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Chapter 1

Introduction - Visual Analysis

There are immense opportunities in both existing and emerging applications enabled
by the use of vision networks. Many of the emerging smart environments incorporate
unobtrusive vision networks as one of the sensing technologies. Wearable and planted
sensors can provide more robust performance, but are hindered by their obtrusive
nature in not allowing the user enough freedom or naturalness for activities of daily-
life.

The vision that has been followed in the research depicted in this thesis has
been defined as Ambient Intelligence. Ambient Intelligence solutions use embedded
networks of different sensors to understand what individuals are doing daily, and
based on the patterns found, they adaptively provide personalized support to these
activities.

Monitoring people by vision networks has shown great potential. These networks
have multiple cameras providing their observations of a scene. The scene can consist
of vast areas due to having a distributed set of cameras, which from distance can
unobtrusively provide their observations. Based on these observations the vision
network can infer the appearance, location, activity or behavior of a person.

In building technology that is capable of observing people, many particular chal-
lenges are faced. People are a difficult category of deformable and adapting objects
to detect, follow and describe. There is a multitude of appearances due to personal
characteristics and clothing options. People perform even the same activities with
various gestures and changes in pace. All these differences between people are affected
by context such as the time of day and the surrounding environment.

Having the observations from many viewpoints creates a richness of data, but
this richness alone does not guarantee improved accuracy for a vision network. It
is the intelligent data fusion mechanisms that make the difference by increasing the
certainty in the decisions made, and by making properties visible that otherwise
would have not been noticed. Other issues include providing comparable, associated,
and aligned data in a synchronous manner. Therefore, the design of a vision net-
work that fully exploits the complementary nature of multi-sensor data by applying

3



4 CHAPTER 1. INTRODUCTION - VISUAL ANALYSIS

suitable fusion is a multi-faceted problem, which requires a systematic approach for
streamlining the design process and for achieving best possible results.

In this thesis a vision fusion framework is proposed for systematically approaching
the use of vision networks for providing user-centric services. The goal of the frame-
work is to provide a systematic way for designing, building and using vision networks
for monitoring people with great emphasis on the exploitation of fusion potential.
Many aspects of data fusion within vision networks are discussed, and experimental
results on fusion at image, feature, score and decision level are shown to highlight
the most crucial dependences in fusion. Based on these findings and the approaches
proven to be most efficient, the proposed vision fusion framework is showcased.

Section 1.1 starts this chapter by discussing the evolution of the technologies
that have enabled the use of vision networks. The benefits and challenges of vision
networks together with solutions provided by multi-sensor data fusion are discussed in
sections 1.2−1.3. This is followed by expanding on the aim of the vision networks for
ambient intelligence solutions, with special attention to aspects related to monitoring
people in sections 1.4 − 1.5. The introduction concludes in section 1.6 by providing
an overview of the thesis and its contributions. Throughout the thesis, the related
work is discussed with each related subtopic.

1.1 Enabling Technologies

Four fields especially have made it possible for vision networks to exist, and much
depends on the advances made in these fields on how and where vision networks will
be deployed in the future.

• computing

• wireless networking

• imaging

• artificial intelligence

The progress witnessed in computing and wireless networking provide vision networks
with the necessary resources for performing the required handling and transmission
of data. Imaging and artificial intelligence supply vision networks with the necessary
specialized tools for capturing the scene and understanding what has been captured.

Computing Alan Turing [1912-1954] is considered as the first person to introduce
and define many of the concepts related to computer science and artificial intelli-
gence. With the Turing machine in 1936 he provided the theoretical background for
computer algorithms and computation. The first computers built were huge in size
and weight, some of them weighing 50 tons, using 25 kW to perform only hundreds
of instructions per second. Even these elementary machines proved their worth,
first big success during WWII in breaking encrypted military communications. Sev-
eral inventions and new technologies such as vacuum tubes, and later transistors
with very-large-scale integration (VLSI) helped in creating smaller electronic parts,
smaller computers that had commercial credibility by the 1950s. 1970s introduced
us the microprocessor computers we know today. In 1993 Intel announced the first
Pentium processor of their x86 architecture. This processor accompanied computers
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weighing only few kilograms, using only few tens of Watts for operation, but was
putting out 60 million instructions per second.

Defined by Moore’s law, we have been able to predict reasonably well the available
computing power since 1965. The predictions have relied on the increased count of
transistors that manufactures have been able to place on the same circuit area. Lately,
engineers have introduced the use of more parallel computing solutions. However,
new technologies are needed for sustainable development. New approaches, such as
quantum qubit computing discussed by Deutsch in [1] and DNA-based computing
originally presented by Adleman in [2], are under development. One widely promoted
approach has been cloud computing [3], which helps in pushing the computation
requirements to a specific remote site (servers) while maintaining the light and slim
design of end-user devices.

The above described evolution of computing has made it possible for vision net-
works to rely on both heavy-load central video servers and light-load smart cameras,
a type of cameras that have a low-level image processing unit on-board. In this thesis
the real-time application experiments and multi-camera recordings would not have
been possible without the use of modern CPUs and GPUs.

Wireless Networking The origins of wireless data transmissions can be traced
back to Alexander Graham Bell. With a photophone device Bell was able to transmit
a normal human conversation on a beam of light on April 1880 [4]. During the 1900s
with the invention of radio, and later television broadcasts, antenna to antenna trans-
missions were vigorously developed. During the 1980s, fiber-optic communications
came into widespread use through the invention of Internet. As complementary tech-
nology for covering difficult and complex areas Ethernet-based local area networks
(LANs) were developed and deployed. Other small distance radio-channel based tech-
nologies such as Bluetooth were developed to satisfy transmission needs for energy-
aware devices. Earth-orbiting satellites which by connecting to stations/devices on
ground have created world-wide networks capable of relaying data across the globe.

We have reached a point in which there are various wireless technologies each suit-
able for a particular job, depending on the type of data and transmission distances.
Considering vision networks, the most recent development has been the deployment
of IP-cameras, each camera having its own unique IP-address for remotely access-
ing the video data. This has given unprecedented amount of freedom for deploying
networks of multiple cameras, and thus enabling a completely new set of applica-
tions possible by the use of vision networks. The freedom in placement of personal
computers and (IP)-cameras has been exploited throughout this thesis.

Imaging The most important technology for vision networks has been the evolution
of imaging sensors, cameras for both visible and non-visible light. Use of black and
white cameras can be traced back to 1903, when a 12 minutes long movie called The
Great Train Robbery was filmed. By 1930s, color was introduced to capturing scenes
in such classic movies as Gone With The Wind in 1939. During decades people
worked on capturing more and better colors through new camera standards in film-
making. American cinema introduced 3D films to its audience already in the 1950s,
technology relying on stereo-cameras and wearable glasses for creating an immersive
3D effect.
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Cameras can be divided into passive and active based on the imaging process.
In a passive camera, lens captures and focuses the light emitted by the scene onto
the internal image sensor formed by a pixel-grid. Light of the infra-red wave-lengths
can be used to detect heat levels in a scene; excellent for detecting warm bodies in
low-light situations. Cameras operating on visible light spectrum are nevertheless the
most widely spread devices. Active cameras introduce to the scene some additional
markers, usually by additional light source working jointly with the camera, when
capturing the scene and the range. Range imaging techniques such as time-of-flight [5]
and structured-light [6] have received wide interest due to improved capture of scene
geometry and depth in real-time.

This thesis has focused on studying passive RGB color-cameras functioning on
the visible light spectrum. Numerous types of passive color-cameras from cheap and
mid-price off-the-shelve web-cameras to more professional IP-cameras have operated
as visual sensors in the studied vision networks.

Artificial Intelligence Artificial Intelligence (AI) aims to create intelligent ma-
chines that are capable of perceiving, reasoning by processing data, and taking ac-
tion to achieve success. AI-related research was originally funded by governmental
institutions, such as U.S. Department of Defense. By 1980s simulated knowledge and
analytical skills based expert systems received commercial success. Starting from the
1990s artificial intelligence became a crucial part of the modern technology industry,
contributing heavily e.g. in logistics and data mining. Two especially important
fields for research within AI have been machine learning and machine perception.

The aim of machine learning is to train a computer in such a manner that it can
classify an observation to the correct category or class. The observations are given
usually by sensors. Two of the most common machine learning methods are super-
vised and unsupervised learning. In unsupervised learning computer finds patterns
in a stream of observations. In supervised learning the computer is provided with
the correct class labels. Many different models to machine learning have been intro-
duced, such as decision trees (DT), artificial neural networks (NN), support vector
machines (SVM), and probabilistic graphical models (PGM). Each approach finds
the most suitable model of its kind with regards to the analyzed statistics of the
data. DT, NN and SVM based classifiers infer the class based on the current obser-
vation. PGM classifiers study how the feature values change within a time interval
and based on this feature behavior assign the class label. Machine perception is the
ability of a machine to observe environments and objects by sensors, such as cameras
and microphones, and based on the observations make deductions on certain aspects
of the observed item, Once analyzing visual observations, this ability is referred to
as computer vision.

The research conducted in this thesis has applied various types of existing tools
for modeling, depending on the nature of the observation data. The computer vision
topics of object recognition and scene reconstruction have been of special interest.
Within object recognition especially object detection, pose estimation, and facial
recognition have been extremely useful.
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1.2 Vision Sensor Networks

A multitude of aspects can be observed by a single camera. However, there are
inherent limitations when relying on a single sensor for capturing a scene. A web-
cam e.g. works well in monitoring a person sitting on a chair working in front of a
computer, but as soon as the user leaves this hot-spot, he is out of the coverage area
of this otherwise perfectly functional camera. By having this drawback on coverage,
the user’s freedom is severely limited assuming he wants to be under continuous
monitoring. Another major drawback of using a single camera is the difficulty, and
occasionally impossibility, in dealing with occlusions and uncertainties.

Advantages
By deploying multiple cameras to observe the scene many of the drawbacks of single-
camera vision can be avoided or at least treated. The working range of the vision
network can accommodate a much wider area, by increasing the number of cameras.
A user can be given more freedom for his movements. And a greater understanding
of situations, such as proximity to others and social interaction, can be achieved.

The effect of noise sources or other non-interesting dynamic objects of the scene
can be mitigated, by having the possibility for intersecting observations from multiple
cameras, and for checking correspondences between the views.

Sometimes the scene might have an object, such as a opening and closing door,
that interfers with the visual observations of a view. With additional cameras the
robustness against the interference is increased, as some of the views are completely
unaffected by the interference.

An important appearance or behavior property might only be visible from a spe-
cific viewpoint. If the vision network would not have a camera providing observations
from that viewpoint, the occurrence of that important property would be missed. In
general, the resolution of a property is improved as multiple estimates are used to
refine the estimate with increasing accuracy.

Possibly the most crucial advantage comes in solving uncertainty of observations.
A person can, e.g., be occluded by an object such as a table in one of the views,
whereas another view might provide completely unobstructed view to the person.
Therefore, a single camera can not provide its observations with high confidence, but
as a whole, the network can build up a higher confidence by offering a joint estimate
of the observed property.

Challenges
Deployment of multiple cameras gives rise to a set of practical challenges. A robust
and fast system architecture has to be implemented in order to accommodate multiple
cameras.

Various issues related to data alignment such as networking, camera calibration
and synchronization have to be dealt with. The data traffic between cameras and a
possible central unit has to be reliable and tractable. Cameras have to be calibrated
both internally (for itself) and externally (with respect to other cameras) for some
applications to have a common frame of reference. Most often it is desired for cam-
eras to operate in the same frame-rate and to have no significant time-shifts during
operation, for the observation samples to remain comparable and thus combinable.

Another set of issues related to data association arises as multiple individuals
enter a scene covered by multiple cameras. In a vision network it is not anymore
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enough to track multiple persons within a single camera view, which is already a
complex problem when the paths of inviduals cross and again separate. In addition
to keeping track of persons within a view, a vision network has to also match all
the detected people in all the views to each other. This is a complex problem, as
people do not look the same from all viewpoints (e.g. multi-colored shirt), and under
different lighting and camera settings, such as white-balance and gain, the appearance
differences become even greater.

1.3 Multi-Sensor Data Fusion

The richness of observation data should improve the performance of the vision pro-
cessing and therefore elicit more accurate system performance, but this is not guar-
anteed by the shear amount of additional observations. Catastrophic fusion [7] is a
phenomenon in which the average accuracy of a multi-sensor system actually is worse
than that of a single-sensor system. This can easily occur, but can be avoided by
the design of smart data fusion mechanisms. These fusion mechanisms are the main
focus of this research.

Fusion of Data
Multi-sensor data fusion, also referred to as sensor fusion, is part of a larger research
field called information fusion. Information fusion aims to provide more certainty
for the data. Uncertainty in data is decreased by combining the original data into
a new set of data. In sensor fusion the original data is provided by sensors, or has
been processed from the sensory data. By sensor fusion the resulting information is
expected to be better for the later stages of the system, than would be possible by
using each sensor data separately. With better data e.g. the classification results
of a human posture analysis vision network should provide more accuracy, possibly
with increased performance.

Developments in Sensor Fusion
The use of sensor networks was greatly inspired by the requirements of military
surveillance systems in the 1970s. These multi-sensor systems, based on radars or
sonars, were the first to introduce the terms and benefits of multi-sensor data in-
tegration by data fusion. The increased interest in distributed sensor systems was
quickly met by research in 1980s conducted on statistical hypothesis testing [8] and
optimum fusion structure for multi-sensor detection [9].

Further research to optimal data fusion strategies was performed in the 1990s
with Aziz et al. [10] discovering the importance of the probability distribution of ob-
servations in addition to desired false alarm probability, when applying a k-out-of-n
fusion rule. Multi-modal biometric systems received much interest in the start of
2000s. Jain et al. studied the effects of normalization techniques used for biometric
traits in combination with fusion methods [11]. Dependencies were discovered, and
they concluded that person-specific weighting of different biometric measures pro-
vides better performance than uniform inter-person weighting. Veeramachaneni et
al. [12] highlighted the importance of another new aspect, the correlation between
classifiers, and if modeled, how classification accuracy can be improved.

Fusion of Visual Data
The sensors used in vision networks, cameras, are based on capturing sequences of
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images. Image data, and the measures and features one can compute from this data
have special limitations.

The information derived from observations is always affected to some extent by
the view and location of the cameras. How much these changes affect the image
processing steps depends on how well e.g. the feature extraction considers changes
to object scale and rotation. Therefore, processing needs to apply the same algo-
rithms across cameras and algorithms need to provide as much view-independence
as possible.

Many types of occlusions exist with vision networks, and these will affect the
observations made. Self-occlusions are cases in which, e.g., a person’s body may hide
one of the person’s arms behind it. Person-occlusions appear when other people walk
between a person and the observing camera. Scene-occlusions exist when, e.g., an
object occludes parts of a human body as the person moves behind the object.

The scene being observed can itself hinder image analysis efforts. The envi-
ronment creates changes to the scene, e.g., by having changes in lighting, dynamic
outdoor illumination and moving objects such as doors. If falsely detected, they
will be included as a legitimate part of an observation, and possibly have serious
consequences for scene analysis.

The vision fusion framework that is proposed in this dissertation takes these
specific characteristics of visual data into account, and discusses topics which in
general fusion dilemmas would have been overlooked.

1.4 Targeting Individuals

The research conducted focuses on user-centric applications for providing a mean-
ingful service. The problems of detecting, tracking, and modeling of humans, their
actions, and their behavior have been at the core of this research.

Person as an Object
From the point-of-view of low-level computer vision algorithms humans are a difficult
group of objects to follow. Seen by the camera, a person is a deformable object. Even
the same person takes many shapes as his direction and posture relative to the camera
changes. In addition, a person’s appearance can change as he wears different clothes
through the day. These properties naturally vary also from person to person.

Person as an Agent
From the point-of-view of a knowledge base trying to model persons actions, things
are no easier. People perform various actions in their own order and pace. The
same person can do a similar task in various ways with minor changes in order and
duration taken by sub-activities, such as opening a kitchen drawer when preparing a
meal. Similarly, people have goals/intentions and there are many ways to succeed in
reaching them, or in getting stuck. With statistical modeling approaches the aim is
to count for all these variations and despite the differences to be able to detect the
real underlying activity or goal.
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1.5 Towards Ambient Intelligence

Purely from the application side the driving force for research and development was
defined by various security and surveillance related services. For example, covering
vast areas by monitoring people in order to detect abnormal behavior and misplaced
luggage has been especially important in public spaces such as airports and shopping-
malls. Many smaller environments, such as gas-stations, cafeterias and shops, have
installed security cameras, for both monitoring the personnel and the public. Many
health-care projects, such as elderly care [13] and hospital monitoring, are slowly
discovering the benefits of vision networks.

As mentioned before, the benefits of vision networks have in the past been di-
rectly connected to public spaces and security-related monitoring applications. More
and more personal services are appearing, such as in-car cameras for aiding in lane
changing [14] and driver attention estimation [15].

It is considered very probable that vision networks will be a significant part also
in private spaces, such as homes, for providing pleasure and convenience to users.
In this thesis some new applications for vision networks within both private and
public venues are presented. A home-to-home visual communication application is
presented in chapter 6, and an extension of it to home-activity recognition is presented
in chapter 7. Chapter 8 discusses detection of and response to repetitive behavior
within shops, and in chapter 9 an application concept for providing personalized
office ergonomics is presented.

1.6 Thesis Overview and Contributions

A look into the technological, human and application side of this research was pro-
vided in the previous sections. Vision networks are at the intersection of these three
aspects with multi-camera data fusion being the key factor.

Having the technology to build vision networks capable of human behavior
interpretation, the question becomes how to systematically across various
applications design vision systems in a modular manner while integrating
intelligent fusion approaches to the system design? What are the common
approaches and their consequences to fusion potential and exploitation?

This thesis aims to provide the necessary theory and systematical tools for tackling
the above problem. This thesis consists of two parts. The first part provides the
necessary theoretical background for following the experimental work presented in
the second part.

Outline of Part I

The first part of the thesis starts by providing the necessary background on and theory
of vision networks and sensor fusion. With each discussed topic further definitions
and refinements are proposed in order to tailor them specifically for the fusion-friendly
vision systems.
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Chapter 2
This chapter gives an overview of common vision networks by first motivating their
use through the many applications only they can enable. The chapter explains the
ambient intelligence vision behind most of the experimental work performed in this
thesis, and provides a look into emerging applications of vision networks. It elaborates
on the vision network configurations, followed by an application-driven look into the
common three-tier architecture (VNA).

Chapter 3
In this chapter an overview is given on sensor fusion concepts, on the type of data
to be fused within a vision network, and on the fusion methods to do so. Inspired
by known structures, such as classical three-level and Dasarathy categorizations,
a further categorization is proposed for fusion processes in the context of vision
networks. The corresponding levels of fusion are discussed through examples. The
chapter concludes by gathering fusion methods in a new category-structure influenced
by the work previously presented by Elmenreich.

Chapter 4
In this chapter the discussion on fusion expands to sensor fusion architectures and
architecture models. A three-category architecture structure is proposed based on
two previously presented categorizations. After considering synchronization issues,
several application-driven architecture models are presented and discussed for their
suitability for vision networks.

Outline of Part II

The second part of the thesis presents the vision fusion framework by illustrating
the structure, the connections within and the main aspects of each part through a
set of design rules. The proposed fusion framework is followed by four chapters each
covering a multitude of fusion experiments for different applications. The second
part concludes the thesis with a general discussion on the presented material.

Chapter 5
The proposed vision fusion framework (VFF) for designing and building fusion-
friendly vision networks is presented. The structure and the connections of VFF
are illustrated, by expanding on how it connects to VNA and to the three major
aspects of fusion: architecture, level and method. Fusion architecture describes the
structure in which multi-sensor data is gathered in. Fusion level defines the type
of data: such as image and feature, that is been gathered. Fusion method defines
the manner in which the gathered data is combined into a single estimate. A set of
design rules for the VFF is formulated.

Chapter 6
This chapter presents an application for visual communication and awareness between
remote sites. The application is provided with a 3D shape reconstruction, on which
two fusion experiments are conducted. The first experiment studies the effects of
camera configuration to shape estimation. The second experiment examines the
accuracy of five proposed occupancy fusion methods over imaging sensor and camera
calibration noise.
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Chapter 7
This chapter presents an application to recognizing six basic human activities. The
application is studied with three different silhouette datasets by relying on a tree-
structured classifier. Five different camera fusion scenarios are proposed and their
accuracy is studied over all the datasets.

Chapter 8
This chapter presents a methodology called Action History Matrices (AHM) to clas-
sify and detect behavior repetitions on various scales and time spans. The properties
of AHM for detecting repetitive behavior are demonstrated in analyzing customer
behavior in a smart shop environment. Based on the results, implications to fusion
approaches are discussed.

Chapter 9
This chapter presents an application for office ergonomics in increasing self-awareness
of workers. The application is studied with a recorded eight-camera dataset from an
actual office. A system for providing information for personal ergonomics and general
mobility is defined, data analysis results for personal ergonomics are shown, and
experiments with various fusion approaches are conducted for the study of general
mobility within the office.

Chapter 10
The last chapter concludes the thesis by starting with a review on the major aspects
of vision networks and the future applications only they can enable. Finally, the
conclusions are given on the suitability of the proposed vision fusion framework, for
fully exploiting the potential of sensor fusion within vision networks.



Chapter 2

Vision Networks

A vision network is a system that by capturing images, processing them and modeling
properties of the objects of interest aims to understand the scene. In this context,
understanding usually results in a decision given out by the system. Understanding
can be based on modeling geometry, shape, movement, and appearance. In essence,
we are trying to mimic the capabilities of human vision in perceiving the world; a
skill that we humans develop continuously over time from the moment of birth given
our unique senses. This is a very challenging and an incredibly large problem area to
tackle, given the limitations of electronic sensors and limited time-spans and datasets
for teaching vision systems.

Various different application fields have benefited from deploying vision networks.
Application areas such as medical image processing, machine vision, military support
and autonomous vehicles are known to benefit from the extended scene understanding
a vision network can provide.

Section 2.1 starts the chapter by providing a look into existing and emerging
applications enabled by fusion powered vision networks. The chapter continues in
section 2.2 by categorizing vision networks based on four aspects, each of which can
affect vision efforts significantly. A common vision network architecture containing
three system layers is presented in section 2.3 together with common error sources.
Section 2.4 provides remarks concluding the chapter.

13
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2.1 Motivation

Various different application fields have benefited from deploying computer vision
techniques. Vision networks have enabled the use of these techniques to problems
covering wide and complex areas. The traditional application domains have been
heavily shaped by security and surveillance related research. Whereas, the emerging
field of ambient intelligence solutions aims for more private spaces with emphasis
on health and well-being through user support. It is important to be aware of and
compensate for the limitations of visual sensors, to which end some complementary
sensor technologies have been applied across application domains.

2.1.1 Traditional Applications

Applications for providing security and awareness are some of the traditional uses
for vision networks, see below a more comprehensive list:

• military : detect soldiers, vehicles, and targets for missiles

• surveillance: detect suspicious people and uncommon events

• industry : detect product quality and guide automated processes

• video conferencing : enable clear communication between multiple sites and
persons

• autonomous vehicles: provide driver support through awareness of surround-
ings

Military

Originally, military applications for computer vision were limited to the detection
of enemy soldiers and vehicles, shortly followed by missile guidance systems. Much
advancement has occurred in targeted missile guidance, modern missiles selecting
the most appropriate target only once entering the predefined target area. Current
efforts are in providing awareness of the battlefield, by capturing the combat scene by
a multitude of sensors, even in multiple modalities such as video, audio and pressure.
The remotely acquired awareness can be exploited well in time before sending in the
troops, decreasing the loss of lives.

Surveillance

Having a complex, wide area covered with multiple sensors makes the task of detect-
ing suspicious behavior very difficult for a human operator. Automation of selecting
persons or events of interest greatly reduces the workload and eventually increases
the accuracy of the operator. Having less data to process, the operator can, e.g.,
focus his attention to the screens that provide a view to the suspicious person.

Industry

The term of machine vision is applied to cases in which computer vision is used in
industry. Machine vision aims to help in manufacturing and delivery processes by
providing tools for, e.g., quality control and robot arm navigation. Quality control is
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applied to maintain the quality of products, e.g., in terms of automatically removing
faulty or undesired products from the manufacturing line.

Robot arm navigation is automatically supported by providing the arm control
unit with the necessary measurements on position and orientation of the product.
Machine vision can be considered to aim for reducing manufacturing costs, improving
quality of products, and reducing human-related accidents in hazardous environments
or when handling hazardous materials.

Video Conferencing

As business has become more global, requiring remote sites to stay in close con-
tact, a affordable approach to information exchange has been given in multi-person,
multi-site video conferencing applications. For providing functionality that provides
information without occlusions in a fast-paced environment, the solutions exploit
camera networks in providing unobstructed views and multiple microphones in cap-
turing the audio and speech. By having a clear virtual representation of the remote
sites without unwanted artefacts, the communications can be carried out in a natural,
efficient manner.

Autonomous vehicles

Major discoveries and new challenges for vision networks have been created by the
increasing interest in autonomous vehicles and systems supporting the operator of
the vehicle. A range of vehicles from in-the-water, on-the-land, and up-the-sky have
all been subject to research and development. Various levels of automation have been
deployed, such as giving the vehicle operator automatic support in avoiding collisions
with other vehicles and pedestrians.

In fully autonomous vehicles, in addition to supporting functions, also the naviga-
tion and obstacle avoidance is left for the vision network. Fully autonomous missiles,
UAVs (unmanned aerial vehicles), and space explorers, such as Mars Exploration
Rover from NASA, have been successfully deployed. Many car manufactures have
financed research for autonomous cars, but these vehicles still exist only as experi-
mental versions. Nevertheless, great progress has been witnessed as the competing
teams taking part in the DARPA Grand Challenges of 2004, 2005 and 2007 have
successfully created driverless vehicles for the public roads.

2.1.2 Applications for Ambient Intelligence

Ambient Intelligence (AmI) serves as the vision for the future smart environments
including consumer electronics, telecommunications and computing [16, 17]. AmI
envisions electronic environments that are sensitive and responsive to the presence
of people. Small, integrated and connected devices unobtrusively work together in
supporting people in daily activities and emergency situations. Ambient Intelligence
can be characterized by systems that have the following properties [18]:

• Embedded : Networked devices are integrated into the environment.

• Context aware: Can recognize the user and their situation.

• Personalized : Can tailor itself to meet the users needs.
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• Adaptive: Can change in response to the user.

• Anticipatory : Anticipates your desires without conscious mediation.

As the vision states, the solutions AmI offers are applicable to many problems.
An workstation allocation for an incoming laboratory user based on ongoing CPU,
disk and network load was presented by Marchesotti et al. [19]. The deployed ambient
intelligence system was connected to various sensor types: mouse/keyboard activity
sensors, network adapter sensors and hard disk usage meters just to name a few. The
system efficiently directed the incoming user to a workstation with a large amount of
free resources. A similar guidance of users was demonstrated by Calbi et al. [20] with
the users carrying a mobile-device that prompted messages guiding the user to his
selected target by adapting to the users movements based on combined video-radio
localization.

A smart home application that monitors an elderly person with a camera network
and a wearable accelerometer is one of the most appealing uses of ambient intelligence
solutions. One such system proposed by Tabar et al. [21] aims to detect troubling
events and automatically alert the caretakers in case of a fall.

The applications studied in this thesis all follow the vision of AmI. The proposed
vision networks provide AmI the tools to help this vision come true. It is good to
notice that robustness against the variability that exists in real world scenarios can
be best dealt with using complementary sources of information.

2.1.3 Complementary Sensor Technologies

It is worth noticing that most of the sensor networks applied to real world scenarios do
not consist only of cameras, due to their inherent limitations in making observations
and lack in algorithmic robustness. Therefore, the majority of the applications are
provided with a multi-modal sensor network with additional contextual information.
These systems are capable of robust reasoning with vision networks as one of the
technologies for making observations.

Contextual Information

Zhang et al. proposed a multi-camera system for person tracking that was calibrated
w.r.t. a real world map (outdoor) or a blueprint (indoor) [22]. The system described
was applied to two different problems: critical infrastructure protection and haz-
ardous lab safety verification. A military airfield was covered by 48 fixed and 16
PTZ (pan/tilt/zoom) cameras for making alerts on any intrusions to the protected
space that was manually defined for all cameras by marking it on the global map.
The alerts were localized based on the camera with the best view on the violator
and the location. The lab safety problem was to ensure that the users adhere to the
infectious disease laboratories two-person rule, which states that no person can alone
work in the lab. The cameras were calibrated to the lab blueprint, which made it
possible to fuse detections of human targets by single cameras into a joint detection
when cameras so agreeing. The system kept count of people in the lab and alerted if
it detected that a single person had been there alone for longer than 30 seconds.
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Heterogeneous Cameras

The majority of the video-surveillance solutions exploit heterogeneous cameras through
image fusion. The cameras capture the same scene in different light wavelengths such
as visual, infrared and thermal regions. This versatility in cameras helps the system
to cope with the changes in illumination, separation of living and inanimate moving
objects and other adaptive scene conditions. The fusion of color and thermal images
for achieving more accurate human silhouette extraction was studied by Han and
Bhanu [23]. Both image types were used to compute preliminary silhouettes which
were used in image registration of the two video streams. The registered candidate
silhouettes are combined into an improved silhouette by probabilistic means. This ap-
proach showed clear improvements in silhouette extraction compared to approaches
not exploiting fusion between the color and thermal images.

Wearable Sensors

A more robust approach to surveillance has been to introduce additional sensors.
In addition to following individuals with cameras they can be made to carry RFID-
tags which greatly reduce the possibility for severe false detections or misses. Zhai
et al. considered the prevention of retail-loss [24], in which some items bought are
not being scanned properly by the cashier in order to hand them to the buyer for
free. Multiple cameras were used to observe motion in barcode scanner-region and
the bagging/belt region. If the observations did not match with the actual barcode
input, a fake scan alert was raised based on these primitive events. Zhai et al. also
considered tailgating detection, in which multiple persons are entering a secured area
with only one valid badge being scanned. If the number of people reported by the
badge-reader and the two cameras (frontal and side) do not match, an alert for the
operator or the security personnel can be automatically raised.

Other Signal Modalities

Considering human behavior, audio can provide additional clues that can help in
disambiguating visually similar patterns of activities. Gatica-Perez et al. [25] and
Talantzis [26] proposed a audio-video based video-conferencing system for tracking
the positions and speaking activities of multiple persons within a meeting room. The
system proposed by Gatica-Perez captured the scene by a microphone array and a
set of uncalibrated cameras, whereas Talantzis had the cameras calibrated. Talantzis
combines data by merging tracking information from both modalities based on small-
est Euclidian distance between audio and video estimates. Whereas Gatica-Perez
combine the multi-modal data through a novel Markov-based observation model.

Gandhi et al. [27] investigated configurations for binocular camera systems for
automotive applications in order to increase safety in traffic. The camera systems
were there to help the driver in detecting other vehicles and pedestrians. The stereo
matching based approach to detecting objects in traffic showed promise. Automotive
support systems have also included infrared cameras [28], laser scanners [29] and
radars [30] to increase the robustness of scene understanding.
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2.2 Network Categorization

Vision networks can be categorized based on four practical system aspects. Each
aspect has a profound effect on the development of algorithms that can serve the
application requirements.

• coverage: how much the views of cameras overlap

• placement : what is the role of a camera w.r.t. a person

• calibration: how much cameras know of themselves and other cameras

• collaboration: how camera observations relate to each other

2.2.1 Coverage

Vision networks can be categorized in terms of the coverage of the region-of-interest
(ROI) between the cameras:

• no view-overlap

• partly view-overlap

• full view-overlap

Systems in which the views of the cameras do not intersect in any parts of the scene
observed are called non-overlapping networks. Traffic cameras in highway areas are
a good example of such a system. The working range is therefore large, but assigning
more confidence to some individual observations will be impossible, as no additional
scene information is available from other sensors.

Partly overlapping networks are the most common ones, existing in various public
spaces such as shopping malls and airports. The working range remains relatively
large and occasionally more confidence can be had through complementary observa-
tions.

Fully overlapping networks can be considered to exist only when a certain volume-
of-interest (VOI) has been defined in the scene, and all the cameras have the VOI
fully in their field-of-view (FOV). This situation easily arises in dedicated spaces such
as communication environments. The potential for fusion is great in dealing with
uncertainties and visibility issues, but the range of such a system is very limited.

The research depicted in this thesis starts with the exploration of VOI-centered
fully-overlapping vision networks, as presented in the first application study in chap-
ter 6. For achieving both maximum user freedom and closer to real life implementa-
tion, the fully overlapping networks were exchanged to networks that exhibited both
partly overlapping and non-overlapping ROIs within the entire VOI. In practice, the
later application studies are extended from a single room scenario to cover scenarios
involving multiple rooms and complex-shaped areas.

2.2.2 Placement

Vision networks can be also studied based on the placement of cameras within the
VOI. In this thesis three roles of a camera have been defined:

• terminal : covers a very limited region
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• dedicated : covers a larger, semantically important region

• ambient : covers an entire space with no particular focus

A camera might be fixed to observe only a certain area or employee. These cameras
are usually called terminal specific cameras which provide high quality coverage, but
do this within a very limited area. By increasing the distance from the observed
area/person to include bigger regions in the FOV, such as the cubicle of an office-
worker, we are exploiting so called dedicated cameras. Dedicated cameras will usually
provide less observation detail, but will be able to capture broader movements and
possibly longer term behavior.

A third role of a camera is that of an ambient view. An ambient camera has
no specific object, area, or person it focuses on. Its job is to provide a general
overlook of the observed scene. The quality of detail is thus expected to be low when
compared to terminal and dedicated cameras, mostly due to the varying distances
and orientations the person is captured in. A major benefit of the ambient cameras is
the opportunity to observe uninterruptedly the actions of a person within the scene,
as only by leaving the environment the person will be out of reach of the ambient
cameras.

Research depicted in this thesis starts with the exploitation of dedicated cam-
eras. As the observed environments grew bigger, ambient cameras were included to
provide the applications uninterrupted observations. The last application study in
chapter 9 was designed to explicitly exploit the hierarchical nature of all three camera
categories.

2.2.3 Calibration

A third significant characteristic of a vision network is the manner in which the cam-
eras are calibrated. Calibration defines the sense-of-self and sense-of-others a camera
has. To this end, there are commonly considered to be two calibration processes:

• intrinsic calibration: how image gets distorted by a camera

• extrinsic calibration: how cameras are situated w.r.t. each other

Sense-of-self is achieved by intrinsic calibration, in which a camera is analyzed for
internal imperfections in the imaging process. Imperfections include geometric dis-
tortions which are visible when straight lines in scene become bended lines on the
image. By knowing the imperfections they can be corrected by image manipulation.
Sense-of-others is achieved by extrinsic calibration, in which the camera gains un-
derstanding of its placement and direction with regards to other cameras and the
scene.

Intrinsic calibration is independent of external factors. Therefore, once performed
for a camera, the same corrections can be applied regardless of the application and
environment later involved. Whereas extrinsic calibration is performed every time a
change in any of the camera properties in the network has occurred. If the position or
orientation of a camera changes, the vision network has to be extrinsically calibrated
once again.

There exist many tools for performing extrinsic calibration successfully such as
the automatic one proposed by Svoboda et al. [31]. As the workload in capturing the
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required calibration images and computing the view-correspondences is significant,
these tools try to make the process less laborious. From experience it can be noted
that the automatic process saves much time, but the robustness of the calibration
results is not guaranteed by the toolboxes themselves.

The calibration operator, such as the man moving around with a bright led light-
source, has to make sure he provides close to optimal conditions, such as speed,
location and visibility of the bright calibration point, for achieving an accurate cal-
ibration of multiple cameras. The fragility of the extrinsic calibration is therefore
considered in this thesis as one of the major reasons for not opting for point-to-point
calibration accuracy, but rather relaxing calibration to grids and areas-of-interest, or
in some cases omitting extrinsic calibration all together.

Research depicted in this thesis started by relying on fully calibrated vision net-
works. Calibration was done both manually and automatically. With manual labor
the results of the calibration were adequate and guaranteed to be usable. With auto-
matic toolboxes the actual workload was less, but part of the process of calibration
became less transparent. Therefore, in cases of failure the automatic calibration had
to be fully performed again, till usable accuracy was achieved.

In overall, the extrinsic calibration of multiple cameras is fragile. If camera lo-
cation or orientation changes, the extrinsic calibration needs to be performed again.
With manual approach one might be able to compensate for these changes per in-
dividual camera, but with the automatic tools the consequence is usually having
to acquire a new set of calibration data for all cameras. Therefore, the amount of
time needed for performing calibration, validating it, and maintaining it can easily
increase to unmanageable levels. Because of the fragile nature and easily increasing
workload, an extrinsically calibrated vision network was only exploited in the first
application study in chapter 6.

2.2.4 Collaboration

Considering the collaboration between the cameras of a vision network, three different
categories have been presented [7, 32] based on sensor configuration:

• complementary : for more complete understanding of the scene

• competitive: for more certainty in the same property

• cooperative: for attaining property otherwise not accessible

A complementary network has sensors that can be used to combine information
for achieving a more complete understanding of the observed phenomenon. Sensors
do not directly depend on each other, thus they can operate individually. In a
competitive network the sensors independently provide their observation of the same
property. By competitive fusion the uncertainties can be dealt with, and the effect
of erroneous observations can be cancelled. In a cooperative network as a result of
combining the observations from multiple independent sensors, information can be
derived that otherwise would not be accessible.

The majority of the application studies conducted for this thesis focused on cam-
eras that provided their observation of the same property. Therefore, competitive
vision networks were widely used. The last application study for personal ergonomics
in chapter 9 exploited also observations regarding different aspects of a working style
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given by cameras at a different level of camera hierarchy. Thus by aiming also for
a more complete understanding, the system exploited both cooperative and comple-
mentary fusion.

2.3 Three-Level Architecture

All the previously mentioned application fields and categorizations of vision networks
have been crucial for the development of the architecture and algorithms of the mod-
ern vision systems. The next sections will introduce the common vision network
modules, illustrate the structure, and highlight the challenging areas in which fu-
sion of the multi-camera data can assist the vision system. See Figure 2.1 for an
illustration of the proposed three-level structure of a common vision network archi-
tecture (VNA).

Figure 2.1: The common three-level structure of a Vision Network. Multiple cam-
eras provide observations, which are processed from raw data into attributes that are
used to infer a decision that optionally affects the scene through control.

2.3.1 Visual Sensing and Segmentation

The most rudimentary way to categorize a vision system is to consider it at three
levels. The lowest level is considered as sensing and segmentation. This level includes
the sensors and the low-level image processing tasks.

The sensors in a vision network are cameras that produce a 2-dimensional image
based on light intensity (gray and heat images), or several spectrum bands of light
(color images). The process of capturing an image on a light-sensitive sensor is called
image acquisition, which is the first requirement for making observations of a scene.
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Depending on the tools available and the application, some preprocessing steps
might be necessary. Dealing with algorithms with low flexibility the resolution and
frame-rate might have been fixed during the implementation stage. These imple-
mentation details need to be matched between cameras. Depending on the image
sensor sensitivity for noise and bad contrast between objects and background, noise
reduction and contrast enhancements can be applied.

The above mentioned preprocessing steps handle entire images. Eventually, at
some part of the processing chain, the focus of the vision algorithms needs to be
directed to specific areas and objects within images. For this purpose image segmen-
tation can provide much help, by excluding areas of the image with nothing to give
for higher level understanding of the scene. Excluded areas and objects are referred
to as background, whereas areas and objects of interest are referred to as foreground.

Instead of segmenting foreground from the background, vision algorithms can
directly approach objects by detection, like detection based on predefined types of
movement, shape and appearance. Detection is usually a computationally heavy pro-
cess, thus it is often preceded by simple image segmentation. Segmentation removes
areas that otherwise would consume computation power due to running the detector
across the entire image.

2.3.2 Knowledge base

The middle level we call the knowledge base, because at this level the data from the
sensing level becomes information. Information involves the attributes of the area or
object of interest. The attributes can be used in describing properties and further in
modeling the behavior of the properties. The transformation of data into knowledge
is achieved by two processes: feature extraction and object modeling.

The level of detail and the amount of data in a 2D image can be great. In
an image sequence the detail is multiplied by the number of images the system is
capturing every second, resulting in a large amount of data. In addition images
themselves are a rather poor representation of objects. For providing more accurate
and generic representations it is a common practice to reduce image data into feature
data, sometimes referred to as measurements.

Reduction of data is achieved by feature extraction. Features can be very simple,
such as lines and edges on an image. More localized features may focus e.g. on
corners and blobs within a region-of-interest (ROI) of an image. Complex features
are commonly used in describing object related properties, such as texture and shape
for object appearance, and motion for object state. Whatever the features, the choice
for them is driven by the requirements from object modeling.

Object modeling can be considered as creating a model of certain fixed structure,
for describing the characteristics for an object class. The characteristics are usually
either related to the appearance or the activities of the object. The model is defined
in such a way that it can be used to test if an observation of a random object belongs
to an object of that class.

Model training is a data-driven approach for defining the model structure and
the expected values of the characteristics for the specified class of objects. When
considering vehicles in traffic, examples on object classes may include pedestrians,
bicycles, cars, buses and trucks. If modeling vehicles, both appearance, such as size
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and shape, and motion, such as average speed and movement direction, would provide
discriminative features for separating between object classes.

2.3.3 Applications and Services

The third level in a computer vision system involves applications and services. Gen-
erally speaking, system modules that are used to build each of the discussed levels,
are highly dependent on the application, and vice versa. Given limitations by the
low-level vision processing tools, only those services can be included in the application
that can be provided with sufficient level of data and knowledge. If no limitations
exist within low-level tools, the application can be determined to provide both basic
and advanced services. However, services that appear feasible in the planning stage
of a system, can turn out too ambitious once faced with realities of the uncertainties
involved in computer vision tasks.

Services are adaptively provided based on the computed decisions. Naturally
decisions can be of various types, such as pass-or-fail decision for automatic inspection
in quality control, or a recognition decision of a persons identity, or an alert decision
to other systems involved. Decision, as a result of the scene analysis efforts, can be
used as input for control modules. Control modules adapt environment properties
based on the decision, and possibly external input from a user or a domain expert.

2.3.4 Common Error Sources

Each of the vision and modeling related challenges is capable of causing serious loss
in the accuracy of decision making of the vision network. Naturally, any error will
decrease the accuracy of the module it was created in. However, the effect of any error
is not limited to the source-module. It will propagate to other modules of the same
level, and further propagate the effect to following system levels. Some algorithms
can correct some of the errors made by the preceding processing steps, but the most
powerful tools for dealing with error mitigation are provided by sensor fusion.

Sensing and Segmentation
Low-level image processing tasks of sensing and segmentation system-level will have
to include person detection and tracking tools. Detection is done for finding the object
on the image plane that resembles a person. Detection is usually performed either
by foreground segmentation or template matching. Tracking helps in sustaining the
detection of a person as time passes and situations change.

Foreground segmentation separates the regions of the image that have changed
from the regions that have not. Change is most commonly detected as a changing
color of a pixel. Given large enough deviation of the color from the previously learned
color of the pixel, the pixel can be marked as a pixel belonging to the foreground.
The foreground is thus usually introduced by objects that were not in the scene when
training the model for the background took place. The objects detected as foreground
might not actually be new objects to the scene but already existing objects having
dynamic behavior, such as leaves on the tree moving because of the wind, or a door
pushed open by a person entering a room. Thus segmentation alone is not enough
for robust detection of individuals.

Template matching provides a more direct way of finding persons [33]. A tem-
plate, such as a smaller 2D image of the contours of an object, is overlapped by the
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observed image in various positions and scales. Matching computes the similarity of
an image region to the template e.g. by counting the occurrences of similar trends or
by computing a cross-correlation. Based on a hit threshold, the objects that provide
a higher match with the template than the threshold are marked as detected objects.
Therefore finding a person is not anymore influenced by the scene dynamics, unlike
with image segmentation. However, having eluded this problem there will be vari-
ous shapes that partly will match the template, giving rise to false hits. The usual
approach with template matching is to find a suitable trade-off with false hits and
missed hits, hits that were not detected for an object of the right type. The number
of positions and scales for the template are the two most important parameters in
defining this trade-off.

As has been discussed, both of the detection tools have their drawbacks, but
these drawbacks are of different nature. Because of this fact, it is possible to build a
hybrid method that will effectively cancel the drawbacks and exploit the benefits of
both approaches. With image segmentation we can detect all the areas where a new
person can exist. For all these candidate areas we can run the template matching
with full parameter range, and select the areas/objects that are most like a person.
For sure, in some situations there will exist false hits and misses, but the rate of these
erroneous events will be highly decreased.

Tracking a person has two major challenges: crossing paths and occlusions. Based
on a detection from a previous frame it is relatively straightforward to use that
detection as origin for the search of a person in the current frame. This approach is
called tracking-by-detection [34], in which previous hits are mapped to new hits based
on their corresponding distances on the image plane. However, given rise to the two
challenges mentioned, more intelligent tracking approaches are needed for solving
ambiguities. These approaches could include the modeling of a person’s appearance,
such as color, texture and shape properties, which in case of crossing paths of two
persons would after object merger help in identifying which person is which. For
occlusions some restrictions for the change in the size of the detected body could
work to alert the vision system. The system could apply anthropometric measures
in forcing correct detection, e.g., in case of person walking behind a table thus their
legs getting hidden behind the static object.

Feature Extraction
After a track on a person has been established, it is possible to describe the impor-
tant properties of the individual. Feature extraction computes measures that are
considered important related to properties-of-interest. For example, features such as
object aspect ratio, and principal angle of silhouette pixels are good indicators for
human posture.

The accuracy of feature extraction can decrease due to following factors: badly
centered detection, person occlusion, people overlap, and bad camera viewpoint. If
sensing has not been able to keep the track centered on the person, this might cause
missed or additional foreground areas to be included in the feature computation.
Similarly, an area of a person might be occluded by a static object or another person,
causing similar deviation to feature computation. Most common difficulty in vision
networks rises from situations in which the person is poorly situated with regards
to an observing camera, such as facing away from a camera. Given poor viewpoint,
the feature computation can be affected negatively due to loosing detail otherwise
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visible, such as not been able to observe forward extended arms from a frontal view.

Modeling of Property
Three challenges in making a decision on the type of a property should be pointed
out: limited training data, dissimilar training data, and power of discrimination by
the features. If not having enough feature-data of each of the classes, the model
training will result in a limited model that is unable to capture the subtleties of
feature distributions. If again training data is very dissimilar to the data gathered
from the current environment, testing data, the feature subspaces for each of the
classes will not match between the training and the testing data. Given a poor
choice on features, the class subspaces might be overlapping to a large extent, causing
difficulties for discriminating between the different classes.

2.4 Remarks

A categorization of vision networks based on various factors was presented in hope to
illuminate the main aspects involved in utilizing vision networks. The common vision
network architecture was illustrated, and the purpose and error sources of each of
the three architecture levels were discussed. Due to the chain-like structure of vision
networks, the errors not only affect the module in which they occur, but the effects
also propagate to the final decision and the following control output. The effect of
an error therefore spreads through the network, decreasing the achievable accuracy.

In the experimental chapters of this thesis we quantitatively study how data fu-
sion can help in removing or at least in mitigating the errors evident in creating
estimates of features, class probabilities and class labels. With intelligent fusion of
multi-sensory data the estimates given by a specific network level can be controlled
for outliers, general data trends, and most suitable or important aspects of data be-
havior. Consider a process that aims to detect the maximum of movement, while not
being affected by outliers. Outliers include such phenomenon as other people mov-
ing in the background within the bounding box that contains the person-of-interest
(POI). If such an outlier of movement is not ignored, the estimate of maximum
movement exhibited by the POI will be inaccurate. The most effective procedures
for providing sound estimates for vision networks, given multi-camera observations,
are mechanisms of sensor fusion, which will be discussed in the next two chapters.
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Chapter 3

Fusion Levels and Methods for Vision
Networks

The richness of data available in a vision network offers an opportunity for increased
decision accuracy. Richness in having multiple estimates for the same property does
not by itself guarantee success. The improvements in system accuracy are made pos-
sible by intelligent data fusion mechanisms. These mechanisms provide an estimate
of the multi-sensory data that makes vision network processes capable of providing
good, stable accuracy. In this chapter an overview is given on principles behind data
fusion, on the type of data to be fused within a vision network as the fusion level,
and on the fusion methods to do so.

Section 3.1 starts the chapter by presenting some known definitions for data
fusion, based on which a vision network specific definition is proposed. In section 3.2
the classical three-level and Dasarathy categorizations [35] for the fusion level are
described, and a further categorization is proposed in the context of vision networks.
In accordance to the data-type based categorization all levels of fusion are discussed
through examples. Section 3.3 proposes a new categorization for fusion methods,
inspired by the method categories presented by Elmenreich [36]. Section 3.4 provides
remarks concluding the chapter.

27
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3.1 Process of Fusion

Data fusion, or information fusion, has been given many different definitions by a
variety of research fields. Some definitions related to fusion are given below.

Data fusion is a process dealing with the association, correlation, and
combination of data and information from single and multiple sources to
achieve refined position and identity estimates, and complete and timely
assessments of situations and threats, and their refinements of its es-
timates and assessments, and the evaluation of the need for additional
sources, or modification of the process itself, to achieve improved results.
(JDL, 1987) [37]

The basic problem in multi-sensor systems is to integrate a sequence
of observations from a number of different sensors into a single best-
estimate of the state of the environment. (1988) [38]

Data fusion is a formal framework in which are expressed means and
tools for the alliance of data of the same scene originating from different
sources. It aims at obtaining information of greater quality; the exact
definition of greater quality will depend upon the application. (1998) [39]

Information fusion is the study of efficient methods for automatically
or semi-automatically transforming information from different sources
and different points in time into a representation that provides effective
support for human or automated decision making. (2007) [40]

Within the scope of vision networks, given the type of data it handles and the
application challenges it commonly faces, the following description is considered to
highlight the most crucial parts and purpose of the fusion process. Respectively, a
simple illustration of a sensor fusion process is given in Figure 3.1.

Figure 3.1: Given a stream of data from multiple sources Xs sensor fusion combines
the data into a single estimate Xf based on iterative processes of selection Si and
transform Fi on original data, already modified data Xm and previous fusion results.

Data fusion is a possibly iterative process of selection and transformation, in
which initial multiple observations of the same property are combined into a single
estimate. The estimate is expected to have captured the essential value and behavior
of that property, creating increased certainty in the observed data and hence increased
accuracy in decision making.
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3.2 Levels of Fusion

Data fusion can be categorized in multiple ways depending on the selected aspect. A
three-level model has been proposed by Elmenreich [36] when considering the basic
types of data involved in a fusion process. A refined five-level categorization was later
introduced by Dasarathy [35], focusing more on the fusion process input and output
characteristics. In this section, a further categorization is proposed for fusion levels
in the context of vision networks. The section concludes by discussing the proposed
levels and by giving illustrated examples.

3.2.1 Categorization

To introduce the basics for different types of data and the fusion processes trans-
forming them, two categorizations presented in literature are shortly discussed.

Three-Level Model
A common practice has been to distinguish between three different fusion levels [36].

• low-level : images

• intermediate-level : features, scores

• high-level : decisions

Low-level fusion, or raw data fusion, creates new data by combining raw data given
by multiple sensors. In the common three-tier Vision Network Architecture (VNA),
which was previously illustrated in chapter 2 ,this applies to the Sensing layer having
input as images.

Fusion at the intermediate-level can be performed by combining data describing
a certain feature, computed from the raw source data. This process is sometimes
referred to as feature-level fusion, corresponding to Knowledge Base in the VNA.

High-level Fusion combines the decisions or scores for decisions inferred from
features into a single decision or score. In the VNA, the decision making process and
thus decision fusion are part of the Application-layer.

Dasarathy Categorization
Since the three-level model does not explicitly present the fusion processes in which
the input data type differs from the output data type, a refined categorization into
a 5-level model was proposed by Dasarathy [35].

Offering categories based on input-output characteristics gives a more complete
picture of the fusion process. The original categorization is presented in Figure 3.2.
For example, raw data from multiple sensors is processed in feature extraction into
a feature, and in pattern recognition a decision is inferred based on a set of features
from multiple sensors. These cases could be categorized either based on input or on
output data type, but this would not be an accurate description of the process that
has taken place.

Proposed Four-Level-Model
Within the context of visual networks, four different types of data exist for fusion
purposes:

• image: one or multiple stacked matrices
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Figure 3.2: Fusion categorization proposed by Dasarathy based on I/O characteris-
tics of the fusion process [35].

• feature: numerical value, optionally normalized to a certain range

• score: scores and probabilities for a class

• decision: discrete symbol as a class label

By not considering only the type of data but also the possible processes of fusion
handling it, fusion within vision networks can be categorized as presented in Fig-
ure 3.3. A similar notation to one used by Dasarathy, presented in Figure 3.2, was
used for presenting the different types of date.

Images can entail one or multiple stacked matrices filled with numerical values.
Numerical values can be binary (segmented image), integer values within a certain
range, such as between 0 and 255 for an intensity image, or continuous values com-
monly between zero and one.

Both features and class-scores are almost exclusively numerical values, commonly
normalized to have continuous values between zero and one. Class-decisions are
defined by discrete symbols. Symbols are given by a finite predefined set, in which
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Figure 3.3: A proposed categorization for data fusion within VNA, with respect to
the data and the fusion process. The flow of the same property has been colored in
yellow, light blue indicates transformation of the property.

both the original and fusion resulted values reside. Therefore, data values within a
vision network can be presented in of the three formats:

• binary : as in either false or true, or zero or one

• numerical : as in integer values or decimal values

• symbolic: as in a letters

Given the type of data, the possible approaches for combining data are naturally
limited to the techniques that can analyze the data and be optimized for the type in
question.

3.2.2 Fusion on Images

Fusion on images can be performed in multiple ways, depending on the type of
images captured. Images may have been captured by different cameras, different
camera settings, and with additional hardware.

Space Discovery
With the same type of images, e.g., a 3D shape reconstruction can be cross-sectioned
by relying on a set of calibrated silhouette images [41]. The result of the shape
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reconstruction is called Visual Hull. The Visual Hull is usually computed based
on an occupancy testing for volumetric pixels called voxels. The 3D shape can
be additionally colored by color consistency analysis between the views [42], see
Figure 3.4 for illustration.

Multi-Spectral Capture
Sometimes it is beneficial to use cameras operating within different ranges of the light
spectrum. For example, by combining an image captured on visible light spectrum
with an image taken in the infrared(IR) spectrum, an improved segmentation of
objects can be achieved [43]. This is due to the complementary nature of the two
image modalities. Visible light image is good for capturing light intensities, colors,
and textures. Whereas an IR image, a thermal image, detects heat sources, such as
warm bodies of people, see Figure 3.5.

Figure 3.4: Example of image-based visual hull (IBVH) reconstruction. The images
of the top row show depth maps of the computed visual hulls. The lower images show
colored renderings from the same viewpoint. [42]

Figure 3.5: Pedestrian detection in an outdoor scene, starting from left, original
IR-image and visible-light image. With permission from [43].
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Internal-Settings Capture
The same type of images can also be used for creating filtered images and images
with new information. For example, by taking photos of the same object with the
same camera, but with different focus settings, depth of the object can be captured
based on depth-from-defocus (DFD) methods. DFD was first introduced in [44].
An extension of a similar approach, depth-from-focus (DFF), combined with multi-
baseline stereo matching to a multi-view situation for capturing 3D surface of an
object is presented in [45].

An improvement to traditional DFD, that uses circular apertures of different sizes,
was given in [46] in the form of coded aperture pairs. Due to their complementary
nature, the coded pairs were found to provide both depth estimation with greater
fidelity and a high-quality all-focused image, from the two photos captured with
different apertures, see Figure 3.6.

Figure 3.6: A bookstore captured with two different apertures, a-b) captured images
using the coded aperture pair with two close-ups below. The focus is set at the mid-
dle of depth of field. c) The recovered image with corresponding close-ups. d) The
estimated depth map without post-processing. e) Close-ups in the ground truth image
captured by a small aperture f/16 and a long exposure time. [46]

External-Hardware Capture
A camera can be hooked to external units for more advanced imaging. Considering a
camera connected to a flash light-source, two images, one with flash and one without,
can be captured [47]. These two images can be combined for creating a high-detail
image that preserves the object appearance, such as warmth of the colors. See the
example in Figure 3.7.

Optionally, a regular color camera can be coupled with a IR emitter and IR depth
sensor for acquiring RGB-D images, which are RGB images combined with per-pixel
depth information, see example in Figure 3.8. Such devices have been introduced
by the gaming industry first in 2010 in the form of a motion sensing device called
Kinect to the Microsoft XBOX game console, soon followed by other game console
manufactures. RGB-D Mapping has been introduced for modeling of environments
by dense 3-dimensional maps. It is directly applicable to various fields, such as robot
navigation and telepresence [48].



34 CHAPTER 3. FUSION LEVELS AND METHODS FOR VISION NETWORKS

Figure 3.7: A flash image captures the high-frequency texture and detail, but
changes the overall scene appearance to cold and gray. The no-flash image cap-
tures the overall appearance of the warm candlelight, but is very noisy. The detail
information from the flash image is used to both reduce noise in the no-flash image
and sharpen its details. [47]

Figure 3.8: Left) RGB image, and right) depth information captured by an RGB-
D camera. Systems of 2011 can capture images up to 640x480 pixels resolution at
30 frames per second. White pixels on the right image are without depth value,
mostly due to occlusions, maximum distance, and surface angle and material. With
permission from [48].

3.2.3 Fusion on Features

Commonly there exist three categories of human-related features that are derived
from captured images; all three categories are suitable for data fusion. Geometric
fusion covers all simple geometric descriptors for edges, lines and corners. Appear-
ance features are more descriptive as they include posture, shape, texture and color
properties. Global movement, created by the person as one entire object, and local
movement, created by some body-part, are examples of motion features. Different
feature types are in short:

• geometric: edges, lines, etc.

• appearance: posture, texture, etc.

• motion: by entire body or by a body part
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Figure 3.9: An example of a body part segmentation based on features of motion and
appearance. a) the original image, b) segmented image by background subtraction, c)
optical flow as measure of motion, d) watershed segmentation based on results in b and
c, e) K-means clustering of colors detected in the foreground, f) body parts represented
by ellipsoids with corresponding average color and motion. With permission from
[49].

For human gesture analysis, Wu et al. [49] used a two-feature combination of
optical flow and color information for initiating markers to be used in watershed
segmentation for finding foreground regions. The corresponding feature of motion
and feature of appearance are illustrated in Figure 3.9. Estimates for both features
were used to refine each other, resulting in better features due to the complementary
nature of the two features. Collaboration between cameras was performed in later
stages of the vision network first for creating gesture elements, followed by inferring
the gestures themselves.

3.2.4 Fusion on Scores and Probabilities

Consider a detector based on matching, that gives out a similarity/dissimilarity score
as a result. If the score is not already within a fixed range, it will be normalized to a
common range, thus facilitating the direct comparison and fusion of scores received
from multiple sensors. A similar process can be performed given class probabilities for
each class from each of the sensors. Scores are mostly used in binary-classification
tasks, such as authenticating a user either as a genuine user or as an impostor.
Whereas class probabilities are most beneficial with multi-class classification prob-
lems.

Fusion of alert confidences was studied by Yu et al. based on a exponentially
weighted Dempster-Shafer Theory of Evidence for implementing a intrusion detec-
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tion system [50]. Each sensor in the system outputs an alert with a level of confidence
attached to the alert. These alerts with corresponding confidences are combined by
weighting the confidences based on the trust in a specific observer/sensor for a partic-
ular observation type. The trust could, e.g., be defined according to sensor location,
such as local versus remote, or by using data gathered in the past observations to
analyze sensor credibility.

Fusion of audio-visual detector scores was studied by Garcia-Salicetti et al. for
person authentication within multi-modal biometric analysis [51]. The two detec-
tors processed the voice and the signature of a person, thus producing a similarity
score for both of these uncorrelated biometric traits, see Figure 3.10 for illustration
of the clean score distributions. The relative spread of speech scores is low and a
great deal of speech scores seem to overlap between the client and impostor classes.
This would suggest that speech scores do not bring much additional information to
be exploited in multi-modal fusion. No comparison to single modality results was
provided. The two scores were combined by two different methods for fusion, Arith-
metic Mean Rule (AMR) with three different normalization techniques and Support
Vector Machine (SVM). They conclude that if scores are affected by noise, the fusion
method can deliver best accuracy only by taking into account the distributions of
the scores.

3.2.5 Fusion on Decisions

Any decisions, such as class symbols from a predefined set, can be combined into a
single decision. Decisions can include labels for persons identity, activity, posture,
intention, and any other property describable by a finite set of symbols.

An exploitation of modality complementaries was proposed by Qian et al. for
analysis of responses to visual target detection [52]. Both EEG and pupil responses
were separately used in classifying responses in certain cognitive tasks. The classifi-
cation results from both modalities where then combined by a likelihood ratio (LRT)
based fusion, see Figure 3.11. The accuracy of the resulting fused decisions showed
significant improvement over single modality results.

3.2.6 Fusion Across Levels and Over Time

Fusion of data can also be performed in a hybrid fashion across multiple levels of
a vision network. With a hybrid approach it is possible to achieve more consistent
system accuracy than when relying solely on fusion at a single system level, but the
complexity and analysis will be significantly more difficult.

Given a multiresolution approach, such as detecting movements on different scales
and computing the same features from each of the scales, we have multiple estimates
for the same features. Similarily, a feature extractor suite can be used to provide
estimates for the same feature, such as estimating the posture angle of a person with
various means.

For making decisions, one can apply a classifier suite, instead of a single classifier.
This results in multiple estimates of the decision, given by classifiers trained with
their particular training procedures and labeling considerations of e.g. temporal
behavior of feature data.
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Figure 3.10: Distributions of signature and speech detector scores [51].

Figure 3.11: An example of fusion for decisions inferred from EEG and pupillary
response by linear discriminant analysis (LDA) classifiers. [52]

Fusion can also process data from a certain period of time, looking into all the
observations and deductions made within this time window. Such a process is called
temporal fusion [35]. Various processes, such as temporally averaging data acquired
from different sensors and keeping a track on a person, are examples of temporal fu-
sion. Furthermore, temporal fusion of decisions given by the same or different sensors
has e.g. been exploited in sequential decision problems. Therefore, temporal fusion
is applicable at any of the levels of data hierarchy, thus giving another dimensionality
to be exploited in fusion processing.

For recognizing human emotions, Mansoorizadeh et al. applied a two-modality
classification approach with a hybrid fusion method [53]. The two signal modalities,
face expressions and speech prosody (rhythm, stress, and intonation), where fused
both at feature and decision level. Face and speech information were combined only
when both information sources were concurrently available. Their fusion approach is
illustrated in Figure 3.12. The proposed architecture achieved better average accu-
racy than any of the corresponding single-modality or single-level fusion approaches.
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Figure 3.12: An example of hybrid fusion on both features and decisions for rec-
ognizing six different emotional states: anger, disgust, fear, sadness, happiness, and
surprise. The decision based on combined features is used as a third decision input
for decision-level fusion, forming a cascade of fusion processes. [53]

According to the authors the superior average accuracy was due to both exploiting
cross correlations of features and increasing robustness by decision fusion.

3.3 Methods of Fusion

Depending on the system level, and more specifically the type of data such as images
and class-decisions, different methods for fusion are applied. All the proposed fusion
methods can be considered as some sort of weighted mixture of two basic processes:
selection and transformation. Selection based techniques pick a single or multiple
data elements out of all the available elements. Transform based techniques create
one or multiple elements based on a set of given elements. Naturally, both processes
can be combined by applying them in a cascade or iterative manner, enabling various
fusion methods.

Categories by Elmenreich
A number of fusion methods, based on forms of selection and transform, have been
proposed in literature. Depending on the field of interest, such as data mining or
biometrics, different techniques have been applied. Four different categories of fusion
techniques were presented by Elmenreich [36]:

• Filter Algorithms: (temporal) smoothing and prediction

• Sensor Agreement : sensor voting and selection

• Decision Methods: Bayesian and Dempster-Shafer inference

• World Modeling : occupancy maps and certainty grids

The above categorization by Elmenreich should be considered as a mixture of types
of algorithms and types of applications for these algorithms. For example, the occu-
pancy testing in world modeling can be performed by sensor agreement or by decision
methods. Therefore, this categorization would not present a reasonable separation
between the different types of fusion method algorithms.

Categories by Sanderson and Paliwal
Another categorization of fusion methods has been proposed by Sanderson and Pali-
wal in [54,55]. They introduced three different broad categories: pre-mapping, midst-
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mapping, and post-mapping fusion. The mapping refers to either 1) a classifier pro-
viding a hard decision or 2) an expert providing an opinion, e.g., a score within
the [0, 1] interval for each possible class. Pre-mapping fusion is performed before
any classifier is asked to make a decision or give an opinion. Midst-mapping fusion
combines the data during the mapping process that turns sensor or feature data into
decisions or opinions. Post-mapping fusion is performed after the mapping process.

Sanderson and Paliwal presented the specific fusion method categories according
to the well established levels of data: sensor, feature, opinion, and decision; see
Figure 3.13 for illustration of their categorization.

Figure 3.13: The categorization of fusion levels and methods by Sanderson and
Paliwal given in a non-exhaustive tree. Image modified from [55].

This categorization provides a similar separation between fusion levels than the
one proposed in this thesis, but it also highlights the classification step as a great
divider of fusion methods. One could argue if this division is really justified as some
fusion methods, such as weighted summation, are exploited on both sides of this
division. Jain et al. provided a more detailed listing of fusion methods based on this
categorization [11]. They also made a further separation of opinion level into two
levels of 1) (matching) score and 2) rank (based on decreasing order of confidence).

Proposed Categories
In this thesis, another categorization for fusion methods is proposed based on the
manner in which the data is processed:

• Sensor Agreement

• Linear Logical Methods

• Filter Algorithms

• Propabilistic Methods

• Binary Decision Methods

Sensor agreement methods, such as sensor voting and sensor selection, are methods
with most accessible analysis of the system performance. That is, the contribution
of individual sensors to the fusion result is not difficult to trace back. Linear Logical
Methods provide the most direct and simplest approach to combining features or
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decisions. Filter algorithms, such as Kalman-filtering and particle-filtering, have
received much attention and have been successfully employed in real-time systems
for temporal fusion. Fusion on decisions has received much interest and convincing
results on stability have been shown.

By connecting the previously presented fusion levels of data and the fusion meth-
ods applicable for each level, an instructional diagram of possible fusion approaches
within common VNA can be defined. The proposed diagram is illustrated in Fig-
ure 3.14.

Figure 3.14: The common fusion approaches for vision networks presented by the
data levels and the applicable methods for each level.

3.3.1 Sensor Agreement

Both sensor voting and selection methods provide an easy to implement, transparent
way to combine data.

Sensor Voting
Sensor voting can be regarded as a fusion technique for solving sensor conflicts.
Voting gives the solution by emphasizing the majority view of all the observing
views. Voting has been regarded as computationally inexpensive and to some extent
fault tolerant.

Arrow [56] pointed out that having a greater number of choices does make deter-
mining a fair voting strategy difficult, and that there exist a drawback of consistency
in voting techniques. A problem of ordering of votes can emerge in a cyclical pro-
cess [57], in which the point at which the vote is entered can influence the outcome
to the sensors favor. As it was discussed in [58] based on the work by [59], voting
strategies can be considered as the best starting approach to fusion problems, if no
reliable covariance estimates for the sensors exist. Therefore, other fusion techniques
can regard sensor voting as a performance benchmark for improving performance by
incorporating a required level of learning to the fusion process.

A commonly used voting method is the so called majority voting. As its name
implies, the result from fusion is defined as the decision having the majority of the
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classifiers inferring it as the decision candidate. A paper dealing with speaker identi-
fication [60] used two approaches, dynamic time warping (DTW) and cepstral coef-
ficient distance measure, to classify the speaker and combined the classifier outputs
over a period of time. When employing the combination of classifiers, majority voting
provided the best accuracy by correctly recognizing 98 out of 100 speakers.

In [61] a technique for multi-sensor data fusion based on voting implemented
through boolean algebra was presented. Three different sensors were used as in-
put sources for illustrating the boolean approach, the sensors being millimeter-wave
(MMW) radar, laser radar and imaging infrared radiometer. Given multiple con-
fidence levels to each sensor, the proposed sensor fusion, implementable by AND
and OR logic operators, increased the performance of the sensor system and enabled
specification of a certain false alarm probability. The approach proposed in the paper
is illustrated in Figure 3.15.

Figure 3.15: An example of a Sensor Voting based data fusion implementable by
logical operators. [61]

Another voting fusion scheme was presented in [62] in the context of antitank
landmine detection by a remotely controlled vehicle equipped with multiple sensors.
Three detection sensors were mounted in front of the vehicle, which was expected to
increase the probability of detecting landmines. The three sensors used were Forward
Looking Infrared (FLIR) camera, a Minimum Metal Detector (MMD), and Ground
Penetrating Radar (GPR). For correctly combining the sensor inputs, the intervals
for three confidence levels: low, medium and high, were found by processing trial
data. Through voting based data fusion they were able to limit the number of false
alarms to a practically manageable level.

Sensor Selection
Data fusion methods based on sensor selection have proven to be efficient for many
applications, especially given many sensors Si aiming for achieving optimal system
performance, often in an energy-aware manner. Regardless of selecting either a set
Sset of one or many of the available sensors Sall, a criterion or criteria is always
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defined as a measure of the suitability of a certain sensor set Scand. Based on the
suitability scores Suit(Si) sensors can be ranked and only the data from the best
sensors is used. Additionally, a cost function can be included to balance/restrict the
selections due to context, coverage, energy-consumption and other similar concerns.
A compact linear representation is presented in the following general formulation of
sensor selection:

Sset = argmax
Scand

[ ∑
Si∈Scand

Suit(Si)− Cost(Si)

]
, with Scand ⊆ Sall (3.1)

A geometrical approach to sensor selection was proposed in [63]. The approach
was demonstrated by two cases: initial sensor placement, and sensor relevancy during
operation. Measurement noise was modeled by a Gaussian approximation. The
selection was based on the distance between the desired and the available information.
In [64] an energy-aware sensor selection method was proposed for the detection of
social context such as activity and location. As the resources for sensors between
and within a mobile phone were considered limited, the aim was to maximize the
’Quality of Information’ (QoI) of context detection. The QoI provided by a sensor
was directly related to its accuracy, based on which the overall QoI was computed.
Two methods, brute force and heuristic, were provided for computing the overall QoI.
Results presented showed that the device life could be prolonged without sacrificing
the diversity of complementary information.

For achieving a good trade-off between energy consumption and quality of track-
ing, a dynamic sensor selection method was proposed in [65]. Particle filtering was
deployed for object tracking, and tracking was performed by a varying number of
sensors at any given time, depending on the sensor selection scheme. The scheme
was named Niche Overlap-based Sensor Selection (NOS) and it adapts to the changes
in tracking conditions, such as sensor network density and the geometry of the target
and sensors. As the object moves through the scene, crossing areas having differ-
ent niche overlap measurements, the conditions change. The proposed NOS method
outperformed some rivaling methods by offering both higher tracking accuracy and
longer lifetime.

In the context of event detection, Bajovic et al. proposed a sensor selection
method [66] using the Kullback-Leibler and Chernoff distances between Gaussian
distributions as the two selection criteria. The distances were computed between
the distributions of the selected measurements under the two hypothesis of event
occurring and not occurring. They proposed an algorithm with affordable complexity
for computing the distances. The proposed solution for selecting a subset of sensors
performed similar with the optimal selection in many cases, staying 5% below the
optimal accuracy at all times, providing significant computational savings at the
same time.

3.3.2 Linear Logical Methods

Two commonly used ways for combining measurements or features from multiple
sensors are concatenation and transform.

Concatenation
In feature-concatenation the feature-vectors f i from all sensors Si are combined by
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simply stacking the feature-vectors one after another. This results in a feature-vector
containing all the feature information from all r sensors:

f concat = [f1,f2, ..,fr] (3.2)

A similar concatenation operation can be performed on images taken of the same
subject with each camera providing observation of a different part. In this manner one
image is created out of many, a process that is referred to as mosaic construction.
An example of mosaic construction is given in Figure 3.16 provided by a paper
dealing with wide area aerial surveillance exploiting piecewise affine modeling for
image distortions.

Figure 3.16: Image Mosaic: left) an array of cameras captures part of a scenery,
right) a single virtual image covering entire area is created for scene analysis. With
permission from [67].

Three drawbacks can be identified for concatenation as a fusion method. First,
there is no explicit control mechanism to define the relative influence of a sensor
or reversily to understand the constribution of a single sensor on the final result or
decision. Second, the observations need to be provided in a synchronous manner with
the same frame rates for the fusion to perform well. Any deviations in time (features)
or shifts in place (images) can not be tolerated. The third drawback is more specific
to feature concatenation, as the dimensions of the combination feature-vector can
become large, and thus the feature-space involved will become huge. This can easily
lead to the so called curse of dimensionality problem [68], in which the data becomes
sparse, which again weakens the chances for obtaining sound and reliable results
based on statistical analysis.

A method called combined-View, which combines sensor measurements by con-
catenating them into a single observation-vector, was studied in [69] in comparison
two decision-level fusion methods: a best-view selection and a mixed-view using data
from all cameras. Combined-view was found to have low complexity, longer training
times, and mid-level classification accuracy, around 85% in the studied multi-view
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activity recognition. However, it does suffer from low transferability, as it can only
be applied to the same setup and order of multiple cameras.

Transform
The second common approach aims to find the most representative form of a single
feature-vector, based on all the given feature-vectors. This is achieved by a transfor-
mation function, optionally driven by a defined criterion crit, such as the minimum-
mean-square-error (MMSE). Other options for the transformation function exist such
as minimum, maximum, median and other similar operations aiming to capture a
particular aspect of the data.

f transform = F{[f1,f2, ..,fr] |crit} (3.3)

Posterior Rules Some of the simplest approaches to decision making are simple
rules forced on the posterior probabilities of class decisions. Consider r sensors Si

producing the posterior probability of a class cj as P (cj |f i). Let c ∈ {1, 2, ..,m}
be the class that is finally assigned. The following fusion rules can be applied to
determine the class.

Product Rule
Assuming statistical independence of all feature vectors f i, the class c can be given
by Product Rule as follows:

c = argmax
j

Πr
i=1P (cj |f i) (3.4)

Sum Rule
Assuming also that the posterior probabilities computed do not deviate much from
the prior probabilities, the Sum Rule can be applied:

c = argmax
j

r∑
i=1

P (cj |f i) (3.5)

Max and Min Rules
Similarly Max Rule and Min Rule can be deployed to find the best estimate for the
class, as either maximum or minimum value respectively:

c = argmax
j

[
max

i
P (cj |f i)

]
(3.6)

c = argmax
j

[
min
i
P (cj |f i)

]
(3.7)

All the above fusion rules are very simple to implement and intuitive to un-
derstand. Kittler et al. studied the above rules in their theoretical framework on
compound classification by starting from the Bayesian decision rule and by deriving
the rules based on statistical assumptions [70]. For the product rule they pointed
out its severity as, e.g., a single close to zero probability can effectively inhibit a
particular class to be chosen almost regardless of the opinions of the other sources.
They found the sum rule to provide better accuracy than other rules such as the
product rule, min rule, max rule, median rule, and majority voting. They concluded
based on sensitivity analysis that the superiority of the sum rule is most likely due
to its robustness against estimation errors.
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Weighted Linear Summation
The so called Weighted Linear Sum (WLS) method can be used to combine scores or
probabilities from multiple sensors, assuming they can be considered as independent.
The accumulated evidence for each class c is the weighted sum of the individual
evidence, in this example class score, given by each of the sensors Si:

score(cj) =

r∑
i=1

[wi × scorei(cj)] (3.8)

As presented in [71] for detection of focus of participants in a meeting, both
observations of who is speaking and who is facing who can be combined in a following
manner. The term α was used to define the importance of observations with regards
to each other. A suitable value for α for weighting decisions from the two modalities
was found through empirical studies. The basic combination rule was written as
follows:

p (Focus) = (1− α)P (Focus|Gaze) + αP (Focus|Sound) (3.9)

The WLS is also a simple and intuitive fusion method, that provides an explicit
mechanism for prioritizing between multiple sensors and modalities. Because of the
weighting mechanism, sensors with less occlusions or modalities with better robust-
ness can be emphasized accordingly. The WLS requires no training and performs
often good compared to other logical fusion methods previously proposed in liter-
ature [71]. The WLS method has achieved the same levels of accuracy in many
scenarios as the more complicated methods based on Dempster-Shafer (DS) theory
and the weighted D-S approach [72].

3.3.3 Filter Algorithms

Filtering has been widely used for smoothing previous observations and for predicting
new observations based on temporal data. Two of the most applied filtering methods
for data fusion have been Kalman Filtering and Particle Filtering. The most com-
mon usage for filters has been in the domain of temporal data, or sequential data, for
estimating a value that best represents the gathered data, and thus provides the op-
timal system accuracy. Similar estimation can be performed for data simultaneously
gathered from multiple sensors.

Kalman Filtering
Kalman Filtering provides an improved estimate of a state based on series of mea-
surements, either by multiple sensors or over time. Kalman filters have been applied
to numerous applications, such as navigation and guidance, some of these discussed
below.

The Kalman-filter functions in two-steps. The filter produces estimates of the
current state variables and their uncertainties in the prediction step. In the second
step, called update step, the estimates are refined by a weighted average based on
the new measurement, latest observation. More weight is given to estimates with
higher certainty. Therefore, the filter requires only the present observation and the
previously calculated state for its recursive nature to provide real-time performance.
Kalman assumes the underlying system to be a linear dynamical system with all
the error terms and measurements having a (multivariate) Gaussian distribution.
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Extensions of the Kalman filter for nonlinear systems have been developed, such as
Extended - and Unscented Kalman Filter.

Figure 3.17: The relations of states and measurements of a Kalman filter presented
as a graphical model. [73]

A graphical illustration of a Kalman filter is presented in Figure 3.17, in which xt
refers to a state consisting of m× 1 mean vector x̂, and a m×m covariance matrix
P with m being the number of parameters. Considering a standard linear Kalman
filter, the state transition from time instant t to t+ 1 is defined as follows:

xt+1 = Axt + wt (3.10)

p(w) ∼ N(0, Q) (3.11)

Matrix A defines the state transition matrix and wt is used for presenting the noise
as a Gaussian random variable with zero mean and a process noise covariance matrix
Q. Q is assumed independent of the state and its purpose is to model the possible
changes between consecutive states that are not dealt with the state transition matrix.

In addition, the relations between the states and the measurements can be ex-
pressed as follows. The state is related to a measurement by matrix C, which is an
m× n matrix. Measurement noise is presented by vt with a zero mean and R as the
measurement noise covariance matrix.

yt = Cxt + vt (3.12)

p(v) ∼ N(0, R) (3.13)

Due to common difficulty in measuring uncertainty in the measurements, the
behavior of a filter can be discussed in terms of gain, Kalman filter gain especially.
With a high gain, the filter places more weight on following the trend set by the
measurements. With a low filter gain, the model predictions are followed more closely.
This smooths out noise, but decreases the responsiveness of the filter.

Two different ways of measurement fusion by Kalman Filtering were studied
in [74]. First Kalman-based method performs the measurement fusion as a con-
catenation of the feature data. The lengthened feature vector is given to a single
Kalman-filter for getting a state estimate. The second method merges the measure-
ments into same as original length feature vector based on minimum-mean-square-
error criterion. The merged feature vector is given to a single Kalman filter for
obtaining the final state estimate. Both methods were found functionally equivalent
if the sensors had identical measurement matrices. The second method being more
efficient due to shorter feature vector length. However, if sensor identicality did not
hold, the first method outperformed the second one.
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For advanced tactical systems, Puranik et al. investigated different fusion archi-
tectures based on Kalman filters in the context of data fusion and track fusion [75].
Three different fusion architectures were studied: centralized fusion, decentralized
synchronous fusion, and asynchronous decentralized fusion. Each of the fusion ar-
chitectures were able to provide more certainty in location and speed estimations
than a single track estimate, asynchronous fusion providing less certainty than other
architectures.

In [76] a study into sensor-data fusion was performed in the context of an au-
tonomous vehicle equipped with a few different sensors, such as magnet position-
measurement, camera-aided GPS-like positioning and detector for wheel-rotations.
The redundant signals measured were combined by a nonlinear Kalman-filter that
produced a good signal hardly affected by disturbed or missing observations.

3.3.4 Propabilistic Methods

Two of the most widely used decision methods in data fusion are Bayesian networks
and the Dempster-Shafer Theory of Evidence. These decision methods are based on
inference.

Inference is a process in which a decision is made between multiple propositions
based on the knowledge and observations available. In classical inference the deci-
sion is made between multiple hypothesis Hi, from which one is chosen to be more
probable than the others, given the observation O at hand. No a priori information
about the likelihoods of different hypotheses are included in classical inference [77].

Bayesian Inference
Bayes introduced a priori information for hypothesis H as part of his theorem [78],
defined as follows:

P (H|O) =
P (O|H)P (H)

P (O)
(3.14)

With Bayesian inference the probability of numerous hypotheses can be tested against
each other with a prior information part of the decision making. Bayesian inference
computes the probability of each of the hypothesis given the observation P (Hi|O),
and declares the hypothesis with the highest probability as the true hypothesis of all
the n number of hypothesis being tested.

P (Hi|O) =
P (O|Hi)P (Hi)∑n

i=1 [P (O|Hi)P (Hi)]
(3.15)

For sensor fusion, Bayesian inference has one major drawback, the required initial
knowledge. The Bayesian process requires the probabilities for an observation P (O),
as defined in Equation 3.14, and observations conditional probability P (O|Hi), as
defined in Equation 3.15, to be known for the system in question. Some of these
probabilities may not always be empirically available, but as they need to be provided,
personal judgement can be used to provide subjective probabilities [77]. However,
subjective probabilities are not beneficial for inference accuracy.

Bayesian inference has been applied to various applications, such as autonomous
sensor networks [79]. For multi-vehicle localizations, in [80] Bayesian networks were
used in both combining the data from the measurement sensors of each vehicle and in
modeling the vehicle interconnections globally. A single vehicle was localized based on
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fused information from three sources, Differential Global Positioning System (DGPS),
ABS-wheel sensor based odometry, and Geographical Information System based road
extraction. This information was further fused by a Bayesian approach with previous
vehicle pose estimates. For localizing multiple vehicles, the leader of the train was
used as a starting reference, following vehicles only compared by a rangefinder to the
vehicle in front.

In [81] a Bayesian sensor fusion formulation was provided to infer all three-
dimensional static occlusion objects based on silhouette clues of dynamic targets
captured from various camera viewpoints. The approach explicitly aimed to detect
the occluding objects present in the scene, by applying Bayesian estimation to the
decision of occupancy of a certain part of space, based on the Shape-From-Silhouette
method [41]. Due to the Bayesian approach for detection and accumulation of oc-
cluder information, the results showed robustness to noise and potential for many
applications by offering only soft decisions about scene state.

Dempster-Shafer Theory
Another mathematical approach to decision making was introduced by Dempster in
1967 [82]. Whereas Bayes dealt with probabilities, Dempster’s rule of combination
operated on beliefs and mass functions. Dempster’s work was further developed by
his student Shafer by 1976 into what is nowadays referred to as Dempster-Shafer
Mathematical Theory of Evidence (D-S Theory) [83]. This theory has been applied
since for representing incomplete knowledge, updating beliefs, and for combining
evidence [36].

In D-S theory Ω is used to refer to the frame of discernment. Ω contains all the
mutually exclusive propositions individually and as a union of propositions. ’The
frame of discernment’ Ω in authentication of two persons could e.g. be defined by
following propositions:

Ω = {personA, personB,{personA, personB}, someone else} (3.16)

Each sensor Si will assign its beliefs over Ω, a process commonly referred to as
Basic Probability Assignment (BPA). This assignment is done by a belief function
mi by sensor Si. Function m has the following constraints [83]:

m(∅) = 0
∑
A⊆Ω

m(A) = 1

To aggregate the total belief in a subset A, all the BPAs of all the subsets B of
A need to be summed. Resulting in a belief measurement that presents how much
all the available evidence support the proposition A:

Belief(∅) = 0 Belief(Ω) = 1

Belief(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω (3.17)

Some of the remaining evidence may be assigned to propositions that are joint
with A, therefore are not necessarily supporting the negation of A. All the observa-
tions that do not exclude the given proposition define the plausibility of a proposition:
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Plausability(A) =
∑

B∩A6=∅

m(B) = 1−
∑

B∩A=∅

m(B), ∀A ⊆ Ω (3.18)

The combination rule, marked by operator ⊕, of D-S theory for computing the
probability of a proposition A given observations from two sensors i and j can there-
fore be written as follows, for all A ⊆ Ω 6= ∅:

(mi ⊕mj)(A) =

∑
X∩Y =Ami(X)mj(Y )

1−
∑

X∩Y =∅mi(X)mj(Y )
(3.19)

=
1

1−K(mi,mj)

∑
X∩Y =A

mi(X)mj(Y ), (3.20)

with K(mi,mj) =
∑

X∩Y =∅

mi(X)mj(Y ) (3.21)

K is used to highlight the conflict of the two sources of evidence mi and mj by
aggregating the total contradiction, or reversely the agreement as 1−K [84].

Examples of the usage of D-S theory can be found for many application purposes.
In [72] the D-S theory is reviewed, some weakpoints are addressed, and a solution
to these weakpoints is given in the form of a weighted Dempster-Shafer Evidence
combination rule. The weighted approach is introduced to mitigate the effects of the
’equally trusting’ approach to sensors of the original D-S theory. Meeting participants
focus of attention was used as data for the comparison of three fusion methods,
weighted linear sum method, standard D-S method, and the weighted D-S method.
The data was gathered by a omni-directional camera observing all the participants,
each of which had additionally a microphone standing in front for capturing audio
activity. Head-pose estimates were extracted as features from video, from audio a
simple flag for declaring engagement by voice was used as feature. All three compared
fusion methods achieved higher accuracy than relying on single signal modality, but
no significant differences between the three were discovered.

A similar, but empirical, study into sensor uncertainty is performed in [84] using
D-S theory as the fusion method. They propose an uncertainty based technique for
quantifying the evolution of D-S theory based fusion. The technique is demonstrated
in the context of identifying different aircrafts by using Electonics Support Measure
(ESM) sensors, by finding the optimal combination of sensors for achieving the least
uncertainty.

D-S theory has been widely used in applications of biometrics. In [85] D-S theory
was deployed for person authentication based on face and voice score levels. The
scores are given by the verification systems of each modality, and are mapped into
evidence values for enabling fusion of modalities. D-S method was compared between
two additional fusion methods, the sum rule and the log-likelihood ratio based fusion.
All fusion methods outperformed any of the single modalities, and D-S offered better
performance compared to other fusion methods explored.

3.3.5 Binary Decision Methods

Given two hypotheses, H0 for no-detection and H1 for detection, and local decisions
ui given by each sensor in the network, a final global decision u0 is defined based
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on the local decisions. This decentralized hypothesis testing problem is solved by
hypothesis methods. Tenney and Sandell developed the theory for obtaining the
distributed Bayesian detection rules for decision combining [8]. The theory helps in
finding the optimum decision rule for each sensor in a sensor network.

Chair-Varshney Rule
For finding the optimal fusion structure for the given detectors an optimum data
fusion structure was given by Chair and Varshney [9] in 1986.

Within the fusion structure the local decisions ui are weighted with wi according
to the reliability of the detector. Reliability is defined through probabilities for false
hits PFi

and misses PMi
. The global decision is defined by comparing the weighted

sum to a threshold. Their findings have later been referred to as the Chair-Varshney
fusion rule, definitions are given here below:

DFR(ui, .., um) =

{
1 , if w0 +

∑m
i=1 wiui > 0

0 , otherwise
(3.22)

w0 = log
P1

P0
= log

P (H1)

P (H0)
(3.23)

wi =

{
log

1−PMi

PFi
, if ui = 1

log
1−PFi

PMi
, if ui = −1

(3.24)

Factors for Optimality
Stearns demonstrated in 1983 that optimal fusion accuracy on decisions by a sensor
network can be only achieved if taking into account two factors: the global false-alarm
probability, and the type of k-out-of-n fusion rule applied [86]. The most commonly
used k-out-of-n fusion rules have been the AND and OR fusion rules, both of which
operate as their name suggests. Stearns studied a two-sensor case and concluded that
AND was superior to OR at low false-alarm probabilities, whereas OR was superior
to AND with high false-alarm rates. A third contributing factor to optimal fusion
rule was introduced by Aziz et al. in 1997:

• type of k-out-of-n fusion rule

• probability of global false-alarm w.r.t. probability of detection

• type of probability distribution of observations.

They discovered that the type of observation probability distribution, such as Gaus-
sian or exponential, influenced the selection of optimal fusion rule [10]. Therefore,
it can concluded that the optimum fusion rule for multi-sensor distributed detection
consists of the above three factors.

3.4 Remarks

In this chapter the existing theory for sensor fusion was presented and a more suitable
definition for vision networks was proposed. Based on general theory on fusion levels
and fusion methods, more suitable categorizations for vision networks were provided
and some illustrative examples were shown.
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Fusion within vision networks can be considered to have two functions. On one
hand the function of fusion is to build certainty and stability from multiple obser-
vations. On the other hand to create robust sensitivity for capturing low-visibility
properties. Which of these two functions is more important will depend on the ap-
plications, and should be reflected in the fusion approach.

The availability of a fusion level and a fusion method depend on each other. Only
certain methods can be applied at certain levels and vice versa. A similar approach
to the fusion method, such as majority voting, can be implemented across fusion
levels, but functionality of the method approach will not be exactly the same across
levels. At feature level, the majority voting approach can be implemented e.g. by
an averaging operation. Whereas at decision level, averaging operation on symbols
is not possible, but counting the class label that has the majority is. In this case
averaging and majority voting were considered to be comparable in functionality, but
the decision results will not be exactly the same. Therefore, it is not easy to correctly
compare the results each fusion levels gives, as the functionality of the fusion method
approach has to be slightly different at each of the levels. In contrast, if one defines
the level of fusion, the results given by various fusion methods at that level can be
rightfully directly compared.

Sensor agreement fusion methods provide a good starting point for computing
benchmark fusion accuracy in decision making. Linear logical methods can be used
to tailor the fusion for capturing specific sides of the data, such as maximums, and
enables the use of weights for setting relative influence between sensors. Filter al-
gorithms can be successfully adopted for handling multiple simultaneous estimates,
instead of sequential data, but algorithmic complexity is high. Probabilistic methods
may require prior information which might be hard to come by, but would provide
increased accuracy. Bayesian inference and D-S Theory have been widely used in
many research fields giving good, robust results.

Within vision networks there are considered to be four fusion levels, each level
with their own set of possible fusion methods. This creates a large space of possible
combinations to test, if done exhaustively. The proposed framework, design rules and
experiments later in this thesis aim to help in avoiding exhaustive experimentation
by following a systematical approach.
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Chapter 4

Fusion Architectures for Vision Networks

The choice on the way fusion will be applied in a vision network is driven by the
requirements from the application and the service it provides. The manner in which
data is gathered and possibly further distributed is defined by the fusion architecture.
It is probable that no fusion architecture that would perform optimally in all settings
exists. To meet the requirements, a suitable architecture for applying the different
fusion methods at different fusion levels has to be defined.

Section 4.1 starts the chapter by providing two different categorizations for fusion
architectures, based on which a three category structure is proposed. Regardless of
the architecture chosen the data has to be captured, transmitted and processed. For
providing all this data in a timely manner, aspects in synchronization of sensors and
data delivery are highlighted in section 4.2.

Many models such as JDL, Waterfall and Boyd have been proposed over the
years for defining architectures. Many of these models were originally tied to a
certain application-domain. The main aspects of these architecture models and their
suitability for vision network fusion architecture is shortly discussed in section 4.3.
The chapter concludes in section 4.4 by providing a short summary of Part-I of this
thesis and its connections to Part-II.

53
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4.1 Architectures for Fusion

Having multiple sensors gives opportunities for performing the fusion in many loca-
tions of the system and physical site. Three multi-sensor management architecture
categories of centralized, decentralized, and hierarchical were presented in [87] by
Xiong and Svensson. Categorization to hierarchical and fully distributed was given
in [88] by Sinha et al.

Xiong and Svensson
In the centralized approach, all the sensory data is gathered in a central unit. The
central unit receives the data, combines it, and gives out the resulting fusion data.
This approach is straightforward to implement, fusion results can be expected to be
of high accuracy, but approach lacks in flexibility, such as including many additional
sensors.

Decentralized approach pushes the fusion process to individual sensors, thus mak-
ing sensors capable of receiving data from others with added intelligence on board of
the sensor. Added intelligence makes the sensors themselves more expensive, local
communication between a subset of sensors requires additional coordination efforts,
and redundancy in the data can have negative effects on system accuracy. The de-
centralized approach does offer better scalability, requiring less from resources, and
flexibility, in case of sensor failure. Also the design and implementation of the de-
centralized approach can be performed in a modular manner.

The third category, hierarchical, is a mixture of the two previous approaches.
Therefore, the hierarchical approach relies on having some local fusion sensor net-
works together with a global central fusion unit. The major difficulty in this hybrid
approach is how to map the global requirements to the local-level for achieving high-
est accuracy.

Sinha et al.
In contrast, an architecture categorization to two classes, hierarchical and fully dis-
tributed, was presented in [88]. Within hierarchical structure, the combined data from
local fusion centers is transmitted to higher level fusion center(s), which combine the
estimates and depending on the level of hierarchy send the new estimates further up.
Whereas in fully distributed architecture the fusion centers broadcast their estimates
to other fusion centers, which by incorporating the new arrived information update
their estimates respectively.

The hierarchical architectures are considered to provide less robustness, because
a failure of a higher order fusion center makes all subordinate fusion centers unusable
for fusion. On the other hand, a fully distributed system requires overall more com-
putational efforts and they do not provide a single, comprehensive, global picture of
the system at hand.

Proposed Categorization
In reflection to the two alternatives presented for architecture categorization, an-
other structure is proposed in this thesis. Three classes of architectures are expected
to exist: fully centralized, fully distributed, and hierarchical. See Figure 4.1 for an
illustration. These three categories are assumed to count for all viable fusion architec-
tures. Given simple sensors, a fully centralized solution is opted for. Having no desire
or resources for a central fusion processing, fully distributed architecture pushes the
fusion process as part of the local fusion center, possibly a device equipped with
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multiple sensors. Hierarchical solutions can be benefited from once having access to
fusion both at local and global level.

Some data fusion and track fusion methods based on Kalman Filtering were stud-
ied in [75] for two different architectures, adhering to our proposed notation, fully
centralized and fully distributed. The fully centralized was found to provide the op-
timal solution, and thus can be used as benchmark for proposing any other fusion
architectures.

Figure 4.1: Examples of the three proposed fusion architectures. Nodes are marked
with S for sensor, F for fusion, and GF for global fusion center which gathers pre-
vious fusion results and computes the final estimate.

4.2 Synchronization for Fusion

Data captured from a scene at different times, when expecting samples from the same
time instant, can have serious degrading effects on the accuracy of any fusion method.
Data transmission might be corrupted and contain lag, mostly due to geometrically
dispersed sensors. The longer the data has to travel, the weaker the data carrying
signal becomes, making distortions more probable. Sensors may also operate at
different frequencies which might require compensation. Or simply the bandwidth
of the transmission channel is not sufficient for carrying all the data simultaneously.
For example, for cameras it is not uncommon to drop frames while capturing a scene,
an issue that can cause serious shifts if left untreated. In Figure 4.2 an illustration
of the problems related to data synchronization is provided.

The issues and challenges arising in sensor (vision) networks for synchronization
can therefore be accounted for three sources:
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Figure 4.2: An example situation of two sensors S impacted by the uncertainties in
capture and operating frequency, transmitting over noisy channels of varying band-
width, distance and data corruption, received by fusion center F equipped with data
buffer and control mechanisms for possibly asynchronously received transmissions.

• sensor capture

• data transmission

• fusion processing

Due to the difficulties, it is not always possible to guarantee a synchronized delivery
of data streams, which is usually considered as a part of quality of service (QoS). If
transmission problems stay within an acceptable range of time, they can be ignored,
largely depending on the demands from the system processing steps. If ignoring them
is not an option, measures need to be taken for assuring that data being processed
corresponds to desired requirements. These measures fall under data synchronization.

A common way of assuring relatively closely synchronized data streams, is to
revert to a well established protocol for handling the time shifts. Application layer
protocols such as Real-Time Transport Protocol (RTP) and Network Time Protocol
(NTP) exploit time-stamping of data packets for ensuring a proper handling of data
streams. Another more crude and less accurate option has been to simply buffer the
data and use the average or median value as the estimate for a given time instant.

In the study presented in [75] for data fusion methods based on Kalman Filtering,
synchronous and asynchronous transmission within a fully distributed architecture
were compared. Higher uncertainty in estimation, thus higher state covariance, was
apparent in the asynchronous system compared to synchronous. This was explained
in the paper by having less (new) information available by the asynchronous trans-
missions.

It is worth noting that for some applications and environments the cameras also
do need to understand how the world coordinate system is in relation to them and
to the other cameras. This can be achieved by extrinsic calibration, see earlier sec-
tion 2.2.3 for details. By having a calibrated vision network much more detailed
information can be provided for the application, e.g., any dimension or distance
measures can be provided in absolute values, and with greater confidence as any
geometrical dependences on the image plane can be taken into account.
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4.3 Architecture Models for Fusion

It is very hard to separate the implemented architecture from the application it
will be serving. Many models were introduced in the 1980s such as Joint Directors of
Laboratories (JDL) which was later revised in [89], the UK intelligence cycle described
by Shulsky [90], and the Boyd-model for decision support [91]. In the 1990s, models
called Waterfall [92] and Dasarathy were introduced, shortly followed by Omnibus-
model [93] which aimed to combine advantages and eliminate disavanges of each of
the previously proposed models.

4.3.1 Boyd

A four stage cycle for decision-support in military information operations was intro-
duced by Boyd in 1987 [91]. Due to resemblance to fusion systems, the decision-
support inspired model has been adopted for sensor fusion. The model stages and
connections are illustrated in Figure 4.3.

Figure 4.3: The Boyd-model for data fusion process [91].

The first stage of observe can be considered to include sensor preprocessing, such
as prescreening and data allocation. Orient includes processes such as data align-
ment, association, tracking, and identification, followed by object context analysis
and situation predictions. Decide stage is considered as making final decisions on
resources and goals. Having a responsive system consisting of actuators that operate
on the environment, the loop is closed with stage of act. The visibility of the pro-
cessing tasks is not directly evident when examining the Boyd-model. Therefore it
is hard to identify the separate sensor fusion tasks. The overall flow is though well
represented.

4.3.2 Waterfall

A more precise model for portraying the lower level processing functions was in-
troduced by the Waterfall-model in 1997 [92]. The six stages are depicted in Fig-
ure 4.4. The separation of processes is much better than in the Boyd-model, but the
Waterfall-model does not explicitly include the feedback loop. Loop that represents
the actuation on and observations from the environment.
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Figure 4.4: The Waterfall-model for data fusion process [92].

4.3.3 Omnibus

A unified model, the Omnibus-model, was presented in 2000 [93]. It aimed to capture
the cyclical nature of the intelligence cycle and the Boyd-model, and to provide finer
defitions for the processes like presented in the Waterfall-model. The Omnibus-model
is depicted in Figure 4.5.

Fusion
Level

Bandwidth Performance Advantages Limitations

Data high to
very high

potentially
optimal

possible to use
physical models

high bandwidth re-
stricts use to single
platform systems

Features moderate good to high high performance difficult to select cor-
rect features

S Decisions low often good bandwidth perfor-
mance trade-off

compensation for
correlated sources
required

H Decisions very low depends on
system

simplicity for
larger systems

poor performance for
small systems

Table 4.1: Omnibus: The advantages and disadvantages of fusion at different lev-
els [93]. In general, the less bandwidth is required, the less is the expected perfor-
mance.

The feedback flow was made explicit and loops within loops are acknowledged by
the model, enabling the use of the model in defining both the system aim and its
task objective. Related to the Omnibus-model, a short comparison of the challenges
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related to fusion at different levels was given by Bedworth and O’Brien [93], depicted
here in Table 4.1.

Figure 4.5: The Omnibus-model for data fusion process [93].

4.4 Part-I Remarks

This chapter dealt with fusion architectures, challenges in gathering data, and mod-
els for architectures that have been proposed for various applications purposes. A
chosen fusion architecture does not necessarily limit the options for fusion level and
fusion method. Some choices might become less practical though, such as gathering
raw images to a central fusion unit easily requires large bandwidths and much com-
putational power, especially as the number of cameras increases. In such a case it
would be more flexible to either introduce local fusion units or to compute at each
camera data of higher abstraction level, such as features or even class scores, before
sending data to the central fusion unit. Selection of fusion architecture should there-
fore be driven by the accuracy requirements of the application, but one has to limit
the architecture options according to the current available resources of and future
plans for the vision network.

The Boyd architecture model does well in separating system tasks, identifying
the fusion opportunities, and highlighting the feedback to and from the environment.
This makes the Boyd-model a good reference for formulating a fusion framework
that contains a more structured approach to fusion and that better supports fusion
opportunities within vision networks.

Part-I of this thesis provided the necessary background information on vision
networks and the three aspects of fusion that play an important role in these networks.
The potential of vision networks was discussed through application examples, and
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the emerging trend of bringing them to private spaces through ambient intelligence
solutions was highlighted.

The increased accuracy in scene understanding performed by the vision networks
can only be achieved by intelligent fusion of data. The approach to sensor fusion was
split into three separate aspects. Fusion architecture defines the manner in which
multi-camera data is aggregated, fusion level defines the type of data to be combined,
and fusion method defines how the data is combined.

In Part-II of this thesis the presented material is formulated into a common vision
fusion framework, and various experiments in sensor fusion across four applications
of vision networks are conducted.



Part II

Framework and Experiments
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Chapter 5

Vision Fusion Framework

Like was discussed and explored in the chapters of Part-I, the design of a vision
network that fully exploits the complementary nature of multi-sensor data by apply-
ing suitable fusion methods is a very hard challenge. Such a multi-faceted problem
requires a systematic approach for streamlining the design process and for achieving
best possible results. To this end, a framework is proposed in this chapter. The
framework, referred to as vision fusion framework (VFF), aims to enable a generic
and systematic approach to designing, building and using vision networks efficiently
based on fusion-friendly approaches.

Section 5.1 starts this chapter by shortly summarizing the relevant research on
architectures and frameworks. The structure and the flow of the proposed framework
is illustrated in section 5.2 by expanding on how it connects to the common vision
network architecture and the three aspects of fusion: architecture, level and method.
The properties of vision networks that affect the creation and exploitation of fusion
opportunities are discussed in section 5.3. The suitability of different choices in the
three aspects of fusion are highlighted and a formulation is given in terms of design
rules in sections 5.4 − 5.6. The chapter finishes in section 5.7 by gathering all the
rules into one common design structure under the proposed framework.

The later chapters of this thesis will provide empirical studies for making conclu-
sions and recommendations based on the design elicited by the vision fusion frame-
work.

63
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5.1 Related Research

Many of the existing architecture models were presented at the end of chapter 4.
These models were originally designed with certain applications in mind, later they
have been used to model fusion processes. Models such as Boyd [91], Waterfall
[92], and Omnibus [93] were more thoroughly discussed and illustrated. Ombibus
especially was an interesting model, because it first explicitly showed the cyclical
nature of making observations and acting upon decisions made, and secondly provided
a natural separation of processing tasks and thus levels of fusion. These two aspects:
cyclical processing and task separation, are also a crucial part of the proposed VFF.

Figure 5.1: A framework for distributed vision networks possessing reasoning ca-
pabilities enabling a wide range of applications. With permission from [94].

Aghajan et al. introduced a model-based data fusion framework for human pos-
ture analysis in [94]. Like VFF, this framework uses a camera network for provid-
ing vision-based information from multiple sources. Particularly, their framework
is focused on distributed processing, thus no raw image data is considered to be
transmitted within the vision networks they address. VFF does not exclude transfer
of images, it considers all data levels applicable. Their framework in connection to
the enabling technologies and to the application prospects for smart environments is
shown in Figure 5.1.

Aghajan’s framework covers three dimensions of space, time and features; cameras
placed with different viewpoints, each camera capturing data over time, and different
subsets of features being combined. The framework differentiates the distributed
vision processing from the high-level reasoning in terms of the type of knowledge
provided: quantitative and qualitative, respectively. Their framework provides a
technology driven outlook into a versatile set of application opportunities, but does
not try to address the common structure of vision networks and the approaches for
multi-view data fusion. This formalization will be given by the proposed VFF.
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5.2 The Proposed Framework

Vision Fusion Framework (VFF) is largely based on the structure of the common
vision networks. VFF covers the details from a part of a vision module to the con-
nections between the system modules. VFF does not exhaustively cover all possible
topics, connections and effects, but it does address the most common factors having
high impact on fusion-friendly design of vision systems.

5.2.1 Definition

The proposed fusion framework is cyclical in nature. The decisions made by the vision
system can be used to adapt the environment or to give feedback to the user, both
which may alter the behavior of the person. This possible change in user location,
activity or behavior is again detected by the multi-camera observations captured by
the vision system.

Vision networks exploit the complementary data by aligning the observations
both temporally and spatially, and by associating corresponding observations within
and between views. The aligned and associated data can be directly processed by
the three-layer data fusion approach, and the combined result is returned to vision
network for later processing steps. A graphical representation of the proposed VFF
is given in Figure 5.2.

Figure 5.2: Application-driven Vision Fusion Framework for the design of fusion-
friendly vision systems.

The main modules for vision networks, data fusion, and the environment are
presented by VFF. Each of the modules may cover a variety of smaller details that
themselves can have significant impact on overall system accuracy. The presented
modules are there to provide a division of tasks that has been found most suitable,
and thus hopefully enable a successful breakdown of system aspects that can be
individually considered in system design. By following the division of tasks and
addressing each of them within VFF, it is the aim of the framework to provide a
systematic approach for building fusion-friendly vision networks.
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5.2.2 Fusion Design

The goal of a fusion process can commonly be considered as one of two approaches.
The first fusion approach is to provide most consistent estimation of a value with
the highest joint certainty in the estimation. The second approach is to detect a
phenomenon-of-interest (POI) that might be only visible in a view or a subset of the
views.

Design Rule 1. Apply fusion either to build consistency or to increase responsive-
ness to a phenomenon.

The consistency approach provides a good solid accuracy, e.g. the percentage
of positive classifications, over the entire range of situations arising in the observed
environment. Providing state-of-the-art results in certain occasions does not neces-
sarily make a system suitable for the challenges imposed by real world scenarios. In
this approach, fusion is for building stability and certainty, not necessarily for pro-
viding continuously the highest accuracies. With this approach, a solid accuracy of
positive fusion results is considered as the most important outcome of a successful
fusion system.

The phenomenon-of-interest approach has the same foundation as does the con-
sistency approach, that is to provide stable results through fusion. The difference
with POI approach is in increased sensitivity for detecting certain properties of hu-
man behavior. For example, a delicate hand-gesture might be only visible in one
of the observing views, and in this case a majority based scene analysis would not
register the gesture, but POI approach would do so.

Theoretically speaking, POI approach appears to be a reasonable option. How-
ever the realities of the challenges that computer vision faces in tracking deformable
objects in dynamically changing situations and environments make this approach
much harder to implement robustly than it first might seem. The main issue is how
the system can robustly separate a real POI instance from an outlier. For example,
when detecting movement of the upper body within a ROI the camera that reports a
major shift of the upper body, is actually been fooled by the movement of the person
standing behind the observed person, because they both happen to fall inside the
ROI covering the observed person.

Both fusion approaches should include a mechanism for detecting outliers, or at
least compute an estimate in such a manner that is not heavily influenced by outliers.
For example, one option is to use a median-operation instead of a mean-operation
for computing an estimate from multiple values. Outlier elimination is much more
difficult of a task for the POI approach, as sometimes only one camera might provide a
contradicting observation compared to the other views, and this contradiction might
be due to the real POI or the outlier. Therefore the POI approach has one major
issue to find a solution for: How strongly a single camera can override others without
having been supported by other observation(s) of similar type. Either some support
will be required, or certain valid assumptions and checks will have to be performed
by the vision algorithms.

As depicted in Figure 5.2, all the choices made in each of the fusion design modules
influence each other. The selected fusion architecture, such as fully centralized or fully
distributed, will have impact on which fusion level, such as feature or decision-level,
can be expected to provide the best accuracy, commonly the environment having an
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impact on the choice too. According to the structure presented in VFF, the following
order of fusion design procedures is most often applied:

1. define fusion approach

2. define fusion architecture(s)

3. define fusion data level(s)

4. define fusion method(s)

The choice on fusion architecture is often limited or even defined by the physical
implementation of the camera network. The physical implementation has to adhere
to the limitations in resources and location dimensions. The required compromises
will be reflected in the fusion architecture options. Similar limitations may apply,
e.g. to the amount of transferred data, thus limiting the choices on fusion level. The
choice on fusion method often comes down to providing tractable, fusion approach-
specific results while exploiting a prior information, if such is available.

In general, the greatest potential of fusion is in providing stability of processing in
varying conditions, simultaneously increasing certainty in the results achieved. The
second potential of fusion is to enable detection of phenomenon that might otherwise
be missed. In the next sections each of the vision system modules is broken down, and
the effect of the major properties to fusion opportunities is discussed and formulated
into a design rule structure.

5.3 Effects from the Vision Network

As illustrated in Figure 5.3, there are a multitude of topics that a VFF needs to
consider from both software and hardware side of a vision network. More precisely,
the topics that arise from the areas of sensing, vision and providing services.

5.3.1 Sensing Tools

The tools responsible for sensing, and thus creating observations, in a common vision
network include cameras for capturing video, networking for transferring the captured
data, and processing units for all the data handling operations.

Cameras
When considering cameras, three aspects have great influence to system design: res-
olution in pixels (RES), frame-rate (FPS) and field-of-view (FOV).

Resolution is defined as the number of individual points on the image sensor in
both vertical and horizontal direction in which scene emitted light is sampled. Thus
resolution is a limiting factor on how small of an object, area, or movement can
be detected on the image. Frame-rate tells us how many images, or frames, the
camera captures per a second. Therefore the fastest detectable change in e.g. size,
movement, appearance, or any other property is limited by the frame-rate. Hardware
specifications do limit the range for both resolution and frame-rate, but commonly
these operating settings are defined by the software within the applicable range.
Field-of-view, which almost always is required as wide as possible, is again very
limited due to the available camera lens and image sensor hardware. FOV defines
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the largest detectable object, area, or movement; thus the opposite of limitations
given by RES.

Figure 5.3: Illustration of the Modules of Vision Networks, each having impact to
fusion processes, thus part of consideration in the VFF.

Networking
Networking similarly has limitations from both hardware and software tools: physical
transport medium and transport protocols.

The physical transport medium, such as USB or fiber optics, present limitations
to the achievable data-rates. This can limit directly the fastest change detectable
by the vision network. Transport protocols, such as TCP, IP, or RTP, are required
for transferring the data robustly and in timely manner. Each protocol has its own
characteristics in dealing with packet losses and providing synchronized delivery.
Synchronization can be enabled by deploying timing protocols, such as Network
Timing Protocol (NTP). NTP helps designers in setting maximum shifts in time
allowed between different data sources.

Processing Unit
The unit responsible of computations, referred to here as processing unit, has espe-
cially three properties that define its performance: clock frequency, processor archi-
tecture, and circuit-board architecture.

Clock frequency defines the sampling rate of the processor, the memory-elements,
and the data transferring buses. Processor architecture includes the number and type
of processor cores. Board architecture defines the type of interfaces, memory-blocks,
and computation parallelism existing on the processing unit. All three properties
influence the computing power and thus the performance available for the vision
network.

Effects on Fusion
By understanding what to look for and what to address with sensing tools, VFF aims
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to enable the direct comparison and thus direct fusion of multi-view data. Enabling
is achieved by eliminating the need of additional steps in the latter processing steps,
by systematic assessment of the sensing tools.

By using identical cameras for the same function, such as person tracking, a
stability of data that is critical to optimal fusion, is achieved. For securing this
stable foundation for imaging, it is advised for cameras to have similar resolution,
frame-rate, and field-of-view. It is common, especially in image pre-processing per-
formed off-line, to alter the resolution and the frame-rate of a camera. However
for this purpose, it is recommendable to have high resolution and high frame-rate.
By downsampling from better quality the result will be of higher fidelity, than with
upsampling from inferior settings. This may create unnecessary need for upgraded
cameras, as the weakest link, the camera with the slowest frame-rate and lowest res-
olution, will define the performance of the entire vision network. Additionally any
compensation performed by software for the inequalities between the cameras takes
away computational resources from the vision network.

With a stable and uniform basis the algorithms can be mapped to all hardware
in a straightforward manner. No alteration on algorithm parameters or assumed
constants is needed. If fixing these parameters, such as the number of size-iterations
of a template-model or range limiters for a search window, no further analysis is
required.

Design Rule 2. Apply uniform design over all sensing tools, thus creating data that
is stable and directly comparable.

Having observations from the same time instant is crucial for fully exploiting
fusion potential. Options for data fusion are best supported by having access to
synchronized data. For example, to successfully use feature vector concatenation,
the separate feature vectors must be available at the same frame-rate [55]. Latency
in the start of a session can be avoided by global triggering methods. Shifts in data
streams between multiple cameras are avoidable by introducing time-stamping of
data and regular device-clock updates. Data streams should be transferred through
same physical medium for all the cameras, thus providing similar probabilities for
data congestion and traffic constraints.

Design Rule 3. Apply a uniform transmission on multi-view data, thus ensuring
synchronous delivery that enables maximal fusion opportunities.

By providing comparable data, in a synchronized manner, with computational
resources meeting the demands for processing, will data fusion mechanisms have full
effect on the commonly heavy amount of multi-view data.

5.3.2 Service Tools

Vision networks provide scene understanding through visual analysis. In most cases
reported in this thesis, it is related to people and their activities. As the smart envi-
ronment understands what people are up to, it can better react to and accommodate
the user. This feedback can be provided by a multitude of actuators, such as displays,
speakers, and other mechanical devices.
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Actuators
The design of the form of an actuator has to address at least the three aspects:
size, shape, and integration to existing surroundings. An actuator that conveys
application information must meet specifications for operating frequency, latency,
and accuracy/resolution. Displays can be provided by various technologies, such as
screens, projectors, holographic projections and electronic paper. The content can
be rendered in monochrome, in color, or with depth. Speakers can be integrated to
existing devices, in a form of a sound bar, or distributed with several small monitors.
Sounds reproduction can be based on mono, stereo, or surround sound.

Effects on Fusion
All above mentioned specifics on physical form and rendering quality are driven by the
application requirements; what needs to be shown and in which manner for the best
desired effect. Visual rendering of feedback or content might introduce new dynamic
artifacts into the scene. Fusion of multiple views can cope with these artifacts, e.g.,
by exploiting the understanding of scene geometry given by the multiple views for
removing the correlating effect of the artifacts, Rule 4. Artifacts may include, e.g.,
a blinking screen that is used to provide user-support. By fusion it is sometimes
possible to isolate and ignore this correlating error source.

Design Rule 4. Prepare for the effects that user-supporting rendering has on the
performance of the user-observing vision system.

Rendering techniques often re-sample the given data, thus it is not necessary to
provide them with high fidelity input data. Rendering can interpolate between given
samples and thus estimate the behavior of the data between the samples. Therefore,
the sampling accuracy and sampling rate demands on low-level vision processing
can be relaxed. This frees up computation resources to be used elsewhere, most
importantly on fusion algorithms.

5.3.3 Vision Algorithms

Two especially important groups of algorithms in a vision network are computer vi-
sion and machine learning algorithms. Computer vision (CV) algorithms process the
raw captured images in our studies for detection and representation of people. De-
pending on the application, machine learning (ML) has been used either for modeling
of activities or goals and intentions.

Effects on Fusion
For achieving high performance and accuracy one important factor is generic view-
independent vision processing. In other words, it is practical and tractable to use the
same vision algorithms across all cameras, at least between the cameras that perform
the same exact function, such as person-identification or tracking. In the context of
this thesis, the ultimate target of computer vision is to provide features that are
maximally robust against changes in orientation and scale of the observed person.
With such an approach, data fusion is possible at each system level, with credible
expectation for high accuracy given the controlled manner in which the features are
computed.

Design Rule 5. Apply features with lowest dependency on person scale and orien-
tation, thus increasing both stability of data and potential for fusion.
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Given uniform processing, any violations of view-independency can be detected to
a certain extent, which enables the vision system to count for such situations in data
fusion. In addition, machine learning offers powerful tools, e.g., for finding the true
trend in feature data, and helping fusion in this manner in coping with the inherent
variability that exists in all multi-sensory data.

5.4 Effects of the Fusion Architecture

When defining the underlying fusion structure in which fusion operates, it is benefi-
cial to study the suitability of the three proposed fusion architectures in chapter 4.
Additionally, some practical issues should not be forgotten, as they can have indirect
effects on the fusion process.

5.4.1 Practical Issues

The major drawback of the fully centralized fusion architecture (FCFA) is that it
is not a fully flexible architecture, that could be changed to use an arbitrary num-
ber of sensors. Certainly, some additional sensors can be added to FCFA, but the
computational load and amount of data-traffic faced by the central unit can increase
to unmanageable levels. Thus, depending on the central resources available and the
type of data being transmitted, FCFA typically provides rather limited flexibility on
increasing sensor population. The same concerns on centralized architecture of visual
sensor networks w.r.t. the scalability and high costs when deploying many cameras
were mentioned by Karakaya et al. in [95].

The fully distributed fusion architecture (FDFA) uses a subset of all the sensory
information in each of the local fusion processes, while consulting the other local
fusion centers about their results. This approach offers more flexibility for adding
additional sensors, due to the distributed nature of computations. On the other
hand, the more complicated communication paths and synchronization issues make
this approach more problematic than the FCFA. The properties of scalability, ro-
bustness against sensor failures, and modularity were stated by Durrant-Whyte and
Stevens as the most attractive properties of the decentralized fusion of data [96]. The
hierarchical fusion architecture (HFA) has similar issues with communication as does
FDFA, but it does offer added robustness against sensor and fusion failures, due to
its hierarchical nature.

5.4.2 Suitability

The selection of the fusion architecture to be deployed is always affected by two basic
factors, when dealing with sensors:

• sensor failure: a sensor fails to provide data

• sensor noise: observations given by a sensor are affected by noise

The suitability of each of the three proposed architectures is studied for four different
scenarios. In case of sensor failure, a failure detection mechanism can be deployed,
defined as scenario FailureDet, or not deployed, noFailureDet. In case of sensor
noise, a noise compensation mechanism can be optionally used, defined respectively
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as scenarios NoiseComp and noNoiseComp. Having such mechanisms has a great
impact on the predictable accuracy of an architecture. Estimates on the suitability
of each architecture-mechanism configuration are presented in Table 5.1.

Table 5.1: Fusion Architectures ranked by a comparative suitability.

scenario noFailureDet FailureDet noNoiseComp NoiseComp
FCFA poor best poor best
FDFA good good good good
HFA best poor best poor

Considering the cases in which a mechanism is in place for coping with sensor
failure and sensor noise, FCFA is expected to perform best. This superiority is due
to one factor. Because central unit gathers all the sensor data, it has access to all
observations; good, bad and missing. This is expected to provide ideal situation for
the fusion center for detecting outliers, which are observations numerically distant
from others. One applicable iterative method for detecting outliers that has been
widely used is Random Sample Consensus (RANSAC) [97]. For the same reason
of having access to a wider set of data of the same level than HFA, also FDFA is
expected to outperform HFA. The following guidelines can help in the selection of
the fusion architecture:

Design Rule 6. Apply fully centralized architecture, if the main goal is to have
maximum fusion potential and cases of sensor failure are handled.

Design Rule 7. Apply other than centralized architectures only if prior information
or initial data analysis supports it.

In case of having no mechanism for coping with sensor failure and sensor noise,
the same wide access to data that helped FCFA and FDFA to outperform HFA, is
now their downfall. Without data handling mechanisms the effect of erroneous data,
within otherwise good observations, can have major negative impact to the overall
fusion result. Having no detection and response to sensor noise or sensor failure,
FCFA is most negatively affected. This provides a clear motivation for Rule 6. In
case of FDFA the negative effect can be expected to be slightly less than with FCFA,
due to FDFAs distributed nature mitigating the effect.

For supporting another architecture than centralized, prior information, e.g., on
the camera hierarchy in the sense of fixed distances to the observed person, can be
considered as valid information to group certain cameras together, this way giving
rise to HFA. A similar tendency between a group of cameras can be, e.g., detected
in the initial data analysis of the multi-view feature-data, see Rule 7.

It is not difficult to design and implement the mechanisms for sensor failure and
noise. However, if these mechanisms are not in place, the stability and performance
of the selected fusion architecture can be seriously degraded. In overall, the choice
of a fusion architecture has to be supported by the available mechanisms and by any
prior or initial data that is or can be made available.
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5.5 Effects of the Fusion Level

Considering the previously presented four fusion-levels: images, features, class-scores
and class-decisions, many level-combinations for exploiting fusion exist. Each level
offers a different abstract viewpoint to the original sensory data.

5.5.1 Abstraction of Data

A higher fusion level corresponds to fusion of more abstract data. Raw data has
been transformed into another type of data having more qualitative information in
it. The effect of noise has favorably been canceled, and the qualitative properties of
information are of high standard and possessing discriminative power.

It has been argued that by having access to all of the raw data, the best approach
to data fusion is achievable [35]. This is because the level of detail in the raw data is
highest. On the other hand, also the corruption due to noise is also highest, making
the choice of appropriate level more difficult, than it originally seems.

Design Rule 8. Apply fusion at the lowest single fusion-level with consideration for
the tradeoffs between handling of noise and quality of information.

Do not expect the level of accuracy with a single fusion-level to carry onto other
environments. In the experiments sections it will be shown that depending on the
tracked object and the environment under observations, it is different fusion levels
that based on the same fusion methods, can provide the best accuracy.

5.5.2 Level Configurations

In all of the proposed architectures, such as FCFA, fusion can be implemented at
any combination of levels or at any individual level. With FDFA, fusion at any level
is achievable once agreed on between the fusion centers; the same applies to HFA.
Thus, the exploitable fusion level or combination of levels are not limited by the
chosen architecture.

Considering the entire chain of data from sensing to decision, multiple options
for data fusion exist. The level of fusion and the number of levels involved can all
be changed. In [35] Dasarathy illustrated the full potential of fusion based on his
five input-output type characterizations for data fusion, presented here in Figure 5.4.
Based on the four levels of data proposed in this thesis, all the options for type of
fusion based on data are listed in Table 5.2, with remarks on the assumptions and
requirements for a particular option.

Of all the 15 fusion-configurations presented in Table 5.2, there is no single con-
figuration that could be expected to always perform better than the rest. Regardless,
some discussion topics do arise. Having limited resources and flexibility, any of the
single fusion-configurations should provide increased certainty in observations. For
image-level fusion, calibration of the camera network for both intrinsic and extrinsic
properties is required. Calibration is a laborious task, sensitive to mistakes and easily
broken, which makes fusion at image-level less practical. Calibration is also required
for fusion at the feature-level for some algorithms, such as the feature-point based
depth estimators using temporal images [98]. In general, the other single fusion cases
require less initial work, a mechanism for data association and alignment is though
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often required, but the ranking between the configurations depends on the environ-
ment and application. This will be shown in the experiments presented in sections
6-9.

Figure 5.4: Illustration of the fusion potential for Dasarathys I/O-based fusion
characterization. DA stands for data, FE for feature, and DE for decision. [35]

Excluding the 1x-fusion cases, all the rest of the fusion-configurations exploit
some level of exhaustive processing, in which multiple fusion processes take place as
data passes through the vision system. The quadruple 4x-fusion, in which fusion is
performed at each fusion level, exploits all three of the following techniques:

1. feature extractor suite: the same feature is computed by different algorithms
from the same source.

2. classifier suite: a class is inferred by a number of classifiers based on the same
features.
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3. temporal accumulation of data: the same feature is observed over a sequence,
from which an estimate for the feature is computed.

Table 5.2: Fusion opportunities based on the fusion level: fusion is marked by ’x’. I
stands for image, F for feature, CS for class-score and CL for class-label.

scenario I F CS CL remarks

1x-Fusion

1 x images assumed registerable
2 x no requirements

3 x ..

4 x ..

2x-Fusion

1 x x Note1: assumed classifier-suite

2 x x Note1

3 x x Note1

4 x x Note1

5 x x Note2: assumed feature-extractor-suite

6 x x Note3: assumed temporal-fusion

3x-Fusion

1 x x x Note1, Note2

2 x x x Note1, Note2

3 x x x Note1, Note3

4 x x x Note1, Note3

4x-Fusion
1 x x x x Note1, Note2, Note3

It is most probable that no single fusion level configuration can guarantee opti-
mum accuracy in all environments and applications. Each technique above presents
an opportunity to fully exploit the fusion potential. The idea is to not narrow down
the options, if no analysis or expertise has been provided to back up such a proce-
dure. For example, Mansoorizadeh and Charkari showed that a hybrid fusion of both
feature and decision-level fusion results, can provide better accuracy than unimodal
classification, or fusion of either features or decisions [53]. They experimented on the
use of face and speech information for emotion recognition.

Design Rule 9. Apply fusion both across fusion levels and on estimates within levels
to provide more stable accuracy, if lacking sufficient domain knowledge.

On the contrary, a suite of different techniques performing the same task can be
applied. The estimate is expected to have captured the essential behavior of the
value under fusion, because estimates with different assumptions behind them are
combined. The effects of the assumptions of each technique are expected to cancel
each other out. For canceling to happen, some understanding of the behavior of the
techniques is required, as otherwise the effects may actually re-enforce each other.
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5.6 Effects of the Fusion Method

The type of data to be combined largely limits the possible fusion methods to be
applied. Having prior information of the observed object or environment, can help
in initializing and directing the method. Additionally, the method might have to
be able to learn on-line some facets of the observed process. It is beneficial and
sometimes even necessary, for the results to be tractable by a (human) expert, so
that the method can be adjusted through a feedback loop. This is achievable, e.g.,
by so called Elucidative Fusion Systems (EFS) proposed by Dasarathy in [99]. EFS
aims to create transparency to the contributions of each sensor involved in a fusion
process. In EFS the importance of a sensor, the relative influence on the fused result,
is made explicitly visible.

5.6.1 Relative Influence of Sensors

In order for relative influence to have an impact, the fusion method has to provide
a tool for weighting the different sensors based on their importance, Rule 10. The
weighting can be given by prior information, or can be learned on-line as the system
is running. For the best accuracy, a combined effort of defining initial settings by the
prior information and updating them through on-line learning should be opted for.

Design Rule 10. Apply to the fusion method preferably an adaptive mechanism of
relative influence.

The challenge in conforming to the expected properties of the observed phe-
nomenon and adapting to any changes observed is that, if done poorly, fusion ac-
curacy deteriorates and may end up giving results worse than with majority voting
of sensors, Rule 11. For example, by assuming a close proximity camera to provide
the best posture estimate due to full and close visibility to a person, may not always
hold. The proximity of other people and moving objects on close-by tabletops can
make this originally best view the most difficult one to process by vision algorithms.
If not correctly adapting to the changed situation of camera preferences, the positive
results will diminish and a catastrophic fusion may take place.

Design Rule 11. The fusion method has to control the quality of prior information,
on-line learning criteria, and expert feedback in order to prevent poor fusion.

Quality assessment is enabled by tools of quality control. One possible approach
is to use a suite of fusion methods to provide a benchmark of average fusion accuracy.
Equal weights are used for each fusion method, and estimates from each method are
combined into suite estimate by finding the peak of the estimate distribution. The
quality of each method is then defined by comparing the estimate provided by the
method to the suite estimate.

One should notice that the suite estimate is not expected to provide the best
accuracy at all times, Rule 12. A single method might be more responsive to certain
changes in environment conditions, making it the best method for that given time
instant. In contrast, the method suite will adapt more conservatively, because each
of the contributing methods have their own characteristics, drawbacks, and benefits.

Design Rule 12. A fusion method suite can provide consistently good fusion results,
especially when applying correlating fusion methods with non-correlating errors.
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The selection of fusion methods provides in an ideal case a set of techniques whose
fusion results correlate, and the errors they make are uncorrelated. Most often this
correlation of results will increase the accuracy, and the non-correlation of errors
diminishes the overall system error. If each of the fusion methods has the same
weakness for a certain change in data, the fusion results will be negatively affected.
Having methods with complementary reactions in terms of the errors they make,
helps the suite to cope with various situations.

5.7 Conclusions

As it has been noted, the most suitable data fusion system depends on various vision
network aspects. Aspects covering the environment and the observed people, the
physical camera-system, and the purpose of the application all have an impact. The
fusion itself can be defined in four parts: fusion approach, fusion architecture, fusion
level and fusion method. Each part has its own properties, all of them influencing
the overall fusion accuracy.

By defining the proposed framework, the aim is to help in making a systematic
analysis of the vision network and the potential for fusion within. Analysis highlights
the common pitfalls and directs the efforts for most efficient workflow and positive
fusion results.

5.7.1 Rules of Design

Based on the analysis on different parts of both the vision system and the environmen-
tal factors, important aspects for creating and exploiting fusion potential were raised
in this chapter. The major modules were presented in the proposed vision fusion
framework, and for each module design rules were formulated. The fusion framework
was illustrated in Figure 5.2. Correspondingly, the rules for driving fusion-friendly
design within the framework were defined as follows.

Fusion Approach
Design Rule 1: Apply fusion either to build consistency or to increase responsiveness
to a phenomenon.

Vision Network
Design Rule 2: Apply uniform design over all sensing tools, thus creating data that
is stable and directly comparable.

Design Rule 3: Apply a uniform transmission on multi-view data, thus ensuring
synchronous delivery that enables maximal fusion opportunities.

Design Rule 4: Prepare for the effects that user-supporting rendering has on the
performance of the user-observing vision system.

Design Rule 5: Apply features with lowest dependency on person scale and orienta-
tion, thus increasing both stability of data and potential for fusion.

Fusion Architecture
Design Rule 6: Apply fully centralized architecture, if the main goal is to have
maximum fusion potential and cases of sensor failure are handled.
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Design Rule 7: Apply other than centralized architectures only if prior information
or initial data analysis supports it.

Fusion Level
Design Rule 8: Apply fusion at the lowest single fusion-level with consideration for
the tradeoffs between handling of noise and quality of information.

Design Rule 9: Apply fusion both across fusion levels and on estimates within levels
to provide more stable accuracy, if lacking sufficient domain knowledge.

Fusion Method
Design Rule 10: Apply to the fusion method preferably an adaptive mechanism of
relative influence.

Design Rule 11: The fusion method has to control the quality of prior information,
on-line learning criteria, and expert feedback in order to prevent poor fusion.

Design Rule 12: A fusion method suite can provide consistently good fusion results,
especially when applying correlating fusion methods with non-correlating errors.

In the following chapters 6 − 9, experiments for data fusion will be presented.
Each experiment will be tackling a different application domain. Depending on the
application, different fusion aspects and questions will be explored. In the discussion-
section of each of these chapters, the findings of the experiments are connected back
to the VFF.



Chapter 6

Remote Visual Communication

A common task of a vision network is to detect and track a person moving within an
environment. An application designed for visual communication between remote sites
is presented in this chapter 1. The application requires the detection and localization
of a person within the designated area. To this end, a set of distributed cameras
is used as sensors for reconstructing the shape of a person within the volume-of-
interest (VOI).

Section 6.1 starts the chapter by providing background for the visual communi-
cation application and common related methodologies for occupancy testing. This is
followed by a description of the methodologies used in the proposed vision network
in section 6.2. The experiments on implementing such an application and vision
network are presented in section 6.3.

Application experiment is followed by two fusion experiments on shape recon-
struction in section 6.4. The first experiment studies the effects of camera configu-
ration; that is where and how the cameras are setup for the shape estimation. The
second experiment examines the accuracy and behavior of five proposed occupancy
fusion methods on two noise conditions: imaging sensor noise and camera calibration
noise. This chapter concludes in section 6.5 with a discussion on the major findings
in relation to the vision fusion framework.

1This chapter is (partly) based on:
Määttä, T., Aghajan, H., Härmä, A. (2009). Home-to-home communication using 3D shadows.
2nd International ICST Conference on Immersive Telecommunications.
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6.1 Related Work

A system for persistent and ambient visual communication based on capture, trans-
mission, and rendering of 3D shadow representations of users is presented. The shape
of a person is captured using a distributed camera array, compressed, and transmit-
ted over the network. In the receiving end the shape is projected as a shadow on a
surface using a lighting device. The 3D representation of the shape makes it possible
to control the 2D visualization at the receiving end in many interesting ways. For
example, when controlled by tracking of the observing user the shadow may create
a visual illusion of a 3D shape on the wall.

In video conference applications it is usually desired to transmit a high-quality
video image to imitate face-to-face communication. Some of the most important
factors for the face-to-face experience are the preservation of facial expressions and
eye contact. In a home video telephony system installed in a PC or a TV these can
be typically only preserved when the user is seated close to and facing the terminal
device. The terminal-centricity of video communication limits the user from doing
other things while having the call and causes fatigue in long communication sessions.
Consequently, video calls are often short in duration. Due to the flat-rate pricing
model of home broadband communication it has become economically feasible to
have visual home-to-home connections always open, enabling applications to support
persistent presence.

The requirement for the face-to-face quality can be relaxed, if the goal is to build
a visual communication device supporting primarily the social connectedness and
awareness of the other side [100]. Understanding the activities and status of others
is achieved through social connections and communications. The idea of the sys-
tem introduced is to convey the awareness not by direct interaction or sharing the
same physical space, but by mediating it through an open-ended, or persistent visual
communication channel. Such communication systems have been earlier studied in
the collaborative working environments and it has been found that they increase the
awareness and support other forms of communication [101]. Users of Instant Mes-
saging (IM) are already familiar with indicating their presence and keeping the link
on for longer periods of time. Persistency and constantly low bit-rate of data when
compared to videoconferencing are the main characteristics of the system discussed.

If the goal is not to reproduce the physically accurate visual representation of a
remote person there are plenty of alternatives. The remote person can be represented
in stylized form as an avatar which may take any shape. It is also possible to map the
visual representation to some abstract or symbolic representations such as geomet-
ric patterns, movements, colors, or even sounds. Which kind of visual information
is transmitted from their home to the other side could be controlled by the users
themselves. Based on user’s preferences to different people at different times the user
could have several options for communicating, options on devices (projector, screen)
and presentations (shadow, avatar) to be used. Realistic reconstruction is required
by application, but point-to-point accuracy is not necessary for the expected effect.
The visual requirements from the application are:

• lack of visual artifacts: no additional blobs

• smooth representation: few jagged edges

• geometrically correct visualization: correct anthropometric proportions
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In the proposed system the focus is on using a silhouette representation, which is
projected on a surface, such that it looks like a shadow of a person placed between the
light source and the surface. Shadow or silhouette representations of remote people
have been proposed earlier in [102, 103]. The shadow representation preserves many
of the subtle non-verbal signals about our mood, attitudes, and feelings. Therefore,
people living far apart from each other might still like to maintain the feeling of living
close to each other, like neigbors who see each other daily through the windows of
their homes. A spatial system for bringing distant homes together by merging the
two spaces has also been introduced in [104]. The benefits of shadow representation
are:

• low bit-rate

• low rendering complexity

• more privacy while still conveying presence

6.1.1 Scene Occupancy

Methods for capturing the geometry and occupancy of an environment commonly
rely on occupancy maps and certainty grids [36]. Both occupancy maps and cer-
tainty maps are based on dividing the observed space into regular cells. Given a
two-dimensional floor, the observed cells are squares, see Figure 6.1. For a three-
dimensional space the cells are defined as cubes. Based on the observation performed
by the multiple sensors the occupancy of the cell is determined. Cell is occupied if
the fused sensor data agrees that an object/obstacle relies within that particular cell.

Figure 6.1: A room observed by multiple cameras, floor level divided into regular
cells for generating an occupancy map [105].

Occupancy Map
Occupancy maps contain a binary value, either a zero or one, for each cell indicating
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if the cell is occupied by an obstacle or not. A map can be generated in two different
manners:

1. by finding the objects

2. by finding the free unoccupied space

By assuming the entire environment is free, the objects that are found to exist
within the environment are used to define the corresponding locations on the occu-
pancy map as occupied. The locations of the objects can be found by e.g. object
triangulation. Whereas by assuming the entire environment as occupied space, the
aim becomes to find the areas with free space and mark these locations as not occu-
pied. Because no object detection/tracking is needed, the find-free-space approach is
less complex and more robust. Additionally in case of a sensor failure, less area will
be defined as free space, which does no affect e.g. the safety in obstacle avoidance.

Hoover et al. built camera-specific occupancy maps in [105] by first taking a
difference image, which was then transformed to map space, having done the required
calibration for the vision network as a preliminary step. The occupancy map was
initialized as fully occupied. If any of the camera-specific occupancy tests declared a
cell free, that cell was declared as empty in the fused occupancy map.

Certainty Map
Certainty maps are similar to occupancy maps with one major distinction; the value
of a cell is not anymore a binary value, but a value representing the probability
that the cell is indeed occupied by an object/obstacle [106]. The value of certainty
can be achieved by various value fusion methods. A common approach to assigning
the certainty to a cell is performed based on Bayesian inference by assuming that
conditional independence exists between sensors and that there is no preference on
cell state.

For the perception and navigation of a mobile robot, certainty maps were re-
viewed in [107]. The collection of single sensor readings, referred to as sensor views,
taken from a single robot location formed the local sensor map. For each sensor type
there was a separate sensor map, which fused together yielded the robot view. The
robot view thus contains all the sensor information of the robot’s surroundings from
a single location. The global map of the environment was composed by fusing the
robot views taken at different locations as the robot travels through the surround-
ings. Two different modalities, sonar and scan-line stereo, were used as sensors. The
grid estimates from both modalities were combined by the independent opinion pool
method [108]: each cell was multiplied by the corresponding cell in the other sen-
sors grid, and the resulting cell-value was multiplied by an appropriate normalizing
constant.

The communication application discussed in this chapter requires the space to
be labeled as either occupied or free. Based on these hard decisions can the system
estimate the shape and location, and use these directly in rendering. Therefore, an
occupancy map is needed for the application.

6.2 Proposed Vision System

The proposed system combines multi-video processing and free-viewpoint visualiza-
tion to achieve peripheral awareness and persistent connectedness to a close one who
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will be portrayed as a shadow-like character. As the user’s 3D shape is captured,
walking around the 3D shape is made possible thus enhancing the effect of the other
one being here, at ones home. The silhouettes of the person are extracted in one
location with multiple cameras observing the location from different viewpoints; the
silhouettes are combined into a 3D silhouette. This 3D silhouette or derivation of
it is coded into a more compact form, transmitted over the network and rendered
in another location interactively based on the observing user’s position. The flow of
data in one home is presented in Figure 6.2.

Figure 6.2: Data processing and flow presented for one end of the vision system.
Both application ends will have an identical system.

6.2.1 Person Capture: Silhouette Extraction

Human motion capture is to understand human behavior through detecting, tracking
and recognizing user’s actions. Capture can be performed with only a single view
[109], with a pair of cameras [110] or by multiple cameras to achieve even higher
robustness. Capture systems are either based on special markers or special suits to
mark important spots on the user or they are based solely on the video content.
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Multi-view, video-based user capture was chosen for reasons inherent to the system
designed for the home environment. User capture has to be done unobtrusively to
offer ease on long-term use of the daily communication application. In addition to
improved robustness a larger area can be covered with multi-view thus giving the
user more freedom to move.

The proposed system is designed to detect where the user moves and how fast.
The multi-camera system provides video feeds from different viewpoints of the same
scene. These feeds are processed locally to a much simpler form by segmenting the
user from the background. This process of binary segmentation is hereafter called
silhouette extraction. The approach used in our system is based on the following
assumptions. The scene is situated indoor and is decently illuminated by ordinary
lighting. The cameras are fixed, they do not support zooming, panning or tilting
therefore keeping the scene stationary. Only the user will generate movement in the
scene. The silhouette extraction is based on using adaptive statistical pixel model to
describe the recent history of color at each observed pixel by normal distributions of
luminance and green and blue chrominance components [111]. The binary silhouette
image is the result of subtracting the model from the video image and thresholding
this difference image w.r.t. a predefined threshold.

6.2.2 Multi-View Geometry: Camera Calibration

Figure 6.3: A black microphone stand marked with white tapes for external calibra-
tion observed from four different viewpoints. The images are undistorted for radial
distortion based on intrinsic calibration.

To be able to do the 3D reconstruction of the user with the desired metric ac-
curacy, the cameras need to be calibrated. Cameras capture the light, emitted by
the 3D environment they are focused on, with their image sensor forming the im-
age plane. Through camera calibration one is able to determine which ray in 3D
space is associated with which pixel on the 2D image. There are several methods for
multi-camera calibration which use different calibration objects, treat the cameras
individually or together [31] and are fully-automatic or require manual work.

The classical calibration approach by manually defining the points of interest in
the 3D scene was used for the extrinsic calibration. The intrinsic calibration for radial
distortion was performed by the camera calibration toolbox given by Graphics and
Media Lab (GML) of Moscow State University. Calibrations were done by assuming
the pinhole camera model. The pinhole model is the simplest approximation of cam-
era geometry used in computer vision. The calibration was performed by capturing
the projections of known 3D scene points, points whose world-coordinates (x,y and
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z) were fixed with a calibration object, on the image plane, see Figure 6.3. These 3D-
to-2D point correspondences were used by the Direct Linear Transformation (DLT)
algorithm [97] to calculate the projection matrices defining the mapping from 3D
scene to 2D image for each camera independently.

6.2.3 3D-shape Reconstruction: Visual Hull

There are many approaches for reconstructing a 3D shape differing in what image
features they use, how the shape is represented, and how much detail is preserved
of the original object. The shape-from-silhouette (SFS) [112] technique was used in
the proposed system. SFS is a method for estimating the 3D non-textured shape
of an object by using the silhouette images taken from this object from multiple
viewpoints.

SFS is based on the fact that the separated foreground in the form of a silhouette
together with the camera viewing parameters can be projected back to the 3D space
as a cone that contains the actual foreground object. As every viewpoint forms its
own silhouette cone, the intersection of these cones forms the bounding geometry
of the actual 3D object. The result is called Visual Hull (VH) [41]. VH is an
approximation of the true 3D shape and it depends on the number of views, positions
of these views and complexity of the object, see Figure 6.4.

Figure 6.4: Formation of Visual Hull with four viewpoints: Object forms silhouette
image Si

k on camera k at time instant i.

A straight forward way of implementing SFS is to define a volume-of-interest
(VOI), observed by the cameras, within the environment. The VOI is divided into
a grid of 3D voxels. Each voxel’s occupancy is independently tested against the
silhouette images from available viewpoints. Occupancy testing is performed by
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projecting the voxel onto the image plane and checking if the voxel projections lie
inside the silhouette, see Figure 6.5. This testing is done for all views. For speeding
up the on-line processing, the voxel projections per view were stored in a lookup-table
structure for fast access enabling real-time volumetric reconstruction.

Figure 6.5: Volume of interest enclosed by a cube formed by regular grid of voxels,
whose eight vertices are projected to the image plane. The projections are represented
by two uniform points p1 and p2 used to test voxels occupancy.

6.2.4 Visualization: Interactive

In the proposed system the capture of user position and level of activity is performed
by analysis of the Visual Hull. By having the 3D shape, the view can freely rotate
around the remote user and go closer or further away. The idea is to give the observing
user the power to define the angle and proximity by his natural movements. In this
fashion the shadows are shown on the screen, which can be considered to act as a
see-through window. For example, if the local user moves to the right, he will be
shown more of the right profile of the remote user. If the observing user moves further
away from the screen used for visualization, his distance to the shadow is significantly
increased, see Figure 6.6.

This way by tracking the user’s position and showing the corresponding view, the
2D silhouette looks as a 3D object with strong perspective effect. This 3D effect is
expected to make the shadow more life-like and further enhance the feeling of the
remote user being in the same space with the local user. In addition, based on the
amount of activity of the remote user the users shadow is shown in different colors,
to serve as a status indicator for peripheral awareness.

In the proposed system the user has the option to move around the shadow of
the remote person to a maximum of 120 degrees to each side. The users position is
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Figure 6.6: The remote user is shown to the observing user on the right from
different angles and proximities based on observing users position. The three user
positions and shown viewpoints are illustrated with same color. The roles of observed
and observing are here represented for one way case.

tracked through shape analysis by calculating the centroid of the voxels forming the
VH and using this centroid as the center of mass of the user. Based on the centroid
the 3D shape can be kept stationary, thus keeping the shadow on the same spot even
as the observed user walks around in the VOI. Based on users natural movement
the corresponding view is shown. See Figure 6.7 for an example on how the viewer
position is determined and Equations 6.1, 6.2 and 6.3 for how these values determine
the viewpoints horizontal and vertical rotation γhor and γvert and proximity zoom.

γhor(dx) =
dx

Dimx
×maxhor (6.1)

zoom(dy) =
dy

Dimy
×DoC (6.2)

γvert(dz) = (dz − CoM)× s (6.3)

maxhor is the maximal horizontal rotation angle (120 degrees), DoC is the maximal
displacement of camera closer to or further away from the center of VOI (200 cm),
CoM is the pre-defined height of center of mass in ordinary standing posture, (60cm),
Dim is the VOI dimension in centimeters from the center of the VOI to the border
of the VOI either in x (200 cm) or y (200 c,) direction and s is the scaling factor
(3) for z-wise movement. The values given for the variables are the ones used in
the experimental section. These variables are used in determining the displacement
of the virtual camera from its reference position and orientation, which is initially



88 CHAPTER 6. REMOTE VISUAL COMMUNICATION

Figure 6.7: Definition of VOI within an environment: The user position is tracked
within the VOI based on the fixed world coordinate system (x, y, z).

defined at the end of negative y-axis, just outside the VOI with orientation towards
the center of VOI.

6.2.5 Visualization: Distortion Free

Projection techniques using existing surfaces of the environment, such as the walls,
to display the remote shadows are expected to provide a more life-like see-through
effect as the projections can be life-sized and exist in the natural setting. To retain
its real world feeling, by not being deformed by geometric distortions, the projection
should take into account at least the most basic geometric challenges, the horizontal
and vertical tilting of the projection surface w.r.t. the projecting device as well to
the user, see Figure 6.8 for illustration of the problem. If the projection surface has
a tilting angle α away from the perpendicular orientation against the projector, the
relation between original projection width pwidthorig and actual projection width
pwidthwall is:

pwidthorig
pwidthwall

= cosα (6.4)

Thus for the projection on the wall to have the width of the original, the projection
width pwidthproj has to be corrected for angular tilt α before projecting on wall as
follows:

pwidthproj = pwidthorig × cosα (6.5)

The same correction for redefining the width dimension of the projected shadow can
also be performed for the vertical height w.r.t. the vertical tilt of the surface.

For compensating also for the effect of users position the similar correction in
horizontal direction is required. Otherwise as the local user moves more to one
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side to see more of the side profile the projection he sees has shrunk in horizontal
direction. To compensate for this the projection width on the wall has to be increased
accordingly.

pwidthseen = cosβ × pwidthwall (6.6)

In order to eliminate the cosine term and thus retain the same width for the observing
user the pwidthwall has to be stretched as follows:

pwidthwallnew =
pwidthwall

cosβ
(6.7)

When combined both the shrinking for the angular projection α and expanding
for the angular observing β the projection process has to be corrected in horizontal
direction as follows:

pwidthproj = pwidthorig ×
cosα

cosβ
(6.8)

Figure 6.8: Horizontal case: Geometric compensation for projector and observer
positions.

6.3 Application Experiments

The proposed system consists of two identical ends, see Figure 6.2, of which one is
here used to describe both ends.
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6.3.1 Hardware

In the experimental setup built, the four cameras are not situated exactly at opposite
corners to avoid redundant views. As the proposed system is for the home, the
cameras used were ordinary mid-price webcameras. All cameras are at same height
and their views have no occlusions w.r.t. the VOI, see Figure 6.9.

Figure 6.9: The vision system: modules, cameras and connections.

The basic blocks of the system are Logitech Fusion USB web-cameras working 20
fps with YUV 444 format in 320×240 resolution with 73 degrees of horizontal viewing
angle, personal computers (PCs) with 3 GHz Intel IV processor and Windows XP
handling data processing/transmission and the network for inter-PC communication.
The two PCs run in real-time two simultaneous applications using the connected
cameras in generating silhouette image then sent over the network to the master PC
having dedicated graphics card for OpenGL rendering of volumetric reconstruction
based on the analysis results on the shape of the observing user. The visualization
was performed with a projector in this system; in other scenarios also televisions or
screens could be used.

The preliminary studies on the effect of available silhouette views showed that
by adding a fourth camera an improvement of 25 to 140%, depending on image
content, is achieved in the number of outlier voxels. The outlier voxels were simply
considered as the voxels, which were present in the three-camera reconstruction, but
not in the four-camera shape estimation. In general, the more cameras would be
added, the tighter the estimated shape would follow the real shape. However, as a
drawback the shape estimation, based on AND-operation of silhouette occupancies,
would occasionally falsely reject occupied voxels due to limitations in calibration
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accuracy and computation accuracy of projective transformations.
The same preliminary study showed that robustness against uncorrelated silhou-

ette noise increases with SFS, when increasing the number of views. Therefore, even
with very noisy silhouette images a good shape estimation is possible, when increasing
the number of intersecting views significantly.

6.3.2 Data Communications

Each silhouette image is sent over the network in one data-packet. Each of the sil-
houette packets is time-stamped before sending. The average delay between capture
of the scene and the volumetric reconstruction visualized locally was between 0.5 to
1.0 second. This is due to the 0.5 second delay in frame buffering and the rest dealing
with camera driver and data transmission and coding. This delay would be visible
for the user only when he is moving and the visualization of the remote site would
not immediately adapt to his location. Based on a small number of informal user
experiments, this effect did not appear annoying and the effect of immersion was still
evident.

Camera ID Kilobytes per 30 seconds Bitrate kB/s
CAM1 412 13.7
CAM2 316 10.5
CAM3 372 12.4
CAM4 256 8.5
CAMavg−all 339 11.3

Table 6.1: Used bytes and corresponding bitrate for a 30 seconds long video sequence
with varying amounts of silhouette content.

Average bandwidth required for a silhouette stream was 11.3 Kbytes/s; see Ta-
ble 6.1 for bitrates in the 4-camera setup. Such a small local network load is achieved
by compressing the binary silhouette data by algorithm called Bzip2. The required
data-rate is within the limits for, e.g., Zigbee wireless communication which might
have a considerable stature in future home networking. Transmission bitrate of com-
pressed shape, sent between homes, is expected to vary between 7 to 20 Kbytes/s
depending on the human shape and its noisiness.

6.3.3 Visualization

A real-time demo was built to demonstrate the interactive concepts of the system.
In Figure 6.10 a snapshot of the running system is provided, highlighting the activity
level based colored visualization. The freedom of user mobility and natural changes
of given viewpoint are illustrated in Figure 6.11.
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(a) Frame 1 (b) Frame 31

(c) Frame 68 (d) Frame 98

Figure 6.10: Local user’s shape is shown on the front screen and two silhouette
masks used to reconstruct the shape on the screen behind on the right all rendered
with real-time software. When the user steps to the side, the activity level increases
and the VH is correspondingly rendered in yellow color. Frames a-c) user takes a
step to the right, d) user hops back to center.

(a) Frame 77 (b) Frame 200 (c) Frame 294 (d) Frame 491

(e) Frame 694 (f) Frame 797 (g) Frame 894 (h) Frame 942

Figure 6.11: Simulated action clip of the local observing user walking around the
stationary 3D shadow projected on a 2D surface. The first row: observing user goes
left and then down to frogs view by crouching, the second row: user goes right and
then up to birds view by reaching to the ceiling.
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6.4 Fusion Experiments

The vision network proposed for the application relies completely on the accuracy
of the fusion of the silhouette images. Each camera provides the images with same
resolution and frame-rate, which makes the direct comparison and fusion of data
easier [Design Rule 2]. The data is gathered in one central location, thus a fully
centralized architecture is exploited. By performing fusion on the silhouette images,
two fusion benefits are apparent:

• 3D-shape reconstruction: appearance and localization in 3D

• 3D-shape backprojection: filtered silhouettes in 2D

If noise is present, this will negatively affect the fusion process, and thus the
estimated human shape. Common noise sources for shape estimation can include
calibration noise, imaging noise and environmental noise.

Given poor calibration the correspondences from 3D scene points to 2D image
points will not match between views, resulting in poor joint decisions. Imaging noise
affects the image segmentation by creating false and missing hits for foreground areas.
False segmentation easily creates errors in shape estimation. The environmental noise
is generated by other objects within the scene, either existing within or outside VOI.
Depending on the physical location of the noise generating object, such as window
showing a weaving tree outside, the noise might be only seen by one camera (no
correlation), by some of the cameras (partly correlating), or by all the cameras (fully
correlating).

A set of interesting error measures for the accuracy of the responsible vision
network could be shown, e.g., by checking the following three comparisons:

• ground truth silhouette to backprojected silhouette

• ground truth shape to estimated shape

• ground truth tracking to estimated positions in 3D/2D

6.4.1 Ideal Silhouette Dataset

A synthetic test sequence captured by 25 cameras providing both textured and silhou-
ette video streams has been provided by Graphics-Optics-Vision group from Max-
Planck-Institut für Informatik [113]. The sequence is 200 frames long, containing
various postures and movements, recorded in Maya environment with a 320 × 240
pixel resolution. This dataset provides an ideal basis for the proposed fusion experi-
ments, as the ground truth data is available and different noise sources can be added
to the data in a straightforward manner. An illustration of the dataset setup and ex-
amples of the movements involved in the kung-fu sequence are shown in Figure 6.12.
The lowest cameras are marked as base-cameras b, the middle tier cameras as m, and
the top camera as t.

6.4.2 Study 1 - Camera Configurations

Given such a wide array of cameras to choose from, a three-part study into the
significance of camera placement and coverage was conducted. The original ideal
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(a) Camera Setup and Naming. (b) Actor, space and cameras.

(c) Example frames from 12 distinctly different time instants by camera b01.

Figure 6.12: Ideal Image-Fusion Dataset: Kung-Fu Girl [113].

silhouettes with no added noise and the optimal camera calibrations provided by the
Maya software were used in all the three parts.

Considering a single camera, the occupancy of a voxel is given directly as the
value (0 or 1) of the pixel corresponding to the projected coordinates (x,y), value 1
corresponding to foreground and thus representing an occupied voxel. For the entire
camera configuration the occupancy estimates were combined by a simple product
rule, implementable by a binary AND-operator. The ground truth (GT) shape was
computed by using all the base and middle cameras, thus intersecting 24 cameras.

Due to the nature of silhouette based shape reconstruction, the estimated shape
is always larger than the GT-shape, given clean conditions. The errors shown on the
top-left corner of each result figure are the number of incorrectly accepted occupied
voxels normalized by dividing it with the number of GT-voxels. This reconstruction
error is referred to as the false acceptance rate FAR. For example, FAR-value one
corresponds to the estimated shape having as many voxels falsely accepted as are
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residing in the GT-shape.
A further normalization to the error distributions was carried out by finding

the configuration of cameras that for that instant of time had the minimum error.
These minimum configurations are shown in top-right corner of each result figure.
The minimum error was subtracted from the errors of each camera configuration
of that particular moment of time. The same procedure was performed over the
entire sequence. The results with minimum-error subtraction are shown in bottom-
left corner of each result figure.

All the error distributions are presented also with a boxplot on the bottom-right
corner of each result figure. The central mark of a box is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points that are not considered outliers, and the outliers are plotted with individual
markers.

Part 1 - On Redundancy

In the first part of the configuration studies seven different two-camera setups (CR1-
CR7) were used as source of ideal silhouettes. First base camera b01 was fixed,
and the second camera was rotated around the person to seven different locations.
Each configuration was studied over the entire 200-frame sequence, by comparing
the reconstructed shape to the GT-shape. The camera configurations are provided
in Figure 6.13. The shape estimation errors for Part-1 are shown in Figure 6.16.

From top-right of Figure 6.16 it can be seen that the configurations CR2 and CR6
take turns in providing the tightest Visual Hull, thus the least amount of error. By
further reviewing the general error distributions of each of the configurations once
adjusted by the minimal errors, the configuration CR4 has the biggest error, whereas
configurations CR2 and CR6 provide the best results.

Based on these results, it is evident that opposite cameras (CR4) provide very
little new information. Having little new information, due to the redundant nature
of the viewpoints, results in bad shape estimation. Depending on the posture and ac-
tion, either one of the orthogonal camera-configurations (CR2 and CR6) will provide
the least amount of redundant information. Given the fully complementary nature
of the two camera viewpoints, the best shape estimate can be achieved by relying on
an orthogonal camera configuration.

Part 2 - On Surrounding

In the second part of the configuration studies, six different three-camera setups
(CHO1-CH06) were used. Camera-setups were designed to study the effect of sur-
rounding the person with cameras, instead of having the cameras only on one side of
the person. For each two configurations two of the cameras were fixed, and the third
camera was located between them either at the same or the surrounding side of the
person, see Figure 6.14 for illustration. Otherwise the procedure of the experiment
was the same as before, corresponding results shown in Figure 6.17.

All of the three-base-camera configurations do provide minimum error at some
point, configurations CHO2 and CHO5 slightly more often than others, but with
only a very small margin. The same is more apparent when considering the general
error distributions per configuration. No consistent reason for favoring camera con-
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figurations that cover the person from both sides seem to exist. Thus a one-sided
camera-setup can provide similar accuracy for visibility than a person surrounding
one, when considering cameras at the same elevation.

It is worth to mention that in a broader context, such as detecting faces or other
posture-direction related person attributes, a one-sided camera-setup is severely lim-
ited in detection and tracking of such features. Additionally, camera configurations
that cover the person from opposite corners of a room can be expected to provide
better accuracy, when a person from a certain side looks similar to a part of the
background.

Part 3 - On Visibility

In the third part of the configuration studies six different three-camera setups (CVO1-
CV06) were used. Setups were similar to the configurations in the previous part, with
the exception of having the in-between camera as one of the middle cameras, which
is a camera with a higher observation viewpoint. See Figure 6.15 for illustration.
Otherwise the procedure of the experiment was the same as in the previous parts,
corresponding results shown in Figure 6.18.

When considering these base-middle-base camera configurations, there seems to
be a general consistent reason to favor a surrounding camera setup. The configura-
tions that have the elevated camera on the surrounding side (CVO1-CV03) provide
consistently a smaller error in shape estimation, when compared to the base-camera
setups (CHO1-CH06) and counterpart configurations (CVO4-CV06) having the ele-
vated camera on same side as the base cameras.

It can be concluded that having an elevated camera by itself does not guarantee a
better shape estimation. The benefit of elevation is only apparent in a configuration
that is surrounding the person, as it thus creates a view with new information on
the scene due to increased visibility of a complementary nature. For example, an
otherwise shadowed area between the body and a limb can only be carved away, if
there is another camera view from a higher vantage point having a non-occluded view
to that specific part of the decision space.
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Figure 6.13: Camera configurations: Part-1 for view redundancy.

Figure 6.14: Camera configurations: Part-2 for horizontal view occlusions.

Figure 6.15: Camera configurations: Part-3 for vertical view occlusions.
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Figure 6.16: Configuration Study Part-1: Redundancy camera configurations errors
for shape reconstruction.



CHAPTER 6. REMOTE VISUAL COMMUNICATION 99

0 50 100 150 200
0

0.5

1

1.5

2

frameIndex

F
A

R
Voxel Error

 

 

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frameIndex

F
A

R

Voxel Error Adjusted

 

 

0 50 100 150 200
0

1

2

3

4

5

6

frameIndex
C

am
er

a 
C

on
fIn

de
x

Minimum Error Configuration

CHO1
CHO2
CHO3
CHO4
CHO5
CHO6

CHO1
CHO2
CHO3
CHO4
CHO5
CHO6

CHO1 CHO2 CHO3 CHO4 CHO5 CHO6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CameraConf

F
A

R

Error Distribution

Figure 6.17: Configuration Study Part-2: Horizontal camera configurations errors
for shape reconstruction.
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Figure 6.18: Configuration Study Part-3: Vertical camera configurations errors for
shape reconstruction.

6.4.3 Study 2 - Fusion Methods

For making a joint decision on the occupancy of a voxel, various fusion methods
can be used. In the following the accuracy and behavior of five different methods is
studied:

1. Binary Product Rule / AND-operator

2. Binary Majority Voting / K-out-of-N Rule
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3. Certainty Product Rule (CPR) with threshold 0.51nroCameras

4. CPR with threshold 0.51

5. CPR with threshold 0.51 and cameras weighted by a prior

For studying the behavior of fusion methods a two-part study is conducted. The first
part of the study introduces noise into the silhouettes, second degrades the quality
of extrinsic camera calibration.

From Binary to Continuous Data

Depending which method is used, either binary or continuous value is provided by
a single cameras occupancy testing. For methods 1 and 2 a binary value, one for a
silhouette pixel and zero for background, is provided by the single-camera occupancy
testing. For methods 3,4 and 5 a 3 × 3 filter-grid centered on the voxel projection
location, is used to compute an occupancy certainty value as the ratio of occupied
pixels to all pixels within that grid.

Including Prior Information

Camera weights can be computed based on many criteria, such as proximity of a
camera to VOI-center, vertical angle of camera w.r.t. the VOI-center, or the number
of possible sources of dynamic error sources within the FOV (such as windows and
doorways). Prior information based on camera proximity is used in this study. Dis-
tances to VOI-center are computed on the floor level (x,y), and the priors are scaled
such that closest camera has a prior of 1.0 and the cameras further away a value less
than 1.0.

Because the noisy silhouettes have holes in them, the shape reconstruction will
eventually carve away some of the GT-voxels. Thus in addition to falsely accepted
voxels (FAR), we will also have falsely rejected voxels (FRR). The combined false
estimations, by a simple addition of FAR (red curve) and FRR (blue curve), are
presented as general false rate (GFR) (green curve).

Part 1 - Under Imaging Noise

The effect of low-light conditions on imaging and incorrect thresholding values on
image segmentation is simulated by adding noise blobs of size 2 × 2 to random lo-
cations in the silhouette image. This noise is considered as uniform salt-and-pepper
noise, removal of which from binary images has been studied, e.g., by Al-Khaffaf et
al. in [114]. That is, if the noise is added to an area belonging to the foreground, the
value of pixels is set to zero, thus creating a false background hole in the silhouette.
Correspondingly when adding noise to a background area, the pixels are marked as
foreground. Another option would have been to corrupt the silhouette images by
partial occlusions, such as vertical or horizontal bars, which prevent the silhouette
from being fully visible. However, by adding salt-and-pepper noise with a variety of
noise densities, the results are much more concrete, if not very realistic.

The amount of random imaging noise is defined in percentages of image pixels.
All in all six different noise conditions of 0, 1, 3, 5, 7, and 11 % are studied for the five
fusion methods. The results of shape estimation in false voxels per noise condition
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and method are shown in Figure 6.19. The corresponding distributions of error across
the sequence over all the noise conditions are shown in top-row of Figure 6.21.

The first fusion method, using the binary product rule, performs robustly over all
the noise conditions by having no dips/rises in the shape estimations accuracy. Sec-
ond method, majority voting, is capable of decreasing the number of falsely rejected
voxels, thus maintaining a larger amount of the GT-shape than method 1. This is
because only a majority of views need to agree a voxel is occupied, therefore limiting
the effect of small holes within a silhouette. A side-effect of this approach is the
increase in FAR which creates a largely oversized shape.

The third method, CPR with low threshold, manages to further decrease the
number of falsely rejected voxels, but on the other hand accepts more false voxels
than methods 1 and 2. The fourth method, CPR with higher threshold, maintains a
lower FRR than method 1, but FAR is still much higher than with method 1, thus
resulting in worse combined accuracy than method 1, but better than the methods 2
and 3 achieve. The fifth method, the prior-weighted CPR, maintains a low FRR and
additionally provides lower FAR than with any of the previous methods. By adding
the prior-weighting method-5 is able to decrease FAR while maintaining a low FRR.
Therefore, method 5 achieves the best combined accuracy of all the methods, when
considering all the imaging noise conditions.

Part 2- Under Calibration Noise

As the experiment dataset included calibration information stating the exact posi-
tions and orientations of all the cameras, a study on the effect of poor calibration on
the fusion methods and on shape reconstruction was carried out. Four calibration
noise conditions are defined. The first condition has the GT-settings of cameras.
The three other conditions have deviations from GT-position (x,y,z) by either 3, 7,
or 13 centimeters in all directions. Based on the noisy camera locations, new projec-
tion matrices are computed for each of the cameras and are used in projecting voxel
locations for occupancy testing.

The results of shape estimation in false voxels per noise condition and method
are shown in Figure 6.20. The corresponding distributions of error over all the noise
conditions are shown in bottom-row of Figure 6.21.

Across all the calibration noise conditions method 1 has the worst FRR, other
fusion methods having better or similar FRR performance. Therefore, by using only
a majority of views or by introducing softer certainty values, better FRR performance
can be achieved. On the other hand, method 1 provides best FAR, method 5 following
closely as the second best. The softness in occupancy decisions introduced in methods
2-5 clearly hinders their accuracy in rejecting false voxels. In combined accuracy it
is method 1 that has a slight advantage of 0.2 over method 5, other methods trailing
behind.
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Figure 6.19: Fusion Methods Study Part-1: Reconstruction Errors of Fusion Meth-
ods under different Imaging Noise. Rows represent different fusion methods, with
first row as method 1, last row as method 5. Starting from left column the noise
percentages are respectively 0, 1, 3, 5, 7, and 11%.
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Figure 6.20: Fusion Methods Study Part-2: Reconstruction Errors of Fusion Meth-
ods under different Calibration Noise. Rows represent different fusion methods with
first row as method 1, and last row as method 5. Starting from left column the noise
in centimeters is respectively 0, 3, 7, and 13.
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(a) Study Part-1: Fusion Methods under all Imaging Noise conditions
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Figure 6.21: Fusion Methods Study: Error Distributions of the five Fusion Methods,
starting from left with method 1.

6.5 Discussion

A calibrated vision network for the reconstruction of a 3D shape of an object is
a very interesting case for testing how different camera configurations and fusion
methods perform. By knowing the 3D-to-2D correspondences between scene points
and camera pixel coordinates one can reconstruct the shape of a person based on
silhouette images. The resulting shape estimate, or visual hull, is an approximation
of the shape and location of the person.

Given clean silhouettes and perfect calibration, the more cameras are used, the
more close the carved voxel-volume approaches the true shape. However consider-
ing the difficulties in image segmentation, due to changing lighting conditions and
definition of algorithm parameters such as decision thresholds, the errors of imaging
will propagate and deteriorate the shape estimation. Similar effects are apparent, if
calibration is not done accurately. For example, given approximately a 22 centimeter
error (13 centimeters in all three directions) in camera position estimation for a VOI
of 200× 200× centimeters, results in almost complete rejection of the true shape.

Application
Having implemented a communication application that connects remote sites by cap-
turing user’s 3D shape and location, and by correctly visualizing the corresponding re-
mote shapes with interactive view-angle, several interesting points can be addressed.
By carefully calibrating the camera-system, the construction of a geometrically cor-
rect approximation of the shape of the observed object was possible. The dynamic
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selection of a view-angle based on user location was responsive and created a more
immersive sensation, even with the 0.5 to 1 second lag from capture to visualization.
The bandwidth needed for transmission of a commonly encountered silhouette rep-
resentation encoded with Bzip2 was found to be in average 11.3 Kbytes. This is well
within the limits for the networking standards designed for homes.

Preliminary studies showed that by adding a fourth camera an improvement of
25-140% is achieved in number of outlier voxels. This is assuming the system has
ideal silhouettes to combine. However there are limits to how many cameras can
be added. Sure, by adding more cameras better and tighter shape estimation can
be achieved. However due to accuracy limitations in calibration and computation of
projections an increasing number of voxels would be falsely rejected.

The same preliminary study showed that robustness against uncorrelated silhou-
ette noise increases when increasing the number of views. Therefore, even with very
noisy silhouette images good shape estimation is possible when increasing the number
of intersecting views correspondingly.

Camera Configurations
A study of three parts into the effects of camera configuration to 3D shape estimation
was conducted. Based on the two-camera results of the first part it can be concluded
that opposite cameras at low elevation provide very little new information due to
the redundant nature of their viewpoints. Having little new information results in
poor shape estimation. The best shape estimates can be obtained by relying on a
geometrically orthogonal configuration of cameras.

The three-camera experiments of part-2 further showed that for shape estimation
there is no reason to favor camera configurations that cover the person from all sides,
when assuming cameras at the same elevation. However in a broader context, such
as detecting faces or other attributes dependent on the direction a person faces, a
one-sided camera-setup is severely limited in detecting such features.

Based on the three-camera results presented in part-3 it can be concluded, that
having one of the cameras more elevated by itself does not guarantee better shape
estimation. The benefit of elevation is only clearly apparent in a person surrounding
configuration, because in that case the more elevated view will have the most new
information on the scene, due to the increased visibility of highly complementary
nature.

The findings of the three-part study can be summarized as follows. The camera
configuration used in providing the coverage and visibility to a person, is recom-
mended to be a surrounding setup that has no opposite cameras, and that places the
cameras by maximizing the vertical displacement between adjacent cameras.

On Fusion
Lets consider the fusion results in shape estimation presented in this chapter in
relation to the proposed vision fusion framework (VFF).

Fusion Approach The shape reconstruction application required the cameras to
jointly assign the most probable occupancy for a 3D part of the observed space;
these building blocks were referred to as voxels. The communication application was
not effected more negatively either by missing or additional voxels. In other words,
neither one of these cases were preferred, so the cost for a incorrect occupancy de-
cision was the same for both cases. Therefore the approach in fusion was to declare
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a decision with the best certainty based on the observations given by the individual
cameras [Design Rule 1]. Whereas if the application had required the vision network
to never loose track on a person, a reasonable approach would have been to more
easily declare a voxel as occupied. This approach would introduce more falsely ac-
cepted voxels around the person’s true shape, but would provide more robustness in
shape estimation and localization against noise sources and data delivery problems.

Vision Network The remote visual communication application example clearly
highlighted the need to set up the cameras that match each other in hardware, soft-
ware settings and data delivery. All the cameras used in the application experiment
were the same models. They were set to operate with same parameters for frame-rate
and resolution, and automatic gain and white-balance options were disabled and the
same manual settings were given to each camera [Design Rule 2].

If settings, e.g., for white-balance or gain in any of the cameras would have been
left adaptive, the camera itself could first of all start to produce badly segmented
images. The degraded segmentation would further propagate to occupancy fusion,
and depending on the fusion approach the effects of this failure might be catastrophic
for shape estimation. Likewise, if any of the cameras had a different frame-rate, the
frames from that camera would have to be matched to the frames of the other cam-
eras. This match in time may not be perfectly possible for all the frames depending
on the used frame-rates. Therefore, the matched frames might not actually present
an observation from the exact same moment of time. If this shift in time happens,
e.g., when a person moves his arms, it is very likely that the locations of the arms be-
tween the views do not match, and therefore this occupied space will not be correctly
declared as occupied.

The data was transmitted over the same medium (USB/Ethernet) from all the
cameras, with additional NTP-based time stamping for all the frames. The algo-
rithms applied to each video stream were the same and their settings were matched
to each other [Design Rule 3]. If the frames from any of the cameras would have been
transmitted over a different medium, this would have likely introduced some troubles
in matching these frames to the ones from the other cameras. Time stamping would
most likely handle well most of the shifts in time, but sometimes be forced to ignore
a time moment or use frames with a minor shift. If having to ignore frames, the
quality of visualization could be affected by the sudden jumps in time. If exploiting
frames from slightly different moments of time, the fusion of occupancy information
could easily fail for fast limb movements.

To limit the effect of the shape rendering into vision algorithms, two different
options were considered. First, the (projection) screen could be setup outside the
VOI for displaying the remote shape. In this case, some cameras would observe the
visualization but others would not. The visualization artifacts would be most likely
removed in such a setup, because the fusion of views would usually remove any noise
sources that exist outside the VOI. Second, the visualization could be shown within
the VOI. In this case, most likely all the cameras would observe the artifact. The
shape reconstruction should now cope with the rendering artifact by using the corre-
lation between the views to remove the additional noise source within the VOI. First
option was opted for the experiments shown in this chapter, because the rendering
noise source can be more easily ignored by the common shape reconstruction without
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additional modifications to the reconstruction algorithms [Design Rule 4].

Fusion Architecture All the experiments collected the multi-camera data in a
centralized unit before combining the data into a single estimate on the space oc-
cupancy. Because even the raw silhouette data did not require much bandwidth or
memory, there were no resource restrictions to the choice in fusion architecture. Ad-
ditionally, hardly any camera failures could be expected, and in the rare case of a
dropped frame the other NTP-timestamped frames could be combined or ignored.
Therefore a fully centralized fusion architecture was applied, which maximizes the
potential for fusion by allowing it on any fusion level [Design Rules 6 and 7].

Fusion Level Silhouette images were combined in order to decide if a voxel was
occupied. The values used in making the decision were given by the silhouette image
pixel, binary value O or 1, or by the 3× 3 neighborhood of pixels, a certainty value
in the range of 0.0 to 1.0. The binary value could be considered as a decision-level
value, and the certainty value as a score-level value. Based on the experiments there
was no hard evidence to support the use of softer values, certainties, within the shape
reconstruction for all noise conditions. In general, the scores performed better when
images were affected by noise, but they were again outperformed by decisions with
camera calibration noise. Therefore, it would be advisable to not exploit only score-
or decision-level values, but to use fusion on both levels and combine these results,
as no conclusive domain knowledge seemed to exist [Design Rules 8 and 9].

Fusion Method The two error sources of imaging noise and calibration inaccuracy
were studied in a two-part experiment by testing five different fusion methods. The
fusion methods combined the occupancy estimates for each voxel into a final decision
of occupancy, and thus defined the entire shape estimate. The methods 1 and 2 used
the decision-level binary value for declaring the joint estimate of occupancy. The
methods 3, 4 and 5 combined the score-level certainty values from each camera.

Considering all the imaging noise conditions, method-5 achieved the best com-
bined accuracy of all the methods. Method-5 exploited both the use of soft decisions
and prior camera position information. Across all the calibration noise conditions
method-1 that uses binary product rule, had the worst false rejection rate (FRR),
with other fusion methods having better or similar FRR performance. On the other
hand, method-1 provides the best false acceptance rate (FAR), with method-5 follow-
ing closely as the second best. In overall accuracy for calibration noise it is method-1
that is slightly better than method-5 with other methods further behind.

The use of a prior weight to each of the cameras increased the accuracy of fusion
results. This was shown with method-5 that was otherwise the same as method-4,
except for the additional camera-weights. These weights were computed based on
the camera distances to the person. Because the assumption on distances remained
valid over the entire testing sequence, even these prior and fixed weights were able to
introduce a beneficial relative influence between the cameras [Design Rule 10]. The
non-correlating results of FRR and FAR with method-1 and method-5 would seem
to suggest a good stable accuracy, if the results from these methods were combined
by a method suite [Design Rule 12].
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In summary The findings of the two-part study on fusion methods can be sum-
marized as follows. With more intelligent fusion methods that exploit both soft
values and prior camera information, some of the errors in imaging and calibration
can be compensated for in multi-camera occupancy testing. The compensation is
unfortunately usually followed with an increased cost in falsely accepted occupied
space.
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Chapter 7

Recognition of Activities

A vision system can better understand a scene by inferring some actions-of-interest
based on its observations. A study on classifying human activities based on multi-
view observations is performed with three fully annotated datasets: MAS, VIHASI
and HOMELAB, and a combination dataset MAS+VIHASI 1.

This study focuses on five different methods to combine multi-view data from
uncalibrated smart cameras for recognizing a set of six activities. Classification is
performed based on image features computed from silhouette images with a binary
tree structured classifier using 1D conditional random field for temporal modeling.
The multi-view fusion scenarios studied are divided into two categories: view selection
and view combination methods. Selection uses a single view to classify, whereas
combination merges multi-view data either on the feature- or decision-level.

Section 7.1 starts this chapter by discussing previously presented approaches to
handling multi-view data for activity classification. The proposed approach for activ-
ity modeling is presented in sections 7.2−7.3. After defining the five fusion-scenarios
in section 7.4 and illustrating the three datasets in section 7.5, the classification ac-
curacy results are shown and discussed in sections 7.6− 7.7. The chapter concludes
in section 7.8 with a summary of major findings in relation to the vision fusion
framework.

1This chapter is (partly) based on:
Määttä, T., Härmä, A., Aghajan, H. (2010). On efficient fusion of multi-view data for activity
recognition. 4th ACM/IEEE Int. Conf. on Distributed Smart Cameras.
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7.1 Related Work

As people move around in an environment covered by multiple smart cameras, they
can be seen in varying number of views depending on the geometry of the place and
relative location of subjects and cameras. A single camera might provide enough
information to classify the activity of a person with a reasonable accuracy, but having
other view(s) providing simultaneously data from other perspectives is expected to
improve the accuracy. The information about the activities and behaviour of the
subjects can be used to control various services, e.g., in smart homes or shops, or to
collect important events, e.g., in care homes or hospitals.

One proposed method to handling multiple views has been to explicitly account
for the change in aspect/view [115, 116]. A classifier trained in one view should be
put to use in a completely new view. By looking into feature correspondences within
the same classes of activities between the source view and the target view a suitable
transfer of the model could be found. This method is computationally expensive and
requires a fixed person-to-camera angle to work optimally.

Cherla et al. demonstrated in [117] that view-invariant recognition can be per-
formed by using a simple data fusion of minimum of two orthogonal views. This is
based on the knowledge that better recognition is achieved e.g. from a side view for a
kicking or pointing action. Therefore, by using the appropriate camera to recognize
a particular activity should provide better accuracy. In real-world scenarios assump-
tion of view orthogonality is easily invalidated, because the person moves within the
scene and rotates around this way, e.g., breaking the assumption of a frontal view.
Additionally, choosing an appropriate view is driven by the type of action, which
itself is unknown too.

The approach proposed in this chapter aims to provide nearly view-independent
image features. All the views are given the same priority and no geometrical as-
sumptions on the scene or cameras are made. This approach aims to develop a single
model that works with all the views providing accuracy close to that of view-specific
models. The multi-view data for activity classification can be combined by any fu-
sion architecture, level and method. A fully centralized fusion architecture is used
to gather data in this study. Two different fusion levels of feature and decision are
compared through five different fusion scenarios. Sensor selection, majority voting,
and arithmetic average are used as the fusion methods.

The details on the methodologies used in this study for modeling human activi-
ties, and for combining data from multiple views according to described multi-camera
fusion scenarios, will be presented. After describing the camera scenarios, the per-
formance of these different scenarios is explored.

7.2 Activity Modeling

For classifying activities based on video, the video has to be processed to a simpler
form that focuses on the person and gives essential information.
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7.2.1 Image-based Features

Regardless of its challenges silhouette extraction is a widely used method in pre-
processing images to be able to focus on the object of interest, in our case people.
Silhouettes themselves could already be used as representation of people. However
due to various artifacts depending on selected foreground segmentation method, we
applied background subtraction [111], silhouettes are usually processed further into
more robust and simpler descriptions, called image features.

We tested three fundamental categories which contain 29 silhouette-based features
combined. First, assuming relatively upright cameras, person’s posture would be a
vital clue. Second, global motion of a moving person would offer insight into how
mobile the person is. And third, local motion of the person would indicate an activity
involving the use of person’s limbs [118] or minor shifts of balance/orientation. The
29 features are listed in Table 7.1, and the equations referred to in the table are
defined below the table in Equations 7.3-7.8. In Figure 7.1 one can see illustrations
on the four basis descriptors used. The motivation for the selected features and their
definitions are given in the following subsections.

7.2.2 Scaling and Normalization

All the features representing changes over time are transferred from differentials
across an observation window to the change of a characteristic in one second. This
is obtained by multiplying differentials by scaling factor s. Factor s is defined as
the ratio of capture frequency fps and the observation interval lw expressed in the
number of frames.

s =
fps

lw
(7.1)

vnew
j =

vj − µj

σj
(7.2)

In addition to compensating for temporal differences between datasets, when hav-
ing fixed window length, a mean-variance normalization to each image feature was
performed. For each dataset, the mean µj and variance σj of each feature vj is com-
puted and used to center and scale the distribution of each feature offline. Goal is
to normalize the features into a form that generalizes them better to other environ-
ments/datasets.

Figure 7.1: Examples of the silhouette-based features used as the basis, starting
from left: bounding box, principal angle, median coordinate (x,y), and 4-bin shape
descriptor.
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7.2.3 Features of Posture

To detect the posture and changes in posture two fundamental features were ex-
ploited: bounding box aspect ratio and principal component angle. The aspect ratio
of a bounding box surrounding the silhouette pixels was used as a rough measure of
the posture. In addition to using the aspect ratio of the bounding box ARbb, also its
behaviour over time was studied. We focused on observing the change in the aspect
ratio ∆ARbb, box height ∆Hbb, and box width ∆Wbb.

The overall posture was characterized by the angle of the silhouette on the image
plane. This angle was estimated using principal component analysis and marked
hereafter as PCA. The behaviour of the angle introduced two additional features:
the change-in-angle ∆PCA and the change of the change-in-angle ∆2PCA .

7.2.4 Features of Global Motion

The overall movement of the 2D silhouette was used to detect global motion GloMo.
The median coordinate mc of the positions of all the silhouette pixels is used as
the basis. By observing the first and second differential of the movement of the
median coordinate we were able to detect global motion ∆ and acceleration ∆2 in
both horizontal W and vertical H directions. For an additional global motion cue
the change of the location of the bounding box in horizontal ∆LWbb and vertical
directions ∆LHbb was also computed.

7.2.5 Features of Local Motion

To detect minor changes in the positions and orientations of limbs, a vertical 4-bin
histogram on silhouette pixels was computed, called hereafter the Shape Descriptor
SD.

The vertical range of the SD is defined by the silhouette. This range is divided
into four same length intervals, and based on the amount of silhouette pixels within
the interval, the histograms consisting of the four bins is built. See an example of an
SD in the right most image in Figure 7.1. In addition to representing how the mass of
the person is distributed in vertical direction, the behaviour of SD was also studied.
The deformation ∆SD and change of deformation ∆2SD were used to describe how
the mass distribution evolves over time.

In addition to detecting the behaviour of the median coordinate on the image
plane, the same observations were performed with respect to the bounding box, here
referred to as mcbb. This results in similar coordinate differential features, but now
observed within the bounding box, as cue for local motion LocMo.

Another interesting option for silhouette-based features are the features intro-
duced by Barnich [119], which are based on characterizing the human silhouette as
the set of all the maximal rectangles that can be wedged inside it. They managed to
implement this feature extraction in real-time, which is uncommon for surface-based
descriptors, and it managed to provide better classification accuracy than a widely
used surfacic silhouette descriptor.
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Table 7.1: Features based on Bounding Box (BoB), Principal Component Angle
(PriCA), Median Coordinate (MeCo) and Shape Descriptor (ShaDe).

Posture index definition

BoB 1 ARbb(t) =
heightbb(t)
widthbb(t)

7 ∆ARbb(t) = s ·
∣∣(ARbb(t) − ARbb(t − lw))

∣∣
8 Equation 7.3, with X = H

9 Equation 7.3, with X = W

PriCA 2 PCA(t) =

{
arctan(PCV (t)/PCH (t))/Pi ∗ 180 if arctan(PCV (t)/PCH (t)) ≥ 0

180 − arctan(PCV (t)/PCH (t))/Pi ∗ 180 if arctan(PCV (t)/PCH (t)) < 0

12 ∆PCA(t) = s · |PCA(t) − PCA(t − lw)|

13 ∆2PCA(t) = s ·
∣∣∣(PCA(t) − PCA(t − lw

2
)) − (PCA(t − lw

2
) − PCA(t − lw))

∣∣∣
GloMo index definition

MeCo 3 Equation 7.4, with X = H

4 Equation 7.4, with X = W

5 Equation 7.5, with X = H

6 Equation 7.5, with X = W

BoB 10 Equation 7.6, with X = H

11 Equation 7.6, with X = W

LocMo index definition

ShaDe 14 SD1, 1st of 4 bins of vertical silhouette scanline centered on MeCo
15 SD2
16 SD3
17 SD4

18 ∆SD1(t) = s · (SD1(t) − SD1(t − lw))
19 ∆SD2(t)
20 ∆SD3(t)
21 ∆SD4(t)

22 ∆2SD1(t) = s ·
[
(SD1(t) − SD1(t − lw

2
)) − (SD1(t − lw

2
) − SD1(t − lw))

]
23 ∆2SD2(t)

24 ∆2SD3(t)

25 ∆2SD4(t)

MeCo BoB 26 Equation 7.7, with X = H

27 Equation 7.7, with X = W

28 Equation 7.8, with X = H

29 Equation 7.8, with X = W

∆Xbb(t) = s ·

∣∣(Xbb(t) −Xbb(t − lw))
∣∣

Xbb(t)
(7.3)

∆LXmc(t) = s ·
|LXmc(t) − LXmc(t − lw)|

Xbb(t)
(7.4)

∆
2
LXmc(t) = s ·

∣∣∣(LXmc(t) − LXmc(t − lw)) − (LXmc(t) − LXmc(t − lw
2

))
∣∣∣

Xbb(t)
(7.5)

∆LXbb(t) = s ·

∣∣(LXbb(t) − LXbb(t − lw))
∣∣

Xbb(t)
(7.6)

∆LXmcbb(t) = s ·

∣∣LXmcbb(t) − LXmcbb(t − lw)
∣∣

Xbb(t)
(7.7)

∆
2
LXmcbb(t) = s ·

∣∣∣(LXmcbb(t) − LXmcbb(t − lw
2

)) − (LXmcbb(t − lw
2

) − LXmcbb(t − lw))
∣∣∣

Xbb(t)
(7.8)

7.3 Classifiers and Their Structure

As the class categorization under consideration seems to have a natural way to con-
form under a hierarchical model, a tree is taken as the structure for the classifier, see
Figure 7.2. The tree is binary with only two splits per node.
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7.3.1 Tree Structure

The root split discriminates between mobile (walk/run) and stationary activities
(others). The mobile branch is split again into classes representing walking and
running activities. The stationary activities are split into upright (stand/stand-
interact) and less upright categories, after which decision on interactivity of the
action is made. See Figure 7.2 for an illustration.

Figure 7.2: Logical tree structure for the six activities of interest.

7.3.2 Temporal Activity Models

A 1D model, that could describe the patterns in the features, was needed in order
to decide which branch of the classification tree to take in each of the nodes. From
widely used temporal models such as hidden Markov models (HMMs) [120] and
maximum entropy Markov models (MEMMs) [121], we used conditional random
fields (CRF) [122] as representative of these models. See Figure 7.3 for graph on the
1D chain structure of HMM and CRF models.

HMM assumes that a process being modeled is a Markov process, current label
Yi depends only its previous hidden state Yi−1 and the current observation Xi. In
contrast, CRF conditions on an observation sequence x to find the most likely la-
bel sequence y by computing p(y|x) for each label sequence. CRF does not model
the properties of the observations themselves like HMM does, notice closed/open
observation circles in Figure 7.3. By not having independence assumptions on the
observations CRF is able to incorporate bigger set of features than HMM without
negatively affecting accuracy even when adding redundant features.

After preliminary experimentation, the observation interval lw was fixed to 5
frames for all the experiments reported. For model training, iterations were limited
to 600 and training was re-computed in case of random initialization preventing
model convergence.
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Figure 7.3: Graphical models of (left) a simple HMM, (right) a similar CRF. Yi is
the current state, Xi is the current observation.

7.4 Multi-View Scenarios

As the vision networks under study are uncalibrated, see section 2.2.3 of this thesis,
each view is independently processed. The output from a view is either a stream
of features or labels depending on whether classification is done within the smart
camera or by a centralized process.

We introduce five different camera use scenarios to get insight into how multi-
camera systems should handle multiple streams of image features of the same scene;
see Figure 7.4 for illustration. The camera scenarios are divided into two distinct
categories: view selection and combination. We defined the different camera scenarios
in a general manner so that further tailoring can be done if additional information
of the environment is available.

Figure 7.4: Proposed system with scenarios for feature and decision fusion.

A view that observes a person (POV) is used to refer to a view that has the
person in its field of view (FOV). A person might be only partially visible in a POV.
For each time instant t the amount of POVs is given by n, and the feature-vector of
size fL×1 of view i is given by vi(t).
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7.4.1 View Selection

Scenarios SingleView(SView), KeyView(KView) and OracleView(OView) are meth-
ods that rely on features given by an available or selected single view.

SingleView
SingleView represents a case when only one view is used to observe a person. Single-
View uses thus one fixed view, no fusion of features or decision labels is necessary.
The feature-vector fSV iew(t) with fixed view i as input for classification is given by:

fSV iew(t) = vi(t) (7.9)

KeyView
KeyView, or shortly as KView, is defined as the POV that fills the silhouette-based
three-part criteria the best. The three parts in descending priority are: silhouette
fully in FOV (no cut offs), size of the area of the silhouette, and amount of detected
global motion. If multiple views fulfill the first priority, the second priority is used
for selection and so forth. I is used for an indicator function, that gets value one
only when criteria is fulfilled in best manner among views. Therefore, I here selects
only the best view by the given criteria as the nonlinear function F . The selected
feature-vector fKV iew(t) is thus given by:

fKV iew(t) = F{[v1(t),v2(t), . . . ,vn(t)]} = F{V (t)}

=

n∑
i=1

IbestView(vi(t))vi(t) (7.10)

OracleView
OracleView, or shortly as OView, is a theoretical scenario, in which the system would
be able to pick the POV that would give the correct label for a certain activity, if
such a view existed for a given time instant. This scenario gives us a reference on
how an ideal single camera selection, ideal KView, would perform with the given
classifier system.

7.4.2 View Combination

All the scenarios defined so far have been based on the use of a single view, either by
choice or circumstance. PresentViews (PViews) and CombiView (CView) scenarios
are based on fusion of multi-view data either at decision- or feature-level.

PresentViews
PViews scenario uses all of the POVs individually to first classify and only thereafter
combines the decisions labels. Each view has an equal weight/priority. The classifier
input fPV iews(t) is now a set of all the POV feature-vectors:

fPV iews(t) = {v1(t), . . . ,vn(t)} (7.11)

The output decision label class(t) is the most common label L of all the classes
s among all the individual classifier outputs ci(t).

class(t) = arg max
L∈s

n∑
i=1

(ci(t) == L) (7.12)
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CombiView
As PViews combines decisions, CView scenario on the other hand combines features
of all the POVs into a single feature-vector, which is thereafter used to classify the
activity. Feature fusion is performed according to a multiplication with a transfor-
mation vector k. In our approach k was set as an averaging transformation (Equa-
tion 7.14), but other operations such as weighted average may provide improvement.
The input feature-vector fCV iew(t) is therefore defined as:

fCV iew(t) = [v1(t),v2(t), . . . ,vn(t)]k

= V (t)k (7.13)

k =

[
1

n
,

1

n
, . . . ,

1

n

]T
1×fL

(7.14)

7.5 Datasets used in the experiments

Three different multi-view datasets are used for conducting experiments. Two of
them, MAS (Manually Annotated Silhouettes) and VIHASI (Virtual Human Action
Silhouettes) offer ideal silhouettes [123]. Silhouettes are without any holes, noise
blobs or other artifacts with all the cameras observing the person at all times. MAS
is based on recorded people performing actions live in their own pace. VIHASI is
based on motion-capture driven avatars, whose appearance differs, but the actions
they perform are exactly the same in duration and pace.

The third dataset is called HOMELAB, as it was recorded in a multi-room lab-
oratory space furnished as a home environment; see Figure 7.6 for examples of the
environment and views. In the HOMELAB dataset ten subjects (heights between
150 and 190cm) perform the same scripted routine in their own pace. See Table 7.2
for more specific information on the three datasets. Figure 7.5 illustrates the subjects
and/or viewpoints of MAS and VIHASI datasets.

As only the HOMELAB dataset had been recorded and annotated with the 5
main activities in mind, both MAS and VIHASI datasets had to be reannotated to
match the already existing activity categories. Reannotation was done by merging
some primitive activities under a existing activity label and in some cases the prim-
itive activity had to partly or entirely removed from the new reannotated dataset.
Table 7.3 illustrates how the original activities of both datasets were handled to fit
them under the existing activity classes. In addition to the 5 classes of HOMELAB
data a 6th class for running activity was introduced.
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Table 7.2: Comparison of the three examined datasets

DATASET HOMELAB MAS VIHASI
Actors: (f)emale,(m)ale 2× f , 8×m 2×m 2× f , 3×m

Orig. activities 5 14 20
Target activities 5 6 6

Views/POVs 8 / 0-3 2 / 2 12 / 12
Frames-per-second 10 25 30

Resolution 320× 240 720× 576 640× 480
Silhouette quality noisy ideal ideal

Table 7.3: 15 action classes from VIHASI and 12 from MAS are mapped to the 6
activities of interest.

Class original VIHASI classes original MAS classes

Walk HeroDoorSlam Walk
WalkTurn180(partly)

WalkToLeft WalkToRight

Stand Collapse(partly) Stand-
LookAround

CollapseLeft(partly) CollapseRight(partly) StandU-
pLeft(partly) StandUpRight(partly)

Sit KnockOutSpin(partly) CollapseLeft(partly) CollapseRight(partly)
StandInt Granade HeroSmash

Punch
GuardToKick GuardToPunch KickRight
PunchRight

SitInt KnockOut(partly)
KnockOutSpin(partly)

CollapseLeft(partly) CollapseRight(partly) StandU-
pLeft(partly) StandUpRight(partly)

Run Run RunPullObject
RunPushObject

RunLeft RunRight

RunTurn90Left Run-
Turn90Right

Figure 7.5: Examples of the observed subjects; top-row) all five avatars of VI-
HASI dataset, bottom-row starting from left) Actor1 running in two views and Actor4
StandingInteracting in two views of MAS dataset.
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Figure 7.6: Examples of the 8 partly overlapping views of the HOMELAB dataset
with a person taking a drink in the kitchen (views 1,3,4,6), and later putting the drink
on the sofa table (views 2,5,7,8).
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7.6 Experiments: Feature Selection

A small study was carried out to see how different features correlate within each of
the datasets. The study should highlight the dependences there exist between fea-
ture values and the datasets from which they are computed. A feature that strongly
correlates with the existing feature-set will not significantly improve the accuracy
of classification, because it has most often little new discriminative information to
provide. However, if the classifier is robust enough, even this small amount of com-
plementary information can increase the overall accuracy. The direction of the corre-
lation was not considered important, thus only the absolute values are reported here.
The color scale of absolute correlation values from blue (0.0) to red (1.0) is shown
on the extreme right in each correlation figure.

7.6.1 Full Datasets

The correlation between all the 29 features within the three datasets is shown in Fig-
ure 7.7 as separate correlation matrices. Some significant correlation, above 0.8 (or-
ange color), exist in all of the datasets between few different image feature-pairs.
Correlation is most evident between features that have connections in the manner in
which they are computed, such as change of a dimension or aspect ratio of a bound-
ing box. No other strong correlations exist within datasets. It does depend on the
dataset which computationally connected feature-pairs show strong correlation.

Figure 7.7: Feature correlation within three datasets, starting from left with HOME-
LAB, MAS and VIHASI.

7.6.2 PFA-Selected Datasets

Based on results shown in Figure 7.7 it is feasible to find feature subsets with low-
correlation within a dataset. Therefore, the number of features can be diminished
while maintaining a good classification accuracy. A technique called Principal Feature
Analysis proposed in [124] was used to find the candidate subsets of features. PFA
aims to select features that maintain as much as possible of the variability and spread
of the original data from the features given by principal component analysis. The
candidate feature subsets were computed for nine different numbers of features: 3, 5,
7, 9, 11, 13, 15, 17, and 29, and for each of the datasets and the combination dataset
MAS+VIHASI.

The correlation between the PFA selected candidates of entire HOMELAB dataset
is shown in Figure 7.8a with corresponding examples for the entire MAS and VIHASI
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datasets in Figure 7.8b and Figure 7.8c. The PFA-selected subsets of features offer
reduced correlation. For all the datasets a subset with no significant absolute correla-
tion, < 0.6, could be formed until 9 features, when increasing the number of features
starting from 3. Between HOMELAB and MAS datasets some overlap in selected
features exist. However when examining all three datasets, the overlap is smaller.

In conclusion, in all the datasets a feature-set of 9 features provides already
classification results close to what can be achieved by using all the features. However,
these features need to selected specific to the environment.

7.6.3 PFA-Selected Node-Specific Datasets

Optimizing the number and type of features used in each of the splits in the classifi-
cation tree, see Figure 7.2, can provide better classification accuracy. The PFA can
also be performed individually in each branch of the classification tree. The result-
ing candidates are then compared by examining the fit of the model, trained by the
candidate subset, to the training data. The candidate whose model fits the training
data the best is expected to provide similar accuracy with new data. It should be
noted that verifying classifiers by training error might lead to overfitting. In such a
case the training data is very well modeled, but the classifier can easily fail with new
data.

See Figure 7.9a for the performance of candidate feature subsets selected by PFA
on different nodes of the tree for the MAS dataset. The similar experiments for VI-
HASI, HOMELAB and combination MAS+VIHASI dataset can be see in Figure 7.9b,
Figure 7.10b and Figure 7.10a.

For the MAS dataset it can be noticed that for Node 4, in Figure 7.2, the best fit
is offered by a 15-feature subset, and for Node 5 by 17 features. Also with VIHASI
dataset Node 4 fits best with 15 features. For HOMELAB there is no better fit for
any of the nodes than with the full 29 features. Notice that HOMELAB dataset does
not contain running action, so there is no need for classification in Node 2. With the
combined dataset a slight improvement could be expected when using 17 features for
Node 4.

All in all, the expected gain when compared to using the full set of 29 features
appears to be small. Overall, the performance of CRF as a temporal model does not
decrease even when adding redundant features [122].
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(a) HOMELAB

(b) MAS

(c) VIHASI

Figure 7.8: Feature correlation of entire (Node 1) dataset for PFA selected candi-
date feature subsets of 3,5,7,9,11,13,15,17, and 29 features. The indeces of selected
features are shown in top of each sub-image.
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(a) MAS

(b) VIHASI

Figure 7.9: Fit of the trained 1D CRF-model for different feature-sets and for each
of the tree nodes in terms of training error.
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(a) MAS+VIHASI

(b) HOMELAB

Figure 7.10: Fit of the trained 1D CRF-model for different feature-sets and for
each of the tree nodes in terms of training error.
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7.7 Experiments: Multi-View Scenarios

All the five camera scenarios from section 7.4 were tested with all three datasets
from section 7.5. The accuracy values presented are averaged results of leave-one-
person-out cross-validations; for each person the data from him/her was used to
test the model trained by the data from all the other persons. For results on each
dataset-scenario combination see Table 7.5.

7.7.1 Activity Recognition Results

With three out of the four datasets a minor improvement over SView scenario is
already visible in the KView scenario that selects a single view based on criteria.
Even though the silhouette-based criteria for selecting the best view do not guarantee
that the POV with the most accurate classification is selected, KView performs better
than restricting to a single view.

A greater improvement is achieved over all the datasets when using informa-
tion from all the POVs. When considering the ideal silhouette datasets MAS and
VIHASI the CView outperforms PViews, on average by 2.5%. With visibility and
noise affected silhouettes of HOMELAB and with combined dataset having greater
variability in the actions and provided views, it is PViews that performs better on
average by 1.6%.

HOMELAB is the most difficult environment to classify in; the best scenario
PViews reaching accuracy of 69.1%. There are three major factors that cause this.
First, the silhouette extraction used in the experiment could not provide full clean
silhouettes. Second, people were not fully visible during the entire routine, as they
were sometimes occluded by other objects such as tables and chairs. Also the carried
objects, book and cup, deteriorate silhouette quality by including non-human pixels
to foreground. Third, sometimes people only partially fit in the field-of-view (FOV)
of a camera. In Figure 7.6 one can see examples of encountered occlusions and FOV
constraints.

7.7.2 Separation Of Activities

To provide more details on classification accuracy per activity either a PViews or
CView confusion matrix for each of the datasets is given in Table 7.4.

The greatest difficulties with MAS dataset are in separating standing-interacting
from standing. VIHASI shows more confusion between walking and both standing
activities. The combined dataset shows in addition to these cases more confusion with
the running activity. Confusion exist between several activities with the erroneous
silhouettes of HOMELAB, worst effect is seen with standing detected falsely as sitting
on various occasions.
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Table 7.4: Example confusion matrices from different datasets summed over all the
actors of the particular dataset for the particular fusion scenario.

MAS: CView
Walk Stand Sit StandInt SitInt Run

Walk 534 0 0 1 0 19
Stand 0 199 0 14 0 0

Sit 0 0 98 0 11 0
StandInt 7 71 0 967 30 0

SitInt 0 0 22 0 233 0
Run 20 0 0 0 0 273

avg. acc. [%] 92.2

VIHASI: CView
Walk Stand Sit StandInt SitInt Run

Walk 415 0 0 5 0 0
Stand 92 328 0 0 0 0

Sit 0 0 25 0 0 0
StandInt 83 8 4 839 22 4

SitInt 0 0 0 0 110 0
Run 0 0 0 1 0 659

avg. acc. [%] 91.4

MAS+VIHASI: CView
Walk Stand Sit StandInt SitInt Run

Walk 801 0 0 48 2 123
Stand 138 495 0 0 0 0

Sit 0 0 122 0 10 2
StandInt 268 233 0 1302 39 193

SitInt 0 0 87 0 278 0
Run 5 0 0 30 0 918

avg. acc. [%] 80.2

HOMELAB: PViews
Walk Stand Sit StandInt SitInt

Walk 8807 116 110 1613 324
Stand 90 412 715 53 215

Sit 0 195 2664 21 332
StandInt 984 1008 813 3341 1504

SitInt 163 9 75 166 724

avg. acc. [%] 69.1
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7.8 Discussion

A silhouette-based, multi-view system for recognizing human activities is an inter-
esting case for testing how fusion on different fusion levels and with different fusion
methods performs. The proposed vision system relies on three different categories
of image features and on temporal modeling by CRF to distinguish between 5 to 6
different activities.

Application
Experimental results demonstrate that good classification accuracy, above 91%, can
be achieved by the proposed system when dealing with clean conditions as provided
by MAS and VIHASI datasets. With the combined dataset MAS+VIHASI accuracy
above 80% was still achievable. With the more challenging dataset of HOMELAB
an accuracy of 69% could still be reached.

A few important computer vision problems and limitations were encountered with
the HOMELAB dataset. Because the person is not always fully in the FOV of the
cameras and occlusions with other objects exist, it may be impossible to continuously
provide clean silhouettes of the person. Whatever the feature representation, there
will also be variability within the same activity class. Variability is due to the differ-
ences in appearance, the pace of action of different users, and the changing relations
between the users and the observing camera system.

On Fusion
The focus of the experiments was to compare different ways of combining data within
a local vision network. Five camera fusion scenarios were introduced: SView, KView,
OView, PViews and CView. These scenarios were expected to represent good starting
points for further development and optimization for multi-view data handling within
the context of temporal activity modeling. The five proposed camera fusion scenarios
were examined for dealing with the inherent variability in features across the datasets.
Lets consider the fusion results of this chapter in relation to the proposed vision fusion
framework (VFF).

Fusion Approach The human activity was categorized as one of the six classes
based on the features computed from the silhouettes given by a varying number of
cameras. None of the classes could be considered more probable. There was no
preference to be more sensitive to a subset of the classes, and none of the cameras
was considered more ideal for detecting certain activities. Therefore, no preference
to detecting certain aspects better than others was included in the vision network.
Increasing common certainty in the observations made was the primary goal of fu-
sion [Design Rule 1].

Vision Network All the cameras used in the individual datasets were the same
models with the operating settings as the same for frame-rate and resolution. The
automatic gain and white-balance options were disabled, and the same settings were
given manually to each camera [Design Rule 2]. For example, if the camera gain
is adaptive and the intensity of the natural light entering the room changes, the
camera can easily fail in image segmentation as the assumed static background does
no longer exist. As a consequence, the features would be compromised. Depending
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on the fusion approach, this unbalance in the data could badly affect the accuracy
of activity classification.

The data was transmitted over the same medium (USB/Ethernet) from all the
cameras. No time stamping on frames was implemented, as the local network was
considered stable. The same algorithms were applied to each video stream and their
settings were matched to each other [Design Rule 3]. For example, if the assumption
of the stability of the local network would have been false, the synchronous delivery
of data would have been compromised. These problems would have made the system
incapable of correctly classifying in the presence of fast changes between activities
and activities that occur over a short period of time, such as standing-interacting
activity.

Fusion Architecture There exist no resource limitations on MAS and VIHASI
datasets as these had been captured within a controlled environment. A distributed
camera recording system was used in gathering the HOMELAB dataset. In all the
experiments a fully centralized fusion architecture was used to gather and combine
the data. No prior information existed that would have justified the combination
of a subset of cameras. No analysis was performed that would have pointed out
similarities between the observations among all the cameras [Design Rules 6 and 7].

Fusion Level The fusion was studied on two fusion levels: features and decisions.
A similar common opinion fusion method was applied on both fusion levels, this
making the results between fusion levels comparable.

Fusion of features (CView scenario) produced the best, most consistent accu-
racy of 91.4-92.2% with environments that have a similar setup for all cameras and
that have people behaving in a similar manner. Whereas, with environments with
more variability such as HOMELAB and MAS+VIHASI, fusion of decisions (PViews
scenario) provided slightly better decision accuracy.

This would seem to imply that fusion in the feature-level outperforms fusion in
the decision-level within more controlled settings. One should notice though that the
differences were small (2-4%) but consistent across the datasets [Design Rule 8].

Fusion Method The five camera fusion scenarios studied were based on sensor
selection and voting, and linear logical methods. The first set of fusion methods
relied on selection of a single view. The SView scenario was used as reference of a
single-camera system performance. KView presented an attempt on how a three-part
silhouette-based criteria in selecting a single view out of many views, would increase
performance. KView did offer 1-2 % better performance than SView, but much more
could still be achieved even by single-camera selection like was shown by OView.
The numbers with ideal view-selection by OView scenario show that accuracies up to
93 and 99% could be reached by camera selection alone. The quality of the on-line
criteria can thus have huge impact on fusion method accuracy [Design Rule 11].

A second set of fusion methods relied on combining multiple estimates into a joint
estimate. Two fusion scenarios, CView and PViews, were introduced. CView com-
bined multiple feature streams into a single stream, by approximating the minimum
mean square error estimate by the arithmetic average. PViews combined decisions
from activity classification of individual views by majority voting.
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Both of these combination methods: MMSE feature-transformation and majority
voting provided better accuracies in all of the datasets when compared to the practi-
cally implementable sensor selection methods (SView or KView). Instead of selecting
only one source of information, it appears to be better to use all of the available data,
even with some erroneous data among it, in jointly making a decision. Therefore,
by finding the consensus between cameras, the fusion method seems to better cope
with data that is affected by some imaging noise or viewpoint limitations [Design
Rule 10].

In summary The findings of the experiments on fusion scenarios can be summa-
rized as follows. The results show that in reasonable conditions fusion methods that
rely on combination of data outperform methods of selection. Selection-based fusion
methods can provide very good results, but they strongly depend on how good of
a selection criterion is used, and how well this criterion adapts to different environ-
ments. Furthermore, fusion of features outperforms other presented scenarios within
more controlled settings. However the more variability exists in camera placement
and characteristics of people, the more likely improved accuracy can be achieved by
combining decisions in silhouette-based multi-view activity recognition.



Chapter 8

Detection of Repetitive Behavior

Many interesting types of behavior are characterized by repetition of actions such
as certain activities or movements. A generic methodology to classify and detect
repetitions that may occur at different scales or between different types of actions is
introduced in this chapter 1. The proposed method is called Action History Matrices
(AHM). The properties and adaptability of AHM for detecting repetitive behavior
are demonstrated in analyzing customer behavior in a smart shop application.

Section 8.1 starts this chapter by discussion on application background by cov-
ering some of the traditional modeling approaches to behavior patterns. Instead of
modeling specific patterns of action the focus is on generic repetitive behavior, for
which the AHM method is developed in section 8.2. The architecture and method-
ologies of the proposed vision system are given in sections 8.3 − 8.4. The features
and classifiers used in classifying repetitive patterns are presented in section 8.5. The
two different experimental datasets, recordings in a shop environment, and motion
path simulations, are illustrated in section 8.6. Finally, the classification results for
simulated data and the fusion results on the real data are shown in section 8.7. This
chapter concludes in section 8.8 with the discussion of the major findings in relation
to the vision fusion framework.

1This chapter is (partly) based on:
Määttä, T., Härmä, A., Aghajan, H. (Submitted 2012). Collaborative Detection of Repetitive Be-
havior by Multiple Uncalibrated Cameras.
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8.1 Introduction and Related Work

Vision networks with multiple cameras offer valuable tools to cope with covering vast
areas and observing people in various environments. A single camera might provide
enough information to detect behavioral patterns with a reasonable accuracy, but
having other views providing simultaneously data from other perspectives is expected
to improve the accuracy. The information about the activities and behavior of the
subjects can be used to control various services, e.g., in smart homes or shops, or to
collect important events, e.g., in care homes or hospitals.

8.1.1 Behavior Modeling

Behavior is often defined as observed actions or reactions of a person or animal in
response to external or internal stimuli [125]. External stimuli relates to interaction of
a human with the environment while internal stimuli relates to the task objective and
the emotional and physiological state of the subject. The focus of this chapter is on
the development of a behavior recognition system, which estimates the internal and
external stimuli that drives the behavior. The generic behavior system is illustrated
in Figure 8.1.

Figure 8.1: The definitions and relations of behavior and the technology monitoring
it.
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In an ideal situation for detection a stimulus would always lead to a determinis-
tic behavior. However, in the real world observed behavior also has the stochastic
component which depends on many internal and external factors. One may roughly
model the stochastic component of behavior as a response to a noise component
that is added to the stimuli. In the behavior recognition system, see the lower part
of Figure 8.1, there is another noise component which is related to the resolution,
distortions, and additive noises in the environment and the sensors. The design
of a behavior recognition system should be optimized such that it eliminates both
noise components from the final interpretation of the observation and extracts the
deterministic part.

The basis for a behavior recognition system is a mathematical model of behavior.
In psychology, mathematical models of behavior have often been associated with the
behavioristic [126] research tradition best known for the famous works of Pavlov.
Most of the early mathematical models were related to the regulation of behavior,
for example, through reinforcement or punishment [127], or input-output relations in
reaction to external stimuli, see [128,129]. Some of more recent work includes the use
of differential equations [130], dynamic programming [131], and sequential pattern
recognition methods [132] for complex behavior modeling.

Repeated patterns are most often modeled using graphical models [133] such as
Markov models which translate the sequential behavior into state transition proba-
bilities. The graphical models often require large training data which may not always
be available. The deterministic part of behavior can be considered as a program that
the subject is executing to complete a certain task [130, 131]. However, there may
be many actual programs a subject can execute to complete a task [134]. A graphi-
cal model consisting of several state transitions cannot necessarily handle this large
variability in programs to complete the same task.

8.1.2 From Behavior Patterns to Generic Repetition

The literature on automatic detection of activity patterns mostly focuses on rigid
definitions of the patterns. In [135], the activity patterns are discovered by first
finding the frequent sets of actions, followed by a search of topology and time re-
lations, and finalized by identifying additional conditions, such as time of day and
other contextual information. Benabbas et al. [136] introduced a method where the
global motion patterns based on optical flow fields were used to find the most usual
patterns and their magnitudes, and further using these in modeling and detecting
usual group behavior scenarios such as group dispersion and evacuation. Most of-
ten motion trajectories are used in detection of unusual patterns of motion. The
common approach is to learn the usual motion patterns and use them in separating
away unusual patterns, as was done in [137] by training and applying a hierarchical
classifier.

Action repetitions are common in many cases where people are confused, get lost,
and need assistance. Therefore, it is also important that a smart monitoring system is
able to detect those states. However, in a rich environment the action repetition can
take many different forms and cannot necessarily be detected based on a comparison
to usual or unusual motion trajectories or activity patterns. Focus of this chapter is
on the detection of action repetition per se without a need to make a clear distinction
between different types of repetitions.
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An action may take place at the global or the local level. Movement that is gen-
erated by a person moving through an environment is called global motion. Local
motion is defined as motion of the limbs, body and head when subject is e.g. inter-
acting or adjusting himself. In case of both global and local motion, the behavior is
represented by repetition or sequential execution of different actions. The main tool
for discovering the repetitive action patterns is based on the analysis of the transitions
between the actions. The main application context in this chapter is the behavior
of a customer in a shopping environment. It is assumed that when customers are
confronted by a situation where they are uncertain how to proceed, they often start
repeating themselves. For example, a customer may be staying longer periods within
the same area, returning to previously visited area, or alternating between two or
more previously visited areas. A smart environment can detect such behavior and
trigger means to assist the customer.

8.2 Behavior by Transitions: Action History Ma-
trices

A behavior modeling approach is proposed, which allows to work with more limited
training data sets and to deal with the variability in the deterministic programs. At
the same time the approach allows the inclusion of some insights about the environ-
ment into the model. It is assumed that the essential characteristics of behavior (i.e.,
the program) related to an internal stimuli can be observed from the statistics of the
state transitions.

Considering a shopping example where a person who cannot find the right product
category alternates between the activities of walking around the shop and stopping
to scan the selection in different parts of the shop. However, a subject who has diffi-
culties of choosing between two or more products may walk between a small number
of locations and alternate between walking and close examination the products. In
both cases the observed complex behavior consist of relatively simple state alterations
which can be successfully detected from a camera image.

Figure 8.2: The three-tier approach of Action History Matrices.
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8.2.1 AHM - Definition

A transition matrix is a statistical representation of transitions between different
states of the subject during an observation period. Transition matrices have been
used earlier in behavior modeling [138], but this chapter aims at a somewhat broader
definition of a methodology, enabling various types of data, such as activity and move-
ment information, to be collected in a matrix form. The transitions are accumulated
in a matrix, denoted here as

A =

a11 a12 ..
..
.. ann

 (8.1)

where each element aij represents the number of times the person has moved from
cell i to cell j during the observed period. The basic idea of using Action History
Matrices, AHM, is illustrated in Figure 8.2. For the construction of AHM one has to
define three different characteristics of the data:

• type of actions-of-interest : movement, activity etc.

• level of detail : spatial range, time range etc.

• mechanism of data accumulation: pre-defined constraints

The type of the actions-of-interest can be defined, e.g., as movement on the floor
level. Regardless of chosen action-type, the goal of AHM is to provide analysis of the
actions-of-interest simultaneously at multiple scales. Scales include, e.g., different
spatial ranges for quantizing space and different lengths of time over which activi-
ties are analyzed. The level of detail is thus specified as the range and number of
sampling levels used to capture the actions-of-interest. The manner in which data is
accumulated can be directed by additional constraints; criteria that action needs to
fulfill in order to to be included as part of the accumulated data.

8.2.2 AHM - Movement Example

As a demonstration of the aspects of AHM, let us consider a case of global move-
ment. The transitions between various physical locations of the user in the observed
environment are captured from the camera data. In this chapter the location data is
quantized to a small number of local regions, cells, which are circular neighborhoods
defined in the image plane. When a person enters a new area, a new cell is created
to cover that location and the close proximity. This representation of the location
data provides a flexible quantization of the space and does not require calibration of
the camera system.

Six example scenarios of movement-based action analysis are shown in Figure 8.3.
The radius of the cell corresponding to the level of detail is fixed to a single size. No
additional criteria for accumulating transitions are included. Thus, regardless of the
person making intermediate stops while moving around, the recorded transitions are
the same (left and middle column). On average, the person takes a time equivalent
to 3 consecutive observations to travel across a cell; see especially top-right matrix
of Figure 8.3.
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Figure 8.3: Action History Matrices (AHM) examples on motion: top row) person
advances directly, middle row) person returns to previously visited cell, bottom row)
person loops between previously visited cells . Left column) without stopping, middle
column) with intermediate stops, right column) recorded cell transitions in matrix
form.

In general, the cells are created independently per each view; no correspondences
between cells from different views exist. Additionally, the cells are directly laid on
the image plane without any geometrical corrections based on the part of the scene
they happen to overlap with, such as a floor or a wall. With this approach it is not
necessary to calibrate the multi-camera system. This is one of the benefits of the
AHM methodology. However, if the camera network was calibrated, two opportuni-
ties do arise. First, a generated cell could be rotated to match the inclination of the
scene plane it overlaps with, so that the absolute scene-area each cell occupies is the
same. Second, the semantic labeling of areas-of-interest can be included into AHM.
Each location, defined by a cell, could be given a broad semantic label which, e.g., in
a shop environment could include the identification of the entrance to the shop and
the cashier region.

8.2.3 AHM - Extension

The example scenarios discussed above were using movement patterns as type of
actions. Another set of action transitions may take place between different activities.
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Activities of interest may include local scale activities, such as ’picking-up-item’ and
’closing-a-drawer’, or activities of more global scale, such as ’making-a-purchase’ and
’arranging-a-closet’.

With activities, a similar multi-resolution approach can be used by gathering
observations over periods of different duration of time. Depending on the defined
time intervals, observations can be made at various levels of detail. The way in
which the transitions between activities are accumulated can be further constrained,
e.g., to include only those transitions that based on a prior information may exist.
For example, a person that sits can not transfer to walking directly; he must have
stood up (stand-up activity) in between.

8.3 System - Architecture

The three-level system approach that includes the proposed behavior recognition
detailed in section 8.2 is shown in Figure 8.4. The fusion of data can be performed
at any level of the hierarchy, but can also be influenced by feedback from other levels
into the fusion mechanism. For example, feedback may contain information about
system performance and stability of results.

Figure 8.4: Behavior Recognition Technology: A three-tier layout of a generic be-
havior recognition system, in this case based on visual cues. Adjacent to the classical
modules there are the fusion mechanisms, separately at each level, but contributing
together towards improved system accuracy, at each level and as a whole.
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8.3.1 Fusion Opportunities

In the proposed system there are two aspects in which fusion of data becomes an
immediate opportunity. First, the motion path cell network was created at three
different levels and therefore it is possible to investigate how different resolution levels
perform in different conditions. Second, the same motion paths have been observed
from different viewpoints, which make it possible to fuse the data between the views.
Therefore, data fusion can be performed between different resolutions levels of data or
between the camera views. The detection of transitions at multiple resolution scales
should provide increased sensitivity to out-of-the-ordinary events without harming
the detection of usual events. Fusion between multiple cameras should similarly help
in not missing hard-to-detect events, and should provide increased certainty to the
observations made.

At the lowest level, different images, such as multi-resolution or from different
viewpoints, can be combined into a single image. A multi-resolution approach in
spectral domain through wavelet- and fast Fourier transforms has been studied, e.g.,
in [139, 140] and a general framework for multiple input sensors has been proposed,
e.g., in [141]. At the second level features computed from the images, and at the
highest level the action and/or behavior labels, can each be further combined when
having multi-resolution and/or multi-sensory data. In [142] and [143] fusion mecha-
nisms in the context of activity recognition were explored for fusion of feature values
and activity labels.

8.3.2 Chosen Fusion Approach

The data is gathered in a fully centralized manner such that a central system receives
the data from each of the cameras. The fusion is performed at two different data-
levels. in order to produce a joint estimate, the data is combined either at the
feature or at the decision-level. These two levels have been commonly compared in
the literature and therefore the two levels were chosen for the current experiments.

The two basic fusion mechanisms of selection and combination are studied. In
the selection, a single data entity or a subset of entities is chosen to be used in
further analysis. In combination the entities at the certain level, as in features or
labels, are combined into a single value best representing the original entities. Three
different approaches to fusion methods that perform the actual combination of data
are explored:

• majority approach: computes the overall opinion between views

• sensor selection: selects the view with best coverage on person

• ideal selection: selects the view (if any) that gives the correct result

Majority approach computes the minimum mean square error, MMSE, estimate
for candidate features as the final feature, or defines the final decision as the most
common class label among the candidate decisions. The sensor selection approach
selects the candidate for feature or decision from all the available cameras based on
coverage on the person. The view that has created most cells and has accumulated
the most of transition observations is used as the source of data. In contrast, the
ideal selection selects the view that has the correct label for the sequence if any of
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the views has the correct label. These fusion approaches will be discussed in the
experiments in terms of classification accuracy per sequence.

8.4 System - Person Tracking

The initial challenge in person monitoring is finding out the location and shape
of the person. Many approaches have been proposed earlier for human detection
and tracking [144–146]. Typical differences in these methods concern in accuracy,
complexity and performance.

In this chapter a hybrid approach is used in which two complementary algorithms
work independently but exchange some decisions to support and/or correct the re-
sults of the other algorithm. For this purpose silhouette segmentation was combined
with template-based shape matching. This solution is illustrated in Figure 8.5, and
specifics are discussed in the next subsections.

Figure 8.5: Person Tracking: Hybrid approach to detecting people.

8.4.1 Silhouette-aided Pedestrian detection

The first task is to segment a person within the image. This is achieved by combining
a Gaussian Mixture Model (GMM) background subtraction based silhouette extrac-
tion [147] with a Histogram Of Gradients (HOG) template based Support Vector
Machine (SVM) pedestrian detector [148]. HOG is used to initialize the detection
and as the main authority, if it gives a hit. GMM is used to validate the HOG given
pedestrian hits and to update a person’s location, when HOG misses the person.
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Another possible option to detect people is to use face-detection, [144]. The main
inherent problem of these approaches is view-dependency. Only frontal and side-
profiles from moderate distances can be detected with confidence. The proposed
hybrid method presented in this chapter is very robust against changes in scale and
orientation, once an initial hit has been found. In the proposed method the robust-
ness is achieved by temporal data association, and by combining the two mentioned
techniques for detection: GMM and HOG-SVM.

Contextual information is exploited in maintaining the track and simultaneously
relaxing the computational demands and increasing accuracy. Some methods exploit
context further, such as in [145]. In the proposed approach a simple location and
size context, defining the search window for next location within a certain range
from the previously detected location, was used. This approach also seems to pro-
vide an uninterrupted track of a person as long as the subject is visible in one of
the views. However, the proposed method does not address the problem of associa-
tion of multiple individuals between multiple views. The matching of identities and
handling crossing paths is left for future work. More intelligent approaches, such
as the particle filtering based method for traffic monitoring proposed in [146] can
provide smoother tracking results, but that level of accuracy is not necessary for the
experiments described in this chapter.

8.4.2 Dynamically Created Location Cells

The second key component of low-level vision is to describe the detected motion
of the person as seen on the image plane. For this purpose, the image plane gets
divided into dynamically created cells each with unique ID. Cells are created and
stored as a person moves through the scene. Dynamic cell generation is done at
multiple resolution levels, each level having its own fixed cell radius. In this fashion,
the coarse level having the largest radius and the fine level the smallest radius.

One direct benefit of creating cells on-the-fly and storing the transitions into a
matrix is the fact that each cell-network is created person-specific. Thus the created
cells capture the order of cells entered, and therefore can directly be used to see, e.g.,
if a person is still moving in original direction, or if he is back-tracing his/hers steps
through areas already visited.

Having cells generated at multiple levels, or resolutions, helps in accounting for
different granularities and in building up confidence in the findings. If certain motions
are detected across multiple levels, very high confidence can be expected in behavior
inference. Sometimes specific motions occur only at a larger scale. It would still be
beneficial to detect the coarse scale repetition, but have less confidence in the result.
In this manner a more comprehensive understanding of behavior can be achieved.

8.5 System - Transition Modeling

The aim is to model the transitions given by AHM into a set of classes-of-interest.
The requirement is to detect and record all the transitions taking place, describe the
recorded transitions with descriptive features, and make decision on the status of the
person.
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Corresponding to the case study, Figure 8.6 shows an example of repetition clas-
sification based on transitions between locations that is based on motion patterns
recorded by AHM. Following feature extraction, the features are used in detecting if
a person is behaving in a repetitive or neutral manner. The classes are:

1. neutral : makes a buy or a regular short visit

2. stay : stays longer within location(s)

3. return: repeatedly returns to a location

4. loop: loops between a few locations

Figure 8.6: Transition Modeling: Proposed system applied to modeling a neutral
pattern and three repetitive ones.

8.5.1 Transition Types and Their Constraints

The transitions in the AHM can consist of, e.g., transitions from one location to
another like from a counter to shop-exit, or from activity to another activity, like
walking to interacting with an object. In these studies the focus is on location
information in order to explain the approach in accumulating behavioral information.

After detecting and dynamically quantizing the location of a person, the manner
in which the person moves between the cells needs to be described. For this purpose
a transition matrix is utilized to hold the information of transitions between any of
the cells. There are two ways to accumulate location transition information:

1. record all the transitions detected

2. record only transitions that meet a certain pre-defined criteria

A pre-defined criterion can, for example, require the person to stop in a location
for the transition to be recorded. However the aim of criteria is always the same, to
provide the cleanest and most efficient data for transition analysis. For this approach
to perform well, the type of transition criterion, such as from standstill to standstill,
and how robustly the criterion can be computed becomes crucial. Due to these factors
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every transition between cells was recorded without constraints in the presented
experiments.

8.5.2 Transition Features

A way to approach the modeling effort is to describe some properties of the accu-
mulated transition matrix. These properties can be used as features, on which the
discrimination process of different behavior classes is based on.

An interesting option would be to exploit the so called Haralick features [149],
which have been successfully used, e.g., in image texture classification, and for which
fast calculation algorithms have been proposed, e.g., by Miyamoto in [150]. The Har-
alick features are usually computed from a gray-level co-occurrence matrix, in which
each element value is considered to be the probability that a pixel with value i will
be found adjacent to a pixel of value j. This matrix might share a slight resemblance
with the AHM. Therefore the Haralick features were experimented alongside with
the six features proposed in this chapter.

Equations 4-9 define the proposed six features computed from AHM matrices in
this chapter. Notice that each feature is normalized to range [0,1]. These features
are based on detecting certain aspects that seem to be useful in describing behavioral
events based on the matrix presentation. The following two notations apply for the
definitions of the proposed features:

Asum =

N∑
i=1

N∑
j=1

aij (8.2)

A−sum =

N∑
i=1

N∑
j=1

aij , i 6= j (8.3)

If a certain set of cells has the most of the occurrences in it, that responds to
regions/actions that person most often visits/performs. These are characterized by
features 1 and 2. Feature 1 represents how much a person stays with the same location
by the number of self-transitions normalized by the number of all transitions:

fDiagonalHeaviness =

∑N
i=1 aii
Asum

(8.4)

Feature 2 represents the normalized number of all the transitions to the same location:

fColumnHeaviness =
arg maxj(

∑N
i=1 aij)

A−sum
(8.5)

The more symmetrical the transitions have been, back and forth between certain
cells, the more likely a person is looping between associated regions/actions. This
symmetric property is described by feature 3:

fSymmetry =

∑N
i=1

∑N
j=1 (aij × aji) , i < j

A−sum
(8.6)
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The less straightforward a person has moved, the more random transitions exist. This
will introduce a wider spread in the element entries. This transition directionality is
presented by feature 4:

fSpread =

∑N
i=1 aij , j = [i− 1, i, i+ 1]

Asum
(8.7)

The more entries exist at the end of the generated cell-path, the more likely the
person got stuck in one of his latest locations. This location mass point is defined as
feature 5:

fMassPoint =
arg minl

(
arg mink

(∑l
j=1

∑k
i=1 aij ≥ 0.5×Asum

))
N ×N

(8.8)

Single-way repetition accumulates on the top-side of the matrix diagonal, both ways
repetition accumulates on both sides of the diagonal. The repetition direction is
defined as feature 6:

fTopHeaviness =

∑N
i=1

∑N
j=1 aij , i < j

A−sum
(8.9)

This proposed 6-dimensional feature data can be reduced to 1-dimensional sym-
bolic data, e.g., by K-nearest-neighbor clustering and representing a 6-feature vec-
tor with a single symbol corresponding to the cluster ID it belongs to in this 6-
dimensional feature-space. This way the originally continuous 6-dimensional feature-
data can be presented as a discrete symbol, required by some temporal models, such
as the discrete Hidden Markov Model.

8.5.3 Classifier Models

The aim is to detect situations in which people are uncertain how to proceed. These
situations are defined as moments when people start repeating their actions. In this
study case, the actions are the movements of the people. Detecting repetition is a
very challenging problem due to the variability of paths and the pace of action. Three
different classifier models are experimented with in detecting the repetitive activities
described before: neural networks, decisions trees, and naive Bayesian classifiers.

In one set of experiments the classifier was a feed forward Neural Network (NN).
NN is a network of interconnected nodes, which takes an input (e.g. six features)
and defines an output (one of four classes) as a result of the data passed through
the hidden nodes of the NN model [151]. After preliminary experiments 10 hidden
nodes in a single layer are used in the experiments. How the hidden nodes relate to
each other, is defined by training. Once trained, a new input (feature) is given to
the model, and the outputs are the probabilities of each of the available classes. The
class with highest probability is considered as the final decision.

Decisions trees (DT) were exploited as a second classifier model. All features are
considered for each decision split, and in training the weight of every observation
is considered as 1. The resulting classifier is a pruned binary tree, in which each
branching node is split based on a value of one of the features. Once reaching a
leaf-node the class for a feature-vector is given corresponding to the class symbol of
that leaf.
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As a third option the naive Bayesian classifier was tested. The naive Bayes
classifier assigns a new observation to the most probable class, assuming the features
are conditionally independent given the class value. A normal (Gaussian) probability
distribution was assumed for all the different features in the training process.

8.6 Experiments - Setup

The proposed system was studied with two different datasets. The first dataset
was based on multi-view recordings of actual people acting out as customers in a
small L-shaped shopping environment, see Figure 8.7. For more controlled settings
in terms of movements and variability a Matlab-toolbox was built for computational
simulation of motion trajectories in a square-shaped space recorded by one virtual
view, see Figure 8.8. For both datasets, the locations were quantized at various
levels of detail; the dynamic cells were created with fixed radius of 30-100 pixels
on simulated data, and 10-100 pixels on real data in 10 pixel increments. 30 pixels
roughly match the size of half a step, and 120 pixels is roughly the same as the
average person height.

8.6.1 Real Data

Real multi-view visual data was recorded in a environment that resembles a small
clothing shop. See Figure 8.7 for the room layout and camera viewpoints for an
example scenario containing three individuals. Ten subjects were instructed to per-
form four different scenarios. Each person entered the shop separately, thus providing
clean one-person video from three views. The subjects were instructed to perform a
given activity in the shop but limit the stay in the shop to approximately one minute.
The item that the person was interested in, was described to them by the instructor
of the recording session, before the person entered the shop. Once a person enters a
shop the accumulation of transitions starts. When they exit, the accumulation stops.

The first routine was described as a successful purchase, in which a person enters
the shop, looks around for an item, and after finding it approaches the cashier, and
exits the shop after the purchase. In the second routine the person finds the area of
the item-of-interest, but fails to pinpoint the item itself. After having looked around
in the area, person exits the shop. In the third routine, a person repeatedly returns
to a certain area, after which individual exits the shop. In the fourth routine, two to
three areas are repeatedly returned to, before exiting the shop.

8.6.2 Simulated Data

In order to test the AHM method in controlled settings an algorithm was designed
to simulate the movements of a person in a room. The motion path of a person is
simulated on a floor plane of 4 × 4 meters. The positions that the person walks to
are defined by 12 randomly selected points (x,y); see Figure 8.8 for an example on
point indices and locations. The floor is divided into four same size squares. Each
square contains 3 of the 12 randomly selected points for each simulation run.

The class-specific behavior is achieved by creating a 12-point binary transition
matrix, in which the elements marked with 1 (active) are possible transitions to take.
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Figure 8.7: Recorded data: A small shop environment for acting out scripted rou-
tines, covered by three cameras with partly overlapping views.

The randomly generated and modified matrix remains the same during the simulation
of a sequence. A fully active matrix is used for creating neutral behavior. All the
repetitive classes are based on a randomly filled random-matrix. For stay behavior
the diagonal elements of the random-matrix are marked active and for one position
all the transitions are marked non-active. One of the columns of the random-matrix
is marked active for the return behavior. For the loop behavior a pair of symmetric
elements ([i,j],[j,i]) is marked active in the random-matrix and transitions from these
positions are marked non-active.

The path of a person is created by sampling randomly the active elements of
the class-specific transition matrix of 12 points, and by making a person walk these
randomly selected transitions according to the defined step-size. The step-size is
randomized before each simulation between 0.5 and 1.0 meters. The simulations
runs are terminated after a certain amount of seconds has passed. Six different
durations of [180,360,720,1440,2880,5760] seconds are used to gather 10 simulations
per each behavior class.
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Figure 8.8: Simulated data: Matlab environment for creating synthetic path data,
left) by simulating steps on floor plane, right) capturing them on image with the
virtual camera installed above the floor.

8.7 Experiments - Results

A set of different experiments is performed on each dataset, the recorded and the
simulated trajectories. Given a motion trajectory, AHM forms the transition matrix,
from which features are computed and the trajectory is classified as one of the four
classes: neutral (1), stay (2), return (3), or loop (4). These inferred class labels
per sequence are compared against the manual annotation of sequences, to form an
accuracy value ranging from 0 to 100%.

8.7.1 On Simulated Data - Classifier and Features

The simulated trajectories are used to study the applicability of AHM to repetition
detection with three different classifiers models based on the proposed 6 features.
The model that performs the best is further used to study which set of features
provides the best accuracy.

In Figures 8.9, 8.10, and 8.11 the results for NN, DT and Bayes classifiers on
simulated data over 6 different durations of simulation in seconds are shown averaged
over all 40 sequences, presented for each of the 8 cell-resolution levels from 30 pixels
to 100 pixels. The simulations runs were terminated (term in figure-legends) after
one of six durations defined in seconds (value following term in figure-legends).

The shortest simulations of 180 seconds offers much lower accuracy (65%-57%)
than the longer simulations. With simulation running for 360 seconds the patterns
of the classes are already much more developed, thus a significant increase (to above
80%) in the repetition detection can be seen. Considering the longest simulations of
5760 seconds, NN performs the weakest (88%-77%), DT provides better results (90%-
82%), and Naive Bayesian outperforms the others (95%-91%) by averaging 93.1%
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over all cell radius levels. Based on these results the Bayesian model was fixed as the
classifier.

Figure 8.9: Simulated data with proposed features: Classification accuracy of NN-
model as function of the cell radius, presented here for six different lengths of simu-
lation runs defined in seconds.

Figure 8.10: Simulated data with proposed features: Classification accuracy of DT-
model as function of the cell radius, presented here for six different lengths of simu-
lation runs defined in seconds.
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Figure 8.11: Simulated data with proposed features: Classification accuracy of
Bayes-model as function of the cell radius, presented here for six different lengths
of simulation runs defined in seconds.

Respectively, in Figures 8.12 and 8.13 the classification accuracies with the Naive
Bayes model using the 13 Haralick-features and combined features (own+Haralick)
are presented. Considering the longest simulations of 5760 seconds with Bayes model,
the Haralick-features (88%-81%) or the combined features (95%-88%) do not reach
the accuracy of the proposed features. Based on these results, the feature-set of the
six features defined above was used in the subsequent experiments.
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Figure 8.12: Simulated data with Haralick-features: Classification accuracy of
Bayes-model as function of the cell radius, presented here for six different lengths
of simulation runs defined in seconds.

Figure 8.13: Simulated data with combined features: Classification accuracy of
Bayes-model as function of the cell radius, presented here for six different lengths of
simulation runs defined in seconds.
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8.7.2 On Real Data - Cell Resolution

The naive Bayesian model based on the six proposed features was used to classify the
real sequences. In Figure 8.14 the classification accuracy on real data is presented
for the Bayes model for each of the three views, as a function of the cell radius from
10 to 100 pixels.

Figure 8.14: Real data: Classification accuracy as function of the cell radius, pre-
sented here for each of the three views separately.

Based on Figure 8.14 it can be stated that camera-1 performs best with cells
of radius 20 pixels (37%), camera-2 with 70 pixels (43%), and camera-3 with 10
pixels (46%). In average camera-1 provides accuracy of 34.6%, camera-2 leads with
41.5%, and camera-3 gives out 38.3%.

If one would have to fix the cell resolution as same for all the views, the cell
radius of 10 pixels would provide the best across-views accuracy ( 40%) of all the cell-
resolutions by a very small margin. When selecting the best cell radius specifically
per each view, the across-views accuracy is higher by 2% reaching average expectation
of 42%. The best resolutions (20px,70px,10px) per camera are fixed for the following
fusion experiments.

8.7.3 On Real Data - Fusion

In order to decide which fusion level provides a better accuracy, the majority fusion
method is used to combine data from the three views at the two fusion levels of
features (fusion-level index 1) and decisions (fusion-level index 2). See results per
person, per behavior and per fusion level in Figure 8.15.

The fusion at decision-level provides an accuracy of 49%, which is 7% better than
what was the expectation value for across-views fusion. In contrast, feature-level
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fusion performs close to the expected value giving out only 41%. Clearly, fusion at
the decision-level is desired.

Figure 8.15: Real data: Classification accuracy with majority methods at both
fusion levels, presented here left) per person, middle) per behavior, and right) per
fusion level.

The results from the majority fusion method are compared to the two other
fusion methods of view-selection. See Figures 8.16 and 8.17 for the fusion results of
coverage-based and ideal view-selection methods.

The coverage-based view-selection increases the accuracy of both fusion levels.
Feature-level fusion achieves 44% accuracy, and decision fusion still remains as the
better fusion level giving out 51%. The oracle-based view-selection presents the
theoretical upper limit of accuracy for selecting a view, with this real data at the
decision-level providing accuracy of 75%.
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Figure 8.16: Real data: Classification accuracy with coverage-based selection
method at both fusion levels, presented here left) per person, middle) per behavior,
and right) per fusion level.

Figure 8.17: Real data: Classification accuracy with ideal view-selection method at
decision-level, presented here left) per person, middle) per behavior, and right) for
decision-level.
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8.8 Discussion

A new method for modeling repetitive behavior by recording transitions between
states was proposed. The method is based on features extracted from Action His-
tory Matrices (AHM). AHM consists of three types of information. First, the state
depends on the nature of interesting repetitions. A state can be, e.g., an activity
class (such as walking or interacting) or a location (such as transit area or counter).
Second, the state observations will be captured in multiple resolutions such that spa-
tial locations can be quantized into different sized cells and activity detection can be
done over different length intervals. Third, the transitions will be accumulated into
a transition matrix, optionally controlled with additional constraints on the tran-
sitions, such as requiring the person to stop in a location for the transition to be
recorded.

On Proposed Methodology
In the studied application, the IDs of quantized locations (cells) were used to infer
if a person was in a repetitive status. The cells were created at various resolution
levels, providing coarse to fine details on transitions. A cell was dynamically created
centered on the new location as a person moved through the environment; no cells
existed before a person had entered the scene. All the transitions between cells were
accumulated into a transition matrix; starting from the time a person enters the
scene till the point where they exit the environment.

Once provided with an AHM-based transition matrix, the features derived from
it were used to separate different classes of behavior. The six features were defined in
such a manner that they describe the basic properties of a matrix; for example, what
percentage of the transitions lies on the diagonal elements. These features were then
exploited in training and running a behavior classifier based on NN, DT or naive
Bayesian model.

Customer behavior in a shop was taken as an example application. Focus was in
behavior that was repetitive because the customer encounters difficulties in finding a
suitable item. Two datasets were created for experiments: a recorded and a synthetic
dataset. Focus was in finding behavior that was repetitive, and in a case of positive
decision further classifying which of the three basic repetitions was present: 1) the
person staying within a location, 2) repeatedly returning to a location or 3) looping
between few locations.

The dynamic multi-resolution cell based creation of a transition matrix by the
AHM has potential and can be applied to behavior detection, in this case to classi-
fication of repetitive motion patterns. However, the proposed system does not yet
achieve high accuracy values in classification with real data. The lack of accuracy in
vision processing, the limitations of a single camera view, and the extreme variability
between people create problems that need addressing.

On Fusion
Two different datasets, video recordings in a shop environment and motion path sim-
ulations, were used in the experiments. The AHM-based system achieves an accuracy
of 97% with most suitable scale and naive Bayesian classifier on the simulated move-
ment data. In addition, the performance of two fusion levels and three fusion methods
were compared in the context of the AHM method with the multi-view recordings.
The results show that decision-level fusion offers consistently better accuracy than
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feature-level, and that the coverage-based view-selection fusion method outperforms
marginally (51%) the majority method; An optimal upper limit for view-selection
was found to be 75% with the recorded data.

Fusion Approach The aim of inference was to detect moments when the accumu-
lated evidence implies that a person has started to repeat his or her movements. No
fusion approach was fixed, as either consensus or sensitivity to alarming repetition
could be considered as viable options.

The preferred fusion approach in practice might be sensitive for triggering alarms
when considering a customer to be repetitive. Especially in the case of personnel
responding to the alarm, the system could further rely on the judgment of the per-
sonnel on the situation. In this case, a sensitive fusion approach could be considered
better [Design Rule 1]. If an automated guidance system would be used to support
the customer, the application should be much more cautious in triggering alarms.

Vision Network The multi-camera data from the shoplab environment was gath-
ered by a professional recording system. All the camera models and parameters were
the same and stayed fixed during the experiments [Design Rule 2]. For example,
if any of the settings in any of the cameras were adaptive, the camera could easily
fail in image segmentation and the track of the person would be most likely lost.
Depending on the fusion approach this complete lack of supporting data from one of
the cameras, could badly affect the accuracy of detecting repetitions.

A dedicated ethernet-network was used in the data transmissions, with no external
traffic or other impacts allowed within the recording network [Design Rule 3]. For
example, if the stability of the local network would have been compromised, the data
would not be timely delivered to the central fusion unit. Because all the tracking
data is accumulated over time and the decision on repetition is made based on this
accumulated set of data, the application is not as time sensitive as the ones discussed
in the previous chapters. However, for correctly recording the transitions between
locations and not jumping over a location-cell, the losses in consecutive frames have
to be maintained small enough.

The experiments did not include the user supporting system that would possibly
have to interact with the customer by guiding him with visuals. Therefore, no fusion
mechanisms for handling rendering induced artifacts were needed. In a full imple-
mentation of a responding system, the effects of the created visuals to the vision
processing should be counted for. Manual annotation of some interest regions within
an image, or implementation of joint processing algorithms robust to color changes,
could help in dealing with visual artifacts [Design Rule 4].

Fusion Architecture Within a confined specific environment such as a shop, there
hardly are any resource limitations in capturing, transmitting and collecting multi-
camera data. Some parts of a shop, such as entry/exit area, might have a specific
phenomenon that can only be of interest in that specific area. In that case it would
make sense to group together the cameras that observe such an area. However, in the
proposed application the behavior of the user needs to be uniformly captured across
the shop. Therefore, a fully centralized fusion architecture serves the application the
best [Design Rule 6].
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Fusion Level It can be noted that the raw matrix data is hardly combinable as
the dimensions and elements differ between the cameras. Only by a calibrated vision
network could the tracking be jointly done in 3D, which would make it possible to
accumulate a joint transition matrix. With the recorded data, the fusion performed at
decision-level always provided a better accuracy than fusion at feature-level [Design
Rule 8]. This might be due to the great variability in feature-values between the
views, with which the feature-level fusion is unable to cope. The variability is most
likely due to three factors: view limitations, greatly different coverage-times on person
per view, and the short duration of the real recordings.

Fusion Method The coverage-based view-selection fusion method outperforms the
majority method with a small margin. Therefore, it appears that when individual
sensors are not capable of good accuracy, a simple common consensus approach will
not be able to increase the accuracy of classification. A more accurate method then
should deploy a best-view criteria, based on which a single camera is used at beneficial
times to infer the class [Design Rule 10]. Naturally, the type and suitability of the
criteria become crucial for beneficial fusion [Design Rule 11]. An ideal upper limit
for view-selection was found to be 75% with the recorded data.

In summary If the system can analyze on-line the accuracy of the person tracker
for a specific view, this will help fusion in selecting the appropriate cell-resolution
that gives increased accuracy in decision making. Some views provided better accu-
racy in average; therefore, a simple sensor selection might sometimes increase fusion
accuracy. In contrast, the majority based fusion methods seem to struggle in achiev-
ing accuracy improvements when encountering cameras with generally low quality
information. With the recorded multi-view data used in these experiments it is the
decision-level fusion that consistently provides marginally better accuracy than fusion
at the feature-level. So it appears that the high-variability conditions of real-data do
favor fusion at a higher level of data abstraction, in this case with decision data.

Future Work
There are several ways to improve the performance of the presented system. As
actions of interest the use of movement history alone was studied, but different actions
such as activity (walk, stand, interact etc.) can equally be used in defining the AHM.
Resulting versatility of action history data should provide a self-strengthening basis
for behavior inference.

Six features were proposed to describe the repetition characteristics of the AHM-
matrix. It is probable that a larger and more application-specific set of features can
further improve the inference accuracy. The accuracy of two basic data fusion mech-
anisms: selection and majority were discussed in this chapter. More powerful fusion
mechanisms that exploit better criteria and scene context should further improve
behavior inference.
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Chapter 9

Office Ergonomics

Office environments provide an interesting opportunity for self-assessment. This
chapter proposes a collaborative vision-system that leverages a personal webcam and
cameras of the workplace to provide feedback relating to an office-worker’s adherence
to ergonomic guidelines, which can lead to increased well-being for the individual and
better productivity in their work 1.

Section 9.1 starts this chapter by giving an introduction to the application of
ergonomics and related research. The proposed system for both personal and ambient
cameras, in addition to highlighting the fusion aspects in such a system, are defined
in section 9.2. The multi-video experiment data is presented and important aspects
related to the mobility feature are illustrated in section 9.3.

The experiments are divided into two parts: personal ergonomics and general
mobility. Personal ergonomics relies solely on video analysis performed on the per-
sonal webcam. In contrast, the general mobility experiment exploits both personal
and ambient cameras for deducing the worker’s mobility state, thus giving rise to
many fusion possibilities. These possibilities are studied for two fusion architectures:
centralized and hierarchical, with various options for fusion level and fusion method.
Results are shown for both experiments in section 9.4. The most important findings
in relation to the vision fusion framework conclude the chapter in section 9.5.

1This chapter is (partly) based on:
Chen, Chih-Wei, Määttä, T., Wong, K., Aghajan, H. (2012). A Framework for Providing Ergonomic
Feedback Using Smart Cameras. 6th ACM/IEEE Int. Conf. on Distributed Smart Cameras.
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9.1 Related Work

The importance of proper ergonomics for the health and wellbeing of office workers
is increasingly promoted by federal agencies such as OSHA (Occupational Safety and
Health Administration) [152] and NIOSH (National Institute for Occupational Safety
and Health). However, it is up to the individual workers to adhere to the proper
ergonomics. Working long hours in front of a computer has become unavoidable for
many people working in offices. However, the extended use of computers poses health
risks including eye strain, and neck and shoulder pain. In response, ergonomic experts
have developed guidelines that are designed to mitigate the risk of such workplace
related injuries. In order to follow these guidelines, workers have to gain a measure
of self-awareness of their bad habits, and be encouraged to correct them. The field
of personal informatics has focused on providing tools to assist in this.

Figure 9.1: Personalized Ergonomics: A multi-camera system monitors worker’s
daily activities around the office. Based on context-aware observations measures on
attention, posture and mobility are computed. The personal data is accumulated over
time based on which guidelines are personalized and feedback is given to the user.

In this study a set of cameras are used to collect personal information relevant
to workplace ergonomics. Given both close-by and ambient cameras, the estimate of
the condition of the worker is both refined and given over a wider range of locations.
By visualizing the processed information to the user we hope to increase the workers’
awareness of their own condition related to the general guidelines. Figure 9.1 shows an
example of a graphical feedback given by an application. Reminders for eye breaks,
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neck and shoulders exercises, and rest breaks could be sent to the user when the
respective green bar is depleted. With contextual information the measurements can
be correlated with different tasks, providing insights on changes in worker behavior.
A small example on the effect of context is given in the experiments section.

There exist software programs that can remind the user at a fixed time interval
to take a break. However, prompting reminders at bad timing might interrupt the
user’s work, causing the user to ignore the message. To make the reminders relevant,
the system must take into account the user’s behavior patterns and his personal
schedule. For example, if the user usually takes a break every 45 minutes, then a
reminder every 40 minutes might not be necessary. Similarly, if the user is scheduled
to have a meeting in 5 minutes, he should not be bothered now. To this end a
probabilistic model could be developed that learns the user’s behavior pattern and
adjusts accordingly the common guidelines. One such an approach to personalized
ergonomic recommendations has been given in [153].

Gaze tracking has been used within many applications from analyzing the im-
pact of advertisements for marketing studies, to developing innovative interfaces for
HCI [154]. Most widely used methods are based on video-devices, because they are
unobtrusive and cheap. Much work has been done to improve the performance, e.g.,
by using prior knowledge about the scene under a saliency framework [155], or by
incorporating multiple cameras [156].

For eye blinking detection, Chau and Betke [157] proposed an approach in which
eye location is detected from a temporal difference image when the user blinks, and
templates for open eyes are created on-line. Local template matching tracks the eye
location, and blinks are detected by thresholding the correlation score. A blink de-
tector based on SIFT tracking and implemented on a GPU was proposed by Lalonde
et al. [158].

Motion detection is commonly used to segment moving objects in video sequences.
To this purpose techniques such as Mixture of Gaussian (MoG) which models each
pixel as a Gaussian Mixture Model (GMM) have been commonly used [147]. These
techniques have been extended, e.g., by including a feedback from the higher level
modules (e.g., from person detector/tracker or illumination change detector) [159],
or by including the removal of shadow areas [160]. These techniques are capable of
good accuracy in ideal conditions, but are considered to be prone to segmentation
errors when encountering environments with lighting changes, noise, and low con-
trast. Morphological operations are often used to overcome some of these problems
to an extent. Graph cut based segmentation algorithms can perform better in such
situations by grouping pixels together based on the neighbourhood similarities, but
are computationally intensive [161].

Gathering comprehensive personal information has been made possible recently
with the advent of ubiquitous sensors and computing power. A survey about how
personal information is collected through ubiquitous sensors and reflected upon can
be found in [162]. For example, the generation of a daily activity summary for
triggering bad posture alarms was proposed by Jaimes in [163].

Detection of body posture and interactions with other people, are essential for
improving wellbeing. In a 20-year study by Shirom et al. [164] a strong link was
observed between higher level of peer social support and lowered risk of mortality.
Chen and Aghajan [156] described methods for estimating the locations and head
orientations of multiple users. Based on these two attributes, an interaction detector
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was trained to identify social events. The influence on behavior of these social events
was studied by Chen et al. in [165]. The pose of the user together with simple
activity monitoring was used by Chen at al. in [166] for automatically discovering
regions of space and placements of furniture.

Ergonomics guidelines usually only provide high-level recommendations that are
general for specific industry or task, but do not take into account personal preferences
and habits. Therefore, warnings that strictly adhere to the guidelines might become
annoying to the users, and could even jeopardize work efficiency and productivity. To
address this problem, a multi-camera supported system that learns personal habits
and preferences is proposed.

9.2 Vision System for Office Ergonomics

In the proposed system, there are two categories of smart cameras: the personal
webcam and the ambient cameras. Additionally, an ambient camera that observes
only the area of a persons desk is referred to as a dedicated camera.

9.2.1 System Architecture

The frontal personal camera above the user’s computer screen extracts ergonomics
related attributes. The ambient cameras monitor the entire office and record how
multiple users utilize the office space. Data extracted by these smart cameras is sent
to a central processing unit. The overview of the discussed system is illustrated in
Figure 9.2.

The attributes are combined by a data fusion process and then used to learn the
worker’s profile. The model adapts to the visual observations, available user feedback
and given contextual information. A user may provide feedback, e.g., by penalizing
unwanted reminders or by providing the type of the task. Contextual information,
e.g., on the common breaks and meetings can be gained by accessing worker’s agenda.
Personalized recommendations according to the modified user model can then be
provided to the user.

9.2.2 Enabling Vision Techniques

The analysis of worker behavior relies on three different computer vision techniques:
face tracking, silhouette segmentation, and motion history images.

Face Tracking The faceAPI from Seeing Machines [167] was used to track faces.
FaceAPI is capable of tracking faces under a wide range of head rotations, which is
critical for the proposed system since workers are not expected to look always directly
into the monitor while performing various tasks at their desk. The faceAPI returns a
6 degrees of freedom estimate of the head’s pose at moment t: the 3D head location
and the yaw, pitch, and roll of head pose, which are expressed as a position vector
xt and a Euler angle vector θt respectively, xt =

(
Xt, Yt, Zt

)
, θt =

(
αt, βt, γt

)
.

Silhouette Segmentation With personal cameras, after performing a traditional
GMM-based background subtraction and obtaining a foreground mask, the head
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Figure 9.2: System Diagram for providing personalized ergonomics.

position given by faceAPI is used to refine the foreground mask. Morphological
operations are applied to remove small holes in the foreground. The largest connected
silhouette component that overlaps with detected face is defined as the worker’s
silhouette. With ambient cameras, similar refinement is performed based on HOG-
template matching with SVM; see subsection 8.4.1 from the previous chapter for
tracking details.

Motion History Images Motion history images (MHI) compute the difference
between consecutive frames and mark the pixels with large difference values as the
motion pixels mi,j . In the experiments the motion frames were added together over
a period of 8 seconds, 120 frames captured at 15fps. This formed an accumulated
MHI-frame, that was used to compute MHI-based measures.

9.2.3 Measures for Ergonomics

The three techniques described before enable the computation of informative mea-
sures capable of determining worker’s ergonomic situation.

User Attention For the proposed system it is satisfactory to extract the approxi-
mate gaze of the user by assuming the head orientation is aligned with gaze direction.
This is a coarse approximation, but it allows to use the face tracking data to estimate
what the user focuses on. Head direction is defined by the head position and orien-
tation, which is considered then as the gaze direction. The estimated gaze vector is
projected onto the plane spanned by the monitor for obtaining an attention heatmap.

Distance to Screen It is important to maintain a proper distance between a user
and a computer screen to avoid eye strain [152]. Using the face tracking data, the
distance between the user and the screen is extracted.
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Head Motion Sitting in front of the computer can cause excess muscle tension
in the neck, shoulder, and back. Stretching and short exercise can effectively relieve
affected muscles and prevent strains from accumulating. Head motion can be derived
from the face tracker data. In particular, the motion mt of the user at time t is defined
as the weighted sum of the tracked head displacement and rotation w.r.t. previous
observation at t− 1:

mt = wd × |xt − xt−1|+ wr × |θt − θt−1| (9.1)

where wd and wr are the corresponding weights.

Work Periods and Breaks Taking regular breaks during sedentary work is an-
other important activity recommended by ergonomic experts to promote health and
well-being by reducing fatigue. The presence of a user in the view is used to deter-
mine if the user is working or on a break. The raw presence data provided by hits
by faceAPI is processed by first finding gaps in the presence. The detected breaks
that are shorter than a threshold are filtered out as insignificant absences. For the
experiments a threshold of 10 seconds was used. From the starting and ending times
of the work breaks, the system computes the durations and distributions of the work
periods of the user.

Blinks The blink detector was built upon the face tracker, utilizing the tracked
head and estimated eye locations. Given an observed video frame, the face tracker
provides an estimate of the eye locations. Two local regions centered on these es-
timated locations are used to compute the accumulated pixel differences within a
running time window. A decision on blinking is provided based on the blinking
probability computed from the accumulated differences.

General Mobility For detecting the activity status of a person within the office,
a rough measure of mobility is computed. This mobility feature is designed to be
robust against changes in camera distances and angles. The feature is computed
within a ROI, which is the rectangular region within an image that covers the visible
part of the person. ROI updates it’s position and size automatically based on the
foreground pixels fi,j or pedestrian detection. The feature fmob is defined as the
ratio of motion pixels (MHI) to foreground silhouette pixels:

fmob =
∑
ROI

mi,j/
∑
ROI

fi,j (9.2)

Based on the mobility feature the system classifies a person’s state as one of the
three classes: regular, mobile and in-transit. The state is regular when person is
engaged in focused working, thus only minor adjustments to hands, head and body
are taking place. The state is considered mobile with larger rotations to body and
displacements. In-transit includes cases when the person stands up or moves across
the office. A simple thresholding was used to declare the state. The thresholds were
defined by minimizing the overlap between the three classes. Threshold values of
0.075 and 0.7 were used.
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9.2.4 Fusion of Camera Data

As multiple cameras provide their observations on the user’s general mobility, great
opportunities emerge for exploiting fusion in order to increase certainty and visibility.
The different fusion levels and methods for office data are shown in Figure 9.3; see
Figure 3.14 from chapter 3 for comparison.

Fusion Architecture The manner in which data is gathered is defined by the
fusion architecture; see section 4.1 for more details. Centralized and hierarchical
architectures are studied in this chapter. A centralized architecture combines directly
all the data in a central unit, whereas a hierarchical architecture first performs fusion
for subgroups of cameras and sends the results to a central unit.

Fusion Level The type of data to be combined is defined by the fusion level;
see section 3.2 for more details. There are three types of combinable data within
the proposed uncalibrated vision network. Features can be combined into a single
feature-value. Both class probabilities and class labels can similarily be combined
into a single estimate. Hybrid fusion is considered as a fourth level, in which all the
resulting decisions from each of the previously mentioned levels are combined into a
hybrid decision.

Figure 9.3: The three fusion levels of feature, score, and decision for stating gen-
eral mobility status. Fusion is performed with either common opinion or sensitive
approach based fusion methods.
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Fusion Method The algorithm used to combine the data is defined by the fusion
method; see section 3.3 for more details. Two approaches to fusion methods are
studied: the first approach relies on the common opinion between the cameras, the
second is sensitive to detection of the more mobile classes.

In the common opinion approach, the mobility features are combined by taking
the average. Class probabilities/scores are combined by choosing the class with the
most of probability mass. Class labels/decisions are merged by selecting the class with
largest amount of votes/labels. In the sensitive approach, the features are combined
by taking the maximum. The class of highest mobility, that had the highest score
in any of the score candidates of that time, is the combined decision. Similarly, the
class of highest mobility that has one or multiple votes is the combined decision.

9.3 Dataset used in the Experiments

Two researchers recorded their daily activities in a lab using their webcam and the
IP-cameras according to the layout shown in Figure 9.4.

Figure 9.4: Illustration of the recordings setup, with ambient (indices 1-6), dedicated
(2,4,6) and personal cameras (7,8) labeled accordingly.

Recordings started in mid-September 2011 and lasted for a month. Video was
captured every weekday between 2pm and 4pm, using both the laptop webcams and
six IP-cameras. Webcams were recorded on the respective laptops, whereas ambient
videos were gathered over cabeled IP-network on another laptop. In overall, 40 hours
of video from each camera was recorded at 640× 480 resolution at 15 fps.

The annotation of this video data gathered on general mobility within the office
is shown in Figure 9.5 for a single week. Correspondingly, the mobility feature values
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Figure 9.5: Data labels starting from top for the sequences of Oct 3rd-7th for each
frame. Label value 1 as regular, 2 as mobile, 3 as in-transit, and 4 as away. A frame
of a sequence does not belong to multiple classes; overlaps are due to limitations in
visualization.

for one of these experiment days is presented per camera in Figure 9.7. The feature-
values presented are the original values, but shifted in time to correspond to the
reference timing given by the personal camera, camera-7.

9.3.1 Single-Camera Processing Challenges

MHI reacts to motion observed over time. Therefore there is a trail of motion, even
after a person has sat down or has left the office. This trail will introduce remnant
motion pixels for the duration of the motion buffer. Figure 9.6 exemplifies the cases
in which a ghost trail is visible. The brighest blue signifies the most recent motion.

Image segmentation by background subtraction has two major challenges: ini-
tialization and update of the background model. All objects in the scene will be
considered as part of the background, unless an initialization step ensures no users
are considered as part of the background. A short sequence of 100-frames, with
a clean background for the same day as the test sequence, was used to create a
person-free background model in the experiments. Additionally the timing and the
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area-of update should be controlled. Otherwise, any changes to scene illumination
or camera-gain deteriorate image segmentation. The lighting was fixed during all
sequences, and in case of movements of the webcam a new initialization sequence
from the time of new settings was provided. See Figure 9.8 for an illustration of
these two problems.

Any passers-by will also be detected as part of the foreground as they too are
new to the background model. By only considering 8-connected foreground pixels
that partly overlap with the detected face/hog-template as belonging to the person’s
silhouette, some robustness to background movements is achieved. An example on
removal of background noise by limiting the foreground to the 8-connected silhouette
pixels is shown in two left-most images of Figure 9.9.

(a) Person Entering Scene

(b) Person Leaving Scene

Figure 9.6: Examples of left) MHI-images used for detection of general motion,
right) the regular video frame.
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Figure 9.7: The values of the mobility feature for each camera observing User-A
on Oct 7th. For this and the other days the feature values are further normalized to
[0, 1] interval by dividing with the maximum value.
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(a) Initialization: Far-away person sat by his desk when system started; thus when
left remains as ghost silhouette.

(b) Update: As sequence develops from left to right more noisy FG-pixels appear
due to gradual changes in gain/illumination.

Figure 9.8: Two common image segmentation issues.

Figure 9.9: Examples of left) image segmentation, middle) face-tracking aided fore-
ground segmentation, and right) MHI for a personal camera.
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Three issues caused significant synchronization problems for the recorded video-
streams. First, cameras dropped frames while capturing. Second, some data packets,
and hence some frames got lost in transmission. Third, some frames were dropped
during the recordings by the laptop as it fails to write all the frames from all six IP-
video streams. Figure 9.10 illustrates how much three of the IP-cameras fell behind
of the personal webcam (camera-7). Because Oct 5th had significant fluctuations,
and thus complicated to compensate shift by linear approximation, it was omitted
from general mobility experiments of that week.

Figure 9.10: Example deviations presented in number of frames of IP-cameras
w.r.t. personal webcam (cam-7), starting from left for all the frames of the sequences
of Oct 4th, 5th and 6th.

9.4 Experiments

Analysis of ergonomics at the desk was performed by examining the working styles
of two individuals during two of the recorded days based only on their personal
webcams. In addition, general mobility of user-A within office was studied with his
webcam and three IP-cameras over four days.

Attention HeatMaps Heat maps indicating areas of focus were obtained from
the user gaze analysis, see Figure 9.11. The majority of the time was spent looking
directly at the computer screen. The elongated pattern in the horizontal direction is
due to the user panning their head side to side. Both users frequently look away from
their computer screens, thus decreasing eye fatique. User B’s heat map also indicates
frequent patterns of looking down and toward the side, which correlates to the user
reading a document placed flat on his desk. User B should place his documents
closer to the same plane with the screen [152]. Additionally, both heatmaps indicate
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a proper monitor placement, as the centroid of the heat map is approximately at eye
level.

(a) user A (b) user B

Figure 9.11: Intensity of gaze attention ranging from no attention (blue) to most of
attention (red), with green boxes indicating approximate screen locations: (a) mainly
focused on objects at eye level, (b) focused on both screen and objects on his desk.

Screen Distance The histograms of the screen viewing distance for the two test
users for the times their face was successfully tracked are shown in Fig 9.12. Two
distinct viewing patterns are observed. User A’s viewing pattern is highly bi-modal
and the viewing distances are greater compared to User B’s pattern, which features a
tail towards longer distances. These would imply that User A is probably farsighted
and seems to work mostly in two distinct sitting postures: the ergonomically preferred
and leaning in postures. User A was asked, and he did confirm that he most likely
is farsighted, but not yet diagnosed.

(a) user A (b) user B

Figure 9.12: Histograms of screen distances: (a) features a distinctive bi-modal
distribution, (b) the distance distribution features a tail, possibly indicative of work
not involving computer.
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Head Mobility, Blinks and Duration To infer the state of head mobility, the
displacement weight wd in Eqn. 9.1 was set to 1 and rotation weight wr to 0.3,
measuring x in centimeters and θ in degrees. The weight for displacement was set
bigger, because 1) the tracking of head location is more robust than that of head
rotation, and 2) the changes in head location are considered more important in order
to relieve tension. A person was labeled to have high mobility at time t if motion
mt > Tm, with Tm as 10.

Break Interval Presence Mobility Blinks

A Mon Avg 55 m. 40 sec. 82.1% 6.2% 8.4/m.

B

Mon Avg 33 m. 42 sec. 78.6 % 10.2% 14.3/m.
Fri Avg 28 m. 34 sec. 61.4 % 12.9% 26.5/m.
Reading 16 m. 15 sec. - 14.4% 23.6/m.
Coding 42 m. 27 sec. - 4.8% 17.7/m.

Table 9.1: Example statistics of user A/B activity on different days.

Table 9.1 shows example statistics of two users highlighting differences between
the user’s habits from blink rate to average work period. Using contextual data for
User B, it can be seen that computer usage patterns change with the type of job being
performed. For example, when reading a paper document, User B switches between
the paper and the computer frequently, and therefore has higher blink rate and head
motion. Whereas programming causes focused attention, reduced head motion and
increased time between breaks. The more frequent eye blink rate on Friday might
indicate eye fatigue after a week of work.

General mobility The mobility feature fmob for the far-away ambient cameras
and the close-by dedicated and personal cameras is shown Figure 9.13. Near-zero
feature-values are evident with each camera and class. Main reason for this are the
synchronization problems, as non-mobile moments have been included in the mobile
classes. The mobile and in-transit classes with ambient cameras largely overlap,
largely due to viewpoint limitation in computing the mobility feature.

Both ambient and close-by cameras were used jointly to infer the mobility state
of the person. Each decision is compared to the annotated label and only matching
decisions count as correct. All the figures show correct classification-ratios for each
class, for all samples (overall), and averaged across the classes (normalized), per day.
Same legend and axis-notation apply to Figures 9.14-9.16. The colored lines in the
figures highlight the classification ratios that are discussed in the text in percentages.
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(a) Ambient Cameras 1&3 (b) Close-By Cameras

Figure 9.13: The histograms of mobility feature fmob for each mobility class, start-
ing from top: regular, mobile and in-transit classes. The red boxes indicate the
feature-ranges which are used for each of the mobility classes.

Figure 9.14: Classification Accuracy: Centralized Fusion with Common Opinion
methods for the sequences of Oct 3rd, 4th, 6th, and 7th, starting from left with Fusion
Levels: feature, score, and decision.

The classification accuracy, ranging [0.0, 1.0] with 1.0 representing 100% correct
classification of all frames of particular day, of centralized common opinion fusion at
each of the basic fusion levels is shown in Figure 9.14. Fusion of features gives better
results for mobile (dark blue curve) than for regular (green curve) class, contrary to
fusion of scores and decisions. As normalized (red curve) feature fusion is slightly
better (49%) than score (47%) or decision fusion (41%).
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The centralized hybrid level results of both fusion approaches are given in Fig-
ure 9.15. With the sensitive approach, in-transit (light blue curve) class is detected
much better, but the detection of the other two classes suffers.

Correspondingly, the hybrid results of both ambient and close-by cameras sepa-
rate with common opinion approach are shown in Figure 9.16. Ambient cameras can
reach a normalized accuracy (red curve) of 54% and close-by 55%, which on average
is better than centralized with 47%.

(a) Common Opinion (b) Sensitive

Figure 9.15: Classification Accuracy: Centralized Hybrid of both Method approaches
for the sequences of Oct 3rd, 4th, 6th, and 7th.
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(a) Ambient Cameras 1&3 (b) Close-By Cameras

Figure 9.16: Classification Accuracy: Hierachical Hybrids of the Common Opinion
method for the sequences of Oct 3rd, 4th, 6th, and 7th.

9.5 Discussion

Video-based analysis can provide much beneficial information about working habits.
With a webcam descriptive measures on ergonomics by the desk can be extracted.
By adding more cameras the range of analysis can be increased, but often the quality
and comparability of data suffers as problems emerge, e.g., in data synchronization
and image processing.

On Application
The proposed system was designed with capabilities to accommodate learning the
user’s behavior pattern, and thus providing ergonomic reminders based on the in-
ferred user activities. Further extensions to the proposed system include additional
well-being measures, possibly given by sensors of other modalities with increased
level of context information. In future work, having tools to analyze working be-
havior enables the use of personalized recommendation systems that can provide the
suggestions specifically to the particular worker according to his agenda, status and
activities.

On Fusion
Both close-by and far-away cameras were used to compute a measure of worker’s
general mobility as he or she moved and interacted within the entire office environ-
ment. These observations were affected in the experiments by video synchronization
issues and image processing challenges. Fusion of data can help in coping with these
problems.
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Fusion Approach The aim of inference was to detect the mobility status of a
worker (regular, mobile, and in-transit) according to the current multi-camera evi-
dence on movement mobility. In general, a common opinion between the cameras
would suffice as there is, e.g., no particular reason to be more sensitive to detect-
ing the more mobile classes from the ergonomics point-of-view. However, in these
experiments it was noticed from the feature data that due to the image processing
and synchronization problems a more sensitive approach would be necessary in or-
der to detect moments of bigger mobility. Therefore, both majority and sensitive
approaches were studied with the fusion methods [Design Rule 1].

Vision Network Two kinds of cameras were used in recording the experiment
data. The personal webcams were connected by USB to the worker’s laptop, which
recorded the video. The dedicated and ambient IP-cameras were connected by
Ethernet-cables to the local network, from which another laptop recorded all the
six video-streams simultaneously. The resolution, frame-rate and video-codecs were
defined as same for all the video sources. All automatic camera adjustments were
disabled and the same manual settings were put in [Design Rule 2].

The webcams did not record timestamps, which were included in the video-frames
with the IP-cameras. A clap of hands in the start of the sequence by the worker was
used to initially synchronize the webcams to the IP-cameras. Some key moments
were used later in the sequence to re-initialize the synchronization. Because different
media (USB vs Ethernet) were used in the transmission, and laptops with different
resources and computational loads were used to record the streams, the synchroniza-
tion constantly fluctuated. This fluctuation introduced a lot of false values for the
mobility feature as, e.g., a webcam would be observing a standing up motion while
an IP-camera is few frames behind thus still observing the person sitting. All these
problems hindered the timely delivery of corresponding frames [Design Rule 3].

As the user’s personal screen would be used to provide the ergonomic feedback
and analysis results, the amount of visual artifacts that would be picked up by the
cameras could be considered very small. Therefore, no special fusion precautions
would be necessary by the observing vision network [Design Rule 4].

Fusion Architecture A common approach to fusion has been to gather data di-
rectly to a single processing unit that is responsible for performing the fusion. In
addition to such a fully centralized fusion architecture a hierarchical fusion architec-
ture was studied by examining separately the accuracy of distant ambient cameras
and close-by cameras. The hierarchical architecture was found to provide beneficial
conditions when encountering data that behaves similarly only within a group of
sensors. For example, the mobility feature data of user-A from the dedicated and
personal camera was highly correlating. This fact could be exploited by grouping
these two views under the same node, and through fusion achieving better classifica-
tion [Design Rule 6].

Fusion Level Another major aspect of a fusion process is the type of data to be
combined. All three levels of feature, score and decision were studied under the
presented architectures and fusion methods. In the experiments conducted, no clear
accuracy differences between the levels were found. The hybrid level that exhaustively
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combines the results from all the three levels did show a more stable trend in accuracy
across the days than any individual fusion level [Design Rule 9].

Fusion Method Two different approaches to fusion methods were studied across
all the fusion levels and architectures. Fusion method defines the operations that are
applied to the set of estimates in order to get a single joint estimate. Based on the
experiments it can be concluded that the decisions made by the system can be heavily
influenced by the fusion method alone. For example, a preference to detect classes of
higher importance can be made possible by the simple choice of a particular fusion
method approach, regardless of the fusion level and the structure it is processed
in [Design Rule 11].

In summary Considering a simple aspect of camera distance w.r.t. the observed
person, it appears to be safe to group cameras with similar distances, as they will
most likely encounter similar limitations due to diminished visibility to the person.
This can be considered even more likely when considering cameras with the same
height and tilt. By grouping cameras with similar measurements, more stability in
data is achieved and better results from fusion can be expected. It would appear
that by applying fusion methods that are sensitive to hard-to-detect activities, their
detection can be enhanced, regardless of the level of data and the manner in which
the data is gathered.



Chapter 10

General Discussion

Vision networks have great potential in monitoring people. There are many challenges
in vision processing and pattern recognition. Coping with these challenges is much
supported by the multi-view data. The richness of data in having the observations
from many viewpoints does not guarantee a better decision making. It is the fusion
approach that makes the difference by increasing the certainty in the decisions made,
and by making properties visible that otherwise would not have been noticed.

Section 10.1 starts the chapter by briefly addressing the potential and future
directions of vision network technology. The past, current and future application
opportunities are discussed in section 10.2. The important role of multi-view fusion
in and the applicability of the proposed vision fusion framework for vision systems is
briefly reviewed in section 10.3. Section 10.4 provides remarks on future issues and
directions concluding the chapter and this thesis.
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10.1 Vision Networks - Potential

The two most important building blocks of vision networks are algorithms for com-
puter vision and machine learning. Vision processing delivers the observations of
a person by detecting, tracking and matching. Machine learning is the brain that
takes the observations and turns the raw input data into knowledge about actions,
activities and behavior of a person.

Computer vision is full of challenges, because both people and the environments
they inhabit are dynamic. Both of them can take different forms and appear different
under changing conditions. The research conducted for this thesis exploited so called
passive vision solutions, that is, the cameras only captured the light emitted by the
scene. They did not transmit any additional light sources or patterns onto the scene.
In all the studies conducted, the key to achieving robust system accuracy was to use
hybrid approaches. Hybrid approaches exploit complementary algorithms in which
the aim is to counteract the drawbacks or limitations of an algorithm by the benefits
of another algorithm and vice versa.

Still, two common major challenges of initialization and update remain in vision
processing. First, nearly always there are assumptions of the scene layout and of
the status of people that have to be made when a vision system starts to operate.
These assumptions need to be clearly stated, and either followed by the operators, or
detected by the system and acted upon accordingly. Second, the update of models and
parameters of vision processes is crucial for maintaining stable and beneficial results.
An update at a bad time can easily lead to a spiral of bad parameter changes, which
again can lead to even worse system updates and eventually complete system failure.

Inference of patterns of activities or behavior is performed with an increasing
number of probabilistic models. These models are commonly re-structured and spec-
ified to better suit the end application of the vision system. The model is usually
selected based on previous experiences and recommendations by others. Much liter-
ature does cover comparisons between the popular choices, but still the preference of
a model seems to remain in the hands of the practitioner. No universally superior
models exist currently that would outperform others in all applications, and it is
very unlikely to happen anytime soon. It is very common to tailor a widely accepted
model that has been researched in similar problems to a specific purpose. Perhaps
the most improvements in near future will be done due to increased storage space and
computing power, as these enable the use of larger feature-spaces and databases of
gathered data. Having access to much larger data pools, and having resources to pro-
cess them simultaneously are most probably the key factors in future improvements
of inference.

10.2 Emerging Applications - Opportunities

Vision networks have been used in a variety of applications. The first applications
were introduced mainly for military surveillance from which surveillance-related ap-
plications have spread to wide public spaces such as airports and other public trans-
port areas. In these applications, common tasks have been the detection of irregular
situations, uncommon behaviors and suspicious properties that are left behind. Shops
as well have been covered with cameras for the purpose of monitoring the personnel
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and the clientele w.r.t. thefts and violence.

A lot of interest has emerged for using vision systems to provide not only security,
but also to offer user-support and promote well-being and social connectedness. In
this thesis studies were presented for four such application contexts. First, an appli-
cation for eliciting social connectedness through a dynamic silhouette representation
between remote sites was proposed in chapter 6. Second application presented in
chapter 7 expanded from one room to covering an entire home with continuous cap-
ture and inference of user activity, which was considered as an additional property
that could be shared over a remote visual link. Third, an application for shops was
presented in chapter 8 based on repetitive behavior analysis that would automati-
cally provide support for a shopper who cannot find the item(s) they are looking for.
The fourth application in chapter 9 concerned self-observation for office-workers who
might not be following ergonomic guidelines and thus most likely encountering issues
with injuries and difficulties in working efficiently.

Many more application opportunities for personal spaces have emerged. Remote
elderly care and monitoring is one such field that can have major impact on general
well-being and save much resources in health-care. Automotive industry has also
started to exploit cameras not only looking outwards of the car, such as in parking
and lane changing assistance, but also in observing what is happening inside the car.
For example, analysis of driver attention has been one of the new impressive safety
solutions. Additionally, many new personalized services for homes such as automatic
lighting controls are expected to benefit from the scene understanding only possible
by vision systems.

10.3 Fusion in Vision Networks

In a vision network, the key factor behind solid accuracy are mechanisms of sensor
fusion. These mechanisms can be designed in four steps. First, the fusion approach
defines the specific purpose of the fusion process. Second, the fusion architecture
defines the manner in which the multi-view data is gathered together. Third, the
fusion level defines the type of data that is gathered and combined. Fourth, the
fusion method defines how the gathered data is combined into a single estimate.

10.3.1 Benefit from Multi-View Fusion

Through the experiments in this thesis many options for fusion were studied, and
the benefits from fusion were highlighted in relation to the proposed applications.

The first benefit of multi-view fusion is in creating more complete observations
than is possible by a single camera. An example of this was given in chapter 6. The
3D shape and 3D location of a person in the room were estimated based on multiple
silhouettes from a calibrated vision network. The fragility of a calibration-based
fusion approach was demonstrated as a 13 cm deviation in calibration for a space
of size 200x200x200 cm resulted in a zero-volume shape. In general, fusion methods
for occupancy testing that exploited soft values and prior camera information could
overcome some of the errors in silhouette segmentation and calibration, but at the
same time falsely declaring some space occupied.
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The second benefit of fusion is in increasing visibility to a person. This benefit
could be understood as a specialization of the first benefit. An example of this was
given in chapter 6, in which some experiments were conducted for understanding
the effect of camera configuration to silhouette-based 3D shape estimation by fusion
of occupancy tests. For providing the tightest shape estimate and thus the best
visibility to a person, it was found that the camera configuration should surround
the person from all sides, have no opposite cameras, and have the cameras placed by
maximizing the vertical displacement between adjacent cameras.

The third major benefit of fusion is in increasing the range of making observa-
tions. In chapter 7, the recognition of six activities was performed across multiple
rooms of a house environment. Fusion methods that were based on selection of a
single view could already perform well. In the ideal selection case of always find-
ing the most appropriate view to use, classification accuracies up to 93 and 99%
were achieved in the studied cases. Fusion methods that were based on combination
of views outperformed the practical selection-based fusion methods commonly by a
margin of 10%.

In chapter 8, the detection of repetitive behavior was conducted in a small shop
covered by three partially overlapping camera views. Decision-level fusion offered
consistently better accuracy than feature-level, when dealing with sensors of low
individual classification accuracy (≤ 50%). In chapter 9, a vision network was cap-
turing a worker in an office with four camera views partially overlapping. Based on
multi-camera observations this system tried to infer the general mobility class out
of the three options: regular, mobile, and in-transit. A hierarchical fusion architec-
ture was studied and was found to provide beneficial conditions for inference, when
encountering feature-data that shares similar distributions only between a group of
sensors.

The fourth and most commonly discussed benefit of fusion is increasing the cer-
tainty of a particular property. In chapter 6 the certainty of an occupied part of
3D space was jointly decided upon by multiple cameras. The more cameras were
added, the tighter the shape estimate became, as the certainty in the occupancy of
a part of space disappeared. In chapter 8, the detection of repetition was improved
even with poorly performing cameras by combining their decisions through a view
selection based fusion method, achieving an accuracy above 51% for a four-class clas-
sification. Based on the experiments conducted in chapter 7 it appeared that fusion
at the level of features was more attractive within well controlled conditions. In
contrast, decision-level fusion appeared to offer better accuracy, if the people shared
fewer characteristics and cameras were placed at various distances. It should be
noted, that the margin between feature-level and decision-level fusion was only in
the magnitude of a few percent.

The fifth benefit of fusion is in increasing the visibility of a particular property. In
chapter 9 two different approaches to fusion methods across all the fusion levels were
studied. It was noticed that the decisions on general mobility class that are made by
the system, can be heavily influenced by the fusion method approach. For example, a
certain class can be preferred by the fusion method, if having any evidence supporting
the class among the multiple cameras. This sensitivity in fusion can be achieved
almost regardless of the fusion level and architecture. However, a hierarchical fusion
architecture might in some cases make it complicated to implement a locally sensitive
but globally robust-to-noise fusion.
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10.3.2 Applicability of Fusion Framework

The framework that was proposed in chapter 5 sets out to systemize the approach
for building vision networks that will greatly benefit from fusion. By including the
aspects of fusion already into the design process and not as an afterthought to superior
single camera processing, the vision system is able to exploit the full potential of
multi-view data fusion. The main points of the proposed Vision Fusion Framework
are:

1. showcases the common vision network architecture of three levels.

2. explains the major aspects of each vision module and how they affect fusion
opportunities.

3. highlights the important interface between vision and fusion enabled by data
alignment and association.

4. defines the fusion process as a four-step approach.

5. explains the major aspects of the fusion approach and how they affect fusion
opportunities.

6. showcases the entire framework in feedback-connection to the environment and
the user.

7. guides the design process with fusion rules that are connected to the specifics
tiers of fusion and vision network.

10.4 Conclusion

The research in this thesis has demonstrated and discussed only a very small part of
the ambient intelligence solutions, the benefits they hold, and the impacts they can
have in the future. It is most probable that as more and more applications reach
maturity and provide thus irreplaceable value to their user, the technology of vision
networks will be in high regard.

All the applications studied in this thesis have the noble goal of enabling services
to either protect or support the well-being of people. There has been an increasing
amount of discussion on the concerns about the privacy issues of vision networks
as more and more aspects of regular life are being monitored. For example, pub-
lic authorities like police are using video cameras paired with software capable of
reading the license plates of vehicles and querying information from both public and
private databases. Similarly, an increase in the amount of CCTV-cameras has been
noticeable within big cities in countries such as China and England.

Privacy concerns are one of the major challenges for the deployment of vision
networks in ambient intelligence applications. The cameras installed outdoors that
raise privacy concerns, are now been moved indoors and especially to places tradi-
tionally viewed as private spaces. Based on the discussions the author has had during
this research, there seems to be three factors that can help in this shift. First, the
vision systems should be transparent. That is, what is been processed, and what is
sent to which place, should be visible to the user. Second, the user should have full
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control over what is been sent and stored, and who can connect to his private net-
work. Third, the value of the service should outweigh the workload and other related
negative effects. If these aspects would be met, it is likely that ambient intelligence
solutions would have much more demand in the future.

A major new trend in imaging technologies is active sensing. Technologies such
as structured-light and time-of-flight are been developed to mature level with many
impressive applications, such as Microsoft Kinect, already catching the interest of
the public. These technologies are able to capture much more detailed aspects in
much more robust manner than has ever been possible with passive cameras. This
should lead to computation of more detailed features with more stable behavior over
time. With such a good basis of features, the accuracy of inference should similarly
rise and offer systems that can be deployed in much more error-sensitive scenarios
such as automatic alarming in elderly homecare.

In conclusion, the key mechanism in powerful vision networks is intelligent fusion
methodology for handling multi-view data. Only by a systematic approach to the
many aspects of fusion can practitioners directly share a common terminology and
collaborate more efficiently for further developing fusion related to sensing technolo-
gies. The proposed vision fusion framework provides an attempt to streamline the
design process and to find a set of common fusion rules within a common structure
for practitioners to discuss, refine and follow.
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[29] Kämpchen N, Dietmayer K: Fusion of Laserscanner and Video for Ad-
vanced Driver Assistance Systems. In Proceedings of 11th World Congress
on Intelligent Transportation Systems (ITS) 2004.

[30] Ghahroudi MR, Sabzevari R: Multisensor Data Fusion Strategies for Ad-
vanced Driver Assistance Systems. In Sensor and Data Fusion. Edited by
Milisavljevic N, InTech 2009.

[31] Svoboda T, Martinec D, Pajdla T: A Convenient Multi-Camera Self-
Calibration for Virtual Environments. PRESENCE: Teleoperators and
Virtual Environments 2005, 14(4):407–422.

[32] Durrant-Whyte HF: Sensor models and multisensor integration. Inter-
national Journal of Robotics Research 1988, 7(6):97–113.

[33] Brunelli R: Template Matching Techniques in Computer Vision: Theory and
Practice. Wiley Publishing 2009.

[34] Andriluka M, Roth S, Schiele B: People-tracking-by-detection and
people-detection-by-tracking. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2008.

[35] Dasarathy BV: Sensor fusion potential exploitation-innovative archi-
tectures and illustrative applications 1997, 85:24–38.

[36] Elmenreich W: Sensor Fusion in Time-Triggered Systems. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria 2002.



190 BIBLIOGRAPHY

[37] White FE: Data Fusion Lexicon, Joint Directors of Laboratories. Tech.
rep., Naval Ocean Systems Center 1987.

[38] Durrant-Whyte HF: Integration, Coordination and Control of Multi-Sensor
Robot Systems. Norwell, MA, USA: Kluwer Academic Publishers 1987.

[39] Wald L: A European proposal for terms of reference in data fusion
1998.

[40] Boström H, Andler SF, Brohede M, Johansson R, Karlsson A, van Laere J,
Niklasson L, Nilsson M, Persson A, Ziemke T: On the Definition of Infor-
mation Fusion as a Field of Research. Tech. Rep. HS- IKI -TR-07-006,
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Glossary

This glossary presents briefly the most important general and fusion specific terms
related to the research in this thesis, and concludes by listing the most often used
abbreviations.
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List of Terms

General Terms

Vision Network (VN) is a system that infers person’s appearance,
activity or behavior based on observations given by
multiple cameras.

Computer Vision (CV) consists of algorithms that extract information
on objects from images.

Feature Extraction is a process which computes measures from an object
usable for discrimination between the object-classes.

Pattern Recognition (PR) consists of algorithms that detect specific pat-
terns of, e.g., shape and trajectory.

Machine Learning (ML) is a process in which a system learns or is
trained for the common patterns of a phenomenon.

Intrinsic Calibration a process which detects the extent an image gets dis-
torted by a camera.

Extrinsic Calibration a process which discovers how cameras are situated
w.r.t. each other and the scene.

Data Alignment a process in which observation data is aligned both
temporally and spatially.

Data Association a process which finds correspondences for observa-
tions both within and between views.

Ambient Intelligence (AmI) is a vision for the use of small, integrated, and
hidden set of ubiquitous sensors within ordinary en-
vironments for supporting people in their daily lifes.
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Fusion-Specific Terms

Sensor Fusion a process of combining observations from multiple
sensors into a single estimate.

Catastrophic Fusion a situation in which the average accuracy of a multi-
sensor system is worse than that of a single sensor.

Fusion Approach defines the purpose of fusion either for consistency
or responsiveness.

Fusion Architecture defines the manner in which multi-camera observa-
tions are gathered.

Fusion Level defines the type of observations (image, feature, score
or decision) to be combined.

Fusion Method defines the algorithms that are used to combine the
observations.

Vision Fusion Framework (VFF) is a generic structure proposed in this thesis
that details and combines VN and sensor fusion for
guiding the design of vision systems by introducing
a set of design rules within a common structure.

Design Rule gives an instructional statement considering fusion
based on theoretical and/or experimental results.
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List of Abbreviations

ADL activities of daily-life
LAN local area network
ML machine learning
DT decision tree
NN artificial neural network
SVM support vector machines
PGM probabilistic graphical models
CRF conditional random field
CPU central processing unit
PTZ pan/tilt/zoom
RFID radio-frequency identification
ROI region-of-interest
VOI volume-of-interest
POI person-of-interest
FOV field-of-view
RES resolution in pixels
FPS frame-rate
VNA vision network architecture
IBVH image-based visual hull
AMR arithmetic mean rule
LRT likelihood ratio
LDA linear discriminant analysis
MMSE minimum-mean-square-error
WLS weighted Linear Sum
IP internet protocol
RTP real-time transport protocol
NTP network time protocol

FA fusion architecture
FCFA fully centralized FA
FDFA fully distributed FA
HFA hierarchical FA
EFS elucidative fusion systems
GT ground truth
FAR false acceptance rate
FRR false rejection rate
PFA principal feature analysis
AHM action history matrix
GMM gaussian mixture model
HOG histogram of gradients
BG image background
BG image foreground
MHI motion history image



Summary

Sensor Fusion in Smart Camera Networks
for Ambient Intelligence

Support and security to people and energy-efficiency of buildings are some of the
many benefits of smart environments of the future, which use embedded networks
of different sensors to understand what individuals are doing daily, and based on
the patterns found they adaptively provide personalized support to these activities
(Ambient Intelligence).

Many of the smart environments incorporate unobtrusive vision networks as one
of the sensing technologies. Wearable and planted sensors can provide more robust
performance, but they can heavily restrict the freedom and movements of a user.
Vision networks (VN) have multiple cameras providing their observations of a scene,
which can consist of vast areas or multiple rooms. Based on these observations VN
can infer the appearance, location, activity or behavior of a person.

In building technology that is capable of observing people, many particular chal-
lenges are faced. People are deformable and adaptive. This makes us difficult to
detect, follow and describe. The same person can wear different clothes, and the
dimensions of the body vary between individuals. The same activities can be per-
formed by different gestures and pace. All these differences are affected by context
such as the time of day.

The richness of data created by having the observations from many viewpoints,
does not guarantee improved accuracy for a VN. It is the intelligent data fusion mech-
anisms that make the difference by increasing the certainty in the decisions made,
and by making properties visible that otherwise would have not been noticed.

Having the technology to build vision networks capable of human behavior interpre-
tation the question becomes, how to systematically across various applications design
vision systems in a modular manner while integrating intelligent fusion approaches
to the system design? What are the common approaches and their consequences to
fusion potential and exploitation?
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This thesis aims to provide the necessary theory within systematical tools for
tackling the above problems in two parts. The first part (Chapters 1-4) provides
the necessary theoretical background on VNs and sensor fusion theory specific to
VNs. The second part (Chapters 5-10) presents the proposed vision fusion framework
with a set of design rules and covers a multitude of fusion experiments in different
application domains.

Many types of vision networks based on coverage, placement, calibration, and
collaboration (Chapter 2) have been successfully used with other complementary
sensing technologies in various traditional applications within surveillance and secu-
rity and in emerging applications for the more private spaces in homes and offices. In
order to provide a clean and intuitive division of the many aspects of sensor fusion,
three different aspects of fusion within VNs should be defined (Chapters 3-4). The
fusion architecture, the fusion level, and the fusion method are the building blocks
of a fusion approach. Based on the structured approach to VNs and fusion, a vision
fusion framework (VFF) is proposed (Chapter 5). The aim of the framework is to
provide a systematic way for designing vision networks with great emphasis on the
support, creation and exploitation of fusion potential.

Four different VN-applications are presented and experimented with (Chapters
6-9). By chapter 8, a functional and robust algorithm for automatic single-person
tracking was developed based on a hybrid approach of image segmentation and tem-
plate matching. A background subtraction based silhouette segmentation provides
accurately the areas of the new-to-the-scene objects within fairly static indoor set-
tings. Template matching based on HOG-SVM pedestrian detection is used to ini-
tialize the track of a person and to update changes to the track and size of the person;
all these verified by the silhouette candidates. Only extreme changes in illumination
or close-to-person-size moving objects, such as doors, can create problems for the
hybrid algorithm.

The best type of a feature in describing a property of a person should be invariant
to the scale and orientation of the person. The design of a scale-invariant feature can
be done by integrating a compensation mechanism for person distance, e.g., based
on the size of the silhouette. In contrast, designing a orientation-invariant feature
gets more difficult the more detail the feature is trying to represent. Sensor fusion
becomes critical in neglecting false observations of vision processing, while still giving
enough importance, e.g., for the hard-to-see movements of arms.

Before any other aspect of fusion is selected for a problem, the approach of fusion
has to be defined (Chapter 9). The goal of fusion can be considered two-fold. First,
fusion is to build certainty in the final estimate based on the observations from
multiple views. Second, sometimes it is even more important to not miss specific
types of actions, which might be only detected by a single camera. Depending on the
choice on the fusion approach, the architecture, the level, and the method of fusion
are defined.

Only if resources are severily limited, or compensation for camera noise or failure
can not be implemented, should one revert to another fusion architecture than the
fully centralized fusion architecture (FCFA) (Chapter 9). FCFA gathers all the sen-
sory data to a centralized unit. This offers maximum flexibility in exploiting any of
the fusion options, and the best conditions for dealing with noise.

No conclusive evidence was found in favor of a specific fusion-level across appli-
cations. However, in silhouette-based activity recognition (Chapter 7), fusion at the
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feature-level outperformed fusion at decision-level, when considering cameras with
similar relative locations/orientations and individuals with similar appearance/pace.
In contrast, with the recorded multi-view data that has more variability, the decision-
level fusion was better. Similarly, in tracking-based repetition detection (Chapter 8)
fusion at the decision-level performed better, with the more challenging recorded
dataset. In overall, when applying similar fusion methods, it would appear that
decision-level fusion offers better robustness. Additionally, by using multiple fusion-
levels by combining equally the results they provide (Chapters 6, 7 and 9), a more
stable accuracy is achievable.

Some tendencies were discovered of the most common fusion methods. Already by
adaptive view selection based on pre-defined criteria, can better accuracy be reached
than when relying on a single camera (Chapter 7). However this accuracy is heavily
influenced by the suitability of the criteria used to select the view. This makes view
selection slightly volatile.

A safer fusion method is that of sensor voting that uses, e.g., all the decisions
available through majority voting to come to a consensus (Chapters 6, 7 and 9).
Majority voting has been widely used, and it seems to be a safe option for achieving
good accuracy results, and therefore represents a good benchmark for other fusion
methods. However, it should be noted that when dealing with a group of views that
cannot individually provide reasonable accuracies, this common consensus approach
is not able to match the accuracy that can be provided by a simple sensor selection
(Chapter 8).

Among the methods studied in this thesis, the best accuracy a fusion method can
provide is given by relative influence, which determines the importance of cameras
w.r.t. each other (Chapter 6). The relative influence is implemented by assigning
a weight to each sensor. By computing these weights based on prior information,
e.g., on the camera layout w.r.t. the user, is better accuracy achieved. By adapting
the weights on-line, can further robustness to noise conditions be gained. However,
on-line adaption of weights is even more complicated to robustly implement than
that of view-selection criteria (Chapters 7 and 8). Therefore, it would be advised
to use stable prior information driven weights when applicable than those computed
only by adaptive online-techniques.

To conclude, the key mechanism in powerful vision networks is intelligent fu-
sion of the multi-view data. It is hoped that by a systematic approach to the four
main aspects of fusion, can practitioners directly share a common terminology and
collaborate more efficiently in developing fusion related to sensing technologies.
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