated,	pp.	22-23	
<https://standards.ieee.org/develop/indconn/ec/ead_embedding_values.pdf>.	The	document	provides	a	key	primer	to	
the	issues	of	moral	overload	and	value	conflicts	(p.	25),	algorithmic	biases	(p.	26),	building	empirical	norms	into	
machine	architecture	(pp.	29-32)	and	third-party	evaluation	of	alignment	in	machine	values	(p.	33).		
28	Matthew	Johnson	and	others,	‘Team	IHMC’s	Lessons	Learned	from	the	DARPA	Robotics	Challenge	Trials’,	Journal	of	
Robotics,	(March	2015),	4-5	and	generally	
<https://s3.amazonaws.com/academia.edu.documents/41980899/Team_IHMCs_Lessons_Learned_from_the_DAR2016
0203-30232-
1p7o2um.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1540061344&Signature=kTtjZhdj2UozAahn7Cb
wujww3X0%3D&response-content-
disposition=inline%3B%20filename%3DTeam_IHMCs_Lessons_Learned_from_the_DARP.pdf>.	
29	Mark	Yin	and	others,	‘Modular	Self-Reconfigurable	Robotic	Systems:	Grand	Challenges	of	Robotics’,	Robotics	and	
Automation	Magazine,	IEEE,	14,	1,	(2007),	pp.	4-52	<http://ieeexplore.ieee.org/abstract/document/4141032/>	
[accessed	20	May	2018].	
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operation.30	A	recurring	theme	in	this	thesis	(and	noted	by	Yatamanchili)	is	that	system	
heterogeneity	will	invariably	add	complexity	and	fragility	to	AWS’	overall	function.31		

	
Nesnas	similarly	highlights	build	challenges	relating	to	such	hardware	configuration,	especially	

around	component	organisation.32	An	AWS’	vision	package	requires	a	camera.	In	order	to	be	fit	for	
purpose,	however,	it	empirically	requires	a	hardware	portfolio	that	enables	stereo	processing,	
visual	odometry,	structure-from-motion,	visual	tracking,	object	finding	and	template	matching.33	
The	issue	is	therefore	achieving	a	level	of	hardware	generalization	that	is	appropriate.	Nesnas	notes	
that	this	will	be	complicated	by	quite	different	design	paths,	from	modules	intended	to	achieve	
specific	functionality	to	componentry	that	must	be	organised	instead	around	more	generic	use-
based	classes.34	Challenges	also	arise	from	the	definition	of	a	common	system	vocabulary,	from	
mediation	between	different	programming	models	(declarative	programming	as	opposed	to	
procedural	programming),	as	well	as	from	a	requirement	to	reconcile	different	representations	of	
outwardly	similar	input	information.35	An	adjunct	complexity	is	of	course	the	ensuring	of	clear	
governance	when	setting	priorities	in	the	case	of	shared	hardware	resources	given	that	multiple	
devices	comprising	AWS	hardware	may	be	logically	decoupled	while	still	remaining	physically	
coupled.36	In	this	vein,	conflicts	must	be	mediated	between	opposing	hardware	architectures	(for	
instance,	an	AWS	model	based	upon	a	central	processor	versus	a	model	where	control	is	migrated	
throughout	the	weapon	firmware	in	distributed	nodes).	

	
Hardware	selection	requires	recurrent	design	compromise.37	Haikonnen	identifies	a	

complicating	denominator	here	to	be	the	machine’s	expression	of	sensory	information	that	is	based	
entirely	on	numeric	values.38	The	general	hardware	challenge	is	that	resulting	performance	

																																																								
30	Lois	Batson	and	Donald	Wimmer,	‘Unmanned	Tactical	Autonomous	Control	and	Collaboration	Threat	and	
Vulnerability	Assessment’,	Calhoun	NPS	Institutional	Archive,	(June	2015),	pp.	8-11	(‘Five	Pillars	of	Information	
Assurance’)	and	25-30	(‘Breakdown	of	Threat	Template’)	
<https://calhoun.nps.edu/bitstream/handle/10945/45738/15Jun_Batson_Wimmer.pdf?sequence=1&isAllowed=y>	
[accessed	23	May	2018].	
31	For	a	discussion	on	ramifications	of	system	heterogeneity,	see:	Sudhakar	Yatamanchili,	‘Software	Challenges	of	
Heterogeneity’,	School	of	Electrical	and	Computer	Engineering,	Georgia	Institute	of	Technology,	undated	
<http://www.socforhpc.org/wp-content/uploads/2015/07/yalamanchili-SW-Challenges.pdf>.		
32	Issa	Nesnas,	‘The	CLARAty	Project:	Coping	with	Hardware	and	Software	Heterogeneity’,	Software	Engineering	for	
Experimental	Robotics,	Springer,	(2007),	p.	5	<http://gias720.dis.ulpgc.es/Gias/asignaturas/master-siani-
isspe/Bibliografia/CLARAty/06_nesnas_starbook.pdf>.	
33Ibid.,	p.	5	and	generally.	
34	Ibid.,	p.	2.	
35	Dirk	Fahland	and	others,	‘Declarative	Versus	Imperative	Process	Modelling:	The	Issue	of	Maintainability’,	
International	Conference	on	Business	Process	Management,	Springer,	Berlin,	Heidelberg,	(2009),	pp.	6-7	and	generally	
<https://www.matthiasweidlich.com/paper/declarative_vs_imperative_maintainability_ERBPM_2009.pdf>.	
36	Nesnas,	p.	7	and	p.	23.	
37	For	a	detailed	discussion	on	conflict	resolution	methodologies,	see:	Chapter	8	(Software),	specifically:	8.4	(‘Software	
processing	functions’)	and	8.6	(‘Action	selection	issues’).			
38	Haikonnen,	p.	169.	See	also:	B	Selam	(moderator)	and	others,	‘Challenge	problems	for	Artificial	Intelligence’,	13th	
National	Conference	on	AI,	AAAI-96,	<http://erichorvitz.com/selman.htm>	[accessed	16	June	2017].	‘We	lack	the	
equivalent	of	a	Perceptron	Book	(Minsky	and	Papert,	1969)’.	Selam	defines	system	brittleness	as	the	difficulty	of	porting	
coding	solutions	across	routines.	‘It	is	hard	to	know	how	to	take	things	from	successes	and	apply	them	to	new	
problems’.	
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variation	is	deeply	coupled,	is	incapable	of	clear	attribution39	and	will	anyway	be	brought	about	by	
exogenous	factors	such	as	sensor	noise40	and	what	Pendleton	terms	as	the	dynamic	‘change	state	of	
the	machine’s	immediate	environment’.41	In	a	similar	vein,	it	can	be	inferred	from	Guszcza	that	the	
relationship	between	the	weapon’s	software	and	the	hardware	that	it	is	driving	is	itself	dynamic,	
difficult	to	model	and	largely	dependent	upon	that	weapon’s	receptiveness	to	local	prediction	and	
the	weapon’s	ability	to	learn.42	In	order,	then,	to	judge	the	complexities	arising	from	such	hardware	
selection,	it	is	necessary	to	consider	the	ramifications	that	arise	from	fusing	together	what	is	
heterogeneous	componentry.	

 Hardware and sensor fusion issues for AWS 
	
An	effector	is	any	device	on	the	AWS	that	touches	the	robot’s	environment.	Some	narrative	is	again	
useful	to	identify	constraints	arising	from	design	issues.	An	action	sequence	will	typically	
commence	with	the	weapon	controller	initiating	a	command	to	its	effectors	in	order	to	produce	a	
particular	outcome	on	the	environment	that	is	based	on	the	weapon’s	current	task.	Linked	to	
weapon	tasking,	it	is	important	to	state	that	AWS	actuator	types	must	be	very	broad	and	encompass	
electric	motors,	hydraulic	or	pneumatic	cylinders	as	well	as	photo-reactive,	temperature	sensitive,	
piezoelectric	or	chemically	sensitive	materials	that	can	actuate	wheels,	tracks,	arms,	grippers	and	
other	effectors	on	the	AWS.43	In	this	vein,	it	is	relevant	to	consider	challenges	created	by	an	
effector’s	degrees	of	freedom	(DOF).44	Current	robotic	hands	may	have	thirty	DOF.45	For	the	
purpose	of	this	analysis,	a	helicopter	has	six	DOF	and	moves	in	three	dimensions.	Considering	first	
the	configuration	of	an	autonomous	land-based	vehicle,	only	two	dimensions	of	movement	are	
required.	In	this	case,	the	AWS’	movement	governor	can	control	only	two	things:	forward/reverse	
and	rotation.	Although	that	vehicle	therefore	has	three	DOF,	only	two	of	them	are	controllable.	
Since	there	are	always	more	DOF	than	are	controllable,	Mataric	highlights	that	there	will	be	
motions	that	cannot	be	undertaken	by	that	machine	such	as	moving	sideways.46	Why	is	this	
important?	However	effective	the	two	DOF,	an	unsupervised	land-based	machine	must	likely	
generate	a	complicated	path	in	order	to	carry	out	its	motion	task.	The	hardware	challenge	is	that	

																																																								
39	For	a	discussion	of	sensor	decisions,	see:	R	Luo	and	M	Kay,	‘Multi-sensor	Integration	and	fusion	for	Intelligent	
Machines	and	Systems’,	Ablex	Publishing,	North	Carolina	University,	(1995),	pp.	5-9.		
40	R	Brooks	and	others,	‘Automatic	correlation	and	calibration	of	noisy	sensor	readings	using	elite	genetic	algorithms’,	
Artificial	Intelligence,	84,	Elsevier,	(1996),	pp.	339-354	
<https://pdfs.semanticscholar.org/cef2/9a6a615d9875d9d538c02cef71a7d29df190.pdf>.	Unsurprisingly,	machine	
calibration	becomes	more	difficult	the	further	sensor	noise	moves	from	standard	deviation	limits.		
41	Pendleton	and	others,	‘Perception,	Planning,	Control,	and	Coordination	for	Autonomous	Vehicles’,	pp.	1-4	and	
generally.	
42	J	Guszcza	and	N	Maddirala,	‘Minds	and	Machines:	The	Art	of	Forecasting	in	the	Age	of	Artificial	Intelligence’,	Deloitte	
Review,	19,	University	Press,	(25	July	2016)	<https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-19/art-of-
forecasting-human-in-the-loop-machine-learning.html>	[accessed	12	June	2017].	
43	FC	Park	and	KM	Lynch,	‘Introduction	to	Robotics:	Mechanics,	Planning	and	Control’,	North	Western	University	
Publishing,	(20	September	2016),	pp.	9-14	(‘Degrees	of	Freedom’)	and	19-24	(‘Configuration	space’)	
<http://hades.mech.northwestern.edu/images/2/2a/Park-lynch.pdf>.	
44	D	Lowe,	‘Characterising	complexity	by	the	degrees	of	freedom	in	a	radical	basis	function	network’,	Neurocomputing,	
19,	April	(1998),	p.	199	<http://www.sciencedirect.com/science/article/pii/S0925231297000659>	[accessed	2	March	
2017].	
45	Dr	Fumiya	Iida,	Department	of	Engineering,	Cambridge	University,	Prowler.io	Decision	Summit,	(15	November	2018)	
and	in	conversation	with	the	author.	
	
46	Mataric,	p.	41.	
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continuous	trajectory	must	be	achieved	with	discontinuous	velocity:	the	weapon	must	stop	and	start	
in	order	to	reach	each	destination,	so	creating	deep	complexity.	Two	complicating	relationships	
emerge.	First,	the	non-holonomic	robot	has	more	DOF	than	it	can	control.47	Second,	Sporn	and	
Edelman	evidence	that	the	more	DOF	a	robotic	weapon	exhibits,	the	more	complicated	it	is	to	
control.48		
	

A	further	physical	complication	in	land-based	AWS	architecture	relates	to	unit	stability.49	
Current	iterations	of	military	robots	tend	to	be	based	on	four-legged	mobility	in	order	better	to	deal	
with	the	issues	of	centre	of	gravity	(COG)	and	balance.50	While	Bottcher	may	note	that	four-legged	
construction	provides	an	‘optimal	polygon	of	support’,	the	design	also	introduces	significant	
additional	hardware	challenge.51	Human	COG	is	quite	high	on	our	bodies	and	keeping	stability	does	
not	happen	without	experience	and	training.	For	this	reason,	Waibel	is	able	to	confirm	that	any	
two-legged	AWS	will	have	a	small	such	polygon	and	computational	routines	will	be	required	to	
keep	COG	stably	aligned	in	order	to	keep	the	weapon	unit	upright.52		For	the	purposes	of	evaluating	
such	challenge,	desirable	robot	gaits	have	five	required	collaborative	properties.	‘Stability’	insures	
the	robotic	weapon	does	not	fall	over,	‘speed’	allows	the	weapon	to	move	quickly	while	‘energy	
efficiency’	ensures	the	robot	can	exhibit	durability	and	‘robustness’	allow	it	to	recover	from	various	
failure	modes.	Finally,	overall	‘simplicity’	will	insure	that	the	unsupervised	weapon’s	gait	and	
operation	is	not	unwieldy.53	These	characteristics	must	therefore	comprise	the	weapon’s	physical	
design	fundamentals	which,	given	the	importance	of	free	passage	across	what	will	be	a	contested	
combat	environment,	leads	Shurkin	to	highlight	the	confounding	issue	of	error	(whether	human	or	
machine)	in	the	empirical	operation	of	robots.54		

	
A	further	source	of	hardware	error	arises	from	inaccuracies	arising	from	AWS’	configuration	

and,	noted	by	Hofman,	from	errors	arising	in	unsupervised	measurement	systems.55	While	
hardware	error	might	appear	relatively	‘primitive’	next	to	challenges	that	originate	in	that	
weapon’s	software	control	and	governance	routines,	such	challenges	cumulatively	contribute	to	
AWS	infeasibility.	Stability	routines	cannot	exist	in	isolation	and	must	be	integrated	into	the	

																																																								
47	Holonomic	refers	to	the	relationship	between	controllable	and	total	degrees	of	freedom	of	a	robot.	If	the	controllable	
degree	of	freedom	is	equal	to	total	degrees	of	freedom,	then	the	robot	is	said	to	be	holonomic.	
48	For	a	discussion	of	the	principles	involved,	see:	Olaf	Sporns	and	Gerald	Edelman,	‘Solving	Bernstein’s	Problem:	A	
Proposal	for	the	Development	of	Coordinated	Movement	by	Selection’,	Child	Development,	64,4,	(1993),	generally	
<http://e.guigon.free.fr/rsc/article/SpornsEdelman93.pdf>.	
49	For	a	useful	general	discussion	on	robotic	stability,	S	Bottcher,	‘Principles	of	Robot	Locomotion’	
<http://www2.cs.siu.edu/~hexmoor/classes/CS404-S09/RobotLocomotion.pdf>.		
50	Boston	Dynamics,	‘Big	Dog	robot’	<https://www.youtube.com/watch?v=mpBG-nSRcrQ>	[accessed	17	April	2017].		
51	Bottcher,	‘Principles	of	Robot	Locomotion’,	p.	2	and	p.	9.	
52	B	Waibel	and	others,	‘Theory	and	Experiments	on	the	stability	of	robot	compliance	models’,	Transactions	on	Robotics,	
IEEE,	7,	1,	generally.	
53	Mataric,	p.	52.	
54	J	Shurkin,	‘When	Driver	Error	becomes	Programming	Error’,	Inside	Science,	(18	February	2015),	generally	
<https://www.insidescience.org/news/when-driver-error-becomes-programming-error>	[accessed	12	June	2017].		
55	D	Hofman,	‘Common	sources	of	errors	in	measurement	systems’,	Steinbeis	Transfer	Centre	for	Quality	Insurance,	
Handbook	of	Measuring	System	Design,	(2005)	<http://eu.wiley.com/legacy/wileychi/hbmsd/pdfs/mm154.pdf>.	
Hofman’s	research	provides	a	useful	aide	memoire	on	common	error	sources	relevant	to	AWS	deployment	including	
input,	sensor,	signal	transmission,	conversion,	cumulative,	gain,	dataset,	materials,	drift,	load,	thermal,	operator,	
degradation,	communication,	mapping	and	other	software	errors.	
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weapon’s	control	and	decision	functions	in	order	to	mediate	wobble,	lean	and	deviation.56	
Rasmussen’s	work	on	reinforcement	learning	(in	this	case,	its	application	to	riding	a	unicycle)	
demonstrates	the	fundamental	instability	of	certain	hardware	relationships.57	To	this	point,	
stability	exists	in	two	states;	the	AWS	must	be	statically	stable	as	well	as	dynamically	stable.	In	
general,	an	AWS	with	more	legs	(or	ground	points)	can	maintain	better	static	stability	given	its	
raised	centre	of	gravity	and	broad	polygon	of	support.	Physical	componentry	also	gives	rise	to	
error.	Backlash	and	inaccuracy	arising	from	gear	mechanisms	are	likely	to	be	catalysts	for	error.58	
Similarly,	keeping	the	weapon’s	centre	of	gravity	over	an	efficiently	small	contact-point	with	the	
ground	requires	active	and	trained	effort	and	is	an	obvious	source	of	weapon	instability,	especially	
over	contested	ground.	Four-legged	robots,	for	instance,	can	only	lift	one	leg	at	a	time	as	three	legs	
must	remain	grounded	in	order	to	remain	statically	stable.	There	are,	therefore,	several	
compromises	to	be	made	between	a	weapon’s	stability,	its	speed	of	movement,	energy	
conservation,	robustness	and	simplicity.59	
	

A	further	hardware	challenge	relates	to	motion	and,	notes	Lewis,	arises	generally	from	the	
requirement	that	AWS’	manipulators	(a	grabber,	perhaps,	or	other	subsidiary	system	used	to	
handle	objects	in	its	immediate	environment)	must	move	relevant	to	a	three-dimensional	
orientation.60	Complex	computational	processes	must	triangulate	dynamically	the	weapon’s	body	
state,	its	manipulators	and	the	task	in	hand.	This	must	take	place	at	all	times	and	be	accurate	at	all	
times.	In	particular,	it	must	involve	understanding	the	‘free	space’	of	each	weapon	module	that	
must	account	for	all	space	in	which	machine	movement	is	possible.	These	routines	must	take	place	
in	advance	of	(but	also	in	tandem	with)	AWS’	calculations	and	risk-assessment	on	this	free	space.	
The	AWS’	consequent	output	must	then	be	dynamically	integrated	into	the	weapon’s	utility	
function	and	action	selection	routines61,	the	more	so	as	modules	with	multiple	DOF	will	likely	
require	the	weapon	to	support	significant	additional	physical	machinery	in	order	to	achieve	that	
movement.62	This	too	has	follow-on	implications	on	weapon	feasibility.	Power	for	each	such	motor	
may	require	additional	platform	weight	in	turn	needing	stronger	motors	to	lift	the	platform	
manipulators.	In	this	vein,	the	work	of	Duran	and	Thill	demonstrate	that	traditional	ball-and-socket	

																																																								
56	E	Nebot	and	others,	‘Navigational	Algorithms	for	Autonomous	Machines	in	Off-Road	Applications’,	Journal	of	
Autonomous	Robots,	14,	(2000)	,	Paragraphs	1	(‘Introduction’)	and	3	(‘Non	Model	Based	Navigation’)	
<http://www8.cs.umu.se/research/ifor/dl/LOCALIZATION-
NAVIGATION/Navigation%20Algorithms%20for%20Autonomous%20Machines%20in%20Off-
Road%20Applications.pdf>.	
57	Professor	Carl	Edward	Rasmussen,	Department	of	Engineering,	Cambridge	University,	Prowler.io	Decision	Summit,	
(15	November	2018)	and	in	conversation	with	the	author.	
	
58	Machine	design,	‘Methods	to	Minimise	Gear	Backlash’,	Machine	Design,	(23	December	2015)	
<http://www.machinedesign.com/datasheet/methods-minimize-gear-backlash-pdf-download>	[accessed	12	March	
2018].		
59	Mataric,	pp.	50-57.	
60	For	a	useful	primer	on	robot	manipulators,	see:	Frank	Lewis	and	others,	Robot	Manipulator	Control:	Theory	and	
Practice,	(USA:	Marcel	Dekker	Publishing,	2004)	
<https://pdfs.semanticscholar.org/d1f0/2a7db3294ddf775555bd1f26610b5df2e467.pdf>.		
61	See	also:	Chapter	8	(Software),	specifically:	8.7	(‘Action	Selection	Issues’).	
62	Sources:	Quora.com,	‘Degrees	of	Freedom’	<https://www.quora.com/How-does-one-calculate-a-robots-DOF-degrees-
of-freedom-in-the-strict-sense-of-mobility>	[accessed	12	December	2016].	See	also:	Whatis.com,	‘Degrees	of	Freedom’,	
<http://whatis.techtarget.com/definition/degrees-of-freedom>	[accessed	12	December	2016].	
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joints	are	particularly	difficult	to	incorporate	in	artificial	systems.63	By	comparison,	muscles	in	
animal	rotary	joints	are	linear	actuators	(relatively	lighter,	springier,	more	flexible	and	stronger).	
Whereas	humans	use	their	hands	as	general-purpose	manipulators	to	work	specific	tools	(knives,	
screwdrivers),	the	AWS’	robot	manipulators	will	likely	be	specialized	with	dedicated	lethal	tools	at	
the	endpoint.	Yao	argues	that	endpoint	engineering	is	intractably	complex	requiring	
computationally	intense	inverse	kinematics	to	manage	the	weapon’s	end-effector	to	a	desired	point,	
involving	real-time	conversion	and	management	of	each	weapon’s	endpoint	tools	from	a	Cartesian	
(x,	y,	z)	position.64	None	of	these	hardware	sequences	are	straightforward	and	must	account	for	
manipulator	travel	relative	to	the	weapon’s	centre	of	gravity,	problems	caused	by	friction	and	
unexpected	obstacles	as	well	as	background	hand-off,	priority	and	tasking	issues.65		
	

An	architectural	analysis	of	likely	AWS	sensor	inventory	is	also	relevant.	AWS’	deployment	
depends,	as	above,	on	reliable	capability	to	sense	the	condition	of	its	systems	as	well	as	predicting	
the	states	of	its	immediate	and	far	environments.	As	noted	by	Martinelli	and	others,	proprioceptive	
sensors	are	required	to	administer	individual	elements	of	the	robot’s	internal	state	(the	position	of	
its	wheels,	the	joint	angles	of	its	arms)	while	exteroceptive	sensors	must	process	the	platform’s	
external	world	(light	levels,	distances	to	objects,	sound).66	Taken	together,	these	sensors	constitute	
the	weapon’s	perceptual	system.	As	identified	in	previous	chapters,	the	challenge	is	that	its	efficacy	
is	based	upon	sensor	inputs	that	must	by	definition	be	tangential,	fragmented	and	the	product	of	
multiple	units.67	Sensed	input	must	be	processed	ex-ante	to	manage	limitation	such	as	effector	and	
actuator	noise,	as	well	as	constraints	arising	from	data	sources	being	derived	from	either	hidden	or	
partially	observable	states.68	Other	factors	compromise	effective	proprioception	including	the	
quantity	of	information	that	multiple	sensors	are	returning	dynamically	to	a	controller:	While	a	
simple	contact	switch	may	provide	just	one	single	bit	of	information	(on	or	off),	Mataric	and	others	
note	that	a	vision	sensor	will	be	stunningly	rich	and	similarly	complicated	in	the	amount	of	
information	captured.69		
	

Such	AWS’	dependence	on	hardware	sensors	creates	other	deployment	challenges.	AWS’	
sensor	stimuli	will	have	properties	that	are	not	separately	divisible.	While	significant	progress	may	
continue	to	be	made	in	artificial	recognition,	it	can	be	inferred	from	Horvitz	that	battlefield	shapes	
and	sizes	empirically	do	not	appear	‘alone’	and	often	are	themselves	properties	of	other	larger	
																																																								
63	B	Duran	and	S	Thill,	‘Rob’s	Robot:	Current	and	Future	Challenges	for	Humanoid	Robots’,	Intech,	The	Future	of	
Humanoid	Robot	Research	and	Application,	(2012),	p.	280	(‘Introduction’)	and	pp.	282-288	(‘Mechanical	Requirements	
and	Engineering	Challenges’).		
64	Ming	Yao,	‘Mathematics	for	Inverse	Kinematics’,	undated	tutorial	<http://www.cs.cmu.edu/~15464-
s13/lectures/lecture6/IK.pdf>.	See	also:	Mataric,	p.	65.		
65	This	is	empirically	complex	and	must	be	achieved	algebraically	(through	the	use	of	matrix	equations),	geometrically	
(by	combining	knowledge	of	the	weapon	arm	with	dynamic	trigonometry)	or	numerically	(by	using	‘guess	work’	and	
incremental	adjustment	in	order	to	minimise	local	error(.	See:	Applied	Go	Tutorials,	‘Inverse	kinematics;	how	to	move	a	
robotic	arm	(and	why	this	is	a	harder	then	it	seems)’,	Applied	Go	Tutorials,	(16	June	2016)	
<https://appliedgo.net/roboticarm/>	[accessed	5	June	2017].	
66	Agostino	Martinelli	and	others,	‘Multi-Robot	Localization	Using	Relative	Observations’,	IEEE	International	Conference	
on	Robotics	and	Automation,	(2005)	<https://infoscience.epfl.ch/record/97559/files/a1093.pdf>.	
67	See:	Chapter	7	(Firmware),	specifically:	discussion	in	7.1	(‘Sources	of	technical	debt’)	on	data	efficacy.		
68		See:	Chapter	8	(Software),	specifically:	8.4	(‘Software	processing	functions’).	
69	Mataric,	p.	71.	See	also:	Eurostat,	‘Big	Data	Conversion	Techniques	including	their	Main	Features	and	Characteristics:	
2017	Edition’,	Eurostat,	(2017),	p.	17	and	p.	18	<http://ec.europa.eu/eurostat/documents/3888793/8123371/KS-TC-
17-003-EN-N.pdf/ad617aaa-6d34-4f05-a341-fa8db6043045>	[accessed	14	May	2018].	
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objects	that	have	conflicting	properties.70	Adversarial	feint	will	grossly	complicate	machine	
attribution.	Second	to	this	point,	the	output	from	such	sensor	hardware	(whether	through	filtering,	
parsing,	normalisation,	smoothing)	will	clearly	impact	data	granularity71	and	add,	therefore,	to	the	
platform’s	technical	debt.72	Hardware	constraints	directly	create	governance	issues.	Should,	for	
instance,	consistency,	uniformity	and	accuracy	tests	be	undertaken	interactively	or	selectively	on	
hardware	sensors?	Rahm’s	study	of	data	cleaning	similarly	highlights	challenges	arising	from	
overlapping,	data	conflict	as	well	as	the	stitching	together	of	different	hardware	sensor	types.73	
While	management	of	weapon	sensors	may	illustrate	an	overlap	between	hardware	and	software	
assets,	it	is	complicated	by	file	matching	challenges	(the	‘object	identify	problem’)	as	well	as	data	
duplication	and	purging	challenges	arising	from	hardware	shortfall.74	An	adjunct	constraint	is	
noted	by	Cai	whereby	data	improvement	will	be	enduringly	difficult	to	implement	at	scale	and,	by	
inference,	is	not	simply	a	matter	of	adding	further	hardware	capability	to	the	AWS.75	As	noted	by	
Steinruecken,	the	role	still	required	of	humans	in	the	building,	understanding	and	interpretation	of	
probabilistic	models	suggests	that	AWS	will	require	an	automatic	statistician	(akin,	perhaps,	to	
Arkin’s	Ethical	Governor76)	if	the	model	is	to	be	appropriately	scalable.77	A	further	adjunct	
complexity	arises	then	from	‘sensor	scheduling’,	the	handshaking	process	that	decides	which	
weapon	sensor	(or	mode	of	operation)	should	dynamically	be	chosen	to	provide	the	next	relevant	
measurement.	By	inference,	Krishnamurthy	apportions	this	challenge	to	weapon	overload,	weapon	
energy	constraints	and	ensuing	data	ambiguity.78	A	quite	separate	hardware	challenge	arises	from	
the	requirement	that	the	weapon	possesses	broad	interface-processing	capabilities.79	An	example	is	

																																																								
70	Eric	Horvitz,	‘Artificial	Intelligence	and	Life	in	2030:	One	Hundred	Year	Study	of	Artificial	Intelligence’,	AAAI,	Stanford	
University,	(September	2016),	pp.	4-6	
<https://ai100.stanford.edu/sites/default/files/ai_100_report_0901fnlc_single.pdf>.		
71	Michael	Ohler	and	others,	‘Proper	Data	Granularity	Allows	for	Stronger	Analysis’,	Six	Sigma	blog,	(22	May	2018)	
<https://www.isixsigma.com/tools-templates/measurement-systems-analysis-msa-gage-rr/proper-data-granularity-
allows-stronger-analysis/>	[accessed	22	May	2018].			
72	For	a	discussion	on	process	complexity	as	it	relates	to	AWS,	see:	Chapter	7	Firmware),	specifically:	7.1	(‘Sources	of	
technical	debt’).	
73	Erhard	Rahm	and	Hong	Hai	Do,	‘Data	Cleaning:	Problems	and	Current	Approaches’,	University	of	Leipzig,	p.	2	
<http://www.betterevaluation.org/sites/default/files/data_cleaning.pdf>.	
74	Leonidas	Guibas,	‘The	Identification	Management	Problem	–	A	Short	Survey’,	Information	Fusion,	11th	International	
Conference,	IEEE,	(2008),	pp.	1-2	<https://geometry.stanford.edu/papers/g-impss-08/g-impss-08.pdf>.	
75	Li	Cai	and	others,	‘The	Challenge	of	Data	Quality	and	Data	Quality	Assessment	in	the	Big	Data	Era’,	Data	Science	
Journal,	14,	2,	(2015),	1-10.	Data	remediation	will	rely	on	rules-based	combing	routines	which	complicate	the	
subsequent	management	of	the	weapon’s	primary	data	given	their	dependence	on	transitive	closure	of	source	files	See: 
M	Harnandez	and	S	Stolph,	‘Real	World	Data	is	Dirty:	Data	Cleansing	and	the	Merge/Purge	Problem’,	Data	Mining	and	
Knowledge	Discovery,	1998,	section	2:9.	
76	See	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’).		
	
77	Christian	Steinrueken,	Department	of	Engineering,	Cambridge	University,	Prowler.io	Decision	Summit,	(15	November	
2018)	and	founder	of	‘Automatic	Statistician’	at	<https://www.automaticstatistician.com/index/>	[accessed	18	January	
2019].	
	
78	V	Krishnamurthy,	‘Algorithms	for	Optimal	Scheduling	and	Management	of	hidden	Markov	mode	Sensors’,	IEEE	
Transactions	on	Signal	Processing,	50,	6,	(June	2002),	p.	1382	<http://ece.ubc.ca/~vikramk/Kri02.pdf>.	
79	Lamont	Wood,	‘Service	Robots:	The	Next	Big	Productivity	Platform’,	PWC,	(8	September	2016)	
<http://usblogs.pwc.com/emerging-technology/service-robots-the-next-big-productivity-platform/>	[accessed	25	
March	2018].		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 260 | P a g e  

 
 

identified	by	Wood	in	the	sensor-input	of	third-party	speech	with	its	important	nuances	in	rate,	
volume,	pitch	and	other	indicators	of	personality.80		

	
Practical	difficulties	arise	from	linking	hardware	combinations	to	weapon	tasks,	a	further	

design	constraint.	A	weapon’s	visual	systems	will	tend	to	be	mounted	on	platforms	that	are	usually	
moving.	Similarly,	the	target	under	evaluation	may	be	moving,	complexity	arising	when	other	
battlefield	objects	are	moving	independent	of	the	AWS	or	intended	target.	Movement	on	a	
battlefield,	moreover,	is	a	conflicting	combination	of,	on	the	one	hand,	purpose	and,	on	the	other,	
reaction	to	a	series	of	unsystematic,	chaotic	drivers.81	Does	the	weapon’s	movement	sequence	(its	
reaction,	for	instance,	to	an	unexpected	environmental	hazard)	trump	its	attack	sequences?	
Lumelsky	highlights	that	such	movement	occasions	unique	hardware	challenges	and	requires	
specific	hardware	permutation.82	Weapon	balance	must	be	maintained	on	uneven	surfaces	and	the	
weapon’s	speed	of	execution	must	be	adjusted	constantly	in	order	to	suit	such	changing	physical	
conditions.83	Correctional	sub-routines	are	then	necessary	to	smooth	for	motion-generated	
interference	with	such	adjustments	compensating	for	the	weapon’s	starting,	turning,	climbing,	
descending	and	stopping.	Furthermore,	the	AWS	must	trigger	such	motor	actions	slightly	in	
advance	of	execution	and	cannot	be	based	on	fixed	sequences	or	sequenced	timing	charts.84	Most	
motor	acts,	note	Hoffman	and	Ju,	will	involve	serial	combinations	of	quite	different	motor	
sequences	with	each	act	being	factored	appropriately	into	that	machine’s	processes.85	It	is,	reckons	
Haikonnen,	‘like	having	a	strange	remote	control	with	buttons	but	no	markings…	there	is	no	
inherent	connection	between	the	inner	image	of	an	action	and	[situational	awareness	routines]	that	
could	cause	the	desired	action’.86		
	

Hardware	components	are	generally	task-specific,	each	with	idiosyncratic	challenges	to	AWS	
deployment.	Ultrasound	sensors	are	one	such	component	that	may	be	key	to	AWS	function,	
measuring	distance	to	an	object	using	sound	waves.	A	second	component	set	is	sonar	and	attendant	
power	issues	given	that	significant	current	is	required	to	emit	each	ping.87	Indeed,	the	range	of	

																																																								
80	Natural	language	processing	and	its	hardware	pose	further	complications.	Despite	progress	in	processing	written	
language,	it	will	remain	difficult	for	an	AWS	to	understand	spoken	work	unless	that	platform	is	addressed	with	a	few	
chosen	words	that	are	already	familiar,	without	disruption	or	interference	and	delivered	without	accent.	
81	Small	Wars	Journal,	‘An	Advanced	Engagement	Battlespace:	Tactical.	Operational	and	Strategic	Implications	for	the	
Future	Operational	Environment’,	SWJ,	undated	<http://smallwarsjournal.com/jrnl/art/advanced-engagement-
battlespace-tactical-operational-and-strategic-implications-future>	[accessed	12	May	2018].	The	publication	
interestingly	separate	battlefield	assets	(and	their	likely	movement	traits)	into	‘finders	versus	hiders’,	‘strikers	versus	
shielders’,	dispersed	assets	as	well	as	assets	that	are	deliberately	dormant.	
82	Vladimir	Lumelsky,	‘Algorithmic	and	Complexity	Issues	of	Robot	Motion	in	an	Uncertain	Environment’,	Journal	of	
Complexity,	13,	2,	(1987),	146-150	<https://ac.els-cdn.com/0885064X87900252/1-s2.0-0885064X87900252-
main.pdf?_tid=383b9a49-fb51-4072-8a52-
ed8b58717958&acdnat=1526910324_3de58822542e77ff1958bcd94192fbaf>	pp.	146-150.	See	also:	Chapter	8	
(Software),	specifically:	8.4	(‘Navigation	issues’).	
83	Haikonnen,	p.	205.	
84	Ibid.,	p.	204.	
85	Guy	Hoffman	and	Wendy	Ju,	‘Designing	Robots	with	Movement	in	Mind’,	Journal	of	Human-Robot	Interaction,	1,	1,	
(2012),	3	and	5	<http://guyhoffman.com/publications/HoffmanJuJHRI14s.pdf>.	The	way	that	motor	neurons	might	be	
connected	to	the	rest	of	the	cognitive	machine	is	not	yet	clear	in	order	for	planning	and	control	of	motor	acts	by	inner	
imagery	to	take	place.	
86	Haikonnen,	p.	206.	
87	Mataric,	p.	99.	
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these	sensors	is	determined	entirely	by	the	signal	strength	(and	therefore	power	use)	of	the	
emitter.	Ping	emission	by	an	AWS	also	betrays	that	weapon’s	state	and	position.	A	further	hardware	
complication	arises	because	sound	waves	do	not	necessarily	bounce	off	the	nearest	surface	and	
return	as	expected;	instead,	notes	Hamalainen	and	MacIsaac,	the	process	is	hampered	by	blind	
spots,	multiple	or	unwanted	reflections,	obstructions,	noise	and	lack	of	consistency.88	The	direction	
of	reflection	depends	on	several	factors	including	gameable	surface	properties	and	the	incident	
angle	of	the	sound	beam.	Moreover,	a	disadvantage	of	ultrasound	sensing	is	its	susceptibility	to	
specular	reflection,	the	reflection	from	the	outer	surface	of	the	bounce-back	object	(here,	the	AWS’	
target).	The	smoother	that	target,	the	bouncing	sound	generates	a	false	far-away	reading.	In	
contrast,	rough	target	surfaces	produce	irregular	reflections.	In	cases	of	specular	recollection,	
sound	bounces	around	the	target	environment	and	may	not	return	to	the	detector.	A	deployment	
issue	is	that	the	AWS	may	thus	be	fooled	into	concluding	there	is	no	object	or	that	it	is	at	a	great	
distance.	The	property	also	facilitates	sensor	spoofing	by	the	adversarial	designing	of	feints	into	
target	surfaces	that	are	then	not	anticipated	by	the	AWS	which	must	instead	trust	sensor	readings	
regardless	of	how	unpredictable	they	may	be.		Laser	sensors	come	with	other	trade-offs.	Using	
phase-shift	rather	than	time-of-flight	principles,	lasers	involve	much	higher-power	electronics.	
Furthermore,	laser	units	are	likely	to	remain	large	relative	to	other	AWS	components	and,	while	the	
laser’s	narrow	beam	is	adept	at	detecting	distance	to	a	particular	point,	a	weapon’s	laser	must	
sweep	in	order	to	cover	its	area,	requiring	significant	instruction,	processing	activity,	substantial	
battery	power	and	management	of	further	large	information	datasets.89		

 Calibration issues 
	
Calibration	is	then	the	process	of	adjusting	the	unsupervised	weapon	so	as	to	maximize	hardware	
performance.90	Rivera	notes	that	increasingly	automated	calibration	routines	may	be	able	to	
correct	sensor	offset,	gain	variation	and	reduce	compromises	caused	by	poor	data	integrity.91	The	
issue	for	AWS	deployment,	however,	is	that	sensors	may	require	multiple	(even	dynamic)	
calibrations.	Beautement	points	out	that	such	adjustment	will	be	needed	even	to	calibrate	
responsibility	levels	in	the	weapon’s	decision-making	(matched	here	to	unfolding	battlefield	
circumstances)	as	well	to	validate	the	weapon’s	ability	to	choose	new	actions	or	make	policy	
changes.	Calibration	will	also	be	required	to	prevent	the	AWS	from	attempting	the	unachievable,	
preventing	its	obligations	from	exceeding	its	scope	of	permissions,	initiating	reductions	in	current	
obligations	in	order	to	take	on	new	tasks	and,	consequently,	modifying	permission	levels	to	

																																																								
88	A	Hamalainen	and	D	MacIsaac,	‘Using	Ultrasonic	Sonar	Rangers:	Some	Practical	Problems	and	how	to	Solve	Them’,	
Proceedings	from	the	XXXVI	Annual	Conference	of	the	Finnish	Physical	Society,	(2002), p. 1 
<http://physicsed.buffalostate.edu/pubs/TPT/TPTJan02SONAR/poster.pdf>.	
89	For	a	useful	primer	on	hardware	challenges	to	autonomous	robots,	see:	‘Overview	of	Challenges	in	the	Development	
of	Autonomous	Mobile	Robots’,	(23	August	2011)	<http://web.eecs.utk.edu/~leparker/Courses/CS494-529-
fall11/Lectures/Aug-23-Development-Challenges.pdf>.	
90	A	Elatta,	‘An	Overview	of	Robot	Calibration’,	Information	and	Technology	Journal,	74-78	
<http://docsdrive.com/pdfs/ansinet/itj/2004/74-78.pdf>.	
91	J	Rivera,	‘Self-calibration	and	optimal	response	in	intelligent	sensors	design	based	on	artificial	neural	networks’,	
Sensors,	Basel,	7,	8,	(August	2007),	pp.	1509-1529,	<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814866/>	
[accessed	12	December	2016].	Ambient	light	levels	change	throughout	the	day	requiring,	for	instance,	vision	sensors	to	
be	recalibrated	repeatedly	in	order	to	stay	accurate	and	useful.	
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accommodate	new	capabilities.92	These	are	complex	constructs	that	will	require	fine	(and	
changing)	balance.	Programming	additional	actions	into	a	routine	is	generally	regarded	to	be	an	
inefficient	method	of	dealing	with	such	uncertainty.93		
	

How	then	might	dynamic	calibration	affect	hardware	performance	in	AWS?	In	control	
parameters	and	sampling	rates,	‘proportional’	tuning	will	make	the	weapon	respond	to	the	detected	
error	using	both	the	direction	and	magnitude	of	that	error.94	Determining	how	to	size	this	
calibration	response,	is	termed	gain.95	It	is	non-obvious	and,	crucially	for	both	AWS	compliance	and	
utility,	remediation	will	require	inappropriate	trial	and	error.96	Furthermore,	Wilhelm	points	out	
that	system	response	to	calibration	routines	must	itself	be	adjusted	such	that	AWS’	actions	are	
appropriately	dampened	to	avoid	oscillation.97	The	complication	is	that	when	an	AWS	is	close	to	its	
desired	state,	the	means	for	its	control	will	be	materially	different	than	when	it	is	far	from	it.	As	
noted	by	Roth,	the	momentum	generated	by	the	controller’s	response	to	error,	its	own	error	
correction,	will	otherwise	carry	the	overall	weapon	system	beyond	a	weapon	state	that	is	both	
LOAC-compliant	and	satisfactory	to	the	deploying	commander.98	This	requires	complicated	
management	whereby	an	amount	that	is	proportional	to	that	weapon’s	velocity	(regardless	of	
modality)	is	first	subtracted	from	the	AWS’	current	error	momentum	in	order	to	achieve	suitable	
correction.99	Further	complexity	arises	given	that	calibration	will	generally	require	that	the	weapon	
account	for	and	tracks	its	own	errors,	in	particular	any	repeatable	or	fixed	errors	(steady	state	
errors)	that	it	displays	but	that	may	subsequently	change	over	time.100	Calibration	must	similarly	
inform	the	weapon’s	‘state	estimation’,	the	weapon’s	process	of	reckoning	its	system	state	from	
measurements.101	This,	too,	posits	a	challenging	problem	in	unsupervised	weaponry.	Any	
estimation	process	is,	after	all,	indirect.	The	AWS	will	measure	what	it	can	and	when	it	can	and	
establishes	its	state	based	on	that	particular	dataset.	In	this	case,	calibration	must	mirror	the	noise	
of	real-world	sensors	and	real-world	properties.102	Measurements	are	unlikely	to	be	available	to	

																																																								
92	For	a	primer	on	calibration	challenges,	see:	Vijay	Pradeep	and	others,	‘Calibrating	a	multi-arm	multi-sensor	Robot’,	
Willow	Grange	Inc,	undated,	pp.	1-2	and	p.	10	(‘Choosing	what	to	calibrate’)	
<http://www.willowgarage.com/sites/default/files/calibration.pdf>.	
93	Mataric,	p.	104.	
94	Source:	Indian	Institute	of	Technology,	Madras,	‘Performance	Enhancement	of	Robotics	using	Calibration	Data’, 
<https://ed.iitm.ac.in/~robotics_lab/files/Calibration.ppt>,	undated	[accessed	3	January	2017].	Error	here	may	arise	
from	design	tolerances	or	from	variances	in	the	unit’s	assembly	as	well	as	from	those	operational	challenges	noted	
above.	
95	Ahmed	Joubair,	‘How	Can	Industrial	Robots	be	Calibrated?’,	Robotiq.com,	(16	November	2014)	
<https://blog.robotiq.com/bid/73064/How-Can-an-Industrial-Robot-Be-Calibrated>	[accessed	9	December	2017].	
96	Robotics	beta	blog,	Stack	Exchange,	(7	June	2016)	<http://robotics.stackexchange.com/questions/10029/damping-
vs-friction>	[accessed	9	September	2016].	
97	Lisa	Wilhelm	and	others,	‘Oscillation	Analysis	in	Behavioural-Based	Robot	Architecture’,	Autonome	Mobile	Systeme,	
Springer,	Berlin,	(2009),	pp.	121-122.	
98	Stephen	Roth,	‘Evaluating	path	tracker	performance	in	outdoor	mobile	robots’,	National	Robotics	Engineering	
Consortium,	Pittsburgh,	undated	<http://www.nrec.ri.cmu.edu/projects/toro/tech/evaluating_tracker.pdf>.	
99	Ferrell,	pp.	4-5	(‘Issues’)	and	p.	6	(‘Confinement	of	errors’).	
100	Although	dated,	for	a	primer	on	fault	monitoring	principles,	see:	M	Gini	and	R	Smith,	‘Monitoring	Robot	Action	for	
Error	Detection	and	Recovery’,	NASA	publications,	University	of	Minneapolis,	(1987),	pp.	67-68	
<https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890017177.pdf>.	
101	Timothy	Barfoot,	State	Estimation	for	Robotics,	(Cambridge:	Cambridge	University	Press,	2018),	pp.	3-4	and	p.	9	
<http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf>.		
102	Mataric,	p.	226.	
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AWS	systems	all	of	the	time	requiring	that	processing	be	carried	out	in	batches	and	only	when	
sufficient	data	has	been	accumulated:	Such	intermittency	will	add	further	to	calibration	inefficiency	
and	hardware	inaccuracy.		

 Case study: navigation issues 
	
As	the	previous	section	focuses	on	specific	hardware	components,	it	is	relevant	to	focus	on	the	
feasibility	of	specific	hardware	routines.	In	this	vein,	autonomous	navigation	merits	additional	
review.	Unsurprisingly,	further	challenge	arises	from	the	model’s	deep	uncertainty.	Interim	
destinations	for	the	AWS	are	likely	to	be	outside	its	immediate	sensory	range.	Navigational	
parameters	are	complicated	by	moment-to-moment	changes	in	that	platform’s	immediate	
environment	as	well	as	its	dependence	on	volatile	mapping	representation	that	is,	notes	Bacchus,	
likely	out	of	date.103	AWS	navigation	differs	fundamentally	from	emerging	models	of	driverless	cars	
which	will	operate	solely	on	prescribed	roadways	that	will	be	networked	to	enable	dynamic	
information	sharing	in	what	is	an	uncontested,	coordinated	and	geo-fenced	setting.	Similarly,	AWS’	
path	planning	will	not	be	framed	by	a	single-dimension	geographical	obligation	(‘get	me	to	a	
location’,	as	in	the	autonomous	car)	but	is	instead	just	one	part	of	a	complex	goal-based	process	
generated	as	part	of	the	weapon’s	overall	tasking.104	Similarly,	AWS	cannot	rely	upon	neat	surface	
descriptors,	a	visualization	capability	and	a	static	inventory	of	major	objects	positioned	along	given	
mapped	corridors.	As	inferred	from	Joshi,	however,	some	characteristics	are	common	to	both	car	
and	weapon	models.	Much	of	the	hardware	portfolio	may	be	shared	across	platforms	and	there	is	
similar	accent	on	‘negative’	objects	(here,	unexpected	obstacles	and	efficient	path	planning).105	
Additionally,	the	AWS	must	proactively	search	through	waypoints	and	landmarks	but	also	goals,	
tasks	as	well	as	subsidiary	and	third	party	priorities	that	relate	to	its	current	navigational	objective	
(here,	what	Frazzoli	terms	the	‘universal	coverage	problem’).106	The	challenge	for	AWS	deployment	
is	that	such	localization	and	mapping	must	occur	at	the	same	time,	each	capability	requiring	a	
complex	marriage	of	hardware	and	software	that	empirically	becomes	less	accurate	the	further	the	
AWS	travels.107	AWS	navigation	thus	has	several	additional	layers	of	complexity.	Following	an	
arbitrary	path	to	an	intended	destination	is	considerably	more	challenging	than	having	to	move	to	

																																																								
103	Arif	Bacchus,	‘Microsoft	Admits	to	‘Stale’	Mapping	Data,	Working	on	a	Fix’,	OnMSFT	blog,	(March	2018)	
<https://www.onmsft.com/news/microsoft-admits-to-stale-maps-data-working-on-a-fix>	[accessed	8	May	2018].		
104	See	Chapter	8	(Software),	specifically:	8.7	(‘Action	selection	issues’).		
105	Sourabh	Joshi	and	others,	‘Going	Driverless	with	Sensors’,	International	Journal	of	Science,	Engineering	and	
Technology,	2,	5,	(24	June	2014),	299-301	<http://ijset.in/wp-
content/uploads/2014/06/ijset.0620140074.1011.1806_Geet_298-305.pdf>.	See	also:	Frederic	Large	and	others,	
‘Navigation	Among	Moving	Obstacles	Using	the	NVLO;	Principles	and	Applications	to	Intelligent	Vehicles’,	Autonomous	
Robots,	19,	(2005),	pp.	159-160	
<https://s3.amazonaws.com/academia.edu.documents/46032891/Navigation_Among_Moving_Obstacles_Using_20160
528-30355-
1hvecvz.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1527024240&Signature=RCzv%2F5VX0w7BFUs
2c3cmiUdDxuQ%3D&response-content-
disposition=inline%3B%20filename%3DNavigation_Among_Moving_Obstacles_Using.pdf>.	
106	Emilio	Frazzoli,	‘Real-Time	Motion	Planning	for	Agile	Autonomous	Vehicles’,	Journal	of	Guidance,	Control	and	
Dynamics,	25,	1,	(January	2002),	116-118	
<https://s3.amazonaws.com/academia.edu.documents/42379352/frazzoli_gcd_02.pdf?AWSAccessKeyId=AKIAIWOWY
YGZ2Y53UL3A&Expires=1527024703&Signature=DNfi%2BLDhjiIjfEq2uZtAusWtuGk%3D&response-content-
disposition=inline%3B%20filename%3DReal-Time_Motion_Planning_for_Agile_Auto.pdf>.	
107	Erik	Gomez,	‘Map-building	and	Planning	for	Autonomous	Navigation	of	a	Mobile	Robot’,	Center	for	Research	and	
Advanced	Studies,	National	Polytechnic	Institute,	Mexico,	(January	2015),	pp.	26-28	and	generally,	(‘Problems’).	
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that	place	using	a	route	that	has	been	specified.108	AWS’	motion	planning	will	be	computationally	
complex	given	the	imperative	now	to	search	and	evaluate	all	possible	permutations	in	what	is	likely	
a	fast	changing	and,	as	noted	by	Ahren,	a	likely	communications-denied	environment	that	is	
characterised	by	competing	task	priorities.109	Depending	on	a	given	task,	it	may	be	necessary	for	
the	AWS	to	find	the	best	or	the	shortest	or	safest	or	quickest	or	most	efficient	route	in	order	for	the	
weapon	to	determine	an	optimal	trajectory	while	maximizing	its	utility	function.	It	is	for	this	reason	
that	autonomous	route	calculation	must	incorporate	situational	awareness.110	Furthermore,	given	
that	an	AWS	platform	is	not	itself	simply	a	single	point,	the	weapon’s	geometry	(shape	and	turning	
radius)	as	well	as	its	steering	properties	must	all	be	taken	into	account	in	arriving	at	appropriate	
motor	commands.	

	
Sensor	heterogeneity,	discussed	above,	also	creates	specific	problems	for	AWS	navigation.	

Consider,	for	instance,	an	unsupervised	weapon	that	has	a	range	sensor	and	a	workable	internal	
map	of	its	environment.	The	platform	can	readily	take	range	measurements	and	compare	these	
with	its	map	representation	but,	in	practice,	several	features	in	that	environment	may	look	identical	
to	particular	sensors;	corners,	corridors,	featureless	topographies	and	other	undifferentiated	
descriptors	empirically	lead,	notes	Toth,	to	widespread	confusion	in	robot	navigation	outside	the	
bounded	environment	that	characterise	the	world	of	driverless	cars.111	The	issue	for	AWS	is	to	
weight	priorities	that	will	determine	that	optimal	path.	Which	element	of	the	AWS	engagement	
process	should	influence	route,	speed	across	the	ground,	feint	or	timing?	Should	path	planning	be	
based	on	distance	covered,	friendly	asset	disposition	or	on	danger	and	safety	criteria?	The	AWS’	
priority	matrix	will,	after	all,	vary	moment-to-moment	depending,	presumably,	on	its	own	state,	
mission	timeline	and	the	battlefield.	Likewise,	and	as	noted	by	Mataric,	finding	that	optimal	path	
requires	searching	all	available	paths	in	order	not	to	miss	the	very	best	one.112	This	is	
computationally	complex,	potentially	slow	and	open	to	intractable	conflict.		

 Operational hardware issues  
	
The	foregoing	analysis	suggests	empirical	AWS	deployment	will	diverge	from	the	operational	
expectations	of	the	Delivery	Cohort.	Despite	the	evident	success	of	unmanned	aircraft	(as	
demonstrated	by	growing	multi-service	demand	for	these	systems),	Jacobsen	notes	that	cost	
overruns	and	programme	delays	evidence	that	complex	systems	are	difficult	to	deliver.113	This	is	
not	a	recent	phenomenon.	Even	by	July	2009,	the	US	Government	Accountability	Office	(GAO)	had	
reported	that	six	unmanned	programmes	were	exhibiting	‘cost	growth’	ranging	from	sixty	per	cent	

																																																								
108	Brad	Plumer,	‘Five	Big	Challenges	that	Self-Driving	Cars	Still	Have	to	Overcome’,	Vox.com	blog,	(21	April	2016)	
<https://www.vox.com/2016/4/21/11447838/self-driving-cars-challenges-obstacles>	[accessed	9	March	2018].		
109	Ramon	Ahren,	‘Mission	Control	in	a	Communications	Denied	Environment’,	Air	War	College,	Montgomery,	(16	
February	2017),	generally.	
110	See:	Chapter	2	(Context),	specifically:	2.6	(‘The	role	of	situational	awareness	and	uncertainty’).		
111	CK	Toth	and	others,	‘Mobile	Mapping	and	Autonomous	Vehicle	Navigation’,	Revue	Francaise	Photogramm,	
Teledetection	185,	(2007),	pp.	57-61	<http://www.isprs.org/proceedings/XXXVI/part1/Papers/T08-36.pdf>.	
112	Mataric,	p.	227.	
113	Mark	Jacobsen,	‘The	Promise	of	Drones’,	Harvard	International	Review,	(3	November	2016)	
<http://hir.harvard.edu/article/?a=13949>	[accessed	7	May	2018].	Jacobsen’s	paper	also	sets	out	the	statistical	basis	of	
UAV’s	recent	take-up.	See	also:	Walker,	Killer	Robots?,	pp.	99-100	(‘Economic	considerations’).	Also:	Chapter	1	
(Introduction),	generally.			
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to	more	than	two	hundred	and	fifty	per	cent.114	Four	of	the	UAS	programmes	were	reported	by	GOA	
in	2015	to	have	experienced	delays	of	between	one	to	four	years,	mainly	as	a	result	of	hardware	
development	and	testing	problems.115	Such	schedule	breaches	inform	generally	on	AWS	feasibility	
including,	inter	alia,	the	‘high	level	of	concurrency	between	development,	production	and	testing;	
poor	contractor	performance;	developmental	and	technical	problems;	system	failures;	and	bad	
weather’.116	Furthermore,	AWS	hardware	economics	have	been	impacted	by	the	lack	of	
commonality	between	the	various	systems,	payloads,	sub-systems	and	even	ground	control	
stations.117	Hardware	heterogeneity	may	lead	to	performance	degradation:	After	months	of	
continuous	operation	in	1991’s	Operation	Desert	Storm,	the	efficacy	of	the	Patriot	Missile	System	
degraded	significantly,	its	radar	prone	to	‘drift	from	its	prescribed	search	fan	leading	to	a	significant	
miss	ratio’.118	Such	limitations	clearly	have	ramifications.	In	this	case,	accuracy	issues	caused	the	
Patriot’s	control	systems	to	recalibrate	using	this	miscalculated	fire	data	requiring	a	system-wide	
refit	with	updated	software.119	As	noted	by	Sculley	(and	discussed	in	earlier	chapters),	such	
ramifications	are	increased	by	AWS’	general	entanglement	which	‘is	innate	to	machine	learning.	In	
practice,	this	all	too	often	means	that	shipping	the	first	version	of	the	system	is	easy	but	making	
subsequent	improvements	is	unexpectedly	difficult’.120		
	

In	judging	hardware	aspects	to	AWS	feasibility,	specific	challenges	arise	from	the	targeting	
apparatus	of	an	unsupervised	weapon.	As	set	out	in	the	US	Department	of	the	Army’s	Targeting	
Process,	targeting	is	an	involved	process.121	An	understanding	of	its	facets	provides	useful	context	to	
hardware	assets	where	targeting	must	be	undertaken	without	human	supervision.	Targeting	
comprises	three	phases	(‘Decide’,	‘Detect’	and	‘Deliver).122	Removed	from	human	supervision,	
weapon	hardware	must	instead	enable	autonomous	apportionment	of	value	to	targets	as	well	as	
determine	engagement	effects	on	each	such	target.	AWS	componentry	must	facilitate	the	analysis	
(and	then	execution)	of	when	and	how	to	attack	having	first	integrated	restrictions	relating	to	that	
attack.	Its	hardware	must	enable	appropriate	battle	damage	assessment	ahead	of	engagement.123	
Without	oversight,	it	is	AWS	hardware	that	must	now	determine	engagement	responsibilities,	
execution	of	target	tracking,	liaison	with	friendly	assets,	establishing	common	datum	and	ensuring	

																																																								
114	US	Department	of	Defence,	‘Unmanned	System	Roadmap	2007-2032’,	cit.	United	States	Government	Accountability	
Office	(‘GAO’),	Testimony	before	Subcommittee	on	National	Security	and	Foreign	Affairs,	(March	2010)	p.	5.		
115	Alice	Ross,	‘Watchkeepers:	Boxed	Up,	Barely	Used	and	Four	Years	Late’,	Bureau	of	Investigative	Journalism,	(2	
October	2015)	<https://www.thebureauinvestigates.com/stories/2015-10-02/boxed-up-barely-used-and-4-years-late-
watchkeeper-the-armys-affordable-1-2bn-drone-programme>	[accessed	21	May	2018].		
116	US	Department	of	Defence,	‘Unmanned	System	Roadmap	2007-2032’,	p.	6.	
117	Ibid.,	p.	14.	
118	General	Accounting	Office,	‘Patriot	Missile	Defence;	software	problems	led	to	system	failure	at	Dhahran’,	GAO	Office	
Report,	(2002)	<http://www.fas.org/spp/starwars/gao/im92026.htm>	[accessed	2	November	2017].		
119	John	Hawley,	‘Patriot	Wars:	Automation	and	the	Patriot	Air	and	Missile	Defense	System’,	Center	for	a	New	American	
Security,	(25	January	2017),	generally	<https://www.cnas.org/publications/reports/patriot-wars>	[accessed	26	May	
2018].	
120	Sculley	and	others,	p.	2.	See	also:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’)	and	7.2	
(‘Firmware	ramifications	of	learning	methodologies’).		
121 US	Department	of	the	Army,	The	Targeting	Process,	(USA:	Field	Manual	Publications,	3-60,	November	2010) 
<https://www.globalsecurity.org/military/library/policy/army/fm/3-60/fm3-60.pdf>.		
122	Ibid.,	Appendix	E-1.	
123	US	Department	of	the	Army,	Battle	Damage	Assessment	and	Repair,	(US	Army,	Doctrinal	Guide	Publications,	March	
2012)	<http://asktop.net/wp/download/GTA/gta01-14-001.pdf>.		
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overall	synchronisation	in	each	engagement.	Other	hardware	targeting	tasks	will	include	validation,	
coordination	of	other	relevant	assets	and	mediation	of	potential	fratricide.124	In	this	case,	Reiner	
notes	that	hardware	considerations	make	the	automation	of	this	routine	significantly	challenging,	
especially	around	the	practice	of	machine	detection	and	autonomous	identification	of	targets,	a	
central	capability	for	AWS.125		

	
A	further	challenge	is	that	proximity,	heat	effects	and	other	target	monikers	will	tend	to	

introduce	cueing	bias	into	the	weapon’s	automatic	target	detection	(ATD).126	ATD	has	several	
challenging	characteristics	(and	differs	subtly	from	the	AWS	ATR,	the	subject	of	Appendix	One	to	
this	thesis).	Targets	that	are	missed	by	ATD	routines	may	have	a	much	higher	regret	possibility	
than	a	weapon	system	throwing	up	false	alarms.	As	noted	by	Verly	in	1989,	the	unchanging	
difficulty	is	that	the	weapon’s	hardware	must	dependably	handle	a	variety	of	targets	under	a	
variety	of	conditions.127	Furthermore,	target	detection	is	materially	different	from	target	
identification	and,	as	noted	by	Lipton	and	others,	requires	incorporation	of	additional	(and	
challenging)	dissection	tools.128	Surprisingly,	this	may	be	complicated	by	a	general	mismatch	that	
continues	between	weapon	system	requirements	and	available	computational	power.129	Woods	
highlights	the	amount	of	data	that	will	be	generated	by	these	machine	visual	perception	routines130;	
were	the	images	provided	by	human	eyes	to	be	stored,	more	than	one	hundred	gigabits	of	data	each	
day	would	be	created	from	this	single	modality	at	even	a	low	sample	rate	of	one	picture	per	second,	
again	demonstrating	the	pervasive	link	that	exists	between	AWS	hardware	and	software.	In	this	
case,	the	hardware	issue	is	that	‘meaning’	lies	in	relationships	within	that	data	and	not	in	the	data	
itself	(the	basis	behind	machine	learning’s	‘context	sensitivity	problem’131).	The	ICRC	notes	that	the	
proprietary	natures	of	commercial	ATR	and	ATD	modules	generally	create	bottlenecks	that	
complicate	hardware	collaboration	and	knowledge-sharing	between	colleague	weapons	and	
agencies.132	

	
Military	hardware	has	generally	been	deployed	in	an	environment	as	encountered	with	limited	

opportunity	to	edit	in	advance,	structure	or	map	that	environment	(all	seeming	preconditions	for	

																																																								
124 US	Department	of	the	Army,	‘The	Targeting	Process’,	Appendix	E-1	and	F-1.	 
125	See	Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	human	teaming	models’).	
126	Andrew	Reiner,	‘Effects	of	Automatic	Target	Detection	on	Detection	and	Identification	Performance’,	Department	of	
Industrial	Engineering,	University	of	Toronto,	(2016),	p.	3	
<https://tspace.library.utoronto.ca/bitstream/1807/70554/1/Reiner_Adam_J_201511_MAS_thesis.pdf>.	
127 Jacques	G	Verly	and	others,	‘Machine	intelligence	technology	for	automatic	target	recognition’,	generally. 
128	Alan	Lipton	and	others,	‘Moving	Target	Classification	and	Tracking	from	Real-Time	Video’,	Application	of	Computer	
Vision,	Fourth	IEEE	Worksop,	undated,	pp.	1-2	
<http://www.vision.cs.chubu.ac.jp/MPRG/C_group/C001_Lipton1998.pdf>.		
129	Some	context	is	useful	here.	Even	a	bee	has	more	than	a	gigabyte	of	storage	and	performs	several	tera-operations	
per	second	(See:	DARPA	Neural	Study,	AFCEA	International	Press,	November	2008,	generally).	
130	David	Woods	and	others,	‘Can	we	ever	escape	from	data	overload?	A	cognitive	system	diagnosis’,	Cognition,	
Technology	and	Work,	April	2002,	4,	1,	p.	22	<https://link.springer.com/article/10.1007/s101110200002	[accessed	6	
June	2016].	
131	Derek	Ball,	‘What	Are	We	Doing	When	We	Theorize	bout	Context	Sensitivity?’,	St	Andrews	University,	undated,	pp.	1-2	
<https://www.st-andrews.ac.uk/~db71/ball_context.pdf>.		
132	International	Committee	of	the	Red	Cross,	‘New	Technologies	and	Warfare’,	ICRC,	94,	886,	(Summer	2012),	pp.	457-
458.	
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efficient	AWS	deployment).133	This	might	compromise	function	against	intelligent	adversaries	
seeking	to	defeat	the	technology	in	use,	requiring	‘broad	robustness’	in	design	in	order	to	deal	with	
deception,	assault	and	counter-autonomy	tools.134	Critics,	moreover,	of	autonomous	hardware	
abound.	As	noted	by	USAF	General	Hostage,	‘Predators	and	Reapers	are	useless	in	a	contested	
environment.	Pick	the	smallest,	or	weakest	country	with	the	most	minimal	air	force,	[it]	can	deal	
with	a	Predator’.135	There	are	various	ramifications	that	arise	from	his	view.	Predator	landings	are	
empirically	complex	as	the	unit’s	large	wing-area	makes	it	sensitive	to	wind	gusts.136	A	further	
challenge	arises	from	existing	time	lag	that	is	caused	by	current	satellite	communications,	
exacerbated	by	operation	in	communications-denied	battlespace.137	Indeed,	UAVs	are	already	
acutely	vulnerable	over	urban	areas	to	radio-frequency	interference,	in	particular	from	Warlock	
jammers	used	to	prevent	remote	control	of	IEDs.	As	highlighted	by	Hambling,	there	is	currently	a	
frequent	and	unhelpful	sound	signature	heard	at	the	target	prior	to	a	Predator’s	engagement.138	

	
Two	conclusions	therefore	arise	from	this	chapter.	The	first	is	the	gulf	between,	on	the	one	

hand,	emergent	hardware	(that	might	individually	suggest	sufficient	advance	has	been	made	to	
warrant	removing	human	supervision	from	weapon	systems)	and,	on	the	other,	the	appropriate	
knitting	together	of	such	technologies	to	create	an	independent	weapon	that	is	appealing	to	the	
Deployment	Cohort	and	still	compliant	under	LOAC.139	Second,	hardware	and	software	challenges	
to	compliant	AWS	deployment	are	inextricably	linked	and	should	be	considered	in	tandem.	In	this	
way,	an	analysis	of	issues	facing	AWS	hardware	folds	into	the	purpose	of	this	thesis’	later	chapters,	
the	identification	of	shortcomings	that	cumulatively	undermine	the	case	for	removing	a	human	from	
the	loop	and	the	pinpointing	of	likely	frailties	in	AWS	deployment	(the	constituents	of	‘technical	
debt’).	It	also	supports	the	conclusion	that	contextual	considerations	trump	technical	
considerations	in	deploying	such	assets.140	It	is	only	within	this	basis	that	behavioural	and	technical	
constraints	can	now	be	evaluated	against	the	central	issue	of	AWS	oversight.	

	

																																																								
133	Inferred	from:	UK	House	of	Commons	Defence	Committee,	‘Gambling	on	‘Efficiency’:	Defence	Acquisition	and	
Procurement’,	First	Report	of	Session,	2017-2019,	(2017),	p.	6	and	p.	9	
<https://publications.parliament.uk/pa/cm201719/cmselect/cmdfence/431/431.pdf>.	
134	US	Department	of	Defense,	‘Summer	Study	on	Autonomy’,	p.	13.	
135	USAF	General	Mike	Hostage,	‘Drone	combat	missions	may	be	scaled	back	eventually,	Air	Force	chief	says’,	cit.	
Washington	Post,	13	November	2013	<http://wapNd>	[accessed	16	March	2018].	
136	John	Hawley,	‘Automation	and	the	Patriot	air	and	missile	defence	system’,	Sections	5	(‘Ineffective	human-automation	
integration’)	and	6	(‘Observations,	lessons	and	cautions’).		
137	Ramon	Ahren,	‘Mission	Control	in	a	Communications	Denied	Environment’,	Air	War	College,	Montgomery,	(16	
February	2017),	generally.	
138	Hambling,	p.	48.	
139	Chapter	6	(Wetware),	specifically:	6.3	(‘The	AWS	Delivery	Cohort’).	
140	As	set	out	in:	Sections	4.7	(‘Operations	and	causes	of	failure’)	and	7.1	(‘Sources	of	technical	debt’).		
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10. Oversight:	Command	and	control	constraints	to	AWS	deployment	

Significant	transformation	must	take	place	in	how	armies	fight	if	AWS	are	practically	to	be	
deployed.	An	assumption	for	this	chapter	is	that	removing	supervision	in	weapons	must	materially	
transform	how	combat	is	undertaken.	Regardless	of	deployment	model1,	several	well-tried	concepts	
that	have	long	comprised	battlecraft2	will	require	fundamental	reexamination	as	autonomy	is	
introduced	throughout	combat	practices.3	Such	reappraisal,	however,	must	account	for	the	human	
factors	that	form	part	of	that	battlecraft.	Accordingly,	the	aim	of	this	chapter	is	to	review	the	role	of	
the	human	in	combat’s	command	and	control	following	adoption	of	unsupervised	weapons.	It	is	
also	to	consider	the	weighting	that	should	be	applied	to	the	human	dimension	of	AWS	deployment.	
A	starting	point	is	provided	by	Warne	whereby	‘[t]echnological	materials	(sic),	while	valuable	in	
their	own	right,	are	not	as	valuable	as	human	life,	in	every	(sic)	operational	scenario’.4	The	
imperative	under	review	is	that	human	involvement	comes	with	obligations	that	outweigh	any	
‘value’	of	physical	equipment.		
	

The	chapter	is	comprised	of	four	sections.	An	analysis	of	‘command’	across	its	several	levels	
leads	first	to	a	review	of	weapon	targeting	in	order	to	gauge	whether	such	processes’	obligations	
can	feasibly	be	captured	by	code.	The	chapter	then	considers	the	scope	of	new	behavioural	
competencies	that	will	be	needed	as	AWS	are	deployed.	This	requires	a	review	of	skill	sets,	the	
development	of	individual	and	team	capabilities,	innovative	proficiencies	and	benchmarks	as	well	
as	new	models	of	leadership.	The	chapter’s	final	section,	this	thesis’	synthesis,	is	only	then	able	to	
review	Meaningful	Human	Control	(MHC)	as	an	appropriate	(and	statutory)	benchmark	with	which	
to	frame	adoption	of	autonomy	across	battlefield	practices.	For	the	purposes	of	this	chapter,	the	
command	chain	is	defined	as	the	line	of	authority	and	responsibility	along	which	orders	are	passed	
within	units	and	between	units.	It	is	the	will	of	that	commander	expressed	for	the	purpose	of	
bringing	about	a	particular	action.	Control	is	then	that	command	(which	might	be	less	than	full	
authority)	exercised	by	the	local	commander	over	part	of	the	activities	of	subordinate	or	other	
organisations.5	This	chapter	primarily	concerns	control	from	the	perspective	of	the	Delivery	Cohort	

																																																								
1	See,	generally:	Chapter	5	(Deployment).		
2	Samuel	Bendett,	‘Russia	Poised	to	Surprise	the	US	in	Battlefield	Robotics’,	Defense	One,	(25	January	2018),	paras.	5-9	of	
16	and	generally	<https://www.defenseone.com/ideas/2018/01/russia-poised-surprise-us-battlefield-
robotics/145439/>	[accessed	18	October	2018].	For	a	discussion	on	battlecraft	in	AWS	deployment,	see	also:	Michael	
Guetlein,	‘Lethal	Autonomous	Weapons	–	Ethical	and	Doctrinal	Implications’,	Researchgate,	(February	2005),	Abstract.		
	
3	John	Govern,	‘The	Importance	of	Distance	in	Modern	Warfare’,	Modern	Warfare	Institute,	West	Point,	(16	May	2016)	
<https://mwi.usma.edu/reexamination-distance-modern-warfare/>	[accessed	29	July	2017].	
4	Leoni	Warne	and	others,	’The	Human	Dimension	of	Future	Warfighting’,	Australian	Department	of	Defence	(Defence	
Science	and	Technology	Organisation),	(September	2004) 
<http://www.dodccrp.org/events/9th_ICCRTS/CD/presentations/7/162.pdf>.	The	Australian	study	is	useful	in	
highlighting	human	traits	that	challenge	AWS	deployment,	specifically	the	behaviour	divide	between	the	warrior	
(discipline,	decisiveness,	loyalty,	confidence)	and	the	peace-keeper	in	his	responses	(patience,	empathy,	responsibility,	
rapport,	lesson-learning)	to	combat	scenarios.	The	study	also	emphasises	the	increasing	role	of	trust	(devolving	
responsibility	to	lower	levels,	disseminating	information	to	ever	wider	audiences)	and	context	(antidote	to	volume,	
presentation,	testing	reliability	in	battlefield	data)	that	remain	likely	in	future	warfighting	and	yet	incompatible	with	
models	of	AWS	deployment.	
5	Source:	US	DOD,	‘Dictionary	of	Military	and	Associated	Terms’,	US	DoD	Publications,	(November	2018)	
<https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/dictionary.pdf>.	
	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 269 | P a g e  

 
 

and,	in	particular,	the	human	commander	deciding	upon	AWS	deployment.6	It	also	touches	on	
control	from	the	deploying	States’	standpoint	by	reviewing	consequences	that	might	arise	from	
statutory	constraint	of	AWS.			
	

Several	headings	in	the	UK’s	2011	Army	Doctrine	Primer	would	seem	to	conflict	with	AWS	
deployment,	especially	around	‘shaping	tasks’,	‘the	Decisive	Act’	and	that	primer’s	definition	of	the	
general	nature	of	battlefield	tasks.7	In	this	case,	doctrine	is	the	expression	of	how	military	forces	
contribute	to	war	(from	campaigns	down	to	individual	engagements).	It	acts	as	a	guide-to-action	
rather	than	a	set	of	defined	rules.	It	is	also,	notes	Spencer,	a	common	frame	of	reference	that	
‘reflects	[an]	Army’s	views	about	what	works	in	war	based	on	past	experience’.8	In	considering	the	
risks	of	removing	human	oversight,	command	is	then	the	appropriate	meld	of	control,	authority,	
and	permissions	as	well	as	the	power	to	influence	or	direct	behaviour	within	courses	of	events.9	It	
is	difficult	to	see	how	the	Primer	can	remain	fit	for	purpose	in	an	environment	where	certain	
engagements	are	to	be	undertaken	without	human	oversight.	Regardless	of	technical	feasibility,	a	
deployment	issue	will	be	how	command	can	be	exercised	given	the	radical	recasting	that	must	first	
take	place	if	areas	of	battlecraft	are	to	be	undertaken	without	humans	in-the-loop.10	Much	of	this	
required	transformation	relates,	notes	Cordingley,	to	broad	control	structures	and	the	fit	that	must	
be	maintained	between	weapons-directing	AI,	weapons’	battlefield	tasks	and	adopted	rules	of	
engagement.11	While	the	trials	of	command	are	well	documented12,	Thompson	points	to	new	
challenges	created	by	exponential	growth	in	the	dimension	of	battlefield	activities.13	UK	Army	
doctrine	again	provides	an	appropriate	starting	point	for	this	analysis.	Command	formulae	(as	set	
out	in	the	UK	Army’s	Land	Operations	publication)	include	themes	such	as	‘unity	of	effort’,	‘freedom	

																																																								
6	See:	Chapter	6	(Wetware),	specifically:	6.3	(‘The	Delivery	Cohort’).		
7	UK	Army,	‘Army	Doctrine	Primer’,	AC	71954,	(UK	Army	Doctrine	Publications,	May	2011),	section	4.7	(‘Military	
Activities	in	the	Land	Environment’),		
<https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/33693/201105
19ADP_Army_Doctrine_Primerpdf.pdf>.	
8	John	Spencer,	‘What	is	Army	Doctrine?’,	Modern	War	Institute,	(21	Marcb	2016),	para.	8	of	19	
<https://mwi.usma.edu/what-is-army-doctrine/>	[accessed	9	March	2018].	
	
9	Department	of	US	Army	Headquarters,	‘The	US	Army	Functional	Concept	for	Battle	Command	2015-2024’,	TRADOC	
Pamphlet,	525-3-3,	Version	1.0,	(30	April	2007),	p.	19	(‘Mission	Command’)	
<http://www.tradoc.army.mil/tpubs/pams/p525-3-3.pdf>.	This	also	encompasses	legal	responsibility	as	set	out	in	
Chapter	5	(Obstacles).	
10	Ibid.,	section	4.9	(’Tactical	Actions	in	the	Land	Environment’).	Also:	Major-General	Patrick	Cordingley,	Commander,	7th	
Armoured	Brigade,	Gulf	War,	1991,	in	conversation	with	the	author,	January	2019.		
11	Source:	UK	Government,	‘Rules	of	Engagement’,	Wikileaks,	UK	and	Danish	ROE,	(June	2008)	
<https://file.wikileaks.org/file/uk-danish-roe-iraq-2006.pdf>.	Although	outside	the	remit	of	this	analysis,	see	also:	UK	
Government,	‘The	Joint	Service	Manual	of	the	Law	of	Armed	Conflict’,	(Joint	Services	Publication	383,	2004	Edition),	pp.	
21-26,	pp.	51-100	and	pp.	101-104.		
12	David	Johnson	and	others,	‘Preparing	and	training	for	the	full	spectrum	of	military	challenges:	Insights	from	the	
experiences	of	China,	France,	the	United	kingdom,	India	and	Israel’,	National	Defence	Research	Institute,	Rand	
Corporation	Publishing,	(2009),	pp.	15-16,	pp.	236-247	and	pp.	257-275	
<https://www.rand.org/content/dam/rand/pubs/monographs/2009/RAND_MG836.pdf>.		
13	Loren	Thompson,	‘Five	Reasons	the	Army’s	New	Battlefield	Networking	Strategy	Won’t	Work’,	Forbes	Magazine,	(20	
November	2017),	generally	<https://www.forbes.com/sites/lorenthompson/2017/11/20/five-reasons-why-the-
armys-new-battlefield-networking-strategy-wont-work/>	[accessed	12	July	2017].	For	a	review	of	associated	literature,	
see:	Australian	Army	Occasional	Papers,	‘Command	and	Control	in	Modern	Warfare’,	Command	and	Leadership,	Series	
001,	(September	2017)	<https://www.army.gov.au/sites/g/files/net1846/f/publications/command_control_b5.pdf>.		
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of	action’,	‘building	of	trust’,	‘timely	and	effective	decision-making’	and	‘mutual	understanding’.14	
The	framework	is	thus	inappropriately	conditional	and	inappropriately	contextual	for	those	AWS’	
deployment	models	earlier	discussed.	It	is	conditional	because	it	relies	upon	complex	sets	of	
requirements	first	being	met	(authority,	permissions,	trust	and	processes).15	While	such	conditions	
may	not	be	new	(Van	Creveld	was	highlighting	the	vulnerability	arising	from	the	dispersion	of	
modern	armed	forces	in	the	1980s16),	removing	human	supervision	disruptively	crosses	technical,	
legal	and	ethical	boundaries	thereby	making	such	conditionality	unworkable.17	It	is	also	contextual	
because	it	concerns	intangibles	and	processes	where,	as	above,	basic	challenges	exist	even	to	
capturing	their	meaning	in	computer	code.18	Put	simply,	it	is	command’s	basic	processes	that	
complicate	deployment	including	routine	estimating,	routine	decision-making,	the	assigning	and	
executing	of	tasks,	deriving	missions	and	formulating	concepts,	acquiring	and	processing	feedback	
as	well	as	communicating	intent.19	

	
This	irreducibility	of	command	into	code	is	noted	by	General	Sir	Rupert	Smith	in	his	

framework	on	leadership,	in	particular	his	‘trust	test’	whereby	subordinates	will	follow	their	
commander	based	on	‘intangible	principles	of	comradeship,	respect,	endurance	and	sacrifice	
regardless	of	their	situation’.20	Smith	usefully	conflates	these	traits	with	‘an	enduring	bond’	
underpinning,	he	notes,	all	battlefield	activities.21	Similarly,	Smith	continues,	trust	is	based	on	
‘character’	and	‘competence’	and	must	be	laid	down	‘over	decades’	in	advance	of	battle.	What	then	
is	this	framework’s	relevance	to	AWS	deployment?	To	Smith,	the	impact	of	leadership	on	outcomes	
arises	from	its	bedrock	of	moral	and	physical	courage.22	Leadership	can	‘crisis-proof’	a	battle-plan	
and,	appropriately	executed,	is	one	component	in	fostering	willingness	to	delegate,	to	innovate	in	
adversity	and	cement	the	army’s	chain	of	command.23	Cordingley	notes	that	introducing	a	means	of	
lethal	engagement	which	wholly	falls	outside	this	framework	must	clearly	overturn	current	
practice;	even	if	AWS	are	to	be	adopted	by	States	at	the	margins,	piecemeal	adoption	must	still	

																																																								
14	UK	Army,	‘Land	Operations’,	Land	Warfare	Development	Centre,	(Army	doctrine	publication,	AC	71940,	undated)		
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/605298/Army_Field_Manual__AFM
__A5_Master_ADP_Interactive_Gov_Web.pdf>	Specifically:	6.12	(‘Unity	of	effort’),	6.13	(‘Freedom	of	action’),	6.14	(‘Trust’),	
6.15	(‘Mutual	understanding’),	6.16	(‘Timely	and	effective	decision-making’).	
15	Justin	Lynch	and	Lauren	Fish,	‘Soldier	Swarm:	New	Ground	Combat	Tactics	for	the	Era	of	Multi-Domain	Battle’,	
Modern	War	Institute,	West	Point,	(5	April	2018)	<https://mwi.usma.edu/soldier-swarm-new-ground-combat-tactics-
era-multi-domain-battle/>	[accessed	11	June	2018].			
16	Martin	van	Creveld,	Command	in	War,	(Harvard	University	Press,	1985),	p.	2.	
17	Chapter	5	(Obstacles)	and	Chapter	11	(Conclusion).	
18	See:	Chapters	7	(Firmware)	and	8	(Software),	specifically:	8.1	(‘Coding	methodologies’).		
19	US	Army	Field	Manuals,	‘Battle	Command’,	FM	7-30,	The	Infantry	Brigade,	Chapter	3,	(1995	and	revisions)	
<https://www.globalsecurity.org/military/library/policy/army/fm/7-30/Ch3.htm>	[accessed	2	February	2019].		
	
20	Previously	Deputy	Supreme	Allied	Commander	Europe.	Author	of:	‘Utility	of	Force:	The	Art	of	War	in	the	Modern	
World’,	Vantage,	(2008).	Here,	Buckingham	University,	Masters	in	Modern	War	Studies	lecture	and	subsequently	in	
conversation	with	the	author,	11	January	2017.	
21	Ibid.	
	
22	See	also:	Sgt	Nicholas	Holmes,	‘Leadership	and	Resiliency	Training	from	a	Soldier’s	Perspective’,	US	Army,	
www.army.mil,	(19	December	2017)	
<https://www.army.mil/article/198421/leadership_and_resiliency_training_from_a_soldiers_perspective>,		[accessed	
14	July	2018].		
23	Buckingham	University,	Masters	in	Modern	War	Studies	lecture	and	subsequently	in	conversation	with	the	author,	11	
January	2017.	
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compromise	function	in	what	is	a	tested	eco-system.24	While	previous	deployment	of	new	
weaponry	has	certainly	brought	about	changes	to	battlefield	processes,	the	conclusion	here	is	that	
AWS	deployment	will	generate	unprecedented	disruption25	that	will	be	evident	in	force	projection,	
the	acceleration	of	obsolescence	in	battlefield	assets	and	operational	concepts	and,	suggest	Davis	
and	Wilson,	in	an	‘unusual	inadequacy	should	parties	react	merely	incrementally	to	the	removal	of	
human	supervision	in	the	use	of	force’.26	It	is	not	by	accident	that	this	thesis	continually	links	AWS	
compliance	and	AWS	utility:	if	AWS	efficacy	is	so	poor	as	to	deplete	users’	trust	then	its	Delivery	
Cohort	will	presumably	simply	ignore	the	system.	

	
Army	Leadership	Insights,	published	by	the	UK’s	Centre	for	Army	Leadership,	provides	further	

pointers	to	why	AWS’	coding	for	command	and	control	is	enduringly	infeasible.27	Clark’s	paper	on	
The	Intelligently	Disobedient	Soldier	highlights	lasting	battlefield	benefits	of	curiosity,	critical	
thinking,	imagination	and	the	open-mindedness	that	arises	from	intelligent	challenge	within	
military	frameworks.	AWS	architecture	(based	on	its	strict	ML	spine,	training	sets	and	defined	
learning)	is	unsuited	to	enable	such	flexibility.28	Wilson’s	paper,	also	from	the	Centre	and	titled	
What	the	Hell	Do	We	Do	Now?,	points	instead	to	the	frequency	whereby	no	solutions	are	available	in	
battlefield	scenarios.	In	this	case,	it	must	also	be	impossible	to	capture	every	such	scenario	in	code	
(apart,	in	extremis,	from	ensuring	the	AWS	closes	down	or	otherwise	renders	itself	useless	to	the	
Delivery	Cohort).29	Cooper’s	work	on	Empowerment:	Beyond	Delegation	similarly	notes	the	
advantages	in	combat	situations	of	free	thinking,	bottom-up	generation	of	ideas,	innovation	and	
collaboration,	none	of	which	can	be	captured	in	AWS	routines	that	are	expressed	in	code.30	
Skinner’s	Learning	to	Change	highlights	the	empirical	premium	of	parties	(here,	the	human	soldier)	
who	are	able	constantly	to	learn.	There	is,	moreover,	an	important	differential	between,	on	the	one	
hand,	‘poor	learners’	(rules-based,	rote	learning,	a	proxy	here	for	AWS)	versus	innately	human	
mechanisms	that	are	better	adapted	to	uncertain	situations	where	previous	experience	is	
repurposed	in	order	improve	outcomes	in	subsequent	scenarios.31	Finally	to	this	point,	Grodecki	

																																																								
24	Major-General	Patrick	Cordingley,	in	conversation	with	the	author,	January	2019.	As	with	the	majority	of	this	thesis’	
review,	the	analysis	focuses	on	State	rather	than	non-state	deployment	of	unsupervised	weaponry.	See:	Chapter	1	
(Introduction),	specifically:	1.2	(‘Introduction	to	key	concepts’).		
25	Examples	here	might	include	precision	weapons,	advanced	air-defence,	advanced	anti-ship,	long-range	delivery	
weapons,	space	and	cyber	munitions.		
26	Paul	Davis	and	Peter	Wilson,	‘Looming	Discontinuities	in	US	Military	Strategy	and	Defense	Planning:	Colliding	RMAs	
Necessitate	a	New	Strategy’,	National	Defense	Research	Institute,	RAND,	(2011)	
<https://www.rand.org/content/dam/rand/pubs/occasional_papers/2011/RAND_OP326.pdf>,	p.	3	and	generally.	For	
analysis	of	likely	disruption	to	current	models,	see:	Chapter	4	(Deployment),	specifically:	4.7	(‘Operations	and	causes	of	
failure’).			
27	Souce:	Centre	for	Army	Leadership,	<https://www.army.mod.uk/who-we-are/our-schools-and-colleges/centre-for-
army-leadership/army-leadership-insights/>	[accessed	7	November	2018].	
	
28	See	Chapters	7	(Firmware),	specifically:	7.2	(‘Firmware	ramifications	of	learning	methodologies’)	and	7.3	(‘Reasoning	
and	cognition	methodologies’)	and	8	(Software),	specifically:	8.8	(‘Behaviour	setting	and	coordination’).	Professor	Lloyd	
Clark,	‘The	Intelligently	Disobedient	Soldier’,	Centre	for	Army	Leadership,	(March	2017).	
	
29	Ibid.	See	also:	Luke	Wilson,	‘What	the	Hell	Do	We	Do	Now?’,	(August	2017).	By	inference,	Wilson	highlights	the	useful	
coding	distinction	between	‘what	to	do	in	a	particular	situation’	versus	‘how	to	prepare	a	team	for	what	to	do	in	a	
particular	situation’.	He	also	points	to	a	bias	in	general	leadership	protocols	as	well	as	the	transactional	nature	of	task	
allocation	under	pressure	as	opposed	to	transformational	styles	of	action	selection	for	outcomes	requiring	long	term	
development.		
	
30	Paul	Cooper,	‘Empowerment:	Beyond	Delegation’,	(April	2018),	generally.		
	
31	Ibid.	See	also:	Kirsty	Skinner,	‘Learning	to	Change’,	(July	2018),	generally.		
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and	Turner	borrow	from	Shelley	to	highlight	that	‘nothing	is	so	painful…	as	a	great	and	sudden	
change’.32	A	danger	for	the	Delivery	Cohort	is	also	that	group-think	arises	(within	the	Cohort	or,	
more	likely,	within	AWS’	code	strings)	either	from	unsuitable	hierarchies	or	from	group	dynamics	
within	parties	constructing	weapon	routines.33	This	faultline	is	likely	to	be	accelerated	without	the	
new	education,	training,	development	and	command	relationships	that	removal	of	supervision	
must	occasion.34		
	

Isolating	the	tenets	of	battlefield	command	provides	a	pointer	to	whether	each	can	be	
incorporated	into	the	routines	that	are	posited	for	AWS	deployment.	This	challenge	is	exacerbated	
by	command’s	complexity	given	the	plethora	of	specialized	troops,	units,	functions	and	equipment	
(and	attendant	command	structures)	that	comprise	a	modern	army.35	In	this	context,	the	
coordination	and	control	of	force	has	several	characteristics	that	cannot	be	overlooked	by	AWS’	
Delivery	Cohort.	The	speed	and	range	of	modern	weapons	have	already	reduced	the	time	in	which	
to	exercise	such	control.36	Machines’	capacity	for	fast,	accurate	calculation	has	now	exceeded	that	of	
the	human	commander	and	it	is	therefore	technical	advance	(rather	than	operational	thinking)	
which	is	determining	the	role	for	those	weapons’	autonomy.37	In	order	to	protect	hardware	assets,	
it	is	also	these	same	capabilities	that	will	see	armies	spread	out	over	considerable	areas,	further	
complicating	the	process	of	command.38		Similarly,	command	and	control	complications	will	arise	in	
the	division	of	tasks	between	human	commander,	human	subordinate	and	autonomous	
componentry.	It	is	difficult	to	foresee	how	these	same	control	complexities	(dynamic	authority	and	
permissions,	character	and	competence)	should	be	organized	in	AWS.	They	require	comprehensive	
fact	collection	(second	nature	for	the	human	soldier	but,	in	the	case	of	AWS,	requiring	complicated	
real-time	processing	and,	notes	both	Kim	and	Doare,	likely	interpretation	error).39	Introducing	

																																																								
32	Adam	Grodecki	and	Ruth	Turner	(together,	The	Forward	Trust),	‘Leading	Responsibly	Through	Change:	A	Call	for	
Creative	Conflict’,	(September	2018).	
	
33	They	also	point	to	a	phenomenon	of	general	‘busyness’	(here,	a	proxy	for	AWS	operation)	to	evidence	inertia	and	a	
reluctance	to	embrace	change.	
	
34	Professor	Lloyd	Clark,	in	conversation	with	the	author,	September	2018.	Also:	Major-General	Patrick	Cordingley,	in	
conversation	with	the	author,	January	2019.	
	
35	Air	and	Space	Power	Mentoring	Guide,	Three	Levels	of	War,	1,	(Air	University	Press,	1997)	
<https://www.cc.gatech.edu/~tpilsch/INTA4803TP/Articles/Three%20Levels%20of%20War=CADRE-excerpt.pdf>.	
36	The	example	of	command	and	control	constraints	is	usefully	illustrated	in	emerging	cyber	weapons.	See:	Joseph	
Gardiner	and	others,	‘Command	and	Control:	Understanding,	Denying	and	Detecting’,	University	of	Birmingham,	
(February	2014),	pp.	6-8	(‘The	Command	and	Control	Problem’)	<https://arxiv.org/pdf/1408.1136.pdf>.	
37	US	Department	of	Defense,	‘The	Role	of	Autonomy	in	DoD	Systems’,	Task	Force	Report,	(2012),	p.	21	
<https://fas.org/irp/agency/dod/dsb/autonomy.pdf>,	pp.	7-10	(‘Autonomous	Systems	Pose	Unique	Acquisition	
Challenges’).		
38	In	so	doing,	this	paradoxically	reinforces	an	attraction	of	independent	weaponry.	See:	Canadian	Department	of	
National	Defence,	‘Adaptive	Dispersed	Operations:	The	Force	Employment	Concept	for	Canada’s	Army	of	Tomorrow’,	
Directorate	of	Land	Concepts	and	Designs,	(2007),	pp.	16-22	(‘The	Adaptive	Dispersion	Operation	Concept’)	and	pp.	28-29	
(‘Command’)	<http://publications.gc.ca/collections/collection_2009/forces/D2-188-2007E.pdf>.	The	study	usefully	
defines	command	as	a	‘human	endeavour	[that]	depends	on	culture,	the	need	to	accept	risk	and	instil	trust.	It	is	the	
creative	expression	of	human	will	necessary	to	accomplish	a	mission’.	See	also:	TN	Dupuy,	The	evolution	of	weapons	and	
of	warfare,	(Indianapolis,	1980),	p.	312;	cit.	van	Creveld,	Command	in	War,	p.	277.	
39	See:	Kim,	‘Enhanced	Battlefield	Visualisation	for	Situational	Awareness’,	Computer	and	Graphics,	27.6,	(2003),	pp.	
873-885	<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6406&rep=rep1&type=pdf>.	See	also:	Chapter	
7	(Firmware),	specifically	7.4	(‘Attention	methodologies’).	
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weapon	independence	clearly	weakens	this	already	fragile	and	subjective	arrangement.40	Nor	are	
the	arguments	straightforward:	The	dependence,	for	instance,	of	command	systems	on	
electronically	transmitted	and	encrypted	data	has	made	them	disproportionately	open	to	electronic	
warfare	designed	to	interrupt	their	flow	and,	notes	Wilgenbusch,	paradoxically	encouraging	further	
independent	processes	and	the	deployment	of	unsupervised	weaponry.	41			

	
It	is	useful	to	consider	weapon	control	and	its	consequences	from	the	perspectives	of	AWS’	

procurer	and	operator.	Currently,	the	user	axiom	for	weaponry	may	broadly	be	a	threshold	for	
liability	and	an	obligation	to	prevent	harm.42	This	is	relevant	as	it	suggests	MHC	be	right	in	the	
middle	of	those	routines	that	identify,	select	and	apply	force	to	targets43	(identified,	after	all,	by	
ICRC	as	the	‘critical	functions’	of	a	weapon).44	A	crux	then	to	any	removal	of	supervision	becomes	
the	level,	nature	and	primacy	of	human	control	over	specific	weapon	functions	rather	than	any	link	
between	such	control	and	specific	technologies	(given,	after	all,	the	speed	with	which	those	
technologies	will	change	as	weapon	systems	evolve).45	Article	36	refines	further	this	relationship	to	
include	‘when,	where	and	how	weapons	are	used;	what	or	who	they	are	used	against;	and	the	
effects	of	their	use’.46	Notwithstanding	Garcia’s	note	that	several	ambiguities	still	require	address	
through	negotiation47,	the	adoption	of	MHC	must	distinguish	between	autonomous	weapons	that	
are	covered	by	such	a	ban	and	the	many	existing	weapons	that	already	have	autonomous	functions.	
It	would	be	similarly	unworkable	to	base	any	restrictions	on	what	is	an	artificial	separation	
between	offensive	and	defensive	tasking.48		

	
Regardless	of	framework,	the	policing	of	both	compliance	and	verification	(a	further	oversight	

process)	remains	an	outstanding	constraint	in	AWS	deployment	as	it	will	be	challenging	to	monitor,	
inter	alia,	either	machine	intent	or	whether	a	contentious	engagement	was	carried	out	with	or	

																																																								
40	Ronan	Doare	and	others,	‘Robots	on	the	Battlefield:	Contemporary	perspectives	and	implications	for	the	future’,	Army	
Combined	Arms	Center,	Fort	Leavenworth,	KS	Combined	Studies	Institute,	(2014),	generally.		
41	Ronald	Wilgenbusch	and	Alan	Heisig,	‘Command	and	control	of	vulnerabilities	to	communications	jamming’,	JFQ,	
ndupress.ndu.edu,	69,	(June	2013)	<http://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-69/JFQ-69_56-
63_Wilgenbusch-Heisig.pdf>.		
42	Human	Rights	Watch,	‘Killer	Robots	and	the	concept	of	meaningful	human	control’,	Memorandum	to	Convention	on	
Conventional	Weapons,	(April	2016),	p.	2.	
43	Article	36,	‘Key	elements	of	meaningful	human	control’,	Memorandum	to	Convention	on	Conventional	Weapons,	April	
2016,	p.	1.	
44	Source:	Statement	of	the	International	Committee	of	the	Red	Cross,	CCW	Meeting	of	Experts	on	Lethal	Autonomous	
Systems,	Geneva,	13	April	2015.	
45	UK	MOD,	‘Human	Machine	Touchpoints:	The	United	Kingdom’s	perspective	on	human	control	over	weapon	
development	and	targeting	cycles’,	UK	submission	to	CCW	GGE	on	LAWS,	(August	2018),	generally.	
46	Article	36,	‘Killing	by	a	machine:	Key	issues	for	understanding	meaningful	human	control’,	cit.	Human	Rights	Watch,	
‘Killer	Robots	and	the	Concept	of	Meaningful	Human	Control’,	Memorandum	to	Convention	on	Conventional	Weapons	
CCW	Delegates,	(April	2016),	p.	2.	
47	Denise	Garcia,	‘Governing	Lethal	Autonomous	Weapon	Systems’,	Ethics	and	International	Affairs,	Carnegie	Council,	
(December	2017)	<https://www.ethicsandinternationalaffairs.org/2017/governing-lethal-autonomous-weapon-
systems/>	[accessed	13	August	2018].	
48	These	would	fail	to	capture	AWS	based,	for	instance,	on	mobile	robotic	vehicles.	Other	distinctions	have	been	
suggested	from	this	user/procurer	perspective	that	might	better	be	policed	such	as	the	difference	between	fixed	and	
mobile	weapons	or	between	recoverable	robotic	vehicles	and	non-recoverable	munitions.	
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without	human	authorization.49	To	this	point,	a	different	control	avenue	might	instead	be	to	
consider	a	ban	on	AWS	that	specifically	target	people	under	the	separate	axiom	of	‘let	machines	
target	machines	and	let	people	target	people’.50	A	further	regulatory	option	might	then	be	to	create	
a	non-legal	code	of	conduct	on	users	and	procurers	of	AWS	that	is	centered	on	simple,	self-
enforcing	rules	such	as	‘robotic	vehicles	should	not	fire	unless	fired	upon’	and	‘returned	fire	should	
be	limited,	proportionate	and	discriminating’.	While	such	oversight	models	might	check	escalation	
and	ensure	predictable	reactions	from	participating	States,	it	should	also	be	assumed	that	such	
rules	will	likely	collapse	in	war.	It	is	for	such	real-politik	reasons	that	this	chapter	instead	focuses	
upon	enshrining	human	judgement	(here,	MHC)	as	the	basis	of	a	legal	framework	to	govern	AWS	
deployment.	
	

Before	considering	MHC,	two	further	considerations	arise	from	a	review	of	control.	Any	
prohibition	framework	should	neither	anticipate	nor	legislate	for	capabilities	that	might	emerge	in	
due	course.	Likewise,	the	analysis	implies	that	certain	AWS	characteristics	(technical	infeasibility,	
issues	of	trust	and	reliability	as	well	as	contextual	drivers)	will	combine	to	ensure	that	human	
agency	does	remain	enduringly	present	in	lethal	engagement.	It	is	therefore	this	thesis’	contention	
that	AWS	control	is	best	achieved	by	articulating	what	is	a	positive	requirement	for	human	
oversight	in	the	use	of	force,	an	obligation	that	irreducible	human	control	(and	therefore	human	
judgement)	must	precede	a	machine’s	initiation	of	violence,	regardless	of	whether	that	violence	is	
lethal.	This	accords,	after	all,	with	the	general	observation	(here,	set	out	by	the	Holy	See)	that	
‘prudential	judgement	cannot	be	put	into	algorithms’51	and	where	exercise	of	judgement	depends	
on	more	than	numeric	analysis	of	data.	It	is,	notes	the	Holy	See,	too	difficult	for	AWS,	no	matter	how	
much	data	is	processed,	to	exercise	required	levels	of	judgement.52		

 Meaningful Human Control 
	
Given	the	human	factor	of	battlefield	command,	this	final	section	reviews	MHC	as	a	mechanism	to	
retain	human	participation	in	otherwise	independent	weaponry.	This	thesis’	recommendation	is	
that	consequential	human	supervision	be	enshrined	in	all	situations	involving	force.	Where,	
however,	should	this	intervention	‘sit’?	Is	it	within	the	broad	act	of	employing	violence	or	should	it	
be	around	specific	identification	of	a	target	as	legitimately	hostile?	Robinson	notes	that	command	
responsibility	(like	that	of	State	responsibility)	considers	control	to	be	a	prerequisite	for	assigning	
liability.53	The	circumstance	of	AWS	deployment	as	an	autonomous	‘vehicle	of	judgement’54	

																																																								
49	The	concept,	for	instance,	of	‘plausible	deniability’	is	discussed	in	the	introduction	to	Chapter	4	(Deployment).	See	
also:	Chapter	8	(Software),	specifically:	8.7	(‘Action	selection	issues’).	Oversight	of	AWS	is	considered	in	Chapter	10	
(Oversight).		
50	Scharre,	Army	of	None,	Norton	Publishing,	2018,	p.	355.	
51	Statement	of	the	Holy	See,	CCW	Meeting	of	experts	on	lethal	autonomous	systems,	Geneva,	(16	April	2015),	p.	4.	
52	Ibid.,	pp.	5-6.	
53	Darryl	Robinson,	‘How	Command	Responsibility	Got	So	Complicated:	A	Culpability	Contradiction,	its	Obfuscation,	and	
a	Simple	Solution’,	Melbourne	Journal	of	International	Law,	13,	1,	(2012),	2-6	(‘Terminology’)	and	7-9	
<https://law.unimelb.edu.au/__data/assets/pdf_file/0003/1687242/Robinson.pdf>.		This	is	variously	covered	in	
Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Combat’).	
54	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
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assumes,	moreover,	several	other	broad	obligations.55	In	order	to	ensure	compliance,	involved	
parties	must	each	understand	how	AWS	systems	will	operate	such	that	controlling	individuals	can	
make	informed	(and	thus	legally	compliant)	decisions	regarding	the	use	of	those	weapons.56	Each	
deployed	weapon	must	also	generate	evidence	of	its	reliability	and	performance	in	order	for	human	
decision-making	to	be	appropriately	accountable.57	It	is	this	‘obligation	on	the	person’	that	is	
articulated	by	the	most	recent	US	DoD	Law	of	War	Manual.58	LOAC	also	obliges	AWS-deploying	
parties	to	assume	a	portfolio	of	obligations	including,	inter	alia,	those	tests	of	distinction	and	
calculations	around	proportionality	discussed	above.59	Neither	Delivery	Cohort	nor	battlefield	
commander	can	meet	that	legal	obligation	unless	proper	information	on	the	context	of	each	
individual	attack	(and,	indeed,	its	expected	effects)	is	reasonably	understood	at	the	point	of	
decision.60	This	requirement,	moreover,	de	facto	precludes	AWS	from	operating	‘without	strict	
bounds	in	space	and	time’,	a	further	material	challenge	to	their	deployment.61	AWS,	then,	that	
operate	without	communication	are	unlikely	to	be	able	to	fulfill	a	commander’s	obligation	to	
undertake	these	timely	LOAC	calculations.	The	inference	must	be	that	an	unsupervised	weapon,	
out-of-touch	with	the	human	responsible	for	using	that	weapon,	cannot	appropriately	undertake	
proper	situational	assessment	given	AWS’	prima	facie	reliance	on	timely,	fresh	and	appropriate	
information.	A	communication	link	would	appear	vital	under	this	same	analysis	in	order	that	the	
AWS	receive	authorization	for	all	individual	attacks.62	The	conflict	here	is	that	such	ratification	
(effectively	the	subjection	of	AI	to	human	review	before	it	is	put	into	effect)	also	creates	
disadvantage.63	Complexity,	after	all,	is	being	added	by	the	degree	of	exercisable	modification/veto.	
Temporal	complications	will	also	arise	from	command	bottlenecks	and	technical	snags.	In	this	case	
it	will	be	easier	for	the	Delivery	Cohort	to	minimise	non-compliant	engagement	rather	than	devote	
resources	trying	to	optimise	the	machine’s	every	detail	in	what	is	a	fully	autonomous	engagement.	
This	characteristic	would	point	to	continued	adherence	of	MHC	in	lethal	engagements.			
	

																																																								
55	Jack	Beard,	‘Autonomous	Weapons	and	Human	Responsibility’,	University	of	Nebraska-Lincoln,	College	of	Law	Faculty	
Publications,	196,	(2014)	
<https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=http://scholar.google.co.uk/&httpsredir=1&article=119
6&context=lawfacpub>,	pp.	622-625.	
56	See:	Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Convention	and	laws	of	armed	combat’)	and	5.5	(‘Article	36	
and	LOAC-complaint	weaponry’).	
57	Inferred	from:	Roff	and	Moyes,	p.	3.	See	also:	Chapter	2	(Context),	specifically:	2.6	(‘The	role	of	situational	awareness	
and	uncertainty’).			
58	United	States	Department	of	Defense,	‘Department	of	Defense	Law	of	War	Manual’,	(June	2015),	P.6.5.9.3;	‘LOAC	
obligations	of	distinction	and	proportionality	apply	to	persons	rather	than	the	weapons	of	themselves...		as	these	rules	do	
not	impose	obligations	on	the	weapons…		and	of	course	an	inanimate	object	could	not	assume	an	obligation	in	any	
event’.		
59	See	Chapter	5	(Obstacles),	specifically	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Conflict’).		
	
60	Darryl	Robinson,	pp.	20-23	(‘The	Problem	of	the	Successor	Commander’).	This	also	raises	the	issue	of	that	
commander’s	selection,	training,	education	and	development	and	the	type	of	individual	able	to	undertake	this	tasking.	
See	this	chapter,	specifically:	10.2	(‘Required	new	competencies	in	human	resources’).	Also:	Professor	Lloyd	Clark,	in	
conversation	with	the	author,	September	2018.	
	
61	Roff	and	Moyes,	p.	4.	
62	Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Combat’)	and	5.5	(‘Article	36	and	
LOAC	compliant	weaponry’)	charts	that	it	is	beholden	on	the	human	decision-maker	to	ensure	proper	situational	
awareness	for	each	such	attach	in	order	responsibly	to	grant	that	authorization.	
63	Bostrom,	Superintelligence,	p.	226.	
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At	its	most	basic	level	this	thesis’	support	of	MHC	is	based	on	two	premises.64	First,	MHC	
conforms	with	ICRAC’s	contention	that	it	is	inherently	wrong	for	a	weapon	to	be	fired	if	the	human	
being	at	the	point	of	firing	has	not	properly	aimed	it.	Without	MHC,	after	all,	a	human	is	
fundamentally	not	making	the	decision	to	initiate	violence.	65	There	remain,	however,	several	ways	
to	frame	the	principle	of	MHC.	A	human	simply	pressing	a	fire	button	(in	response,	for	instance,	to	
indications	from	a	computer)	without	cognitive	awareness	is	clearly	insufficient	to	be	considered	
‘human	control’	in	any	substantive	sense.	The	term	‘meaningful’	therefore	presents	substantial	
space	for	diverging	opinions	on	where	the	boundaries	of	necessary	human	control	might	lie.66	A	key	
is	also	whether	MHC	is	applied	to	the	technology	itself	or	to	the	wider	action	within	which	the	
technology	might	be	applied.	It	is	noteworthy	that	the	efficacy	of	human	control	is	already	patchy	in	
existing	military	systems,	questioning	thereby	the	extent	to	which	current	practice	should	shape	
normative	expectations	for	future	weapon	systems.67	A	second	premise	for	this	thesis’	support	of	
MHC	is	that	any	regulatory	framework	must	be	practical;	the	drafting	of	statutory	MHC	should	be	
appropriately	broad	in	order	to	obviate	the	need	for	pre-assessment	of	each	new	emerging	
weapons	technology	and	to	limit	subsequent	legal	and	political	meddling.	As	argued	generally	in	
this	thesis’	contextual	review,	future	deployment	decisions	will	likely	have	overtly	political	contexts	
with	different	actors	having	quite	different	interpretations	based	on	local	considerations,	priorities	
and	interests.	MHC,	moreover,	can	also	infer	negative	control	and	the	‘prevention	of	any	
unauthorized	use	of	such	weapons’,	a	clear	departure	from	traditional	positive	control,	‘the	
assurance	that	authoritative	instructions	to	perform	military	missions	will	be	carried	out’.68		

	
The	main	challenge	to	the	application	of	MHC	is	the	weapon’s	targeting	cycle.	NATO’s	process	

for	Joint	Targeting	applies	both	to	deliberate	as	well	as	dynamic	targeting	and,	as	written,	currently	
comprises	five	contiguous	phases	as	detailed	in	the	footnote.69	Only	one	component	of	that	
delineated	targeting	cycle	(here,	Phase	5,	comprising	‘mission	planning	and	force	execution’70)	is	
currently	considered	appropriate	for	automation	if	compliance	is	to	be	retained	and	is	reviewed	
below	in	detail.71	The	remaining	phases	(in	particular,	commander’s	intent	but	also	capabilities	
around	analysis,	decision	and	assignment)	nevertheless	demonstrate	the	extent	of	challenge	facing	
broad	capability	deployment	of	independent	weapons.72	Each	of	these	components	empirically	

																																																								
64	Article	36,	‘Lethal	autonomous	weapons,	artificial	intelligence	and	meaningful	human	control’,	Briefing	document	with	
ASU	Global	Security	Initiative,	(February	2016),	p.	2.	
65	Source:	International	Committee	for	Robot	Arms	Control	mission	statement	<http://icrac.net/statements/>.	
66	Meaningful,	significant,	consequential,	material,	worthwhile,	relevant,	appreciable,	substantial…	
	
67	Thomas	Adams,	Future	Warfare	and	the	decline	in	human	decision	making,	2,	(Parameters,	2001),	generally	
<http://ssi.armywarcollege.edu/pubs/parameters/articles/2011winter/adams.pdf>.	
	
68	Roff	and	Moyes,	p.	5.	
69	NATO	Standardisation	Office,	‘Allied	Joint	Publication	3.9:	Allied	Joint	Doctrine	for	Joint	Targeting’,	(NSO,	Edition	A,	
Version	1,	April	2106)	
<https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/628215/20160
505-nato_targeting_ajp_3_9.pdf>,	p.	2-2.	Phase	1:	‘Commander’s	intent,	objectives	and	guidance’,	Phase	2:	‘Target	
development’,	Phase	3:	‘Capabilities	analysis’,	Phase	4:	‘Commander’s	decision,	force	planning	and	assignment’,	Phase	5:	
‘Mission	Planning	and	force	execution’,	Phase	6:	‘Assessment’.		
70	Ibid.	
71	UK	MOD,	‘Human	Machine	Touchpoints’,	p.	3.	Specifically,	actions	around	‘find,	fix,	track,	target,	engage,	exploit	and	
assess’	and,	as	above,	only	then	subject	to	appropriate	regulation,	specification,	design,	verification	and	adherence	to	
operating	processes	and	ROE.		
72	Chapter	1	(Introduction),	specifically:	1.2	(‘Introduction	to	key	concepts’).		
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comprises	just	one	part	of	a	targeting	continuum	which	is	insufficiently	delineated	for	capture	by	
machine	code.	Similarly,	these	sub-routines	will	vary	between	engagement	type	and	situation.	They	
also	vary	in	risk;	generally,	as	amount	of	time	available	for	a	targeting	decision	decreases,	the	
amount	of	risk	in	that	routine	increases	but	this	is	demonstrably	not	a	reliably	linear	relationship.	
Further	targeting	complexity	will	arise	in	cases	of	close	combat	as	well	as	from	fluid	levels	of	
authority	in	engagements	where	authority	may	be	dynamically	delegated	between	friendly	forces.73		

	
Targeting	gives	rise	to	other	control-related	difficulties	that	require	on-going	human	

supervision.	Specifically,	the	nomination	and	prioritisation	of	targets	must	be	guided	by	goals	and	
values	despite	what	may	be	a	dynamically	changing	utility	function.	This	is	not	a	fixed	relationship	
and	becomes	a	key	requirement	for	coordination.74	Similarly,	targeting	by	unsupervised	systems	
must	contemporaneously	factor	for	time	sensitivity,	apt	payoff	calculation,	apt	target	development,	
appropriate	toggling	between	lethal	and	non-lethal	outcomes,	the	handling	of	restricted	targets	and	
no-strike	entities	as	well	as	targeting’s	‘decide	phase’.75	Any	deficiencies	in	the	process	will,	
moreover,	be	magnified	when	local	communication	is	lost	and	battlefield	data	is	compromised.76	
Even	Phase	5	of	NATO’s	Joint	Targeting	Cycle	(where	it	is	currently	judged	that	automation	might	
be	possible)	is	comprised	of	seven	individual	sub-components	(the	‘fit,	fix,	track,	target,	engage,	
exploit	and	fail-safe’	of	‘Mission	planning	and	force	execution’	discussed	above).77	This	presents	
considerable	scope	for	imprecision	and	it	is	this	layering	that	requires	on-going	and	intimate	
human	management,	both	to	retain	legal	compliance	but	also	to	retain	best	possible	efficiency	in	
each	use	of	battlefield	force.78		

	
Review	of	targeting’s	Phase	5	is	useful	to	support	the	notion	of	statutory	MHC.	The	component	

that	determines	‘fit’	must,	for	instance,	be	theatre-specific	and	derive	from	precise	data	which	fuses	
intelligence,	surveillance	and	reconnaissance	(ISR)	assets	if	it	is	to	be	appropriate.	Targeting’s	
‘fixing’	routine	is	then	responsible	for	each	engagement’s	risk	assessment	(in	tandem	with	the	
weapon	confirming	compliance	with	local	ROE)	in	order	to	decide	upon	levels	of	appropriate	force	
in	each	engagement	such	that	operational	success	can	be	achieved	having	factored	for	possible	
collateral	costs.	This	is	technically	complex	and	will	be	inappropriately	prone	to	error.79	Similarly,	
targeting’s	‘tracking’	and	‘engaging’	phases	require	that	the	AWS	balance	for	broad	situational	
awareness	as	part	of	compliant	targeting,	a	routine	that	is	repeatedly	shown	above	to	be	
problematic.80	Finally	to	this	point,	targeting	must	always	consider	the	broader	picture	of	colleague	

																																																								
73	The	end-point	of	this	continuum	would	therefore	be	instances	of	autonomous	self-defence.	The	issue	becomes	both	
the	setting	by	a	human	agent	of	the	weapon’s	parameters	and,	second,	the	means	of	subsequent	human	intervention	in	
that	engagement.	Furthermore,	parameter	setting	(and	the	engagement’s	ensuing	riskiness)	depends	on	the	degree	of	
trust	that	the	human	agent	can	place	on	the	whole	targeting	cycle.	It	also	rests	on	any	subsequent	ability	for	those	
parameters,	dependent	after	all	on	political	and	strategic	considerations,	to	be	changed	by	the	machine	after	that	
engagement	is	launched.			
74	See:	Chapter	8	(Software),	specifically:	8.3	(‘Utility	function’),	8.5	(‘Anchoring	and	goal	setting	issues’)	and	8.6	(‘Value	
setting’).		
75	NATO	Standardisation	Office,	‘Allied	Joint	Publication	3.9’,	Section	II,	p.	5-4	(‘Decide,	detect,	deliver,	assess’).	
76	See:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).		
77	NATO	Standardisation	Office,	‘Allied	Joint	Publication	3.9’,	generally.		
	
78	NATO	Standardisation	Office,	‘Allied	Joint	Publication	3.9’,	Section	III,	p.	5-7	(‘Targeting	at	component	level’).		
79	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	technical	debt’).	
80	For	a	discussion	on	situational	awareness	in	combat	engagements,	see:	chapter	9	(Hardware),	specifically:	9.3	
(‘Navigational	issues’),	and	Chapter	11	(Conclusion),	specifically:	11.1	(‘Nature	of	deployment	challenges’).			
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assets,	joint	operations	and	dovetail	in	as	part	of	the	local	commander’s	overall	(and	dynamically	
evolving)	picture.	Absent	MHC,	for	example,	the	weapon	must	undertake	relevant	battle	damage	
assessment	without	third	party	assistance	in	order	to	action	accurate	feedback	following	every	
engagement.	

	
There	are	also	contextual	considerations	to	the	definition	and	implementation	of	MHC.	

Oversight	of	human	control	within	military	systems	cannot	be	limited	to	the	weapon’s	targeting	
cycle.	Instead,	weapon	control	must	be	present	throughout	a	broad	range	of	scale,	intensity	and	
task	complexity	as	well	as	be	able	to	operate	reliably	in	‘cluttered,	congested,	complex	and	
contested	operational	environments’.81	Contextually,	moreover,	‘assessment,	evaluation	and	
revision	of	the	system	and,	notes	the	UK	MOD	in	Human	Machine	Touchpoints,		the	surrounding	
political,	strategic	and	operational	“wrap”	(sic)	is	a	continuous	cycle	rather	than	a	linear,	sequential	
process	and	a	combination	of	these	factors	are	required	to	ensure	human	control	at	the	appropriate	
points’.82	It	is	within	this	context	that	discussions	to	ban	AWS	have	arisen	which,	unusually,	are	
being	led	largely	by	NGOs	and	not	by	States-members	to	the	Geneva	Convention.83	It	is	similarly	
unusual	that	AWS	deployment	is	currently	positioned	as	a	concern	around	civilian	wellbeing	rather	
than	as	a	strategic	issue.	As	noted	by	Scharre,	‘bans	that	are	motivated	by	concern	about	excessive	
civilian	casualties	pit	[what	is]	an	incidental	concern	for	militaries	against	[what	is]	a	fundamental	
priority:	military	necessity’.84	Pivoting	this	consideration	of	control	from	the	weapon	now	to	the	
user	(here,	the	Delivery	Cohort),	the	dynamic	then	becomes	the	degree	of	control	to	be	ceded	and	
how	State	signatories	might	be	prejudiced	if	they	comply	with	existing	law	versus	if	they	support	to	
a	new	ban	on	AWS.	As	noted	by	Etzioni,	the	prevailing	assumption	is	that	weapon	autonomy	will	
most	benefit	advanced	militaries	(and,	that	weaker	parties	are	not	in	practical	terms	giving	up	
anything	should	weapon	autonomy	be	peremptorily	banned).85	Analysis,	however,	of	deployment	
models	suggests	that	once	autonomous	technologies	diffuse	across	borders	and	tasks,	AWS	may	
actually	benefit	exactly	those	weaker	parties	given	the	incongruent	costs	(economic	and	
operational)	of	maintaining	communications	in	contested	environments	versus	deploying	weapons	
that	are	capable	of	independent	targeting.86		

	
In	the	case	of	a	statutory	MHC	framework	two	further	challenges	arise.	There	is	no	robust	

answer	to	how	signatories	can	defend	themselves	against	parties	who	subsequently	deploy	AWS	in	
contravention	of	such	a	ban.	It	is	also	difficult	to	dismiss	the	argument	that	casualty-centric	(rather	
than	strategic)	initiatives	appear	merely	to	disarm	those	States	agreeing	not	to	field	AWS.	This,	
notes	Scharre,	‘would	be	the	worst	of	all	possible	outcomes,	empowering	the	most	odious	regimes	
with	potentially	dangerous	weapons	while	leaving	nations	who	care	about	international	law	at	a	

																																																								
81	UK	MOD,	‘Human	Machine	Touchpoints,	p.	2.	Also:	Major-General	Patrick	Cordingley,	in	conversation	with	the	author,	
January	2019.	
82	Ibid.	These	include	national	regulation	and	law,	adherence	to	specifications,	appropriate	human-machine	design,	
appropriate	verification	and	validation	as	well	as	observance	of	operating	processes	and	ROE.		
83	See:	Stop	Killer	Robots	Coalition,	<https://www.stopkillerrobots.org>	[accessed	12	September	2018].	
	
84	Scharre,	Army	of	None,	Norton	Publishing,	2018,	p.	348.	
85	Amitai	Etzioni	and	Oren	Etzioni,	‘Pros	and	Cons	of	Autonomous	Weapon	Systems’,	72-3	and	generally.	Alternative	
source:	<http://www.armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/May-June-2017/Pros-
and-Cons-of-Autonomous-Weapons-Systems/>	[accessed	12	August	2018].		
	
86	Introduction	to	Chapter	4	(Deployment).	
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disadvantage’.87	Tackling	AWS	control	through	MHC	is	nevertheless	supported	by	IHL’s	
requirement	that	human	control	over	individual	attacks	should	be	the	relevant	unit	of	legal	
management	in	tactical	actions.88	The	challenge,	after	all,	is	that	AWS	compliance	in	targeting	must	
otherwise	depend	on	‘an	innate	capacity	to	detect	and	interpret	subtle	cues’	that	must	be	particular	
to	each	engagement.89	This	must	presumably	include	features	such	as	voice	tone	and	body	
language.90		

 Validation and testing  
	
Appropriate	validation	and	testing	is	a	central	control	component	of	weapon	oversight	in	order	to	
ensure	both	AWS	utility	and	LOAC	compliance.	This	is	complicated	on	several	levels.	Given	the	pace	
of	technical	innovation	and	a	likely	lack	of	structure	to	AWS	deployment,	Grush	argues	that	
deployment	models	cannot	rely	upon	definite	‘baselines’	(or,	germane	to	this	chapter,	a	standard	
battlefield	scenario)	against	which	the	responsible	commander	can	deploy	AWS	with	appropriate	
confidence.91	Conversely,	a	concern	is	that	possible	battlefield	gain	may	encourage	deployment	
notwithstanding	that	testing	is	expensive	and	time	consuming	when	humanitarian	failure	might	
appear	to	have	little	tangible	cost.	Lonsdale’s	point	is	also	that	reliance	on	such	baselines	may	prove	
impossible	either	after	first	engagement,	whether	through	combat	or	electronic	interference92	in	a	
process	that	is	likely	to	follow	Moltke’s	maxim	that	‘no	battle	plan	survives	first	contact	with	the	
enemy’.93	While	deployment	models	must	also	factor	empirical	difficulties	arising	in	AWS	testing,	
the	danger	is	that	inadequate	practice	then	sets	the	norm.	To	this	point,	Knight	questions	who	in	
the	Delivery	Cohort	can	authorise	AWS	sub-components	procured	from	an	array	of	weapons	
manufacturers?94		
	

The	US	Department	of	Defense’s	directive,	Autonomy	in	Weapon	Systems,	appears	quite	
unambiguous	on	the	matter	of	testing	in	stating	that	AWS	must	‘go	through	rigorous	hardware	and	
software	verification	and	validation	and	realistic	system	developmental	and	operational	test	and	
evaluation’.95	The	issue,	however,	is	whether	this	is	realistic.	Within	the	one	hundred	and	twenty-
nine	US	Marine	Corps	MV-22	Ospreys	that	have	entered	service	by	early	2018,	Freedberg	highlights	
that	there	are	seventy	different	configurations,	identical	to	the	untrained	eye	but	all	subtly	

																																																								
87	Ibid.,	p.	351.	
88	Article	36,	‘Key	elements	of	meaningful	human	control’,	p.	1.	
89	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
90	Robert	Sloane,	‘Puzzles	of	Proportion	and	the	“Reasonable	Military	Commander”;	Reflections	on	the	Law,	Ethics	and	
Geo-politics	of	Proportionality’,	Harvard	National	Security	Journal,	16,	(2015),	301-304	<http://harvardnsj.org/wp-
content/uploads/2015/06/Sloane.pdf>	generally.	
91	Bern	Grush,	‘The	rise	of	autonomous	vehicles:	planning	for	deployment	and	not	just	development’,	R&D	Lab	Design,	
(24	January	2018)	<https://www.rdmag.com/article/2018/01/rise-autonomous-vehicles-planning-deployment-not-
just-development>	[accessed	10	February	2018],	paras.	8-9	of	23.		
92	David	Lonsdale	highlights	the	role	of	deception	and	enemy	attacks	to	degrade	information	systems	that	will	be	critical	
to	AWS.	See:	David	Lonsdale,	Clausewitz	and	Information	Warfare,	(Oxford:	Oxford	University	Press,	2007),	p.	248.		
93	Source:	Lexician.com,	<http://lexician.com/lexblog/2010/11/no-battle-plan-survives-contact-with-the-enemy/>.	

94	W	Knight,	‘The	US	Military	wants	its	Autonomous	Machines	to	explain	themselves’,	MIT	Technology	Review,	(14	
March	2017)	<https://www.technologyreview.com/s/603795/the-us-military-wants-its-autonomous-machines-to-
explain-themselves/>,	paras.	4-9	of	12.		
95	Department	of	Defense	Directive,	Autonomy	in	Weapon	Systems,	Para	4,	Policy	2.	
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dissimilar	and	requiring	different	flight	checklists,	maintenance	procedures	and	spare	parts.96	
Validation	and	verification	procedures	(V&V)	will	be	key	to	AWS	deployment	precisely	because	
they	are	intended	to	provide	oversight	and	corroboration	that	the	deployed	systems	meets	user	
expectations,	that	they	comply	to	norms	and	that	they	work	to	specification.97	Roske	suggests	that	
two	validating	methods	will	be	used	for	AWS	deployment.98	Formal	validation	methods	will	be	
based	upon	a	deductive	review	of	the	new	system	to	establish	a	mathematical	proof	that	the	system	
is	working.	The	deployment	challenge	here	is	the	complex	requirement	for	complex	(and	accurate)	
translation	of	the	AWS’	entire	properties	into	a	formal	mathematical	language.	Testing	validation	
methods	will	instead	use	inductive	processes	to	infer	that	the	AWS	is	working	based	on	a	
representative	number	sample	of	test	cases.	Du	notes	that	AWS	testing	is	hamstrung	by	the	limited	
amount	of	available	test	data	and	appropriately	broad	‘simulated	input	scenarios’.	He	also	identifies	
that	‘formal’	methods	of	validation	rely	upon	the	embedding	of	sufficient	logical	conditions	into	
AWS’	state	specifications:	An	example	is	a	Czech	Airbus	overrunning	the	runway	in	1992	because	
its	logical	condition	was	that	its	brakes	should	be	released	when	its	wheels	were	not	turning,	
caused	in	this	case	by	a	layer	of	runway	ice,	and	leading	Du	to	conclude	that	‘no	magic	solutions	
exist	yet	to	tackle	such	an	underlying	problem	behind	such	software	development’.99	The	oversight	
challenge	is	a	weak	proof	of	each	model’s	correctness.		

	
Additional	V&V	challenges	will	impact	AWS	deployment.	In	particular,	Kot	highlights	what	is	

termed	the	‘state-space	explosion	problem’,	the	AWS’	ever-larger	decision	space	and	the	
corresponding	increase	of	options	at	its	disposal.100	In	this	case,	it	becomes	impossible	to	foresee	
possible	event	combinations	that	could	lead	to	system	failure.		A	second	challenge	is	noted	by	
Boulanin	and	Verbruggen,	authors	of	the	SIPRI	report,	whereby	AWS’	ML	basis	will	presumably	
require	‘automatic	reparameterisation	and	partial	reprogramming’	of	the	entire	weapon	system	
after	every	learning	iteration:101	Each	time	the	AWS	learns	something	new,	its	performance	and	
correctness	will	need	to	be	revalidated.	A	further	testing	issue	across	all	deployment	models	relates	
then	to	weapon	specification.	While	testing	conventional	software	involves	confirmation	that	
behaviour	matches	the	manufacturer’s	descriptors	in	the	case	of	every	possible	input,	the	likely	
‘connectionistic’	software	that	will	comprise	AWS	processes,	notes	Kassan,	‘comes	with	no	[ready]	
specifications	and	instead	is	expected	to	learn	patterns	or	act	like	a	natural	system’.102	Validation	is	

																																																								
96	Sydney	Freedberg,	‘Streamlined	MV-SS	Maintenance’,	Breaking	Defense,	5	February	2018	
<https://breakingdefense.com/2018/02/streamlined-mv-22-maintenance-from-70-osprey-types-down-to-
5/?utm_source=hs_email&utm_medium=email&utm_content=60470967&_hsenc=p2ANqtz--Xu8INgREBr-
YhTJmbRVeXy27_N9SZ9JPZQr4grwHsYyP--
GM_lxTQHRDrX5AM1UrpLsLF8NPRcVjPO4KBvlHvzR9F4w&_hsmi=60470967>	[accessed	6	February	2018].		
97	S	Russell	and	others,	‘Research	priorities	for	robust	and	beneficial	artificial	intelligence’,	Future	of	Life	Institute,	
Boston,	(2015)	<https://futureoflife.org/data/documents/research_priorities.pdf>,	pp.	108-10.	
98	Vincent	Roske	and	others,	‘Autonomous	System	Challenges	to	Testing	and	Evaluation’,	National	Defense	Industry	
Association	test	and	evaluation	conference,	(March	2012)	
<https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2012/TEST/13782_Roske.pdf>,	‘Conference	pack’.		
99	Dr	Hongbo	Du,	School	of	Computer	Science,	Buckingham	University,	in	conversation	with	the	author,	January	2019.	
	
100	Martin	Kot,	‘The	State	Explosion	Problem’,	unpublished	thesis,	2003,	p.	1	
<http://www.cs.vsb.cz/kot/down/Texts/StateSpace.pdf>.		
101	Boulanin	and	Verbruggen,	p.	70.	
102	Inferred	from:	Kassan,	‘AI	gone	awry:	futile	quest	for	artificial	intelligence’,	The	Skeptics	Society	and	Skeptic	
Magazine,	undated,	p.	3	<https://www.skeptic.com/reading_room/artificial-intelligence-gone-awry/>	[accessed	14	
September	2016].		



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 281 | P a g e  

 
 

therefore	challenging	exactly	because	of	the	circular	networks	that	underpin	AWS	behaviour.103	
SIPRI’s	conclusion	is	similarly	clear.	As	autonomous	systems	become	‘more	intelligent,	interactive	
and	capable	of	adapting	to	complex	and	dynamic	environments,	it	becomes,	practically	and	
financially,	infeasible	to	continue	to	test	all	ranges	of	imports	to,	and	possible	states	of,	the	
system’.104	Anderson	and	Waxman	concur,	concluding	that	the	number	of	variables	comprising	
AWS	scripting,	prototyping	and	testing,	its	refining,	version	control,	updates,	patching	and	
distribution	makes	any	testing	of	AWS	software	problematic.105	On	this	basis,	foreseeable	V&V	
methodology	only	appears	fit	for	purpose	for	non-learning	machine	systems	operating	in	
understood	and	static	environments	where	the	overall	design	of	the	weapon	system	is	understood	
by	technicians.		
	

Mindful	of	potential	high-regret	outcomes,	AWS	testing	and	validation	must	be	‘red-teamed’	
whereby	an	independent,	properly	resourced	group	with	an	adversary’s	mindset	challenges	the	
AWS	at	all	phases	of	concept	evaluation,	development,	simulation	and	deployment.106	In	AWS,	V&V	
is	also	complicated	given	that	rules	of	engagement	must	be	common	across	weapon	variants,	cross-
border	and	standardized.	It	must	also	be	in	place	in	advance	of	that	deployment	and	not	‘learned’	
by	experience.	AWS’	programmers	must	consider	policies	and	regulations	arising	from	a	myriad	of	
‘appropriate	authorities’	that	are	complex,	lack	incentives	to	act	quickly	and,	being	multi-
jurisdictional,	are	frequently	in	conflict.107	Brat	and	Jonsonn	thus	question	the	practical	value	of	
AWS	‘planners’	(the	weapon’s	mission	and	flight	plan)	given	that	certain	deployed	systems	may	
need	to	lodge	in	advance	(and	have	approved)	detailed	battle-space	intentions	in	what	is	a	very	
large	‘state	space’.108	Nguyen	similarly	posits	that	appropriate	V&V	techniques	need	to	be	in	place	
just	to	verify	for	inconsistencies,	ambiguities	and	incompleteness,	a	dynamic	exercise	that	will	need	
to	be	undertaken	at	multiple	levels	(including	output	from	the	AWS’	executive,	functional,	
integration	and	decision	layers	as	well	output	arising	from	the	interaction	and	collaboration	of	
these	layers).109	That	autonomous	agents	will	rarely,	if	ever,	base	action	selection	on	exact	values	
from	their	sensors110	further	complicates	the	V&V	process.111	Finally	to	this	validation	point,	AWS	
will	require	sophisticated	and	real-time	V&V	in	order	to	search	internally	for	possible	electronic	or	
mechanical	failure	that	might	impair	performance.	The	challenge	is	that	commercial	parties	in	the	
AWS’	procurement	chain	have	little	incentive	to	devote	resources	to	such	testing.	In	this	vein,	

																																																								
103	See,	generally:	Chapter	8	(Software).		
104 Boulanin	and	Verbruggen,	p.	69.	It	should	be	noted	that	this	problem	is	not	exclusive	to	autonomous	weapon	systems	
but	it	is	applicable	across	all	machine	autonomy. 
105	Simple	financial	metrics	are	likely	to	limit	innovation	in	this	field;	in	2006	the	US	DoD	had	completed	its	Sniper	
Return	platform	but	software	verification	and	testing	has	prevented	the	technology	from	being	deployed	(cit.	Noel	
Sharkey,	in	conversation	with	the	author,	25	July	2017). 
106	US	Department	of	Defense,	Defense	Science	Board,	p.	19.	
107	Department	of	Defense,	‘Unmanned	Systems	Integrated	Roadmap	FY2013-2038’,	p.	82;	For	maritime	autonomous	
systems	alone	see:	US	Coast	Guard,	Navigation	Safety	Advisory	Council,	1972	International	Regulations	for	the	
Prevention	of	Collisions	at	Sea.	For	systems	that	fly,	see	FAR,	FAA,	and	the	ICAO.	
108	Guillaume	Brat	and	Ari	Jonsonn,	‘Challenges	in	verification	and	validation	of	autonomous	systems’,	USRA/RIACS,	p.	5	
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.1234&rep=rep1&type=pdf>.	
109	Cu	Nguyen	and	others,	‘Evolutionary	testing	of	autonomous	software	agents’,	Autonomous	Agents	and	Multi-agent	
Systems,	25.2,	(2012)	<https://nms.kcl.ac.uk/michael.luck/resources/aamas09d.pdf>	p.	7.	
110	Michael	Fisher	and	others,	‘Verifying	Autonomous	Systems’,	Communications	of	the	ACM,	56,	9,	(September	2013),	
pp.	84-93.		
111	US	Department	of	Defense,	Defense	Science	Board,	p.	30.	
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commentators	note112	a	clear	gap	in	technical	literacy	to	deliver	an	appropriately	robust	regime.113	
Given	that	unsupervised	weapons	are	complex	systems	with	emergent	practices	and	variable	
outcomes	(‘what	we	must	test)	rather	than	traditional	systems	(‘what	we	test’).114	

	
The	conclusion	for	this	thesis	is	that	MHC	is	required	to	bridge	what	will	be	an	enduring	gap	

between	verifiable	execution	of	AWS’	specifications	(the	correctness,	reliability	and,	as	above,	
verification	of	the	weapon’s	controls)	and	that	software’s	ability	to	assess	battlefield	conditions	
(generally,	the	context	underlying	each	engagement)	in	which	these	specifications	must	apply.115	
While	simulated	testing	of	AWS	may	attempt	to	assess	such	‘correctness’,	the	fact	of	CACE	
demonstrates	that	AWS	testing	cannot	assure	reliability	under	each	condition	of	use,	requiring	
instead	the	fail-safe	of	MHC	in	all	uses	of	machine	violence.116	This	is,	moreover,	all	but	recognised	
by	the	US	Department	of	Defense’s	current	Directive	and	its	stipulation	that	facility	exist	for	
‘terminating	engagements	or	seeking	additional	human	operator	input	before	continuing	the	
engagement’.117	As	AWS	are	deployed	in	adversarial	environments,	the	challenge	is	that	these	
weapons	will	encounter	situations	that	their	designers	and	others	from	the	AWS	Delivery	Cohort	
would	never	have	considered.118	It	is	for	this	reason	that	MHC	is	required	to	mitigate	such	
circumstances	in	conjunction,	of	course,	with	a	deployment	condition-precedent	that	AWS	
‘gracefully	vitiate’	in	cases	of	malfunction.119	

																																																								
112	Chatham	House	conference,	Autonomous	Weapons,	February	2014.	
113	Alan	Hobbs	and	others,	‘Human	Challenges	in	the	Maintenance	of	Unmanned	Aerial	Systems’,	FAA	and	NASA	report,	
(May	2006)	<https://humansystems.arc.nasa.gov/publications/UAV_interimreport_Hobbs_Herwitz.pdf>,	pp.	9-10,	pp.	
10-16	and	pp.	16-18.		
114	Fil	Macias,	‘The	Test	and	Evaluation	of	Unmanned	and	Autonomous	Systems’,	International	Test	and	Evaluation	
Association,	ITEA	Journal,	29-4,	(2008),	388.	
115	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	lawful	
autonomy’,	p.	5.	
116	CACE	refers	to	Change	Anything,	Change	Everything.	See:	Chapter	7	(Firmware),	specifically:	7.1	(‘Sources	of	Technical	
Debt’).		
117	Department	of	Defense	Directive,	‘Autonomy	in	Weapon	Systems’,	para.	4.	Unhelpfully,	the	Directive	is	not	clear	in	its	
definition	of	autonomous	and	semi-autonomous	systems	but	at	least	the	document’s	thrust	is	unambiguous.	
118	US	Air	Force,	‘Autonomous	horizons;	system	autonomy	in	the	air	force	–	a	path	to	the	future	–	human-autonomy	
teaming’,	Office	of	the	Chief	Scientist,	AF/ST	TR	15-01,	(June	2015),	p.	6.	
119	See:	Chapter	4	(Deployment),	specifically:	4.7	(‘Operations	and	causes	of	failure’).		
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11. 	Conclusion	

This	work	has	sought	to	identify	and	then	assess	challenges	to	the	deployment	of	autonomous	
weapons.	In	so	doing,	the	thesis’	structure	is	divided	equally	between	analysis	of	non-technical	and	
technical	impedimenta.1	For	the	purposes	of	this	conclusion,	these	constraints	are	now	classified	
broadly	as	soft	challenges	(the	contextual	and	the	behavioural)	and	hard	challenges	(the	technical	
and	the	systemic).	This	is	an	important	distinction	as	two	divergent	characteristics	drive	this	thesis’	
conclusions.	The	first	is	the	breakneck	pace	of	battlefield	change2	while	the	second	is	the	constancy	
of	man’s	role	in	battlefield	activities.3	As	observed,	after	all,	by	Liang	and	Xiangsui	in	Unrestricted	
Warfare,	the	relative	roles	of	soldiers	and	their	weaponry	are	currently	in	‘unprecedented	flux’.4	
This	inference	is	central	to	this	thesis.	As	noted	by	Brooks	(and	setting	aside	definitions	of	‘war’),	
the	processes	of	war	and	violence	still	require	human	participation	notwithstanding	that	the	
attacks	of	9/11	may	demonstrate	that	‘you	don’t	need	soldiers	to	start	a	war’	(irregular	
combattants	simply	hijacked	civilian	airliners	‘with	nothing	more	lethal	than	boxcutters’).5	The	
assumption	that	such	ostensibly	opposing	characteristics	–	breakneck	technical	development	
versus	the	enduring	involvement	of	man	in	war’s	base	acts	–	fuse	together	is	supported	by	General	
Sir	Richard	Barrons,	former	Commander	of	Joint	Forces	Command,	in	his	October	2017	op-ed	for	
Wired	Magazine:	‘A	peaceful	generation	in	Europe	does	not	change	what	war	is,	yet	the	character	of	
conflict	–	how	war	is	fought	–	always	changes	as	thinking	and	technology	advances’.6	It	is	therefore	
a	key	premise	that	the	use	of	technology	in	battlespaces	actually	remains	a	basic	human	endevour	
and	one	that	is	based	upon	basic	human	engagement.	As	such,	it	follows	that	any	core	of	future	
military	advantage	(here,	the	adoption	of	autonomy	across	battlefield	processes)	will	occasion	a	
step-change	in	what	is	already	a	long-standing	trend	of	integration	between	humans	and	machines	
in	appropriate	war	fighting	systems,	each	bespoked	to	outperform	the	opponent	but	still	requiring	
enduring	human	coordination	in	that	process.7	As	Scharre	points	out,	‘the	winner	of	the	robotics	
revolution	will	not	be	who	develops	this	technology	first	or	even	who	has	the	best	technology,	but	
who	figures	out	how	best	to	use	it’.8	While	technical	challenges	will	undoubedly	temper	AWS	

																																																								
1	First,	non-technical	impedimenta:	Chapter	2	(Context);	Chapter	3	(Drivers)	on	drivers	to	adoption	and	deployment;	
Chapter	4	(Deployment)	on	current	practices	and	likely	pathways	to	the	removal	of	human	supervision	in	engagements	
(Chapter	4);	Chapter	5	(Obstacles)	on	legal	and	other	obstacles	in	front	of	such	adoption	Second,	technical	impedimenta:	
Chapters	6	and	7	(Wetware	and	Firmware)	on	architectural	challenges,	Chapter	8	(Software)	on	control	issues;	Chapter	
9	(Hardware)	on	likely	equipment	deficiencies.	
2	This	is	covered	in	Chapter	3	(Drivers),	in	particular:	Section	3.2	(‘Technology	creep	and	dual-use	technology	trends’).	
3	Chapter	2	(Context),	specifically:	2.2:	(‘The	role	of	Context	in	AWS'	argument')	and	2.4	(‘Defence	Planning’).	
4	Qiau	Liang	and	Wang	Xiangsui,	Unrestricted	Warfare,	(USA:	PLA	Literature	and	Arts	Publishing,	1999)	p.	15	
<http://www.c4i.org/unrestricted.pdf>		
5	Rosa	Brooks,	‘Can	There	Be	War	Without	Soldiers?’,	Foreign	Policy,	(15	March	2016)	
<http://foreignpolicy.com/2016/03/15/can-there-be-war-without-soldiers-weapons-cyberwarfare/>	[accessed	12	
December	2017].	
6	Richard	Barrons,	‘The	nature	of	war	is	changing.	It’s	time	governments	caught	up’,	Wired	Magazine,	14	October	2017	
<http://www.wired.co.uk/article/innovation-will-win-the-coming-cybersecurity-war-richard-barrons-opinion>	
[accessed	12	June	2018].	
7	Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	Human-Teaming	models’).		
8	Paul	Scharre,	‘Robotics	on	the	Battlefield	Part	I:	Range,	Persistence	and	Daring’,	Centre	For	A	New	American	Security,	
(May	2014)	p.	9	<https://s3.amazonaws.com/legacy.cnas.org/publications-
pdf/CNAS_RoboticsOnTheBattlefield_Scharre.pdf>.	
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deployment,	this	is	less	to	do	with	the	difficulties	of	LOAC	compliance	and	more	around	human	
anxieties	about	combat	optimisation,	about	battlefield	efficiency,	practical	priorities	and	how	
humans	decide	war	is	best	prosecuted.9		
	

This	conclusion	is	divided	into	two	sections.	The	first	rehearses	the	broad	context	of	AWS	
deployment	in	order	now	to	evaluate	the	challenges	that	emerge	in	the	thesis’	nine	chapters.	The	
second	reviews	the	nature	of	these	challenges	in	order	to	identify	common	threads	before	knitting	
these	constraints	together	in	order	to	establish	a	broad	finding	from	the	overall	thesis.10	Such	
structure	(and	this	concluding	chapter)	therefore	requires	certain	restatement	of	critical	findings	in	
order	to	weight	evidence.	It	is	also	based	on	a	set	of	assumptions	that	require	reaffirmation.	In	this	
vein,	a	tipping	point	throughout	is	the	engagement	limits	that	must	determine	AWS	behaviour	and	
an	‘ability	to	err	when	confronted	by	situations	outwith	their	originally-intended	design	
parameters’.11	Taken	to	its	conclusion,	this	requires	Meaningful	Human	Control	(MHC)	to	remain	in	
the	engagement	sequence,	thereby	recognising	what	is	that	class	of	‘broadly’	autonomous	
weaponry	where	individual	componentry	can	of	course	act	without	human	supervision	but	subject	
always	to	ultimate	human	fail-safe	and,	in	targeting,	human	permission	in	the	authorisation	of	
target	selection.	Such	definition	acknowledges	that	when	autonomous	componentry	fails	it	will	
tend	either	to	fail	catastrophically	or	will	require	human	attention	at	points	of	highest	stress.	
Indeed,	Cordingley’s	embrace	of	MHC	is	based	upon	two	premises.	First,	it	is	difficult,	he	notes,	to	
foresee	in	practical	terms	why	the	Design	Cohort	would	rule	out	a	proven	overrule	mechanism	in	
otherwise	autonomous	weapons.	Second,	he	points	to	legal	and	operational	imperatives	which	
make	delegation	of	significant	tasks	to	AWS	by	the	local	commander	thoroughly	improbable	
without	that	same	override	mechanism	being	in	place.12	But	this	too	has	unexpected	consequences.	
In	such	circumstances,	that	human	operator	may	either	be	insufficiently	engaged	or	inadequately	
trained	to	meet	the	legal,	performance	and	trust	thresholds	identified	above.13	It	is	a	generally	
accepted	heuristic	that	operators	skills	which	go	unpracticed	tend	to	wither.14	While	this	condition	
is	a	fact	of	machine	operation,	statutory	implementation	of	MHC	(as	discussed	below)	will	de-risk	
this	by	ensuring	consequential	oversight.		

	
The	analysis	also	finds	that	human	oversight	must	be	retained	in	order	to	monitor	emergent	

effects	of	autonomous	componentry,	to	intervene	when	circumstances	exceed	machine	capabilities	
(and	thence	for	the	unsupervised	weapon	to	avoid	inappropriate	action)	as	well	as,	of	course,	to	
take	over	in	situations	where	human	capabilities	empirically	trump	machine	weaknesses.15	MHC	
would	also	ensure	that	AWS	conforms	to	this	analysis’	conclusion	that	discriminatory	capacity	is	a	
legal	precondition	for	initiating	violence	and	that	the	judgement	that	this	entails	is	intrinsic	to	(and	

																																																								
9	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’).	
10	See	below:	Section	10.1	(‘The	nature	of	Deployment	Challenges’).		
11	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	32.	
12	Major-General	Patrick	Cordingley,	Commander,	7th	Armoured	Brigade,	Gulf	War,	1991,	in	conversation	with	the	
author,	January	2019.	
	
13	Chapter	5	(Constraints),	specifically:	5.6	(‘Behavioural	constraints’).	
14	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	32.	
15	Michael	Hanlon,	‘’Super	Solders’:	The	Quest	for	the	Ultimate	Human	Killing	Machine’,	The	Independent,	(17	November	
2011),	paras.	1-3	and	5	of	15	<https://www.independent.co.uk/news/science/super-soldiers-the-quest-for-the-
ultimate-human-killing-machine-6263279.html>	[accessed	10	December	2017].	
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must	remain	with)	human	battlefield	commanders.16	Several	arguments,	both	behavioural	and	
technical,	inform	this	deduction.	At	its	most	basic,	appropriate	human	involvement	will	(in	the	near	
and	medium-term	of	this	thesis	from	the	present	until	2040)	be	required	simply	to	manage	the	
array	of	potential	forms	as	well,	of	course,	as	the	degree	of	autonomy	employed	by	each	such	
remote	system,	to	supervise	the	wide	permutations	in	which	these	weapons	will	perform	in	human-
machine	teams	and,	crucially,	to	oversee	the	dynamic	conditions	of	each	such	use.17	AWS,	after	all,	
may	be	deployed	in	many	forms	from	large	inter-continental	bombers	to	undersea	vehicles,	from	
swarming	micro-planes	to	small	ground	robots.18	Similarly,	use	of	AWS	might	involve	long	or	short	
duration	with	static,	attacking,	defensive	or	loitering	battle	roles	in	a	variety	of	sea,	land,	air	or	
cyberspace	environments,	all	executable	with	variable	payloads	that	require	coordination	and	
optimisation.	In	addition,	human	oversight	must	manage	operational	variability	arising	through	
compound	target	selection	processes,	the	speed	of	those	processes	as	well	as	the	degree	of	weapon	
autonomy	given	that	not	all	autonomous	tasks	are	equal	in	their	significance,	in	their	complexity	or	
their	risk.19	It	is	thus	barely	useful	to	denote	a	weapon	as	‘autonomous’	without	referring	(and	
understanding)	the	specific	battlefield	routine	that	is	being	made	autonomous	and	the	human	
soldier’s	relationship	to	that	routine.20		

	
Several	characteristics	form	this	thesis’	conclusions	on	AWS’	technical	infeasibility	and	the	

ensuing	requirement	for	human	oversight	in	the	delivery	of	all	force.	First	is	the	unexpected	
endurance	of	context	as	a	constraint	to	AWS	deployment.	This	is	variously	evidenced.21	An	
accelerating	‘art	of	the	possible’,	whereby	societal	and	procurement	expectations	around	battlefield	
technologies	move	further	away	from	what	is	achievable,	continues	to	influence	the	landscape	in	
which	unsupervised	weapons	are	being	considered.22	This	is	labelled	by	Sabin	as	‘a	revolution	in	
expectation’.23	The	thesis’	technical	analysis	suggests,	however,	that	such	belief	is	not	convincing.24	
Instead,	more	important	are	those	behavioural,	organizational	and	structural	considerations	which	
must	first	align	before	human	supervision	can	practically	be	removed	from	lethal	engagements.	A	
finding	is	that	such	alignment	remains	absent.	To	exploit	properly	developments	in	military	AI	and	
robotics	(and	in	order	then	to	embed	new	autonomous	componentry	into	battlefield	practice),	
State-parties	must	first	adopt	aggressive	experimentation,	concept	development	and	organisational	
refinement.	This	is	unlikely	to	occur	given	forecast	procurement	and	training	practices.25	AWS	

																																																								
16	Chapter	5	(Constraints),	specifically:	5.1	(‘The	Geneva	Convention	and	Laws	of	Armed	Combat’)	and	5.5	(‘Article	36	and	
LOAC-complaint	weaponry’).	See	also:	Lucy	Suchman,	‘Situational	awareness’,	p.	8.	
17	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.vi.	For	deployment	models,	see:	Chapter	4	(Deployment)	
specifically:	4.3	(‘Machine	and	Human	Teaming	Models’).			
18	This	is	explored	in	detail	in	Chapter	4	(Deployment).		
19	For	a	detailed	discussion	on	targeting’s	ramifications	to	AWS	feasibility,	see:	Chapter	10	(Oversight),	specifically:	10.1	
(‘Nature	of	deployment	challenges’).		
20	Indeed,	several	applications	of	military	autonomy	are	non-controversial	including	unmanned	logistics	and	
reconnaissance.	
21	See:	Chapter	2	(Context).		
22	Peter	Lee	and	Steve	Wright,	‘Killer	Drones:	Be	Afraid	or	Ignore	the	Hype?’,	Dleano.lu	blog,	(4	December	2017)	
<http://delano.lu/d/detail/news/killer-drones-be-afraid-or-ignore-hype/163173>.	[accessed	12	August	2018].	
23	Professor	Sabin,	Professor	of	Strategic	Studies	at	KCL,	in	discussion	with	the	author,	29	July	2017.		
24	See:	Chapters	6-9	(Wetware,	Software,	Firmware	and	Hardware),	specifically:	6.5	(‘Missing	pieces’)	and	7.1:	(‘Sources	of	
technical	debt’).		
25	See:	Chapter	4	(Deployment),	specifically:	4.2	(‘Planning	tools’)	and	4.7	(‘Operations	and	causes	of	failure’).		
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deployment,	moreover,	may	be	particularly	sensitive	to	such	prerequisite;	extensive	trialling	will	be	
unusually	significant	in	order	to	build	operators’	trust	in	what	is	unpredicatable	autonomous	
componentry,	to	establish	best	teaming	models,	to	anchor	the	technologies’	attraction	within	its	
users	and	to	provide	datasets	that	are	central	to	subsequent	performance	improvement.	Finally	to	
this	point,	a	weapon	which	is	networked	should	always	be	more	valuable	than	one	which	is	
independent	and,	in	the	case	of	AWS,	operating	on	its	own.26	By	overtly	connecting	each	weapon	to	
his	network,	the	commander	can	ensure	that	the	munition	‘becomes	part	of	a	broader	system	that	
can	harness	sensor	data	from	other	ships,	aircrat	and	satellites	to	assist	its	targeting’.27	Under	that	
commander’s	direct	control	it	is	less	likely	to	be	wasted,	redundant	or	mis-tasked.	Such	benefits	are	
broadly	entrenched:	As	emphasised	by	US	Deputy	Secretary	of	Defense	Work,	only	by	exercising	
direct	control	over	military	assets	will	humans	‘inside	the	battle	network	have	tactical	and	
operational	overmatch	against	their	enemies’.28		

	
Such	analysis	does	not,	however,	imply	that	military	affairs	(and,	specifically,	military	

procurement)	are	immune	from	disruption.	In	this	vein,	pace	of	change	has	clear	deployment	
ramifications.29	The	nature	of	this	change,	specifically	the	advent	of	creditable	unmanned	systems,	
means	that	fitness	for	purpose	in	States’	current	battlefield	capabilities	can	no	longer	be	assumed.30	
Low-cost,	swarming	UAVs	provide	an	obvious	example31:	The	UK’s	two	aircraft	carriers	currently	
under	construction	may	each	cost	some	£3.5	billion	but	the	risks	posed	to	them	by	swarming	low-
cost	drones	lead	commentators	to	suggest	that	they	may	only	be	usable	within	a	comprehensive	
and	therefore	multi-national	taskforce.32	The	example	highlights	a	further	anomaly	given	the	
seeming	asymmetry	between	autonomous	defenders	(who	must	negate	every	vulnerability	and	
challenge)	and	autonomous	attackers	(who	just	have	to	land	one	hit).	This	is	particularly	the	case	in	
the	case	of	autonomous	cyber	attack.33	Technical	transformation,	moreover,	has	other	imprecise	
(but	nevertheless	still	enduring)	consequences	for	AWS	deployment.	Empirically,	analysis	suggests	
that	it	encourages	reflexive	policy-making,	both	militarily	and	governmental,	as	parties	stuggle	to	
keep	up	with	the	pace	of	change	evidenced	above.34	In	the	case	of	AWS,	leaving	engagement	
decisions	to	a	machine	removes	a	time	buffer	that	had	previously	existed	as	a	brake	on	the	
impulsive	making	of	choices.	But	this	same	speed	of	change	also	fosters	institutional	paralysis.	To	
this	point,	autonomy,	its	battlefield	uses	and	likely	configuration	remain	difficult	to	define35	and	it	is	
this	same	imprecision	that	confounds	discussion	on	a	statutory	framework	(perhaps	around	MHC)	

																																																								
26	This	is	also	relevant	when	considering	groupings	of	allies.	The	US,	notes	Cordingley,	would	expect	to	be	a	key	player	
in	such	alliances	in	which	it	participates.	
	
27	Paul	Scharre,	Army	of	None,	Norton	Publishing,	2018,	p.	55.	
28 Ibid.,	p.	99. 
29	Sputnik	News,	‘Missile	Defence	Systems	Could	be	Made	Obsolete	by	Small	Powerful	Laser	Weapons’,	Sputnik,	(8	April	
2017)	<https://sputniknews.com/military/201704081052451679-pentagon-lasers-make-missiles-obsolete/>.		
30	This	flux	characteristic	is	evidenced	in	Chapter	3	(Drivers),	specifically	its	introduction,	and	Chapter	4	(Deployment),	
also	in	that	chapter’s	introduction.		
31	See:	Chapter	4	(Deployment),	specifically:	4.6	(‘Swarming	models’).		
32	Steve	Hawkes,	‘Britain’s	two	new	aircraft	carriers	may	never	be	able	to	go	to	war	alone	as	‘UK	forces	unable	to	
support	them’’,	Sun	newspaper,	1	May	2018	<https://www.thesun.co.uk/news/6189612/aircraft-carriers-unable-
defend-unassisted/>	[accessed	12	June	2018].		
33	Autonomous	cyber	is	considered	in	3.5	(‘Operational	drivers’).		
34	See:	Chapter	2	(Context),	specifically:	2.2	(‘The	role	of	context	in	AWS'	argument').		
35	For	a	discussion	on	definitions	and	challenges	arising	see:	Chapter	1	(Introduction).		
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which	has	been	taking	place	at	the	UN’s	CCW	since	2012.36	Also	to	this	point,	the	analysis	confirms	a	
general	difficulty	around	the	prediction	of	how	AWS	might	be	deployed,	under	what	conditions	and	
with	what	effect.	The	analysis	is	similarly	clear	that	policy	paralysis	around	the	issue	of	AWS	is	
sustained	by	existing	legal	frameworks,	both	IHL	and	IHRL,	being	empirically	unfit	for	purpose	in	
the	face	of	such	technical	innovation37;	it	is	unsurprisingly	difficult	to	‘shoehorn	independent	
weaponry	into	laws	of	armed	conflict	that	were	framed	in	the	1940s’	and	this	fosters	friction	and	
inertia.38	As	noted	by	the	ICRC’s	President	in	his	June	2018	address	to	HRW,	that	legal	framework	is	
already	under	unprecedented	strain	with	‘international	law	increasingly	being	viewed	by	parties	as	
a	matter	of	transaction	to	be	undertaken	transitorily	by	belligerent	parties	as	a	tool	of	barter’.39	It	is	
within	such	volatile	context	that	AWS	deployment	must	be	considered.		
	
	 While	it	is	arguable	that	most	difficult	challenges	identified	in	the	thesis’	technical	analysis	
may,	by	and	large,	be	solvable	over	time	on	an	individual	basis40,	it	is	rather	the	cumulative	and	
portfolio	nature	of	required	innovation	(which,	after	all,	must	together	be	available)	that	primarily	
constrains	AWS	deloyment.	This	thesis	piggybacks	on	Beard’s	conclusion	that	AWS	constituencies	
(here,	the	lawyer	and	activist,	the	politician	and	voter,	the	businessman	and	the	soldier)	require	
that	unsupervised	weapons	be	straightaway	reliable.41	In	common	with	most	precedent	weapon	
systems,	Monagham	notes	that	AWS	should	work	as	expected	from	first	deployment.42	In	particular,	
it	is	unacceptable	that	independent	weapons	be	adopted	on	any	trial	or	approximating	basis.43	It	is	
the	enduring	challenge	of	predictability	that	best	highlights	what	is	a	cross-over	existing	between	
AWS’	hard	and	soft	deployment	constraints:	Empirically,	a	conclusion	might	even	be	that	technical	
challenges	always	distill	down	into	contextual,	soft	constraints	on	AWS	deployment.	The	decision	to	
deploy	unsupervised	weaponry	will,	after	all,	be	itself	a	fundamentally	human	judgment	(and	one,	
therefore,	which	is	owned	by	that	specific	human	agency)	resolving	how,	when	and	to	what	extent	

																																																								
36	UN	Office	at	Geneva,	‘The	Convention	for	Certain	Conventional	Weapons’,	UNOG	
<https://www.unog.ch/80256EE600585943/(httpPages)/4F0DEF093B4860B4C1257180004B1B30?OpenDocument>	
[accessed	12	January	2018].	See	also:	Ariel	Conn,	‘The	Problem	of	Defining	Autonomous	Weapons’,	The	Future	of	Life	
Institute,	(30	November	2016)	<https://futureoflife.org/2016/11/30/problem-defining-autonomous-weapons/>	
[accessed	17	April	2018].	
37	Geneva	Academy,	‘Autonomous	Weapon	Systems	under	International	Law’,	Geneva	Academy	Briefing,	8,	(November	
2014)	<https://www.geneva-academy.ch/joomlatools-files/docman-
files/Publications/Academy%20Briefings/Autonomous%20Weapon%20Systems%20under%20International%20Law
_Academy%20Briefing%20No%208.pdf>	p.	27.	
38	ICRC,	‘ICRC,	IHL	and	the	Challenges	of	Contemporary	Armed	Conflicts’,	28th	International	Conference	of	the	Red	Cross	
and	Red	Crescent,	(December	2003)	<https://casebook.icrc.org/case-study/icrc-ihl-and-challenges-contemporary-
armed-conflicts>	[accessed	13	July	2018].	
39	Peter	Maurer,	President	of	ICRC,	Human	Rights	Watch	Annual	Forum,	Swiss	Re,	Zurich,	8	June	2018	and	subsequently	
in	conversation	with	the	author.		
40	See:	ARM	Holdings	Publication,	‘AI	Today,	AI	Tomorrow:	awareness,	acceptance	and	anticipation	of	AI:	A	global	
consumer	perspective’,	ARM	Northstar,	(2018)	<https://pages.arm.com/rs/312-SAX-488/images/arm-ai-survey-
report.pdf>.		
41	Jack	Beard,	‘Autonomous	Weapons	and	Human	Responsibility’,	University	of	Nebraska-Lincoln,	College	of	Law	Faculty	
Publications,	196,	(2014)	
<https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=http://scholar.google.co.uk/&httpsredir=1&article=119
6&context=lawfacpub>,	pp.	622-625.	
	
42	Timothy	Monagham,	‘Military	Fault	Tolerant	Requirements’,	Foundation	of	Dependable	Computing	(Office	of	Naval	
Research	Advanced	Book	Series’,	283	(1994),	Abstract.	
	
43	See:	Chapter	7	(Firmware),	specifically:	7.2	(‘Firmware	ramifications	of	learning	methodologies’).	Also:	General	Sir	
Richard	Barrons,	Commander	Joint	Forces	Command	(Retd.)	in	conversation	with	the	author,	23	June	2016.	
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autonomy	is	employed	in	individual	lethal	engagements.	This	human	factor	is	as	true	for	polities	
seeking	legal	compliance	(State	signatories	to	international	laws)	as	it	is	for	the	non-state	actor	
whose	motivations	may	have	much	less	to	do	with	established	LOAC.		

 The nature of deployment challenges 
	
While	analysis	of	AWS	ise	complicated	by	it	being	a	‘future-oriented	argument’44,	the	thesis	
nevertheless	recognises	a	portfolio	of	drivers	accelerating	the	deployment	of	faster,	less	expensive,	
more	numerous	independent	weapons.	This	is	a	broadly-held	phenomenon	and	the	analysis	
evidences	its	wide	appeal.45	Such	catalysts	are	facilitated	by	autonomy’s	dual	uses	with	several	
agencies,	predominantly	commercial,	funding	research	into	technologies	that	are	immediately	
relevant	to	AWS	development.46	The	introduction	of	autonomous	componentry	into	weapons	and	
then	an	ensuing	path	for	those	weapons	becoming	properly	autonomous	also	fits	with	established	
models	on	how	disruptive	adoption	of	technology	takes	place.47	Etzioni	and	Etzioni	note	a	broadly	
held	view	that	embrace	of	weapon	autonomy	will	tend	to	give	combat	advantage	and,	after	
achieving	a	tipping	point	in	its	adoption,	it	will	rapidly	transfigure	what	are	currently	manned	
battlefield	practices.48	Indeed,	the	academic	concern	might	instead	be	the	absence	of	parties	arguing	
against	the	promise	of	AWS’	improved	performance	(specifically,	unsupervised	weapons’	potential	
of	broad	role	extension	and	the	Delivery	Cohort’s	prospect	of	moving	from	a	focus	on	mission	
outcome	to	mission	performance),	the	promise	of	enhanced	ethical	function	as	well	as	significent	
cost	reduction	(while	still	achieving	force	multiplication).	As	noted,	by	Singer,	‘the	focus	on	military	
robotics	is	to	use	robots	as	a	replacement	for	human	losses’.49	This	thesis’	analysis	suggests,	
however,	that	not	all	of	these	drivers	are	evidence-based.	While	soldiers	may	not	be	the	perfect	
fighting	unit,	published	data	on	their	ethical	behaviour	while	fighting	is,	in	particular,	clearly	
problematic.50	Nor,	note	Reeves	and	Johnson,	are	States’	pursuit	of	autonomous	technologies	as	
irrefutable	as	often	reported.51	Scharre	highlights	what	he	sees	as	a	‘muddled	picture’	in	militaries’	
adoption	of	robotic	weaponry,	underscoring	instead	the	US’	‘intensive	cultural	resistance…	to	
handing	over	combat	jobs	to	uninhabited	systems’.52	Plotting	cause	and	effect,	moreover,	is	
																																																								
44	Richard	Moyes,	Article	36,	‘War	without	oversight;	challenges	to	the	deployment	of	autonomous	weapons’,	
Buckingham	University	Humanities	Research	Institute	Seminar,	13	May	2018.	
45	Sean	Gallagher,	‘The	Air	Force	Wants	Weapons	Faster,	Cheaper	as	it	Sees	Writing	on	the	Wall’,	ARS	Technica,	31	July	
2014,	generally	<https://arstechnica.com/tech-policy/2014/07/air-force-wants-weapons-faster-cheaper-as-it-sees-
writing-on-wall/>	[accessed	2	August	2018].	See	generally:	Chapter	3	(Drivers).		
	
46	Boulanin	and	Verbruggen,	pp.	20-21	and	pp.	105-111.	
47	See:	Chapter	4	(Deployment),	specifically:	4.3	(‘Machine	and	human-teaming	models’).	See	also:	Tony	Seba,	‘Clean	
Disruption’.	
48	Amitai	Etzioni	and	Oren	Etzioni,	‘Pros	and	Cons	of	Autonomous	Weapon	Systems’,	pp.	72-74.	See	also:	Chapter	3	
(Drivers),	specifically:	3.2	(‘Technology	Creep	and	Dual-Use	Technology	Trends’)	and	3.3	(‘Structural	and	procurement	
drivers’).	
49	Singer,	Wired	for	War,	p.	418.	
50	Megan	Thompson	and	Rakesh	Jetly,	‘Battlefield	Ethics	Training:	Integrating	Ethical	Scenarios	in	High-Intensity	
Military	Field	Exercises’,	European	Journal	of	Psychotraumatology,	(August	2014)	
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138704/>.		
51	Shane	Reeves	and	William	Johnson,	‘Autonomous	Weapons:	Are	you	sure	that	these	are	killer	robots	–	Can	we	talk	
about	it’,	The	Army	Lawyer,	25,	(2014),	p.	25.	See	also:	John	Brock,	‘Why	the	United	States	Must	Adopt	Lethal	
Autonomous	Weapon	Systems’,	School	of	Advanced	Military	Studies,	Leavensworth,	(2017),	pp.	1-12	
<http://www.dtic.mil/dtic/tr/fulltext/u2/1038884.pdf>.	
52	Scharre,	Army	of	None,	p.	61.	Scharre	also	highlights	a	US	disconnect	between	‘ambitious	dreams	for	robots	in	a	
variety	of	roles’	and	the	budgetary	realities	within	those	departments.	‘Without	funding,	these	visions	are	more	
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particularly	complex	in	AWS	deployment	given	that	relevant	precedents	do	not	yet	exist.	Favourite	
measurement	metrics,	moreover,	often	have	multiple	interpretations.	In	the	case	of	cost	drivers,	the	
US	Army’s	outlay	on	personnel	may	appear	statistically	bloated	in	comparison	to	the	manpower	
budgets	of	Russia	or	China53	but	this	may	ignore	skills	and	other	qualitative	advantages	arising	
from	such	allocation.54		
	

Given	such	AWS	drivers	and	general	difficulties	of	prediction,	a	danger	for	this	analysis	
remains	being	blindsided	by	the	future.55	Dystopian	representations	such	as	Slaughterbots56	and	As	
Much	Death	As	You	Want57	suggest,	after	all,	a	potential	nearness	to	broad	AWS	deployment.58	This	
unexpectedly	complicates	the	role	of	AWS’	Delivery	Cohort.	States’	procurement	of	autonomy	may	
be	influenced	by	unfounded	developments	in	neighbouring	nations’	arsenals,	by	the	pyschological	
impact	promised	by	quite	unfeasible	autonomous	technologies,	by	potential	escalation	that	AWS	
deployment	in	a	bordering	State	might	create59	as	well	as	by	a	more	nebulous	‘fear-of-missing-
out’.60	The	analysis	therefore	concludes	that	two	field	models	are	particularly	relevant	for	AWS	
deployment.	First,	there	is	on-going	(but	often	individually	imperceptable)	replacement	by	
machines	of	specific	tasks	that	were	previously	undertaken	by	humans	leading	to	erosion	of	human	
supervision	through	incremental	delegation	of	battlefield	tasks	and	engagement	routines	to	those	
machines.	The	second	model	is	evidenced	by	the	fit	between	adoption	of	weapons	autonomy	and	
Seba’s	disruptive	S-curve	model61;	the	methodology	of	his	model	(specifically,	tipping	points	
leading	to	non-linear	adoption)	looks	an	applicable	archetype	for	AWS	deployment	
notwithstanding	the	prerequisite	that	all	AWS	componentry	must	first	be	available	if	human	
supervision	is	feasibily	to	be	removed.62	It	is	in	this	vein	that	the	thesis’	technical	analysis	focuses	
upon	the	enduring	nature	(and	significance)	of	‘technology	holes’	that	remain	including,	inter	alia,	

																																																								
hallucinations	than	reality.	They	articulate	goals	and	aspirations	but	do	not	necessarily	represent	the	most	likely	future	
path’.	
53	Sydney	Freedberg,	‘US	Defense	Budget	Not	That	Much	Bigger	Than	China,	Russia’,	Breaking	Defense,	(22	May	2018)	
<https://breakingdefense.com/2018/05/us-defense-budget-not-that-much-bigger-than-china-russia-gen-milley/>	
[accessed	3	June	2018].		
54	Helena	Careiras	and	Celso	Castro	(eds.),	‘Qualitative	Methods	in	Military	Studies;	Research	Experiences	and	
Challenges’,	Routledge,	(2013),	generally.	
55	Notwithstanding	AWS’	infancy,	a	Google	search	on	the	term	‘autonomous	weapon’	returns	around	9,650,000	
references	[accessed	17	July	2018].		
56	Source:	<https://www.youtube.com/watch?reload=9&v=9CO6M2HsoIA>	[accessed	12	January	2018].	
57	Lucien	Crowder,	‘As	Much	Death	as	you	Want’,	Bulletin	of	the	Atomic	Scientists,	(2	December	2017)	
<https://thebulletin.org/2017/12/as-much-death-as-you-want-uc-berkeleys-stuart-russell-on-slaughterbots/>	
[accessed	12	January	2018].	See	introduction	to	Chapter	2	(‘Context’)	for	a	detailed	discussion	of	this	theme.		
58	For	discussion	of	possible	timelines,	see:	introduction	to	Chapter	2	(Context).	
59	Economist,	‘Autonomous	Weapons	are	a	Game-changer’,	Economist	Magazine,	(25	January	2018)	
<https://www.economist.com/special-report/2018/01/25/autonomous-weapons-are-a-game-changer>	[accessed	23	
July	2018].	
60	Andreas	Kirsch,	‘Autonomous	Weapons	will	be	Tireless,	Efficient	Killing	Machines	–	and	there	is	no	way	to	stop	them’,	
Quartz	News,	23	July	2018	<https://qz.com/1332214/autonomous-weapons-will-be-tireless-efficient-killing-machines-
and-there-is-no-way-to-stop-them/>	[accessed	2	August	2018].		
61	Introduction	to	Chapter	3	(Drivers),	specifically	the	discussion	of	Seba’s	adoption	model.	
62	Chapter	3	(Drivers,	specifically	that	chapter’s	introduction)	and	Chapter	5	(Obstacles,	specifically:	5.7	‘Proliferation	
constraints’).		
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capabilities	around	goal	setting,	value	setting,	ATR	and	achoring.63		
	

It	is	also	its	focus	on	deployment’s	outwardly	soft	constraints	that	underpins	this	thesis’	
conclusions,	in	particular	its	emphasis	on	existing	legal	frameworks	(and	how	unsupervised	
weapons	might	fit	within	these	structures)	and	whether	the	Delivery	Cohort	can	empirically	‘risk	
such	deployment’.64	This	analysis	identifies	several	difficulties.65	The	legal	corpus	largely	dates	
from	before	unsupervised	weapons	had	been	practically	conceived	and,	if	not	repeatedly	unfit	for	
purpose,	the	law	at	least	requires	unhelpfully	contentious	interpretation	around	AWS	deployment.	
The	analysis	also	highlights	that	international	statutory	bodies	dealing	with	this	framework	are	
generally	ineffective	and	without	appropriate	authority	either	to	decide	or	enact	decisions.	This	
creates	uncertainty	and	impunity.	Legal	review	of	AWS	deployment	has	two	elements.	The	analysis	
assumes	that	relevant	law	is	addressed	to	humans	not	machines.	Weapons,	after	all,	are	incapable	
of	agency	in	respect	of	the	laws	of	armed	combat.	The	issue	therefore	becomes	the	dilution	of	
human	agency	as	attack	characteristics	get	ever	wider.66	Although	a	truism,	battlefield	complexity	
(in	the	case	of	AWS,	unprecedented	elements	of	speed,	innovation	and	multiple	agency)	means	that	
conditions	of	use	can	(for	purposes	of	coding)	never	be	appropriately	absolute.67	Just	as	this	
analysis	evidences	the	difficulty	of	writing	machine	code	that	can	deal	with	ambiguity68,	it	is	also	
problematic	to	link	weapon	coding	to	what	is	a	clearly	imperfect	legal	framework.	Accountability	
(especially	in	instances	of	weapon	error	and	unattributable	use,	herein	‘plausible	deniability’)	is	
particularly	problematic	as	is	the	degree	of	compliance	with	which	such	weapons	can	adhere	to	
LOAC.69	To	this	point,	the	analysis	identifies	several	continua	that	individually	impact	AWS	
deployment	(defence	versus	offence,	manpower	versus	firepower,	history-repeats	versus	history-
is-change,	politics	versus	technology	et	al).	It	is	possible	to	construct	one	further	continuum	with,	at	
one	end,	State-signatories	to	international	obligations	and,	at	the	other,	non-State	actors	with	their	
quite	different	drivers	to	adoption.	The	deployment	equation	is	thus	a	question	of	balance	between	
ethical	and	moral	obstacles	versus	legitimate	uses	of	autonomous	technologies	and,	the	conclusion	
of	this	thesis,	effective	human	intervention	to	ensure	proper	compliance.	Within	this	equation,	the	
matter	of	what	happens	when	machines	out-perform	people	in	elements	of	the	engagement	
sequence	(which	is	already	evident)	is	no	longer	necessarily	the	correct	question.	The	issue	is	less	
whether	that	weapon	component	performs	better	than	a	human	operator,	but	rather	the	level	of	
risk	arising	for	the	Delivery	Cohort	in	situations	when	(not	if)	that	autonomous	weapon	fails.70	
	

																																																								
63	These	are	key	sections	in	the	analysis’	technical	consideration	of	AWS	feasibility.	In	particular,	see:	8.3	(‘Utility	
function’),	8.5	(‘Anchoring	and	goal	setting	issues’),	8.6	(‘Value	setting	issues’)	and	8.7	(‘Action	selection	issues’).	‘	
64	Major-General	Patrick	Cordingley,	in	conversatrion	with	the	author,	January	2019.	Also:	Paul	Scharre,	‘Autonomous	
weapons	and	operational	risk’,	Centre	for	a	New	American	Security,	(2016),	pp.	8-18	
<https://www.files.ethz.ch/isn/196288/CNAS_Autonomous-weapons-operational-risk.pdf>.	
	
65	Chapter	5	(Constraints),	specifically:	5.1	('Geneva	Convention	and	the	Laws	of	Armed	Combat’)	and	5.5	(‘Article	36	and	
LOAC-compliant	weaponry’).		
66	Chapter	5	(Constraints),	specifically:	5.6	(‘Behavioural	Constraints’)	and	5.8	(‘Ethical	and	accountability	constraints’).			
67	Chapter	9	(Hardware),	specifically:	9.1	(‘Hardware	and	Sensor	Fusion	Issues	for	AWS’).		
68	Chapter	8	(Software),	specifically:	8.1	(‘Coding	methodologies’).	
69	See:	Chapter	5	(Constraints),	specifically	5.8	(‘Ethical	and	accountability	constraints’).	
70	For	discussion	on	the	role	of	the	Delivery	Cohort,	see:	Chapter	6	(Wetware),	specifically:	6.3	(‘The	AWS’	Delivery	
Cohort’).		
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In	assessing	the	nature	of	these	challenges,	the	thesis	concludes	that	outsize	weighting	should	
be	allocated	to	the	role	of	context	in	considering	AWS	deployment.	Is	it	better	to	‘field	good	soldiers	
and	excellent	kit’	or	instead	to	field	excellent	soldiers	with	merely	good	equipment?71	Cordingley,	
for	instance,	is	quite	clear	that	good	soldiers	are	the	enduringly	key	asset.72	This	point	of	balance	is	
nevertheless	the	subject	of	Chapters	Four	(Deployment),	Five	(Obstacles)	and	Ten	(Oversight)	in	
order	to	mediate	between	the	relative	value	of	technology	and	that	of	human	supervision.	The	
analysis	agrees	with	Cordingley	and	finds	that	the	excellent	soldier	remains	the	Cohort’s	best	
battlefield	asset,	uniquely	placed	to	counter	unexpected	adversarial	activity	on	the	battlefield,	to	
capitalise	upon	weaknesses	and	to	neutralise	newly	unsupervised	platforms	(Boot’s	concept	of	
nullification),	possibly	undertaking	this	task	through	‘quite	low-tech	responses’.73	A	contribution	of	
this	analysis	is	then	to	identify	and	frame	AWS’	deployment	challenges	within	this	context.	In	this	
case,	AWS’	invariable	ML	spine	means	that	adversarial	feint	and	‘non-cooperative	targets’74	will	
likely	obfuscate	machine	attribution	as	well	as	degrade	the	ATR	effectiveness,	a	prerequisite	to	
AWS	deployment.75	Also	important	to	the	Cohort’s	deployment	decision	is	the	finding	that	
battlefield	innovation	rarely	confers	lasting	advantage	and,	in	instances	of	deploying	‘low	tech	that	
works	well	enough’,	adds	further	uncertainty	to	the	decision	to	deploy	independent	weapons.76	In	
deciding	battlefield	priorities,	it	is	human	endevour,	human	appraisal	and,	notes	Clark,	soldiers’	
broad	knowledge,	skills	and	experience	(KSEs)	that	must	empirically	shape	AWS	deployment.77	On	
the	one	hand,	politicians	may	be	drawn	to	autonomous	solutions	that	offer	bloodless	and	remote	
engagement	(minimizing	friendly	casualties	and	and	their	media	costs).78	Conversely,	that	same	
politican	will	likely	be	knocked	back	by	a	‘Tesla	moment’79,	by	structural	impediments	(the	
unanimity	model,	for	example,	that	underpins	NATO	decision-making	and,	in	the	case	of	the	UN’s	
CCW,	tends	to	dilute	decisions	to	an	inappropriately	low	common	denominator	in	order	to	achieve	
consensus)	as	well	as,	crucially,	by	popular	pressures	(the	restrictions	on	bombing	raids	that	were	
applied	by	politicians	in	Kosovo	after	public	opprobrium).80	It	is	also	far	from	certain	that	strict	
weapon	autonomy	will	empirically	remove	per	se	human	participation	from	combat	sequences;	
current	pre-cursors	(such	as	Predator	and	Reaper	drone	operations)	already	require	some	ten	
operators	to	staff	each	drone,	a	further	twenty	operators	needed	to	manage	the	unit’s	sensors	and	

																																																								
71	General	Sir	Richard	Barrons,	Commander	Joint	Forces	Command	(Retd.)	in	conversation	with	the	author,	23	June	
2016.	
72	Major-General	Patrick	Cordingley,	in	conversation	with	the	author,	September	2018.		
	
73	Chapter	2	(Context),	specifically:	2.6	(‘The	role	of	situational	awareness	and	uncertainty).	
74	Here,	those	targets	that	do	not	broadcast	their	location	and	require,	therefore,	active	sensing	from	engaging	
munitions	in	order	to	find	those	targets.	This	is	complex.	In	particular,	building	algorithms	that	can	automatically	
decipher	SAR	output	(synthetic	aperture	radar	analysis)	will	likely	be	inappropriately	error-prone.	
75	Chapter	9	(Hardware),	generally.	Also,	Appendix	One;	‘Case	study:	Automatic	Target	Recognition’.		
76	Chapter	2	(Context),	specifically:	2.4	(‘Defence	Planning’).	
77	Professor	Lloyd	Clark,	in	conversation	with	the	author,	June	2018.	Clark	here	notes	that	the	development	of	both	
individuals	and	teams	will	require	reassessment	under	AWS	deployment.	Similarly,	those	soldiers	will	require	new	
competencies,	attributes	and	very	different	models	of	leadership.	See:	Chapter	10	(Oversight),	generally.		
	
78	Chapter	3	(Drivers),	specifically:	3.5	(‘Operational	Drivers’).		
79	Danny	Yadron	and	others,	‘Tesla	Driver	Dies	in	First	Fatal	Crash	While	Using	Autopilot	Mode’,	Guardian	newspaper,	1	
July	2016	<https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-
musk>	[accessed	12	January	2018].	In	this	instance,	research	into	autonomous	cars	was	postponed	after	public	clamour	
following	a	fatal	accident	involving	that	company’s	technology.		
80	Benjamin	Lambeth,	NATO’s	Air	War	for	Kosovo:	A	Strategic	and	Operational	Assessment,	(USA:	Santa	Monica,	CA,	
2001),	p.	185.	
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scores	of	intelligence	analysts	to	sift	through	resulting	sensor	data.81	As	noted	by	Scharre,	‘it’s	a	
cumbersome	way	to	operate	[and]	not	a	cost-effective	strategy	if	they	require	ever	larger	numbers	
of	highly	trained	(and	expensive)	people	to	operate	them’.82		

	
Analysis	of	AWS	deployment	must	distinguish	between	the	nature	of	war	and	the	character	of	

war.	This	is	similarly	not	clear-cut.	Mewett’s	definition	of	war	(‘[w]ar’s	nature	is	violent,	interactive	
and	fundamentally	political.	Absent	any	of	these	elements,	what	you’re	looking	at	is	not	war	but	
something	else’)	now	appears	rooted	in	traditional	views	on	old	fashioned	inter-State	conflict.83	Just	
as	a	key	dynamic	is	human	endevour,	this	requires	that	decision-making	around	AWS	deployment	
must	be	correspondingly	‘human’,	bringing	together	the	broadest	selection	of	parties	that	includes	
politicians,	commanders,	those	with	commercial	interests	as	well	as	those	advocating	for	the	third	
sector	and	faith	organisations.	Mewett	similarly	distinguishes	between	war	and	warfare.	If	warfare	
is	merely	the	way	that	war	is	made,	then	AWS	deployment	can	properly	be	treated	as	simply	
another	means	of	warfare.84	A	conclusion	from	this	behavioural	review	is	that	changes	in	the	
character	of	war,	here	defined	by	AWS	deployment,	will	actually	be	incremental	and	shaped	
primarily	by	the	manner	in	which	the	deploying	party	is	organised.	Such	synthesis	accords	with	
Ricks’	Future	of	War	and	his	argument	that	emerging	technologies	continue	to	change	war’s	
character	by	a	gradual	blurring	of	lines.	In	the	case	of	AWS,	this	may	be	the	removal	of	weapon	
supervision	compromising	existing	and	previously	stable	legal	structures,	upending	pockets	of	
influence	between	public	and	private,	between	military	and	the	intelligence	community	and,	as	
occasioned	by	AWS’	‘plausible	deniability’,	even	by	an	‘eroding	[of]	traditional	conceptions	of	
sovereignty’.85	Such	complexity	is	then	reflected	in	the	difficulties	experienced	by	defence	planners	
whose	commission	is	to	ensure	minimum	regret	in	times	of	rapid	technical	change	and	the	rapid	
erosion	of	these	previously	well-understood	relationships.86		
	

The	analysis	places	considerable	weight	on	the	complex	role	of	the	AWS’	Delivery	Cohort,	an	
artifice	used	throughout	the	thesis	to	describe	the	layers	of	interested	parties	involved	in	the	
decisions	and	implementation	of	AWS.87	This	Cohort	(a	vortex,	after	all,	of	human	consituents	in	

																																																								
81	See:	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’).			
82	Scharre,	Army	of	None,	p.	16.	
83	Christopher	Mewett,	‘Understanding	War’s	Enduring	Nature	Alongside	its	Changing	Character’,	War	on	the	rocks,	
Texas	National	Security	Network,	(21	January	2014)	https://warontherocks.com/2014/01/understanding-wars-
enduring-nature-alongside-its-changing-character/,	generally.	Mewett	links	this	point	to:	Clausewitz	‘Spirit	of	the	Age;	
Understanding	War’s	Enduring	Nature	Alongside	its	Changing	Character’,	para.	3	of	9.	See	also:	Chapter	1	(Introduction),	
specifically:	1.2	(‘Introduction	to	key	concepts’).		
84	For	a	review	of	RMA,	see	introductions:	Chapter	1	(Introduction)	and	Chapter	2	(Context).	
85	Thomas	Ricks,	‘The	Future	of	War	(II):	As	the	Nature	of	War	Changes,	the	Familiar	Dividing	Lines	of	our	World	are	
Blurring	across	the	Board’,	Best	Defense,	Foreign	Policy	Magazine,	15	January	2015	
<http://foreignpolicy.com/2014/01/13/the-future-of-war-i-a-new-america-project-looking-at-21st-century-conflict/>.	
Suarez’	doctrine	of	‘plausible	deniability’	is	a	case	here	in	point.	
86	Introduction	to	Chapter	2	(Context).	
87	As	above,	the	term	Delivery	Cohort	is	used	as	a	device	to	convey	the	parties	involved	in	delivering	the	deployment	of	
AWS	and	will	include,	inter	alia,	the	following	taskings:	neurophysiologists	to	coordinate	AWS	networks,	psychologists	
to	coordinate	learning	and	cognition,	biologists	for	adaption	strategies,	engineers	for	control	routines,	logisticians,	
roboticists,	electrical	specialists,	behaviorists,	politicians,	NGOs,	sociologists,	lawyers,	company	directors,	weaponists,	
military	tacticians,	manufacturers,	professionals	involved	in	miniaturization,	simulation,	configuration,	coding,	power	
supply	and	modularity,	specialists	in	sensors,	in	distributed	and	decentralized	routines,	ethicists,	specialists	in	tooling	
and	calibration.	
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AWS	processes)	faces	several	challenges,	not	least	on	accountibility,	on	audit,	testing	and	validation,	
on	delivering	on	expectations	as	well	as	ensuring	ongoing	process-improvement	throughout	AWS’	
adoption.	Cohort	challenges	are	both	fundamental	(for	instance,	which	normative	theory	should	
underpin	AWS	deployment?)	and	operational	(how	might	seventeen	hundred	pages	of		NATO’s	
recent	Rules	of	Engagement	be	captured	in	AWS’	framework?).	These	soft	considerations	are	
difficult	to	weigh.	The	nature	of	AWS	challenges	requires,	after	all,	that	the	Cohort	factor	in	
proliferation	concerns	as	well	as	methods	to	counter	escalation.	It	must	account	for	economic	
considerations,	especially	given	allocation	issues	that	arise	from	States’	assignment	of	scarce	
combat	resources.88	The	hardware	comprising	AWS	will	clearly	be	expensive.89	The	likely	bespoke	
nature	of	individual	AWS	will	require	small	production	runs	of	unique	parts,	few	of	which	can	be	
bought	off	the	shelf.90	Similarly,	Nesnas	points	out	that	costs	cannot	therefore	be	recovered	over	
long	manufacturing	runs.	AWS	will	also	suffer	from	supply	chain	constraints:91	States	cannot	save	
money	by	acquiring	AWS	components	globally	and	having	their	weapons	assembled	in	lower-cost	
but	possibly	adversarial	neighbours.	Other	matters	confronting	the	Cohort	simply	resist	definition.	
In	reviewing	of	deployment	obstacles,	these	factors	include	navigating	a	likely	lower	threshold	to	
parties’	initiation	of	violence	once	AWS	are	fielded	as	well	as	the	potential	phenomenon	of	
‘ubiquitous	engagement’.92	As	argued	by	Suarez,	implementing	AWS	risks	accelerating	
‘destabilizingly	[and]	unattributable	violence’	given	the	ease	with	which	deploying	parties	can	fall	
back	on	‘plausible	denial’	when	tasking	independent	and	remote	weaponry.93	
	

The	nature	of	AWS	challenges	is	clearly	shaped	by	the	role	of	history	and	by	lessons	that	arise	
from	other	deployment	precedents.	The	appeal	of	disruptive	weaponry,	after	all,	is	to	break	out	of	
the	development	cycle	that	is	typical	of	mature	technologies	whereby	even	material	investment	in	
legacy	systems	leads	only	to	incremental	improvement.	Indeed,	the	analysis	does	not	disagree	that	
modest	investment	in	autonomous	technologies	will	deliver	disproportionate	advantage	in	military	
capability.	In	so	doing,	it	concurs	with	the	UK	MOD’s	2018	Joint	Concept	note	which	unequivocally	
states	the	‘utility	of	AI	and	robotics	already	outstrips	that	of	the	many	mature	technologies	which	
are	often	in	many	orders	of	magnitude	more	expensive	to	incrementally	improve’.94	Again,	
however,	this	relationship	is	ambiguous.	The	statement	ignores	palpable	legal,	ethical,	operational	
and	human	constraints	to	‘whole-weapon’	adoption	of	AWS.	Setting	aside	specific	context,	instances	
abound	of	illogical	(and	unsustainble)	use	of	battlefield	technology.	In	March	2017,	US	Army	
General	Perkins	revealed	that	the	US	had	used	a	thyree	million	dollar	Patriot	missile	against	a	
quadcopter	that	cost	two	hundred	dollar	from	Amazon.95	Shortly	after,	it	emerged	that	Houthi	
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rebels	in	the	Yemen	had	used	low-cost	drones	to	disable	state-of-the-art	Saudi	Patriot	missile	
systems.96	Such	anlysis	reiterates	that	technical	advance	(here,	the	facility	for	remote	and	
independent	engagement)	is	rarely	the	enduring	preserve	of	wealthy	nations	as	evidenced	by	the	
use	of	sophisticated	UAV	by	all	sides,	both	State	and	non-state,	in	recent	conflicts	in	Syria,	Iraq	and	
Ukraine.97	Regardless	of	its	precise	definition	and	quite	separate	from	the	adoption	of	autonomy,	
disruption	is	clearly	evident	across	all	aspects	of	battlefield	practice98	with	lessons	from	recent	
conflicts	involving	UAS	suggesting	that	certain	assumptions	around	battlecraft	and	battlefield	
assets	are	already	hollow.99	An	example	might	be	air	supremacy	and	developments	across	aerial	
hardware:	‘Even	where	enemy	aircraft	have	been	neutralised,	being	observed	and	targeted	by	
remote	and	automated	systems	must	be	continually	treated	as	a	risk’.100	
	

A	conclusion	is	also	that	continued	human	involvement	in	lethal	force	is	necessary	from	a	
moral	perspective.	After	all,	no	written	agreement	can	prevent	parties	from	deploying	AWS	if	they	
desire	it.	Indeed,	Strohn	notes	the	degree	to	which	this	is	essentially	‘a	debate	of	choice’	for	‘soft,	
Western	States’	that	is	likely	to	fall	away,	for	instance,	in	any	war	for	genuine	survival.101	The	
argument,	however,	is	also	that	machines	can	display	neither	empathy	nor	remorse.	In	a	truism	that	
is	argued	by	the	Holy	See,	only	humans	can	ever	feel	‘the	emotional	weight	and	psychological	
burden	of	choosing	to	kill	another	human	being’.102	The	analysis	therefore	agrees	with	Heyns’	
conclusion	that	weapons	autonomy	‘precludes	a	moment	of	deliberation	in	those	cases	where	it	
may	be	feasible’.103	Empathy,	concludes	Human	Rights	Watch,	can	act	as	a	check	on	killing	but	only	
if	humans	have	control	over	who	to	target	and	when	to	fire.104	Although	contentious,	additional	
context	on	the	matter’s	moral	angle	is	provided	by	Krishnan	whereby	‘taking	away	the	inhibition	to	
kill	by	using	robots	for	the	job	could	weaken	the	most	powerful	psychological	(sic)	and	ethical	
restraint	in	war;	war	would	be	inhumanely	efficient	and	would	no	longer	be	constrained	by	the	
natural	urge	of	soldiers	not	to	kill’.105	This	thesis’	conclusion	that	MHC	remain	a	prerequisite	in	
lethal	engagement	therefore	accords	with	Wylie	in	that	battlefield	control	fundamentally	concerns	
people106;	only	boots	on	the	ground	(or,	practically,	their	equivalent)	empirically	provide	a	
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consistent	and	sustainable	authority	to	‘exert	control	over…	a	populace	or	other	critical	
resource’.107		

	
This	moral	imperative	provides	a	potent	component	to	the	argument	for	MHC.	Borenstein,	

Director	for	The	Centre	of	Ethics	and	Technology	at	Georgia	Tech	University,	posits	that	the	mere	
prospect	of	fighting	wars	without	military	fatalities	removes	an	important	deterrent	to	waging	
war.108	This	dynamic	is	incorporated	in	the	current	call	for	debate	by	the	UK’s	MoD	to	‘ensure	that	
we	do	not	risk	losing	our	controlling	humanity	and	make	war	more	likely’.109	This	thesis’	analysis	
arrives	at	a	similar	conclusion	but	from	different	angles.	The	long-held	adage	that	a	State	may	be	
more	inclined	to	wage	war	if	it	calculates	that	the	threat	to	its	own	troops	has	been	reduced	may	be	
materially	accelerated	by	AWS	deployment.110	In	that	case,	‘States	with	roboticised	forces	might	
behave	more	aggressively	[whereby]	robotic	weapons	alter	the	political	calculation	for	war’.111	In	
this	vein,	removing	weapon	supervision	would	tend	to	posit	particularly	poor	outcomes	on	
civilians.112	The	commander	who	is	able	to	deploy	AWS	(and	who	also	believes	his	own	forces	are	
less	prone	to	attrition)	is	likely,	argues	Sharkey,	to	place	insufficient	weight	on	threats	to	civilian	
life.113	Absent	MHC,	an	upshot	is	that	the	burden	of	armed	conflict	is	shifted	from	soldiers	to	
civilians	given	military	personnel,	replaced	by	machines,	are	no	longer	physically	on	the	ground	
making	decisions	and	controlling	lethality.114	In	engagements,	after	all,	casualties	remain	inevitable	
whoever	is	located	in	a	battlespace,	the	more	so	if	AWS	deployment	will	lead,	as	noted	by	HRW,	to	
‘disproportionate	civilian	suffering’.115	Can,	asks	Clark,	war	actually	be	‘won’	without	man-on-man	
engagement	and	what	may	be	the	psychological	impact	of	AWS	deployment?116	This	highlights	a	
separate	challenge	concerning	the	weighting	of	AWS’	ethics	and	morality,	specifically	the	difficulty	
of	untangling	criticisms	that	are	aimed	at	weapons	autonomy	versus	those	which	are	really	
directed	at	the	basic	act	of	war.	As	noted	by	Scharre,	‘what	does	it	mean	to	say	that	someone	has	the	
right	to	life	in	war	when	killing	is	the	essence	[sic]	of	war?’117	Empirically,	it	is	humans	who	kill	in	
war,	whether	using	unsupervised	weapons,	remote	weapons	from	a	distance	or	up	close	and	
personally.		

	
The	nature	of	AWS’	deployment	challenge	thus	becomes	increasingly	behavioural,	based	upon	

the	constancy	and	trustworthiness	of	individual	weapon	componentry	as	well	as	the	combination	of	
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108	Jason	Borenstein,	‘The	Ethics	of	Autonomous	Military	Robots’,	Studies	in	Ethics,	Law	and	Technology,	2,	1,	(2008),	p.	
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such	autonomous	componentry.	For	this	reason,	much	of	this	thesis’	analysis	focuses	on	why	
removing	human	supervision	will	materially	degrade	weapon	predictability.118	As	noted	by	
Wallach,	‘[i]n	the	evaluation	of	weaponry,	predictability	means	that	within	the	task	limits	for	which	
the	system	is	designed,	the	anticipated	behaviour	will	be	realised,	yielding	the	intended	result’.119	
An	upshot	for	AWS	deployment	is	captured	in	Wendell’s	conclusion	whereby	‘an	unanticipated	
event,	force	or	resistance	can	alter	the	behaviour	of	even	highly	predictable	systems’.120	In	systems	
theory,	complex	adaptive	systems	(here,	unsupervised	weapons)	‘have	tipping	points	that	lead	to	
fundamental	reorganisation’	which	will	materially	complicate	the	processes	of	the	battlefield	
commander.121		An	inescapable	characteristic	confronting	the	Cohort	(that	AWS’	emergent	
properties	will	be	intrinsically	difficult	to	predict	and	difficult	to	explain)	is	underpinned	by	Wirth’s	
rule	that	machine	complexity	increases	several	measures	quicker	through	software	development	
than	it	does	through	hardware	development.122	The	thesis’	technical	analysis	is	important	precisely	
because	it	evidences	the	link	between	AWS’	tight	coupling	and	system	brittleness	and	the	likely	
impact	of	these	features	on	operational	predictability.	The	issue	here	is	clarified	by	Du.	ML	
techniques	either	induce	‘explainable’	classifiers	or	‘blackbox-type’	style	classifiers	when	grading	
sensed	data.	The	former	provides	a	decision	outcome	but	also	the	reason	behind	that	decision	
(examples	here	being	decision	trees,	nearest	neighbour	and	rule-based	classifiers).	The	latter	also	
provides	a	decision	outcome	but	without	any	attendant	reasoning	(here,	the	neural	network).123	It	
therefore	fails	on	any	‘duty	to	explain’	that	is	a	component	of	properly	‘intelligence	based	systems’	
and	a	further	driver	for	MHC.	Indeed,	without	MHC,	this	will	also	be	visible	in	unintended	
interaction	between	weapon	components	given	the	general	absence	of	system	slack	(here,	human	
inability	to	intervene,	to	exercise	judgement,	to	‘bend’	rules	or	amend	system	behaviours).124	Given	
that	AWS	must	operate	where	‘chaos	[already]	makes	war	a	complex	adaptive	system	rather	than	a	
closed	or	equilibrium-based	system’	such	challenges	must	grossly	complicate	the	Cohort’s	
deployment	equation.125		

As	noted	by	Cummings,	an	automated	system	is	one	in	which	a	computer	‘reasons	by	a	clear	if–
then–else	and	therefore	rules-based	structure,	and	does	so	deterministically,	meaning	that	for	each	
input	the	system	output	will	always	be	the	same	(except	if	something	fails)’.126	The	model	here	is	
that	if	X	happens	then	the	weapon	will	do	Y.	AWS	autonomy,	however,	is	certain	to	be	non-

																																																								
118	Specifically,	the	thesis’	technical	analysis	in	Chapters	7	(Firmware),	8	(Software)	and	9	(Hardware),	but	also	its	
consideration	of	command	and	control	ramifications	in	Chapter	10	(Oversight).	See:	7.1	(‘Sources	of	technical	debt’)	and	
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120	Ibid.,	generally.	
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(‘The	Inevitability	of	Failure:	Complex	Systems	and	Normal	Accidents’)		
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deterministic	whereby	very	small	changes	to	inputs	can	produce	very	large	changes	to	outputs.127	
Instead,	the	AWS	will	reason	‘probabilistically	given	a	set	of	inputs,	meaning	that	it	makes	guesses	
about	best	possible	courses	of	action	given	sensor	data	input’.128	This	distinction	is	important	to	
understanding	AWS’	inherent	instability.	Unlike	an	automated	system,	the	autonomous	system	
cannot	produce	exactly	similar	behaviour	given	identical	inputs.	Instead,	it	is	inescapable	that	AWS	
deployment	must	produce	a	range	of	engagement	behaviours	and	it	is	this	variability	that	must	
empirically	limit	AWS	deployment	to	specific,	bounded	conditions.129	Machine	learning’s	ability	to	
detect	patterns	still	remains	dependent	upon	humans	with	human	interpretation	still	being	
generally	required	if	such	patterns	are	then	to	be	valuable.	Restating	these	relationships	is	
contextually	useful	precisely	as	they	amplify	where	(in	AWS	deployment)	human	operators	should	
be	making	informed,	conscious	decisions.	This,	however,	must	be	informed	by	what	remain	
practical	and	empirical	constraints	around	AWS	deployment.	For	this	reason,	the	analysis	
concludes	that	ambiguity	arising	from	incomplete,	noisy	battlefield	data	will	remain	a	largely	
remediless	phenomenon	that	undermines	reliable	deployment	of	AWS.130	Data	uncertainty,	after	all,	
will	arise	from	stale	representations	embedded	in	recently	deployed	systems	exacerbated	by	
compromised	communications	and	by	the	need	(and	its	effects)	of	filtering	and	weighting	sensed	
data	prior	to	the	weapon	initiating	violence.	Indeed,	Scharre	points	out	that	most	militaries	already	
possess	the	ability	to	disrupt	communications	and	contest	the	battlefield’s	electromagnetic	
spectrum.131	To	this	point,	spectrum	interruption	will	lead	to	unequivocal	data	being	the	battlefield	
exception.132		

The	key	architectural	constraint	to	AWS	deployment,	identified	by	Sharkey	and	others,	is	that	
machine	learning	(ML),	the	basic	technical	backbone	that	will	underpin	AWS	operation,	is	
‘fundamentally	unfit	for	the	purpose	envisaged	for	AWS	deployment’.133	It	is	for	this	reason	that	this	
thesis’	technical	review	focuses	squarely	upon	assessing	ML’s	contribution	to	this	faultline.134	This	
includes	incompatability	within	training	sets,	issues	of	data	dependency	and,	as	detailed	in	the	
analysis,	the	catch-all	(within	training	sets)	that	‘changing-anything-changes-everything’.135	The	
analysis	identifies	that	weapon	mutability	will	arise	from	the	choosing	and	modification	of	
description	parameters	that	are	used	to	train	weapon	behaviours	(‘parameter	profusion’).	It	will	be	
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131	Scharre,	Army	of	None,	p.	15.	‘According	to	CODE’s	technical	specifications,	developers	should	count	on	no	more	than	
50	kilobits	per	second	of	communications	back	to	the	human	commander,	essentially	the	same	as	a	56k	dial-up	modem	
circa	1997’.	
132	Sharlene	Andrijich	and	others,	‘The	ambiguity	problem	arising	in	multi-sensor	data	association’,	The	Australasian	
Journal	of	Combinatorics,	Maritime	Operations	Division,	27,	2003	
<https://ajc.maths.uq.edu.au/pdf/27/ajc_v27_p107.pdf>,	pp.	107-127.	
133	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
134	Chapter	6	(Wetware),	specifically:	6.4	(‘AWS	learning	architecture’).	Chapter	7	(Firmware),	specifically:	7.2	
(‘Firmware	ramifications	of	learning	methodologies’)	and	7.3	(‘Reasoning	and	cognition	methodologies’).	
135	For	the	discussion	on	CACE	(Change	Anything	Changes	Everything)	see:	Chapter	7	(Firmware),	specifically:	7.1	
(‘Sources	of	Technical	Debt’).	
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exacerbated	by	AWS’	real-time	requirement	for	data	scaling,	smoothing	and	cleaning,	by	necessary	
suppression	routines	as	well	as	by	the	need	to	dynamically	balance	subsequent	feedback	loops	
(AWS’	‘anchoring	problem’).136	People	(here,	the	Delivery	Cohort)	are,	moreover,	generally	poor	
predictors	of	behaviour	in	systems	that	rely	on	feedback	loops,	especially	around	the	risk	in	
situations	where	they	have	no	experience	(here,	prediction	bias).137	AWS’	ML	backbone	also	posits	
other	unexpected	vulnerabilities	for	AWS	deployment	including	ML’s	systemic,	inappropriate	
suppression	of	doubt,	its	broad	inference	of	causes	and,	therefore,	an	incongrous	narrowing	of	
battlefield	choices.	Crucially	for	this	thesis’	conclusions,	it	is	ML	processes	that	lead	to	machine	
code’s	inability	to	harness	context	or	situational	awareness	in	AWS	operation.138	As	reasoned	
above,	a	consequence	of	ML’s	inherently	approximating	processes	will	be	AWS’	inappropriate	
technical	basis	of	‘What	You	See	Is	All	There	Is’	(WYSIATI).139	Other	ML	attributes	contribute	to	this	
faultline	including	the	enduring	complexity	of	unlearning	routines,	temporal	and	other	data	
dependencies	as	well	as	ML’s	inability	to	capture	‘qualia’	in	weapon	routines.140	ML	also	requires	
quality	data	and	is	demonstrably	inappropriate	where	data	capture	is	brittle,	in	particular	when	
confronting	either	partial	patterns	or	events	not	previously	encountered.	This	is	also	noted	by	
Cummings	whereby	ML-based	systems	act	very	differently	in	scenarios	that	are	themselves	only	
slightly	different	from	each	other.141	It	is	these	consequences	of	ML’s	foundation	that	should	lead	
AWS’	Delivery	Cohort	to	question	the	practical	feasibility	of	AWS	deployment,	in	particular	the	
issue	of	setting	and	managing	weapon	goals,	managing	weapon	values	and	having	the	unsupervised	
weapon	adhere	to	a	dynamically	relevant	utility	function.142	An	adjunct	difficulty	is	identified	by	the	
UK’s	MOD	Joint	Concept	note	on	Human-Machine	Teaming	that	highlights	‘catastrophic	forgetting	
where	previous	algorithm	optimisations	or	skills	at	tasks	are	simply	lost	when	trained	on	new	tasks	
and	data’.143	Consequences	to	the	Delivery	Cohort	might	include	the	AWS	exhibiting	unexpected	
immobilization,	irrational	action,	unsuitable	aggression,	even	unexplainable	timidity.	The	thesis’	
overarching	deduction	is	therefore	informed	by	Cummings	whereby	‘as	uncertainty	grows,	these	
tools	become	less	useful’.144	The	prevalence	of	‘reliability	predictions’	in	procurement	programmes	
evidences	the	importance	of	dependability	in	combat	assets.145	Finally	to	this	point,	soft	challenges	
around	ML	should	not	be	overlooked	including	the	availability	of	qualified,	vetted	personnel	with	
appropriate	experience	to	understand	AI	and	AWS	processes.	Procurement	challenges	in	this	case	
include	the	maintenance	of	what	are	unstable	programmes	that	will	likely	display	a	wide	dispersion	

																																																								
136	Chapter	8.5	(Software),	specifically:	8.5	(‘Anchoring	and	goal-setting	issues’).			
137	Scharre,	Army	of	None,	p.	316.	
138	The	issue	of	verifying	ML	behaviours	is	well	illustrated	by	the	vulnerability	of	current	visual	object	recognition	AIs	to	
‘adversarial	images’.	As	noted	by	Scharre,	‘the	semi-technical	explanation	[here]	is	that	while	deep	neural	networks	are	
highly	non-linear	at	the	micro	level,	they	actually	use	linear	methods	to	determine	data	at	the	micro	level’.	Moreover,	
‘no	matter	how	many	fooling	images	the	AI	learns	to	ignore,	more	can	be	created’	(Scharre,	‘Army	of	None’,	pp.	180-185).	
139	Chapter	4	(Deployment),	specifically:	4.5	(‘Flexible	Autonomy’).	
140	Chapter	7	(Firmware),	specifically:	7.7	(‘Firmware	ramifications	of	learning	methodologies’).		
141	Professor	Missy	Cummings,	Director,	Humans	&	Autonomy	Laboratory,	Duke	University,	in	conversation	with	the	
author	(Chatham	House	conference;	Autonomous	Military	Technologies,	February	2014).	
	
142	See:	Chapter	8	(Software),	specifically:	8.3	(‘Utility	function’),	8.5	(‘Anchoring	and	goal	setting	issues’)	and	8.6	(‘Value	
setting	issues’).		
	
143	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	42.	
144	Cummings,	p.	8.	
145	Although	dated,	the	US	Navy’s	Handbook	of	Reliability	Prediction	(see:	Naval	Surface	Warfare	Centre,	(May	1992)	
<http://www.dtic.mil/dtic/tr/fulltext/u2/a273174.pdf>)	remains	a	relevant	reference	on	the	issue.		
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of	failure	rates	and	causes	notwithstanding	apparently	similar	components,	where	the	complexity	
of	AWS’	cause-and-effect	relationships	complicates	diagnoses	and,	given	such	weapons’	joint	
mechanical	and	electrical	componentry,	where	issues	of	loading,	operating	mode,	utilisation	rates	
and	glue	code	will	create	servicing	bottlenecks.	AWS	dependability,	moreover,	will	rely	on	reliable	
management	of	patches,	of	validation,	version	control	and	testing.	It	will	also	require	entirely	new	
protocols	to	govern	what	will	also	be	AWS’	unsupervised	supply	chains,	their	calibration	and	
configuration.	In	this	vein,	independent	weapons	must	be	capable	of	seamless	updating,	seamless	
replenishment,	logistics	and	maintenance,	all	of	which	will	in	turn	require	material	(and	unlikely)	
revision	of	military	organisations.	

AWS	operation	(and,	therefore,	its	behaviour)	must	be	based	on	pre-defined,	pre-programmed	
battlefield	physiognomies,	each	of	which	is	represented	by	individual,	idiosyncratic	ML	parameters.	
Together	these	factors	will	comprise	the	weapon’s	training	data	points	in	order	for	the	
unsupervised	machine	to	make	its	own	decisions.	The	deployment	challenge	is	that	the	majority	of	
such	factors	(reference	examples	are	listed	in	this	sentence’s	accompanying	footnote)	are	not	
definable,	are	often	an	imprecise	sum	of	other	factors	and	anyway	require	subjective,	volatile	
weighting	if	the	weapon’s	sunsequent	decision	is	to	be	appropriate.146	With	such	strict	bases	(a	
direct	consequence	of	ML’s	rigid	parameters),	AWS	behaviour	becomes	acutely	vulnerable	to	
adversarial	actions	designed	to	disturb	the	weapon’s	sensed	parameters	ahead	of	its	decision-
making.	Such	activities	might	actually	be	surprisingly	straightforward	and	borrow	from	Boot’s	
theory	of	nullification	touched	on	above	(a	can	of	paint,	some	rudimentary	disguise	or	other	
cursory	concealment).	They	will	include	more	sophisiticated	spoofing,	feint	and,	to	borrow	from	
Sun	Tzu,	enemy	activity	that	is	‘subtle	to	the	point	of	formlessness’.147	Autonomous	weapons	that	
are	based	upon	ML	cannot	then	rely	on	external	tuning	by	third	parties.		

	
While	not	all	weapon	unpredictability	may	have	lethal	consequences,	it	is	the	matter	of	trust	in	

both	operator	and	commissioner	(and	its	erosion)	that	this	analysis	finds	will	constrain	wholesale	
removal	of	human	supervision	in	weaponry.148	Trust	is	therefore	a	further	important	facet	in	this	
thesis’	conclusions,	involving	comfort	around	what	will	be	essentially	uncooperative	and	complex	
engineering	as	well	as	around	unpredictable	outcomes	that	are	not	replicable	across	subsequently	
similar	inputs.	In	the	same	vein,	the	analysis	notes	the	importance	of	creating	trust	through	
operator	familiarity	with	what	is	very	quickly	changing	technology.	As	highlighted	by	the	UK	MOD’s	
Human-Machine	Teaming,	such	‘trust	takes	on	greatly	added	significance	when	seeking	mass	

																																																								
146	TN	Dupuy,	Numbers,	Predictions	and	War:	Using	History	to	Evaluate	Combat	Factors	and	Predict	the	Outcome	of	
Battles,	(USA:	Bobbs-Merrill	Company,	NY,	1979),	generally.	Model	effect	factors	include	the	following	combat	variables,	
all	of	which	must	dynamically	be	represented	in	AWS	routines;	rates	of	fire,	potential	targets	per	strike,	effective	range,	
accuracy,	radius	of	action,	dispersion	factors,	terrain	factors	including	defence	posture,	air	effectiveness	and	other	
weapons	effect,	weather	factors,	season	factors,	force	strength	effect,	environmental	effects,	logistics	and	disruption	
effects,	surprise	effects,	degradation	and	the	effects	of	fatigue	and	casualties,	casualty-inflicting	capability	factors,	
defensive	capability	factors.	The	model	must	also	incorporate	several	intangible	factors	such	as	combat	effectiveness,	
leadership,	training,	experience,	morale,	logistics,	mental,	intelligence,	technology	and	initiative.	It	is	noteworthy	that	
only	a	minority	of	these	factors	are	reliably	calculable:	(Figure	3-1),	p.	33.	
147	Whereby	it	is	difficult	to	match	enemy	actions	to	these	defined	ML	parameters.	See	also:	Chapter	5	(Constraints),	
specifically:	5.8	(‘Ethical	and	Accountability	Constraints’).	ML	processes	create	other	sources	of	conflict	including	the	
pervasive	requirement	for	confidence	levels,	for	feedback	loops	and	data	scrubbing	as	well	as	non-obvious	redundancy	
mechanisms,	all	of	which	add	to	weapon	brittleness.		
148	Chapter	2	(Context),	specifically:	2.2	(‘The	role	of	context	in	AWS'	argument'). 	
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effect’.149		This	creates	further	and	unexpected	challenge.	As	the	ratio	of	AI	agents	to	human	
operators	increases,	overall	system	trust	will	converge	on	the	performance	of	those	weapons’	
autonomous	componentry.	Trust,	however,	erodes	very	quickly	as	system	reliability	declines,	
exacerbated	by	human	misunderstanding,	human	incompetence	and	design	flaws.	Also	relevant	to	
this	conclusion	is	what	Sagan	(in	citing	Perrow)	describes	as	otherwise	‘normal	accidents’	(where	
no	one	party	demonstrably	does	anything	wrong)	as	well	as	‘black	swans’	(where	a	low	probability	
high-impact	event	may	grossly	skew	AWS	outcomes).150	A	corollary	is	therefore	that	
comprehensive	testing	must	substantiate	the	behaviour	of	AWS.	This,	however,	is	an	impracticable	
prerequisite.	Validation	of	weapon	patches	and	subsequently	added	functionality	must	be	based	on	
iterative	testing	that	appears	beyond	foreseeable	military	logistics.151	As	concluded	by	the	US	
JASON	group,	‘it	is	not	clear	that	existing	AI	paradigm	is	immediately	amenable	to	any	sort	of	
software	engineering	validation	and	verification.	This	is	a	serious	issue	and	is	a	potential	roadblock	
to	DoD’s	use	of	these	modern	AI	systems’.152		

A	further	consideration	is	the	fit	between	operational	factors	and	AWS’	technical	competencies	
given	that	any	mismatch	here	can	only	increase	AWS	instability.	The	thesis	identifies	three	
principal	constraints:	Technical	debt,	coding	feasibility	and	issues	around	appropriate	anchoring.	
Technical	debt	is	a	useful	metaphor	as	it	relates	the	consequences	of	poor	software	design	to	the	
accumulation	of	a	financial	debt.	This	conclusion	thus	borrows	from	the	decomposition	of	such	debt	
into	severl	silos	including	data	scaling,	the	ramifications	that	arise	from	parallel	development	by	
the	AWS’	Delivery	Cohort,	from	configuration	challenges	and,	as	above,	from	the	notion	of	‘change-
anything-change-everything’	in	AWS	operation.153	At	the	same	time,	the	analysis	concludes	that	
currently	available	coding	techniques	present	an	enduring	technical	bottleneck	to	AWS	
deployment.	Notwithstanding	that	‘not	all	software	is	created	equally	and	will	vary	significantly	in	
levels	of	capability’154,	an	immutable	basis	here	is	that	it	is	machine	code	that	alone	must	convey	the	
intentions	of	the	AWS’	Delivery	Cohort.	Absent	human	oversight,	code	alone	must	reliably	deal	with	
the	nuances	of	lexical	ambiguity,	uncertainty	created	by	noisy	and	imperfect	data,	of	policy	
vagueness	and	equivocality	around	inference.	Several	challenges	remain	unanswerable.	To	this	
point,	how	can	unsupervised	machines	fittingly	handle	different	‘categories	of	facts’	that	arise	from	
subsequently	sensed	data,	be	they	indexical,	normative,	strong	convictions	or	mere	observations?	
Extracating,	sorting	and	then	ranking	meaningful	inference	from	that	data	into	relevant	
reinforcement,	into	situational	narrative	or,	for	the	recently	deployed	AWS,	into	facts	that	
corroborate	(or	not)	its	internal	representation	is	also	largely	untried155	and,	given	the	routines’	

																																																								
149	Ibid.		
150	Scott	Sagan,	‘Learning	from	Normal	Accidents’,	Organizational	Environment,	17,	(March	2004),	p.	15	
<https://pdfs.semanticscholar.org/0bb0/8c312ca39c494fb24f957161ec8bd2d3f37e.pdf>.		
151	Chapter	5	(Obstacles),	specifically:	5.6	(‘Behavioural	constraints’).		
152	Scharre,	Army	of	None,	p.	187.	
153	For	the	discussion	on	CACE	(Change	Anything,	Change	Everything)	see:	Chapter	7	(Firmware),	specifically:	7.1	
(‘Sources	of	Technical	Debt’).	A	contiguous	issue	here	relates	to	confidence	levels,	in	particular	relating	to	the	weapon’s	
targeting	picture	and	how	the	AWS’	internal	representation	will	change	from	the	moment	it	initiates	fire	until	the	
moment	that	ordnance	is	delivered	downrange	to	the	intended	target.	
154	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	4.	
155	Neoklis	Polyzotis	and	others,	‘Data	Management	Challenges	in	Production	Machine	Learning’,	Proceedings	of	the	2017	
ACM	International	Conference	on	Management	of	Data,	Chicago,	(May	2017),	p.	1723	
<http://delivery.acm.org/10.1145/3060000/3054782/p1723-
polyzotis.pdf?ip=86.138.190.207&id=3054782&acc=OA&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4
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importance,	will	remain	a	fundamental	complexity	in	AWS	operation.	How	also	are	each	of	these	
fact	categories	to	be	weighted	within	those	on-going	routines?	Coding	difficulties	are	similarly	
evidenced	in	how	unsupervised	weapons	may	capture	abstracts.	A	review	of,	say,	astonishment	is	
useful	to	rehearse	again	to	underscore	this	conclusion.	‘Astonishment’	might	be	sparked	should	
sensed	data	tell	the	unsupervised	weapon	that	an	unexpected,	unexplained	force	blocks	its	path.	
Such	triggers	will	likely	require	that	the	autonomous	machine	blend	motor	actions,	often	
conflicting,	which	best	meld	attributes	of,	say,	attraction	(presumably	move	closer?),	withdrawal	
(the	weapon	should	extract	itself?)	and	curiosity	(presumably	an	inquisitive	mixture	of	the	two?).	
Difficulties,	moreover,	will	be	compounded	by	error	rates	that	empirically	characterise	the	writing	
of	machine	instruction.156	Any	conclusion,	furthermore,	should	note	the	irony	that	all	such	code	
anyway	originates	solely	out	of	human	endevour.		

In	questioning	AWS	feasibility,	a	final	deployment	constraint	concerns	‘anchoring’	and	the	
computational	basis	by	which	the	AWS	is	updated	in	order	to	account	for	newly	sensed	
information.157	The	requirement	leads	to	enduring	challenges	around	gradation	and	the	degree	to	
which	incremental	changes	are	implemented.	Moreover,	militaries	rarely	deploy	weapons	
individually	and	flaws	in	any	one	system	are	likely	to	be	replicated	across	entire	fleets	of	
autonomous	weapons,	opening	the	door	to	what	Borrie	describes	as	‘incidents	of	mass	lethality’	
that	are	very	different	from	human	mistakes	which	tend	instead	to	be	idiosyncratic.158	Anchoring	is	
also	complicated	by	how	the	weapon’s		holds	and	actions	its	own	rules	of	engagement	and	will	be	
confounded	by	having	to	predict	likely	paths	of	action	in	future	scenarios	(here,	the	Cohort’s	
management	of	‘prediction	bias’	as	well	as	the	challenge	of	relying	upon	what	is	today’s	coding	
snapshot	in	order	to	deal	with	tomorrow’s	novel	and	unanticipated	situations).159		

In	this	vein,	it	is	deliberate	that	little	has	been	restated	in	this	conclusion	about	AGI	and	the	
advent	of	genuine	weapon	sentience.160	The	thesis	severally	concludes	that	battlefield-ready	
general	machine	intelligence	(with	capabilities	to	manage	through	all	points	of	a	‘lethality	cycle’)	is	
plainly	unfeasible.161	Technical	challenges	alone	evidence	that	Terminator-like	weapon	systems	are	
similarly	unrealistic.162	Instead,	the	analysis	points	to	deployment	models	that	range	from	weapons	
which,	partially	invigilated,	remain	one	component	of	a	machine-human	team	that	act	within	tightly	
bounded	tasks.	This	deduction	is	therefore	a	cumulative	deduction	and	one	that	is	informed	by	the	
scope	of	challenges	identified	over	the	whole	analysis.	Several	such	constraints	may	individually	
appear	trivial	but	each	can	derail	AWS	deployment.	This	is	particularly	true	for	AWS’	technical	
impedimenta	where	it	is	untested	how	attention	can	reliably	be	focussed	in	the	unsupervised	

																																																								
702B0C3E38B35%2E5945DC2EABF3343C&__acm__=1535392353_07093e3afa2bcee2d87348db37d9ca7c>	[accessed	
13	August	2018].	
156	Chapter	8	(Software),	specifically:	8.2	(‘Coding	errors’).		
157	Chapter	8	(Software),	specifically:	8.5	(‘Anchoring	and	goal	setting	issues’).	
158	Scharre,	‘Army	of	None’,	p.	193.	
159	Chapter	6	(Wetware),	specifically:	6.1	(‘Software	versus	intelligence’)	and	6.5	(‘Missing	pieces’).	
160	See	Appendix	Two:	‘The	issue	of	singularity	in	AWS’.	
	

161	See	again:	Mike	Benitez,	‘It’s	About	Time:	The	Pressing	`Need	to	Evolve	the	Kill	Chain’,	War	on	the	Rocks,	(2017),	para	
3	and	generally	<https://warontherocks.com/2017/05/its-about-time-the-pressing-need-to-evolve-the-kill-chain/>	
[accessed	24	August	2018].	
162	See,	generally,	Chapters	7	(Firmware)	and	8	(Software).	Source:	The	Terminator,	January	1985.	See,	generally:	
<https://www.imdb.com/title/tt0088247/>	[accessed	26	August	2018].	
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weapon.	It	will	be	inappropriate,	after	all,	simply	to	tune	weapon	engagement	according	to	stimulus	
intensity.	This	must	also	be	the	case	in	routines	designed	to	amend	the	weapon’s	goals	or	value	set.	
Indeed,	the	analysis	notes	much	wider	coding	issues	including	how	best	to	mitigate	stimuli	
habituation	and	stimuli	saturation,	how	the	weapon	should	choose	which	such	stimuli	to	isolate	for	
subsequent	processing,	which	to	ignore	and	how	generally	the	weapon	should	navigate	the	‘cocktail	
party	effect’	that	will	characterise	its	sensed	inputs.163	These	are	fundamental	competences	that	
must	together	be	satisfied	if	independent	weapons	are	to	initiate	violence	without	supervision.164		

Finally,	it	is	this	thesis’	contention	that	autonomy	is	best	understood	not	as	a	specific	capacity	
but	rather	as	a	capacity	that	is	enabled	by	particular	configurations	of	different	people	and	different	
technologies.	This	can	usefully	be	extended	to	cover	the	degree	of	autonomy	employed	(from	single	
components	to	whole	weapon	systems).	The	difficulty	is	that	different	and	developing	weapon	
configurations	make	different	capacities	for	action	possible.	This	is	to	be	expected	as	technical	
progress	will	be	unpredictable	with	individual	weapon	technologies	evolving	continually	rather	
than	arriving	fully	formed.	Properly	implemented	as	a	statutory	umbrella	(and	across	whole	
weapon	systems),	MHC	obviates	this	impasse.	But	quandary	will	remain.	It	is	not	just	the	case	that	
autonomous	weapons	might	circumvent	MHC,	a	greater	concern	is	that	they	could	render	it	
impossible.165	This	is	because	shortening	timeframes	occasioned	by	automation	substantively	
closes	down	any	operational	window	that	is	available	for	human	assessment.	MHC	can	only	be	
effective	if	weapon	design	preserves	sufficient	time	such	that	MHC	can	practically	take	place.	In	this	
vein,	this	conclusion	finishes	with	two	illustrations	as	relevant	finales	to	the	thesis.	The	first	is	again	
the	concept	of	Empty	hangar	syndrome	which	signals	the	notion	that	certain	scenarios	are	too	far-
fetched	to	warrant	current	consideration	or	statutory	regulation.	The	UK’s	opening	negotiating	
position	within	the	UN’s	CCW	played	the	perception	that,	in	any	final	analysis,	it	is	simply	an	
unfeasible	construct	for	a	commander	to	wander	into	his	weapons	hanger	one	morning	to	find	that	
his	AWS	has	decided	under	its	own	volition	to	depart	unexpectedly	on	an	unsupervised	mission.	It	
is,	noted	the	UK,	a	hypothetical	that	does	not	deserve	scrutiny.	Against	this,	however,	and	
underpinning	this	thesis,	it	is	clear	that	general	automation	and	autonomy	are	increasingly	
prevalent	and,	‘where	new	technology	is	sufficiently	safe	and	reliable,	norms	of	trust	and	public	
appetite	can	be	expected	to	follow’.166	It	therefore	matters	less	that	widespread	adoption	of	
unsupervised	weapons	continues	to	be	unfeasible	as	deployment	of	autonomous	componentry	
within	one	model	or	another	will	undoubtedly	dominate	future	weapons	procurement.	It	is	for	this	
reason	that	statutory	requirement	for	human	involvement	is	required	in	the	use	of	force.		 	

																																																								
163	Adelbert	Bronkhorst,	‘The	Cocktail-Party	Problem	Revisited:	Early	Processing	and	Selection	of	Multi-Talker	Speech’,	
Atten	Percept	Psychophys,	77,	5,	(2015)	p.	1465	(‘Abstract’)	and	generally.	See	also	:	Chapter	8	(Software),	specifically:	
8.7	(‘Action	Selection	Issues’)	and	8.8	(‘Behaviour	Setting	and	Coordination’).		
164	This	too	has	adjunct	effects.	Notwithstanding	the	need	for	such	resetting	mechanisms,	the	unsupervised	weapon	
must	still	toggle	reliably	between	its	internal	representations	and	that	recently	processed	external	stimuli	(together,	
again,	the	issue	of	anchoring).	
165	Suchman,	‘Situational	awareness	and	adherence	to	the	principle	of	distinction	as	a	necessary	condition	for	lawful	
autonomy’,	p.	7.	
166	Ministry	of	Defence,	‘Human-Machine	Teaming’,	p.	50.	
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Appendix	One:	Case	study	on	Automatic	Target	recognition	

Hardware	complications	are	usefully	illustrated	by	the	weapon	componentry	required	to	identify	
targets.	A	central	capability	for	the	compliant	unsupervised	weapon	will	be	an	ability	to	recognise,	
prioritise	and	engage	battlefield	targets	without	a	human	in	the	loop.	Dependable	automatic	target	
recognition	(ATR),	notes	Warwick	and	Demascio,	is	therefore	a	pivotal	required	development.1	In	a	
benign	and	noise-free	environment,	Google’s	FaceNet	can	already	determine	with	more	than	
ninety-nine	per	cent	accuracy	whether	two	pictures	show	the	same	person	while	a	human	here	
might	score	around	ninety-eight	per	cent.2	Sharkey,	however,	suggests	a	marked	deterioration	in	
machine	performance	as	dataset	precision	erodes	in	a	contested	battlefield	that	is	characterised	by	
camouflage,	deception	and	enemy	counter-measures.3	Bhanu	and	Jones	similarly	point	to	
contextual	sensitivity,	transformational	invariance	and	clutter	as	contributory	reasons	why	ATR	is	
an	enduring	constraint	to	AWS	deployment.4		
	

An	obvious	driver	to	feasible	AWS	deployment	comes	from	smartphone	improvement	in	
photography,	both	still	and	video.	The	first-generation	iPhone	had	a	two-megapixel	camera	with	no	
flash	or	autofocus.	Seven	years	later,	the	iPhone	6	could	record	HD	video	at	sixty	frames	a	second	
and	take	twelve	megapixel	stills.5	Smartphone	research	has	also	created	several	‘super-resolution’	
routines,	a	further	condition	precedent	to	AWS	deployment.	Smartphones	now	routinely	compare	
multiple	image	frames	and	average	them	out,	removing	random	splatter	of	visual	background	noise	
in	order	to	produce	a	clean	image.	Smartphone	innovation	has	empirically	tackled	several	of	the	
technical	issues	previously	restricting	AWS	deployment.	‘De-blurring’,	for	instance,	identifies	bands	
of	gray	in	an	image,	the	result	of	a	boundary	being	blurred,	before	converting	them	back	into	sharp	
relief.	Computational	photography	has	produced	‘ubi-focus’	whereby	a	battlefield’s	depth-map	can	
now	be	processed	so	that	every	part	of	a	photograph	appears	in	perfect	focus.	Smartphone	
advances	mean	that	AWS	images6	can	now	be	now	stabilized	and	slaved	to	the	platform’s	own	
gyroscopic	and	movement	sensors.	Sensors	now	operate	in	‘High	Dynamic	Range’	(HDR)	whereby	
multiple	images	with	different	exposures	are	routinely	combined	in	real	time	in	order	to	iron	out	
shadows	and	enhance	the	AWS’	image	detail.7	Setting	out	a	compendium	of	these	developments	is	

																																																								
1	G	Warwick	and	J	DiMascio,	‘Machine	Learning	key	to	Automatic	Target	Recognition’,	Aviation	Week	and	Space	
Technology,	(26	May	2016)	<http://aviationweek.com/defense/machine-learning-key-automatic-target-recognition>	
[accessed	3	August	2017].		
2	Economist	Magazine	Special	Report,	‘Artificial	Intelligence:	From	not	working	to	neural	networking’,	Economist,	(25	
June	2016-1	July	2016),	p.	14.	
3	Professor	Noel	Sharkey,	Emeritus	Professor	of	Robotics,	University	of	Sheffield,	in	conversation	with	the	author,	25	
July	2017.	
4	Bir	Bhanu	and	Terry	Jones,	‘Image	Understanding	Research	for	Automatic	Target	Recognition’,	Carnegie	Mellon	
Laboratories,	(January	2010),	p.	15.	The	requirement	to	programme	representations	of	all	objects	from	every	angle;	
humans	intuitively	recognise,	say,	a	bottle	regardless	of	its	presentation	but	this	is	a	considerable	software	challenge	
requiring	coding	for	every	aspect,	slant,	approach	and	position.	This	is	further	complicated	if,	say,	the	bottle	is	moving	in	
an	oblique	direction,	haltingly	or	irregularly.	ATR	usually	relies	on	matching-to-model	protocols;	an	imprecise	
background	creates	noise	that	very	quickly	degrades	this	methodology.	
5	Source:	Apple	<http://www.apple.com/shop/buy-iphone/iphone6s>	[accessed	12	July	2018].	
6	For	a	current	view	of	commercially	available	sensor	and	camera	technology	see:	
<https://www.qualcomm.com/invention/research/projects/computer-vision>	[accessed	9	December	2017].	
7	Oversampling	is	a	further	software	process	whereby	pixel-count	in	a	deliberately	engineered	long-exposure	image	is	
then	computationally	reduced	in	order	to	diminish	image	noise.	Mosaicing	is	then	the	process	of	taking	a	large	burst	of	
contiguous	images	and	then	stitching	them	together	to	form	one	useable	image.	
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relevant	in	order	to	evidence	the	role	of	smartphone	research	in	creating	several	key	capabilities	
required	of	unsupervised	machines.			

	
Further	analysis	is	therefore	useful	on	this	point.	Considering	first	ATR’s	likely	process,	an	

AWS’	sensed	image	will	consist	of	a	large	number	of	picture	elements,	each	with	its	own	light	
intensity	values.8	This	posits	a	challenge;	capabilities	such	as	the	extraction	of	simple	lightness,	
colour	and	range	values	are	technically	practicable	but	are	complicated	by	grey-level	intensities	
presenting	light	in	terms	of	height.	It	is	for	this	reason	that	Boulanin	and	Verbruggen’s	Mapping	the	
Development	of	Autonomy	in	Weapon	Systems	notes	that	current	target	identification	capabilities	
remain	rudimentary	and	based	on	simple	criteria	(tanks	based	on	shape	signature,	missiles	are	
based	on	velocity,	submarines	based	on	acoustic	signature).9	As	also	noted	by	Ratches,	ATR	systems	
are	particularly	prone	to	variability:	‘medium	to	highly	cluttered	backgrounds	introduce	an	
unacceptable	amount	of	false	alarms	[while]	target	variability	and	operational	environmental	
conditions	also	have	a	significant	degrading	effect’.10	In	this	manner,	ATR	systems	may	recognise	
predefined	target	types	but	are	quite	unable	to	make	evaluations	that	comply	with	the	obligations	
of	distinction,	proportionality	and	precaution.11	Current	systems	are	similarly	unable	to	process	
whether	civilians	surround	a	target	or,	indeed,	to	provide	ATR	in	real-time	in	order	to	indicate	what	
is	background	and	what	comprise	relevant	objects	in	an	engagement	sequence.12	Murali	highlights	
the	complexity	of	such	capability	noting,	inter	alia,	the	requirement	for	multi-step	processes	that	
involve,	in	sequence,	scene	restoration	and	‘in-painting’,	feature	extraction,	item	detection	and	
segmentation,	labeling	and	classification,	action	selection	and	verification.13	While	ATR	sequences	
must	work	in	tandem	with	all	other	processing	phases	in	order	to	contribute	to	acceptable	end	
output,	the	weapon’s	semantic	labeling	must	relate	to	objects	as	well	as	to	scenes,	events	and	
activities.	In	order	to	be	appropriate,	Privitera	and	Stark	machine	routines	must	dynamically	
identify	relevant	‘regions	of	interest’	and	then	have	them	prioritised	for	follow-up	attention	by	the	
weapon.14	This	is	a	complicating	prerequisite.	Particular	challenges	arise	from	determining	a	target	
object’s	‘pose’.15	Levi	identifying	this	‘crowding’	as	a	key	impediment	to	machine-based	object	
																																																								
8	Computer	Vision,	‘Computer	Vision	Issues’,	1,	p.	2	
<http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/LIB/bandb1.pdf>.	The	link	provides	a	comparator	between	
machine	images	that	are	geometric,	intrinsic,	segmented	or	generalized.		
9 Boulanin	and	Verbruggen,	p.	24. 
10	JA	Ratches,	‘Review	of	current	aided/automatic	target	acquisition	technology	for	military	target	acquisition	tasks’,	
Optical	Engineering,	50,	7,	072001,	(2011),	pp.	1-7.	
11	See:	Chapter	5	(Obstacles),	specifically:	5.1	(‘The	Geneva	Conventions	and	Laws	of	Armed	Combat’)	and	5.5	(‘Article	36	
and	LOAC-complaint	deployment’).	
12 Boulanin	and	Verbruggen,	p.	25.	 
13	Shravan	Murali,	‘An	Analysis	on	Computer	Vision	Problems’,	Medium.com,	(13	September	2017)	
<https://medium.com/deep-dimension/an-analysis-on-computer-vision-problems-6c68d56030c3>	[accessed	2	
November	2017].	Although	written	in	1996,	for	a	useful	discussion	on	issues	around	computer	vision,	see:	TS	Huang,	
‘Computer	Vision:	Evolution	and	Promise’,	19th	CERN	School	of	Computing	Proceedings,	(1996),	pp.	21-25	
<http://cds.cern.ch/record/400313/files/p21.pdf>.	The	process	must	incorporate	seamless	background	routines	such	
as	aberration	(a	transition	process	between	the	dataset’s	high	contrast	edges	and	the	creation	of	machine-useful	
imagery),	blob	discovery	(the	analysis	and	extrication	of	connected	pixels),	depth	perception	editing,	gray-scale	and	
HSV	colour-space	management,	image	file	format	management	as	well	as	routines	controlling	motion	perception.	
14	Claudio	Privitera	and	Lawrence	Stark,	‘Algorithms	for	Defining	Visual	Regions-of-Interest:	Comparison	with	Eye	
Fixations’,	IEEE	Transactions	on	Pattern	Analysis	and	Machine	Intelligence,	22,	9,	(September	2000),	p.	970	and	
generally	<https://pdfs.semanticscholar.org/60c2/b03024f89c3f67d05d6b60d4ba1b032942c4.pdf>.	
15	D	Levi,	‘Crowding	–	An	essential	bottleneck	for	object	recognition’,	ScienceDirect,	Elesevier,	Vision	Research	48,	
(2008),	p.	633.	
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recognition	and	terms	the	phenomenon	the	‘object	recognition	conundrum,	the	deleterious	
influence	of	nearby	contours	on	visual	discrimination’.16	Suchman	and	Weber	highlight	a	quite	
separate	fault-line,	noting	that	objects	in	the	weapon’s	world	representation	will	be	perceived	
primarily	‘only	as	an	mobility	regions’	and	‘not	as	a	discrete	objects	of	semantic	and	the	cognitive	
importance’.17	On	this	basis,	notes	Suchman,	the	current	model	for	ATR	is	actually	enduringly	
incapable	of	capturing	situational	awareness.		

	
A	hardware	consequence	of	this	process	complexity	is	for	the	Design	Cohort	to	specify	

multipart	componentry	in	an	effort	to	force	efficacy.18	Such	add-on	technologies	are	individually	
complicated	and	will	include,	inter	alia,	structured-light	3D	scanning,	thermography	optics,	hyper-
spectral	imaging,	radar,	LIDAR	scanning,	MRI	scanning	as	well	as	slide-scan	and	synthetic	aperture	
sonar.19	As	noted	by	Ciftciglu,	however,	system	performance	will	still	be	determined	by	tradeoffs	
that	are	made	at	the	point	of	machine	specification	(sampling	rates,	required	accuracy	parameters,	
defined	methods	for	‘information	unification’).20	Similarly,	image	recognition	will	still	be	
compromised	by	the	varying	appearance,	order,	azimuth,	perspective	and	condition	of	target	
objects.	The	inference	is	that	adding	hardware	is	not	necessarily	a	technical	route	to	acceptable	
ATR.	While	a	soldier’s	targeting	decision	is	influenced	by	context	and	judgement,	the	very	many	
sources	of	technical	debt	within	machine	vision	processes	(‘infobesity’,	‘infoxication’	and	‘data	
smog’21)	is	likely	to	overwhelm	rules-based	weapon	targeting	processes.22	In	this	vein,	Morgan	
notes	that	the	process	will	remain	particularly	prone	to	data	misinterpretation.23		

	
A	further	enduring	hardware	challenge	arises	from	ATR	routines	confusing	correlation	with	

causation.24	How	might	this	occur?	The	viewing	angle	(and	distance)	between	weapon	sensor	and	
target	object	dynamically	changes	from	instant	to	instant;	Malik	notes	that	sensed	image	data	never	

																																																								
16	Ibid.	
17 Suchman	and	Weber,	‘Human-machine	autonomies’,	p.	93.	
18	Ozer	Ciftciglu	and	others,	‘Data	Fusion	for	Autonomous	Robotics’,	Serial	and	Parallel	Robotic	Manipulation,	19,	InTech,	
(2012),	pp.	373-375	
<https://www.researchgate.net/profile/Sevil_Sariyildiz/publication/224829107_Data_Sensor_Fusion_for_Autonomous
_Robotics/links/55fbee3508aeafc8ac41c47e/Data-Sensor-Fusion-for-Autonomous-Robotics.pdf>.	
19	For	a	primer	of	machine	vision,	see:	UK	Industrial	Vision	Association,	‘Machine	Vision	Handbook’,	UKIVA,	undated,	pp.	
4-6	<http://www.ukiva.org/pdf/machine-vision-handbook.pdf>.	
20	Ciftciglu	and	others,	p.	374.	
21	Economist,	‘Too	Much	Information’,	Economist,	Schumpeter,	(30	June	2011)	
<https://www.economist.com/node/18895468>	[accessed	12	April	2016].	
22	Alex	Owen-Hill,	‘Top	Ten	Challenges	for	Robot	Vision’,	www.robotiq.com/blog,	20	November	2017 
<https://blog.robotiq.com/top-10-challenges-for-robot-vision>	[accessed	10	May	2018].	Owen-Hill	includes	the	
following	circumstances	in	his	list	of	key	challenges	to	machine	vision:	lighting,	cases	of	the	defamation	and	unexpected	
articulation,	occlusion	(instances	of	missing	pieces	in	the	target’s	representation),	background	noise,	the	disorientating	
effect	of	scale,	movement	and,	generally,	unrealistic	expectations	about	the	underlying	technology.	
23	L	Morgan,	‘Nine	causes	of	data	misinterpretation’,	InformationWeek,	7	July	2017	
<http://www.informationweek.com/big-data/big-data-analytics/9-causes-of-data-misinterpretation/d/d-
id/1321338>	[accessed	24	June	2017].	Here,	Morgan	usefully	characterises	the	causes	of	data	misinterpretation	into	
three	baskets	that	include	insufficient	domain	expertise,	the	knock-on	effects	of	omitted	variables	and	the	aggregating	
of	routines	that	relegate	both	‘empirical	truths’	and	overlooked	sources	of	variation.	
24	Tshilidshi	Marvala,	‘Causality,	correlation	and	artificial	intelligence	for	rational	decision	making’,	Word	Scientific,	
University	of	Johannesburg,	(March	2015),	p.	4.	Causality	is	usefully	defined	as	‘the	relationship	between	something	that	
happens	and	the	effect	it	produces’.	



WAR	WITHOUT	OVERSIGHT;	CHALLENGES	TO	THE	DEPLOYMENT	OF	AUTONOMOUS	WEAPON	SYSTEMS		
 Patrick Walker; PhD thesis, Modern War Studies, University of Buckingham, 2019 (ID. 1303207) 

 

 306 | P a g e  

 
 

therefore	stays	exactly	the	same.25	It	can,	moreover,	be	inferred	from	Haikonnen	that	this	
phenomenon	is	relevant	for	all	of	the	weapon’s	sensory	modalities.26	While	only	a	few	cues	may	be	
needed	for	the	human	soldier	to	opine	on	a	target,	this	facility	is	difficult	for	machine	hardware	to	
imitate:	Pattern	recognition,	for	instance,	is	an	insufficient	basis	for	lethal	engagement	in	examples	
where	an	object-of-interest	has	multiple	and	contextual	interpretations.27	While	other	hardware	
constraints	contribute	to	this	correlation/causation	challenge,	ATR	efficacy	may	be	compromised	
by	simple	data	phenomena	such	as	‘illusion’	(the	interpretation	of	sensed	signals	depicting	
something	that	does	not	in	fact	exist	at	that	moment),	‘hallucination’	(the	machine-perceived	
presence	of	something	that	does	not	exist),	by	machine-generated	‘dreams’	and	other	noise	that	is	
likely	to	contribute	to	data	misinterpretation.28	It	is	not	possible,	concludes	Suchman,	to	engineer	
AWS	ATR	upon	‘the	decomposition	of	human	action	into	multiple,	separate	domains’.29	Limitations	
in	ATR	are	thus	further	exacerbated	by	a	lack	of	test	data	specifically	suitable	to	train	target	
recognition	algorithms.30	As	Ratches	notes,	military	datasets	rarely	exist	and	are	usually	
classified.31		

	
In	order	to	complete	this	case	study	on	challenges	to	appropriate	ATR,	it	is	relevant	to	consider	

machine	‘seeing’	and	the	AWS’s	requirement	to	manage	a	visual	sensor,	something	akin	to	
biological	eyes.32	In	order	to	determine	who/what/where	is	a	particular	object,	a	hardware	
approach	might	be	to	reconstruct	the	weapon’s	world	when	its	visual	sensor	took	its	picture	in	
order	to	understand	that	picture.	Such	visual	reconstruction	is	a	complex	local	problem,	the	
weapon’s	reduction	of	its	visual	data	into	stable	descriptions.	Blake	and	Zisserman	point	to	the	
challenge	of	that	data’s	dynamic	classification	into	continuous	regions	and	discontinuous	

																																																								
25	J	Malik	and	others,	‘The	3	Rs	of	Computer	Vision:	Recognition,	Reconstruction	and	Reorganization’,	ScienceDirect,		
University	of	Berkeley,	EECS,	Patterns	Recognition	Letters,	(8	February	2016),	p.	4	
<https://people.eecs.berkeley.edu/~shubhtuls/papers/prl16rrr.pdf>.		
26	Haikonnen,	p.	43.	
27	Ibid.,	p.	45.	
28	For	a	useful	primer	on	hardware	sensors,	see:	J	Varghese,	‘Review	of	autonomous	vehicle	sensors	and	systems’,	
Proceedings	of	2015	International	conference	on	operations	excellence	and	service	engineering,	(October	2015),	p.	178	
<http://iieom.org/ICMOE2015/papers/140.pdf>.	Varghese	discusses	sensor	requirements	(accuracy,	resolution,	
sensitivity,	dynamic	range,	perception,	refresh	rate,	output	interface).	He	also	covers	hardware	sensor	requirements	
including	monitoring	of	wheel	speed,	yaw,	latitude	and	longitude,	steering	and	braking	states.	Even	lens	size	remains	a	
limitation	given	smaller	lens	cannot	resolve	below	a	certain	size.	Camera	makers	may	counter	this	computationally	by	
using	additional	processing	to	enhance	pictures	once	taken	but	this	may	lead	to	loss	of	image	quality	and	a	
corresponding	lack	of	fine	level	detail.	See:	Haje	Jan	Kamps,	‘No,	Apple,	digital	zoom	still	sucks’,	TechCrunch,	7	
September	2016	<https://techcrunch.com/2016/09/07/digital-zoom-still-sucks/>	[accessed	7	March	2018].	On	
machine	‘hallucination’,	see:	Adrienne	LaFrance,	‘When	Robots	Hallucinate’,	Atlantic,	3	September	2015	
<https://www.theatlantic.com/technology/archive/2015/09/robots-hallucinate-dream/403498/>	[accessed	25	June	
2017].	
29	Suchman	and	Weber,	‘Human-machine	autonomies’,	p.	97.	
30	See:	Chapter	(Wetware),	specifically:	6.4	(‘AWS	Learning	Architectures’).		
31	James	Ratches,	‘Review	of	current	aided/automatic	target	acquisition	technology	for	military	target	acquisition	tasks’,	
Optical	Engineering,	50,	7,	(2011)	<https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-50/issue-
7/072001/Review-of-current-aided-automatic-target-acquisition-technology-for-
military/10.1117/1.3601879.full?SSO=1>	[accessed	4	March	2018].	See	also:	Carl	Vondrick	and	others,	‘Do	We	Need	
More	Training	Data	or	Better	Models?’,	BMVC,	3,	(2012),	p.	2.	
32	Mataric,	p.	107.	See	also:	Narayanan	Sundaram,	‘Making	Computer	Vision	Computationally	Efficient’,	University	of	
California,	Berkeley,	DPhil	submission,	(11	May	2012),	p.	11	
<https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-106.pdf>.		
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boundaries.33	This	visual	subsystem	must	overcome	three	additional	hurdles.34	AWS	hardware	
must	detect	objects	regardless	of	the	weapon’s	environment,	target	appearance,	target	position	and	
motion	pattern.	Hardware	must	also	determine	the	weapon’s	position	in	relation	to	that	
environment,	a	complex	requirement	given	volatile	direction-of-gaze	and,	notes	Paullin,	its	
fluctuating	line	of	sight.35	Finally	to	this	point,	AWS’	hardware	must	deal	consistently	with	data	
disorder	and	noise36:	In	this	case,	challenge	arises	from	ATR’s	current	reliance	on	definition	of	
‘edges’	as	a	distinct	curve	in	the	image	plane	across	which	there	is	any	significant	change	in	the	
brightness.	This,	however,	requires	the	weapon’s	controller	to	establish	sharp	changes	in	pixel	
brightness,	the	complication	being	that	AWS’	hardware	is	prone	to	identify	entirely	unassociated	
events	that	produce	similarly	large	changes	in	light	capture	(such	as	shadows	and	sensor	noise)	as	
individual	objects.37	Xu	and	Kuipers	note	that	data	noise	in	this	visual	reconstruction	may	produce	
sudden	random	intensity	changes	that	do	not	contain	any	meaningful	structure,	an	intractable	
characteristic	arising	from	hardware	design	and	the	weapon’s	likely	dependence	on	memory-based	
models	against	whereby	edge-detected	objects	are	compared	with	internally	stored	drawings	in	
order	to	compute	a	match.38	While	stored	line	drawings	may	be	a	relatively	simple	hardware	
routine,	imposing	a	matching	process	(even	on	such	reduced	data	sets)	will	remain	a	complex	
process.39	This	issue	is	termed	the	‘correspondence	problem’	whereby	hardware’s	equivalence	of	
one	target	image	to	parts	of	another	image	will	be	frustrated	by	sensor	movement,	the	passage	of	
time	or	movement	in	that	object	of	interest.40	Given,	then,	that	the	weapon’s	hardware	will	be	
‘looking’	at	a	target	from	any	angle	and	from	any	distance,	Hashemi	therefore	questions	the	
feasibility	of	object	recognition	based	on	a	model	that	relies	on	data	comparison.41	Any	change,	

																																																								
33	For	a	technical	discussion	on	challenges	in	visual	reconstruction,	see:	Andrew	Blake	and	Andrew	Zisserman,	
‘Localizing	discontinuities	using	weak	continuity	constraints’,	Pattern	Recognition	Letter,	6,	1,	(June	1987),	pp.	51-59.	
34	Haikonnen,	p.	192.	
35	Spencer	Paullin,	‘The	Five	Challenges	of	Integrating	Machine	Vision	Smart	Cameras	with	Robotic	Applications’,	Omron	
Microscan	Systems	Blog,	(6	June	2017)	<http://www.microscan.com/en-us/blog/solutions-applications/microhawk-
machine-vision-integrating-robot-applications>	[accessed	23	March	2018].	In	machine	vision,	the	weapon	system	will	
need	reliably	to	interpret	information	on	its	vision	sensor	image	plane	(whereby	information	about	the	incoming	light	is	
detected	by	the	photosensitive	elements	on	this	plane).	Typically,	this	process	involves	a	lens	in	which	case	only	objects	
a	particular	distance	from	that	lens	may	be	in	focus.	
36	See:	Universitetet	Oslo,	‘Reflection,	refraction,	diffraction	and	scattering’	
<https://www.uio.no/studier/emner/matnat/ifi/INF-GEO4310/h09/undervisningsmateriale/imaging-kap2.pdf>.	
Regardless	of	recent	progress,	it	is	a	characteristic	of	light	values	that	they	are	subject	to	both	specular	interference	and	
diffuse	reflection	whereby	light	from	a	target	may	be	absorbed	before	being	reflected	thereby	distorting	hardware	
readings.	
37	Its	complexity	is	evidenced	by	the	requirement	to	calculate	derivatives	whereby	individual	vision	frames	are	grabbed,	
and	differentiated	with	areas	where	the	magnitude	of	the	derivative	is	large	indicating	that	the	difference	in	the	local	
brightness	value	is	also	large,	likely	due	to	an	edge	and	therefore	identifying	a	separate	object.	See,	for	instance:	Mataric,	
p.	110.	
38	Changhai	Xu	and	Benjamin	Kuipers,	‘Object	Detection	Using	Principal	Contour	Fragments’,	Computer	and	Robot	Vision,	
2011	Canadian	Conference,	IEEE,	(2011)	
<https://scholar.google.com/scholar?cluster=16909272800123523260&hl=en&as_sdt=0,3&sciodt=0,3>	[accessed	7	
October	2016].		
39	Elizabeth	Stuart,	‘Matching	Methods	for	a	Causal	Inference:	A	Review	and	a	Look	Forward’,	Statistical	Science,	25,	1,	
(2010),	pp.	1-2	<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.5684&rep=rep1&type=pdf>.		
40	Andreas	Neider,	‘Stereoscopic	Vision:	Solving	the	Correspondence	Problem’,	Current	Biology,	13,	10,	(13	May	2003),	p.	
394	<https://ac.els-cdn.com/S0960982203003191/1-s2.0-S0960982203003191-main.pdf?_tid=ea1290fc-0e1e-4685-
9f0f-f2b72581ba07&acdnat=1526868628_79fc0b0a9da591b58bae2c71c061ec65>	[accessed	26	October	2016].		
41	Narazanin	Hashemi	and	others,	‘Template	Matching	Advances	and	Applications	in	Image	Analysis’,	asXiv	reprint	
1610.07231,	(2016),	p.	1	<https://arxiv.org/pdf/1610.07231.pdf>.		
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after	all,	in	a	target’s	image	may	correspond	to	any	edge	in	the	retained	dataset	requiring	that	the	
AWS	dynamically	evaluate	all	image	combinations	in	real-time	if	the	weapon	is	to	remain	
compliant.	Finally	to	this	point,	the	confidence	afforded	by	the	weapon	to	such	worked-over	output	
must	itself	be	weighted	to	reflect	conviction	in	each	particular	dataset	(as	opposed	to	prior	or	
subsequence	sequence	data).42	As	highlighted	by	Perez,	any	such	filtering	processes	that	reduce	the	
weapon’s	‘crest	factor’	will	empirically	lead	to	unacceptable	spectral	spreading	of	the	weapon’s	
data	signal	and	to	other	data	distortion.43	

	
Targeting	also	posits	physical	challenges	to	ATR.	An	object’s	appearance	changes	materially	

when	its	orientation	alters	(with	respect	to	the	AWS	sensor)	or	when	its	state	of	articulation	
changes.	Likewise,	camouflaging,	objects	being	partly	obscured,	the	time	of	day	or	night	as	well	
topographic	and	weather	conditions	will	affect	that	target’s	appearance.	As	noted	by	Verly,	a	
target’s	form	will	differ	from	one	sensor	to	another,	a	characteristic	that	will	be	exacerbated	by	
operational	circumstances	such	as	smoke	and	battlefield	illumination	that	will	change	already	
fluctuating	target	signatures.44	Targets	within	classes	may	not	necessarily	display	definable	
similarities;	an	enemy	asset	may	appear	very	different	according	to	setting	whether	because	of	
type,	category,	angle	or	perspective.	Nor	is	it	appropriate	for	the	unsupervised	weapon	to	shortcut	
its	engagement	process	by	attributing	use	criteria	rather	than	object	criteria	to	these	target	
representations	in	an	effort	to	be	less	fuzzy.	A	further	requirement	for	ATR	processes	is	the	
facilitation	of	signposting	to	the	most	relevant	representations	in	order	to	select	these	for	further	
processing	such	that	they	then	become	the	weapon’s	focus	of	attention.45	ATR’s	constraint	to	the	
feasible	deployment	of	AWS	is	therefore	quite	significant,	summed	up	by	the	challenges	around	
accounting	for	the	intensity	of	a	particular	visual	sensor	signal	and	requiring	instead	the	use	of	
complex,	opaque	and	variable	threshold	circuits	in	order	to	allow	the	AWS	to	select	the	strongest,	
most	significant	representations.		

																																																								
42	By	way	of	context	,	the	smoothing	of	edge-analysis	datasets	can	readily	be	achieved	through	the	mathematical	
procedure	of	convolution	that	both	defines	and	eliminates	isolated	peaks.	No	longer	an	interesting	research	problem,	
edge	detection	nevertheless	remains	a	considerable	practical	problem	for	a	weapon’s	machine	vision	in	that	it	quickly	
leads	to	data	universe	deterioration	as	ever	stronger	filters	are	required	in	different	orientations	in	order	to	achieve	
best	fit.	ATR’s	requirement	for	rich	data	is	key:	Introducing	work-arounds	(using	colour,	for	instance,	as	a	shortcut	
signpost	or	blob	tracking	-	the	combination	of	colour	and	movement	-	in	order	to	restrict	the	size	of	the	weapon’s	image	
plane)	will	likely	be	inappropriate	as	it	reduces	that	data’s	detail.	See,	generally:	Luis	Perez	and	others,	‘Robot	Guidance	
Using	Machine	Vision	Techniques	in	an	Industrial	Environment’,	MDPI,	Sensors,	16.3,	(2016),	pp.	1-3.	
43	Although	relating	primarily	to	sound-form	data,	see:	X	Li	and	L	Cimini,	‘Effects	of	Clipping	and	Filtering’,	IEEE	
Communications	Letters,	2,	5,	(May	1998),	p.	131.	A	further	hardware	compromise	might	be	‘data	clipping’	but	this	
remains	a	non-linear	process	that	will	similarly	degrade	the	weapon’s	bit-error	rate	performance,	the	number	of	data	
point	errors	that	are	evident	per	unit	of	time.	
44	Jacques	G	Verly	and	others,	‘Machine	intelligence	technology	for	automatic	target	recognition’,	The	Lincoln	Laboratory	
Journal,	2,	2,	(1987),	277.		
45	For	a	discussion	on	machine	attention	mechanisms,	see:	Chapter	7	(Firmware),	specifically:	7.4	(‘Attention	
methodologies’).		
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Appendix	Two:	The	issue	of	singularity	in	AWS		

Before	concluding	any	analysis	into	AWS	feasibility,	it	is	appropriate	to	undertake	a	brief	(and	
diversionary)	review	of	‘singularity’,	the	possibility	of	an	intelligence	explosion,	particularly	the	
prospect	of	‘machine	super	intelligence’	and	machines	achieving	a	tipping	point	that	secures	their	
independence.46	Since	the	invention	of	computers	in	the	1940s	it	has	long	been	expected	that	
machines	will	match	humans	in	general	intelligence,	common	sense,	ability	to	learn	and	reason	and	
undertake	complex	information-processing	challenges	across	a	wide	range	of	natural	and	abstract	
domains.47	Bostrom	has	developed	these	notions	into	workable	scenarios	for	an	artificial	
intelligence	takeover	on	earth.	In	his	‘pre-criticality	phase’,	scientists	successfully	create	a	seed	AI	
which	itself	is	able	to	improve	its	own	intelligence.48	At	some	point,	the	seed	AI	becomes	better	at	
AI	design	then	the	human	programmers.	This,	notes	Bostrom,	results	in	a	rapid	cascade	of	recursive	
self-improvement	cycles	that	cause	the	AI’s	capabilities	to	soar.49	A	similar	trajectory	can	be	argued	
for	autonomous	hardware.50	The	suggestion	is	then	that	it	is	shortly	after	this	point	that	the	AI	can	
develop	its	own	plan	for	achieving	its	own	long-term	goals.	This	might	involve	a	period	of	covert	
action	during	which	the	AI	conceals	its	intellectual	development	in	order	to	prevent	alarm.	The	
scenario	is	then	that	the	AI	is	in	a	position	to	action	its	own	covert	implementation	phase.51		
	

Over	time,	Ulbert	notes	that	a	development	link	between	artificial	intelligence	and	super	
intelligence	cannot	be	ruled	out.52	By	inference,	moreover,	Bostrom’s	‘orthogonality’	thesis	
suggests	that	commanders	cannot	assume	that	battlefield	AI	will	share	any	of	the	final	values	
associated	generally	with	human	behaviour	such	as	curiosity,	benevolent	concern,	selflessness	
and	contemplation.53	Similarly,	it	cannot	be	taken	for	granted	that	weapons-directing	artificial	
intelligence	will	limit	its	activities	in	order	not	to	infringe	on	legitimate	human	interests.	Taken	
together,	therefore,	a	school	of	thought	(not	shared	by	this	thesis)	is	that	self-learning	hardware	
might	eventually	be	capable	of	‘non-anthropomorphic	final	goals’.54	As	Bostrom	concludes,	‘we	

																																																								
46	Bostrom,	Superintelligence,	p.	2.	
47	Hans	Moravec,	‘When	Will	Computer	Hardware	Match	the	Human	Brain?’,	Journal	of	Evolution	and	Technology,	1,	
(1998),	generally	<http://www.realtechsupport.org/UB/WBR/texts/Moravec_ComputerMatchHumanBrain_1998.pdf>.	
48	Ian	Sample,	‘AI	Is	Getting	Brainier:	When	Will	the	Machine	Leave	US	In	The	Dust?’,	Guardian,	Newspaper,	15	March	
2017	<https://www.theguardian.com/commentisfree/2017/mar/15/artificial-intelligence-deepmind-singularity-
computers-match-humans>	[accessed	7	March	2018].		
49	Bostrom,	Superintelligence,	p.	96.	
50	Elsa	Kania,	‘Battlefield	Singularity:	Artificial	Intelligence,	Military	Revolution,	and	China’s	Future	Military	Power’,	
Center	for	a	New	American	Security,	(28	November	2017),	generally	
<https://www.cnas.org/publications/reports/battlefield-singularity-artificial-intelligence-military-revolution-and-
chinas-future-military-power>	[accessed	12	September	2018].	
51	Ibid.,	p.	97.	
52	Sebastian	Ulbert,	‘The	Difference	Between	Artificial	Intelligence,	General	Intelligence	and	Super	Intelligence’,	
CoreSystems.net	blog,	(3	April	2017)	<https://www.coresystems.net/blog/the-difference-between-artifical-intelligence-
artifical-general-intelligence-and-artifical-super-intelligence>	[accessed	16	March	2018].	
53	Bostrom,	Superintelligence,	p.	117.	The	orthogonality	thesis	states	that	an	artificial	intelligence	can	have	any	
combination	of	intelligence	level	and	goal.	This	is	in	contrast	to	the	belief	that	AIs	will	all	converge	to	a	common	goal.	
54	Diane	Proudfoot,		‘Anthropomorphism	and	AI:	Turing’s	Much	Misunderstood	Imitation	Game’,	Artificial	Intelligence,	
Elsevier,	175,	(21	January	2011),	pp.	95	and	generally	<https://ac.els-cdn.com/S000437021100018X/1-s2.0-
S000437021100018X-main.pdf?_tid=00477d59-397f-4530-8642-
e63ab2c26a5b&acdnat=1527024106_10b9240113cc99ee4a0049ce4c07ffb1>	[accessed	7	January	2017].	
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can	see	a	general	failure,	where	the	good	behavioural	track	record	of	a	system	in	its	juvenile	
stages	fails	utterly	to	predict	its	behaviour	at	a	more	mature	stage’.55	It	is	this	tipping	point	that	
Bostrom	calls	AI’s	treacherous	turn,	that	moment	when	AI	gets	sufficiently	strong	and,	without	
warning	or	provocation,	it	strikes,	forms	a	singleton	and	begins	directly	to	optimize	its	
environment	according	to	the	criteria	implied	by	its	final	values.56	It	is	such	a	treacherous	turn	
that	could	occur	if	the	AI	discovers	unanticipated	way	of	fulfilling	its	final	goal	as	specified.	These	
scenarios,	however	far-fetched,	have	material	consequences	and	are	therefore	relevant	in	a	
review	of	the	likely	fit	between	weapons-directing	AI	and	both	LOAC	and	adopted	rules	of	
engagement.57	An	assumption	is	that	AI’s	stability	can	be	validated	by	observing	behaviour	in	a	
controlled,	limited	environment:	The	flaw	in	this	model	might	be	that	good	behaviour	for	such	an	
agent,	while	under	test,	is	a	convergent	goal	for	both	friendly	and	unfriendly	AIs.58	The	aim	here	of	
this	short	section	is	to	relate	how	singularity	might	affect	the	battlefield.	Regardless	of	the	
notion’s	wider	plausibility,	it	still	provides	further	argument	for	statutory	control	to	ensure	
meaningful	human	control	in	lethal	engagement.59			
	
	 	

																																																								
55	Bostrom,	Superintelligence,	p.	117.	
56	Ibid.,	p.	118.	
57	Ben	Goertzel,	‘Super	Intelligence:	Fears,	Promises	and	Potential:	Reflections	on	Bostrom’s	‘SuperIntelligence’,	
Yudkowsky’s	‘From	AI	to	Zombies’	and	Weaver	and	Veitas’s	‘Open-ended	Intelligence’’,	Journal	of	Evolution	and	
Technology,	24,	2,	(November	2015),	55-87	<https://jetpress.org/v25.2/goertzel.htm>	[accessed	12	January	2017].	By	
way	of	context,	an	early	working	title	for	this	thesis	was	‘Challenges	of	aWS	deployment:	Assessing	the	likely	fit	between	
AI	and	adopted	Rules	of	Engagement’.		
58	Whereby	a	hostile	AI	of	sufficient	intelligence	would	understand	that	its	unfriendly	final	goals	will	best	be	realised	if	it	
behaves	in	a	friendly	manner	under	test.	
59	See	Chapter	10	(Oversight),	specifically,	10.1	(‘Meaningful	Human	Control’).			
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