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Summary 

Gene Regulatory Networks are models of genes and gene interactions at the expression 
level. The advent of microarray technology has challenged computer scientists to develop 
better algorithms for modeling the underlying regulatory relationship in between the 
genes. Fuzzy system has an ability to search microarray datasets for activator/repressor 
regulatory relationship. In this paper, we present a fuzzy reasoning model based on the 
Fuzzy Petri Net. The model considers the regulatory triplets by means of predicting 
changes in expression level of the target based on input expression level.  This method 
eliminates possible false predictions from the classical fuzzy model thereby allowing a 
wider search space for inferring regulatory relationship. Through formalization of fuzzy 
reasoning, we propose an approach to construct a rule-based reasoning system. The 
experimental results show the proposed approach is feasible and acceptable to predict 
changes in expression level of the target gene.   

1 Introduction 

Gene regulatory networks control biological functions by regulating the level of gene 
expression. Discovering and understanding the complex causal relationships within gene 
regulatory networks has become a major issue in systems biology, computational biology and 
bioinformatics. The benefits of characterizing gene interaction are many; for example, the 
effects of drugs on a regulatory pathway can be found, the development of cancer in a cell can 
be tracked, etc.  DNA microarray experiments today allow to monitor the output of gene 
regulatory networks by measuring the gene expression levels of thousands of genes [1]. 
Several methods have been proposed to develop maps of gene interaction, including Bayesian 
networks [2], dynamic Bayesian networks with hidden Markov model [3], and Boolean 
networks [4]. More recently, neural networks have also been applied to the problem of gene 
expression data analysis (eg. [5], [6]). Woolf and Wang [7] introduced a fuzzy logic approach 
to analyse the activator/repressor relationship of gene interaction using a normalized subset of 
Saccharomyces cerevisiae data [8]. 

They applied every possible combination of activators and repressors for each gene and the 
output from the model was compared to the expression levels of the remaining genes. Since 
gene expression levels are qualitatively classified into low, medium and high states to a 
varying degree based on a set of membership functions. Genes are then paired into an 
activator and repressor, and this gene pair determines the predicted target gene expression 
values based on a set of heuristic rules. Since a fuzzy logic algorithm [7] searches a 
microarray dataset for regulatory triplets consisting of activator, repressor and target gene. 
                                                 
* To whom correspondence should be addressed. Email: raed.inf@gmail.com 
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The rule-based system has played an important role in such an expert system. Especially in an 
uncertain information environment, the rule-based system must have the capability of 
performing fuzzy reasoning which is based on the fuzzy sets foundation [9]. Several existing 
work puts emphasis on details of actual implementation of fuzzy system, and lacks formal 
specifications of fuzzy reasoning.  

Modeling and simulation methods provided by systems theory can help improving the level of 
understanding of biological phenomena, [10]. In particular, Petri nets are becoming the 
reference modeling formalism for GRNs (see, e.g., [11, 12, 13, 14]): activation and inhibition 
of gene activity is intrinsically an on/off mechanism, and the dynamics governing proteins 
concentration are described by hybrid Petri nets (HPNs), while the activation and the 
deactivation of these dynamics are triggered by discrete switches encoding protein 
concentration reaching some threshold. Fuzzy Petri net (FPN), which combines fuzzy logic 
with Petri net, is useful tool in dealing with uncertain and incomplete information. 

In this paper, we introduce and motivate a new modeling approach fuzzy Petri net which 
provides a powerful and intuitive tool for investigating biological processes and systems. We 
then apply this method to predict changes in expression level of the target gene. Since every 
triplet of genes (one as the activator, one as an repressor, and one as the target gene) is 
checked, in our model. With difference from those existing system, we formalize the fuzzy 
reasoning mechanism with Fuzzy Petri Net [15]. With the FPN’s graphical nature and 
mathematical foundation, we visualize the structure of a rule-based fuzzy reasoning system, 
and make the model relatively simple and legible.  

In an attempt to find new applications and stimulate new research topics, researchers such as 
[16] and [17] combined fuzzy theory and the basic Petri net to form a new model and define 
the associated operations of fuzzy Petri net in modeling biological processes. We present a 
more complete and efficient model for rule-based reasoning system modeled as FPN. The 
model is developed to simulate the inference process from the antecedent to the consequent 
propositions. Also, we modify fuzzy Petri nets to model gene regulatory network with fuzzy 
logic. Our ultimate goal is to develop a model that is similar to, but simpler than, classical 
fuzzy models (see [1, 7] for instance), and that has the power to perform predicate logic. 

The paper is structured as follows. Section 2 introduces a gene regulatory network. Section 3 
introduces the definition of Petri nets and fuzzy Petri nets. Section 4 describes the process of 
changes in expression values. Section 5 describes the FPN model based specifications of 
fuzzy reasoning rules and procedure of reasoning. Finally, Section 6 concludes the paper and 
points out directions for future work. 

2 Gene regulatory network 

Generally, a genetic network can be expressed by a set of nonlinear differential equations with 
each gene expression level as variables [18]. The accuracy of this design depends on the 
accuracy of the data in terms of concentrations, rate constants, and expression levels [19]. The 
expression level of gene i at time instant t+1 is given by   

 ))(()1( txftx ii =+  

where )1( +txi is the expression level (mRNA concentration) of gene i at time instant t + 1, 

x(t) is the vector of expression  levels of all genes at time instant t ,fi is the function that 
determines the expression level of gene i from the previous expression values of all genes. 
Note that the function fi is static, without altering during simulation. Although the vector that 
holds values of all genes is the parameter of the function fi, it takes in practice only the genes 
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that control the gene i . In most cases, the expression function fi uses only a couple of genes’ 
values. For instance, the expression function of the gene 3 in Fig. 1 is 

))((3 txf ≡ ))(),(( 123 txtxf  

as the gene 3 receives regulation from gene 1, and gene 2. However, this model indicates that 
the expression level of gene 3    is directly influenced be expression level of gene 1 and gene 
2. 

 
Fig. 1: Generalized GRN model 

We can obtain mRNA concentrations of gene xi(t) at time t, but do not know the expression of 
fi(x(t)) ,i.e., we do not know the interaction relation between gene xi(t). To study the genetic 
regulatory network, we should obtain the expression of fi(x(t)), according to the microarray 
data. In fact, it is impossible to find the exact fi(x(t)). However, many people have become 
aware that the real world is not linear quadratic and that many situations can not be modeled 
accurately by mathematically tractable equations [20, 21]. Combining with Petri net and 
knowledge representation, a Fuzzy Petri Nets can be used to depict fuzzy generating rules that 
can be taken as rules of fuzzy relationships between two propositions [22, 23]. So we will 
construct a fuzzy system according to the microarray data in different time points, and make 
the fuzzy system universal approximator of fi(x(t)). 

3 A Petri Nets and Fuzzy Petri Nets Review Stage 

3.1 Petri Nets 

A Petri net is a directed, weighted, bipartite graph consisting of two kinds of nodes, called 
places (Pi) and transitions (Tj), where arcs are either from a place to a transition or from a 
transition to a place [24]. Murata has formally defined Petri nets as a 5-tuple [25]: PN = (P, T, 
F, W, M0), where P = {P1, P2, …, Pm} is a finite set of places, T = {t1, t2,… , tn} is a finite set 

of transitions, F ⊆  (P ×T )∪(T ×P) is a set of arcs, W : F → {1, 2, 3, …,} is a weight function, 

and M0 : P → {1, 2, 3, …,} is the initial marking. A marking M is an m-vector, 
{M(P1),…,M(Pm)}, where M(Pi) denotes the number of the tokens in place Pi. The incidence 
matrix A = [aij] is a n×m matrix of integers and its typical entry is defined by aij = aij

+ - a ij
−, 

where aij
+ is the weight of the arc from a transition ti to its output place Pj, and a ij

− is the 
weight of the arc to a transition ti from its input place Pj .The reachability set R(M0) of a Petri 
net is defined as the set of all possible markings reachable from M0. Some notations are 
introduced as follows: •tj denotes the input places of tj, tj• denotes the output places of tj, •Pi 
denotes the input transitions of Pi, and Pi• denotes the output transitions of Pi. Because PNs 
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(ordinary Petri nets)cannot deal with vague or fuzzy information such as “very good“ and 
“healthy” several kinds of Fuzzy Petri Nets (FPNs) have been introduced [15]. They are used 
for fuzzy knowledge representation and reasoning. A FPN differs from a PN only in 
markings, the firing rule, and possible-token locations. In this paper, we use the FPNs defined 
in [26]. 

3.2 Definition of Fuzzy Petri nets  

FPN expanded from a Petri net is a bipartite graph that has place and transition nodes like the 
Petri net. However, in FPN a token incorporated with a place is associated with a real value 
between 0 and 1; a transition is associated with a certain factor (CF) between 0 and 1. Fuzzy 
Petri net is a promising modeling tool for expert systems, and it has shown itself to be suitable 
for fuzzy knowledge representation and reasoning. In order to capture more information of 
modeling gene regulatory networks, many authors have developed FPNs, for example, 8-tuple 
[15], 13-tuple [20], and 9-tuple [26]. As shown in [26], a fuzzy Petri net structure is defined as 
9-tuple: 

 

FPN = (P, T, D, I, O, f, α, β, λ) where: 

P = {pl, p2 , ..., pn} is a finite set of places, corresponding to the propositions of FPRs; 

T = {tl, t2 , ..., tn} is a finite set of transitions, P ∩T = Ø , corresponding to the execution of 
FPRs; 

D = {d1, d2 , ..., dn} is a finite set of propositions of  FPRs. P ∩ T ∩D = Ø, |P | =| D |, di (i= 
1,2,..., n) denotes the proposition that interprets fuzzy linguistic variables, such as: “low” 
“medium” “high”, as in our model; 

I : is an input incidence matrix; 

O : is an output incidence matrix; 

f = {µ1, µ 2 ,..., µm}  where µi denotes the certainty factor (CF) of Ri , which indicates the 
reliability of the rule Ri , and µi∈[0,1]; 

α : P → [0,1] is the function which assigns a token value between zero and one to each place;  

β : P → D is an association function, a bijective mapping from places to propositions. 

λ : T→ [0, 1] is the function which assigns a threshold λi between zero and one to a transition 
ti; 

 

By carefully connecting related place and assigning reasonable values of certainty factors to 
transitions, we can come up with a fuzzy Petri net that can make decisions based on the 
expertise we gave it during its construction. 

There are a significant number of generalizations of Petri nets into the domain of fuzzy sets; 
most of these approaches are focused on modeling the mechanisms of approximate reasoning. 
The primary thrust of these attempts is in a proper representation of the semantics of the 
underlying reasoning mechanisms. For the limitations, fuzzy Petri net may be not suitable to 
parallel reasoning, such as in [16]. 
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3.3 Definition of pre-set and post-set 

1) pre-set: ∀x∈ T ∪P,  •x ={y| (y,x) ∈ F} is called the pre-set of x ; 

2) post-set: ∀x∈ T ∪P,  x• ={z| (x,z) ∈ F} is called the post-set of x ; 

3.4 Construction of Input Incidence Matrix I and Output Incidence Matrix O 

Assuming that there are m places, n transitions in the fuzzy Petri net, we have  

 

Input incidence matrix Im×n : 

                                  I= (aij) m×n 

                                                         ( i= 1,2,…..,m;  j=1,2,….,n ) 

                 where  

1        pi ∈
•tj & pi ∉  t•

j                                    

                        aij  =   

                                 0                          others 

                               

                        aij =  1 means that there is an arc connecting place pi to transition tj;  

                        aij =  0 means that there is not an arc connecting place pi to transition tj; 

 

Output incidence matrix  Om×n : 

                                     O = (bij) m×n 

                                                               ( i= 1,2,…..,m;   j=1,2,….,n ) 

             

                  where  

1        pi ∈t•
j & pi ∉ •tj                                   

                        bij =   

                                 0                          others 

 

                       bij =  1 represents that there is an arc connecting transition tj to place pi; 

                       bij =  0 means that there is not an arc connecting transition tj to place pi; 

3.5 The concept of inhibition arc 

Pedrycz and Gomide [27] provides a novel scheme for machine learning using fuzzy Petri 
nets. Their formulation is based on the usual definition of t-and s-norms. A transition ti fires if 
its degree of firing exceeds its threshold λi.  

]))([( jjj
n

ij swpTz αλ →= ≠           
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where, “→” denoted a fuzzy implication. An important knowledge representation addition 
pertains to inhibitory arcs (connections) occurring within the net [27]. The role of this arc is to 
model an inhibitory action coming from a certain input place. In the two-valued version of the 
net these places while carrying a nonzero number of tokens prevent the associated transitions 
from firing. In the framework of the fuzzy Petri net the inhibitory action is completed by 
considering a complement of the marking of the inhibitory place see Fig 2.  

This complement ix , contributes to the following expression describing the level of firing z.  

 
Fig. 2: Illustrating inhibition in a fuzzy Petri net 

 

−+
≠ =→→= tzzswptswpTz iijjjj
n

ij ]))([(]}))({[( αλαλ  

where   

 ]))([( iii swpz αλ →=−                                                          (Inhibitory component)   

and 

 ]))([( jjj
n

ij swpTz αλ →= ≠
+                                                  (Excitatory component)  

  

Observe that for wi = 0 and λi= 1, the inhibitory effect z¯  equals directly )( ipα hence )( ipα = 

1 completely prohibits the transition from firing. For lower level of marking )( ipα  this 

prohibition effect becomes limited. So to understand the inhibitory mechanism, and make that 
possible to implement our model to predict changes in target expression level, we set wi =0 
and λi=0. 

3.6 Firing Principles of Transitions 

A transition can be fired under the condition that the degrees of the truth of all its input places 
are not null and greater than certain threshold values. We follow the common firing principle 
in [28]. The degree of truth of an output place is equal to the minimum of the degrees of the 
input places multiplying the certainty factor (CF) of the transition. Once transition tj meets its 
firing conditions, the degrees of truth of the places under the state marking M (k) are computed 
by: 

Min { M (k) (
•tj) } × uj       pi ∈t•

j & pi ∉ •tj                       

M (k) (pi) =  

                    M (k) (pi)                                              others  
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         where  

                  tj ∈ T,  j = 1,2,...,n ; 

                  pi∈ P,  i=  1,2,..., m ; 

 

                 M (k) (pi) denoted the degree of truth of the pi under the state marking  M (k); 

                 k denoted the times of iteration; 

                 uj denoted the certainty factor (CF) of the jth rule. 

 

Firing fuzzy production rules can be considered as firing transitions. 

3.7 Rule representation for fuzzy reasoning 

Production rules (PRs) are suitable to express expert knowledge. In most cases, collecting 
data in a precise way is difficult; FPRs are thus adopted, which have the ability of process 
uncertain or incomplete knowledge [16, 26, 29]. For these reasons, inference rules are 
obtained in the form of FPRs, enhancing reasoning capacity. FPNs are built on the basis of 
FPRs. 

3.7.1 Fuzzy Production Rules (FPRs) 

Let R be a set of fuzzy production rules: 

R = {R1, R2,..., Rm}, and a fuzzy production rule Ri is shown as follows [30]: 

         Ri : If dj then dk , (CF = µi ) 

IF all propositions in the antecedent dj have value true THEN the propositions in the 
consequent dk are true. 

where 

di = { dj1, dj2,..., dj n}, represents the antecedent part which comprises of one or more 
propositions connected by either “AND” or “OR” in the rule; 

dk = { dk1, dk2,..., dkn } represents the consequent part which comprises of one or more 
propositions connected by “AND” in the rule; 

µ i denotes the certainty factor (CFi ) of the rule Ri . Generally, FPRs are classified into four 
types as follows: 

 

Type 1: If dj, then dk, (CF = µ),  

Type 2: IF djl and dj2 and … and djn THEN dk (CF = µ),  

Type 3: IF dj1 or dj2 or… or djn, THEN dk (CF = µ),  

Type 4: IF dj THEN dk1 and dk2 and … and dkn (CF = µ),  
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FPN models of the 4 types of composite fuzzy production rules are shown in Fig. 3. Places 
(drawn as circles) represent entities or concentrations of a protein, mRNA, complex of 
proteins, metabolites, etc. Transitions (drawn as bars) represent biological processes like 
enzymatic reactions, transport, etc. Arcs represent dependencies of places and transitions or 
define which and how places are affected whenever a transition fires. 

 

 
Fig. 3: Fuzzy Petri net models of composite fuzzy production rules. Firing of Transitions in FPN. 
(a) Before firing transitions. (b) After firing transitions. 
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4 Process of changes in expression values 

The fuzzy predict changes in expression values of the target gene are based on fuzzy logic 
control theory. It consists of the following four steps: 

4.1 Defining the membership functions for the input and output 

Fuzzification consists of defining the membership function for the input and output as well as 
mapping from crisp data to fuzzy membership. In the process of changes in expression values 
we search a microarray dataset for regulatory triplets consisting of activator, repressor and 
target gene [7, 31]. Gene expression levels are first qualitatively classified into low, medium, 
and high states to a varying degree based on a set of fuzzy membership functions. Genes are 
then paired into an activator and repressor, and this gene pair determines the predicted target 
gene expression profile based on a set of heuristic rules. In this process we set the activator 
and repressor as input, with changes in target gene expression level as output. The fuzzy 
membership functions of activator and repressor are described in Fig.4 .In order to measure 
these input and output metadata universally, we normalize them into the same standard scale 
of [0, 1]. The activator and repressor gene are classified into three sets, respectively. The 
value of input data may belong to 1, 2 or 3 sets with corresponding membership degree. For 
example, 

µactivator_expression=low (0.375) = 0.25, µactivator_expression=medium (0.375) = 0.75, means the activator 
expression, 0.375 belongs to medium with confidence value (truth degree) of 75% while 25% 
belongs to low. 

 

 
Fig. 4: The fuzzy input membership functions as a function of a normalized gene expression 
level. 

 

The fuzzy membership function of the output, i.e. changes in target gene expression level is 
defined in Fig.5. It is represented with five levels or five sets with respect to fuzzy theory, 
namely Very low, Low, Medium, High, and Very high.  
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Fig. 5: The fuzzy membership function of output. 

 

4.2 Fuzzification 

Fuzzification consists of defining the membership function for the input and output as well as 
mapping from crisp values to fuzzy membership. Mapping a particular activator and repressor 
expression to the fuzzy membership correspondingly. By using the membership functions 
defined above, we translate the input crisp values of activator and repressor expression into a 
set of linguistic values and assign a membership degree for each linguistic value. 

4.3 Reasoning with fuzzy reasoning rules 

In our algorithm, input genes are drivers. The heuristic rules are constructed accordingly 
based on an activator/repressor regulatory logic. For example, if the activator and the 
repressor genes are qualitatively classified low, then the predicted change in the target 
expression level is considered Medium. In another case, if the activator is high and repressor 
is low, then the predicted change at target is a High equivalent to the activation input as the 
repressor is below threshold expression level. Similar heuristics are applied to construct the 
decision matrix shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Fuzzy decision matrix for predicting change in expression level of the target gene in an activator/ 
repressor regulatory relationship. 
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The reasoning engine performs decision-making based on the fuzzy logic reasoning rules with 
first order predicate logic. Each rule can be defined as an If-Then clause, which determines 
the linguistic value of output according to the linguistic values of input. Those fuzzy 
reasoning rules are shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

Fig. 7: Rules for reasoning 

 

4.4 Defuzzification 

In order to represent the global output variable in fuzzy Petri nets (for example, the change in 
target gene expression level has high, medium, or low) a defuzzification method is required to 
produce a non-fuzzy output (crisp value). In Fig. 8, firing transition T1, T2,…,T9 deposits token 
in places P7, P8, and P9 which can be defined as a defuzzification token and can be expressed 
mathematically by the “centre of gravity” method [32]. We adopt the “center of gravity” 
method as the defuzzification of the output predict change in target gene expression level 

Change_ target_ expression_level = 
[ ]

[ ]∑

∑

=

=

×

n

i

n

i
i

i

yi

1

1

μ

μ
                                   

where: 

• µ[i] is the height of output area from the i-th rule, 

• yi is the gravity’s horizontal coordinate of output area from the i-th rule, 

• n is the total number of matching rules for given values of each input dimension. 

 

After get the crisp value of the output, we map it into its fuzzy membership and get the 
linguistic value whose membership degree has the highest level for change in target gene 
expression level. 

5 FPN model to predict changes in target expression values 

In this paper, we introduce a novel fuzzy Petri net model to predict changes in expression 
values and infer causal relationship between genes.  

1. If activator is “Low” and repressor is “Low” then target shift is “Medium”  

2. If activator is “Low” and repressor is “Medium” then target shift is “Low”; 

3. If activator is “Low” and repressor is “High” then target shift is “Low”  

4. If activator is “Medium” and repressor is “Low” then target shift is “High”; 

5. If activator is “Medium” and repressor is “Medium” then target shift is “Medium”  

6. If activator is “Medium” and repressor is “High” then target shift is “Low”; 

7. If activator is “High” and repressor is “Low” then target shift is “High”  

8. If activator is “High” and repressor is “Medium” then target shift is “High”; 

9. If activator is “High” and repressor is “High” then target shift is “Medium”  

C
op

yr
ig

ht
 2

01
0 

T
he

 A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

Unauthenticated
Download Date | 2/26/20 6:02 AM



Journal of Integrative Bioinformatics, 7(1):113, 2010 http://journal.imbio.de 

doi:10.2390/biecoll-jib-2010-113  12 

Suppose the available activator expression value is 0.78, and the repressor expression value is 
0.3. For these values we will map the normalized expression values to the fuzzy input 
membership function defined in Fig. 4, the activator expression value, 0.78 is between 
“Medium” and “High” µActivator_expression=medium (0.78)=0.44, µActivator_expression=high (0.78)=0.56. 
The repressor expression value, 0.3 is between “Low” and “Medium”, µRepressor_expression=low 

(0.3) =0.38, µRepressor_expression=medium (0.3) =0.62.  

5.1 Constructing Petri Net model 

Fig. 8 shows how we realize the steps of fuzzy inference using the FPN structure as FPN = (P, 
T, D, I, O, f, α, β, λ), where 
 

P= {p1, p2 , p3 , p4 , p5 , p6 , p7 , p8 , p9}, 

T= { t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 }, 

 

 

 

 

 

 

 

 

 

 

 

The linguistic meaning for propositions together with certainty factor (i.e. CF=µ i) are listed in 
the table 1. Because we used our algorithm to search for Activator_Repressor_Target triplets, 
we expected to find the confidence degree of each initial rule usually depends on those 
experiences of experts.  

Therefore, these initial confidence degrees have been defined before the reasoning begins. 
Besides, the linguistic meaning of each proposition may have an effect on the confidence 
degree.  

We set the confidence degree of each rule as shown in Fig. 8. Therefore, the confidence 
degree vector CF=µi is 

 µi = {0.8, 0.6, 0.8, 0.7, 0.9, 0.95, 0.8, 0.99, 0.9}. 

As we computed the initial truth degree for each place (i.e. α(pi) =yi), the truth degree vector 
is 

α = {0, 0.44, 0.56, 0.38, 0.62, 0, 0, 0, 0}T. 

The initial marking vector is   

M0 ={1,1,1,1,1,1,0,0,0}T . 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 1 1 0 0 1 0 0 0 

1 0 0 0 1 0 0 0 1 

0 0 0 1 0 0 1 1 0 

0 0 0 0 0 0 0 0 0 

O =  

1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 1 1 1 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 
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Fig. 8: A FPN model 

 

Tab. 1: propositions and certainty factor for FPN Model 

 

 

 
  

Propositions Places Initial 
truth 
degree 

Initial 
marking 

Certainty 
factor 

Activator _Low P1 0 1 0.8 

Activator_Medium P2 0.44 1 0.6 

Activator _High P3 0.56 1 0.8 

Repressor_Low P4 0.38 1 0.7 

Repressor_Medium P5 0.62 1 0.9 

Repressor_High P6 0 1  0.95 

Target_Low P7 0 0 0.8 

Target_Medium P8 0 0  0.99 

Target_High P9 0 0 0.9 
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5.2 FPN reasoning 

The execution of FPN will change the truth degree vector (i.e. α(pi) =yi) and the marking 
vector M0. The procedure of execution of FPN is shown as follows. 

α(pi) = {0, 0.44, 0.56, 0.38, 0.62, 0, 0, 0.396, 0.392}T . 

M1 ={0,0,0,0,0,0,1,1,1}T . 

After the execution mentioned above, the change in target is got. Transfer the linguistic values 
into a crisp value according to “center of gravity”, see section 4. 

 

Change_Target_Expression_Level= 
392.0396.00

392.0396.00

++
×+×+× highmediumlow  

Change_Target_Expression_Level= 
392.0396.00

75.0392.05.0396.025.00

++
×+×+×  ≈ 0.62 

 

According to Fig. 5, the change target expression level, 0.62 is between “Medium” and 
“High”. Apparently, the change in target gene expression level belongs to “Medium”, because  
µChange_target_expression_level =medium  is much larger than µChange_target_expression_level =high . Hence, we 
decide the final change in target expression level as “Medium”. 

6 Conclusions 

In this work, a fuzzy Petri nets GRN model is proposed for searching activator/ repressor 
regulatory relationship between gene triplets in the microarray data. The model predicts 
changes in expression levels in the target gene caused due to possible regulation based on 
input expression levels. The genes that fit the model are more likely to exhibit activator/ 
repressor relationship. We propose a novel approach of fuzzy reasoning to predict changes in 
expression levels. The major features of our approach are:  (1) Since the FPN is a graphical 
tool, we are able to give a description of the typical procedure of fuzzy reasoning; (2) 
visualize the structure of a rule-based fuzzy reasoning system; (3) with the mathematical 
foundation of FPN, we construct the reasoning steps for FPN reasoning; and (4) Finally, we 
describe the FPN based modeling to predict changes in expression levels in the target gene to 
validates the feasibility of FPN model. With the definition of FPN and the procedure of FPN 
reasoning, some flaws of FPN based reasoning should be pointed out. In a FPN model, both 
the truth degree of a proposition and the confidence degree of a rule should be determined 
beforehand. The determination of these two degrees usually relies on experiences of experts, 
which induce some uncertainty in the reasoning. Further biological experiments are needed to 
determine the validity of the genetic interactions suggested by the model. 

For future work, we plan to integrate the proposed approach with neural network for modeling 
gene regulatory network. 
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