
Password Security - When Passwords are there for the World to see

Eleanore Young
Offense Department, scip AG

elyo@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Keywords: Bitcoin, Exchange, GitHub, Hashcat, Leak, OWASP, Password, Policy, Rapid,
Storage

1. Preface

This paper was written in 2017 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20170112 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2. Introduction

The year 2016 has seen many reveals of successful attacks
on user account databases; the most notable cases being the
attacks on Yahoo [1] and Dropbox [2]. Thanks to recent
advances not only in graphics processing hardware (GPUs),
but also in password cracking software, it has become
dangerously cheap to determine the actual passwords from
such password databases. We will explore the setup of the
appropriate hardware, common strategies used for cracking
passwords, and how to make it harder for attackers to
determine your passwords.

3. A Little Background

Due to the fact that the past 15 years or so have seen many
successful attacks on password databases, software
developers have learned not to store the user account
passwords in plain text, but to only store so called digests,
or hashes, of the passwords.

Hashes are the output of one-way algorithms, which means
that it is computationally very hard to determine the input
from the output. These methods allow developers to verify
the authenticity of a password without actually storing the
password itself. Commonly used hashing algorithms are:
MD5, SHA-1, SHA-256, SHA-512, NTLM, or
combinations thereof. The Wikipedia articles on
cryptographic hash functions [3] and key derivation
functions [4] offer a good overview over the subject, but I
particularly like the introductions by Zulfikar Ramzan [5]
and Srinivas Devadas [6].

All is not well though, as not all hashing algorithms were
designed for securely hashing passwords, and many have
vulnerabilities such as frequent collisions (when two
different input values have the same hash), or more
efficient ways to calculate the hashes, in other words,
shortcuts. Modern password cracking software use these
vulnerabilities to very rapidly determine the original

password from a hash without having to attempt a reversal
of the hashing algorithm.

Furthermore, if passwords are fed through hashing
algorithms as is, two persons who happen to use the same
password, will also have the same hash value. As a
countermeasure, developers have started adding random
user-specific values (the salt) to the password before
calculating the hash. The salt will then be stored alongside
the password hash in the user account database. As such,
even if two persons use the same password, their resulting
hash value will be different due to the added salt.

Modern GPU architectures are designed for large scale
parallelism. Currently, a decent consumer-grade graphics
card is capable of performing on the order of 1000
calculations simultaneously. For example, when using two
recent top-range consumer graphics cards to perform an
attack on NTLM hashes, this would result in approximately
27 Trillion hashing operations per second! In 2012, the
developer team MOSIX [7] first published GPU clustering
software which allows for practically unlimited scaling of
the underlying hardware with minimal effort. Thus, it has
become possible to reverse even password hashes that
employ a salt at within reasonable time frames, assuming
the hashing algorithms are amenable to parallelization [8].

Attackers commonly use a combination of multiple
password cracking programs, most of them freely available.
As of the writing of this article, free and open source
programs that are capable of using graphics cards are: John
the Ripper [9] and Hashcat [10]. Others are Ophcrack [11],
and Cain and Abel [12]. There exist more, but usually for
specific areas such as computer passwords or WiFi
passwords.

4. Strategies of Attackers

People who profit from cracking passwords have steadily
progressed towards increasingly professionalized work.
The strategies presented herein present only a small part of
the effort undertaken to determine user credentials, and are
by no means complete.

As far as hardware is concerned, attackers will adapt it to
their use case, ranging from anything between a mid-range
laptop to a 128 GPU cluster. Due to the fact that modern
GPUs are now reasonably cheap, even one person can

https://www.wired.com/2016/12/yahoo-hack-billion-users/
https://dropbox.thecthulhu.com/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking/bitcoin/v/bitcoin-cryptographic-hash-function
https://www.youtube-nocookie.com/watch?v=KqqOXndnvic
http://www.mosix.cs.huji.ac.il/txt_vcl.html
http://security.stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage#6415
http://www.openwall.com/john/
https://hashcat.net/hashcat/
http://ophcrack.sourceforge.net/
http://www.oxid.it/cain.html

easily come up with the money to build a powerful
cracking computer.

For the sake of brevity, we will focus on a powerful desktop
computer with a recent release of Hashcat. The program
Hashcat provides various attack methods and supports a
large number of hashing algorithms, always automatically
making use of the available CPUs and GPUs. I believe that
it manages to illustrate how effectively passwords can be
cracked nowadays.

For the examples in the following sections, we will try to
crack the passwords of six persons. Persons “user1” and
“user2” use two of the most common passwords, “user3”
and “user4” use two short randomly generated passwords,
and “user5” and “user6” use a very common easy-to-
remember format. The hashing algorithm used is SHA-1
without a salt.

1. user1 has the password hallo1 and the
corresponding hash of
d819b82566e9b601d87e168d0dffe31cee1a9229.

2. user2 has the password 1234567890 and the
corresponding hash of
01b307acba4f54f55aafc33bb06bbbf6ca803e9a.

3. user3 has the password Xkkxer and the
corresponding hash of
a357d8269ef8f96973a98c820b2fb47251f11696.

4. user4 has the password Lf!lyASz and the
corresponding hash of
338cb709d331e5bb6361300f59fcea03bec56111.

5. user5 has the password Martin90? and the
corresponding hash of
1c15c4f9a0da91443205f58f5731a3c850c34b6d.

6. user6 has the password Bergsteiger2016! and the
corresponding hash of
72bf66db2315e75dfb569ba3d3a09203e906c111.

Hashcat parses the above list from the text file hashes.txt
in the format username:hash-value.

5. Dictionary Attacks

Dictionary attacks rely on word lists and rule sets to derive
candidate passwords, and are usually the fastest to deliver
results. Based on our experience, dictionary attacks tend to
recover between 10% and 30% of the available passwords.
They work, because people prefer to use common words
with simple variations for passwords.

The attacker’s all-time favorite word list is based on the
public Rockyou [13] user account database leak from 2009,
because it contains a very large number of real, primarily
English-based passwords. However, we found that we get
better coverage when including German-language
dictionaries, or targeted word lists for dictionary attacks.

Dictionary rules are used to modify each word in the
dictionary to capture password variations such as hallo90!
or Hallo. The GitHub [14] source repository of Hashcat
already provides a good set of dictionary rules.

The following command manages to recover the passwords
of user1, user2, and user5 within the first couple of

minutes, but fails to recover any of the other user’s
passwords.

$ hashcat -a 0 -m 100 -w 3 —username -r
InsidePro-PasswordsPro.rule hashes.txt
wordlists-dir/

6. Mask Attacks

Despite all that has happened with regards to password
security over the past years, a large percentage of users still
use passwords that consist of a capitalized word, a few
digits and a special character, in that order. They are usually
between 8 and 10 characters long [15]. Coincidentally,
these passwords fulfill the minimum password
requirements commonly used in Windows domains.

User-chosen passwords will follow a pattern. In Hashcat,
these patterns can be expressed as so-called masks, for
example ?u?l?l?l?l?d?d?s. In a mask attack, Hashcat will
perform a brute force attack (i.e. try out every possible
value) based on the supplied masks, which is more efficient
than a blunt brute force attack alone.

The GitHub source repository of Hashcat already provides
good masks, but for non-English language or corporate
environments, it is often helpful to create masks from
statistical information about passwords or from a known
password policy, such as the default Windows domain
policy. The PACK [16] utilities were expressly developed
for this purpose and are of great help in these scenarios. In
certain cases it is helpful to evaluate existing sets of masks
against a password policy to further reduce the number of
brute force tries Hashcat has to make, so I created package
Policymatch [17] to help with that.

The following command additionally recovers the
password of user3 within a minute.

$ hashcat -a 3 -m 100 -w 3 —username
hashes.txt rockyou-1-60.hcmask

Recovering the password of user4 took a bit longer, about
72 hours:

$ hashcat -a 3 -m 100 -w 3 —username
hashes.txt 8char-1l-1u-1d-1s-compliant.hcmask

7. Hybrid Attacks

Hashcat allows us to combine the two previous attack
methods with the hybrid attack method. The following
command finally manages to recover the last password, that
of user6 in about 15 minutes. This specific attack works
well, because users often include a date or a year in the
password.

$ hashcat -a 6 -m 100 -w 3 —username
hashes.txt wordlists-dir/ “?d?d?d?d?s”

8. Closing the Blinds on Prying Eyes

As a form of proof of who you are, passwords belong to the
group of what you alone know. But because passwords are
so hard to remember, they do not actually serve as a secure
form of authentication. We see from the above examples
that even passwords that are commonly considered more
secure, can be recovered with little effort. A very scary
realization.

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://github.com/hashcat/hashcat
https://www.scip.ch/en/?labs.20100709
https://thesprawl.org/projects/pack/
https://github.com/youngec/policymatch

From the user perspective, the best approach to passwords
as a form of authentication is to use password managers,
such as KeePassX [18], LastPass [19], or 1Password [20].
The most important aspect of password managers is that
they allow users to generate very complex passwords that
never have to be remembered or entered by hand. In my
opinion, the talks by Pierre-Antoine Haidar-Bachminska
[21] and David Jaeger [22] offers a perfect introduction to
better password strategies for those inclined.

From the developer perspective, it is crucial that passwords
are stored and handled in a secure fashion using algorithms
specifically designed for authentication data. For the basics,
read the OWASP cheat sheets on password storage [23],
forgot password [24], authentication [25] and pinning [26].
If you’re interested in knowing more about the subject,
watch the talk by Per Thorsheim [27].

9. External Links

[1] https://www.wired.com/2016/12/yahoo-hack-billion-
users/
[2] https://dropbox.thecthulhu.com/
[3] https://en.wikipedia.org/wiki/Cryptographic_hash_funct
ion
[4] https://en.wikipedia.org/wiki/Key_derivation_function
[5] https://www.khanacademy.org/economics-finance-
domain/core-finance/money-and-banking/bitcoin/v/bitcoin-
cryptographic-hash-function
[6] https://www.youtube-nocookie.com/watch?
v=KqqOXndnvic
[7] http://www.mosix.cs.huji.ac.il/txt_vcl.html

[8] http://security.stackexchange.com/questions/4781/do-
any-security-experts-recommend-bcrypt-for-password-
storage#6415
[9] http://www.openwall.com/john/
[10] https://hashcat.net/hashcat/
[11] http://ophcrack.sourceforge.net/
[12] http://www.oxid.it/cain.html
[13] http://downloads.skullsecurity.org/passwords/rockyou.t
xt.bz2
[14] https://github.com/hashcat/hashcat
[15] https://www.scip.ch/en/?labs.20100709
[16] https://thesprawl.org/projects/pack/
[17] https://github.com/youngec/policymatch
[18] https://www.keepassx.org/
[19] https://www.lastpass.com/
[20] https://1password.com/
[21] https://www.youtube-nocookie.com/watch?
v=KabAryo6tIA
[22] https://www.youtube-nocookie.com/watch?
v=qdycF4j3Ux0
[23] https://www.owasp.org/index.php/Password_Storage_
Cheat_Sheet
[24] https://www.owasp.org/index.php/Forgot_Password_C
heat_Sheet
[25] https://www.owasp.org/index.php/Authentication_Che
at_Sheet
[26] https://www.owasp.org/index.php/Pinning_Cheat_She
et
[27] https://www.youtube-nocookie.com/watch?v=dc-
bF2CU0Xo

https://www.keepassx.org/
https://www.lastpass.com/
https://1password.com/
https://www.youtube-nocookie.com/watch?v=KabAryo6tIA
https://www.youtube-nocookie.com/watch?v=qdycF4j3Ux0
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.youtube-nocookie.com/watch?v=dc-bF2CU0Xo
https://www.wired.com/2016/12/yahoo-hack-billion-users/
https://dropbox.thecthulhu.com/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://www.khanacademy.org/economics-finance-domain/core-finance/money-and-banking/bitcoin/v/bitcoin-cryptographic-hash-function
https://www.youtube-nocookie.com/watch?v=KqqOXndnvic
http://www.mosix.cs.huji.ac.il/txt_vcl.html
http://security.stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage#6415
http://www.openwall.com/john/
https://hashcat.net/hashcat/
http://ophcrack.sourceforge.net/
http://www.oxid.it/cain.html
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://github.com/hashcat/hashcat
https://www.scip.ch/en/?labs.20100709
https://thesprawl.org/projects/pack/
https://github.com/youngec/policymatch
https://www.keepassx.org/
https://www.lastpass.com/
https://1password.com/
https://www.youtube-nocookie.com/watch?v=KabAryo6tIA
https://www.youtube-nocookie.com/watch?v=qdycF4j3Ux0
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.youtube-nocookie.com/watch?v=dc-bF2CU0Xo

