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Figure 1. Emotion awareness: crucial for vehicle interaction with passengers and road users. 

Abstract 

EVA1 is describing a new class of emotion-aware autonomous 

systems delivering intelligent personal assistant functionalities. 

EVA requires a multi-disciplinary approach, combining a number 

of critical building blocks into a cybernetics systems/software ar-

chitecture: emotion aware systems and algorithms, multimodal 

interaction design, cognitive modelling, decision making and re-

commender systems, emotion sensing as feedback for learning, 

and distributed (edge) computing delivering cognitive services. 

Affective Computing •Emotion Awareness; Sensing and Sen-

sor Fusion; Emotion Recognition/Analysis •Cognitive Systems; 

                                                                 
1EVA – Emotion-aware Vehicle Assistant. 
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1 Introduction 

Intelligent personal assistants (aka virtual assistants), smart 

robots and conversational bots are rapidly finding their way into 

our daily lives: they control our smart homes, they answer our 

questions, and they assist us with shopping or finding local 
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services. Future generations of these devices are expected to go 

beyond simply being a multi-use remote control activated via 

voice commands. Intelligent devices should be able to learn from 

our behavior, deduce our preferences and intentions, and based 

on this knowledge, make decisions and interact with us in a 

natural manner. Extending this functionality to the car will allow 

for an optimal driving experience, since hands-free, natural 

interaction allows for entertainment and productivity without 

compromising safe vehicle operation. 

Some of today’s cars already provide more intuitive voice in-

teraction and gesture commands, and visionary prototype trans-

portation devices display advanced capabilities to detect 

passengers’ emotions and intents during guided conversations 

[1,2]. As depicted in Figure 1, future vehicle interiors are foreseen 

to become much more spacious than today’s, making it on the one 

hand impossible to apply current control paradigms focused on 

direct haptic interaction. Quite plainly, this may not be possible 

any more, as buttons and touchscreens will not be conveniently 

reachable from a respective seating position. With higher degrees 

of automation, it may also not be necessary any more, as vehicles 

drive in fully autonomous mode. What will be of much higher 

relevance then is that the vehicle displays empathic capabilities to 

ensure passengers’ wellbeing. Also depicted in Figure 1 is the need 

for these autonomous vehicles to communicate to and interact 

with vulnerable road users outside the vehicle. Although the 

picture being an artistic interpretation of this need, it clearly 

illustrates the difficulties addressing it. As in the vehicle’s interior, 

also on the exterior a multi-modal approach will be necessary for 

interacting with other road users – just that here, the possibilities 

are much more limited, due to traffic regulations, environmental 

conditions, user’s attention spans and emission restrictions. 

Whether visual information projected from the vehicle’s exterior 

parts is preferable for this purpose remains to be investigated. 

However, before achieving truly natural, intuitive interaction, 

intelligent systems have to overcome several challenges. First, 

they have to learn to understand the different aspects and 

subtleties of human communication (non-verbal cues from 

gestures, facial expressions, tonality, gaze, etc.) and to be aware of 

the user’s current emotional state.  

The intelligent system has to be able to understand context, in 

order to react to a simple question such as “What was that?” This 

question, simple as it may seem at first glance, bears the 

contextual challenge in a nutshell. It may refer to a number of 

events or real-world entities, such as objects, sounds, movement, 

or sights. It may refer to the immediate context of the car and the 

activities within (such as unusual sounds, flashing lights, 

warnings, etc.). It may refer to its vicinity and the traffic situation 

unfolding around it (such as another car driving by, unusual 

behavior of other road users, or just the rare pothole). Or it may 

yet refer further to the greater environment such as buildings, 

billboards, or spectacular sights. To answer this question, humans 

usually intuitively infer from a very rich context.  

This context has to be extracted from relevant environmental 

information (sights and objects, sound, car sensor input, 

intonation voice and sentiment of language, direction of gaze, and 

gestures amongst others) as well as known and learnt information 

about the subject’s experience, knowledge, usage history, and 

from other intelligent devices. 

To increase relevance, the intelligent assistant needs to 

become emotionally aware und understand whether the question 

was uttered in a frightened, curious, or annoyed tonality. Beyond 

generating answers based on deduced knowledge, maintaining a 

conversational context and verbalizing actions, the interaction 

between users and assistant becomes most challenging when 

there is no verbalization or when verbalization alone just is not 

sufficient to generate an appropriate reaction. Rightly assessing a 

potential intent and making recommendations or proactively 

automating wellbeing by sensing body functions and reading 

body language beyond pure voice analysis are key functionalities. 

Hence, EVA will be of prime importance for cars driving fully 

autonomously, as they might transport passengers who do not 

hold a driving license, much less understand the least about cars’ 

technology. 

2 Challenges and Focus Areas 

Pursuing intelligent, emotion-aware systems requires an 

interdisciplinary approach, by bringing together IoT technologies 

and protocols with multi-modal user interaction, human-centric 

emotion-aware design, knowledge base modeling, machine 

learning and intelligent recommender algorithms, as well as 

innovative approaches to privacy. Emotion-aware Vehicle 

Assistants – EVA – will require to develop mechanisms sensing 

user and context in real-time to facilitate reasoning and decision-

making for proactive, emotionally aware intelligent personal 

assistants. EVA will draw specific capabilities from the in-vehicle 

situation with all its sensory input. 

 

Figure 2. Systems architecture. 

The EVA assistant approach defines a multi-layered cognitive 

systems architecture (Figure 2). Note that it focussed on the 

vehicle interior scene and interaction with users, leaving out 

aspects of interaction with exterior users for the sake of 

simplicity. At its core is the cognitive model of the car users’ 

cognitive state. This model is being fed by an array of ingestion 

sensors, each sensing aspects of the users’ emotional state, such 

as voice tonality, language sentiment, body language, facial 

expression, and gestures, among others. These individual sensor 

feeds need to be fused into a consolidated cognitive model of the 

users’ affective state. Together with contextual information about 
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vehicle state and events, a world model of the exterior scene and 

additional IoT data streams available for interpreting it, and other 

contextual data, the system will be able to fuse a cognitive model 

for the understanding of the interior scene. Based on this 

understanding the vehicle will interact with its users through all 

available modes of interaction, or proactively provide 

recommendations for the delivery of cognitive services. Affective 

state information is used also in a feedback loop for the learning 

mechanisms in the personalization model behind the 

recommendation engine.  

Natural interaction and emotion awareness need to be realized 

by leveraging sensor semantics and processing them with 

advanced machine intelligence algorithms capable of interpreting 

the sensor data in real-time combined with background 

knowledge. Machine learning technologies are required to 

monitor user behavior, discriminate relevant patterns and treating 

the learnt knowledge with appropriate privacy mechanisms. 

Privacy preserving machine learning will have to be further 

developed to accommodate the diverse set of data sources and 

usage scenarios. For sheer volume, data will have to be treated in 

a federated learning approach. Combining local per-vehicle 

onboard learning with centralized cloud-based learning both at 

the user, vehicle, or fleet level will require distributed (edge) 

processing and analytics approaches.  

Overall, the system will need to act – and interact with the 

passenger – in a way such as to provide full transparency about 

what it is doing and why it is doing it. Thereby, passengers can 

grow sufficient trust to rely on the assistant confidently. The 

situation of (multiple) passengers sharing rides in autonomous 

vehicles require particular attention. 

The research challenge EVA poses is towards emotional 

awareness in autonomous systems with particular focus on in-

vehicle applications. The ultimate vision is an autonomous car, 

complemented with an intelligent assistant that naturally 

interacts with the user. It should have affective skills for 

emotional awareness and personalized pro-active behavior. It has 

to be capable of extending autonomously, based on a rich situative 

context analysis of vehicular sensor and world information from 

any IoT- and social media data stream. This requires a highly 

interdisciplinary approach. The vehicular domain is providing 

innovative applications and non-functional requirements driving 

novel approaches such as hybrid architectures with cognitive 

edge computing. We divide this research field into the categories 

briefly described hereafter. 

2.1 Emotion in Multi-Modal Interaction Design 

EVA should provide applications that drivers/occupants will 

integrate into their everyday driving context (both for manual and 

autonomous driving). To identify factors that govern this 

integration and adoption of emotion-aware assistants, methods 

need to be enhanced to collect user opinions in early stages of the 

system and software design process, building on the existing Co-

Constructing Stories method and related methods. Models 

predicting the adoption by target users will have to be developed 

and validated through evidence-based frameworks. These models 

direct the iterative development of actual applications. 

EVA will learn from the interactions with users and adapt to 

them in real-time. It will exploit dialogue management and 

behavior generation based on reinforcement learning. Assistive 

dialogue systems have already employed such techniques. [12] 

However, in many scenarios the rapidly increasing state space 

makes a straightforward learning approach computationally 

impractical. Studies show that a permanent stream of requests 

upsets users and distracts them from their current activities. 

Hence, novel dialog system design will have to explore techniques 

for policy optimization based on deep reinforcement learning, 

taking into account user’s emotions as implicit reinforcement 

signals that help the assistant learn users' preferences and enable 

it to adapt the dialog’s content, form and modalities to the user’s 

current needs. 

Novel system design approaches are required with respect to 

active learning, which – in the context of data annotation – is to 

select from large pools of unlabeled data those instances that are 

the most informative ones for the task being modeled, and 

subsequently query a human or machine annotator for labeling. 

Previous research focused on desktop-based settings processing 

previously recorded data offline. Further work is to investigate 

how to make use of active learning in an interactive setting with 

the automotive assistant. The EVA assistant has to decide when it 

is a good time to interrupt the user and afterwards to update the 

model on the fly. Furthermore, users do not like to serve as a pure 

data provider. Hence, the EVA approach should develop 

probabilistic methods to minimize the costs for collecting data, 

visualization and explanation strategies that make the inner 

workings of the machine learning process more transparent, and 

federate machine-learning techniques that keep all training data 

on the user’s private device. 

Smart interaction techniques need to be devised that allow for 

rich, multi-modal interaction between the user and the system and 

that allow easy switching between the focus and periphery of 

attention, within the constraints imposed by the context. While 

(embodied) conversational agents have long been considered a 

promising ally for the vehicular context, from an interaction 

perspective such conversational agents raise serious concerns 

along a number of dimensions (e.g., social, ease of use, 

obtrusiveness), so that extending the concept for EVA must not 

narrowly focus on conversational agents but draw from multiple 

modalities for exchanging information. A model integrating task, 

context and user characteristics is established, predicting the 

suitability of different interaction techniques and giving direction 

to user interface design for different applications. 

2.2 Sensor Technologies and Emotion Sensing 

Sensing human body posture and activity, emotion and cognitive 

state in vehicles poses a number of complex challenges, such as 

sensor arrangement in limited space, unclear lightning conditions, 

and required separation between body and unknown distractor 

objects, noisy sensing environments, high-dynamic range of ligh-

ting conditions and restrictions on active lighting due to driver 

distraction reasons. Moreover, to effectively sense emotional con-

text and infer emotional states, one needs to observe human 

signals and sense fast human activity (such as pointing or waving 
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gestures) with a high spatial and temporal resolution. This is es-

pecially true for gestures and mimics, as very casual and transient 

signals greatly contribute to the understanding of the actual 

emotional context of a situation [8, 9].  

Here, novel event-based vision sensors provide multiple ad-

vantages over traditional camera technology for emotional state 

sensing and for high-speed human position and activity tracking 

in a driving as well as a passenger context. In particular, high tem-

poral responsiveness, drastically reduced data rates in typical car-

indoor scenes and insensitivity over large range of illumination 

display properties relevant to the challenging vehicular envi-

ronment. Combined with novel algorithms for robust tracking of 

facial features from event-based real-time data, and body and limb 

poses in the constrained car-indoor environment this will yield 

descriptions of emotional states. These novel event-based neuro-

morphic algorithms also pose new challenges to software 

architectures and the signal processing chains. 

Interactive learning approaches and non-invasive (in seating, 

in vehicle interior) monitoring will allow the EVA assistant to 

learn from positional and embodied interactions with which end-

users adapt to situations. It will learn what individuals like and 

dislike, and adapt content, form and modalities as information 

garnered from the embodied, positional and gestural information 

and address the end user’s continually changing needs and 

preferences. The situational context will take into account prior 

knowledge, purpose of use, gender preferences and will log use 

and adapt accordingly. 

Current state-of-the-art automatic emotion detection systems can 

achieve near human level of performance when predicting 

emotions. However, such systems generally rely on resource-

heavy deep learning [10, 11]. The convolutional and recurrent 

neural network topologies generally used in contemporary 

emotion detection systems can have connection numbers mea-

suring in the billions, and require sizable amounts of memory and 

energy. While there have been some research efforts into 

designing emotion detection system capable of running natively 

in smart or embedded devices [13], the vast majority of research 

into emotion detection only consider performance metrics 

relating to system accuracy. One such approach to reduce run-

time, and computational resources in emotion detection is to 

explore spiking-based neuromorphic systems, both at the sensor 

[14] and analytic [15] phases of emotion detection. Despite 

offering the potential of being faster, more robust to noise, and 

more computationally efficient when compared to conventional 

methods, neuromorphic systems have yet to be realized for 

emotion detection. 

2.3 Emotion-aware Cognitive Systems 

The impact of drivers’ emotional states on safety and joy are well 

known. What is less known is how to take information from all 

type of available sensors, such as biofeedback (e.g., HR, HRV, 

GSR), visual (e.g., facial images), and car-specific (e.g., steering 

wheel, acceleration) sensors and use them to design a precise, 

person-centric controlling system. We consider three main phases 

in the research: data collection, labeling, results assessment, and 

metric development; designing a recommendation system with 

limited data and sensors; and finally, designing a large-scale 

recommendation system using state-of-the-art machine learning 

and control algorithms. 

The customer acceptance of future automated vehicles will 

strongly depend on vehicles to drive considering drivers’ or 

passengers’ emotions. Early control mechanisms have been 

mostly studied to reach a so-called ‘string stability’ between 

Automated Cruise Controlled ACC vehicles or have been 

enhanced to accommodate long-term driver profiles [6]. The EVA 

assistant will monitor and detect the emotional state of drivers 

and passengers and accordingly need to provide appropriate 

mitigation strategies. Cooperative trajectory planning adapted to 

the identified emotional states is expected to be a major mitigation 

strategy. Integrating long-term driving profiles in ACC or 

Cooperative-ACC controllers will not be sufficient but need to be 

capable to adapt to short-term emotions in real-time. Cooperation 

between various individual EVA assistant profiles will be critical 

to resolve conflicts and design cooperative emotion-aware 

trajectories.  

Humans continuously adapt their speech production to the 

communicative context, which is one of the keys to efficient and 

fluent spoken interaction that humans excel at. Speech synthesis, 

in contrast, is remarkably static. While the output quality of 

synthetic speech has increased tremendously in the past years, 

and has reached a point where it in many cases is 

indistinguishable from a human voice, current TTS systems are 

essentially oblivious to the context in which they operate. For 

smooth and efficient spoken in-vehicle interaction, it is highly 

desirable to have a speech synthesizer that is able to adapt its 

output to the context. Research into speaking style variation in 

TTS has focused primarily on synthesis of expressive speech, 

which in most cases means a fixed set of pre-defined emotions. 

This is too restrictive for most real-world applications [4]. Hence, 

leveraging recent improvements in DNN-based synthesis, the 

EVA assistant design is to add continuous control over several 

paralinguistic parameters, such as the ones described above, also 

allowing speech output generation to be directly conditioned on 

contextual data.  Existing datasets may need to be amended with 

newly recorded data that contains the desired speaking style 

variations.  

EVA’s intelligent personal recommender system is based on 

advanced machine learning models. The models are trained using 

state of the art algorithms, which – while providing 

unprecedented performance – produce outputs that are often 

difficult to explain or interpret. Explicability and interpretability 

are important for enabling trust of users for a system. Our aim is 

to research techniques and approaches for providing insight into 

the models learnt using deep networks in the context of proactive 

recommendation. Due to the lack of intermediate information or 

decision in deep architecture, the final result comes without any 

particular explanation, which is probably fine when the system is 

accurate or when the produced output follows human intuition 

but not when an error occurred. In such case, it is important to 

know how the decision was made, in order to identify what caused 

the erroneous prediction/classification. 
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2.4 Cognitive IoT and Service Delivery  

Personal assistants aim to generate personalized experience based 

on a user profile and contextual information. For example, depen-

ding on the weather, the location, the time of day or the season in 

the year, and the user preferences – a personal assistant will 

respond differently to a simple request such as "please, make a 

reservation in a near-by restaurant." The intelligent personal 

assistant should take into account the time, user preferences, who 

the user is eating with and naturally the set of restaurants nearby 

the current location, destination or any points in the shortest 

journey of the user for answering this question. 

It is well established that edge cloud may represent a key en-

abler for low-latency-oriented applications, such as automotive 

industry and ITS. These types of service require ultra-low latency 

and reliable data analytics solutions that rely in real-time on 

heterogeneous data gathered from the ITS network and the 

vehicle environments (including environment sensors and 

emotional sensors). [5] Locating the cloud service at the network 

edge will considerably reduce the latency access to remote 

applications, like data analytics. Indeed, this may require low-

latency access to the data analytic application located in the edge 

cloud to react to any urgency, such as heart failure. EVA will rely 

on the edge cloud to guarantee low latency as well as reliability 

for ITS applications.  

EVA will devise mechanisms to deploy distributed analytic 

applications over the edge, advanced algorithms, based on multi-

criteria combinatorial optimization and machine learning to 

decide the placement of an analytical application.  Algorithms, 

which decide dynamically to duplicate an application to in-car 

fog, by predicting when the vehicle will lose connection or 

entering an area with bad connection. 

2.5 Privacy and Human Factors  

For users to accept the intelligent personal assistant provided by 

EVA, they need to be given reasonable guarantees that it will not 

pose significant threats to their privacy; i.e. that the data collected 

remain confidential and under the control of the users. While 

privacy-preserving machine learning has been studied in the past 

in the context of anonymous databases (differential privacy) or 

public database releases (privacy-preserving data mining), EVA 

offers significantly new challenges mainly because of the large 

amount of produced data, the existence of multiple data sources, 

and the necessity to use users’ data by several authorized parties. 

In EVA, we will investigate customized privacy primitives based 

on advanced cryptographic techniques such as homomorphic 

encryption or secure multi-party computation that would enable 

the processing of the data while being encrypted. In order to 

integrate practical cryptographic tools, the underlying machine 

learning algorithm may sometimes be approximated into low 

degree polynomials. Therefore, the goal is to achieve a high 

degree of privacy (thus complying with the upcoming General 

Data Protection Regulation GDPR) without sacrificing utility 

(accuracy) too much. 

While privacy may be receiving much attention as of now, it 

is essential to keep investigating human factors and ethical 

questions of any kind, since they will be crucial for the adoption 

of EVA and critically influence system design [7]. 

3 Conclusions 

In this paper we present a multi-disciplinary approach to the 

future design of emotion-aware autonomous systems. A 

combination of multi-modal user interaction design approaches, 

advanced sensing with high temporal sensitivity, elaborate 

federated machine learning, distributed edge processing, 

cognitive modelling and cybernetic system design principles 

govern that approach. A layered architecture will provide for the 

delivery of cognitive services based on personalization 

information gathered from users’ interaction with the system. 

That will allow for a pro-active mobility experience. 
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