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Abstract

This thesis is divided into two parts. In part one, we study the k-median
and the k-means clustering problems. We take a different approach than the
traditional worst case analysis models. We show that by looking at certain
well motivated stable instances, one can design much better approximation
algorithms for these problems. Our algorithms achieve arbitrarily good ap-
proximation factors on stable instances, something which is provably hard on
worst case instances. We also study a different model for clustering which in-
troduces limited amount of interaction with the user. Such interactive models
are very popular in the context of learning algorithms but their effectiveness
for clustering is not well understood. We present promising theoretical and
experimental results in this direction.

The second part of the thesis studies the design of provably good learn-
ing algorithms which work under adversarial noise. One of the fundamental
problems in this area is to understand the learnability of the class of disjunc-
tions of Boolean variables. We design a learning algorithm which improves
on the guarantees of the previously best known result for this problem. In ad-
dition, the techniques used seem fairly general and promising to be applicable
to a wider class of problems. We also propose a new model for learning with
queries. This model restricts the algorithms ability to only ask certain “local”
queries. We motivate the need for the model and show that one can design
efficient local query algorithms for a wide class of problems.
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Chapter 1

Introduction

Machine learning is a prominent area of computer science with focus on analyzing data
to identify patterns and make accurate predictions. Over the past decade, learning algo-
rithms have found widespread applications in numerous areas such as computer vision,
web search, natural language processing, computational biology etc. Traditionally, learn-
ing is classified as being either unsupervised or supervised. In unsupervised learning, the
algorithm has access to data and the goal is to broadly classify the data into a small set of
coherent groups, also known as clusters. For example, given a set of news articles, one
might want to run an unsupervised learning algorithm to partition the set of articles into
clusters corresponding to various topics such as sports, politics, science etc. This task is
also popularly known as clustering.

In supervised learning, in addition to data, the algorithm also gets feedback on its
performance on the data. This process usually involves a human in the loop. For example,
consider the task of designing a spam filter for an e-mail system. In this case, a learning
algorithm will have access to data consisting of various emails. In addition, each email will
be labeled as spam or not-spam by a human who is typically a domain expert. The goal
of the algorithm then is to come up with a prediction rule which can accurately classify
future emails as spam or no spam.

In thesis we study important problems in both supervised and unsupervised learning.
Below we briefly describe the main contributions of this thesis.
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1.1 Clustering

Broadly, the goal of clustering is to partition n given data objects into k groups that share
some commonality. This is often achieved by viewing the data as points in a metric space
and then optimizing a given objective function over them. Two of the most popular such
objectives are the k-median and the k-means objectives. An important direction for re-
search is to design better approximation algorithms for these clustering objectives. Unfor-
tunately, there are known hardness results which limit the possibility of achieving good
approximations on worst case instances. In this thesis we attempt to bypass these hard-
ness results by focusing on the kind of instances that might arise in practice, called stable
instances. One might expect to find a distinguishing property of such instances that yields
better approximation algorithms. There has been recent interest in exploring this direction
of research(Ostrovsky et al. [2006], Balcan et al. [2009a], Kumar and Kannan [2010]).
As discussed in Chapter 3 we define a new notion of stability which we call weak-deletion
stability. We then design polynomial time approximation schemes for such instances. This
improves upon previous work of Ostrovsky et al. [2006] and Balcan et al. [2009a] in two
ways: our notion of stability is weaker and we achieve better approximation guarantees.

In the second part we take a different look at the problem of clustering. Clustering
is traditionally defined as an unsupervised learning task and hence there is inherent un-
certainty in the output of any traditional clustering algorithm. For example, there is no
guarantee that the optimal solution to the k-means or the k-median objective is the desired
target clustering which a particular user had in mind. In fact, there might be no principled
way to reach the target clustering which a teacher has in mind without actually interacting
with him/her. For example consider documents representing news articles. These docu-
ments could be clustered as {politics, sports, entertainment, other}. However, this is just
one of the many possible clusterings. The clustering {entertainment + sports, politics,
other} is an equally likely apriori. Or perhaps the user would like these articles to be
clustered into {news articles} vs. {opinion pieces}. These scenarios motivate the need to
consider the problem of clustering under feedback. Recently, there has been an interest
in investigating such models and to come up with a more formal theoretical framework
for analyzing clustering problems and algorithms. One such framework was proposed by
Balcan and Blum [2008] who, motivated by different models for learning under queries,
proposed a model for clustering under queries. As discussed in Chapters 4 and 5, we fur-
ther explore the implications of their model and extend it in several important directions.
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1.1.1 Results

• We consider k-median clustering in finite metric spaces and k-means clustering in
Euclidean spaces, in the setting where k is part of the input (not a constant). We
propose a notion of data stability which we call weak deletion-stability. An instance
of k-median/k-means clustering satisfies weak deletion-stability if in the optimal
solution, deleting any of the centers and assigning all points in cluster to one of the
remaining k − 1 centers results in an increase in the k-median/k-means cost by an
(arbitrarily small) constant factor. We show that for such instances one can design
polynomial time approximation schemes. This result also improves on earlier work
of Ostrovsky et al. [2006] and Balcan et al. [2009a]

• We study a recently proposed framework(Balcan and Blum [2008]) for supervised
clustering where there is access to a teacher. In this model any clustering algorithm
works in stages. At each stage, the algorithm proposes a clustering to the teacher
and gets limited feedback. We give an improved generic algorithm to cluster any
concept class in this model. Our algorithm is query-efficient in the sense that it
involves only a small amount of interaction with the teacher. We also propose and
study various generalizations of the basic model which remove the assumption that
the teacher responses to the algorithm are perfect. We also motivate and study the
need to design local algorithms in this model. These are algorithms which are only
allowed to make small local changes to the given clustering at each step. We show
that under natural stability conditions on the data, one can design efficient local
algorithms for supervised clustering.

1.2 Learning

The PAC model of learning introduced by Valiant [1984] is the most widely studied theo-
retical framework for studying learning problems. In this model, the algorithm gets access
to samples from an unknown distribution which are labeled according to an unknown func-
tion in a class C of possible functions. The algorithm must produce a hypothesis which
has good prediction performance for the labels of future samples drawn from the same
distribution. There has been a lot of progress on various learning algorithms for important
classes of functions in the PAC model of learning. However, an inherent assumption in the
original PAC model is that there exists a function in the class C which perfectly predicts
the labels of the samples. This assumption is unrealistic in practice and various variants
of the PAC model have been studied which try to relax this assumption. In this thesis we

3



focus on the Agnostic PAC model of learning (Kearns and Valiant [1994]). In this model,
it is assumed that no function in C is perfect and the goal is to output a hypothesis which
approximates the error of best function in the class C to a small multiplicative factor.
Learning under this model is notoriously difficult and very few positive results are known.
For example, even the problem of agnostically learning the class of disjunctions is not
well understood. We make progress (Chapter 7) on this problem by improving on the best
known approximation factor. Our techniques also have the promise of being applicable to
a wider class of functions.

In the second part we look at a different model of learning which is called the PAC +
MQ model (MQ stands for membership queries). In this model, in addition to having ac-
cess to random examples, the learner can also query for the label of any particular example
x of its choice. This model is significantly more powerful than the PAC model and one
can design efficient learning algorithms for complex classes of functions that seem out of
reach in the PAC model using current techniques. Two celebrated results in this model are
the algorithms of Bshouty [1993] and that of Kushilevitz and Mansour [1993] for learning
decision trees and the algorithm of Jackson [1997] for learning DNF formulas under the
uniform distribution. Despite being polynomial time algorithms, one unsatisfactory fea-
ture of these results is that the learner tends to query for labels of the points which seem
very far away from typical points generated from the distribution. A more realistic query
based algorithm would be one which takes samples from the distribution and additionally
queries for points which are close to the samples. We call such queries as local Member-
ship Queries (local MQs). In Chapter 8, we study the possibility of designing local MQ
algorithms for decision trees and DNF formulas.

1.2.1 Results

• Given some arbitrary distribution D over {0, 1}n and arbitrary target function f , the
problem of agnostic learning of disjunctions is to achieve an error rate comparable
to the error OPTdisj of the best disjunction with respect to (D, f). Achieving error
O(n ·OPTdisj) + ε is trivial, and the famous Winnow algorithm (Littlestone [1987])
achieves error O(r · OPTdisj) + ε, where r is the number of relevant variables in
the best disjunction. In recent work, Peleg [2007] shows how to achieve a bound of
Õ(
√
n · OPTdisj) + ε in polynomial time. We improve on Peleg’s bound, giving a

polynomial-time algorithm achieving a bound of

O(n1/3+α ·OPTdisj) + ε

for any constant α > 0.

4



• We propose a new model of learning under membership queries where the learn-
ing algorithm is restricted to queries which are local in nature. In other words the
algorithm is only allowed to query points in the input space which are close to the
distribution of the data. We argue that this is an important model to study and present
a local algorithms for learning various classes of functions under a wide set of dis-
tributions. In particular, we show how to efficient learn sparse polynomials over
{0, 1}n using a local query algorithm under log-Lipschitz distributions. These dis-
tributions, in particualr, capture uniform, product and smooth distributions (Kalai
et al. [2009b]) which are popularly studied in the context of learning problems.
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Part I

Clustering
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Chapter 2

Background

One of the most popular approaches to clustering is to define an objective function over
the data points and find a partitioning which achieves the optimal solution, or an approx-
imately optimal solution to the given objective function. Common objective functions
include center based objective functions such as k-median and k-means where one selects
k center points and the clustering is obtained by assigning each data point to its closest
center point. In k-median clustering the objective is to find center points c1, c2, · · · ck, and
a partitioning of the data so as to minimize Φ =

∑
xmini d(x, ci). This objective is histor-

ically very useful and well studied for facility location problems (Arya et al. [2004], Jain
et al. [2002]). Similarly the objective in k-means is to minimize Φ =

∑
xmini d(x, ci)

2.
The k-means objective function is exactly the log-likelihood of data coming from a mix-
ture of spherical Gaussians with identical variance. Hence, optimizing this objective is
closely related to fitting the maximum likelihood mixture model for a given dataset. For a
given set of centers, the optimal clustering for that set is obtained by assigning each data
point to its closest center point. This is known as the Voronoi partitioning of the data. Un-
fortunately optimizing both these objectives turns out to be NP -hard. Hence a lot of the
work in the theoretical community focuses on designing good approximation algorithms
for these problems (Arya et al. [2004], Arora et al. [1998], Charikar et al. [1999a], de la
Vega et al. [2003], Jain et al. [2002], Kanungo et al. [2002], Kumar et al. [2004], Ostro-
vsky et al. [2006], Balcan et al. [2009a]) with formal guarantees on worst case instances,
as well as providing better guarantees for nicer, stable instances.

We will begin by describing a very popular heuristic for the k-means problem known
as Lloyd’s method. Lloyd’s method (Lloyd [1982]) is an iterative procedure which starts
out with a set of k seed centers and at each step computes a new set of centers with a
lower k-means cost. This is achieved by computing the Voronoi partitioning of the current
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set of centers and replacing each center with the center of the corresponding partition.
We will describe the theoretical properties and limitations of Lloyd’s method which will
also motivate the need for good worst case approximation algorithms for k-means and
k-median. We will see that the method is very sensitive to the choice of the seed centers.

2.1 Notation and Preliminaries

For a given a set S of n points, we will denote C = {C1, C2, . . . Ck} to be a k-clustering
instance. Here Ci’s refer to the individual clusters. When studying k-median, we assume
the n points reside in a finite metric space, and when discussing k-means, we assume they
all reside in a finite dimensional Euclidean space. We denote d : S × S → R≥0 as the
distance function which is an indication of how similar or dissimilar any two points in S
are. A solution to the k-median objective partitions the n points into k disjoint subsets,
C1, C2, . . . , Ck and assigns a center ci for each subset. The k-median cost of this partition
is then measured by

∑k
i=1

∑
x∈Ci d(x, ci). A solution to the k-means objective again gives

a k-partition of the n data points, but now we may assume uses the center of mass, µCi =
1
|Ci|
∑

x∈Ci x, as the center of the cluster Ci. We then measure the k-means cost of this

clustering by
∑k

i=1

∑
x∈Ci d

2(x, µCi) =
∑k

i=1

∑
x∈Ci ‖x− µCi‖

2.

The optimal clustering (w.r.t. to either the k-median or the k-means objective) is de-
noted as C∗ = {C∗1 , C∗2 , . . . , C∗k}, and its cost is denoted as OPT. The centers used in the
optimal clustering are denoted as {c∗1, c∗2, . . . , c∗k}. Clearly, given the optimal clustering,
we can find the optimal centers (either by brute-force checking all possible points for k-
median, or by c∗i = µC∗i for k-means). Alternatively, given the optimal centers, we can
assign each x to its nearest center, thus obtaining the optimal clustering. Thus, we use
C∗ to denote both the optimal k-partition, and the optimal list of k centers. We use OPTi
to denote the contribution of the cluster i to OPT, that is OPTi =

∑
x∈C∗i

d(x, c∗i ) in the
k-median case, or OPTi =

∑
x∈C∗i

d2(x, c∗i ) in the k-means case.

2.2 Lloyd’s method for k-means

Consider a set A of n points in the d-dimensional Euclidean space. We start by formally
defining Voronoi partitions.

Definition 2.2.1 (Voronoi Partition). Given a clustering instance C ⊂ Rd and k points
c1, c2, · · · ck, a Voronoi partitioning using these centers consists of k disjoint clusters.
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Cluster i consists of all the points x ∈ C satisfying d(x, ci) ≤ d(x, cj) for all j 6= i.1

Lloyd’s method is the most popular heuristic for k-means clustering in the Euclidean
space which has been shown to be one of the most popular algorithms in data mining (Wu
et al. [2008]). The method is an iterative procedure which is described below.

Lloyd’s method

1. Seeding: Choose k seed points c1, c2, · · · ck. Compute the k-means cost using seed
points as centers.

2. Repeat: Until no change in the k-means cost

(a) Voronoi partitioning: Compute the Voronoi partitioning of the data based on
the centers c1, c2, · · · ck. Let C1 ,C2 , · · · ,Ck be the corresponding clusters.

(b) Reseeding: Compute new centers ĉ1, ĉ2, · · · , ĉk, where ĉi = mean(Ci ). Here
mean(Ci ) refers to the point obtained by taking coordinate-wise average of all
the points in the set Ci . Compute the k-means cost using the new centers.

An attractive feature of Lloyd’s method is that the k-means cost of the clustering ob-
tained never increases. This follows from the fact that for any set of points, the 1-means
cost is minimized by choosing the mean of the set as the center. Hence for any cluster Ci
in the partitioning, choosing mean(Ci) will never lead to a solution of higher cost. Hence
if we repeat this method until there is no change in the k-means cost, we will reach a local
optimum of the k-means cost function in finite time. In particular the number of iterations
will be at most nO(kd) which is the maximum number of Voronoi partitions of a set of n
points in <d (Inaba et al. [1994]). The basic method mentioned above leads to a class of
algorithms depending upon the choice of the seeding method. A simple way is to start with
k randomly chosen data points. This choice however can lead to arbitrarily bad solution
quality as shown in Figure 2.1. In addition it is also known that the Lloyd’s method can
take upto 2n iterations to converge even in 2 dimensions (Arthur and Vassilvitskii [2006],
Vattani [2009]).

In sum, from a theoretical standpoint, k-means with random/arbitrary seeds is not a
good clustering algorithm in terms of efficiency or quality. Nevertheless, the speed and
simplicity of k-means are quite appealing in practical applications. Therefore, recent work
has focused on improving the initialization procedure: deciding on a better way to initial-
ize the clustering dramatically changes the performance of the Lloyd’s iteration, both in

1Ties can be broken arbitrarily.

11



A B C D 
x y z 

A B C D 
x y z 

Figure 2.1: Consider 4 points {A,B,C,D} on a line separated by distances x, y and z
such that z < x < y. Let k = 3. The optimal solution has centers at A,B and the
centroid of C,D with a total cost of z2

2
. When choosing random seeds, there is a constant

probability that we choose {A,C,D}. In this case the final centers will be C,D and the
centroid of A,B with a total cost of x2

2
. This ratio can be made arbitrarily bad.
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terms of quality and convergence properties. For example, Arthur and Vassilvitskii [2007]
showed that choosing a good set of seed points is crucial and if done carefully can it-
self be a good candidate solution without the need for further iterations. Their algorithm
called k-means++ uses the following seeding procedure: it selects only the first center
uniformly at random from the data and each subsequent center is selected with a probabil-
ity proportional to its contribution to the overall error given the previous selections. See
Algorithm KMEANS++for a formal description:

kmeans++

1. Initialize a set S by choosing a data point at random.

2. While |S| < k, choose a data point x with probability proportional to
minz∈Sd(x, z)2, and add it to S.

3. Output the clustering obtained by the Voronoi partitioning of the data using the
centers in S.

Arthur and Vassilvitskii [2007] showed that Algorithm KMEANS++is an log k ap-
proximation algorithm for the k-means objective. We say that an algorithm is an α-
approximation for a given objective function Φ if for every clustering instance the al-
gorithm outputs a solution of expected cost at most α times the cost of the best solution.
The design of approximation algorithms for NP -hard problems has been a fruitful re-
search direction and has led to a wide array of tools and techniques. Formally, Arthur and
Vassilvitskii [2007] show that:

Theorem 2.2.2 (Arthur and Vassilvitskii [2007]). Let S be the set of centers output by the
above algorithm and cost(S) be the k-means cost of the clustering obtained using S as the
centers. Then E[cost(S)] ≤ O(log k)OPT, where OPT is the cost of the optimal k-means
solution.

We would like to point out that in general the output of k-means++ is not a local
optimum. Hence it might be desirable in practice to run a few steps of the Lloyd’s method
starting from this solution. This could only lead to a better solution.

Subsequent work of Ailon et al. [2009] introduced a streaming algorithm inspired by
the k-means++ algorithm that makes a single pass over the data. They show that if one is
allowed to cluster using a little more than k centers, specifically O(k log k) centers, then
one can achieve a constant-factor approximation in expectation to the k-means objective.
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Such approximation algorithms which use more than k centers are also known as bi-criteria
approximations.

As mentioned earlier, Lloyd’s method can take up to exponential iterations in order to
converge to a local optimum. However Arthur et al. [2011] showed that the method con-
verges quickly on an “average” instance. In order to formalize this, they study the problem
under the smoothed analysis framework of Spielman and Teng [2004]. In the smoothed
analysis framework the input is generated by applying a small Gaussian perturbation to an
adversarial input. Spielman and Teng [2004] showed that the simplex method takes poly-
nomial number of iterations on such smoothed instances. In a similar spirit, Arthur et al.
[2011] showed that for smoothed instances Lloyd’s method runs in time polynomial in n,
the number of points and 1

σ
, the standard deviation of the Gaussian perturbation. However,

these works do not provide any guarantee on the quality of the final solution produced.

We would like to point out that in principle the Lloyd’s method can be extended to the
k-median objective. A natural extension would be to replace the mean computation in the
Reseeding step with computing the median of a set of points X in the Euclidean space,
i.e., a point c ∈ <d such that

∑
x∈X d(x, c) is minimized. However this problem turns

out to be NP-hard (Megiddo and Supowit [1984]). For this reason, the Lloyd’s method is
typically used only for the k-means objective.

2.3 Properties of the k-means objective

In this section we provide some useful facts about the k-means clustering objective. We
will use C to denote the set of n points which represent a clustering instance. The first fact
can be used to show that given a Voronoi partitioning of the data, replacing a given center
with the mean of the corresponding partition can never increase the k-means cost.

Fact 2.3.1. Consider a finite set X ⊂ Rd and c =mean(X). For any y ∈ Rd, we have that,∑
x∈X d(x, y)2 =

∑
x∈X d(x, c)2 + |X|d(c, y)2.

Proof. Representing each point in the coordinate notation as x = (x1, x2, · · · , xd), we
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have that∑
x∈X

d(x, y)2 =
∑
x∈X

d∑
i=1

|xi − yi|2

=
∑
x∈X

d∑
i=1

(|xi − ci|2 + |ci − yi|2 + 2(xi − ci)(ci − yi))

=
∑
x∈X

d(x, c)2 + |X|d(c, y)2 +
d∑
i=1

2(ci − yi)
∑
x∈X

(xi − ci)

=
∑
x∈X

d(x, c)2 + |X|d(c, y)2

Here the last equality follows from the fact that for any i, ci =
∑

x∈X xi/n.

An easy corollary of the above fact is the following,

Corollary 2.3.2. Consider a finite setX ⊂ Rd and let c = mean(X). We have
∑

x,y⊂X d(x, y)2 =

|X|
∑

x∈X d(x, c)2.

Below we prove another fact which will be useful later.

Fact 2.3.3. Let X ⊂ Rd be finite set of points. Let ∆1
2(X) denote the 1-means cost of X .

Given a partition of X into X1 and X2 such that c =mean(X), c1 =mean(X1) and c2 =
mean(X2), we have that a) ∆1

2(X) = ∆1
2(X1) + ∆1

2(X2) + |X1||X2|
|X| d(c1, c2)2. and b)

d(c, c1)2 ≤ ∆1
2(X)|X2|
|X||X1| .

Proof. We can write ∆1
2(X) =

∑
x∈X1

d(x, c)2 +
∑

x∈X2
d(x, c)2. Using Fact 2.3.1 we

can write ∑
x∈X1

d(x, c)2 = ∆1
2(X1) + |X1|d(c, c1)2.

Similarly,
∑

x∈X2
d(x, c)2 = ∆1

2(X2) + |X2|d(c, c2)2. Hence we have

∆1
2(X) = ∆1

2(X1) + ∆1
2(X2) + |X1|d(c, c1)2 + |X2|d(c, c2)2.

Part (a) follows by substituting c = |X1|c1+|X2|c2
|X1|+|X2| in the above equation.

From Part (a) we have that

∆1
2(X) ≥ |X1||X2|

|X|
d(c1, c2)2.
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Part (b) follows by substituting c2 = (|X1|+|X2|)
X2

c− |X1|
|X2|c1 above.

Fact 2.3.4. Let S be a (finite) set of points in an Euclidean space, and let c = mean(S)
denote their center of mass (c = 1

|S|
∑

x∈S x). Let A be a random subset of S of size m,
and denote by cA the center of mass of A. Then for any δ < 1/2, we have both

Pr

[
d2(c, cA) >

1

δm
·∆2

1(S)

]
< δ (2.1)

Pr

[∑
x∈S

d2(x, cA) > |S|(1 +
1

δm
) ·∆2

1(S)

]
< δ (2.2)

Proof. First, notice that E[cA] = c. Also it is easy to see that E[d2(c, cA)] = 1
m

∆2
1(S).

Equation 3.1 then follows from Markov’s inequality. Equation 3.2 follows from Equa-
tion 3.1 and noting that

∑
x∈S d

2(x, cA) = |S|∆2
1(S) + |S|d2(c, cA) (See Fact 2.3.1).

2.4 Hierarchical clustering

So far we have discussed clustering algorithms which take as input the number of clusters
k and optimize an objective function for the specific value of k. Another line of work in
the clustering literature studies the design of clustering algorithms which are oblivious to
the value of k. In other words, one should be able to get a k clustering for any desired
value of k from the output of the algorithm. Such algorithms, often called hierarchical or
agglomerative algorithms, induce a tree structure over the given set of data points. The
root of the tree contains a single node with all the points in one cluster. On the other hand,
the bottom level contains n clusters with each point belonging to its own cluster. Given
such a tree structure, it is easy to output a k clustering: simply output the set of nodes at
level k from the root node. We will briefly describe some popular hierarchical clustering
algorithms. See Hartigan [1985] for a detailed discussion.

2.4.1 Single Linkage algorithm

The single linkage algorithm is one of the simplest hierarchical clustering algorithm. The
algorithm starts with the given n points as leaf nodes. At each step, the algorithm merges
the two closest nodes in the tree to create a new internal node. Given two sets of points
A and B, the distance between them is defined as dmin(A,B) = minx∈A,y∈Bd(x, y). The
algorithm is shown below.

16



Single Linkage

1. Initialize the n leaf nodes with the n given data points in S. Mark all the nodes as
active.

2. While # active nodes > 1

• Let A and B be the active nodes with the minimum value of dmin(A,B).

• Create a new parent node N = A ∪ B connected to A and B. Mark A and B
as inactive and N as active.

3. Output the tree constructed.

Although simple to describe, the single linkage algorithm is not very popular in prac-
tice and is very sensitive to the presence of outliers in the data (Hartigan [1985]). A more
robust version of the single linkage algorithm is the average linkage algorithm. The over-
all structure is the same as single linkage except the choice of the distance function used
to measure similarity between two sets of points. As the name suggests, the average link-
age algorithm uses the average distance between two sets of points as a measure of the
distance between the two sets. In other words, the distance between A and B is defined to
be davg(A,B) = 1

|A||B|
∑

x∈A,y∈B d(x, y). The algorithm is shown below

Average Linkage

1. Initialize the n leaf nodes with the n given data points in S. Mark all the nodes as
active.

2. While # active nodes > 1

• Let A and B be the active nodes with the minimum value of davg(A,B).

• Create a new parent node N = A ∪ B connected to A and B. Mark A and B
as inactive and N as active.

3. Output the tree constructed.
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Chapter 3

Approximation algorithms for
clustering

In this chapter, we consider two popular clustering objectives, k-median and k-means.
Both measure a k-partition of the points by choosing a special point for each cluster,
called the center, and define the cost of a clustering as a function of the distances be-
tween the data points and their respective centers. In the k-median case, the cost is the
sum of the distances of the points to their centers, and in the k-means case, the cost is
the sum of these distances squared. The k-median objective is typically studied for data
in a finite metric (complete weighted graph satisfying triangle inequality) over the n data
points; k-means clustering is typically studied for n points in a (finite dimensional) Eu-
clidean space. Both objectives are known to be NP-hard (we view k as part of the input and
not a constant, though even the 2-means problem in Euclidean space was recently shown
to be NP-hard (Dasgupta [2008])). For k-median in a finite metric, there is a known
(1 + 1/e)-hardness of approximation result (Jain et al. [2002]) and substantial work on
approximation algorithms (Guha and Khuller [1998], Charikar et al. [1999b], Arya et al.
[2001], Jain et al. [2002], de la Vega et al. [2003]), with the best guarantee a 3 + ε approx-
imation. For k-means in a Euclidean space, there is also a vast literature of approximation
algorithms (Ostrovsky and Rabani [2000], Bādoiu et al. [2002], de la Vega et al. [2003],
Effros and Schulman [2004], Har-Peled and Mazumdar [2004], Kanungo et al. [2002])
with the best guarantee a constant-factor approximation if polynomial dependence on k
and the dimension d is desired.1

1If k is constant, then k-median in finite metrics can be trivially solved in polynomial time and there
is a PTAS known for k-means in Euclidean space (Kumar et al. [2004]). There is also a PTAS known for
low-dimensional Euclidean spaces (Arora et al. [1998], Har-Peled and Mazumdar [2004]).

19



3.1 Bypassing NP-hardness

The work of Ostrovsky et al. [2006] proposed a notion of stability under which one can
achieve better k-means approximations in time polynomial in n and k. They consider
k-means instances where the optimal k-clustering has cost noticeably smaller than the
cost of any (k − 1)-clustering, motivated by the idea that “if a near-optimal k-clustering
can be achieved by a partition into fewer than k clusters, then that smaller value of k
should be used to cluster the data” (Ostrovsky et al. [2006]). Under the assumption that
the ratio of the cost of the optimal (k − 1)-means clustering to the cost of the optimal
k-means clustering is at least max{100, 1/ε2}, Ostrovsky et al. show that one can obtain
a (1 + f(ε))-approximation for k-means in time polynomial in n and k, by using a variant
on Lloyd’s algorithm.

Balcan et al. [2009a], motivated by the fact that objective functions are often just a
proxy for the underlying goal of getting the data clustered correctly, study clustering in-
stances that satisfy the condition that all (1 + α) approximations to the given objective
(e.g., k-median or k-means) are δ-close, in terms of how points are partitioned, to a target
clustering (such as a correct clustering of proteins by function or a correct clustering of
images by who is in them). Such instances are called (1 + α, δ) approximation-stable in-
stances. Balcan et al. show that for any α and δ, given an instance satisfying this property
for k-median or k-means objectives, one can in fact efficiently produce a clustering that is
O(δ/α)-close to the target clustering (so, O(δ)-close for any constant α > 0), even though
obtaining a 1 + α approximation to the objective is NP-hard for α < 1

e
, and remains hard

even under this assumption. Thus they show that one can approximate the target even
though it is hard to approximate the objective.

3.2 Our results

In this thesis we study a new notion of stability which we call as weak deletion-stability.
We show that it is implied by both the separation condition of Ostrovsky et al. [2006] as
well as (when target clusters are large) the stability condition of Balcan et al. [2009a]. We
design polynomial time approximation schemes for instances of k-median and k-means
which satisfy weak deletion-stability .

As a byproduct we improve on the approximation guarantee provided in Ostrovsky
et al. [2006]. We show that under the much weaker assumption that the ratio of these
costs is just at least (1 + α) for some constant α > 0, we can achieve a PTAS: namely,
(1 + ε)-approximate the k-means optimum, for any constant ε > 0. Thus, we decouple the
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strength of the assumption from the quality of the conclusion, and in the process allow the
assumption to be substantially weaker.

Our result also resolves a question raised by the work of Balcan et al. [2009a] regarding
the approximability of the k-median and the k-means objectives when all target clusters
in the (1 + α, δ) stable instance are large compared to δn. Our result can be used to
show that for both k-median and k-means objectives, if all clusters contain more than δn
points, then for any constant α > 0 we can in fact get a PTAS. Thus, we (nearly) resolve
the approximability of these objectives under stability condition of Balcan et al. [2009a].
Note that this further implies finding a δ-close clustering (setting ε = α). Thus, we also
extend the results of Balcan et al. [2009a] in the case of large clusters and constant α by
getting exactly δ-close for both k-median and k-means objectives. (In Balcan et al. [2009a]
this exact closeness was achieved for the k-median objective but needed a somewhat larger
O(δn(1 + 1/α)) minimum cluster size requirement). The results in this chapter are based
on work in Awasthi et al. [2010a].

3.3 Stability Properties

As mentioned above, our results are achieved by exploiting implications of a stability
condition we call weak deletion-stability. In this section we define weak deletion-stability
and relate it to conditions of Ostrovsky et al. [2006] and Balcan et al. [2009a].

Definition 3.3.1. For α > 0, a k-median/k-means instance satisfies (1+α) weak deletion-
stability, if it has the following property. Let {c∗1, c∗2, . . . , c∗k} denote the centers in the
optimal k-median/k-means solution. Let OPT denote the optimal k-median/k-means cost
and let OPT(i→j) denote the cost of the clustering obtained by removing c∗i as a center and
assigning all its points instead to c∗j . Then for any i 6= j, it holds that

OPT(i→j) > (1 + α)OPT

3.3.1 ORSS-Separability

Ostrovsky et al. [2006] define a clustering instance to be ε-separated if the optimal k-
means solution is cheaper than the optimal (k − 1)-means solution by at least a factor ε2.
For a given objective (k-means or k-median) let us use OPT(k−1) to denote the cost of the
optimal (k − 1)-clustering. Introducing a parameter α > 0, say a clustering instance is
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(1 + α)-ORSS separable if
OPT(k−1)

OPT
> 1 + α

If an instance satisfies (1+α)-ORSS separability then all (k−1) clusterings must have
cost more than (1 +α)OPT and hence it is immediately evident that the instance will also
satisfy (1 + α)-weak deletion-stability. Hence we have the following claim:

Claim 3.3.2. Any (1 + α)-ORSS separable k-median/k-means instance is also (1 + α)-
weakly deletion stable.

Proof. If an instance satisfies (1 +α)-ORSS separability then all (k− 1) clusterings must
have cost more than (1+α)OPT. For all i, j, OPTi→j denotes the cost of a particular (k−
1) clustering denotes as Ci→j , and hence OPTi→j > (1 + α)OPT. It is now immediately
evident that the instance will also satisfy (1 + α)-weak deletion-stability.

3.3.2 BBG-Stability

Balcan et al. [2009a] (see also Balcan and Braverman [2009] and Balcan et al. [2009b])
consider a notion of stability to approximations motivated by settings in which there ex-
ists some (unknown) target clustering Ctarget we would like to produce. Balcan et al.
[2009a] define a clustering instance to be (1 + α, δ) approximation-stable with respect to
some objective Φ (such as k-median or k-means), if any k-partition whose cost under Φ
is at most (1 + α)OPT agrees with the target clustering on all but at most δn data points.
That is, for any (1 + α) approximation C to objective Φ, we have minσ∈Sk

∑
i |C

target
i −

Cσ(i)| ≤ δn (here, σ is simply a matching of the indices in the target clustering to those
in C). In general, δn may be larger than the smallest target cluster size, and in that case
approximation-stability need not imply weak deletion-stability (not surprisingly since Bal-
can et al. [2009a] show that k-median and k-means remain hard to approximate). However,
when all target clusters have size greater than δn (note that δ need not be a constant) then
approximation-stability indeed also implies weak deletion-stability, allowing us to get a
PTAS (and thereby δ-close to the target) when α > 0 is a constant.

Claim 3.3.3. A k-median/k-means clustering instance that satisfies (1+α, δ) approximation-
stability, and in which all clusters in the target clustering have size greater than δn, also
satisfies (1 + α) weak deletion-stability.

Proof. Consider an instance of k-median/k-means clustering which satisfies (1 + α, δ)
approximation-stability. As before, let {c∗1, c∗2, . . . , c∗k} be the centers in the optimal so-
lution and consider the clustering C(i→j) obtained by no longer using c∗i as a center and
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instead assigning each point from cluster i to c∗j , making the ith cluster empty. The dis-
tance of this clustering from the target is defined as 1

n
minσ∈Sk

∑
i′ |C

target
i′ −C(i→j)

σ(i′) |. Since
C(i→j) has only (k−1) nonempty clusters, one of the target clusters must map to an empty
cluster under any permutation σ. Since by assumption, this target cluster has more than
δn points, the distance between Ctarget and C(i→j) will be greater than δ and hence by
the BBG stability condition, the k-median/k-means cost of C(i→j) must be greater than
(1 + α)OPT.

We now state our main result:

Theorem 3.3.4. Given ε, α > 0 and a (1 + α) weakly deletion-stable instance of k-
median clustering, one can find a (1 + ε) approximation to the k-median objective in time
nO(1/αε)kO(1/α).

A similar result holds true for k-means clustering in Euclidean space

Theorem 3.3.5. Given ε, α > 0 and a (1 + α) weakly deletion-stable instance of k-
means clustering, one can find a (1 + ε) approximation to the k-means objective in time
(k log n)O(1/αε)O(n3).

Finally, we would like to point out that NP-hardness of the k-median problem is main-
tained even if we restrict ourselves only to weakly deletion-stable instances. This is proved
in the following theorem

Theorem 3.3.6. For any constant α > 0, finding the optimal k-median clustering of (1 +
α)-weakly deletion-stable instances is NP-hard.

Also the reduction (See in Section 3.8.3) uses only integer poly-size distances, and
hence rules out the existence of a FPTAS for the problem, unless P = NP. Thus, our
algorithm, is optimal in the sense that the super-polynomial dependence on 1/ε and 1/α
in the running time is unavoidable. In addition, the reduction can be modified to show
that NP-hardness is maintained under the conditions studied in Ostrovsky et al. [2006]
and Balcan et al. [2009a].

Our algorithms mentioned in the following sections use the following important con-
sequence of weakly deletion stable instances.

Theorem 3.3.7. Let C∗ be the optimal k-median/k-means instance of a (1 + α)-weakly
deletion-stable instance. Then we have for any cluster C∗i and any point p /∈ C∗i ,
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d(c∗i , p) >
α

2

OPT

|C∗i |
(for k-median) (3.1)

d2(c∗i , p) >
α

4

OPT

|C∗i |
(for k-means) (3.2)

Proof. Fix any center in the optimal k-clustering, c∗i , and fix any point p that does not
belong to the C∗i cluster. Denote by C∗j the cluster that p is assigned to in the optimal
k-clustering. Therefore it must hold that d(p, c∗j) ≤ d(p, c∗i ). Consider the clustering
obtained by deleting c∗i from the list of centers, and assigning each point in C∗i to C∗j .
Since the instance is (1 + α)-weakly deletion-stable this should increase the cost by at
least αOPT.

Suppose we are dealing with a k-median instance. Each point x ∈ C∗i originally pays
d(x, c∗i ), and now, assigned to c∗j , it pays d(x, c∗j) ≤ d(x, c∗i ) + d(c∗i , c

∗
j). Thus, the new

cost of the points in C∗i is upper bounded by
∑

x∈C∗i
d(x, c∗j) ≤ OPTi + |C∗i |d(c∗i , c

∗
j).

As the increase in cost is lower bounded by αOPT and upper bounded by |C∗i |d(c∗i , c
∗
j),

we deduce that d(c∗i , c
∗
j) > αOPT

|C∗i |
. Observe that triangle inequality gives that d(c∗i , c

∗
j) ≤

d(c∗i , p) + d(p, c∗j) ≤ 2d(c∗i , p), so we have that d(c∗i , p) > (α/2)OPT
|C∗i |

.

Suppose we are dealing with a Euclidean k-means instance. Again, we have created a
new clustering by assigning all points in C∗i to the center c∗j . Thus, the cost of transitioning
from the optimal k-clustering to this new (k − 1)-clustering, which is at least αOPT, is
upper bounded by

∑
x∈C∗i
‖x − c∗j‖2 − ‖x − c∗i ‖2. As c∗i = µC∗i , it follows that this

bound is exactly
∑

x∈C∗i
‖c∗j − c∗i ‖2 = |C∗i |d2(c∗i , c

∗
j), see Inaba et al. [1994] (§2, Theorem

2). It follows that d2(c∗i , c
∗
j) > αOPT

|C∗i |
. As before, d2(c∗i , c

∗
j) ≤

(
d(c∗i , p) + d(p, c∗j)

)2 ≤
4d2(c∗i , p), so d2(c∗i , p) >

α
4
OPT
|C∗i |

.

3.4 Algorithm Intuition and Techniques

We now informally describe the algorithm for finding a (1 + ε)-approximation of the k-
median optimum for weakly deletion-stable instances. First, we comment that using a
standard doubling technique, we can assume we approximately know the value of OPT.2

2Instead of doubling from 1, we can alternatively run an off-the-shelf 5-approximation of OPT, which
will return a value v ≤ 5OPT.
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Our algorithm works if instead of OPT we use a value v s.t. OPT ≤ v ≤ (1 + ε/2)OPT,
but for ease of exposition, we assume that the exact value of OPT is known.

Furthermore we will assume that our instance does not have any cluster which dom-
inates the overall cost of the optimal clustering. Specifically, we say a cluster C∗i in the
optimal k-median clustering C∗ (hereafter also referred to as the target clustering) is cheap
if OPTi ≤ αεOPT

64
, otherwise, we say C∗i is expensive. Note that in any event, there can be

at most a constant ( 64
αε

) number of expensive clusters.

The intuition for our algorithm and for introducing the notion of cheap clusters is
the following. Pick some cluster C∗i in the optimal k-median clustering. The first main
observation is that if the instance is (1 + α) weakly deletion-stable, then any x /∈ C∗i is
far from c∗i , namely, d(x, c∗i ) > α OPT

2|C∗i |
. In contrast, the average distance of x ∈ C∗i from

c∗i is OPTi
|C∗i |

. Thus, if we focus on a cluster whose contribution, OPTi, is no more than,
say, α

200
OPT, we have that c∗i is 100 times closer, on average, to the points of C∗i than to

the points outside C∗i . Furthermore, using the triangle inequality we have that any two
“average” points of C∗i are of distance at most α

100
OPT
|C∗i |

, while the distance between any

such “average” point and any point outside of C∗i is at least 99α
200

OPT
|C∗i |

. So, if we manage to

correctly guess the size s of a cheap cluster, we can set a radius r = Θ
(
αOPT

s

)
and collect

data-points according to the size and intersection of the r-balls around them. We note that
this use of balls with an inverse relation between size and radius is similar to that in the
min-sum clustering algorithm of Balcan and Braverman [2009].

Note that in the general case we might have up to 32
αε

expensive clusters. We handle
them by brute force guessing their centers.

The general algorithm populates a list Q, where each element in this list is a subset of
points. Ideally, each subset is contained in some target cluster, yet we might have a few
subsets with points from two or more target clusters. The first stage of the algorithm is to
add components into Q, and the second stage is to find k good components in Q, and use
these k components to retrieve a clustering with low cost.

Since we do not have many expensive clusters, we can run the algorithm for all possible
guesses for the centers of the expensive clusters and choose the solution which has the
minimum cost. It can be shown that one such guess will lead to a solution of cost at most
(1 + ε)OPT. The complete algorithm for k-median is shown in Figure 3.1.

For the case of k-means in Euclidean space, we use sampling techniques, similar to
those of Kumar et al. [2004] and Ostrovsky et al. [2006], to get good substitutes for the
centers of the expensive clusters. Note however an important difference between the ap-
proach of Kumar et al. [2004], Ostrovsky et al. [2006] and ours. While they sample points
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from all k clusters, we sample points only for the O(1) expensive clusters. As a result,
the runtime of the PTAS of Kumar et al. [2004], Ostrovsky et al. [2006] has exponential
dependence in k, while ours has only a polynomial dependence in k.

1. Input Q ← Qinit.

2. Population Stage: For s = n, n− 1, n− 2, . . . , 1 do:

(a) Set r = αOPT
8s

.

(b) Remove any point x such that d(x,Q) < 2r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

(c) For any remaining data point x, denote the set of data points whose distance
from x is at most r, by B(x, r). Connect any two remaining points a and b if:
(i) d(a, b) ≤ r, (ii) |B(a, r)| > s

2
and (iii) |B(b, r)| > s

2
.

(d) Let T be a connected component of size > s
2
. Then:

i. Add T to Q. (That is, Q ← Q∪ {T}.)
ii. Define the set B(T ) = {x : d(x, y) ≤ 2r for some y ∈ T}. Remove the

points of B(T ) from the instance.

3. Centers-Retrieving Stage: For any choice of k components T1, T2, . . . , Tk out ofQ
(we later show that |Q| < k +O(1/α))

(a) Find the best center ci for Ti ∪ B(Ti). That is ci =
arg minp∈Ti∪B(Ti)

∑
x∈Ti∪B(Ti)

d(x, p).a

(b) Partition all n points according to the nearest point among the k centers of the
current k components.

(c) If a clustering of cost at most (1 + ε)OPT is found – output these k centers and
halt.

aThis can be done before fixing the choice of k components out of Q.

Figure 3.1: The algorithm to obtain a PTAS for weakly deletion-stable instances of k-
median.
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3.5 Formal Analysis

We now analyze the algorithm is presented in Figure 3.1. We assume that at the beginning,
the list Q is initialized with Qinit which contains the centers of all the expensive clusters.
In general, the algorithm will be run several times with Qinit containing different guesses
for the centers of the expensive clusters. Before going into the proof of correctness of
the algorithm, we introduce another definition. We define the inner ring of C∗i as the set{
x; d(x, c∗i ) ≤ αOPT

16|C∗i |

}
. Note the following fact:

Fact 3.5.1. If C∗i is a cheap cluster, then no more than an ε/4 fraction of its points reside
outside the inner ring. In particular, at least half of a cheap cluster is contained within the
inner ring.

Proof. This follows from Markov’s inequality. If more than (ε/4)|C∗i | points are outside
of the inner ring, then OPTi >

ε|C∗i |
4
· αOPT

16|C∗i |
= αεOPT/64. This contradicts the fact that

C∗i is cheap.

Our high level goal is to show that for any cheap cluster C∗i in the target clustering, we
insert a component Ti that is contained within C∗i , and furthermore, contains only points
that are close to c∗i . It will follow from the next claims that the component Ti is the one
that contains points from the inner ring of C∗i . We start with the following Lemma which
we will utilize a few times.

Lemma 3.5.2. Let T be any component added toQ. Let s be the stage in which we add T
to Q. Let C∗i be any cheap cluster s.t. s ≥ |C∗i |. Then (a) T does not contain any point z
s.t. the distance d(c∗i , z) lies within the range

[
α
4
OPT
|C∗i |

, 3α
8

OPT
|C∗i |

]
, and (b) T cannot contain

both a point p1 s.t. d(c∗i , p1) < α
4
OPT
|C∗i |

and a point p2 s.t. d(c∗i , p2) > 3α
8

OPT
|C∗i |

.

Proof. We prove (a) by contradiction. Assume T contains a point z s.t. α
4
OPT
|C∗i |
≤ d(c∗i , z) ≤

3α
8

OPT
|C∗i |

. Set r = αOPT
8s
≤ αOPT

8|C∗i |
, just as in the stage when T was added to Q, and let p be

any point in the ball B(z, r). Then by the triangle inequality we have that d(c∗i , p) ≥
d(c∗i , z)− d(z, p) ≥ α

8
OPT
|C∗i |

, and similarly d(c∗i , p) ≤ d(c∗i , z) + d(z, p) ≤ αOPT
2|C∗i |

. Since our
instance is weakly deletion-stable it holds that p belongs to C∗i , and from the definition of
the inner ring of C∗i , it holds that p falls outside the inner ring. However, z is added to T
because the ball B(z, r) contains more than s/2 ≥ |C∗i |/2 many points. So more than half
of the points in C∗i fall outside the inner ring of C∗i , which contradicts Fact 3.5.1.
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Assume now (b) does not hold. Recall that T is a connected component, so exists some
path p1 → p2. Each two consecutive points along this path were connected because their
distance is at most αOPT

8s
≤ αOPT

8|C∗i |
. As d(c∗i , p1) < α

4
OPT
|C∗i |

and d(c∗i , p2) > 3α
8

OPT
|C∗i |

, there must

exist a point z along the path whose distance from c∗i falls in the range
[
α
4
OPT
|C∗i |

, 3α
8

OPT
|C∗i |

]
,

contradicting (a).

Claim 3.5.3. Let C∗i be any cheap cluster in the target clustering. By stage s = |C∗i |, the
algorithm adds to Q a component T that contains a point from the inner ring of C∗i .

Proof. Suppose that up to the stage s = |C∗i | the algorithm has not inserted such a com-
ponent into Q. Now, it is possible that by stage s, the algorithm has inserted some com-
ponent T ′ to Q, s.t. some x in the inner ring of C∗i is too close to some y ∈ T ′ (namely,
d(x, y) ≤ 2r), thus causing x to be removed from the instance. Assume for now this is
not the case. This means that the inner ring of cluster C∗i still contains more than |C∗i |/2
points. Also observe that all inner ring points are of distance at most αOPT

16|C∗i |
from the center,

so every pair of inner ring points has a distance of at most αOPT
8|C∗i |

. Hence, when we reach

stage s = |C∗i |, any ball of radius r = αOPT
8s

= αOPT
8|C∗i |

centered at any inner-ring point,
must contain all other inner-ring points. This means that at stage s = |C∗i | all inner ring
points are connected among themselves, so they form a component (in fact, a clique) of
size > s/2. Therefore, the algorithm inserts a new component, containing all inner ring
points.

So, by stage s = |C∗i |, one of two things can happen. Either the algorithm inserts a
component that contains some inner ring point to Q, or the algorithm removes an inner
ring point due to some component T ′ ∈ Q. If the former happens, we are done. So let us
prove by contradiction that we cannot have only the latter.

Let s ≥ |C∗i | be the stage in which we throw away the first inner ring point of the
cluster C∗i . At stage s the algorithm removes this inner ring point x because there exists
a point y in some component T ′ ∈ Q, s.t. d(x, y) ≤ 2r = αOPT

4s
, and so d(c∗i , y) ≤

d(c∗i , x) + d(x, y) ≤ αOPT
16|C∗i |

+ αOPT
4s
≤ 5

16
αOPT
|C∗i |

. This immediately implies that T ′ cannot be

the center of an expensive cluster since any such point will be at a distance at least αOPT
2|C∗|

from c∗i . Let s′ ≥ s ≥ |C∗i | be the previous stage in which we added the component T ′

to Q. As Lemma 3.5.2 applies to T ′, we deduce that d(c∗i , y) < α
4
OPT
|C∗i |

. Recall that T ′

contains > s′/2 ≥ |C∗i |/2 many points, yet, by assumption, contains none of the |C∗i |/2
points that reside in the inner ring of C∗i . It follows from Fact 3.5.1 that some point
w ∈ T ′ must belong to a different cluster C∗j . Since the instance is weakly deletion-stable
, we have that d(c∗i , w) > αOPT

2|C∗i |
. The existence of both y and w in T ′ contradicts part (b)

28



of Lemma 3.5.2.

We call a component T ∈ Q good if it contains an inner ring point of some cheap
cluster C∗i . A component is called bad if it is not good and is not one of the initial centers
present in Qinit. We now discuss the properties of good components.

Claim 3.5.4. Let T be a good component added toQ, containing an inner ring point from
a cheap cluster C∗i . (By Claim 3.5.3 we know at least one such T exists.) Then: (a) all
points in T are of distance at most αOPT

4|C∗i |
from c∗i , (b) T ∪ B(T ) is fully contained in C∗i ,

and (c) the entire inner ring of C∗i is contained in T ∪ B(T ), and (d) no other component
T ′ ∈ Q, T ′ 6= T , contains an inner ring point from C∗i .

Proof. As we do not know (d) in advance, it might be the case thatQ contains many good
components, all containing an inner-ring point from the same cluster, C∗i . Out of these
(potentially many) components, let T denote the first one inserted to Q. Denote the stage
in which T was inserted to Q as s. Due to the previous claim, we know s ≥ |C∗i |, and so
Lemma 3.5.2 applies to T . We show (a), (b), (c) and (d) hold for T , and deduce that T is
the only good component to contain an inner ring point from C∗i .

Part (a) follows immediately from Lemma 3.5.2. We know T contains some inner ring
point x from C∗i , so d(c∗i , x) ≤ α

16
OPT
|C∗i |

< α
4
OPT
|C∗i |

, so we know that any y ∈ T must satisfy

that d(c∗i , y) < α
4
OPT
|C∗i |

. Since we now know (a) holds and the instance is weakly deletion-
stable , we have that T ⊂ C∗i , so we only need to show B(T ) ⊂ C∗i . Fix any y ∈ B(T ).
The point y is assigned to B(T ) (thus removed from the instance) because there exists
some point x ∈ T s.t. d(x, y) ≤ 2r. So again, we have that d(c∗i , y) ≤ d(c∗i , x)+d(x, y) ≤
αOPT
2|C∗i |

, which gives us that y ∈ C∗i (since the instance is weakly deletion-stable ).

We now prove (c). Because of (b), we deduce that the number of points in T is at most
|C∗i |. However, in order for T to be added toQ, it must also hold that |T | > s/2. It follows
that s < 2|C∗i |. Let x be an inner ring point of C∗i that belongs to T . Then the distance of
any other inner ring point of C∗i and x is at most αOPT

8|C∗i |
< αOPT

4s
= 2r. It follows that any

inner ring point of C∗i which isn’t added to T is assigned toB(T ). Thus T ∪B(T ) contains
all inner-ring points. Finally, observe that (d) follows immediately from the definition of
a good component and from (c).

We now show that in addition to having all k good components, we cannot have too
many bad components.

Claim 3.5.5. We have less than 32/(3α) bad components.
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Proof. Let T be a bad component, and let s be the stage in which T was inserted toQ. Let
y be any point in T , and let C∗ be the cluster to which y belongs in the optimal clustering
with center c∗. We show d(c∗, y) > 3α

16
OPT
s

. We divide into cases.

Case 1: C∗ is an expensive cluster. Note that we are working under the assumption that
Qinit contains the correct centers of the expensive clusters. In particular, Qinit contains
c∗. Also, the fact that point y was not thrown out in stage s implies that d(c∗, y) > 2r =
αOPT

4s
> 3αOPT

16s
.

Case 2: C∗ is a cheap cluster and s ≥ |C∗|. We apply Lemma 3.5.2, and deduce
that either d(c∗, y) < α

4
OPT
|C∗| or that d(c∗, y) > 3α

8
OPT
|C∗| ≥

3α
8

OPT
s

. As the inner ring of C∗

contains > |C∗|/2 and T contains > s/2 ≥ |C∗|/2 many points, none of which is an inner
ring point, some point w ∈ T does not belong to C∗ and hence d(c∗, w) > αOPT

2|C∗| >
3α
8

OPT
|C∗| .

Part (b) of Lemma 3.5.2 assures us that all points in T are also far from c∗.

Case 3: C∗ is a cheap cluster and s < |C∗|. Using Claim 3.5.3 we have that some good
component containing a point x from the inner ring of C∗ was already added to Q. So it
must hold that d(x, y) > 2r, for otherwise we removed y from the instance and it cannot
be added to any T . We deduce that d(c∗, y) ≥ d(x, y)−d(c∗, x) ≥ αOPT

4s
− αOPT

16|C∗| >
3α
16

OPT
s

.

All points in T have distance > 3αOPT
16s

from their respective centers in the optimal
clustering, and recall that T is added to Q because T contains at least s/2 many points.
Therefore, the contribution of all elements in T to OPT is at least 3αOPT

32
. It follows that

we can have no more than 32/3α such bad components.

We can now prove the correctness of our algorithm.

Theorem 3.5.6. The algorithm outputs a k-clustering whose cost is no more than (1 +
ε)OPT.

Proof. Using Claim 3.5.4, it follows that there exists some choice of k components,
T1, . . . , Tk, such that we have the center of every expensive cluster and the good com-
ponent corresponding to every cheap cluster C∗. Fix that choice. We show that for the
optimal clustering, replacing the true centers {c∗1, c∗2, ..., c∗k} with the centers {c1, c2, ..., ck}
that the algorithm outputs, increases the cost by at most a (1 + ε) factor. This implies that
using the {c1, c2, ..., ck} as centers must result in a clustering with cost at most (1+ε)OPT.

Fix any C∗i in the optimal clustering. Let OPTi be the cost of this cluster. If C∗i is an
expensive cluster then we know that its center c∗i is present in the list of centers chosen.
Hence, the cost paid by points in C∗i will be at most OPTi. If C∗i is a cheap cluster then
denote by T the good component corresponding to it. We break the cost of C∗i into two
parts: OPTi =

∑
x∈C∗i

d(x, c∗i ) =
∑

x∈T∪B(T ) d(x, c∗i ) +
∑

x∈C∗i , yet x/∈T∪B(T ) d(x, c∗i ) and
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compare it to the cost C∗i using ci, the point picked by the algorithm to serve as center:∑
x∈C∗i

d(x, ci) =
∑

x∈T∪B(T ) d(x, ci) +
∑

x∈C∗i , yet x/∈T∪B(T ) d(x, ci). Now, the first term is
exactly the function that is minimized by ci, as ci = arg minp

∑
x∈T∪B(T ) d(x, p). We also

know c∗i , the actual center of C∗i , resides in the inner ring, and therefore, by Claim 3.5.4
must belong to T ∪ B(T ). It follows that

∑
x∈T∪B(T ) d(x, ci) ≤

∑
x∈T∪B(T ) d(x, c∗i ).

We now upper bound the 2nd term, and show that
∑

x∈C∗i , yet x/∈T∪B(T ) d(x, ci) ≤ (1 +

ε)
∑

x∈C∗i , yet x/∈T∪B(T ) d(x, c∗i )

Any point x ∈ C∗i , s.t. x /∈ T ∪ B(T ), must reside outside the inner ring of C∗i .
Therefore, d(x, c∗i ) > αOPT

16|C∗i |
. We show that d(ci, c

∗
i ) ≤ ε αOPT

16|C∗i |
, and thus we have that

d(x, ci) ≤ d(x, c∗i ) + d(c∗i , ci) ≤ (1 + ε)d(x, c∗i ), which gives the required result.

Note that thus far, we have only used the fact that the cost of any cheap cluster is
proportional to αOPT/|C∗i |. Here is the first (and the only) time we use the fact that the
cost is actually at most (ε/64) · αOPT/|C∗i |. Using the Markov inequality, we have that
the set of points satisfying {x; d(x, c∗i ) ≤ ε · αOPT/(32|C∗i |)} contains at least half of
the points in C∗i , and they all reside in the inner ring, thus belong to T ∪ B(T ). Assume
for the sake of contradiction that d(ci, c

∗
i ) ≥ ε αOPT

16|C∗i |
. Then at least half of the points in C∗i

contribute more than ε αOPT
32|C∗i |

to the sum
∑

x∈T∪B(T ) d(x, ci). It follows that this sum is more

than ε αOPT
64|C∗i |

≥ OPTi. However, ci is the point that minimizes the sum
∑

x∈T∪B(T ) d(x, p),
and by using p = c∗i we have

∑
x∈T∪B(T ) d(x, p) ≤ OPTi. Contradiction.

3.5.1 Runtime analysis

A naive implementation of the 2nd step of algorithm in Section 3.4 takes O(n3) time (for
every s and every point x, find how many of the remaining points fall within the ball of
radius r around it). Finding ci for all components takes O(n2) time, and measuring the
cost of the solution using a particular set of k data points as centers takes O(nk) time.
Guessing the right k components takes kO(1/α) time. Overall, the running time of the
algorithm in Figure 3.1 is O(n3kO(1/α)). The general algorithm that brute-force guesses
the centers of all expensive clusters, makes nO(1/αε) iterations of the given algorithm, so
its overall running time is nO(1/αε)kO(1/α).
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3.6 A PTAS for any (1 + α)weakly deletion-stable Eu-
clidean k-Means Instance

Analogous to the k-median algorithm, we present an essentially identical algorithm for
k-means in Euclidean space. Indeed, the fact that k-means considers distances squared,
makes upper (or lower) bounding distances a bit more complicated, and requires that we
fiddle with the parameters of the algorithm. In addition, the centers c∗i may not be data
points. However, the overall approach remains the same. Roughly speaking, converting
the k-median algorithm to the k-means case, we use the same constants, only squared.
As before we handle expensive clusters by guessing good substitutes for their centers and
obtain good components for cheap clusters.

Often, when considering the Euclidean space k-means problem, the dimension of the
space plays an important factor. In contrast, here we make no assumptions about the
dimension, and our results hold for any poly(n) dimension. In fact, for ease of exposition,
we assume all distances between any two points were computed in advance and are given
to our algorithm. Clearly, this only adds O(n2 · dim) to our runtime. In addition to the
change in parameters, we utilize the following facts that hold for the center of mass in
Euclidean space.

Fact 2.3.3, proven in Ostrovsky et al. [2006] (Lemma 2.2), allows us to upper bound the
distance between the real center of a cluster and the empirical center we get by averaging
all points in T ∪ B(T ) for a good component T . Fact 2.3.4 allows us to handle expensive
clusters. Since we cannot brute force guess a center (as the center of the clusters aren’t
necessarily data points), we guess a sample of O(β−1 + ε−1) points from every expensive
cluster, and use their average as a center. Both properties of Fact 2.3.4, proven in Inaba
et al. [1994] (§3, Lemma 1 and 2), assure us that the center is an adequate substitute for the
real center and is also close to it. This motivates the approach behind our first algorithm, in
which we brute-force traverse all choices of O(ε−1 + β−1) points for any of the expensive
clusters.

The second algorithm, whose runtime is (k log n)poly(1/ε,1/β)O(n3), replaces brute-
force guessing with random sampling. Indeed, if a cluster contains poly(1/k) fraction
of the points, then by randomly sampling O(ε−1 + β−1) points, the probability that all
points belong to the same expensive cluster, and furthermore, their average can serve as a
good empirical center, is at least 1/kpoly(1/ε,1/β). In contrast, if we have expensive clusters
that contain few points (e.g. an expensive cluster of size

√
n, while k = poly(log(n))),

then random sampling is unlikely to find good empirical centers for them. However, recall
that our algorithm collects points and deletes them from our instance. So, it is possible that
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in the middle of the run, we are left with so few points, so that expensive clusters whose
size is small in comparison to the original number of points, contain a poly(1/k) fraction
of the remaining points.

Indeed, this is the motivation behind our second algorithm. We run the algorithm
while interleaving the Population Stage of the algorithm with random sampling. Instead
of running s from n to 1, we use

{
n, n

k2 ,
n
k4 ,

n
k6 , . . . , 1

}
as break points. Correspond-

ingly, we define li to be the number of expensive clusters whose size is in the range
[n · k−2i−2, n · k−2i). Whenever s reaches such a n ·k−2i break point, we randomly sample
points in order to guess the li+3 centers of the clusters that lie 3 intervals “ahead” (and so,
initially, we guess all centers in the first 3 intervals). We prove that in every interval we
are likely to sample good empirical centers. This is a simple corollary of Fact 2.3.4 along
with the following two claims. First, we claim that at the end of each interval, the number
of points remaining is at most n · k−2i+1. Secondly, we also claim that in each interval we
do not remove even a single point from a cluster whose size is smaller than n · k−2i−6. We
refer the reader to Section 3.8.1 for the algorithms and their analysis.

3.7 Other notions of stability and relations between them

The notion of ORSS-separability, is related to the notion of approximation-stability dis-
cussed in section 3.3.2. Indeed, from Theorem 5.1 in, Ostrovsky et al. [2006] it follows
that (1+α)-separability implies that any near-optimal solution to k-means is O((1−α)2)-
close to the k-means optimal clustering. However, the converse is not necessarily the case:
an instance could satisfy approximation-stability without being ORSS-separable.3 Balcan
et al. [2013] presents a specific example of points in Euclidean space with c = 2. In fact,
for the case that k is much larger than 1/δ, the difference between the two properties can
be more substantial. See Figure 3.2 for an example.

Kumar and Kannan [2010] consider the problem of recovering a target clustering under
deterministic separation conditions that are motivated by the k-means objective and by
Gaussian and related mixture models. They consider the setting of points in Euclidean
space, and show that if the projection of any data point onto the line joining the mean of its
cluster in the target clustering to the mean of any other cluster of the target is Ω(k) standard
deviations closer to its own mean than the other mean, then they can recover the target

3Ostrovsky et al. [2006] shows an implication in this direction (Theorem 5.2); however, this implication
requires a substantially stronger condition, namely that data satisfy ((1 + α), ε)-BBG-stability for c =
1/ε2 − 1 (and that target clusters be large). In contrast, the primary interest of Balcan et al. [2013] is in the
case where c is below the threshold for existence of worst-case approximation algorithms.
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Figure 3.2: Suppose δ is a small constant, and consider a clustering instance in which the
target consists of k =

√
n clusters with

√
n points each, such that all points in the same

cluster have distance 1 and all points in different clusters have distanceD+1 where D is a
large constant. Then, merging two clusters increases the cost additively by Θ(

√
n), since

D is a constant. Consequently, the optimal (k − 1)-means/median solution is just a factor
1 + O(1/

√
n) more expensive than the optimal k-means/median clustering. However, for

D sufficiently large compared to 1/δ, this example satisfies (2, δ)-BBG-stability or even
(1/δ, δ)-BBG-stability – see Balcan et al. [2013] for formal details.
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clusters in polynomial time. This condition was further analyzed and reduced by work
of Awasthi et al. [2012]. This separation condition is formally incomparable to weakly
deletion-stable (even restricting to the case of k-means with points in Euclidean space). In
particular, if the dimension is low and k is large compared to 1/α, then this condition can
require more separation than weakly deletion-stable (e.g., with k well-spaced clusters of
unit radius BBG-stability would require separation only O(1/α) and independent of k).
On the other hand if the clusters are high-dimensional, then this condition can require less
separation than weakly deletion-stable since the ratio of projected distances will be more
pronounced than the ratios of distances in the original space.

Bilu and Linial [2010] consider inputs satisfying the condition that the optimal solu-
tion to the objective remains optimal even after bounded perturbations to the input weight
matrix. They give an algorithm for maxcut (which can be viewed as a 2-clustering prob-
lem) under the assumption that the optimal solution is stable to (roughly) O(n2/3)-factor
multiplicative perturbations to the edge weights. Awasthi et al. [2012] consider this con-
dition for center-based clustering objectives such as k-median and k-means, and give an
algorithm that finds the optimal solution when the input is stable to only factor-3 pertur-
bations. This factor is improved to 1 +

√
2 by Balcan and Liang [2012], who also design

algorithms under a relaxed (c, ε)-stability to perturbations condition in which the optimal
solution need not be identical on the c-perturbed instance, but may change on an ε fraction
of the points (in this case, the algorithms require c = 2 +

√
7). Note that for the k-median

objective, (1+α, δ)-BBG-stability with respect to C∗ implies (1+α, δ)-stability to pertur-
bations because an optimal solution in a (1 + α)-perturbed instance is guaranteed to be a
(1 + α)-approximation on the original instance;4 so, ((1 + α), δ)-stability to perturbations
is a weaker condition. Similarly, for k-means, ((1 + α), δ)-stability to perturbations is
implied by ((1 + α)2, δ)-BBG-stability. However, as noted above, the values of α known
to lead to efficient clustering in the case of stability to perturbations are larger than for
BBG-stability, where any constant α > 0 suffices.

4In particular, a (1 + α)-perturbed instance d̃ satisfies d(x, y) ≤ d̃(x, y) ≤ (1 + α)d(x, y) for all points
x, y. So, using Φ to denote cost in the original instance, Φ̃ to denote cost in the perturbed instance and using
C̃ to denote the optimal clustering under Φ̃, we have Φ(C̃) ≤ Φ̃(C̃) ≤ Φ̃(C∗) ≤ (1 + α)Φ(C∗).
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3.8 Additional Proofs

3.8.1 Algorithm for weakly deletion-stable k-Means Instances

We present the algorithm for (1 + ε)-approximation to the k-means optimum of a weakly
deletion-stable instance. Much like in Section 3.4, we call a cluster in the optimal k-
means solution cheap if OPTi =

∑
x∈C∗i

d2(x, c∗i ) ≤ αεOPT
47 . The algorithm is presented

in Figure 3.3. The correctness is proved in a similar fashion to the proof of correctness
presented in Section 3.4. First, observe that by the Markov inequality, for any cheap cluster
C∗i , we have that the set

{
x; d2(x, c∗i ) > tαOPT

4|C∗i |

}
cannot contain more than ε/(47t) fraction

of the points in |C∗i |. It follows that the inner ring of C∗i , the set
{
x; d2(x, c∗i ) ≤ αOPT

1024|C∗i |

}
,

contains at least half of the points ofC∗i . As mentioned Section 3.6 the algorithm populates
the list Q with good components corresponding to cheap clusters. Also from Section 3.6,
we know that for every expensive cluster, there exists a sample of O( 1

α
+ 1

ε
) data points

whose center is a good substitute for the center of the cluster. In the analysis below, we
assume that Q has been initialized correctly with Qinit containing these good substitutes.
In general, the algorithm will be run multiple times for all possible guesses of samples from
expensive clusters. We start with the following lemma which is similar to Lemma 3.5.2.

Lemma 3.8.1. Let T ∈ Q be any component and let s be the stage in which we insert T
to Q. Let C∗i be any cheap cluster s.t. s ≥ |C∗i |. Then (a) T does not contain any point z
s.t. the distance d2(c∗i , z) lies within the range

[
α
64

OPT
|C∗i |

, α
1
6OPT
|C∗i |

]
, and (b) T cannot contain

both a point p1 s.t. d2(c∗i , p1) ≤ α
64

OPT
|C∗i |

and a point p2 s.t. d2(c∗i , p2) > α
16

OPT
|C∗i |

.

Proof. Assume (a) does not hold. Let z be such point, and let B(z, r) be the set of all
points p s.t. d2(z, p) ≤ r = αOPT

256s
≤ αOPT

256|C∗i |
. As d2(z, c∗i ) ≥ αOPT

64|C∗i |
, we have that d(z, p) ≤

1
2
d(z, c∗i ). It follows that d2(c∗i , p) ≥ (d(c∗i , z)− d(z, p))2 ≥ (d(c∗i , z)/2)2 = αOPT

256|C∗i |
.

Similarly, d2(c∗i , p) ≤ (d(c∗i , z) + d(z, p))2 ≤ (3d(c∗i , z)/2)2 ≤ 9α
64

OPT
|C∗i |

. Thus B(z, r) is
contained in C∗i , but falls outside the inner-ring of C∗i , yet contains s/2 ≥ |C∗i |/2 many
points. Contradiction.

Assume (b) does not hold. Let p1 and p2 the above mentioned points. As T is a con-
nected components, it follows that along the path p1 → p2, exists a pairs of neighboring
nodes, x, y, s.t. d2(x, y) ≤ r ≤ αOPT

256|C∗i |
yet d2(c∗i , x) ≤ α

64
OPT
|C∗i |

while d2(c∗i , y) ≥ α
16

OPT
|C∗i |

.

However, a simple computation gives that d2(c∗i , y) ≤ (3d(c∗i , x)/2)2 ≤ 9α
256

OPT
|C∗i |

. Contra-
diction.
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1. Initialization Stage: Set Q ← Qinit.

2. Population Stage: For s = n, n− 1, n− 2, . . . , 1 do:

(a) Set r = αOPT
256s

.

(b) Remove any point x such that d2(x,Q) < 4r.
(Here, d(x,Q) = minT∈Q;y∈T d(x, y).)

(c) For any remaining data point x, denote the set of data points whose distance
squared from x is at most r, by B(x, r). Connect any two remaining points a
and b if:
(i) d2(a, b) ≤ r, (ii) |B(a, r)| > s

2
and (iii) |B(b, r)| > s

2
.

(d) Let T be a connected component of size > s
2
. Then:

i. Add T to Q. (That is, Q ← Q∪ {T}.)
ii. Define the set B(T ) = {x : d2(x, y) ≤ 4r for some y ∈ T}. Remove the

points of B(T ) from the instance.

3. Centers-Retrieving Stage: For any choice of k components T1, T2, . . . , Tk out ofQ

(a) Find the best center ci for Ti ∪B(Ti).
That is ci = µ(Ti ∪B(Ti)) = 1

|Ti∪B(Ti)|
∑

x∈Ti∪B(Ti)
x.

(b) Partition all n points according to the nearest point among the k centers of the
current k components.

(c) If a clustering of cost at most (1 + ε)OPT is found – output these k centers and
halt.

Figure 3.3: A PTAS for weakly deletion-stable instances of Euclidean k-means.
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Lemma 3.8.1 allows us to give the analogous claims to Claims 3.5.3 and 3.5.4. As
before, call a component T good if it is contained within some target cluster C∗i and
T ∪ B(T ) contains all of the inner ring points of C∗i . Otherwise, the component is called
bad provided it is not one of the initial centers present in Qinit. We now show that each
cheap target cluster will have a single, unique, good component.

Claim 3.8.2. Let C∗i be any cheap cluster in the target clustering. By stage s = |C∗i |, the
algorithm adds to Q a component T that contains a point from the inner ring of C∗i .

Claim 3.8.3. Let T be a good connected component added toQ, containing an inner ring
point from cluster C∗i . Then: (a) all points in T are of distance squared at most αOPT

64|C∗i |
from

c∗i , (b) T ∪ B(T ) is fully contained in C∗i , and (c) the entire inner ring of C∗i is contained
in T ∪ B(T ), and (d) no other component T ′ 6= T in Q contains an inner ring point from
C∗i .

As the proofs of Claims 3.8.2 and 3.8.3 are identical to the Claims 3.5.3 and 3.5.4, we
omit them.

Lemma 3.8.4. We do not add to Q more than 4000/α bad components.

Proof. Consider any bad component T that we add to Q and denote that stage in which
we insert T to Q as s. So the size of this component is > s

2
. Let y be an arbitrary point

from T which belongs to cluster C∗ in the optimal clustering. Let c∗ be the center of C∗.
We show that d2(c∗, y) > αOPT

2000s
.

We divide into cases.

Case 1: C∗ is a cheap cluster and s ≥ |C∗|. Recall that T must contain s/2 ≥ |C∗|/2
points, so it follows that T contains some point x that does not belong to C∗. β-stability
gives that this point has distance d2(c∗, x) > α OPT

4|C∗| , and we apply Lemma 3.8.1 to deduce
that all points in T are of distance squared of at least α

16
OPT
|C∗| .

Case 2: C∗ is a cheap cluster and s < |C∗|. In this case we have that the entire inner
ring of C∗ already belongs to some T ′ ∈ Q. Let x ∈ T ′ be any inner ring point from C∗,
and we have that d(c∗, x)2 ≤ αOPT

1024|C∗| ≤
αOPT
1024s

, while d2(x, y) > αOPT
64s

. It follows that
d2(c∗, y) ≥ (3d(x, y)/4)2 > αOPT

2000s
.

Case 3: C∗ is an expensive cluster and s > 2|C∗|. We claim that d2(c∗, y) > αOPT
128|C∗| .

If, by contradiction, we have that d2(c∗, y) ≤ αOPT
128|C∗| , then we show that the ball B(y, r)

contains only points from C∗i , yet it must contains s/2 > |C∗i | points. This is because each
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p ∈ B(y, r) satisfies that d2(c∗, p) ≤ (d(c∗, y) + d(y, p))2 ≤
(√

αOPT
128|C∗| +

√
αOPT

64s

)2

<
αOPT
4|C∗| .

Case 4: C∗ is an expensive cluster and s ≤ 2|C∗|. In this case, from Fact 2.3.4
we know that Qinit contains a a good empirical center c for the expensive cluster C∗,
in the sense that ‖c − c∗‖2 ≤ αOPT

2048|C∗| ≤
αOPT
1024s

. Then, similarly case 2 above we have
d2(y, c∗) ≥ (d(y, c) − d(c, c∗))2 > αOPT

2000s
. It follows that every point in T has a large

distance from its center. Therefore, the s/2 points in this component contribute at least
αOPT/4000 to the k-means cost. Hence, we can have no more than 4000/β such bad
components.

We now prove the main theorem.

Theorem 3.8.5. The algorithm outputs a k-clustering whose cost is at most (1 + ε)OPT.

Proof. Using Claim 3.8.3, it follows that there exists some choice of k components which
has good components for all the cheap clusters and good substitutes for the centers of the
expensive clusters. Fix that choice and consider a cluster C∗i with center c∗i . If C∗i is an
expensive cluster then from Section 3.6 we know that Qinit contains a point ci such that
d2(ci, c

∗
i ) ≤ αε

α+4ε
OPTi
|C∗i |

. Hence, the cost paid by the points inC∗i will be atmost (1+ε)OPTi.
If C∗i is a cheap cluster then denote by T the good component that resides within C∗i .
Denote T ∪B(T ) byA, andC∗i \A byB. Let ci be the center ofA. We know that the entire
inner-ring of C∗i is contained in A, therefore, B cannot contain more than ε/16 fraction of
the points of C∗i . Fact ?? dictates that in this case, ‖c∗i − ci‖2 ≤ ε2 αOPT

47|C∗i |
. We know every

x ∈ B contributes at least αOPT
1024|C∗i |

to the cost of C∗i , so ‖c∗i −ci‖2 ≤ ε
16
‖x−c∗i ‖2. Thus, for

every x ∈ B, we have that ‖x−ci‖2 ≤ (1+ ε)‖x−c∗i ‖2. It follows that
∑

x∈B ‖x−ci‖2 ≤
(1 + ε)

∑
x∈B ‖x − c∗i ‖2, and obviously

∑
x∈A ‖x − ci‖2 ≤

∑
x∈A ‖x − c∗i ‖2 as ci is the

center of mass of A. Therefore, when choosing the good k components out of Q, we can
assign them to the centers in such a way that costs no more than (1+ε)OPT. Obviously the
assignment of each point to the nearest of the k-centers only yields a less costly clustering,
and thus its cost is also at most (1 + ε)OPT.

3.8.2 A Randomized Algorithm for weakly deletion-stable k-Means
Instances

We now present a randomized algorithm which achieves a (1 + ε) approximation to the k-
means optimum of a weakly deletion-stable instance and runs in time (k logk n)poly(1/ε,1/α)O(n3).
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1. Guess l ≤ 47

αε
, the number of expensive clusters. Set t = 1

2
(logk n). Guess non-

negative integers g1, g2, . . . gt, such that
∑

i gi = l.

2. Sample g1 + g2 + g3 sets, by sampling independently and u.a.r O( 1
α

+ 1
ε
) points for

each set. For each such set T̃j , add the singleton {µ(T̃j)} to Q.

3. Modify the Population Stage from the previous algorithm, so that whenever s = n
k2i

for some i ≥ 1 (We call this the interval i)

• Sample gi+3 sets, by sampling independently and u.a.rO( 1
α

+ 1
ε
) points for each

set. For each such set T̃j , add the singleton {µ(T̃j)} to Q.

The algorithm is similar in nature to the one presented in the previous section, except that
for expensive clusters we replace brute force guessing of samples with random sampling.
Note that the straightforward approach of sampling the points right at the start of the algo-
rithm might fail, if there exist expensive clusters which contain very few points. A better
approach is to interleave the sampling step with the rest of the algorithm. In this way we
sample points from an expensive cluster only when it contains a reasonable fraction of the
total points remaining, hence our probability of success is noticeable (namely, poly(1/k)).

The high-level approach of the algorithm is to partition the main loop of the Population
Stage, in which we try all possible values of s (starting from n and ending at 1), into
intervals. In interval i we run s on all values starting with n

k2i and ending with n
k2i+2 . So

overall, we have no more than t = 1
2

logk(n) intervals. Our algorithm begins by guessing
l, the number of expensive clusters, then guessing g1, g2, . . . , gt s.t.

∑
i gi = l. Each gi

is a guess for the number of expensive clusters whose size lies in the range
[
n
k2i ,

n
k2(i−1)

)
.

Note that
∑

i gi = # expensive clusters ≤ 47

αε
. Hence, there are at most (logk n)

47

αε number
of possible assignments to gi’s and we run the algorithm for every such possible guess.

Fixing g1, g2, . . . , gt, we run the Population Stage of the previous algorithm. However,
whenever s reaches a new interval, we apply random sampling to obtain good empirical
centers for the expensive clusters whose size lies three intervals “ahead”. That is, in the
beginning of interval i, the algorithm tries to collect centers for the clusters whose size
≥ n

k6+2i = s
k6 , yet ≤ n

k4+2i = s
k4 . We assume for this algorithm that k is significantly

greater than 4
α

. Obviously, if k is a constant, then we can use the existing algorithm of
Kumar et al. [2004].

In order to prove the correctness of the new algorithm, we need to show that the sam-
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pling step in the initialization stage succeeds with noticeable probability. Let li be the
actual number of expensive clusters whose size belongs to the range

[
n
k2i ,

n
k2(i−1)

)
. In the

proof which follows, we assume that the correct guess for li’s has been made, i.e. gi = li,
for every i. We say that the algorithm succeeds at the end of interval i if the following
conditions hold:

1. In the beginning of the interval, our guess for all clusters that belong to interval
(i + 3) produces good empirical centers. That is, for every expensive cluster C∗ of
size in the range

[
n

k6+2i ,
n

k4+2i

)
, the algorithm picks a sample T̃ such that the mean

µ(T̃ ) satisfies:

(a) d2(µ(T̃ ), c∗) ≤ αOPT
1024|C∗| .

(b)
∑

x∈C∗ d
2(x, µ(T̃ )) ≤ (1 + ε)

∑
x∈C∗ d

2(x, c∗).

2. During the interval, we do not delete any point p that belongs to some target cluster
C∗ of size ≤ n

k4+2(i+1) points.

3. At the end of the interval, the total number of remaining points (points that were not
added to some T ∈ Q or deleted from the instance because they are too close to
some T ′ ∈ Q) is at most n

k2i−1 .

Lemma 3.8.6. For every i ≥ 1, let Si denote the event that the algorithm succeeds at the
end of interval i. Then Pr[Si|S1, S2, . . . , Si−1] ≥ k−l(i+3)·O( 1

α
+ 1
ε
)

Before going into the proof we show that Lemma 3.8.6 implies that with noticeable
probability, our algorithm returns a (1 + ε)-approximation of the k-means optimal clus-
tering. First, observe the technical fact that for the first three intervals l1, l2, l3, we need
to guess the centers of clusters of size ≥ n

k6 before we start our Population Stage. How-
ever, as these clusters contain k−6 fraction of the points, then using Fact 2.3.4, our sam-
pling finds good empirical centers for all of these l1 + l2 + l3 expensive clusters w.p.
≥ k−(l1+l2+l3)O( 1

β
+ 1
ε
). Applying Lemma 3.8.6 we get that the probability our algorithm

succeeds after all intervals is ≥ 1/kO( α+ε

α2ε2
). Now, a similar analysis as in the previous sec-

tion gives us that for the correct guess of the good components in Q, we find a clustering
of cost at most (1 + ε)OPT.

Proof of Lemma 3.8.6. Recall that α is a constant, whereas k is not. Specifically, we as-
sume throughout the proof that k2 > 200

α
, and so we allow ourselves to use asymptotic

notation.
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We first prove that condition 2 holds during interval i. Assume for the sake of con-
tradiction that for some cluster C∗ whose size is less than n

k6+2i , there exists some point
y ∈ C∗, which was added to some component T during interval i, at some stage s ∈[

n
k2i+2 ,

n
k2i

)
. This means that by setting the radius r = αOPT

256s
, the ball B(y, r) contains

> s/2 ≥ n
2k2i+2 points. Since C∗ contains at most n

k6+2i many point, we have |C∗| � s/2,
so at least s/4 points in B(y, r) belong to other clusters. Our goal is to show that these
s/4 points contribute more than OPT to the target clustering, thereby achieving a contra-
diction.

Let x be such point, and denote the cluster that x is assigned to in the target clustering
byC∗j 6= C∗. Since the instance is weakly deletion-stable we have that d2(c∗, x) > αOPT

4|C∗| ≥
αOPT4k6+2i

n
. On the other hand, d2(x, y) ≤ r = αOPT 1

256s
≤ αOPTk2+2i

256n
. Therefore,

d2(c∗, x) = Ω(k4) · r, so d2(y, c∗) = (d(c∗, x)− d(x, y))2 = Ω(k4) · r. Recall that in
the target clustering each point is assigned to its nearest center, so d2(c∗j , y) ≥ d2(c∗, y) =

Ω(k4) ·r. So we have that d2(c∗j , x) ≥
(
d(c∗j , y)− d(x, y)

)2
= Ω(k4) ·r = Ω(k4) · αOPT

256
k2i

n
.

So, at least s/4 = Ω( n
k2i+2 ) points contribute Ω(k4)αOPT

256
k2i

n
to the cost of the optimal

clustering. Their total contribution is therefore Ω(k2) · α
256

OPT > OPT. Contradiction.

A similar proof gives that no point y ∈ C∗ is deleted from the instance because for
some x ∈ T , where T is some component in Q, we have that d2(y, x) < 4r. Again,
assume for the sake of contradiction that such y,x and T exist. Denote by s ∈

[
n

k2i+2 ,
n
k2i

)
the stage in which we remove y, and denote by s′ ≥ s the stage in which we insert T into
Q. By setting the radius r′ = αOPT

256s′
≤ r, we have that the ball B(x, r′) contains at least

s′/2 ≥ s/2 points, and therefore, the ball B(y, 5r) contains at least s/2 points. We now
continue as in the previous case.

We now prove condition 1. We assume the algorithm succeeded in all previous inter-
vals. Therefore, at the beginning of interval i, all points that belong to clusters of size
≤ n

k2i+4 remain in the instance, and in particular, the clusters we wish to sample from
at interval i remain intact. Furthermore, by the assumption that the algorithm succeeded
up to interval (i − 1), we have that each expensive cluster that should be sampled at the
beginning of interval i, contains a 1/k7 fraction of the remaining points. We deduce that
the probability that we pick a random sample of O( 1

α
+ 1

ε
) points from such expensive

cluster is at least k−O( 1
α

+ 1
ε
). Using Fact 2.3.4 we have that with probability ≥ k−O( 1

α
+ 1
ε
)

this sample yields a good empirical center.

We now prove condition 3, under the assumption that 1 is satisfied. We need to bound
the number of points left in the instance at the end of interval i. There are two types of
remaining points: points that in the target clustering belong to clusters of size > n

2k2i , and
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points that belong to clusters of size ≤ n
2k2i . To bound the number of points of the second

type is simple – we have k clusters, so the overall number of points of the second type is
at most n

2k2i−1 . We now bound the number of remaining points of the first type.

At the end of the interval s = n
k2i+2 , so we remove from the instance any point p whose

distance (squared) from some point in Q is at most 4r = OPT
16

k2i+2

n
. We already know that

by the end of interval i, either by successfully sampling an empirical center or by adding
an inner-ring point to a component in Q, for every cluster C∗ of size > n

2k2i , exists some
T ∈ Q with a point c′ ∈ T , s.t. d2(c∗, c′) ≤ αOPT

1024|C∗| ≤
αOPT

512
k2i

n
. Thus, if x ∈ C∗ is

a point that wasn’t removed from the instance by the end of interval i, it must hold that
d2(c∗, x) ≥ (d(c′, x)− d(c∗, c′))2 = Ω(k2i+2)OPT

n
. Clearly, at most n · O(k−2i−2) points

can contribute that much to the cost of the optimal k-means clustering, and so the number
of points of the first type is at most n

2k2i−1 as well.

As we need to traverse all guesses gis, the runtime of this algorithm takesO(n3(logk n)O( 1
αε

)).
Repeating this algorithm kO(l( 1

α
+ 1
ε
)) many times, we increase the probability of success to

be ≥ 1/2, and incur runtime of O(n3(logk n)O( 1
αε

)kO( α+ε

α2ε2
)).

3.8.3 NP-hardness under weak-deletion satbility

Proof of Theorem 3.3.6. Fix any constant α > 0. We give a poly-time reduction from Set-
Cover to (1+α)-weakly deletion-stable k-median instances. Under standard notation, we
assume our input consists of n subsets of a given universe of size m, for which we seek a
k-cover. We reduce such an instance to a k-median instance overm+k(n+4αkm) points.
We start with the usual reduction of Set-Cover to an instance with m points representing
the items of the universe and n points representing all possible sets. Fix integer D � 1
to be chosen later. If j belongs to the ith set, fix the distance d(i, j) = D, otherwise
we fix the distance d(i, j) = D + 1, and between any two set-points we fix the distance
to be 1. (The distance between any two item points is shortest-path distance.) However,
we augment the n set-points with additional 2mD points, setting the distance between all
of the (n + 2mD) points as 1. Furthermore, we replicate k copies of these (n + 2mD)
augmented set-points, all connected only via the m-item points.

Observe that each of the k copies of our augmented set-points components contains
many points, and all points outside this copy are of distance ≥ D from it. Therefore, in
the optimal k-median solution, each center resides in one unique copy of the augmented
set-points. Now, if our Set-Cover instance has a k-cover, then we can pick the respective
centers and have an optimal solution with cost exactly k(n+2mD−1)+mD. Otherwise,
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no k sets cover all m items, so for any k centers, some item-point must have distance
D+ 1 from its center, and so the cost of any k-partition is ≥ k(n+ 2mD− 1) +mD+ 1.
Furthermore, the resulting instance is (1 +α) weakly deletion-stable, in fact, even (1 +α)
ORSS-separable. In particular, using one center from each augmented set-point results in
a k-median solution of cost≤ m(D+ 1) + k(n+ 2mD− 1) < (k+ 1)(n+ 2mD); hence,
OPT is at most this quantity. However, in any k − 1 clustering, one of the copies of the
augmented set-points must not contain a center and therefore OPT(k−1) ≥ OPT + (n +
2mD)(D−1). ChoosingD = α(k+1)+1 ensures that this cost is at least (1+α)OPT.
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Chapter 4

Supervised Clustering

Clustering is typically studied in an unsupervised learning scenario where the goal is to
partition the data given pairwise similarity information. Designing provably good clus-
tering algorithms is challenging since given a similarity function, there could be multiple
plausible clusterings of the data. Traditional approaches get around this ambiguity by mak-
ing assumptions on the data generation process. For example, there is a large body of work
which focuses on clustering data which is generated by a mixture of Gaussians (Achlioptas
and McSherry [2005], Kannan et al. [2005], Dasgupta [1999], Arora and Kannan [2001],
Brubaker and Vempala [2008], Kalai et al. [2010], Moitra and Valiant [2010], Belkin and
Sinha [2010]). Although this helps define the “right” clustering one should be looking for,
real world data rarely satisfies such strong assumptions. An alternate approach is to use
limited user supervision to help the algorithm reach the desired answer. This has been
facilitated by the availability of cheap crowd-sourcing tools in recent years. It has become
clear that in certain applications such as search or document classification, where users
are willing to help a clustering algorithm arrive at their own desired answer with a small
amount of additional prodding, interactive algorithms are very useful.

In this thesis we study a model (Balcan and Blum [2008]) proposed for clustering
which incorporates limited amount of user interaction to deal with the inherent ambiguity
of the task at hand. The model is similar to the Equivalence Query(EQ) model of learn-
ing (Angluin [1998]) but with a different kind of feedback. We assume that the given set S
of n points belongs to a target clustering {C∗1 , C∗2 , . . . , C∗k}, where each cluster is defined
by a Boolean function f belonging to a class of functions H . For example, the points
belonging to the cluster C∗1 might be the set {x ∈ S|f1(x) = 1}. We also assume that each
point belongs to exactly one of the k clusters. As in the EQ model of learning, the algo-
rithm presents a hypothesis clustering {C1, C2, . . . , Ck′} to the teacher. If the clustering
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is incorrect the algorithm gets feedback from the teacher. However, the feedback in this
case is different from the one in the EQ model. In the learning model, the algorithm gets a
specific point x as a counter-example to its proposed hypothesis. For clustering problems
this may not a very natural form of feedback. In a realistic scenario, the teacher can look at
the clustering proposed and give limited feedback, for example whether he thinks a given
cluster is “pure” or not. Such limited interaction was modeled in Balcan and Blum [2008]
using split and merge requests and is the starting point for our work.

4.1 The Model

The clustering algorithm is given a set S of n points. Each point belongs to one of the k
target clusters. Each cluster is defined by a function f ∈ H , where H is a class of Boolean
functions. The goal of the algorithm is to figure out the target clustering by interacting
with the teacher as follows:

1. The algorithm proposes a hypothesis clustering {C1, C2, . . . , Ck′} to the teacher.

2. The teacher can request split(Ci) if Ci contains points from two or more target
clusters. The teacher can request merge(Ci, Cj) if Ci ∪ Cj is a subset of one of the
target clusters.

The assumption is that there is no noise in the teacher response. The goal is to use as
few queries to the teacher as possible. Ideally, we would like the number of queries to be
poly(k, logm, log |C|). Notice that if we allow the algorithm to use the number of queries
linear in n, then there is a trivial algorithm, which starts with all the points in separate
clusters and then merges clusters as requested by the teacher.

4.2 Our Results

In their paper, Balcan and Blum [2008] gave efficient clustering algorithms for the class
of intervals and the class of disjunctions over {0, 1}d. They also gave a generic algorithm
which clusters any class of functions using O(k3 log |H|) queries. The algorithm however
is computationally inefficient. In this thesis we extend these results in several directions
as discussed below.
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4.2.1 A generic algorithm

We reduce the query complexity of the generic algorithm for clustering any class of func-
tions (Balcan and Blum [2008]), from O(k3 log |H|) to O(k log |H|). In addition our al-
gorithm is simpler than the original one. We would like to point out that as in Balcan and
Blum [2008] the generic algorithm is also computationally inefficient.

Theorem 4.2.1. There is a generic algorithm that can cluster any finite concept class
using at most k log |D| queries.

4.2.2 Clustering geometric concepts

We extend the result of Balcan and Blum [2008] on clustering the class of intervals on a
line to more general geometric function classes.

Theorem 4.2.2. There is an algorithm which can cluster the class of k rectangles in d
dimensions using at most O((kd logm)d) queries.

Corollary 4.2.3. There is an algorithm which can cluster the class of k hyperplanes in d
dimensions having a known set of slopes of size at most s, using at most O((kds logm)d)
queries.

The results in this chapter are based on work in Awasthi and Zadeh [2010].

4.2.3 A generic algorithm for learning any finite concept class

We reduce the query complexity of the generic algorithm for learning any concept class (Bal-
can and Blum [2008]), from O(k3 log |H|) to O(k log |H|). In addition our algorithm is
simpler than the original one. The new algorithm is described below.

Given n points let V S = { the set of all possible k clusterings of the given points using
concepts in H}. This is also known as the version space. Notice that |V S| ≤ |H|k. Given
a set h ⊆ S of points we say that a given clustering R is consistent with h if h appears as
a subset of one of the clusters in R. Define, V S(h) = {R ∈ V S|R is consistent with h.}.
At each step the algorithm outputs clusters as follows:

1. Initialize i = 1.

2. Find the largest set of points hi, s.t. |V S(hi)| ≥ 1
2
|V S|.
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3. Output hi as a cluster.

4. Set i = i+ 1 and repeat steps 1-3 on the remaining points until every point has been
assigned to some cluster.

5. Present the clustering {h1, h2, . . . , hJ} to the teacher.

If the teacher says split(hi), remove all the clusterings in V S which are consistent with hi
If the teacher says merge(hi, hj) , remove all the clusterings in V S which are inconsistent
with hi ∪ hj .

Theorem 4.2.4. The generic algorithm can cluster any finite concept class using at most
k log |H| queries.

Proof. At each request, if the teacher says split(hi), then all the clusterings consistent
with hi are removed, which by the construction followed by the algorithm will be at least
half of |V S|. If the teacher says merge(hi, hj), i < j, then all the clusterings inconsistent
with hi∪hj are removed. This set will be at least half of |V S|, since otherwise the number
of clusterings consistent with hi ∪ hj will be more than half of |V S| which contradicts the
maximality of hi. Hence, after each query at least half of the version space is removed.
From the above claim we notice that the total number of queries will be at most log |V S| ≤
log|C|k ≤ k log |H|.

The analysis can be improved if the VC-dimension d of the concept class H is much
smaller than log |H|. In this case the size of V S can be bounded from above by C[m]k,
where C[m] is the number of ways to split m points using concepts in H . Also from
Sauer’s lemma (Vapnik [1998]) we know that C[m] ≤ md. Hence, we get |V S| ≤ mkd.
This gives a query complexity of O(kd logm).

4.3 Clustering geometric concepts

We now present an algorithm for clustering the class of rectangles in 2 dimensions. We
first present a simple but less efficient algorithm for the problem. The algorithm uses
O((k logm)3) queries and runs in time poly(k,m). In the appendix, we show that the
query complexity of the algorithm can be improved to O((k logm)2). Our algorithm gen-
eralizes in a natural way to rectangles in d dimensional space, and to hyperplanes in d
dimensions with known slopes.
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4.3.1 An algorithm for clustering rectangles

Each rectangle c in the target clustering can be described by four points (ai, aj), (bi, bj)
such that (x, y) ∈ ck iff ai < x < aj and bi < y < bj . Hence, corresponding to any
k-clustering there are at most 2k points a1, a2, . . . , a2k on the x-axis and at most 2k points
b1, b2, . . . , b2k on the y-axis. We call these points the target points. The algorithm works
by finding these points. During its course the algorithm maintains a set of points on the x-
axis and a set of points on the y-axis. These points divide the entire space into rectangular
regions. The algorithm uses these regions as its hypothesis clusters. The algorithm is
sketched below:

1. Start with points (astart
′, aend

′) on the x-axis and points (bstart
′, bend

′), such that all
the points are contained in the rectangle defined by these points.

2. At each step, cluster the m points according to the region in which they belong.
Present this clustering to the teacher.

3. On a merge request, replace the two clusters by the minimum enclosing rectangle
containing all the points from the two clusters.

4. On a split of (ai
′, aj

′), (bi
′, bj

′), create a new point ar ′ such that ai′ < ar
′ < aj

′, and
the projection of all the points onto (ai

′, aj
′) is divided into half by ar ′. Similarly,

create a new point br ′ such that bi′ < br
′ < bj

′, and the projection of all the points
onto (bi

′, bj
′) is divided into half by br ′. Abandon all the merges done so far.

Theorem 4.3.1. The algorithm can cluster the class of rectangles in 2 dimensions using
at most O((k logm)3) queries.

Proof. Lets first bound the total number of split requests. If the teacher says split on
(xi, xj), (yi, yj), then we know that either (xi, xj) contains a target point a or (yi, yj) con-
tains a target point b or both. By creating two splits we are ensuring that the size of at
least one of the regions containing a target point is reduced by half. There are at most 2k
intervals on the x-axis and at most 2k intervals on the y-axis. Hence, the total number of
split requests is ≤ 4k logm. Now lets bound the merge requests. Between any two split
requests the total number of merge requests will be at most the total number of regions
which is ≤ O((k logm)2). Since, t points on the x and the y axis can create at most t2

regions, we get that the total number of merge requests is at most ≤ O(k logm)3. Alos,
notice that we will never get a split request made to the result of doing a merge. Hence,
the total number of queries made by the algorithm is O((k logm)3).
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If we are a bit more careful, we can avoid redoing the merges after every split and reduce
the query complexity to O((k logm)2). So, for rectangles we have the following result1.

Theorem 4.3.2. There is an algorithm which can cluster the class of rectangles in 2 di-
mensions using at most O((k logm)2) queries.

We can also generalize this algorithm to work for rectangles in a d-dimensional space.
Hence, we get the following result

Corollary 4.3.3. There is an algorithm which can cluster the class of rectangles in d
dimensions using at most O((kd logm)d) queries.

Corollary 4.3.4. There is an algorithm which can cluster the class of hyperplanes in d
dimensions having a known set of slopes of size at most s, using at most O((kds logm)d)
queries.

4.3.2 Dynamic model

Next we study a natural generalization of the original model. In the original model we
assume that the teacher has access to the entire set of points. In practice, this will rarely
be the case. For example, in the case of clustering news articles, each day the teacher
sees a small fresh set of articles and provides feedback. Based on this the algorithm must
be able to figure out the target clustering for the entire space of articles. More formally,
let X be the space of all the points. There is a target k clustering for these points where
each cluster corresponds to a function in a class H . At each step, the world picks n points
and the algorithm clusters these n points and presents the clustering to the teacher. If the
teacher is unhappy with the clustering he may provide feedback. Note that the teacher
need not provide feedback every time the algorithm proposes an incorrect clustering. The
goal of the algorithm is to minimize the amount of feedback necessary to figure out the
target clustering. Notice that at each step the algorithm may get a fresh set of n points. We
assume that the requests have no noise and the algorithm has access to all the points in X .
We can show that one can efficiently cluster the class of intervals in this model.

Theorem 4.3.5. There is an efficient algorithm that can cluster the class of k intervals on
a line using at most O(k log n) queries.

1See Section 4.5
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An algorithm for clustering intervals

We assume that the space X is discretized into n points. Let us assume that there ex-
ist points {a1, a2, . . . , ak+1}, on the x-axis such that the target clustering is the intervals
{[a1, a2], [a2, a3], . . . , [ak, ak+1]}. The algorithm maintains a set of points on the x-axis and
uses the intervals induced by them as its hypothesis. Also each interval is associated with
a state of marked/unmarked. When a new interval is created, it is always unmarked.
An interval is marked if we know that none of the points(ai’s) in the target clustering can
be present in that interval. The algorithm is sketched below:

1. Start with one unmarked interval containing all the points in the space.

2. Given a set of m points, first form preliminary clusters h1, . . . , hJ such that each
cluster corresponds to an interval. Next output the final clusters as follows:

• set i=1

• If hi and hi+1 correspond to adjacent intervals at least one of them is unmarked,
then output hi ∪ hi+1 and set i = i+ 2. Else output hi and set i = i+ 1.

3. On a split request, split every unmarked interval in the cluster in half.

4. On a merge request, mark every unmarked contained in the cluster.

Theorem 4.3.6. The algorithm can cluster the class of intervals using at most O(k log n)
mistakes.

Proof. Notice that by our construction, every cluster will contain at most 2 unmarked in-
tervals. Lets first bound the total number of split requests. For every point ai in the target
clustering we define two variables left size(ai) and right size(ai). If ai is inside a hypo-
thesis interval [x, y] then left size(ai) = number of points in [x, ai] and right size(ai) =
number of points in [ai, y]. If ai is also a boundary point in the hypothesis clustering
([x, ai], [ai, y]) then again left size(ai) = number of points in [x, ai] and right size(ai) =
number of points in [ai, y]. Notice, that every split request reduces either the left size or
the right size of some boundary point by half. Since there are at most k boundary points
in the target clustering, the total number of split requests is ≤ O(k log n) times. Also note
that the number of unmarked intervals is at most O(k log n) since, unmarked intervals
increase only via split requests. On every merge request either an unmarked interval is
marked or two marked intervals are merged. Hence, the total number of merge requests is
atmost twice the number of unmarked intervals ≤ O(k log n). Hence, the total number of
mistakes is ≤ O(k log n).

51



Its easy to notice that the generic algorithm for learning any finite concept class in the
original model also works in this model. Hence, we can learn any finite concept class in
this model using at most k log |C| queries.

4.3.3 η noise model

The previous two models assume that there is no noise in the teacher requests. This is again
an unrealistic assumption since we cannot expect the teacher responses to be perfect. For
example, if the algorithm proposes a clustering in which there are two clusters which are
almost pure, i.e., a large fraction of the points in both the clusters belong to the same target
clusters, then there is a good chance that the teacher will ask the algorithm to merge these
two clusters, especially if the teacher has access to the clusters through a random subset
of the points. Here we study a model which removes this assumption. For simplicity,
we consider the noisy version of the original model of Balcan and Blum [2008]. As in
the original model, the algorithm has n points. At each step, the algorithm proposes a
clustering {C1, C2, . . . , Ck′} to the teacher and the teacher provides feedback. But now,
the feedback is noisy in the following sense

1. Split: As before the teacher can say split(Ci), if Ci contains points from more than
one target clusters.

2. Merge: The teacher can say merge(Ci, Cj), if Ci and Cj each have at least one
point from the same target cluster.

It turns out that such arbitrary levels of noise might be difficult for any query efficient
clustering algorithm.

Theorem 4.3.7. Consider n points on a line and k = 2. Any clustering algorithm must
use Ω(n) queries in the worst case to figure out the target clustering in the noisy model.

Proof. Given m points an adversary can force any algorithm to make at least m queries.
The adversary strategy is as follows:

1. If the algorithm proposes a single cluster ask to split.

2. If the algorithm proposes two or more clusters, choose any two clusters and ask the
algorithm to merge them.
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There are m choices for the adversary to choose the split point for the target intervals.
After every merge request at most one position is ruled out. This position corresponds to
any point in between (ai, aj) where ai ∈ hi and aj ∈ hj and ai and aj are the closest pair
of points across the two clusters.

Hence, we consider a relaxed notion of noise. If the teacher says merge(Ci, Cj) then
we assume that at least a constant η fraction of the points in both the clusters, belong to
a single target cluster. Under this model of noise we give an algorithm for clustering the
class of k-intervals on a line.

Theorem 4.3.8. There is an efficient algorithm that clusters the class of k intervals on a
line using at most O(k(log 1

1−η
m)2) split and merge requests.

An algorithm for clustering intervals

The algorithm is a generalization of the interval learning algorithm in the original model.
The main idea is that when the teacher asks to merge two intervals (ai, aj) and (aj, ak),
then we know than at least η fraction of the portion to the left and the right of aj is pure.
Hence, the algorithm can still make progress. As the algorithm proceeds it is going to
mark certain intervals as “pure” which means that all the points in that interval belong to
the same cluster. More formally the algorithm is as follows

1. Start with one interval [astart
′, aend

′] containing all the points.

2. At each step, cluster the points using the current set of intervals and present that
clustering to the teacher.

3. On split request : Divide the interval in half.

4. On a merge request

• If both the intervals are marked “pure”, merge them.

• If both the intervals are unmarked, then create 3 intervals where the middle
interval contains η fraction of the two intervals. Also make the middle interval
as “pure”.

• If one interval is marked and one is unmarked, then shift the boundary between
the two intervals towards the unmarked interval by a fraction of η.

Theorem 4.3.9. The algorithm clusters the class of intervals using at mostO(k(log 1
1−η

m)2)

split and merge requests.
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Proof. We will call a merge request, as “impure” if it involves at least one impure inter-
val,i.e., an interval which contains points from two or more clusters. Else we will call it
as “pure”. Notice that every split and impure merge request makes progress, i.e. the size
of some target interval is reduced by at least η. Hence, the total number of split + impure
merge requests ≤ k log 1

1−η
m. We also know that the total number of unmarked intervals

≤ k log 1
1−η

m, since only split requests increase the unmarked intervals. Also, total num-
ber of marked intervals≤ total number of unmarked intervals, since every marked interval
can be charged to a split request. Hence, the total number of intervals ≤ 2k log 1

1−η
m.

To bound the total number of pure merges, notice that every time a pure merge is made,
the size of some interval decreases by at least an η fraction. The size of an interval can
decrease at most log 1

1−η
m times. Hence, the total number of pure merges≤ k(log 1

1−η
m)2.

Hence, the algorithm makes at most O(k(log 1
1−η

m)2) queries.

4.4 Properties of the Data

We now adapt the query framework of Balcan and Blum [2008] to cluster datasets which
satisfy certain natural separation conditions with respect to the target partitioning. For this
section, sometimes we write d = 〈e1, e2, . . . , e(n2)

〉 to mean the set of distances that exist
between all pairs of n points. This list is always ordered by increasing distance.

4.4.1 Threshold Separation

We introduce a (strong) property that may be satisfied by d = 〈e1, e2, . . . , e(n2)
〉 with

respect to C∗, the target clustering. It is important to note that this property is imposing
restrictions on d, defined by the data. An inner edge of C∗ is a distance between two points
inside a cluster, while an outer edge is a distance between two points in differing clusters.

STRICT THRESHOLD SEPARATION. There exists a threshold t > 0 such that all inner
edges of C∗ have distance less than or equal t, and all outer edges have distance greater

than t.

In other words, the pairwise distances between the data are such that all inner edges of
d (w.r.t. C∗) have distance smaller than all outer edges (again, w.r.t. C∗). This property
gives away a lot of information about C∗, in that it allows Single-Linkage to fully recover
C∗ as we will see in theorem 4.4.1.
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Kleinberg [2003], Jardine and Sibson [1971] introduce the following 3 properties
which a clustering algorithm can satisfy. We will denote a clustering algorithm as a func-
tion F (d, k) which takes as input a distance metric and the number of clusters k and outputs
a k partition of the data. We will say that d′ is a consistent transformation of d if it is ob-
tained by changing d such that inner-cluster distances in d are decreased, and outer-cluster
distances are increased.

1. CONSISTENCY. Fix k. Let d be a distance function, and d′ be a consistent transfor-
mation of d. Then F (d, k) = F (d′, k)

2. ORDER-CONSISTENCY. For any two distance functions d and d′, number of clusters
k, if the order of edges in d is the same as the order of edges in d′, then F (d, k) =
F (d′, k)

3. k-RICHNESS. For any number of clusters k, Range(F (•, k)) is equal to the set of
all k-partitions of S

We would like to emphasize that the above are desired properties of a clustering function
and not the properties of a dataset. Before we present the algorithm to interact with the
teacher, Theorem 4.4.1 will be useful (See Section 4.5 for the proof).

Theorem 4.4.1. Fix k and a target k-partitioning C∗, and let d be a distance function
satisfying Strict Threshold Separation w.r.t. C∗. Then for any Consistent, k-Rich, Order-
Consistent partitioning function F , we have F (d, k) = C∗.

Note that since Single-linkage is Consistent, k-Rich, and Order-Consistent (Zadeh and
Ben-David [2009]), it immediately follows that SL(d, k) = C∗ - in other words, SL is
guaranteed to find the target k-partitioning, but we still have to interact with the teacher to
find out k. It is a recently resolved problem that Single-Linkage is not the only function
satisfying the above properties ( Zadeh and Ben-David [2011]), so the the class of Con-
sistent, k-Rich, and Order-Consistent functions has many members. We now present the
algorithm to interact with the teacher.

Theorem 4.4.2. Given a dataset satisfying Strict Threshold Separation, there exists an
algorithm which can find the target partitioning for any hypothesis class in O(log(n))
queries

Proof. Note that the threshold t and the number of clusters k are not known to the algo-
rithm, else the target could be found immediately. By theorem 4.4.1, we know that the
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target must be exactly what Single-Linkage returns for some k, and it remains to find the
number of clusters. This can be done using a binary search on the number of clusters
which can vary from 1 to n. We start with some candidate k. If our current guess of k is
too large, then all clusters will be pure (so the only feedback one would get is a merge). If
our guess of k is too small, then no two clusters produced by the algorithm will be subsets
of the same target cluster (so the only feedback given will be a split). Thus we can find the
correct number of clusters in O(log(n)) queries.

Note that since strict threshold separation implies strict separation, then the O(k) al-
gorithm presented in the next section can also be used, giving O(min(log(n), k)) queries.

Strict Separation: Now we relax strict threshold separation

STRICT SEPARATION. All points in the same cluster are more similar to one another than
to points outside the cluster.

With this property, it is no longer true that all inner distances are smaller than outer
distances, and therefore Theorem 4.4.1 does not apply. However, Balcan et al. [2008a]
prove the following lemma

Lemma 4.4.3. Balcan et al. [2008a] For a dataset satisfying strict separation, let SL(d) be
the tree returned by Single-Linkage. Then any partitioning respecting the strict separation
of d will be a pruning of SL(d).

Theorem 4.4.4. Given a dataset satisfying Strict Separation, there exists an algorithm
which can find the target partitioning for any hypothesis class in O(k) queries

Proof. Let the distances between points be represented by the distance function d. By
lemma 4.4.3 we know that the target partitioning must be a pruning of SL(d). Our algo-
rithm will start by presenting the teacher with all points in a single cluster. Upon a split
request, we split according to the relevant node in SL(d). There can be no merge requests
since we always split perfectly. Each split will create a new cluster, so there will be at
most k − 1 of these splits, after which the correct partitioning is found.

γ-margin Separation: Margins show up in many learning models, and this is no
exception. A natural assumption is that there may be a separation of at least γ between
points in differing clusters, where the points all lie inside the unit ball.

γ-MARGIN SEPARATION. Points in different clusters of the target partitioning are at least
γ away from one another.
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With this property, we can prove the following for all hypothesis classes

Theorem 4.4.5. Given a dataset satisfying γ-margin Separation, there exists an algorithm
which can find the target partitioning for any hypothesis class in O((

√
d
γ

)d − k) queries

Proof. We split the unit ball (inside which all points live) into hypercubes with edge
length γ√

d
. We are interested in the diameter of such a hypercube. The diameter of a

d-dimensional hypercube with side γ√
d

is
√
d × γ√

d
= γ, so no two points inside a hyper-

cube of side γ√
d

can be more than γ apart. It follows that if split the unit ball up using a
grid of hypercubes, all points inside a hypercube must be from the same cluster. We say
such a hypercube is “pure”.

There are at most O((
√
d
γ

)d) hypercubes in a unit ball. We show each hypercube as a
single cluster to the teacher. Since all hypercubes are pure, we can only get merge requests,
of which there can be at most O((

√
d
γ

)d − k) until the target partitioning is found.

4.5 Additional Results

4.5.1 A better algorithm for learning rectangles

In the original algorithm for learning rectangles described in 4.3.1, we reset the merges
after every split. We can avoid it as follows: The algorithm, in addition to the hypothesis
clusters, also maintains a graph G over the m points. Initially, the graph G has no edges.
The algorithm proceeds as described below

1. Start with points (astart
′, aend

′) on the x-axis and points (bstart
′, bend

′), such that all
the points are contained in the rectangle defined by these points.

2. At each step, cluster the m points according to the region in which they belong. If
the points in two regions form a clique in G merge the two regions. Repeat until no
more regions can be merged. Present this clustering to the teacher.

3. On a merge request, create a clique in G corresponding to the points in the two
clusters.

4. On a split of (ai
′, aj

′), (bi
′, bj

′), create a new point ar ′ such that ai′ < ar
′ < aj

′, and
the projection of all the points onto (ai

′, aj
′) is divided into half by ar ′. Similarly,

create a new point br ′ such that bi′ < br
′ < bj

′, and the projection of all the points
onto (bi

′, bj
′) is divided into half by br ′.
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Theorem 4.5.1. The algorithm can cluster the class of rectangles in 2 dimensions using
at most O((k logm)2) queries.

Proof. Lets first bound the total number of split requests. If the teacher says split on
(xi, xj), (yi, yj), then we know that either (xi, xj) contains a target point a or (yi, yj) con-
tains a target point b or both. By creating two splits we are ensuring that the size of at
least one of the regions containing a target point is reduced by half. There are at most 2k
intervals on the x-axis and at most 2k intervals on the y-axis. Hence, the total number of
split requests is ≤ 4k logm. Now, the total number of merge requests is at most the total
number of regions created by the algorithm since, after every merge request we reduce
the number of regions by 1. Since, t points on the x and the y axis can create at most t2

regions, we get that the total number of merge requests is at most ≤ O(k logm)2. Hence,
the total number of queries made by the algorithm is O((k logm)2).

4.5.2 Proof of theorem 4.4.1

Proof. Let F be any Consistent, k-Rich, Order-Consistent partitioning function, and let d
be any distance function on n points satisfying strict threshold separation w.r.t. C∗ with
threshold t. We want to show that for all k > 0, F (d, k) = C∗, the target. Whenever we
say “inner” or “outer” edge for this proof, we mean with respect to C∗.

By k-Richness of F , there exists a d1 such that F (d1, k) = SL(d, k) = C∗. Now,
through a series of transformations that preserve the output of F , we transform d1 into d2,
then d2 into d3, . . ., until we arrive at d. Let di be represented by an ordered list of its
distances in ascending order di = 〈e1, e2, . . . , e(n2)

〉.

We begin the C∗-preserving transformations on d1 to eventually transform d1 into d
while at each step i maintaining F (di, k) = C∗.

1. By k-Richness, we know there exists a d1 such that F (d1, k) = C∗.

2. Since all edges of p are inner edges, we can shrink them in d1 until they are less
than t. Call this newly created dataset d2. This step maintains F (d2, k) = C∗ by
Consistency (we only shrank inner edges).

3. Now we reorder the inner edges of d2 to be in the exactly the same order as they
appear in d. Call the new dataset d3. This step maintains F (d3, k) = C∗ by Consis-
tency (all these edges are of the same type - namely inner edges, so we may reorder
them freely by shrinking an edge till it falls into place). Now we deal with the
remaining outer edges.
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4. We expand all outer edges until they are larger than all inner edges and call the result
d4. This step maintains F (d4, k) = C∗ by Consistency.

5. Now we reorder all outer edges until their order in relation to each other is as they
appear in d, and call the result d5. This step maintains F (d5, k) = C∗ by Consis-
tency. Now, d5 has all the inner edges in the same position as they appear in d,
and has all the outer edges in the same order relative to one another as they appear
in d. Since all inner edges are smaller than all outer edges (by the strict threshold
property), all the edges are in the same order as they appear in d.

6. At this point in the edge ordering of d5, all the edges lie in the same position as they
do in d. However, their weights might be different than what appears in d. By using
Order-Consistency, we can turn the weights of d5 into exactly those of d, and call the
result d6. Since we didn’t change the order of edges from d5, by Order-Consistency
we have that F (d6, k) = C∗. It should be clear that d6 = d.

7. Thus we have F (d6, k) = F (d, k) = C∗.

We started with any d and k, and showed that

F (d, k) = C∗
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Chapter 5

Local algorithms for supervised
clustering

In this chapter, we modify the basic split-merge framework which was studied in Chap-
ter 4 and study a new model with the goal of designing practically applicable supervised
clustering algorithms. In the split-merge framework, the algorithm is given the freedom
to propose arbitrary clusterings to the user and receive feedback. In most real-world clus-
tering problems, however, we already start with a fairly good clustering computed with
semi-automated techniques. For example, consider an online news portal that maintains a
large collection of news articles. The news articles are clustered on the “back-end,” and
are used to serve several “front-end” applications such as recommendations and article
profiles. For such a system, we do not have the freedom to compute arbitrary clusterings
and present them to the user. But we can still locally edit the clustering and get limited
feedback. In particular, one might only want to change the “bad” portion revealed by the
feedback, otherwise respecting the clustering given. This is the problem that we address
in this chapter.

We study an extension of the split-merge framework and provide strong experimental
evidence supporting the practical applicability of our algorithms. In the new model the
algorithm is given as input an initial clustering of the data. The algorithm then interacts
with the user in stages. At each stage the algorithm makes a local change to the current
clustering at hand and proposes it to the user. The user provides limited feedback in the
form of split and merge requests. We say that a change made by the algorithm to the
current clustering is local if in response to the user feedback the algorithm changes only
the cluster assignments of the points in the corresponding clusters. If the user requests to
split a cluster Ci, we may change only the cluster assignments of points in Ci, and if the

61



user requests to merge Ci and Cj , we may only reassign the points in Ci and Cj .

We study the query complexity of algorithms in the above model with respect to the
error of the initial input clustering. The initial error can be naturally decomposed into
underclustering error δu and overclustering error δo (See Section 5.1). Because the initial
error may be fairly small,1 we would like to develop algorithms whose query complex-
ity depends polynomially on δu, δo and only logarithmically on n, the number of data
points. Theoretically, we will view the initial input clustering as being adversarially given
subject to bounded δu and δo. We show this is indeed possible assuming that the input
similarity function satisfies a natural stability property with respect to the ground-truth
clustering (see Section 8.1). The specific stability property we consider is a natural gen-
eralization of the “stable marriage” property (see Definition 5.1.2) that has been studied
in a variety of previous works (Balcan et al. [2008b], Bryant and Berry [2001]). This is a
realistic assumption and is strictly weaker than other often-studied stability notions such
as strict separation and strict threshold separation (Balcan et al. [2008b], Krishnamurthy
et al. [2012]).

Our Results
In Section 5.2 we study the η-merge model which was described in Chapter 4. For this
model we show the following query bound

Theorem 5.0.2. Given n data points, suppose the target clustering satisfies stability, and
the initial clustering has overclustering error δo and underclustering error δu. In the η-
merge model, for any η > 0.5, there is an efficient algorithm that requires at most δo split
requests and 2(δu + k) log 1

1−η
n merge requests to find the target clustering.

In Section 5.3 we relax the condition on the merges and allow the user to issue a merge
request even if Ci and Cj only have a single point belonging to the same target cluster. We
call this the unrestricted-merge model. Here the requirement on accuracy of user response
is much weaker and hence one needs to make further assumptions on the nature of requests.
More specifically, we assume that each merge request is chosen uniformly at random from
the set of feasible merges. Under this condition we show the following

Theorem 5.0.3. Suppose the target clustering satisfies stability, and the initial clustering
has overclustering error δo and underclustering error δu. In the unrestricted-merge model
there exists an efficient algorithm which with probability at least 1 − ε, requires δo split
requests and O(log k

ε
δ2
u) merge requests to find the target clustering.

In Section 5.4 we also demonstrate the effectiveness of our algorithms on real data. We
show that for the purposes of splitting known over-clusters, the splitting procedure pro-

1Given 2 different k clusterings, δu and δo is atmost k2.
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posed here computes the best splits, when compared to other often-used techniques. We
also test the entire proposed framework on newsgroup documents data, which is quite chal-
lenging for traditional unsupervised clustering methods (Telgarsky and Dasgupta [2012],
Heller and Ghahramani [2005], Dasgupta [2008], Dai et al. [2010], Boulis and Ostendorf
[2004], Zhong [2005]). Several studies report that for this data set it is difficult to compute
hierarchical-clustering trees that are consistent with the ground-truth (Telgarsky and Das-
gupta [2012], Heller and Ghahramani [2005]). Still, using average-linkage trees that are
only somewhat consistent with the ground-truth, our local algorithms are able to find the
target clustering after a reasonable number of edit requests. In addition, the performance
improves significantly when we first slightly prune the data. The results in thie chapter are
based on work in Awasthi et al. [2013a].

5.1 Notation and Preliminaries

Given a cluster Ci and a clustering C ′, define

dist(Ci, C
′) = |{C ′j ∈ C ′ : C ′j ∩ Ci 6= ∅}| − 1.

This distance is the number of additional clusters in C ′ that contain points from Ci; it
evaluates to 0 when all points inCi are contained in a single cluster inC ′. Naturally, we can
then define the distance between C and C ′ as: dist(C,C ′) =

∑
Ci∈C dist(Ci, C

′). Notice
that this notion of clustering distance is asymmetric: dist(C,C ′) 6= dist(C ′, C). Also note
that dist(C,C ′) = 0 if and only if C refines C ′. If C is the ground-truth clustering, and
C ′ is a proposed clustering, then dist(C,C ′) is define as the underclustering error, and
dist(C ′, C) an overclustering error.

An underclustering error is an instance of several clusters in a proposed clustering
containing points from the same ground-truth cluster; this ground-truth cluster is said to
be underclustered. Conversely, an overclustering error is an instance of points from several
ground-truth clusters contained in the same cluster in a proposed clustering; this proposed
cluster is said to be overclustered. E.g., if running a linkage-style algorithm that starts with
many tiny clusters and merges clusters together until its all one big ball, then initially data
will be underclustered and at the end data will be overclustered. In the following sections
we use C∗ = {C∗1 , C∗2 , . . . C∗k} to refer to the ground-truth clustering, and use C to refer to
the initial clustering. We use δu to refer to the underclustering error of the initial clustering,
and δo to refer to the overclustering error. In other words, we have δu = dist(C∗, C) and
δo = dist(C,C∗).
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Definition 5.1.1 (Local algorithm). We say that an interactive clustering algorithm is local
if in each iteration only the cluster assignments of points involved in the oracle request may
be changed. If the oracle proposes split(Ci), only the points in Ci may be reassigned. If
the oracle proposes merge(Ci, Cj), only the points in Ci ∪ Cj may be reassigned.

We next formally define the separation property of a clustering instance that we study
in this work.

Definition 5.1.2 (Average Stability). Given a clustering instance C = {C1, C2, · · ·Ck}
over a domain S and a distance function d : S × S 7→ <, we say that C satisfies average
stability if for all i 6= j, and for all A ⊂ Ci and A′ ⊆ Cj , davg(A,Ci \ A) < davg(A,A

′).
Here for any two sets A,A′, davg(A,A′) = Ex∈A,y∈A′d(x, y).

In the following sections we will assume that the ground-truth clustering of the data set
satisfies this stability property. We study the following natural assumptions on the oracle
requests, which require that the requests are consistent with the ground-truth.

Definition 5.1.3 (η-merge model). In the η-merge model the following guarantees hold
for the oracle requests

split(Ci): Ci contains points from two or more target clusters.

merge(Ci, Cj): At least an η-fraction of the points in each Ci and Cj belong to the same
target cluster.

Definition 5.1.4 (Unrestricted-merge model). In the unrestricted-merge model the follow-
ing guarantees hold for the oracle requests

split(Ci): Ci contains points from two or more target clusters.

merge(Ci, Cj): At least 1 point in each Ci and Cj belongs to the same target cluster.

5.2 The η-merge model

In this section we describe and analyze the algorithms in the η-merge model. As a pre-
processing step, we first run the average-linkage algorithm on all the points in the data
set to compute the global average-linkage tree, which we denote by Tavg. The leaf nodes
in this tree contain the individual points, and the root node contains all the points. The
tree is computed in a bottom-up fashion: starting with the leafs in each iteration the two
most similar nodes are merged, where the similarity between two nodes N1 and N2 is the
average similarity between points in N1 and points in N2.
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Our algorithms start by assigning a label “impure” to each cluster in the initial cluster-
ing. In each step, a local clustering edit is computed from Tavg as described in Figure 5.1
and Figure 5.2. To implement Step 1 in Figure 5.1, we start at the root of Tavg and “follow”

Figure 5.1: Split procedure

Algorithm: SPLIT PROCEDURE

Input: Cluster Ci, global average-linkage tree Tavg.

1. Search Tavg to find the node N at which the set of points in Ci are first split in
two.

2. Let N1 and N2 be the children of N . Set Ci,1 = N1 ∩ Ci, Ci,2 = N2 ∩ Ci.

3. Delete Ci and replace it with Ci,1 and Ci,2. Mark the two new clusters as “im-
pure”.

the points in Ci down one of the branches until we find a node that splits them. In order
to implement Step 2 in Figure 5.2, it suffices to start at the root of Tavg and perform a
post-order traversal, only considering nodes that have “enough” points from both clusters,
and return the first output node. We now state the performance guarantee for these split

Figure 5.2: Merge procedure for the η-merge model

Algorithm: MERGE PROCEDURE

Input: Clusters Ci and Cj , global average-linkage tree Tavg.

1. If Ci is marked as “pure” set η1 = 1 else set η1 = η. Similarly set η2 for Cj .

2. Search Tavg for a node of maximal depth N that contains enough points from
Ci and Cj: |N ∩ Ci| ≥ η1|Ci| and |N ∩ Cj| ≥ η2|Cj|.

3. Replace Ci by Ci \N , replace Cj by Cj \N .

4. Add a new cluster containing N ∩ (Ci ∪ Cj), mark it as “pure”.

and merge algorithms.

65



Theorem 5.2.1. Suppose the target clustering satisfies average stability, and the initial
clustering has overclustering error δo and underclustering error δu. In the η-merge model,
for any η > 0.5, the algorithms in Figure 5.1 and Figure 5.2 require at most δo split
requests and 2(δu + k) log 1

1−η
n merge requests to find the target clustering.

In order to prove this theorem, we first establish key properties of the split and the
merge procedures.

Definition 5.2.2 (Clean split). A partition (split) of a cluster Ci into clusters Ci,1 and Ci,2
is said to be clean if Ci,1 and Ci,2 are non-empty, and for each ground-truth cluster C∗j
such that C∗j ∩ Ci 6= ∅, either C∗j ∩ Ci = C∗j ∩ Ci,1 or C∗j ∩ Ci = C∗j ∩ Ci,2.

To prove that the procedure in Figure 5.1 computes a clean split we use the property
that each node of the global average-linkage tree is laminar (consistent) with respect to
the ground-truth clustering. This property is formalized below.

Definition 5.2.3 (Laminarity). A set Ci is laminar with respect to the ground-truth clus-
tering C∗ if for each cluster C∗j ∈ C∗ we have either Ci ∩ C∗j = ∅, Ci ⊆ C∗j , or C∗j ⊆ Ci.

Lemma 5.2.4. Suppose the ground-truth clustering C∗ satisfies average stability. Let Tavg
be the average-linkage tree for this data set. Then every node in Tavg is laminar w.r.t. C∗.

Proof. The proof of this statement can be found in Balcan et al. [2008b]. The intuition
comes from the fact that if there is a node in Tavg that is not laminar w.r.t. C∗, then the
average-linkage algorithm, at some step, must have merged A ⊂ C∗i , with B ⊂ C∗j for
some i 6= j. However, this will contradict the stability property for the sets A and B.

Lemma 5.2.5. If the ground-truth clustering satisfies average stability and η > 0.5 then,

a. The split procedure in Figure 5.1 always produces a clean split.

b. The new cluster added in Step 4 in Figure 5.2 must be “pure”, i.e., it must contain
points from a single ground-truth cluster.

Proof. a. For purposes of contradiction, suppose the returned split is not clean: Ci,1 and
Ci,2 contain points from the same ground-truth cluster C∗j . It must be the case that Ci
contains points from several ground-truth clusters, which implies that w.l.o.g. Ci,1 contains
points from some other ground-truth cluster C∗l 6=j . This implies that N1 is not laminar w.r.t
C∗, which contradicts Lemma 5.2.4.
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b. By our assumption, at least 1
2
|Ci| points from Ci and 1

2
|Cj| points from Cj are from

the same ground-truth cluster C∗l . Clearly, the node N ′ in Tavg that is equivalent to C∗l
(which contains all the points in C∗l and no other points) must contain enough points from
Ci and Cj , and only ascendants and descendants of N ′ may contain enough points from
both clusters. Therefore, the node N that we find with a depth-first search must be N ′ or
one of its descendants, and will only contain points from C∗l .

Using the above lemma, we can prove the bounds on the split and merge requests stated
in Theorem 5.2.1.

Proof of Theorem 5.2.1. We first give a bound on the number of splits. Observe that
each split reduces the overclustering error by exactly 1. To see this, suppose we exe-
cute Split(C1), and call the resulting clusters C2 and C3. Call δ(1)

o the overclustering error
before the split, and δ(2)

o the overclustering error after the split. Let’s use k1 to refer to the
number of ground-truth clusters that intersect C1, and define k2 and k3 similarly. Due to
the clean split property, no ground-truth cluster can intersect both C2 and C3, therefore it
must be the case that k2 + k3 = k1. Also, clearly k2, k3 > 0. Therefore we have:

δ(2)
o = δ(1)

o − (k1 − 1) + (k2 − 1) + (k3 − 1)

= δ(1)
o − k1 + (k2 + k3)− 1

= δ(1)
o − 1.

Merges cannot increase overclustering error. Therefore the total number of splits may
be at most δo. We next give the arguments about the number of impure and pure merges.

We first argue that we cannot have too many “impure” merges before each cluster in C
is marked “pure.” Consider the clustering P = {Ci ∩C∗j | Ci is not “pure” and Ci ∩C∗j 6=
∅}. Clearly, at the start |P | = δu + k. A merge does not increase the number of clusters
in P , and the splits do not change P at all (because of the clean split property). Moreover,
each impure merge (a merge of two impure clusters or a merge of a pure and an impure
cluster) depletes some Pi ∈ P by moving η|Pi| of its points to a pure cluster. Clearly,
we can then have at most log1/(1−η) n merges depleting each Pi. Since each impure merge
must deplete some Pi, it must be the case that we can have at most (δu + k) log1/(1−η) n
impure merges in total.

Notice that a pure cluster can only be created by an impure merge, and there can be
at most one pure cluster created by each impure merge. Clearly, a pure merge removes
exactly one pure cluster. Therefore the number of pure merges may be at most the total
number of pure clusters that are created, which is at most the total number of impure
merges. Therefore the total number of merges must be less than 2(δu+k) log1/(1−η) n.
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5.3 The unrestricted-merge model

In this section we further relax the assumptions about the nature of the oracle requests.
As before, the oracle may request to split a cluster if it contains points from two or more
target clusters. For merges, now the oracle may request to merge Ci and Cj if both clusters
contain only a single point from the same ground-truth cluster. We note that this is a
minimal set of assumptions for a local algorithm to make progress, otherwise the oracle
may always propose irrelevant splits or merges that cannot reduce clustering error. For
this model we propose the merge algorithm described in Figure 5.3. The split algorithm
remains the same as in Figure 5.1.

Figure 5.3: Merge procedure for the unrestricted-merge model

Algorithm: MERGE PROCEDURE

Input: Clusters Ci and Cj , global average-linkage tree Tavg.

1. Let C ′i, C
′
j = Split(Ci ∪ Cj), where the split is performed as in Figure 5.1.

2. Delete Ci and Cj .

3. If the sets C ′i and C ′j are the same as Ci and Cj , then add Ci∪Cj , otherwise add
C ′i and C ′j .

To provably find the ground-truth clustering in this setting we require that each merge
request must be chosen uniformly at random from the set of feasible merges. This as-
sumption is consistent with the observation in Awasthi and Zadeh [2010] which implies
that in the unrestricted-merge model with arbitrary request sequences, even very simple
cases (ex. union of intervals on a line) require a prohibitively large number of requests.
We do not make additional assumptions about the nature of the split requests; in each iter-
ation any feasible split may be proposed by the oracle. In this setting our algorithms have
the following performance guarantee.

Theorem 5.3.1. Suppose the target clustering satisfies average stability, and the initial
clustering has overclustering error δo and underclustering error δu. In the unrestricted-
merge model, with probability at least 1 − ε, the algorithms in Figure 5.1 and Figure 5.3
require δo split requests and O(log k

ε
δ2
u) merge requests to find the target clustering.

The above theorem is proved in a series of lemmas. We first state a lemma regarding
the correctness of the Algorithm in Figure 5.3. We argue that if the algorithm merges
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Ci and Cj , it must be the case that both Ci and Cj only contain points from the same
ground-truth cluster.

Lemma 5.3.2. If the algorithm in Figure 5.3 merges Ci and Cj in Step 3, it must be the
case that Ci ⊂ C∗l and Cj ⊂ C∗l for some ground-truth cluster C∗l .

Proof. We prove the contrapositive. Suppose Ci and Cj both contain points from C∗l , and
in addition Ci ∪ Cj contains points from some other ground-truth cluster. Let us define
S1 = C∗l ∩Ci and S2 = C∗l ∩Cj . Because the clusters C ′i, C

′
j result from a “clean” split, it

follows that S1, S2 ⊆ C ′i or S1, S2 ⊆ C ′j . Without loss of generality, assume S1, S2 ⊆ C ′i.
Then clearly C ′i 6= Ci and C ′i 6= Cj , so Ci and Cj are not merged.

The δo bound on the number of split requests follows from the observation that each
split reduces the overclustering error by exactly 1 (as before), and the fact that the merge
procedure does not increase overclustering error, which follows from the lemma below.

Lemma 5.3.3. The merge algorithm in Figure 5.3 does not increase overclustering error.

Proof. Suppose Ci and Cj are not both “pure,” and hence we obtain two new clusters C ′i,
C ′j . Let us call δ(1)

o the overclustering error before the merge, and δ(2)
o the overclustering

error after the merge. Let’s use k1 to refer to the number of ground-truth clusters that
intersect Ci, k2 to refer to the number of ground-truth clusters that intersect Cj , and define
k′1 and k′2 similarly. The new clusters C ′i and C ′j result from a “clean” split, therefore
no ground-truth cluster may intersect both of them. It follows that k′1 + k′2 ≤ k1 + k2.
Therefore we now have:

δ(2)
o = δ(1)

o − (k1 − 1)− (k2 − 1) + (k′1 − 1) + (k′2 − 1)

= δ(1)
o − (k1 + k2) + (k′1 + k′2) ≤ δ(1)

o .

If Ci and Cj are both “pure,” then clearly the merge operation has no effect on the over-
clustering error.

The following lemmas bound the number of impure and pure merges. To clarify, we
call a proposed merge pure if both clusters are subsets of the same ground-truth cluster,
and impure otherwise.

Lemma 5.3.4. The merge algorithm in Figure 5.3 requires at most δu impure merge re-
quests.
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Proof of Lemma 5.3.4. We argue that each impure merge reduces the underclustering error
of the current clustering by at least 1. To make our argument, we use δu(C∗i ) to refer to
the underclustering error with respect to the ground-truth cluster C∗i . In other words,
δu(C

∗
i ) = dist(C∗i , C

′), where C ′ is the current clustering.

Suppose we execute Merge(C1, C2), and C1 and C2 are not both “pure.” Let us use
C ′1 and C ′2 to refer to the resulting clusters. We divide the ground-truth clusters into three
groups: clusters that intersect neither C1 nor C2 (group-1), clusters that intersect exactly
one of C1, C2 (group-2), and clusters that intersect both C1 and C2 (group 3).

Let us use δ(1)
u to refer to the underclustering error before the merge, and δ(2)

u to refer to
the underclustering error after the merge. Clearly, for ground-truth clusters C∗i in group-1
we have δ(2)

u (C∗i ) = δ
(1)
u (C∗i ). The clusters C ′1 and C ′2 result from a “clean” split, therefore

no ground-truth cluster may intersect both of them. It follows that for ground-truth clusters
C∗i in group-2 we also have δ(2)

u (C∗i ) = δ
(1)
u (C∗i ). It also follows that for ground-truth

clusters C∗i in group-3 we must have δ(2)
u (C∗i ) = δ

(1)
u (C∗i )− 1.

Our argument immediately follows from these observations. We have

δ(2)
u =

∑
C∗i ∈ group-1

δ(2)
u (C∗i ) +

∑
C∗i ∈ group-2

δ(2)
u (C∗i )

+
∑

C∗i ∈ group-3

δ(2)
u (C∗i )

=
∑

C∗i ∈ group-1

δ(1)
u (C∗i ) +

∑
C∗i ∈ group-2

δ(1)
u (C∗i )

+
∑

C∗i ∈ group-3

(δ(1)
u (C∗i )− 1)

= δ(1)
u − |{C∗i : C∗i ∈ group-3}|.

Because there must be at least one ground-truth cluster in group-3, it follows that δ(2)
o ≤

δ
(1)
o − 1.

Lemma 5.3.5. The probability that the algorithm in Figure 5.3 requires more thanO(log k
ε
δ2
u)

pure merge requests is less than ε.

Proof of Lemma 5.3.5. We first consider the pure merge requests involving points from
some ground-truth cluster C∗i , the total number of pure merge requests (involving any
ground-truth cluster) can then be bounded with a union-bound.

Suppose we assign an identifier to each cluster containing points from C∗i in the fol-
lowing manner:
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1. Maintain a CLUSTER-ID variable, which is initialized to 1.

2. To assign a “new” identifier to a cluster, set its identifier to CLUSTER-ID, and
increment CLUSTER-ID.

3. In the initial clustering, assign a new identifier to each cluster containing points from
C∗i .

4. When we split a cluster containing points from C∗i , assign its identifier to the newly-
formed cluster containing points from C∗i .

5. When we merge two clusters and one or both of them are impure, if one of the
clusters contains points from C∗i , assign its identifier to the newly-formed cluster
containing points from C∗i . If both clusters contain points from C∗i , assign a new
identifier to the newly-formed cluster containing points from C∗i .

6. When we merge two clusters C1 and C2, and both contain only points from C∗i , if
the outcome is one new cluster, assign it a new identifier. If the outcome is two new
clusters, assign them the identifiers of C1 and C2.

Clearly, when clusters containing points from C∗i are assigned identifiers in this man-
ner, the maximum value of CLUSTER-ID is bounded by O(δi), where δi denotes the
underclustering error of the initial clustering with respect to C∗i : δi = dist(C∗i , C). To see
this, consider that we assign exactly δi + 1 new identifiers in Step-3, and each time we
assign a new identifier in Steps 5 and 6, the underclustering error of the edited clustering
with respect to C∗i decreases by one.

We say that a pure merge request involving points from C∗i is original if the user has
never asked us to merge clusters with the given identifiers, otherwise we say that this
merge request is repeated. Given that the maximum value of CLUSTER-ID is bounded by
O(δi), the total number of original merge requests must be O(δ2

i ). We now argue that if a
merge request is not original, we can lower bound the probability that it will result in the
merging of the two clusters.

For repeated merge requestMi = Merge(C1, C2), letXi be a random variable defined
as follows:

Xi =


1 if neither C1 nor C2 have been involved in

a merge request since the last time a merge of
clusters with these identifiers was proposed.

0 otherwise.
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Clearly, when Xi = 1 it must be the case that C1 and C2 are merged. We can show
that Pr[Xi = 1] ≥ 1

4(δi+1)
. The intuition for this argument is quite simple: in each step the

probability that the user requests to merge C1 and C2 is 1
n′

, and the probability that the user
requests to merge C1 or C2 with some other cluster is O( δi

n′
), where n′ is the total number

of possible merges, so we can bound the probability that the former happens before the
latter.

We can then use a Chernoff bound to argue that after t = O(log k
ε
δ2
i ) repeated merge

requests, the probability that
∑t

i=1 Xi < δi (which must be true if we need more re-
peated merge requests) is less than ε/k. Therefore, the probability that we need more than
O(log k

ε
δ2
i ) repeated merge requests is less than ε/k.

By the union-bound, the probability that we need more than O(log k
ε
δ2
i ) repeated

merge requests for any ground-truth cluster C∗i is less than k · ε/k = ε. Therefore
with probability at least 1 − ε for all ground-truth clusters we need

∑
iO(log k

ε
δ2
i ) =

O(log k
ε

∑
i δ

2
i ) = O(log k

ε
δ2
u) repeated merge requests, where δu is the underclustering er-

ror of the original clustering. Similarly, for all ground-truth clusters we need
∑

iO(δ2
i ) =

O(δ2
u) original merge requests. Adding the two terms together, it follows that with proba-

bility at least 1− ε we need a total of O(log k
ε
δ2
u) pure merge requests.

5.4 Experimental Results

We perform two sets of experiments: we first test the proposed split procedure on the
clustering of business listings maintained by Google, and also test the proposed framework
in its entirety on the much smaller newsgroup documents data set.

5.4.1 Clustering business listings

Google maintains a large collection of data records representing businesses. These records
are clustered using a similarity function; each cluster should contain records about the
same distinct business; each cluster is summarized and served to users online via various
front-end applications. Users report bugs such as “you are displaying the name of one
business, but the address of another” (caused by over-clustering), or “a particular business
is shown multiple times” (caused by under-clustering). These bugs are routed to operators
who examine the contents of the corresponding clusters, and request splits/merges accord-
ingly. However, the clusters involved in these requests are often quite “messy” (contain
records about several businesses), and automated tools that can perform the requested edits
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are needed.

In particular, here we evaluate the effectiveness of our proposed split procedure in
computing desirable cluster splits. We consider a binary split desirable iff the two resulting
sub-clusters are “clean” using Definition 5.2.2. For this application, automated splits are
very relevant and “clean” splits are desirable because they must reduce the over-clustering
error, and should correct some of the corresponding errors on the front-ends. To compute
the splits, we use a “local” variation of the algorithm in Figure 5.1, where we use the
average-linkage tree built only from the points in the cluster (referred to as Clean-Split).

For comparison purposes, we use two well-known techniques for computing binary
splits: the optimal 2-median clustering (2-Median), and a “sweep” of the second-smallest
eigenvector of the corresponding Laplacian matrix. Let {v1, . . . , vn} be the order of the
vertices when sorted by their eigenvector entries, we compute the partition {v1, . . . , vi}
and {vi+1, . . . , vn} such that its conductance is smallest (Spectral-Balanced), and a parti-
tion such that the similarity between vi and vi+1 is smallest (Spectral-Gap).

We compare the split procedures on 25 over-clusters that were discovered during a
clustering-quality evaluation2. The results are presented in Table 5.1. We observe that the
Clean-Split algorithm works best, giving a desirable split in 22 out of the 25 cases. The
well-known Spectral-Balanced technique usually does not give desirable splits for this
application: the balance constraint usually causes it to put records about the same business
on both sides of the partition, especially when all the “clean” splits are not well-balanced.
The result is a split that in fact usually increases the over-clustering error. As expected,
the Spectral-Gap technique improves on this limitation, but the result is often still not
desirable. The 2-Median algorithm performs fairly well, but we believe that it is still not
the right technique for this problem: the optimal centers may be records about the same
business, and even if they are not, the resulting partition is still sometimes not desirable.

Table 5.1: Number of desirable splits

Clean-Split 2-Median Spectral-Gap Spectral-Balanced
22 18 16 4

2I would like to thank Konstantin Voevodski for allowing me to include the experimental results in this
thesis
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5.4.2 Clustering newsgroup documents

In order to test our entire framework (the iterative application of our algorithms), we per-
form computational experiments on newsgroup documents data.3 The objects in these data
sets are posts to twenty different online forums (newsgroups). We sample these data to get
data sets of manageable size (labeled A through E in the figures).

We compute an initial clustering by perturbing the ground-truth. In each iteration,
we compute the set of all feasible splits and merges: a split of a cluster is feasible if it
contains points from 2 or more ground-truth clusters, and a merge is feasible if at least
an η- fraction of points in each cluster are from the same ground-truth cluster. Then, we
choose one of the feasible edits uniformly at random, and ask the algorithm to compute
the corresponding edit. We continue this process until we find the ground-truth clustering
or we reach 20000 iterations.

It is relevant to note how many iterations we expect to require in such an experiment.
Our initial clusterings have over-clustering error of about 100, and under-clustering error
of about 100. Our theoretical analysis indicates that in the worst case we would then
require on the order of several thousand iterations in the first model, and several tens of
thousands of iterations in the second model.

We notice that for newsgroup documents we cannot compute average-linkage trees
that are very consistent with the ground-truth. This observation was also made in other
clustering studies that report that the hierarchical trees constructed from these data have
low “purity” (Telgarsky and Dasgupta [2012], Heller and Ghahramani [2005]). To test
how well our algorithms can perform with better data, we prune the data sets by repeatedly
finding the outlier in each target cluster and removing it, where the outlier is the point with
minimum sum-similarity to the other points in the target cluster. For each data set, we
perform experiments with the original (unpruned) data set, a pruned data set with 2 points
removed per target cluster, and a pruned data set with 4 points removed per target cluster,
which prunes 40 and 80 points, respectively (given that we have 20 target clusters).

Experiments in the η-merge model

We first experiment with local clustering algorithms in the η-restricted merge setting. Here
we use the algorithm in Figure 5.1 to perform the splits, and the algorithm in Figure 5.2
to perform the merges. We show the results of running our algorithm Figure 5.4. We
find that for the pruned data sets, the number of edit requests (necessary to find the target

3http://people.csail.mit.edu/jrennie/20Newsgroups/
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clustering) is very favorable and is better than our worst-case theoretical analysis.

For the unpruned data sets, we struggle to find the ground-truth clustering for η = 0.5.
Our investigations show that because of inconsistencies in the average-linkage tree we
sometimes get loops of incorrect splits and merges and are unable to edit the clustering
any further. Still, when we limit what merges may be proposed (by increasing η) we avoid
loops of incorrect edits and quickly find the ground-truth clustering.

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

no pruning 2 per cluster 4 per cluster 

N
u

m
b

e
r 

Ed
it

 R
e

q
u

e
st

s 

Pruned Points 

Data Set A 

eta = 0.5 

eta = 0.6 

eta = 0.7 

eta = 0.8 

eta = 0.9 

eta = 1.0 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

no pruning 2 per cluster 4 per cluster 

N
u

m
b

e
r 

Ed
it

 R
e

q
u

e
st

s 

Pruned Points 

Data Set B 

eta = 0.5 

eta = 0.6 

eta = 0.7 

eta = 0.8 

eta = 0.9 

eta = 1.0 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

no pruning 2 per cluster 4 per cluster 

N
u

m
b

e
r 

Ed
it

 R
e

q
u

e
st

s 

Pruned Points 

Data Set C 

eta = 0.5 

eta = 0.6 

eta = 0.7 

eta = 0.8 

eta = 0.9 

eta = 1.0 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

no pruning 2 per cluster 4 per cluster 

N
u

m
b

e
r 

Ed
it

 R
e

q
u

e
st

s 

Pruned Points 

Data Set D 

eta = 0.5 

eta = 0.6 

eta = 0.7 

eta = 0.8 

eta = 0.9 

eta = 1.0 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

no pruning 2 per cluster 4 per cluster 

N
u

m
b

e
r 

Ed
it

 R
e

q
u

e
st

s 

Pruned Points 

Data Set E 

eta = 0.5 

eta = 0.6 

eta = 0.7 

eta = 0.8 

eta = 0.9 

eta = 1.0 

Figure 5.4: Performance of interactive clustering algorithms in the η-merge model.

Experiments in the unrestricted-merge model

We also experiment with algorithms in the unrestricted merge model. Here we use the
same algorithm to perform the splits, but use the algorithm in Figure 5.3 to perform the
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merges. We show the results in Figure 5.5. As before, we find that for the pruned data
sets we require few edit requests to find the ground-truth clustering. For the unpruned data
sets, we again struggle to find the ground-truth clustering for smaller values of η (because
of inconsistencies in the average-linkage tree). For larger settings of η (we only show
results for η ≥ 0.5) the number of edit requests is once again better than our worst-case
theoretical analysis.
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Figure 5.5: Performance of interactive clustering algorithms in the unrestricted-merge
model.

We can address some of the inconsistencies in the average-linkage tree by constructing
it in a more robust way, which indeed gives improved performance for unpruned data sets.
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Figure 5.6: Performance of interactive clustering algorithms in the unrestricted-merge
model, given different ways of constructing the average-linkage tree. Results presented
for unpruned data sets.

5.4.3 Improved performance by using a robust average-linkage tree

In certain cases our algorithms don’t perform well, we find that certain inconsistencies
in the average-linkage tree are the problem. There are several “outlier” points that are
attached near the root of the tree, which are incorrectly split off and re-merged by the
algorithm without making any progress towards finding the target clustering.

We can address these outliers by constructing the average-linkage tree in a more robust
way: first find groups of similar points of some minimum size, compute an average-linkage
tree for each group, and then merge these trees using average-linkage. The tree constructed
in such fashion may then be used by our algorithms.

We tried this approach, using Algorithm 2 from Balcan and Gupta [2010] to compute
the groups of points. We find that using the robust average-linkage tree gives better perfor-
mance for the unpruned data sets, but gives no gains for the pruned data sets. Figure 5.6
displays the comparison for the five unpruned data sets. For the pruned data sets, it’s likely
that the robust tree and the standard tree are very similar, which explains why there is little
difference in performance (results not shown).

5.4.4 Experiments with small initial error

We also consider a setting where the initial clustering is already very accurate. In order to
simulate this scenario, when we compute the initial clustering, for each document we keep
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Figure 5.7: Results in the η-merge and the unrestricted merge model.

its ground-truth cluster assignment with probability 0.95, and otherwise reassign it to one
of the other clusters, which is chosen uniformly at random. This procedure gives us initial
clusterings with over-clustering and under-clustering error between 5 and 20. As expected,
in this setting our interactive algorithms perform much better, especially on pruned data
sets. Figures 5.7a and 5.7b display the results; we can see that in these cases it often takes
less than one hundred edit requests to find the target clustering in both models.
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Part II

Learning
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Chapter 6

Background

The most popular theoretical model for designing and analyzing learning algorithms is the
Probably Approximately Correct (PAC) model of learning introduced by Valiant [1984].
In the PAC model, the goal is to design algorithms which can “learn” an unknown target
function, f , from a concept class,C (for example,C may be polynomial-size decision trees
or linear separators)1, where f is a function over some instance space, X (typically X =
{−1, 1}n or X ⊆ Rn). The learning algorithm has access to random labeled examples,
(x, f(x)), through an oracle, EX(f,D), where f is the unknown target concept and D is
the target distribution. The goal of the learning algorithm is to output a hypothesis, h, with
low error with respect to the target concept, f , under distribution, D. More formally, we
have the following definition,

Definition 6.0.1 (PAC Learning Valiant [1984]). LetD be a distribution overX and C be
a concept class over X , and f ∈ C. An example oracle, EX(f,D), when queried, returns
(x, f(x)), where x is drawn randomly from distribution D. The learning algorithm in the
PAC model has access to an example oracle, EX(f,D), where f ∈ C is the unknown
target concept and D is the target distribution. The goal of the learning algorithm is to
output a hypothesis, h, that has low error with respect to the target concept under the
target distribution, i.e. errD(h, f) = Prx∼D[h(x) 6= f(x)] ≤ ε. We say that the algorithm
PAC-learns C, if for all ε, δ > 0, for all f ∈ C and distributions D over X , it can, with
probability at least (1− δ), produce a hypothesis of error at most ε.

In this thesis we will be interested in efficient PAC learning. Hence, we would require
the learning algorithm to run in time p(1/ε, 1/δ, length(C)), for some polynomial p. Here

1Formally a concept class is a set of functions along with a representation for those functions.
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length(C) refers to the description length needed to specify a concept in the class C 2.
From now on, we would say that a class is “learnable” to mean that it is efficiently learnable
in the above mentioned sense. Several interesting concept classes have been shown to be
learnable in the PAC framework (e.g. boolean conjunctions and disjunctions, k-CNF and
k-DNF formulas (for constant k), decision lists and the class of linear separators). On the
other hand, it is known that very rich concept classes such as polynomial-sized circuits
are not PAC-learnable under cryptographic assumptions (Valiant [1984], Goldreich et al.
[1986]). The most interesting classes for which both efficient PAC learning algorithms
and cryptographic lower bounds have remained elusive are polynomial-size decision trees
(even log-depth decision trees) and polynomial-size DNF formulas.

6.0.5 Membership Query Model

This learning setting is an extension of the PAC model and allows the learning algorithm
to query the label of any point x of its choice in the domain. These queries are called
membership queries and the learning model is popularly known as the PAC + MQ model.
With this additional power it has been shown that the classes of finite automata (Angluin
[1987]), monotone DNF formulas (Angluin and Laird [1988]), polynomial-size decision
trees (Bshouty [1993]), and sparse polynomials over GF(2) (Schapire and Sellie [1996])
are learnable in polynomial time. In a celebrated result, Jackson [1997] showed that the
class of DNF formulas is learnable in the PAC+MQ model under the uniform distribution.
Jackson [1997] used Fourier analytic techniques to prove this result building upon previous
work of Kushilevitz and Mansour [1993] on learning decision trees using membership
queries under the uniform distribution. Formally, we have

Definition 6.0.2 (Membership Queries). Let f ∈ C be a concept defined over instance
space X . Then a membership query is a point x ∈ X . A membership query oracle
MQ(f), on receiving query x ∈ X , responds with value f(x). In the PAC+MQ model of
learning, along with the example oracle EX(f,D), the learning algorithm also has access
to a membership oracle, MQ(f).

6.0.6 Weak Learning

The definition of learning mentioned in 6.0.1 is also often referred to as strong learning.
This is because we want the learning algorithm to be able to produce hypotheses which are

2For example if C is the class of disjunctions over {−1, 1}n, we would need O(n) bits to represent a
concept in C.
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arbitrarily good (in terms of error ε), provided enough training samples. In contrast, one
could also consider designing algorithms which are able to produce hypothese only upto a
certain error rate (say 1/4). This kind of learning is known as weak learning.

Definition 6.0.3 (γ Weak Learning Kearns and Valiant [1994]). Let D be a distribution
over X and C be a concept class over X , and f ∈ C. An example oracle, EX(f,D), when
queried, returns (x, f(x)), where x is drawn randomly from distribution D. The learning
algorithm has access to an example oracle, EX(f,D), where f ∈ C is the unknown target
concept and D is the target distribution. The goal of the learning algorithm is to output a
hypothesis, h, that has an advantage γ over randomly guessing the labels of the examples.
In other words, errD(h, f) = Prx∼D[h(x) 6= f(x)] ≤ 1

2
− γ. We say that the algorithm

is γ weak learner for class C if it can, with high probability, produce a hypothesis of
advantage γ for all f ∈ C and all distributions D over X .

In a seminal paper, Schapire [1990] showed that in the PAC model, weak learning is
equivalent to strong learning in a formal sense. In particular, Schapire [1990] showed the
existence of an algorithm3 which given black box access to a weak learner for a class C,
produces a new hypothesis which strongly PAC learns C.

Definition 6.0.4 (Boosting Schapire [1990], Freund and Schapire [1995]). There exists a
procedure which given the example oracle EX(f,D) for a concept class C and a γ weak
learner for a class C, for any f ∈ C and distribution D over X , makes O( 1

γ2 log(1/ε))
calls to the weak learner and outputs, with high probability, a hypothesis h such that,
errD(h, f) ≤ ε.

A more practical version of the boosting algorithm of Schapire [1990] called AdaBoost
was later proposed in Freund and Schapire [1995].

6.0.7 Learning in the presence of noise

The PAC model of learning assumes that one has access to a perfect example oracle
EX(f,D) so that each example x the algorithm receives is labeled correctly according
to f(x). A more realistic model would allow for noise in the response of the example
oracle. We briefly describe two such noise models which are popularly studied.

Learning with random noise
This is a simple extension of the PAC model of learning. In this model, we assume that the
example oracle has a noise rate η and is denoted by EXη(f,D). At each step, an example

3Popularly known as a Boosting procedure
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x is generated according to D and is labeled according to f(x). Then the label is flipped
independently with probability η. The learning algorithm gets to see the noisy labeled
examples generated from EXη(f,D).

Definition 6.0.5 (PAC+ random noise learning Angluin and Laird [1988]). Let D be a
distribution over X and C be a concept class over X , and f ∈ C. An example oracle,
EXη(f,D), when queried, returns (x, f(x)) with probability (1−η) and returns (x,−f(x))
with probability η. Here x is drawn randomly from distributionD. The learning algorithm
in this model has access to an example oracle, EX(f,D), where f ∈ C is the unknown
target concept and D is the target distribution. The goal of the learning algorithm is to
output a hypothesis, h, that has low error with respect to the target concept under the
target distribution, i.e. errD(h, f) = Prx∼D[h(x) 6= f(x)] ≤ ε. We say that the algorithm
learns C in the random noise model, if it can, with high probability, produce a low error
hypothesis for all f ∈ C and all distributions D over X .

The random noise model is well understood and we know a lot of efficient algorithms
in this model for learning classes such as disjunctions, linear separators etc. (Angluin and
Laird [1988], Blum et al. [1996]). Most algorithms for the random noise model are known
to be statistical in nature. Such algorithms only interact with the data through statistical
queries (SQ’s). These are queries of the form E[f(x)h(x)] for an arbitrary function h. See
Feldman [2007] for a detailed discussion SQ learnability.

Agnostic learning
In this model of learning one makes no assumptions about the target function f . In par-
ticular, one has access to an example oracle EX(f,D) where f is an arbitrary function not
necessarily in the class C. The goal is to compete with the error of the best function in the
class C.

Definition 6.0.6 (Agnostic Learning Haussler [1992], Kearns et al. [1992]). Let D be a
distribution over X and C be a concept class over X , and f be an arbitrary function over
X . An example oracle, EX(f,D), when queried, returns (x, f(x)) where x is drawn ran-
domly from distribution D. The learning algorithm in this model has access to an example
oracle, EX(f,D). Let f ∗ be the function in class C which has the least error w.r.t. f , i.e.,
f ∗ = argminh∈CerrD(h, f). The goal of the learning algorithm is to output a hypothesis,
h, that has error as close to that of f ∗. In particular, we say that the algorithm β agnosti-
cally learns C, if for all f and all distributions D over X , it produces a hypothesis h such
that errD(h, f) ≤ βerrD(f ∗, f) + ε.

Ideally, we want β to be equal to 1. For this case, distribution independent agnostic
learning is a hard problem (Feldman [2009], Diakonikolas et al. [2011], Guruswami and
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Raghavendra [2006], Feldman et al. [2012]) and very few positive results are known (Peleg
[2007], Kalai et al. [2005], Klivans et al. [2009]). In fact, even for the simple class of
disjunctions, one can show that distribution independent agnostic learning with β = 1 will
lead to an efficient PAC learning algorithm for the class of DNF formulas (Kearns et al.
[1992]).
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Chapter 7

Agnostic learning of disjunctions

Learning disjunctions (or conjunctions) over {0, 1}n in the PAC model is a well-studied
and easy problem. The simple “list-and-cross-off” algorithm runs in linear time per exam-
ple and requires only O(n/ε) examples to achieve error ε (ignoring the logarithmic depen-
dence on the confidence term δ). The similarly efficient Winnow algorithm of Littlestone
[1987] requires only O((r log n)/ε) examples to learn well when the target function is a
disjunction of size r.

However, when the data is only “mostly” consistent with a disjunction, the problem
becomes substantially harder. In particular, we study the agnostic noise model which was
described in Chapter 6. In this agnostic setting, our goal is to produce a hypothesis h
whose error rate errD(h, f) = PrD (h(x) 6= f(x)) satisfies errD(h) ≤ β · OPTdisj + ε,
where OPTdisj is the error rate of the best disjunction and β is as small as possible and
f is the target function. For example, while the Winnow algorithm performs well as a
function of the number of attribute errors of the best disjunction1 (Littlestone [1991],
Auer and Warmuth [1995]) , this can be a factor O(r) worse than the number of mistakes
of the best disjunction. Feldman [2009] showed that for any constant ε > 0, determining
whether the best disjunction for a given dataset S has error ≤ ε or error ≥ 1

2
− ε is NP-

hard. Furthermore, Feldman et al. [2012] extended this hardness result to the problem of
agnostic learning disjunctions by the hypothesis class of halfspaces. Thus, these results
show that the problem of finding a disjunction (or linear separator) of error at most 1

2
− ε

given that the error OPTdisj of the best disjunction is at most ε is computationally hard for
any constant ε > 0.

1The minimum number of variables that would need to be flipped in order to make the data perfectly
consistent with a disjunction. This is essentially the same as its hinge loss.
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Given these hardness results, it is natural to consider what kinds of learning guarantees
can be achieved. If the error OPTdisj of the best disjunction is O(1/n) then learning is
essentially equivalent to the noise-free case. Peleg [2007] showed how to improve this
to a bound of Õ(1/

√
n). In particular, on any given dataset S, his algorithm produces a

disjunction of error rate on S at most Õ(
√
n ·OPTdisj(S)).2

In this thesis, we improve on the result of Peleg [2007], achieving a bound ofO(n1/3+α·
OPTdisj) + ε for any constant α > 0, though our algorithm is not a “proper” learner (does
not produce a disjunction as its output) (Awasthi et al. [2010b]).3 Note that our guarantee
holds for any distribution over {0, 1}n.

7.1 Our Results

We design a learning algorithm whose error rate is an O(n1/3+α) approximation to that of
the best disjunction, for any α > 0. Formally, we prove the following theorem.

Theorem 7.1.1. There exists an algorithm that for an arbitrary distributionD over {0, 1}n
and arbitrary target function c∗ : {0, 1}n 7→ {1,−1}, for every constant α > 0 and every
ε, δ > 0, runs in time polynomial in 1/ε, log(1/δ), and n, uses poly(1/ε, log(1/δ), n)
random examples from D, and outputs a hypothesis h, such that with probability > 1− δ,

errD(h, f) ≤ O(n
1
3

+αOPTdisj) + ε

where OPTdisj = ming∈DISJUNCTIONS errD(g, f).

The proof of Theorem 7.1.1 is based on finding a weak-learner under the assumption
that OPT ≡ OPTdisj = O(n−(1/3+α)). In particular, we show:

Theorem 7.1.2. There exists an algorithm with the following property. For every distri-
bution D over {0, 1}n and every target function f such that OPT < n−

1
3
−α, for some

constant α > 0, for every δ > 0, the algorithm runs in time t(δ, n), uses m(δ, n) random
samples drawn from D and outputs a hypothesis h, such that with probability > 1− δ,

errD(h, f) ≤ 1

2
− γ

2His results are for the “Red-Blue Set-Cover Problem” (Carr et al. [2000]) which is equivalent to the
problem of approximating the best disjunction, except that positive examples must be classified correctly
(i.e., the goal is to approximate the minimum number of mistakes on negatives subject to correctly classifying
the positives). The extension to allowing for two-sided error, however, is immediate.

3This bound hides a low-order term of (log n)1/α. Solving for equality yields α =
√

log logn
logn and a

bound of O(n1/3+o(1)).
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where t and m are polynomials in n, 1/δ, and γ = Ω(n−2).

Our weak-learner can then feed into known boosting procedures which work with ag-
nostic noise (Gavinsky [2003], Kalai et al. [2008], Feldman [2010]), to achieve the claimed
guarantee in Theorem 7.1.1. The results in this chapter are based on work in Awasthi et al.
[2010b].

7.2 Algorithm Intuition and Techniques

The high-level idea of the algorithm and proof for Theorem 7.1.2 is as follows. First,
we can assume the target function is balanced (nearly equal probability mass on positive
and negative examples) and that similarly no individual variable is noticeably correlated
with the target, else weak-learning is immediate. So, for each variable i, the probability
mass of positive examples with xi = 1 is approximately equal to the probability mass of
negative examples with xi = 1. Let copt denote the (unknown) optimal disjunction, which
we may assume is monotone by including negated variables as additional features. Let r
denote the number of relevant variables; i.e., the number of variables in copt. Also, assume
for this discussion that we know the value of OPT = errD(copt, f). Call an example x
“good” if f(x) = copt(x) and “bad” otherwise. Now, since the only negative examples
than can have a relevant xi set to 1 are the bad negatives, this means that for relevant
variables i, Prx∼D(xi = 1|f(x) = −1) = O(OPT). Therefore, Prx∼D(xi = 1|f(x) =
+1) = O(OPT) and so Prx∼D(xi = 1) = O(OPT) as well. This means that by estimating
Prx∼D(xi = 1) for each variable i, we can remove all variables of density ω(OPT) from
the system, knowing they are irrelevant.

At this point, we have nearly all the ingredients for the Õ(1/
√
n) bound of Peleg

[2007]. In particular, since all variables have density O(OPT), this means the average
number of variables set to 1 per example is O(OPT · n). Let S ′ be the set of examples
whose density is at most twice the average (so Pr(S ′) ≥ 1/2); we now claim that if
OPT = o(1/

√
n), then either S ′ is unbalanced or else some variable xi must have notice-

able correlation with the target over examples in S ′. In particular, since positive examples
must have on average at least 1 − O(OPT) relevant variables set to 1, and the good neg-
ative examples have zero relevant variables set to 1, the only way for S ′ to be balanced
and have no relevant variable with noticeable correlation is for the bad negative examples
to on average have Ω(1/OPT) relevant variables set to 1. But this is not possible since
all examples in S ′ have only O(OPT · n) variables set to 1, and 1/OPT � OPT · n for
OPT = o(1/

√
n). So, some hypothesis of the form: “if x 6∈ S ′ then flip a fair coin, else

predict xi” must be a weak-learner.
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In order to improve over the Õ(1/
√
n) bound of Peleg [2007], we do the following.

Assume all variables have nearly the same density and all examples have nearly the same
density as well. This is not without loss of generality (and the general case adds additional
complications that must be addressed), but simplifies the picture for this high-level sketch.
Now, if no individual variable or its complement is a weak predictor, by the above analysis
it must be the case that the bad negative examples on average have a substantial number of
variables set to 1 in the relevant region (essentially so that the total hinge-loss (attribute-
errors) is Ω(m)). Suppose now that one “guesses” such a bad negative example e and
focuses on only those n′ variables set to 1 by e. The disjunction copt restricted to this set
may now make many mistakes on positive examples (the “substantial number of variables
set to 1 in the relevant region” in e may still be a small fraction of the relevant region).
On the other hand, because we have restricted to a relatively small number of variables
n′, the average density of examples as a function of n′ has dropped significantly.4 As a
result, suppose we again discard all examples with a number of 1’s in these n′ variables
substantially larger than the average. Then, on the remainder, the hinge-loss (attribute-
errors) caused by the bad negative examples is now substantially reduced. This more than
makes up for the additional error on positive examples. In particular, we show one can
argue that for some bad negative example e, if one performs the above procedure, then
with respect to the remaining subset of examples, some variable must be a weak predictor.
In the end, the final hypothesis is defined by an example e, a threshold θ, and a variable i,
and will be of the form “if x · e 6∈ [1, θ] then flip a coin, else predict xi.” The algorithm
then simply searches over all such triples. In the general case (when the variables and the
examples do not all have the same density), this is preceded by a pre-processing step that
groups variables and examples into a number of buckets and then runs the above algorithm
on each bucket.

We now formally prove Theorem 7.1.2. We achieve this in two steps: first we show
how to get a weak learner for the special case that the examples and variables are fairly
homogeneous (all variables set to 1 roughly the same number of times, and all examples
with roughly the same number of variables set to 1 (actually a somewhat weaker condition
than this)). We then show how to reduce a general instance to this special case. In Sec-
tion 7.2.3 we use existing boosting algorithms combined with this weak-learner to prove
Theorem 7.1.1.

Our complete weak learning algorithm has two stages: a preprocessing step (which
we present later in Section 7.2.2) that ensures that all variables are set to 1 roughly the

4E.g., given two random vectors with n′ = n2/3 1’s, their intersection would have expected size (n′)1/2.
Of course, our dataset need not be uniform random examples of the given density, but the fact that all
variables have the same density allows one to make a similar argument.
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same number of times and that the bad and good examples have roughly the same number
1s, and a core algorithm (which we present first in Section 7.2.1) that operates on data of
this form. One aspect of the preprocessing step is that in addition to partitioning examples
into buckets, it may involve discarding some relevant variables, yielding a dataset in which
only some m̃ ≥ m/polylog(n) positive examples satisfy copt over the variables remaining.
Thus, our assumption in Section 7.2.1 is that while the dataset has the “homogeneity”
properties desired and the fraction of bad negative examples is OPT(1+o(1)), the fraction
of bad positive examples may be as large as 1− 1/polylog(n). Nonetheless, this will still
allow for weak learning.

7.2.1 (B,α, m̃)-Sparse Instances

As mentioned above, in this section we give a weak learning algorithm for a dataset that
has certain “nice” homogeneity properties. We call such a dataset a (B,α, m̃)-sparse
instance. Our weak learning algorithm will output a short hypothesis which will perform
better than random guessing on the given datatset. By Occam’s razor bound Kearns and
Vazirani [1994], if the dataset is sufficiently large, such a hypothesis will also generalize
and will perform better than random guessing over the entire distribution. We begin by
describing what these properties are.

The first property is that there exists a positive integer B such that for each variable xi,
the number of positive examples in the instance with xi = 1 is between B/2 and B, and
the number of negative examples with xi = 1 is between B

2
(1− o(1)) and B(1 + o(1)).

The first property implies that in this case the overall number of 1s in all examples is
at most 2nB(1 + o(1)), and therefore, an average example has no more than nB(1+o(1))

m

variables set to 1. If the bad negatives were typical examples, we would expect them to
contain at most nB

m
·mOPT(1+o(1)) ≤ nB ·OPT(1+o(1)) ones in total. While in general

this may not necessarily be the case, we assume for this section that at least they are not
too atypical on average. In particular, the second property we assume this instance satisfies
is that the overall number of ones present in all the bad negatives is at most n1+αBOPT.

Denote by m̃ the number of positive examples that copt classifies correctly. The third
property is that m̃ ≥ m/no(α). If this dataset were our given training set then this would be
redundant, as we already assume the stronger condition that the fraction of good positive
examples is 1 − O(OPT).5 However, m̃ will be of use in later sections, when we call
this algorithm as a subroutine on instances defined by only a subset of all the variables. In
other words, we show here that even if we allow copt to make more mistakes on the positive

5Indeed, if the original instance was sparse, we would have m̃ = m(1− o(1)).
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examples (and in particular, to label almost all positives incorrectly!) yet make at most
mOPT mistakes on the negatives, we are still able to weak-learn. As our analysis shows,
the condition we require of m̃ is that the ratio m̃

m
dominates the ratio OPT

n−1/3 . Furthermore,
the ratio m̃

m
will play a role in the definition of γ, our advantage over a random guess.

An instance satisfying all the above three properties is called a (B,α, m̃)-sparse in-
stance. Next, we show how to get a weak learner for such sparse instances. We first
introduce the following definitions.

Definition 7.2.1. Given an example e and a positive integer threshold θ, we define the
(e, θ)-restricted domain to be the set of all examples whose intersection with e is strictly
smaller than θ. That is, the set of examples x such that x · e < θ. For any hypothesis h, we
define the (e, θ)-restricted hypothesis to be h over any example that belongs to the (e, θ)
restricted domain, and “I don’t know” (flipping a fair coin) over any other example. In
particular, we consider the

• (e, θ)-restricted (+1)-hypothesis – predict +1 if the given example intersects e on
less than θ variables.

• (e, θ)-restricted (−1)-hypothesis – predict −1 if the given example intersects e on
less than θ variables.

• (e, θ)-restricted xi-hypothesis – predict +1 if the given example intersects e on less
than θ variables and has xi = 1.

We call these n+ 2 restricted hypotheses the (e, θ)-restricted base hypotheses.

Our weak-learning algorithm enumerates over all pairs of (e, θ), where e is a negative
example in our training set and θ is an integer between 1 and n. For every such pair,
our algorithm checks whether any of the n + 2 restricted hypothesis is a Ω( m̃

m
· OPT

r
)-

weak-learner (see Algorithm 1 below). Our next lemma proves that for (B,α, m̃)-sparse
instances, this algorithm indeed finds a weak-learner. In fact, we show that for every
negative example e, it suffices to consider a particular value of θ.

Lemma 7.2.2. Suppose we are given a (B,α, m̃)-sparse instance, and that copt makes no
more than a n−( 1

3
+α) fraction of errors on the negative examples. Then there exists a bad

negative example e and a threshold θ such that one of the (e, θ)-restricted base hypotheses
mentioned in Definition 7.2.1 has error at most 1/2−γ for γ = Ω( m̃

m
· OPT

r
). Since we may

assume OPT > 1/
√
n, this implies γ = Ω(n−2). Thus Algorithm 1 outputs a hypothesis

of error at most 1
2
− Ω(n−2).
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Algorithm 1 A weak learner for sparse instances.
Input: A (B,α, m̃) sparse instance.
Step 1: For every negative example e in the set and every θ ∈ {1, 2, . . . , n}

Step 1a: Check if any of the (e, θ)-restricted hypotheses from Definition 7.2.1 is a weak
learner with error at most 1

2
− Ω(n−2).

Step 1b: If Yes, then output the corresponding hypothesis and halt.

Step 2: If no restricted hypothesis is a weak learner, output failure.

Proof. Let m+ and m− be the number of positive and negative examples in this sparse
instance, where we reserve m to refer to the size of the original dataset of which this
sparse instance is a subset. As before, call examples “good” if they are classified correctly
by copt, else call them “bad”. We know B = O(mOPT), because relevant variables have
no more than O(mOPT) occurrences of 1 over the negative examples. Since each good
positive example has to have at least one relevant variable set to 1, it must also hold that
B = Ω(m̃/r). It follows that rOPT = Ω(m̃/m). We now show how to find a weak learner
given a (B,α, m̃)-sparse instance, based on a bad negative example.

Consider any bad negative example ei with ti variables set to 1. If we sum the intersec-
tion (i.e. the dot-product) of ei with each of the positive examples in the instance, we sim-
ply get the total number of ones in the positive examples over these ti variables. As each
variable is set to 1 between B/2 and B times, this sum is B′ti for some B′ ∈ [B/2, B].
Therefore, the expected intersection of ei with a random positive example is 1

m+ · tiB′. Set
θi = β · tiB′

m+ , where β > 1 will be chosen later suitably. Throw out any example which has
more than θi intersection with ei. Using Markov’s inequality, we deduce that we retain at
least m+(1− 1

β
) positive examples.

The key point of the above is that focusing on the examples that remain, none of them
can contribute more than θi hinge-loss (attribute errors), restricting copt to the ti variables
set to 1 by ei. On the other hand, it is possible that the number of actual errors over
positives has increased substantially: perhaps too few of the remaining positive examples
share relevant variables with ei in order for any of the (ei, θi) restricted hypotheses to be a
weak learner. We now argue that this cannot happen simultaneously for all ei.

Specifically, assume for contradiction that none of the (ei, θi)-restricted base hypothe-
ses yields a weak learner. Consider the total number of 1s contributed by the remaining
negative examples over the relevant variables of ei (the relevant variables that are set to
1 by ei). As each bad negative contributes at most θi such ones, the overall contribution
on the negative side is ≤ θi · mOPT(1 + o(1)) = β tiB

′

m+ · mOPT(1 + o(1)). Since none
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of relevant variables set to 1 by ei gives a weak learner, it holds that the number of 1s
over the positive side of these relevant variables is no more than 2β m

m+ · tiB · OPT (see
below, at the specification of the value of γ). So even if each occurrence of 1 comes from
a unique positive example, we still have no more than 2β m

m+ · tiB ·OPT positive examples
from the (ei, θi) restricted domain intersecting ei over the relevant variables. Therefore,
adding back in the positive examples not from the restricted domain, we have no more than
2β m

m+ · tiB · OPT +m+/β positive examples that intersect ei over the relevant variables.

Consider now a bipartite graph with the m̃ good positive examples on one side and
the mOPT bad negative examples on the other side, with an edge between positive ej and
negative ei if ej intersects ei over the relevant variables. Since each ei has degree at most
2β m

m+ · tiB · OPT + m+/β, the total number of edges is at most 2β m
m+BOPT

∑
i ti +

m+ · mOPT/β, and therefore some good positive examples must have degree at most
OPT[2βBm

m̃m+

∑
i ti + m+

β
· m
m̃

]. On the other hand, since we are given a (B,α, m̃)-sparse

instance, we know that every good positive example intersects at least B(1−o(1))
2

negative
examples, and moreover that

∑
i ti ≤ n1+αBOPT. Putting this together we have:

B/2 ≤ (1 + o(1))OPT

[
2βB2n1+αOPTm

m̃m+
+
m+

β
· m
m̃

]
.

Setting β =
√

(m+)2

2B2n1+αOPT
to equalize the two terms in the sum above, we derive

B ≤ 4
√

2(1 + o(1))B · m
m̃
· n(1+α)/2OPT3/2.

Thus we have n1+α · m2

m̃2 · OPT3 ≥ 1+o(1)
32

. Recall that m̃/m ≥ n−o(α), so we derive a
contradiction, as for sufficiently large n it must hold that

OPT ≥
(

1 + o(1)

32

)1/3

n−
1+α

3
−o(α) > n−1/3−α.

In order to complete the proof, we need to verify that indeed β > 1. Recall B =
O(mOPT) andm+ ≥ m̃, som+/m ≥ n−o(α). Thus β2 = Ω( 1

n1+α+o(α)OPT3 ) = Ω(n2α−o(α))
by our assumption on OPT.

The last detail is to check what advantage do we get over a random guess. Our
analysis shows that for some bad negative example ei, the number of ones over the rel-
evant variables on the positive side is at least 2β m

m+ · tiB · OPT, whereas on the neg-
ative side, there can be at most β m

m+ · tiB · OPT(1 + o(1)) ones. We deduce that at
least one of the at most min(r, ti) relevant variables set to 1 by ei must give a gap of at
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least β·tiBm·OPT(1−o(1))
m+ min(r,ti)

> B · OPT(1 − o(1)) since β > 1. Finally, using the fact that
B = Ω(m̃/r) we get a gap of Ω( m̃OPT

r
) or equivalently an advantage of γ = Ω(OPT

r
· m̃
m

).
This advantage is trivially Ω(n−2(1+o(α))), or, using the assumption OPT > 1/

√
n (for oth-

erwise, we can apply Peleg’s algorithm (Peleg [2007])), we get γ = Ω(n−
3
2

(1+o(α))).

7.2.2 General Instances

Section 7.2.1 dealt with nicely behaved (homogeneous) instances. In order to complete
the proof of Theorem 7.1.2, we need to show how to reduce a general instance to such a
(B,α, m̃)-sparse instance. What we show is a (simple) algorithm that partitions a given
instance into sub-instances, based on the number of 1s of each example over certain vari-
ables (but without looking at the labels of the examples). It outputs a polylog(n)-long
list of sub-instances, each containing a noticeable fraction of the domain, and has the fol-
lowing guarantee: either some sub-instance has a trivial weak-learner (has a noticeably
different number of positive versus negative examples or there is a variable with notice-
able correlation), or some sub-instance is (B,α, m̃)-sparse. Formally, we prove this next
lemma.

Lemma 7.2.3. There exists a poly((log n)O(1/α), n,m)-time algorithm, that gets as an in-
put 2m labeled examples in {0, 1}n, and output a list of subsets, each containingm/polylog(n)
examples, s.t. either some subset has a trivial weak-learner, or some subset is (B,α,m/polylog(n))-
sparse.

Combining the algorithm from Lemma 7.2.3 with the algorithm presented in Sec-
tion 7.2.1, we get our weak-learning algorithm (see Algorithm 2). We first run the al-
gorithm of Lemma 7.2.3, traverse all sub-instances, and check whether any has a triv-
ial weak-learner. If not, we run the algorithm for (B,α, m̃)-sparse instances over each
sub-instance. Obviously, given the one sub-instance which is sparse, we find a restricted
hypothesis with Ω̃(n−2) advantage over a random guess.

Proof. We start by repeating the argument presented in the introduction (Section 7.1).
For any relevant variable, no more than m−bad ≤ m · OPT(1 + o(1)) bad examples set it
to 1. Therefore, as an initial step, we throw out any variable with more than this many
occurrences over the negative examples, as it cannot possibly be a relevant variable. For
convenience, redefine n to be the number of variables that remain. Next, we check each
individual variable to determine if it itself is a weak predictor. If not, then this means each
variable is set to 1 on approximately the same number of positive and negative examples.
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Bucket all the variables according the number of times they are set to 1, where the j-
bucket contains all the variables that are set to 1 any number of times in the range [2j, 2j+1).
Since there are at most log n buckets, some bucket j must cover at least m+

logn
positive

examples, in the sense that the disjunction over the relevant variables in this bucket agrees
with at least this many good positives. So now, let B′ = 2j+1, let n′ and r′ be the total
number of variables and the number of relevant variables in this bucket respextively. As we
can ignore all examples that are identically 0 over the n′ variables in this bucket, let m′+

(resp. m′−) be the number of positive (resp. negative) examples covered by the variables
in this bucket. Our algorithm adds the remaining examples (over these n′ variables) as
one sub-instance to its list. Let the number of these examples be 2m′. As before, if the
number of positive examples and negative examples covered by these n′ variables differ
significantly, or if some variable is a weak learner (with respect to the set of examples
left), then the algorithm halts. Observe that if this sub-instance is (B′, α,m/ log(n))-
sparse, then we are done, no matter what other sub-instances the algorithm will add to its
list.

Focusing on the remaining examples, every variable is set to 1 at most B′ many times
over the positive examples, so the total number of 1s, over the positive examples is≤ n′B′.
If indeed the resulting instance is not (B′, α,m/ log(n))-sparse, then the total number of 1s
over the bad negative examples is ≥ (n′)1+α(B′)OPT. So now, our algorithm throws out
any example with more than 2n′B′/m′ variables set to 1, and adds the remaining examples
to the list of sub-instances. By Markov’s inequality, we are guaranteed not to remove more
than 1/2 of the positive examples, so the sub-instance remaining is sufficiently large. As
before, if the remaining subset of examples (over these n′ variables) has a trivial weak-
learner, we are done. Otherwise, the algorithm continues recursively over this sub-instance
– re-buckets and then removes all examples with too many variables set to 1. Note, each
time the algorithm buckets the variables, it needs to recurse over each bucket that covers
at least a 1/ log(n) fraction of the positive examples. In the worst-case, all of the log(n)
buckets cover these many positive examples, and therefore, the branching factor in each
bucketing step is log(n).

We now show that the depth of the bucket-and-remove recurrence is no more than
O(1/α). It is easy to see inductively that at the i-th step of the recursion, we retain a
fraction of m/(log n)i positive examples. Suppose that by the first i steps, no sub-instance
is sparse and no weak-learner is found. Recall, if rOPT� 1, we have an immediate weak-
learner, so it must hold that in the i-th step, we still retain at least ni = 1/OPT variables.
Furthermore, as in the i-th step we did not have a sparse instance, it follows that the bad
negative examples had more than (ni)

1+α(B′)OPT ones before we threw out examples.
Once we remove dense examples, they contain no more than 2(ni)(B

′)
mi

·mOPT many ones.
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Thus, the fraction of ones over the bad negatives that survive each removal step is no more
than n−αi · mmi . As 1/OPT > n1/3, this fraction is at most n−α/3(log n)i < n−α/6 (for
the first O(1/α) iterations). Hence, after 6/α iterations, some relevant variable must be a
weak-learner.

To complete the proof, note that we take no more than (log n)6/α bucket-and-remove
steps. Each such step requires poly(n,m) time for the bucketing, removal and checking for
weak-learner. We conclude that the run-time of this algorithm is poly((log n)1/α, n,m).

Algorithm 2 A weak learner for general instances.
Input: A set of 2m training examples.
Step 1: If any individual variable or the constant hypotheses is a weak learner, output it

and halt.
Step 2: Remove any variable which has more than 2mOPT 1’s over the negative exam-

ples.
Step 3: Bucket the remaining variables such that bucket j contains variables with density

in [2j, 2j+1).
Step 4: For every bucket which covers at least a log n fraction of the positive examples

Step 4a: Run the algorithm for sparse instances on this bucket. If a weak learner is
obtained, output it and halt.

Step 4b: Let B′ be the density (2j+1) in this bucket, n′ be the number of variables in the
bucket and 2m′ be the total number of examples with respect to this bucket (ig-
noring the ones which are identically zero over the n′ variables). Remove all
the examples which have more than 2n′B′/m′ 1’s over this bucket. Repeat
steps 1-4 on this new instance.

7.2.3 Strong Learning

Given Theorem 7.1.2, we now prove the main theorem (Theorem 7.1.1) by plugging the
weak-learner into an off-the-shelf boosting algorithm for the agnostic case. We use the
ABoostDI algorithm from Feldman [2010], which converts any algorithm satisfying
Theorem 7.1.2 into one satisfying Theorem 7.1.1. The result in Feldman [2010] gives
a boosting technique for (η, γ)-weak learners. In our context an (η, γ)-weak learner is an
algorithm which with respect to to any distribution D, with high probability, produces a
hypothesis of error ≤ 1

2
− γ, whenever OPTdisj ≤ 1

2
− η.
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Theorem 7.2.4 (Feldman [2010], Theorem 3.5). There exists an algorithm ABoostDI
that, given a (η, γ)-weak learner, for every distribution D and ε > 0, produces, with high
probability, a hypothesis h such that errD(h) ≤ OPTdisj

1−2η
+ ε. Furthermore, the running

time of the algorithm is T · poly( 1
γ
, 1
ε
), where T is the running time of the weak learner.

As an immediate corollary, we set η = 1
2
− 1

2
· n−1/3−α and obtain an hypothesis h

such that errD(h) ≤ 2n1/3+αOPT + ε. This concludes the proof of Theorem 7.1.1. We
note that as an alternative to ABoostDI, one can also use the boosting algorithm of Kalai
et al. [2008], followed by another boosting algorithm of Gavinsky [2003], to get the result
in Theorem 7.1.1.
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Chapter 8

Learning using Local Membership
Queries

As mentioned in Chapter 6, the membership query model (PAC+MQ) is a powerful ex-
tension of the basic PAC model and we now have efficient PAC+MQ algorithms for many
classes which seem out of reach of current techniques in the PAC model. Most notably are
the works of Kushilevitz and Mansour [1993], Bshouty [1993] on learning decision trees
and the celebrated result of Jackson [1997] on learning DNF formulas under the uniform
distribution. Despite these and several other interesting theoretical results, the member-
ship query model has not been received enthusiastically by machine learning practitioners.
Of course, there is the obvious difficulty of getting labelers to perform their task while the
learning algorithm is being executed. But another, and probably more significant, reason
for this disparity is that quite often, the queries made by these algorithms are for labels of
points that do not look like typical points sampled from the underlying distribution. This
was observed by Lang and Baum [1992], where experiments on handwritten characters
and digits revealed that the query points generated by the algorithms often had no struc-
ture and looked meaningless to the human eye. This can cause problems for the learning
algorithm as it may receive noisy labels for such query points.

Motivated by the above observations, in this thesis we propose a model of membership
queries where the learning algorithm is restricted to query labels of points that “look” like
points drawn from the distribution. We focus our attention to the case when the instance
space is the boolean cube, i.e. X = {−1, 1}n, or X = {0, 1}n. However, similar models
could be defined in the case whenX is some subset of Rn. Suppose x is a natural example,
i.e. one that was received as part of the training dataset (through the oracle EX(f,D)). We
restrict the learning algorithm to make queries x′, where x and x′ are close in Hamming
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distance. More precisely, we say that a membership query x′ is r-local with respect to a
point x, if the Hamming distance, |x− x′|H , is at most r.

One can imagine settings where these queries could be realistic, yet powerful. Suppose
you want to learn a hypothesis that predicts a particular medical diagnosis using patient
records. It could be helpful if the learning algorithm could generate a new medical record
and query its label. However, if the learning algorithm is entirely unconstrained, it might
come up with a record that looks gibberish to any doctor. On the other hand, if the query
chosen by the learning algorithm is obtained by changing an existing record in a few
locations (local query), it is more likely that a doctor may be able to make sense of such
a record. In fact, this might be a powerful way for the learning algorithm to identify the
most important features of the record.

It is interesting to study what power these local membership queries add to the learning
setting. At the two extremes, are the PAC model (with 0-local queries), and MQ-model
(with n-local queries). It can be easily observed that using only 1-local queries, the class
of parities can be learned in polynomial time even in the presence random classification
noise. This problem is known to be notoriously difficult in the PAC learning setting (Blum
et al. [2003]). At the same time, most PAC+MQ algorithms we are aware of, such as
the algorithms for learning decision trees (Bshouty [1993]) and for learning DNF formu-
las (Jackson [1997]), rely crucially on using MQs in a strongly non-local way. Also, it
is easy to show that in a formal sense, allowing a learner to make 1-local queries gives it
strictly more power than in the PAC setting. In fact, essentially the same argument can
be used to show that r + 1-local queries are more powerful than r-local queries. These
separation results can be easily proved under standard cryptographic assumptions, and are
presented in Section 8.6.

Our results are for learning on log-Lipschitz distributions over the boolean cube, which
we denote by {−1, 1}n (or sometimes by {0, 1}n). We say that a distribution, D, over the
boolean cube, X = {b0, b1}n is α-log-Lipschitz if the logarithm of the density function is
log(α)-Lipschitz with respect to the Hamming distance. A straightforward implication of
a distribution being α-log-Lipschitz is that for any two points x and x′ which differ in only
one bit, D(x)/D(x′) ≤ α. Intuitively, this means that points that are close to each other
cannot have vastly different frequencies. Frequency of a point reflects (and sometimes
defines) its “naturalness” and so, in a sense, our assumption on the distribution is the same
as the assumption underlying the use of local queries. The notion of log-Lipschitzness is
a natural one and its variants have been studied before in different contexts (Feldman and
Schulman [2012], Koltun and Papadimitriou [2007]). Furthermore, log-Lipschitz distri-
butions contain a wide variety of popularly studied distributions as special cases. For ex-
ample, the uniform distribution is log-Lipschitz with α = 1. For constant α, log-Lipschitz
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distributions have the property that changing O(log(n)) bits can change the weight of a
point by at most a polynomial factor. Such distributions include product distributions when
the mean of each bit is some constant bounded away from ±1 (or 0, 1). Convex combina-
tions of α-log-Lipschitz distributions are also α-log-Lipschitz. They also include smooth
distributions which have previously been studied for designing learning algorithms (Kalai
et al. [2009b]).

Our Results: We give several learning algorithms for general log-Lipschitz distributions
and for the special case of product/uniform distributions. Our main result for the log-
Lipschitz distributions is that sparse1 polynomials are efficiently learnable with member-
ship queries that are logarithmically local.

Theorem 8.0.5. The class of t-sparse polynomials (with real coefficients) over {0, 1}n is
efficiently learnable under the class of α-log-Lipschitz distributions, for any constant α,
by a learning algorithm that only uses O(log(n) + log(t))-local membership queries.

An important subclass of sparse polynomials is O(log n)-depth decision trees. Richer
concept classes are also included in the class of sparse polynomials. This includes the
class of disjoint log(n)-DNF expressions and log-depth decision trees, where each node is
a monomial (rather than a variable). A special case of such decision trees is O(log(n))-
term DNF expressions.

When the polynomials represent boolean functions this algorithm can easily be made
to work in the presence of persistent random classification noise, as described in Sec-
tion 8.7.3.

For the special case of constant bounded product distributions we show that polynomial-
size decision trees are efficiently learnable.

Theorem 8.0.6. Let P be the class of product distributions over X = {−1, 1}n, such that
the mean of each bit is bounded away from −1 and 1 by a constant. Then, the class of
polynomial-size decision trees is learnable with respect to the class of distributions P , by
an algorithm that uses only O(log(n))-local membership queries.

We also consider polynomial size DNF which are known to be learnable in PAC+MQ.

Theorem 8.0.7. The class of polynomial sized DNF formulas is learnable under the uni-
form distribution using O(log(n))-local queries in time nO(log logn).

1Sparsity refers to the number of non-zero coefficients.
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The results in this chapter are based on work in Awasthi et al. [2013b].

Techniques: All our results are based on learning polynomials. It is well known that
log-depth decision trees can be expressed as sparse polynomials of degree O(log(n)).

Our results on learning sparse polynomials (Section 8.2) under log-Lipschitz distri-
butions rely on being able to identify all the important monomials (those with non-zero
coefficient) of low-degree, usingO(log(n))-local queries. We identify a set of monomials,
the size of which is bounded by a polynomial in the required parameters, which includes
all the important monomials. The crucial idea is that using O(log(n))-local queries, we
can identify given a subset of variables S ⊆ [n], whether the function on the remaining
variables (those in [n] \ S), is zero or not. We use the fact that the distribution is log-
Lipschitz to show that performing L2 regression over the set of monomials will give a
good hypothesis.

For uniform (or product) distributions (Sections 8.4; 8.3 and 8.7.2), we can make use
of Fourier techniques and numerous algorithms based on them. A natural approach to the
problem is to try to adapt the famous algorithm of Kushilevitz and Mansour [1993] for
learning decision trees (the KM algorithm) to the use of local MQs. The KM algorithm
relies on a procedure that isolates all Fourier coefficients that share a common prefix and
computes the sum of their squares. Isolation of coefficients that share a prefix of length
k requires k-local MQs and therefore we cannot use the KM algorithm directly. Instead
we isolate Fourier coefficients that contain a certain set of variables and we grow these
sets variable-by-variable as long as the sum of squares of coefficients in them is large
enough. Using k-local MQs it is possible to grow sets up to size k. More importantly,
the use of prefixes in the KM algorithm ensures that Fourier coefficients are split into
disjoint collections and therefore not too many collections will be relevant. In our case the
collections of coefficients are not disjoint and so to prove that our algorithm will not take
superpolynomial time we rely on strong concentration properties of the Fourier transform
of decision trees.

For the case of DNF formulas, we use the result of Feldman [2012], Kalai et al. [2009b]
which shows that one can learn a DNF formula given its heavy logarithmic-degree Fourier
coefficients. To recover those coefficients we use the same algorithm as in the decision
tree case. However in this case a more delicate analysis is required to obtain even the
nO(log logn) running time bound we give in Theorem 8.0.7. We rely on a concentration
bound by Mansour [1992] that shows that the total weight of Fourier coefficients of de-
gree d decays exponentially as d grows. We remark that Mansour also gives a PAC+MQ
algorithm for learning DNF running in time nO(log logn) but aside from the use of the con-
centration bound our algorithm and analysis are different (the dependence on the error ε in
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our algorithm is also substantially better).

All known efficient algorithms for learning DNF under the uniform distribution rely
on agnostic learning of parities using the KM algorithm (or a related algorithm of Levin
[1993]) Blum et al. [1994], Jackson [1997]. In the agnostic case one cannot rely on the
concentration properties crucial for our analysis and therefore it is unclear whether poly-
size DNF formulas can be learned efficiently from logarithmically-local MQs. As some
evidence of the hardness of this problem, in Section 8.5 we show that for a constant k,
k-local queries do not help in agnostic learning under the uniform distribution.

One point to note is that under α-log-Lipschitz distributions for a constant α, the
main difficulty is designing algorithms which are faster than time nO(log(n)). Designing
an nO(log(n)) time algorithm is trivial for decision trees and DNF formulas. In fact, one
does not even require local-membership queries to do this. This follows from the observa-
tion that agnostic learning of O(log(n))-size parities is easy in nO(logn) time.

Related work: Models that address the problems that arise when membership queries are
answered by humans have been studied before. The work of Blum et al. [1998] proposed
a noise model wherein membership queries made on points lying in the low probability
region of the distribution are unreliable. For this model the authors design algorithms
for learning an intersection of two halfspaces in Rn and also for learning a very special
subclass of monotone DNF formulas. Our result on learning sparse polynomials can be
compared with that of Schapire and Sellie [1996], who provided an algorithm to learn
sparse polynomials over GF(2) under arbitrary distributions in Angluin’s exact learning
model. However, their algorithm is required to make membership queries that are not
local. Bshouty [1993] gave an algorithm for learning decision trees using membership
queries. In both these cases, it seems unlikely that the algorithms can be modified to use
only local membership queries, even for the class of locally smooth distributions.

There has been considerable work investigating learnability beyond the PAC frame-
work. We consider our results in this body of work. Many of these models are moti-
vated by theoretical as well as real-world interest. On the one hand, it is interesting to
study the minimum extra power one needs to add to the PAC setting, to make the class of
polynomial-size decision trees or DNF formulas efficiently learnable. The work of Aldous
and Vazirani [1990] studies models of learning where the examples are generated accord-
ing to a Markov process. An interesting special case of such models is when examples are
generated by a random walk on {−1, 1}n. For this model Bshouty et al. [2005] give an al-
gorithm for learning DNF formulas (see also Jackson and Wimmer [2009] for more recent
developments). One could simulate random walks of length up to O(log(n)) using local
membership queries, but adapting their DNF learning algorithm to our model runs into
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the same issues as adapting the KM algorithm. The work of Kalai et al. [2009b] provided
polynomial time algorithms for learning decision trees and DNF formulas in a framework
where the learner gets to see examples from a smoothed distribution.2 Their model was
inspired by the celebrated smoothed analysis framework of Spielman and Teng [2004]. On
the other hand, other models have been proposed to capture plausible settings when the
learner may indeed have more power than in the PAC-setting. These situations arise for
example in scientific studies where the learner may have more than just black-box access
to the function. Two recent examples in this line of work are the learning using injection
queries of Angluin et al. [2006], and learning using restriction access of Dvir et al. [2012].

8.1 Notation and Preliminaries

Notation: In this chapter we will assume that the instance space X is the Boolean hy-
percube. In Sections 8.4 and 8.3 we will use X = {−1, 1}n, as we apply Fourier
techniques. In Section 8.2, we will use X = {0, 1}n (the class of sparse polynomials
over {0, 1}n is different from sparse polynomials over {−1, 1}n). For real valued func-
tions, h : X → R, we use squared loss as the error measure instead of the 0/1 loss,
i.e. errD(f, h) = Ex∼D[(f(x)− h(x))2].

For some bit vector x (where bits may be {0, 1} or {−1, 1}), and any subset S ⊆ [n],
xS denotes the bits of x corresponding to the variables, i ∈ S. The set S̄ denotes the set
[n] \ S. For two disjoint sets, S, T , xSxT denote the variables corresponding to the set
S ∪ T . In particular, xSxS̄ = x.

If D is a distribution over X , for a subset S, DS denotes the marginal distribution over
variables in the set S. Let bS denote a function, bS : S → {b0, b1}, (where {b0, b1} = {0, 1}
or {b0, b1} = {−1, 1}). Then, xS = bS , denotes that for each i ∈ S, xi = bS(i), thus the
variables in the set S are set to the values defined by the function bS . Let π : X →
{0, 1} denote some property (e.g. π(x) = 1, if xS = bS and π(x) = 0 otherwise).
The distribution (D|π), denotes the conditional distribution, given that π(x) = 1, i.e. the
property holds.

Local Membership Queries: For any point x, we say that a query x′ is r-local with
respect to x if the Hamming distance, |x− x′|H is at most r. In our model, we only allow

2The notion of smoothness in the work of Kalai et al. is not related to our notion of log-Lipschitzness.
They consider product distributions where each bit has mean that is chosen randomly from a range bounded
away from ±1 by a constant.
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algorithms to make queries that are r-local with respect to some example that it received
by querying EX(f,D), an oracle that returns a random example from D labeled according
to f . We think of examples coming through EX(f,D) as natural examples. Thus, the
learning algorithm draws a set of natural examples from EX(f,D) and then makes queries
that are close to some example from this set. The queries are made to the membership
oracle, MQ(f), which on receiving a query x, returns f(x). Formally, we define learning
using r-local membership queries as follows:

Definition 8.1.1 (PAC+r-local MQ Learning). Let X be the instance space, C a concept
class overX , andD a class of distributions overX . We say that C is PAC-learnable using
r-local membership queries with respect to distribution class, D, if there exist a learning
algorithm, L, such that for every ε > 0, δ > 0, for every distribution D ∈ D and every
target concept f ∈ C, the following hold:

1. L draws a sample, S , of sizem = poly(n, 1/δ, 1/ε) using example oracle, EX(f,D)

2. Each query, x′, made by L to the membership query oracle, MQ(f), is r-local with
respect to some example, x ∈ S

3. L outputs a hypothesis, h, that satisfies with probability at least 1− δ, errD(h, f) ≤
ε

4. The running time of L (hence also the number of oracle accesses) is polynomial in
n, 1/ε, 1/δ and the output hypothesis, h, is polynomially evaluable.

Log-Lipschitz Distributions: Since we want to talk about log-Lipschitz distributions over
{−1, 1}n and {0, 1}n both, we consider X = {b0, b1}n and state the properties of interest
in general terms. We say that a distribution, D, over X = {b0, b1}n is α-log-Lipschitz, for
α ≥ 1, if for every pair x, x′ ∈ X , with Hamming distance, |x − x′|H = 1, it holds that
| log(D(x))− log(D(x′))| ≤ log(α).

We will repeatedly use the following useful properties of α-log-Lipschitz distributions.
The proof of these are easy and hence are omitted.

Fact 8.1.2. Let D be an α-log-Lipschitz distribution over X = {b0, b1}n. Then the follow-
ing are true:

1. For b ∈ {b0, b1}, 1
1+α
≤ PrD[xi = b] ≤ α

1+α
.

2. For any subset, S ⊆ [n], the marginal distribution, DS̄ is α-log-Lipschitz.
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3. For any subset S ⊆ [n], and for any property, πS , that depends only on variables
xS (e.g. xS = bS), the marginal (with respect of S̄) of the conditional distribution,
(D|πS)S̄ is α-log-Lipschitz.

4. (As a corollary of the above three)
(

1
1+α

)|S| ≤ PrD[xS = bS] ≤
(

α
1+α

)|S|.
8.2 Learning Sparse Polynomials under Log-Lipschitz Dis-

tributions

In this section, we consider the problem of learning t-sparse polynomials with coefficients
over R (or Q), when the domain is restricted to {0, 1}n. In this case, we may as well
assume that the polynomials are multi-linear. We assume that the absolute values of the
coefficients are bounded byB, and hence the polynomials take values in [−tB, tB], on the
domain {0, 1}n. For a subset S ⊆ [n], let ξS(x) =

∏
i∈S xi, thus ξS(x) is the monomial

corresponding to the variables in the set S. Note that any t-sparse multi-linear polynomial
can be represented as,

f(x) =
∑
S

cSξS(x),

where cS ∈ R, |{S | cS 6= 0}| ≤ t, and |cS| ≤ B for all S. Let Rn
t,B[X] denote the

class of multi-linear polynomials over n variables with coefficients in R, where at most t
coefficients are non-zero and all coefficients have magnitude at most B.

We assume that we have an infinite precision computation model for reals.3 Also,
since the polynomials may take on arbitrary real values, we use squared loss as the notion
of error. For a distribution, D over {0, 1}n, the squared loss between polynomials, f and
h, is Ex∼D[(f(x)− h(x))2]. Our main result is:

Theorem 8.2.1. The class Rn
t,B[X], is learnable with respect the class of α-log-Lipschitz

distributions over {0, 1}n, usingO(log(n/ε)+log(t/ε))-local MQs and in time poly((ntB/ε)α, log(n/δ)).
The output hypothesis is a multi-linear polynomial, h, such that, with probability (1− δ),
Ex∼D[(h(x)− f(x))2] ≤ ε.

Recall that for a subset, S, xS denotes the variables that are in S; and that S̄ denotes
the set [n] \ S. Let fS(xS̄) denote the multi-linear polynomial defined only on variables in

3The case when we have bounded precision can be handled easily since our algorithms run in time
polynomial in B, but is more cumbersome.
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Algorithm: LEARNING t-SPARSE POLYNOMIALS

inputs: d, θ, oracles EX(f,D), (local)MQ(f)

1. let S = ∅

2. repeat (while some new set is added to S)

(a) For every S ′ ∈ S, |S ′| ≤ d− 1 and for every j ∈ [n] \ S ′

i. let S = S ′ ∪ {j}
ii. if PrDS̄ [fS(xS̄) 6= 0] ≥ θ, then S = S ∪ {S}

3. Perform regression to identify a polynomial h =
∑

S h[S]ξS(x), that minimizes
E[(f(x)− h(x))2], subject to:

(a) h[S] = 0 for S 6∈ S.

(b)
∑

S |h[S]| ≤ tB

output h(x)

Figure 8.1: Algorithm: Learning t-Sparse Polynomials

xS̄ ,

fS(xS̄) =
∑
T⊆S̄

cS∪T ξT (xS̄)

The learning algorithm is shown in Figure 8.1. Here, we describe the high-level idea
of the proof of Theorem 8.2.1. The details of the argument are provided in Section 8.7.1.
Algorithm 8.1 outputs a hypothesis that approximates the polynomial f .

Truncation: First, we show that there are low-degree polynomials that approximate the
multi-linear polynomial, f , up to arbitrary (inverse polynomial) accuracy. These polyno-
mials are the truncations of f itself. Let fd denote the multi-linear polynomial obtained
from f by discarding all the terms of degree at least d+ 1. Note that fd is multi-linear and
t-sparse, and has coefficients of magnitude at most B. Thus,

fd(x) =
∑
S⊆[n]
|S|≤d

cSξS(x)

107



Now, observe that because D is locally α-smooth, the probability that ξS(x) = 1 is
at most (α/(1 + α))|S| (see Fact 8.1.2). Thus, the probability that at least one term of
degree ≥ d + 1 in f is non-zero, is at most t(α/(1 + α))d by a union bound. Thus,
Prx∼D[f(x) 6= fd(x)] ≤ t(α/(1 + α))d. Also, since |f(x)| ≤ tB and |fd(x)| ≤ tB, this
implies that Ex∼D[(f(x) − fd(x))2] ≤ 4t3B2(α/(1 + α))d. By choosing d appropriately,
when α is a constant this quantity can be made arbitrarily (inverse polynomial) small.

Step 3 of the Algorithm (see Fig. 8.1) identifies all the important coefficients of the
polynomial, f . Suppose, we could guarantee that the set, S, contains all coefficients S,
such that cS 6= 0 and |S| ≤ d, i.e. all non-zero coefficients of fd are identified. This
guarantees that the regression in step 4 will give a good approximation to f , since the error
of the hypothesis obtained by regression has to be smaller than Ex∼D[(f(x) − fd(x))2].
(The generalization guarantees are fairly standard and are described in the long version.)

Identifying Important Monomials: In order to test whether or not a monomial, S, is
important, the algorithm checks whether PrDS̄ [fS(xS̄) 6= 0] ≥ θ. Here, DS̄ is the marginal
distribution over the variables xS̄ . We assume that this test can be performed perfectly
accurately. (The analysis using samples is standard by applying appropriate Chernoff-
Hoeffding bounds.)

In Lemma 8.7.2, we show that if the polynomial fS(xS̄) has a non-zero coefficient of
degree at most d−|S|, then the probability that fS(xS̄) 6= 0 is at least (1/(1+α))d+log(t). In
Lemma 8.7.3, we show that if fS(xS̄) has no non-zero coefficient of degree less than d′ =
O((d+ ln(t)) ln(1 +α)), then fS(xS̄) 6= 0 with probability at most 0.5(1/(1 +α))d+log(t).
Thus, we will never add any subset S, unless there is some co-efficient T in f of size at
most d′ = O((d + ln(t)) ln(1 + α)) and S ⊆ T . However, the number of such T is at
most t, and each such set can have at most 2d

′ subsets. This bounds the total number of
subsets the algorithm may add to S, and hence, also the running time of the algorithm (to
polynomial in the required parameters).

Note that sampling, xS̄ according to DS̄ is trivial, just draw random example from
EX(f,D) and ignore the variables xS . Let US denote the uniform distribution over vari-
ables in xS . Then we have,

fS(xS̄) = ExS∼US [2|S|
∏
i∈S

(2xi − 1)f(x)] (8.1)

The variables in xS̄ are fixed, the expectation is only taken over the uniform distribution
over variables in xS . Notice that for any i ∈ S, since xi ∈ {0, 1}, ExS [(2xi − 1)] = 0
and ExS [(2xi − 1)xi] = 1/2. Thus, in the RHS of (8.1), if S 6⊆ T , ExS [2|S|

∏
i∈S(2xi −

1)ξT (x)] = 0, and if S ⊆ T , ExS [2|S|
∏

i∈S(2xi− 1)ξT (x)] = ξT\S(xS̄). Thus, the relation
in (8.1) is true. Also, this means that if the example, x, is received by querying the oracle,
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EX(f,D), fS(xS̄) can be obtained by making O(|S|)-local membership queries to the
oracle MQ(f).

The complete details of the proof appear in Section 8.7.1.

8.3 Learning Decision Trees under the Uniform Distribu-
tion

In this section, we present an algorithm for learning t-leaf decision trees (of arbitrary
depth) under the uniform distribution. Although, the uniform distribution is a special case
of product distributions considered in Section 8.7.2, the exposition is simpler and conveys
the high-level ideas better.

We use standard results from Fourier analysis; Kushilevitz and Mansour [1993] proved
the following useful properties of the Fourier spectrum of decision trees. Let f be a func-
tion that is represented by a t-leaf decision tree, then:

1. For any set S ⊆ [n], |f̂(S)| ≤ t/2|S|.

2. L1(f) =
∑

S⊆[n] |f̂(S)| ≤ t.

Using the above relations, we can immediately prove the following useful (and well-
known) fact.

Fact 8.3.1. Suppose f is boolean function that is represented by t-leaf decision tree. Then,
for any τ > 0,

∑
S,|S|≥log(t2/τ) f̂(S)2 ≤ τ

Proof. Consider,

∑
S,|S|≥log(t2/τ)

f̂(S)2 ≤ max
S,|S|≥log(t2/τ)

|f̂(S)| ·

 ∑
T,|T |≥log(t2/τ)

|f̂(S)|


≤ t · (τ/t2) · L1(f) ≤ τ

The algorithm in Figure 8.2 learns t-leaf decision trees under the uniform distribu-
tion. For simplicity of presentation, we assume that the expectations used in the algorithm
and also the Fourier coefficients can be computed exactly. It is easy to see that using
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Algorithm: LEARNING DECISION TREES

inputs: d, θ, oracles EX(f, U), (local)-MQ(f)

1. let S = {∅}

2. for i = 1, . . . , d

(a) for every S ′ ∈ S, |S ′| = i− 1 and for every j ∈ [n] \ S ′

i. let S = S ′ ∪ {j}
ii. (L2 Test) if Ex∼U [fS(x)2] > θ2, then S = S ∪ {S}

3. let h(x) =
∑

S∈S f̂(S)χS(x)

output: sign(h(x))

Figure 8.2: Algorithm: Learning Decision Trees under the Uniform Distribution

standard applications of Chernoff-Hoeffding bounds, the guarantees of the algorithm hold
even when the expectations and values of the Fourier coefficients can only be computed
approximately. The main step in Algorithm 8.2 that requires some explanation is how to
compute the quantity Ex∼U [fS(x)2] to check if it is greater than θ2. We refer to this as the
L2 Test.

L2 Test: Let x ∈ {−1, 1}n, and recall that for S ⊆ [n], fS(x) =
∑

T⊇S f̂(T )χT\S(x), and
that this can be computed by using the fact that,

fS(xS̄) = ExS∼US [χS(x)f(x)]

Given a point (x, f(x)), we observe that the expectation ExS∼US [f(x)χS(x)] can be com-
puted using 2|S|, |S|-local membership queries with respect to x (only the bits in S need to
be flipped). The quantity Ex∼U [fS(x)2] can thus be computed easily using only |S|-local
membership queries and taking a sample from EX(f,D).

High-Level Overview of Proof: Fact 8.3.1 showed that the Fourier mass (sum of squares
of the Fourier coefficients) of t-leaf decision trees is concentrated on low degree terms.
Parseval’s identity implies that this is sufficient to construct a polynomial, h(x), that is a
good `2 approximation to the decision tree, f , i.e. Ex∼U [(h(x) − f(x))2] ≤ ε. Also, ?]
showed that since L1(f) is bounded, most of the Fourier mass is concentrated on a small
(polynomially many) number of terms.
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The main insight here is that, these terms on which most of the Fourier mass is concen-
trated, can be identified using only O(log(n))-local membership queries. It is relatively
easy to see that any coefficient for which |f̂(S)| ≥ θ will be identified correctly by the
test in line 2.(a).ii. (Figure 8.2). We show that the quantity |S| never grows too large.
To show this, we prove that if any coefficient is inserted in S in line 2.(a).ii, it must be a
subset of some coefficient of large magnitude. This follows quite easily by observing that
Ex∼U [fS(x)2] =

∑
T⊇S f̂(T )2 and using the fact that L1(f) is bounded.

The rest of the section is devoted to a formal proof of the above overview.

Claim 8.3.2. Suppose that S is such that |f̂(S)| ≥ θ and |S| ≤ d, then S ∈ S.

Proof. First observe that for any subset S ′ ⊆ S, it holds that E[fS′(x)2] ≥ θ2. This follows
immediately by observing that

E[fS′(x)2] =
∑
T⊇S′

f̂(T )2 ≥ f̂(S)2 ≥ θ2

It follows by a simple induction argument that at iteration i, S contains every subset of S
of size at most i, for which E[fS(x)2] ≥ θ2. And, hence S ∈ S.

Claim 8.3.3. If S ∈ S, then there exists a S ′ ⊇ S such that f̂(S ′) ≥ θ2/t.

Proof. Since S ∈ S, we know that E[fS(x)2] =
∑

T⊇S f̂(S)2 ≥ θ2. But observe that,

∑
T⊇S

f̂(T )2 ≤

(∑
T⊇S

|f̂(T )|

)
·max
T⊇S
|f̂(T )|

The above inequality simply states the fact that L2(fS) ≤ L1(fS)L∞(fS). Since f is a
t-leaf decision tree,

∑
T⊇S |f̂(T )| ≤ L1(f) ≤ t. The claim now follows immediately.

Using the above claims, it is easy to show our main theorem.

Theorem 8.3.4. Algorithm in Fig. 8.2 run with parameters d = log(2t2/ε) and θ = ε/(2t),
outputs a hypothesis, sign(h(x)), where errU(sign(h(x), f) ≤ ε. The running time is
poly(t, n, 1/ε) and the algorithm only makes log(2t2/ε)-local queries to the membership
oracle MQ(f).

Proof. First, we recall that for a t-leaf decision tree, |f̂(S)| ≤ t/2|S| ?]. Thus, if |f̂(S)| ≥
θ2/t, then |S| ≤ 2 log(t/θ). Using Parseval’s identity (see Section 8.1), we know that the
number of Fourier coefficients that have magnitude greater than θ2/t is at most t4/θ2.
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Consider the set S constructed by the algorithm (Fig. 8.2) at the end of d iterations.
If S ∈ S , then there must exist some T ⊇ S such that |f̂(T )| ≥ θ2/t (Claim 8.3.3). But
there can be at most t2/θ4 such terms and each is of size at most 2 log(t/θ). Hence, the
|S| ≤ (t2/θ4)22 log(t/θ) = t4/θ6.

For any coefficient, such that |f̂(S)| ≥ θ, it must be that |S| ≤ log(t/θ) ≤ d. Claim
8.3.2 shows that all such coefficients are included in S . Thus, maxS 6∈S |f̂(S)| ≤ θ. Hence,∑

S 6∈S f̂(S)2 ≤
∑

S 6∈S |f̂(S)| ·maxS 6∈S |f̂(S)| ≤ L1(f) · θ ≤ θt. But E[(h(x)− f(x))2] =∑
S 6∈S f̂(S)2 and also notice that Prx∼U [sign(h(x)) 6= f(x)] ≤ Ex∼U [(h(x) − f(x))2]

(since f(x) only takes values ±1).

8.4 Learning DNF Formulas under the Uniform Distri-
bution

In this section, we present an algorithm for learning polynomial size DNF formulas under
the uniform distribution. We will frequently use the following facts about DNF formulas.

1. For every size-s DNF formula f , there exists a size-s, DNF formula g with terms of
size l, such that ‖f − g‖2

2 = E[(f(x) − g(x))2] ≤ 4s
2l

. This follows by setting g to
the DNF formula obtained by dropping all terms of size greater than l from f .

2. Let f be an l-term DNF formula. Then
∑
|S|>t f̂

2(S) ≤ 2
−t
10l . This fact follows from

the proof of Lemma 3.2 in Mansour [1992].

We will further use the following result from Kalai et al. [2009b], Feldman [2012]:

Theorem 8.4.1 (Feldman [2012], Kalai et al. [2009b]). If f is a size-s DNF formula, then
there exists an efficient randomized algorithm, LearnDNF that given access to the heavy,
low-degree Fourier coefficients, i.e. the set {f̂(S) | |S| ≤ log(s/ε), |f̂(S)| ≥ (ε/(4s))},
outputs a hypothesis, h, such that errU(h, f) ≤ ε.

The algorithm to obtain all heavy, low-degree terms is presented in Figure 8.3. The
output of the algorithm, LearnDNF(S) is obtained by doing the following: (i) estimate all
the Fourier coefficients, f̂(S), for S ∈ S (ii) use the algorithm from Theorem 8.4.1 to
obtain h. The rest of the section is devoted to the proof of the following Theorem.

Theorem 8.4.2. The class of size-s DNF formulas is learnable in time (s/ε)O(log log(s/ε))

using O(log(s/ε))-local membership queries under the uniform distribution.
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Algorithm: LEARNING DNF FORMULAS

inputs: d, θ, oracles EX(f, U), (local)-MQ(f)

1. let S = {∅}

2. for i = 1, . . . , d

(a) for every S ′ ∈ S, |S ′| = i− 1 and for every j ∈ [n] \ S ′

i. let S = S ′ ∪ {j}
ii. (L2 Test) if Ex∼U [fS(x)2] > θ2, then S = S ∪ {S}

output: h = LearnDNF(S)

Figure 8.3: Algorithm: Learning DNF formulas under the Uniform Distribution

When d = log(s/ε) and θ = ε/4s, we argue that every Fourier coefficient that has
magnitude at least θ is included in S and also that |S| is (s/ε)O(log log(s/ε)). The first part
follows from the following claim

Claim 8.4.3. Suppose that S is such that |f̂(S)| ≥ θ and |S| ≤ d, then S ∈ S.

Proof. First observe that for any subset S ′ ⊆ S, it holds that E[fS′(x)2] ≥ θ2. This follows
immediately by observing that

E[fS′(x)2] =
∑
T⊇S′

f̂(T )2 ≥ f̂(S)2 ≥ θ2

It follows by a simple induction argument that at iteration i, S contains every subset of S
of size at most i, for which E[fS(x)2] ≥ θ2. And, hence S ∈ S.

We now prove the second claim which bounds the size of S.

Claim 8.4.4. After running algorithm 8.3, |S| = (s/ε)O(log log(s/ε)).

of Claim 8.4.4. For a set S, denote ‖fS‖2 =
∑

T⊇S f̂
2(T ). If S ∈ S , then we know that

‖fS‖2 ≥ θ2. Thus, it follows that |S| ≤ (1/θ2)
∑

S:|S|≤d ‖fS‖2. Now,
∑

S:|S|≤d ‖fS‖2 =∑d
d′=1

∑
S:|S|=d′ ‖fS‖2. We will show that for each d′,

∑
S:|S|=d′ ‖fS‖2 ≤ ns2O(d′ log(d′)).
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Then, ∑
S:|S|=d′

‖fS‖2 =
∑

S:|S|=d′

∑
T⊇S

f̂ 2(T )

=
∑

T :|T |≥d′

(
|T |
d′

)
f̂ 2(T )

=
n∑

t=d′

∑
T :|T |=t

(
t

d′

)
f̂ 2(T )

For a given t, consider the inner summation
∑

T :|T |=t
(
t
d′

)
f̂ 2(T ). We will first apply Fact

1, to say that f is close to some gt which is an lt-term DNF formula (we will define the
value of lt shortly). Hence, we get that,∑

T :|T |=t

(
t

d′

)
f̂ 2(T ) ≤

(
t

d′

) ∑
T :|T |=t

ĝ2
t (T ) +

4s

2lt

Next we use Fact 2 to claim that
∑

T :|T |=t ĝ
2
t (T ) ≤ 2

−t
10lt . So we have∑

T :|T |=t

(
t

d′

)
f̂ 2(T ) ≤

(
t

d′

)(
2
−t

10lt +
4s

2lt

)
Setting lt = C

√
t and differentiating, we get that the term is maximized at t = O(d′2)

and the maximum value is s2O(d′ log d′). Since there are at most n such terms we get that∑
S:|S|=d′ ||fS||2 = ns2O(d′ log d′). Finally, we have

∑
S:|S|≤d

||fS||2 ≤
d∑

d′=1

ns2O(d′ log(d′)) = nds2O(d log d).

The proof of Theorem 8.4.2 follows immediately using Claims 8.4.3, 8.4.4 and Theo-
rem 8.4.1.

8.5 Lower Bound for Agnostic Learning

In this section, we prove that any concept class, C, efficiently agnostically learnable over
the uniform distribution with (constant) k-local MQs is also efficiently agnostically learn-
able from random examples alone. This result can be compared with that of Feldman
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[2008], where it is shown that membership queries do not help for distribution-independent
agnostic learning.

We remark that 1-local MQs suffice for learning parities of any size with random
classification noise. At the same time when learning from random examples alone ag-
nostic learning of parities can be reduced to learning parities with random classification
noise (Feldman et al. [2006]). However this reduction does not lead to an agnostic algo-
rithm for learning parities with 1-local MQs since it is highly-nonlocal: the (noisy) label
of every example is influenced by labels of points chosen randomly and uniformly from
the whole hypercube.

Our reduction is based on embedding the unknown function, f , in a higher dimensional
domain such that the original points are mapped to points that are at least at distance 2k+1
apart (and in particular that no single point in the domain is k-close to more than one of the
original points). A crucial property of this embedding is that, up to scaling it preserves the
correlation of any function with f . The embedding is achieved using a linear binary error-
correcting code, specifically we use the classic binary BCH code (Hocquenghem [1959],
Bose and Ray-Chaudhuri [1960]).

Theorem 8.5.1. For any constant, k, if a concept class C is learnable agnostically un-
der the uniform distribution in the PAC+k-local MQ model, then C is also agnostically
learnable in the PAC model.

Proof. We begin by describing the required properties of the error correcting code. For
every integer t and m that is a power of two, there exists a binary BCH code that maps a
binary string x of length m − 1 − (t − 1) logm to a binary string z = x · e(x) of length
m and has distance of 2t. In particular, if we denote the length of message x by n then
for any k we can obtain a code with a codeword of length m ≤ n + k log n and distance
2k + 1.

Given a function f : {−1, 1}n → {−1, 1} we define a function fe : {−1, 1}m →
{−1, 0, 1} as follows: fe(z) = f(x) if z = x · e(x) for some x ∈ {−1, 1}n and fe(z) =
0 otherwise. Here the value 0 is interpreted as function being equal to a random and
independent coin flip.

We first note the following properties of this embedding.

• For every function g : {−1, 1}n → {−1, 1},

Ex·y∼Um [fe(x · y)g(x)] = 2n−mEx∼U [f(x)g(x)] .
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• For every function h : {−1, 1}m → {−1, 1},

Ez∼Um [fe(z)h(z)] = 2n−mEx∼Un [f(x)h(x · e(x))] .

We can now describe the reduction from agnostic learning with k-local MQs to learning
from random examples alone. Let C be a concept class, let f denote an unknown target
function and ε denote the error parameter.

The main idea is to simulate random examples and k-local queries to fe using random
examples alone of f . The simulation requires observing that points in {−1, 1}m can be
split into a set Z which includes all codewords together with Hamming balls of radius
t around them and the rest of points (which we denote by Z̄). We simulate a random
example of fe(x) as follows:

1. Flip a coin with probability of heads equal to β = |Z|/2m.

2. If the outcome is 1: ask for a random example and denote it by (x, `). Choose a
random point z′ in the Hamming ball of radius k around x · e(x). If z′ = x · e(x)
then return the example (z′, `) otherwise return (z′, b) where b is a random coin flip.

3. If the outcome is 0: sample a random point in Z̄ and output (z, b) where b is a random
coin flip. One can sample randomly from Z̄ as follows: sample a random point in
z in {−1, 1}m, use a decoding algorithm for the BCH code to obtain a message x.
If the decoding algorithm failed, that is x · e(x) is not within distance k of z then
return z. Otherwise, try again.

It is important to note that the expected number of tries of this algorithm is 2m/|Z̄| =
2m/(2m − 2nβm,k) = 1/(1 − 2n−mβm,k), where βm,k denotes the size of the Hamming
ball of radius k. We can always assume that 2n−mβm,k ≤ 2/3 by for example adding 1
to m (this does not affect the code, increases the term 2m−n by 2 and βm,k by at most
(1 + k/(m + 1))). Therefore, with high probability, the simulation step will not require
more than a logarithmic number of tries. Note that the BCH code we chose is efficiently
decodable from up to k errors (Massey [1969]).

Now we simulate a k-local MQ z as follows. If z is k-close to random example we
generated in Z̄ we return a random coin flip since there are no non-zero values of fe within
distance k of any point in Z̄. If z is k-close to random example we generated in Z then it
can only be k-close to x·e(x) in the Hamming ball of which z was generated and for which
we have an example (x, `). This means that we can easily answer this MQ: if z = x · e(x)
then we return label `, otherwise a random coin flip.
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On these simulated examples we run the agnostic learning algorithm A for C on
{−1, 1}m with ε′ = ε · 2n−m ≥ ε/nk. Let h denote the hypothesis returned by the al-
gorithm.

Let c∗ = argmaxc∈C{EU [f(x)c(x)]} and let ∆ = EU [f(x)c∗(x)]. Then we know that

Ex·y∼Um [fe(x · y)c∗(x)] = 2n−m∆.

By the agnostic guarantee of A, we know that

Ez∼Um [fe(z)h(z)] ≥ 2n−m∆ + ε′ = 2n−m(∆ + ε) .

Now, again by the properties of the embedding,

Ex∼Un [f(x)h(x · e(x))] = 2m−nEz∼Um [fe(z)h(z)] ≥ ∆ + ε .

Hence h′(x) = h(x · e(x)) is a valid hypothesis for agnostic learning of C.

Finally the running time of this simulation is poly(n) ·T (n, nk/ε) where T (n, nk/ε) is
the running time ofA. In particular, if T is polynomial then for a constant k this simulation
takes polynomial time.

In particular, the above theorem implies that it is highly unlikely that the class of
parities (even of size O(log(n))) will be efficiently agnostically learnable using k-local
MQs. The class of parities is of particular interest, because an efficient agnostic algorithm
for learning O(log(n)) sized parities would yield an efficient DNF-learning algorithm.

8.6 Separation Results

In this section, we show that PAC+r-local MQ model is strictly more powerful than the
PAC model, assuming that one-way functions exist. In the following discussion we show
that even 1-local membership queries are more powerful than the standard PAC setting.

In this section, we assume that we are working with the domain {0, 1}n, rather than
{−1, 1}n. Let Fn = {fs : {0, 1}n → {0, 1}}s∈{0,1}n be a pseudo-random family of func-
tions. It is well-known that such families can be constructed under the assumptions that
one-way functions exist (Goldreich et al. [1986]). Let A1, . . . , An be a balanced parti-
tion (each Ai is approximately the same size) of {0, 1}n that is easily computable. For
example, if the strings in {0, 1}n are lexicographically ordered, then Ai contains strings
with rank in the range [(i − 1)2n/n, i2n/n). For an n + 1 bit string x, x−1 denotes the
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n-length suffix of x. Then, for some string s, define the function gs : {0, 1}n+1 → {0, 1}
as follows:

gs(x) =

{
fs(x−1) If x1 = 0

fs(x−1)⊕ si If x1 = 1 and x−1 ∈ Ai

Define Gn+1 = {gs : {0, 1}n+1 → {0, 1}}s∈{0,1}n . We show below that the class Gn+1 is
not learnable in the PAC setting, but is learnable in the PAC+1-local MQ model under the
uniform distribution.

Theorem 8.6.1. Assuming that one-way functions exist, the class Gn+1 is not learnable
in the PAC model, but is learnable in the PAC+1-local MQ model, under the uniform
distribution.

Proof. First, we show that Gn+1 is learnable in the PAC+1-local MQ model. Let 1x and
0x be the two strings of length n + 1, with suffix x ∈ {0, 1}n. Then for any gs ∈ Gn+1,
gs(1x)⊕ gs(0x) = si, if x ∈ Ai. Thus, drawing a random example from U and making a
one local query reveals one bit of the string s. By drawing O(n log(n)) random examples,
all the bits of the string s can be recovered with high probability. Thus, revealing the
function gs itself.

On the other hand, in the PAC model, the probability that seeing two examples 1x and
0x is exponentially small. Thus, all the labels appear perfectly random (since fs is from a
pseudorandom family). Thus, no learning is possible in the PAC model.

In fact, the above construction also shows that the random walk learning model of
Bshouty et al. [2005] is also more powerful than the PAC learning setting, assuming that
one way function exist. Bshouty et al. [2005] had already shown that the random walk
model is provably weaker than the full MQ model assuming that one-way functions exist.
In fact, essentially the same argument also shows that full MQ is more powerful than
PAC+o(n)-local MQ. The following simple concept class (which is the same as that of
Bshouty et al.) shows the necessary separation.

Let ei be the vector that has 1 in position i, and 0s elsewhere. Again, let Fn = {fs :
{0, 1}n → {0, 1}}s∈{0,1}n be the pseudorandom family of functions. Then define, G ′n =
{gs} as follows:

gs(x) =

{
si If x = ei

fs(x) Otherwise

Theorem 8.6.2. The concept class G ′n is learnable in the full MQ model, but not in
PAC+o(n)-local MQ model under the uniform distribution.
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Proof. It is easy to see that by making membership queries to the points, e1, . . . , en, the
string s is revealed and hence also the function gs. On the other hand, random points from
the Boolean cube have Hamming weight Ω(n), except with exponentially small probabil-
ity. Thus, o(n)-local MQs are of no use to query the points ei. The labels for any point
obtained from the distribution, or using o(n)-local MQs are essentially random. Hence,
G ′n is not learnable in the PAC+o(n)-local MQ model.

8.7 Additional proofs

8.7.1 Learning Sparse Polynomials under Log-Lipschitz Distributions

Proof of Theorem 8.2.1
First, we have the following useful general lemma.

Lemma 8.7.1. Let f be a t-sparse multi-linear polynomial defined over any field, F, with
a non-zero constant term, c0. Let D be any α-log-Lipschitz distribution over {0, 1}n, then

Pr
D

[f(x) 6= 0] ≥
(

1

1 + α

)log2(t)

Proof. We prove this by induction on the number of variables, n. When n = 1, the only
possible polynomials are f(x1) = c0 + c1x1. Then f(x) = 0 if and only if x1 = 1 and
c1 = −c0 (since c0 6= 0). Note that when D is α-log-Lipschitz, Pr[x1 = 1] ≤ α/(1 + α)
(see Fact 8.1.2). Thus, PrD[f(x1) 6= 0] ≥ 1/(1 + α). (And the sparsity is 2, and log(2) =
1.) Thus the base case is verified.

Let f be any multi-linear polynomial defined over n variables. Suppose there exists a
variable, without loss of generality, say x1, such that c1x1 is a term in f , where c1 6= 0.
Then we can write f as follows:

f(x) = f−1(x) + x1f1(x)

where f−1 and f1 are both multi-linear polynomials over n − 1 variables and both have
a non-zero constant term. (The constant term of f−1 is just c0, and f1 has constant term
c1.) Then note that 1/(1 + α) ≤ PrD[x1 = b|x−1] ≤ α/(1 + α), for both b = 1 and
b = 0. Now, it is easy to see that PrD[f(x) 6= 0] ≥ PrD[x1 = 0|x−1] PrD[f−1(x) 6= 0] ≥
(1/(1 + α)) Pr[f−1(x) 6= 0].

To see that PrD[f(x) 6= 0] ≥ (1/(1 + α)) PrD[f1(x) 6= 0] consider the following: Fix
x−1, if Pr[f1(x) 6= 0], then for at least one setting of x1, it must be the case that f(x) 6= 0.
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Thus, conditioned on x−1, PrD[f(x) 6= 0|x−1] ≥ (1/(1 + α))δ(f−1(x) 6= 0) (here δ(·) is
the indicator function). Thus, PrD[f(x) 6= 0] ≥ (1/(1 + α)) PrD[f−1(x) 6= 0]. However,
at least one of f−1, f1 must have sparsity at most t/2, thus by induction we are done.

In the case, that there is no xi such that cixi (with ci 6= 0) appears in f as a term,
let f0 be the polynomial obtained from f by setting x1 = 0 and f1 be the polynomial
obtained from f by setting x1 = 1. Note that both f0 and f1 have constant term c0 6= 0
and sparsity at most t, but they have one fewer variable than f . Thus, PrD[fb(x) 6= 0] ≥
(1/(1 + α))log2(t), for b = 0, 1. However, note that

Pr
D

[f(x) 6= 0] = Pr
D

[x1 = 0] Pr
D0

[f0(x) 6= 0] + Pr
D

[x1 = 1] Pr
D1

[f1(x) 6= 0]

≥
(

1

1 + α

)log(t)

This completes the induction.

Using Lemma 8.7.1, we can now show that step 3 in algorithm 8.1 correctly identifies
all the important monomials (monomials of low-degree with non-zero coefficients in f ).

Lemma 8.7.2. Suppose S ⊆ [n], such that fS(x) has a monomial of degree at most d−|S|
with non-zero coefficient. Then,

Pr
DS̄

[fS(xS̄) 6= 0] ≥
(

1

1 + α

)d−|S|+log(t)

Proof. Note that, since D is a α-log-Lipschitz distribution, DS̄ is also a α-log-Lipschitz
distribution (see Fact 8.1.2). Let S ′ be a subset of S̄, such that ξS′(xS̄) is the smallest
degree monomial in fS(xS̄) with non-zero coefficient. Then, since DS̄ is α-log-Lipschitz,
PrDS̄ [ξS′(xS̄) = 1] ≥ (1/(1 + α))|S

′| ≥ (1/(1 + α))d−|S|.

Now, the conditional distribution (DS̄|ξS′(xS̄) = 1) is not necessarily α-log-Lipschitz,
but the marginal distribution with respect to variables (S ∪ S ′), (DS̄|(ξS′(xS̄) = 1))(S∪S′),
is indeed α-log-Lipschitz (see Fact 8.1.2). Let fS′S (x(S∪S′)) be the polynomial obtained
from fS by setting xi = 1 for each i ∈ S ′. Note that the constant term of fS′S is non-zero
and it is t-sparse, and is only defined on the variables in −(S ∪ S ′). Hence, by applying
Lemma 8.7.1 to fS′S and the marginal (w.r.t the variables S̄ ′) of the conditional distribution
(DS̄|ξS′(xS̄) = 1), i.e. (DS̄|ξS′(x) = 1)(S∪S′), we get the required result.

Next, we show the following simple lemma (proof is in Section 8.7.1) that will allow
us to conclude that step 3 of the algorithm never adds too many terms.
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Lemma 8.7.3. If each term of fS has degree at least d′, then the probability that fS(x) 6= 0
is at most t(α/(1 + α))d

′
.

Proof. Note that each monomial of fS has degree at least d′. Under any α-log-Lipschitz
distribution, the probability that a monomial of degree d′ is not-zero is at most (α/(1 +
α))d

′ (see Fact 8.1.2). Since,DS̄ is a α-log-Lipschitz distribution, by a simple union bound
we get the required result.

Now in order to get an ε-approximation in terms of squared error, using the argument
about truncation, it suffices to choose d = log(4t3B2/ε)/ log((1+α)/α), and consider the
truncation α. For this value of d, if θ is set to
1/(4t3B2)2 log(1+α)/ log((1+α)/α), using Lemma 8.7.2, we are sure that all the monomials
in f of degree at most d that have non-zero coefficients are identified in step 3 of the
algorithm. Note that θ is still inverse polynomial in (ntB/ε)α.

Finally, we note that if d′ is set to log(2t/θ)/ log((1 + α)/α), then for any subset, S,
if the monomial with the least degree in fS , has degree at least d′, then PrDS̄ [fS(x) 6=
0] ≤ θ/2. In particular, this means that if a set, S, with |S| ≤ d, is such that the smallest
monomial, ξT (x) in f for which S ⊆ T , is such that |T | ≥ d + d′, then S will never be
added to S by the algorithms. The fact that this probability was θ/2 (instead of exactly θ),
means that sampling can be used carry out the test in the algorithm to reasonable accuracy.
Finally, observe that t2d+d′ is still polynomial in (ntB/ε)α. Thus, the total number of sets
added in S, can never be more than polynomially many.

Generalization The generalization argument is pretty standard and so we just present an
outline. First, we observe that it is fine to discretize real numbers to some ∆, where
∆ is inverse polynomial in (ntB/ε)α, without blowing up the squared loss. Now, the
regression in the algorithm requires that the sum of absolute values of the coefficients of
the polynomial, h, be at most tB. Thus, we can view this as distributing tB/∆ blocks over
2n possible coefficients (in fact the number of coefficients is smaller). The total number
of such discretized polynomials is at most 2poly((ntB/ε)α). Thus, it suffices to minimize the
squared error on a (reasonably large) sample.

8.7.2 Learning Decision Trees under Product Distributions

In this section, we prove that the class of t-leaf decision trees can be learned under the
class of product distributions, where each bit has mean bounded away from −1 and 1. Let
µ = (µ1, . . . , µn) denote a product distribution over X = {−1, 1}n, where Ex∼µ[xi] =
µi ∈ [−1 + 2c, 1− 2c], for some constant c ∈ (0, 1/2]. We use Fourier analysis using the
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modified basis for the product distribution. We begin by introducing required notation for
using Fourier techniques.

Fourier Analysis over µ: Let µ = (µ1, . . . , µn) be the product distribution over X =
{−1, 1}n, where Ex∼µ[xi] = µi. Define,

χµS(x) =
∏
i∈S

xi − µi√
(1− µ2

i )
.

Then, it is easy to observe that for any two sets S1 6= S2, Ex∼µ[χµS1
(x)χµS2

] = 0 and
that, for any set S, Ex∼µ[χµS(x)2] = 1. Thus, the set of functions 〈χµS(x)〉S⊆[n] forms an
orthonormal basis for functions defined on {−1, 1}n under the distribution µ. For any
function f : {−1, 1}n → R, the Fourier coefficients under distribution µ are defined as
f̂µ(S) = Ex∼µ[f(x)χµS(x)]. The following is Parseval’s identity in this basis:

Ex∼µ[f(x)2] =
∑
S⊆[n]

f̂µ(S)2 (8.2)

In particular, when f is a boolean function, i.e. with range {−1, 1}, the sum of Fourier
coefficients is 1.

LetLµ1(f) =
∑

S⊆[n] |f̂µ(S)|, Lµ2(f) =
∑

S⊆[n] f̂
µ(S)2 andLµ∞(f) = maxS⊆[n] |f̂µ(S)|

denote the 1, 2 and ∞ norm of the Fourier spectrum under distribution µ. Also let
Lµ0(f) = |{S | f̂µ(S) 6= 0}| denote the number of non-zero Fourier coefficients of f .
We will frequently use the following useful observations:

1. Lµ2(f) ≤ Lµ1(f) · Lµ∞(f)

2. Lµ2(f) ≤ Lµ0(f) · (Lµ∞(f))2

Decision Tree Learning Algorithm

We present a high-level overview of our algorithm and a formal statement of the main
result, before providing full details. The Algorithm is described in Figure 8.4.

Truncation: We show that a t-leaf decision tree, when truncated to logarithmic depth,
is still a very good (inverse polynomially close) approximation to the original decision
tree. This observation can be used to show that it suffices to identify low-degree (log-
arithmic) “heavy” Fourier coefficients of f , with respect to the distribution, µ, and also
that the number of such terms is not too large (at most polynomial). Note that this is not
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Algorithm: LEARNING DECISION TREES

inputs: d, θ, oracles EX(f, µ), MQ(f)
# f is a t-leaf decision tree
# µ is a product distribution over {−1, 1}n, µi ∈ [−1 + 2c, 1− 2c]

1. let S = {∅}

2. for i = 1, . . . , d

(a) for every S ′ ∈ S, |S ′| = i− 1 and for every j ∈ [n] \ S ′

i. let S = S ′ ∪ {j}
ii. (L2 Test) if Ex∼µ[fS(x)2] > θ2, then S = S ∪ {S}

3. let h(x) =
∑

S∈S f̂
µ(S)χµS(x)

output: sign(h(x))

Figure 8.4: Algorithm: Learning Decision Trees under Product Distributions

as simple as in the case of the uniform distribution, because it is not straightforward to
bound Lµ1(f) =

∑
S⊆[n] |f̂µ(S)|. (When µ is the uniform distribution, this is bounded by

t.) Properties of such truncated decision trees were also used by Kalai et al. [2009b] in the
smoothed analysis setting.

A t-leaf decision tree can be though of as t (not disjoint) paths from root to leaves. A
truncation of a decision tree at depth d, is a decision tree where for each path of length
more than d, only the prefix (from root) of length d is preserved. Note that this may
collapse several paths to the same prefix, possibly reducing the number of leaves. A new
leaf is added at the end of this path and labeled arbitrarily as −1 or +1.

For any function g, we denote by Sµg , the set of non-zero Fourier coefficients of g, with
respect to the product distribution, µ, i.e. Sµg = {T ⊆ [n] | ĝ(T ) 6= 0}.

We prove two useful properties of the truncated decision trees with respect to product
distribution. These appear as formal statements in Lemmas 8.7.4 and 8.7.5. Similar ob-
servations were also used by Kalai et al. [2009b] to prove learning of decision trees in the
smoothed analysis setting.

(i) Truncation at logarithmic depth is a good approximation (inverse polynomial) to the
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original decision tree.

(ii) The number of nonzero Fourier coefficients of the truncated decision tree, |Sµg | is
small (polynomial).

Lemma 8.7.4. Let f be a t-leaf decision tree, let µ be a product distribution over X =
{−1, 1}n such that µi ∈ [−1 + 2c, 1 − 2c]. Then for every τ > 0, there exists a t-leaf
decision tree of depth at most log(t/τ)/ log(1/(1−c)), such that Prx∼µ[g(x) 6= f(x)] ≤ τ

Proof. Let g be the decision tree obtained by truncating f at depth d. The new leaves
added at depth d can be labeled arbitrarily. Now, the points x for which g(x) 6= f(x) are
precisely those, for which g would lead to the newly added leaf node at depth d. But since
Ex∼µ[xi] ∈ [−1 + 2c, 1 − 2c], the probability that a random point from µ reaches such a
node is at most (1−c)d. The number of new leaf nodes added cannot be more than t (since
any truncation only reduces the number of leaves). Thus, Prx∼µ[g(x) 6= f(x)] ≤ t(1−c)d.
When, d = log(t/τ)/ log(1/(1− c)) we get the result.

Lemma 8.7.5. Let g be a decision tree of depth d and t leaves; then the number of non-zero
Fourier coefficients of g is at most t · 2d and each is of size at most d.

Proof. We consider any path in g from root to leaf, and let P denote the subset of indexes
corresponding to the variable that occur in the path. First, we expand decision tree g as a
polynomial.

g(x) =
∑

path P

yP
∏
i∈P

1 + σP,ixi
2

,

where σP,i is +1 or −1, depending on whether the path leading out of node labeled xi on
path P was labeled +1 or −1, and yP is the label of the leaf at the end of the path P .

The only nonzero coefficients in g are of the from
∏

i∈T xi for some T ⊆ P for some
path P . This also means that the only non-zero Fourier coefficients can be those cor-
responding to such subsets. This is because Ex∼µ[χµT (x)

∏
i∈S xi] = 0, unless T ⊆ S

(because µ is a product distribution). Since the number of paths in g is at most t and the
length of each path is at most d, we get the required result.

Lemma 8.7.6. Let f be a t-leaf decision tree, let g be a truncation of f to depth log(4t/τ)/ log(1/(1−
c)). Then, ∑

S,S 6∈Sµg

f̂µ(S)2 ≤ τ
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Proof. Let g be a truncation of f at depth log(4t/τ)/ log(1/(1 − c)). Let Sµg denote the
set of non-zero Fourier coefficients of g under distribution µ. Using Lemma 8.7.4, we
know that Prx∼µ[f(x) 6= g(x)] ≤ τ/4, hence E[(f(x)− g(x))2] ≤ τ . Now, by Parseval’s
identity:

τ ≥ Ex∼µ[(f(x)− g(x))2]

=
∑
S⊆Sg

(f̂(S)− ĝ(S))2 +
∑
S 6∈Sg

f̂(S)2

≥
∑
S 6∈Sg

f̂(S)2

The proof is complete by observing that every coefficient S ∈ Sµg satisfies |S| ≤ log(4t/τ)/ log(1/(1−
c)) by Lemma 8.7.5.

L2 Test: As in the case of uniform distribution, we write f(x) as:

f(x) = fµ−S(x) + χµS(x)fµS (x),

where, fµ−S(x) =
∑

T,S 6⊆T f̂
µ(T )χµT (x) and fµS (x) =

∑
T⊇S f̂

µ(T )χµT\S(x). Then as in
the case of uniform distribution, fS(x) = fS(x−S) = ExS∼µS [f(x)χµS(x)], where now xS
is drawn from the restriction µS of the product distribution to the bits xS . Note that for
any given point x, fS(x) can be computed easily using 2|S| membership queries that are
|S|-local (since only the bits xS need to be changed). We point out that there is a sub-
tle point in the case of product distributions. Recall that fS(x) = ExS∼µS [f(x)χµS(x)].
In the case when µ is the uniform distribution, the parity functions, χS are {−1, 1} val-
ued, and so fS(x) ∈ [−1, 1]. Thus, application of Chernoff-Hoeffding bounds is straight-
forward. In the case, of product distributions the range of χµS(x) can be [−

∏
i∈S((1 −

|µi|)/(
√

1− µ2
i )),

∏
i∈S((1 + |µi|)/(

√
1− µ2

i ))]. Since, we never consider sets S that are
larger thanO(log(n/ε)), the range of fS in our case is still polynomially bounded and arbi-
trarily good (inverse polynomial) estimates to the true expectation of Ex∼µ[fS(x)2] can be
obtained by taking a sample and applying Chernoff-Hoeffding bounds. Thus, to simplify
the presentation, we assume we can compute the expectation (in Line 2.a.ii in Fig. 8.4)
and the Fourier coefficients exactly.

Theorem 8.7.7 is the statement of the formal result about learning decision trees un-
der product distributions. The main ideas are similar to the proof in the case of uniform
distribution; but, the proof is more involved as explained above.

Theorem 8.7.7. Algorithm in Fig. 8.4 with parameters θ =
√
ε/(2t(8t/ε)1/ log(1/(1−c))),

d = log(8t/ε)/ log(1/(1−c)), outputs a hypothesis sign(h(x)), such that errµ(sign(h(x)), f) ≤
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ε. The running time of the algorithm is polynomial in n, t and 1/ε and the algorithm makes
only O(log(nt/ε))-local membership queries to the oracle MQ(f).

The rest of this section is devoted to the proof of Theorem 8.7.7.

Claim 8.7.8. If S is such that |f̂µ(S)| ≥ θ and |S| ≤ d, then S ∈ S.

Proof. This proof is thee same as the proof of Claim 8.3.2.

Claim 8.7.9. If S ∈ S, then there exists S ′ ⊇ S, such that f̂µ(S ′)2 ≥ (θ2/2)/(t ·
(8t/θ2)1/ log(1/(1−c))) and |S ′| ≤ log(8t/θ2)/ log(1/(1− c)).

Proof. Let τ = θ2/2 and let g′ be the decision tree obtained by truncation of f as described
in Lemma 8.7.6. Then, by Lemma 8.7.5, we know the depth of g′ is log(8t/θ2)/ log(1/(1−
c)) and that Sµg′ is of size at most t · 2log(8t/θ2)/ log(1/(1−c)) = t · (8t/θ2)1/ log(1/(1−c)). Also,
by Lemma 8.7.6 we know that

∑
T 6∈Sµ

g′
f̂µ(T )2 ≤ θ2/2, and hence if S passes the L2-

test, i.e.
∑

T⊇S f̂
µ(T )2 ≥ θ2, it must be that

∑
T⊇S,T∈Sµ

g′
f̂µ(T )2 ≥ θ2/2. Hence, there

must be some set S ′ of size at most log(8t/θ2)/ log(1/(1 − c)) for which f̂µ(S ′)2 ≥
(θ2/2)/(t · (8t/θ2)1/ log(1/(1−c))).

Proof of Theorem 8.7.7. Let g be the truncation of the target decision tree, f , to depth
d. Then using Lemma 8.7.6, we know that

∑
S 6∈Sµ

g′
f̂µ(S)2 ≤ ε/2. Now, every coeffi-

cient in S ∈ Sµg for which |f̂µ(S)| ≥ θ is in S (see Algorithm 8.4 and Claim 8.7.8).
|Sµg′ | ≤ t2d. Tedious calculations show that

∑
S∈Sµ

g′ ,|f̂(S)|<θ f̂(S)2 ≤ t2dθ2 ≤ ε/2. Thus,∑
S∈S f̂(S)2 ≥

∑
S∈S∩Sµ

g′
f̂(S)2 ≥ 1 − ε. This implies by Parseval, that Ex∼µ[(h(x) −

f(x))2] ≤ ε, where h(x) is as defined in Algorithm 8.4.

The only thing remaining to show is that |S| always remains bounded by poly(t, n, 1/ε).
This can be shown easily using Claim 8.7.9, since if S ∈ S, there exists S ′ ⊇ S, such that
|S ′| ≤ log(8t/θ2)/ log(1/(1 − c)) and f̂µ(S)2 ≥ (θ2/2)/(t · (8t/θ2)1/ log(1/(1−c)). Thus,
the magnitude of f̂(S ′)2 is at least 1/poly(t, n, 1/ε), so by Parseval there can be at most
poly(t, n, 1/ε). Also the size of |S ′| is O(log(tn/ε)), thus the total number of irrelevant
subsets added to S is at most poly(t, n, 1/ε).

8.7.3 Learning under Random Classification Noise

In this section, we show how the algorithms for learning decision trees can be implemented
even with access to a noisy oracle. The learning algorithm we use is allowed queries to
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the membership oracle, MQ(f), therefore we consider a persistent random noise model.
An easy way to conceptualize this model is as follows: Let ζ : {−1, 1}n → {−1, 1} be
a function where for each x ∈ {−1, 1}n, the value of ζ(x) = 1 with probability 1 − η
and −1 with probability η, independently. Once this noise function, ζ , has been fixed, we
assume that we have access to the function: f η = f · ζ , rather than the function f . We
show how the tests mentioned in this section can be implemented using EX(f η, D) and
MQ(f η), rather than EX(f,D) and MQ(f).

Non-Zero Test

Recall that we are interested in estimating Pr[fS(x) 6= 0], where S ⊆ [n], and

fS(x) = ExS∼US [f(x)χS(x)] (8.3)

Instead, if we have access to f η, we are able to compute,

f ηS(x) = ExS∼US [f η(x)χS(x)]

Although, the random classification noise is persistent and fixed according to ζ , for the
purpose of analysis it is easier to imagine that for each x, ζ(x) is only determined when
the algorithm makes a query for the point x (or x is drawn by EX(f η, D)). Lemma 8.7.10
allows us to conclude that the L2 test can be performed using access to f η instead of f .
The lemma assumes that ζ(x) is chosen independently, each time x is queried, i.e. the
noise is not persistent. However, we show later that our algorithm queries each example
only once, so the noise may as well have been persistent.

Lemma 8.7.10. The following are true:

1. Prx,ζ [f
η
S(x) 6= 0] ≥ (1− p0) + (2η−1)2c0

23|S|/2 Pr[fS(x) 6= 0]

2. Prx,ζ [f
η
S(x) 6= 0] ≤ (1− p0) + Pr[fS(x) 6= 0]

Here, c0 is an absolute constant, p0 depends only on |S| and η. The probability is taken
over the choice of x ∼ D and choice of ζ .

Proof. Note that fS(x) = ExS∼US [f(x)χS(x)], and so fS(x) is evaluated by using 2|S|

different values of f(x). For every x, f(x) ∈ {−1, 1}, and hence if fS(x) = 0, it must be
that the 2|S| values used in the expectation have exactly 2|S|−1 +1s and −1s each.
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On the other hand, if fS(x) 6= 0, then the number of +1s is different than −1s. If
fS(x) 6= 0, without loss of generality, we only consider the case when fS(x) > 0, so that
there are more +1s than−1s. Thus, we are left with the following combinatorial question:

Suppose we begin with 2k variables, x1, . . . , x2k, where each xi is +1 or −1. Let k1

be the number of +1s and 2k − k1 is the number of −1s. We will assume throughout
that k ≥ 2. We perform the following process, each xi is left as is with probability 1 − η
and its sign flipped with probability η, independently. Let x′i be the values of the resulting
variables, and let X ′ =

∑
i x
′
i. Let pki denote the probability that X ′ is 0 having started

with (k+ i) +1s and (k− i) −1s. Thus, pk0 is the probability of getting a 0, when we start
with equal number of +1s and −1s.

Then the following are true:

1. pki decreases as i increases.

2. pk0 − pk1 ≥ (2η − 1)2c0/k
3/2 for some absolute constant c0.

For proof of the above facts see Lemmas 8.7.12 and 8.7.13 below, though it should be fairly
clear that the conclusions make sense. When η = 1/2, the initial values are irrelevant of
the xi are irrelevant and each x′i = ±1 with probability 1/2, but for η < 1/2, if one started
with the sum

∑
i xi = 0, it is more likely that

∑
i x
′
i = 0, than if one started from some

value,
∑

i xi that was greater than 0.

We apply the above to the setting when k = 2|S|−1. We drop the superscripts p2|S|−1

0

and p2|S|−1

1 in the rest of this discussion. First, imagine that we have fixed the variables x−S
so that the expectation (8.3) is only a function of the noise function ζ . If fS(x−S) = 0,
then Prζ [f

η
S(x−S) = 0] = p0. On the other hand, if fS(x−S) 6= 0, then 0 ≤ Prζ [f

η(x−S) =
0] ≤ p1. So, we have the following:

Pr
x,ζ

[f ηS(x) 6= 0] ≥ Pr
x

[fS(x) 6= 0](1− p1) + Pr
x

[fS(x) = 0](1− p0)

= (1− p0) + (p0 − p1) Pr
x∼D

[fS(x) 6= 0]

On the other hand,

Pr
x,ζ

[f ηS(x) 6= 0] ≤ Pr
x

[fS(x) 6= 0] + (1− p0) Pr
x

[fS(x) 6= 0]

≤ (1− p0) + Pr
x

[fS(x) 6= 0]

This completes the proof of the assertion.
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We note that this allows us to distinguish between the cases where Prx∼D[fS(x) 6=
0] ≥ α from Prx∼D[fS(x) 6= 0] ≤ β, as long as α − β is sufficiently large. This can
be done by choosing β = α · (2η − 1)2c0/(2 · 23|S|/2), and then computing the value
Prx∼D[f ηS(x) 6= 0]. Note that p0 can be computed exactly, if the size |S| and the noise rate
η are known. We assume that the noise rate is known; if not, the standard trick of binary
searching the noise rate can be employed. Note that these tests can be carried out to high
accuracy from samples. Now, in the case when D is an locally α-smooth distribution for
constant α, any two points x and x′ drawn from EX(f,D) will have Hamming distance
Ω(n) with very high probability. The local queries to MQ(f η) are only made for points
that are at Hamming distance O(log(n)) from sampled points (see Fact 8.1.2). Thus, with
very high probability, the queries made to compute f ηS(x) and f ηS(x′) do not have any point
in common, i.e. no example is queried twice by the learning algorithm. So we can employ
Lemma 8.7.10 as if the noise was chosen independently each time a point was queried.

L2 Test

Recall that f ηS(x−S) = 1
2|S|

∑
xS∈{−1,1}|S| [f

η(xSx−S)]. For a fixed x−S , f η(x−S) is a ran-
dom variable depending only on the noise function ζ . Let 2|S|fS(x) = 2k, where 2k is
some even integer in the range [−2|S|, 2|S|]. Let k1 = 2|S|−1 + k = 2|S|−1(1 + fS(x))
and k2 = 2|S|−1 − k = 2|S|−1(1 − fS(x)), so that 2|S|fS(x) is a sum of k1, +1s and k2,
−1s. Let Z1 ∼ Bin(k1, η) and Z2 ∼ Bin(k2, η) be binomial random variables. Then
2|S|f η(x−S) = 2|S|fS(x) − 2Z1 + 2Z2. This follows immediately from the definition of
the noise model. The following can then be verified by straightforward calculations,

Eζ [f ηS(x−S)] = (1− 2η)fS(x)

Eζ [f ηS(x−S)2] = (1− 2η)2fS(x)2 + 2−|S|+1η(1− η)

Thus, if we can obtain accurate estimates of Ex∼D[f ηS(x)2], we can also obtain accurate
estimates of Ex∼D[fS(x)2]. Again, as in the previous case, we observe that the algorithm
(with high probability) never makes a query twice for the same example. Thus, we can
assume that the noise model is in fact not persistent. It is clear that Ex∼D[f ηS(x)2] can be
estimated highly accurately by sampling.

The proof of the following two lemmas are elementary and are omitted.

Lemma 8.7.11. Suppose, X0 = 0. Consider the following random walk, Xi+1 = Xi

with probability 1 − α, Xi+1 = Xi + 2, with probability α/2 and Xi+1 = Xi − 2, with
probability α/2, where α ∈ [0, 1/2]. Then, for i ≥ 0, Pr[Xn = 0] − Pr[Xn = 2] is a
decreasing function of α.
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The idea of the proof is to notice that the probability, Pr[Xn = 2j] follows a bell
shaped curve, and the curve gets steeper (more mass is concentrated at 0) as α goes to 0.

Lemma 8.7.12. Let x1, . . . , x2n, be such that x1 = · · · = xn+d = 1 and xn+d+1 =
xn+i+2 = · · ·x2n = −1. The sign of each xi is flipped independently with probability
η < 1/2, to get x′i. Let pnd be the probability that the

∑
i x
′
i = 0. Then for d ≥ 0, as d

increases, pnd decreases.

This expresses the quite obvious idea that if the probability of flipping is less than half,
then the further from 0 the initial sum (

∑
i xi), the less likely it is that

∑
i x
′
i = 0.

Lemma 8.7.13. Let x1, . . . , x2n, be such that x1 = · · ·xn+1 = 1 and xn+2 = · · · = x2n =
−1. The sign of each xi is flipped independently with probability η < 1/2, to get x′i. Let
p1 denote the probability that

∑
i x
′
i = 0. Let y1, . . . , y2n be such that, y1 = · · · yn = 1

and yn+1 = · · · = y2n = −1. Then, let y′i be obtained by flipping yi independently with
probability η < 1/2, and let p0 denote the probability that

∑
i y
′
i = 0. Then p0 − p1 ≥

(2η − 1)2c0/n
3/2, for some absolute constant c0.

Proof. First we leave aside the values, x′n, x′n+1, y′n and y′n+1. The remaining variables,
both in the case of xis and yis, were obtained by starting with exactly (n − 1) +1s and
(n − 1) −1s and flipping each independently with probability η < 1/2. We can form
pairs of (+1,−1), to get a random variable zi = x′i + x′n+1+i, i = 1, . . . , n − 1, where
zi = 0 with probability η2 + (1 − η)2 > 1/2, zi = +2 with probability η(1 − η) and
zi = −2 with probability η(1 − η). (A similar argument can be made in the case of
y′is.) We can view the sum of these zi random variables as a random walk described in
Lemma 8.7.11, where Xi+1 = Xi with probability η2 + (1− η)2 and Xi+1 = Xi + 2, with
probability η(1−η) and Xi+1 = Xi−2, with probability η(1−η). Now, p1 = Pr[Xn−1 =
0](2η(1 − η)) + Pr[Xn−1 = 2]η2 + Pr[Xn−1 = −2](1 − η)2. On the other hand, p0 =
Pr[Xn−1 = 0](η2 +(1−η)2)+Pr[Xn−1 = 2]η(1−η)+Pr[Xn−1 = −2]η(1−η). Noticing
that, Pr[Xn−1 = 2] = Pr[Xn−1 = −2], we get that p0 − p1 = (2η − 1)2(Pr[Xn−1 =
0]−Pr[Xn−1 = 2]). But this difference is a decreasing function of α = 1−(η2 +(1−η)2).
But, even when α = 1/2, i.e. η = 1/2, this difference is given by,

Pr[Xn−1 = 0]− Pr[Xn−1 = 2] =
1

22n−2

((
2n− 2

n− 1

)
−
(

2n− 2

n

))
=

1

22n

(
2n− 2

n− 1

)(
1− n− 2

n

)
The claim now follows easily.
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Chapter 9

Conclusions

Several interesting directions and open problems come out of this thesis. We discuss them
below.

In Chapter 3 we introduced and studied a notion of clustering stability called weak
deletion-stability. We gave a PTAS for k-median and k-means clustering with runtime
dependence exponential in 1/α. Also, recall that the k-median problem restricted only to
weakly-stable instances has no FPTAS. So the fact that our algorithm’s runtime has super-
polynomial dependence in 1/α is unavoidable. Nonetheless, one might still hope to do
better. In particular, one major runtime expense of our algorithm comes from handling
expensive clusters by brute-force guessing or sampling. Can one improve the runtime
by doing something more clever for expensive clusters? It is worth noting that for the
stability conditions of Balcan et al. [2009a], Voevodski et al. [2010] develop an especially
efficient implementation with good performance (in terms of both accuracy and speed) on
real-world protein sequence datasets.

A different open problem lies in the relation to results of Ostrovsky et al. [2006]. Their
motivating question was to analyze the performance of Lloyd-type methods over stable in-
stances. Is it possible that weak deletion-stability is sufficient for a version of the k-means
heuristic to converge to the optimal clustering? Finally, we present the high level question
of extending this line of work to other problems. Can stability assumptions, preferably
ones of a mild nature, allow us to bypass NP-hardness results of other problems? One
particularly intriguing direction is the problem of Sparsest-Cut, for which no PTAS or
constant-approximation algorithm is known, yet a powerful heuristics based on spectral
techniques work remarkably well in practice (Shi and Malik [1997]).

In Chapter 5 we motivated and studied a model for designing local interactive clus-
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tering algorithms. We designed efficient algorithms for data sets satisfying a natural sta-
bility property. It would be interesting to relax the condition on η that is required by
our algorithms in the η-merge model. We would also like to develop algorithms in the
unrestricted-merge model for arbitrary request sequences.

It is also important to study additional properties of an interactive clustering algorithm
that are desirable in practice. For instance, one might require that the algorithm never
output an intermediate clustering with error larger than the error of the initial clustering.
Our algorithms for the unrestricted-merge model have this property, but the ones for the η-
merge model do not. Finally, a clustering algorithm may process the split/merge requests
in batches, collected over a period of time. One can potentially design algorithms in this
batch setting with better run-time bounds.

In Chapter 7 we presented an algorithm for learning the class of disjunctions in the
case that OPT < n−(1/3+α), achieving an error rate of O(n1/3+α · OPT) + ε. The natural
open question is whether one can improve this bound. For example, can one achieve weak
agnostic learning for OPT = n−1/4? Or, can one improve the bounds as a function of the
number of relevant variables, e.g., making only a factor O(r0.9) times more mistakes than
the best disjunction?

An intriguing open question is whether one can extend this technique for other concept
classes. For example, consider the class of linear separators over {0, 1}n with weights in
{0, 1} (i.e., majority vote or “k of r” functions). Here we do not know even how to
achieve weak learning for OPT = n−0.99. The algorithm presented in this thesis for
disjunctions uses the fact that in order for individual variables not to be weak hypotheses
themselves, the bad negative examples must in some sense “point” in the direction of the
target vector (they must have a high dot-product with the target function vector if we view
the disjunction as a linear threshold function) to a substantially greater extent than the
positive examples do. E.g., if a typical positive example has t relevant variables set to 1,
then the typical bad negative example must have t/OPT relevant variables set to 1. For
the case of majority-vote functions, the difficulty with this approach is that instead all we
can say is that if the positive examples have r/2 + t relevant variables set to 1, then the
typical bad negative examples should have at least r/2 + t/OPT relevant variables set to
1, which might not be such a distinction in a multiplicative sense.

On a more general note, our work here uses somewhat non-traditional hypotheses, by
using the examples themselves to define “slices” of the data (focusing on those examples
with no more than a certain θ dot-product with some given negative example). Perhaps
this might be useful for other learning problems.

In Chapter 8 we introduced the local membership query model, with the goal of study-
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ing query algorithms that may be useful in practice. With the rise of crowdsourcing tools,
it is increasingly possible to get human labelers for a variety of tasks. Thus, member-
ship queries beyond the standard active learning paradigm could prove to be useful to
increase the efficiency and accuracy of learning. In order to make use of human labelers,
it is necessary to make queries that make sense to them. In some ways, our algorithms
can be understood as searching for higher-dimensional (deeper) features using queries that
modify the examples locally.

Our model of local membership queries is also a very natural and simple theoretical
model. There are several interesting open questions: (i) can the class of t-leaf decision
trees (without depth restriction) be learned under the class of log-Lipschitz distributions?
(ii) is the class of DNF formulas learnable in polynomial time, at least under the uniform
distribution? Another interesting question is whether a general purpose boosting algorithm
exists that only uses α-log-Lipschitz distributions. This looks difficult since most boosting
algorithms decrease weights of points substantially1.

It is also interesting to see whether agnostic learning of any interesting concept classes
is possible in this learning model. Our results show that constant local queries are not use-
ful for agnostic learning. However canO(log(n))-local queries help in learningO(log(n))-
sized parities in the agnostic setting? We observe that learning the class ofO(log(n))-sized
parities and the class of decision-trees is equivalent in the agnostic learning setting (even
under locally smooth distributions), since weak and strong agnostic learning is equivalent
even with respect to a fixed distribution (Kalai and Kanade [2009], Feldman [2010]). Ag-
nostic learning O(log(n))-sized parities (even with respect to a fixed distribution) would
also imply (PAC) learning DNF in our model with local membership queries (with respect
to the same distribution) (Kalai et al. [2009a]).

1Note that Smooth-boosting Servedio [2003] does not use distributions that are log-Lipschitz.
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