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One of the important features of routing protocol for low-power and lossy networks (RPLs) is objective function (OF). OF
influences an IoT network in terms of routing strategies and network topology. On the contrary, detecting a combination of
attacks against OFs is a cutting-edge technology that will become a necessity as next generation low-power wireless networks
continue to be exploited as they grow rapidly. However, current literature lacks study on vulnerability analysis of OFs particularly
in terms of combined attacks. Furthermore, machine learning is a promising solution for the global networks of IoT devices in
terms of analysing their ever-growing generated data and predicting cyberattacks against such devices.)erefore, in this paper, we
study the vulnerability analysis of two popular OFs of RPL to detect combined attacks against them using machine learning
algorithms through different simulated scenarios. For this, we created a novel IoT dataset based on power and network metrics,
which is deployed as part of an RPL IDS/IPS solution to enhance information security. Addressing the captured results, our
machine learning approach is successful in detecting combined attacks against two popular OFs of RPL based on the power and
network metrics in which MLP and RF algorithms are the most successful classifier deployment for single and ensemble models.

1. Introduction

)e Internet of )ings (IoT) can be described as the ever-
growing global network of smart devices with built-in
sensing features and communication interfaces such as local
area network (LAN) interfaces, sensors, and global posi-
tioning devices (GPS). It is expected that, by 2022, we will
have around 50 billion IoTdevices scattered across the globe,
a 140 percent increase compared to 2018. Since 1999, when
the IoTwas conceived, the concept of these smart devices has
evolved into a conceptual framework including augmented
physical objects, heterogeneous devices, and interconnec-
tion solutions to share information at scale, across the world
[1]. Routing protocol for low-power and lossy networks
(RPLs) is used for IPv6 over low-power wireless personal
area networks (6LoWPAN) and IoT networks. RPL link
layers operate efficiently using nodes that connect through
multihop paths to root devices; these devices are responsible

for collating and distributing data. A Destination Oriented
Directed Acyclic Graph (DODAG) is produced for each root
device that accounts for node attributes, link cost, and
objective function (OF). However, from a security point of
view, RPL is a vulnerable protocol given that it does not
integrate the security mechanisms needed to avoid intruders
from unauthorized access to the data traveling across an IoT
network. Due to this fact, RPL is exposed to several types of
attack [2], provided a concise table of RPL attacks for
consideration. RPL nodes utilise OF to identify node of next
hop based on power consumption and network metrics [3].
Minimum rank with hysteresis objective function (MRHOF)
and objective function zero (OF0) have been defined as two
main OFs of IoT devices and RPL protocol by the Internet
Engineering Task Force (IETF) work group. Detection and
quick response to attacks against MRHOF and OF0 is dif-
ficult, and the current research lacks study on vulnerability
analysis of OFs. Additionally, little investigation has been
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done on automating the detection and response process
particularly for the combined attacks against OFs on IoT
networks. However, it is possible that machine learning
(ML) and data mining can be used for anomaly-based in-
trusion detection with a focus on identifying attacks based
on power consumption and network metrics [4].

)ere are four research questions (RQs) that will be
addressed throughout this paper:

(i) RQ1: is there an available IoTdataset that is suitable
to meet the research scope in this paper, or is the
development of a novel dataset required?

(ii) RQ2: what is the impact of preprocessing (for ex-
ample, normalisation, feature selection, and sam-
pling) on classifier performance to detect combined
attacks against MRHOF and OF0?

(iii) RQ3: what is the most successful deployment of ML
algorithms to detect a combination of attacks
against MRHOF and OF0?

(iv) RQ4: areML algorithmsmore successful in detecting
combined attacks against MRHOF or OF0?

In this paper, we use ML to detect a combination of
attacks against MRHOF and OF0 based on power con-
sumption and network metric features. Additionally, to
conduct our experiments and due to the lack of suitable IoT
datasets, we developed a novel dataset which is focused on
IoTfeatures and attack parameters including packet delivery
ratio and power consumption of nodes in various combined
attack scenarios. Detecting a combination of attacks against
OFs is a leading-edge technology that will become a ne-
cessity as next generation low-power IoTnetworks continue
to be exploited everyday as they grow quickly. For this, we
considered combined attacks such as Rank and Version
Attack, Rank and Blackhole Attack, Decreased Path Metric
Attack, as well as Rank and Sybil Attack.

)e remainder of this paper is organised as follows. In
Section 2, we review the related work based on our research
questions and a critical understanding of available quality
sources followed by our research methodology in Section 3.
)is is trailed by simulated experiments in Section 4, results
and analysis in Section 5, discussions in Section 6, con-
clusion, limitations, and recommendations in Section 7, and
acknowledgements as well as references.

2. Literature Review

In this section, relevant academic papers are reviewed and
discussed in five groups. IoT methodologies, MRHOF and
OF0 attacks, IDS methodologies and feature selection,
datasets and ML classifiers, and preprocessor and balancing
techniques were identified as the five core topics. Due to
page limitation, we have picked two papers from each
category to discuss here. However, more related papers from
each group, along with gap analysis for our novel approach,
can be found in Table 1. Publications, arguments, and lit-
erature were selected based on practical and simulation
experiments, expert opinion, evaluation, and analysis and
contrasting views. Scholarly literature search engines,

libraries, and journals were used to identify strengths,
weaknesses, and gaps in research.

With regard to IoTmethodologies [5], deliver a survey of
IoT-IDS and discuss the use of ML, anomaly-based ap-
proaches, intrusion detection based on power consumption,
and analysis of objective function behaviour which are
relevant to our research in this paper. )e authors discuss
power consumption as a parameter that can be used to
analyse normal behaviour profile to detect malicious activity,
based on mesh-under and route-over schemes. Each node is
required to monitor power consumption at specified sam-
pling rates and report deviations from expected values.
Deviations from expected values are deemed malicious
activity, and as such the node is removed from the routing
table. )e paper expands on the concept of node behaviour
focused on power consumption and suggests that packet
overhead and memory consumption are adequate metrics
that can be used for IoT-IDS. Although the paper provided a
broad overview on IoT-IDS, technical depth is limited.
Additionally, it is difficult to understand a detailed approach
for IoT-IDS using ML from the research alone. Moreover,
Rehman et al. [3] discuss Rank Attack as an objective
function (RAOF) vulnerability aimed at the RPL protocol. In
order for RAOF to be successful, an attacking node corrupts
routing metrics so that neighbour nodes’ OF favour the
attacker as a preferred parent node. )e results of their
simulation show the impact of the attack when considering a
well-positioned attacking node within the RPL network. )e
paper is interesting since it identified a relationship between
OF, power consumption, hop count, and routing metrics
when considering RAOF. However, it does not provide
counterarguments to their approach. For example, a dis-
cussion on the relationship between power consumption
and hop counts when considering an attack on routing
metrics could have been explained in further detail. )e
paper provided a detailed analysis for OF vulnerabilities
across RPL networks and the introduction of an attack that
had not been identified in other research studies.

With regard to MRHOF and OF, Airehrour et al. [6]
present a trust aware RPL model to detect selective for-
warding and blackhole attacks in IoT networks. )e trust
aware model is compared to MRHOF and OF0 to under-
stand if their proposed solution is successful. Addressing
their results, selective forwarding attacks against the trust
aware model were able to be gradually and significantly
reduced. )is includes the isolation of malicious nodes.
However, MRHOF andOF0 were not able to detect or isolate
Selective Forwarding attacks. Additionally, while the trust
aware protocol was able to detect and isolate blackhole
attacks through analysis of sent packet sequence and re-
ceived sequence ID, MRHOF and OF0 were not able to do
so. )ey also did not review or discuss in detail the tech-
niques used by MRHOF and OF0 to detect and isolate
malicious nodes. )e lack of research in this area is sig-
nificant to our work in this paper. Moreover, Airehrour et al.
[7] discuss Secure Trust Protocol (SecTrust-RPL) designed to
detect and isolate Rank and Sybil Attacks through node trust
relationships. Performance of SecTrust-RPL is compared to
standard RPL protocol integrating with MRHOF and OF0.
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MRHOF is identified as a superior RPL protocol over OF0
based on performance metrics when considering network
flow and resource. When considering Rank and Sybil Attack
alone, MRHOF demonstrates higher vulnerability than
SecTrust-RPL. Although SecTrust-RPL has been identified as
being a more secure protocol over MRHOF and OF0, there
was no discussion around IDS that can be used with OF and
RPL protocol. )is is relevant to our research scope in this
paper, as RPL and OF may not be required to detect and
isolate attacks if ML can be used with IDS. Experiments for
MRHOF and OF0 utilising a suitable IDS compared to
SecTrust-RPL would have provided a fair evaluation when
considering IoT security.

With regard to IDS methodologies and feature selec-
tion, Sheikhan and Bostani [9] discuss a security mecha-
nism to detect attacks against IoT networks based on a
distributed architecture. )eir proposed method is focused
on using ML to identify sinkhole and selective forwarding
attacks that deviate from normal and abnormal behaviours.
Addressing their results, the anomaly detection success-
fully identifies 80.95% of sinkhole and selective forwarding
attacks with a false alarm rate of 5.92%. )e misuse-based
detection was able to identify 97.88% of sinkhole and se-
lective forwarding attacks with a false alarm rate of 1.96%.
Although misuse-based detection was able to identify a
higher rate of sinkhole and selective forwarding attacks

Table 1: Summary of our gap analysis.

Author Gap analysis for novel approach
IoT methodologies

Zarpelão et al. [5] )e paper identified a gap usingML and IDS based on power consumption. Power consumption metrics will be in
the scope of our work.

Rehman et al. [3] )e paper identified a gap using ML and IDS based on power consumption and hop count for RAOF. Power
consumption and hop count will be in the scope of our work.

Le et al. [4]
)e combination of attacks has not been considered. Power consumption and dropped packet features could be

used as a novel approach to anomaly-based detection. A combination of IoT attacks along with power
consumption and dropped packet will be in the scope of our work.

MRHOF and OF0 attacks

Airehrour et al. [6] Research failed to detect individual attacks against OF0 andMRHOF.MRHOF and OF0 will be in the scope of our
work for each IoT combination attack.

Airehrour et al. [7]
)e paper identified a gap for detecting/isolating a combination of Rank and Sybil Attacks within MRHOF and
OF0. A combination of Rank and Sybil Attack along with MRHOF and OF0 will be in the scope of our work for

each IoT combination attack.

Mehta and Parma [8] )e paper identified a gap that possible OF attacks should be detectable. A combination of IoTattacks along with
MRHOF and OF0 will be in the scope of our work for each IoT combination attack.

IDS methodologies and feature selection
Sheikhan and Bostani
[9]

Research failed to detect unknown attacks using selected features for misuse-based detection. Power consumption
and dropped packet metrics will be in the scope of our work.

Mayzaud et al. [10, 11] Despite authors claiming their research as a feasible solution for anomaly detection for IoT, there is no evidence of
detection for a wide range of attacks beyond DAG. A combination of IoTattacks will be in the scope of our work.

Lee et al. [12]
OF and MRHOF are not discussed within discussion of detecting malicious activity based on power consumption
and network flow. MRHOF and OF0 for each IoTcombination attack along with power consumption, hop count,

and dropped packet metrics will be in the scope of our work.

Sousa et al. [13] )e paper discussed OF-FL, CAOF, and other relevant OF routing metrics and then excluded them during
simulation. MRHOF and OF0 will be in the scope of our work for each IoT combination attack.

Napiah et al. [14] )e paper discussed reducing features from 77 to 5 removing power consumption to ensure ML algorithms were
efficient. Power consumption metrics along with feature reduction strategy will be in the scope of our work.

Datasets and ML classifiers

Haq [15] )e paper reviews 49 related studies and highlights considerations to be made when developing a ML-IDS. ML
approach, classifier methods, suitable algorithms, datasets, and features selection are in the scope of our work.

Nannan et al. [16] Research identified a high false alarm rate for anomaly detection. ML approach, classifier methods, suitable
algorithms, datasets, and features selection are in the scope of our work.

Buczak and Guven
[17]

KDD 1999 is limited by attacks that have occurred since the dataset was produced. )is includes IoT attacks. )e
identification or development of a novel dataset focused on IoT features and attacks is in the scope of our work.

Alam et al. [18]
)e paper identified little research into the use of conventional ML algorithms with IoTdatasets.)e identification
or development of a novel dataset focused on IoT features and attacks along with the ML approach, classifier

methods, suitable algorithms, datasets, and features selection are in the scope of our work.
Preprocessor and balancing techniques

Yin and Gai [19]
)e paper reviews 12 datasets and highlights considerations to be made when developing an imbalanced dataset.
Preprocessor techniques, feature extension, sampling, as well as train, test, and validate datasets are in the scope of

our work.
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with a low false alarm rate, this method is only able to detect
known attacks. Although the article highlights the signif-
icance of selecting noteworthy behaviour features includ-
ing packet drop rate, packet receive rate, maximum hop
count, and average latency, further analysis will be required
to select features relevant to OF attacks. Napiah et al. [14]
discuss compression header analysis intrusion detection
system (CHA-IDS) coalesced with ML to detect 6LoWPAN
and RPL combination attacks: Hello Flood, Wormhole, and
Sinkhole. CHA-IDS is focused on identifying anomaly- and
signature-based features for 6LoWPAN intrusion detection
through raw data collection and analysis by means of six
ML algorithms (MLP, SVM, J48, Naı̈ve Bayes, Logistic, and
Random Forest). )ey provide quantitative data suggesting
CHA-IDS performs better than other 6LoWPAN IDS
models for combined attack detection. CHA-IDS applies
compression header data for 6LoWPAN as a detection
feature in contrast to SVELTE and PONGLE that utilise
rank and received signal strength indicators. Destination
port, context identifier, destination context identifier, next
header, and pattern identified abnormal routing activities
were used with ML algorithms to successfully detect at-
tacks. Addressing their results, J48 was the most successful
ML algorithm across a combined dataset, while Random
Forest ranked second. )e strengths of the paper include
research on 6LoWPAN and RPL vulnerabilities and flaws
in current IDS methods.

With regard to datasets and ML classifiers, Buczak and
Guven [17] discuss a range of ML and data mining algo-
rithms and classification techniques based on public datasets
for intrusion detection. An overview of publicly available
datasets is provided comprising: DARPA 1998/1999/2000,
KDD 1999, NetFlow, tcpdump, and DNS and SSH datasets.
It is highlighted that, during a research phase, it will be
important to ensure ML methods are trained using the same
dataset to ensure comparison with other research studies is
reliable. However, despite KDD 1999 being the best available
labelled dataset, it is limited by attacks that have occurred
since the dataset was produced. )is may be an issue when
considering a reference dataset for use with MRHOF, OF,
RPL, and IoT. Moreover, Alam et al. [18] present a paper on
eight data mining algorithms: ANNs, deep learning ANNs
(DLANNs), C4.5, C5.0, SVM, näıve Bayes (NB), K-nearest
neighbours, and linear discriminant analysis (LDA) for use
with IoT.)eir research aim is to understand if conventional
data mining algorithms work for IoTdatasets and if not, new
algorithms are required. For their research, three sensor
datasets from University of California Irvine (UCI) data
repository were provided. )e results conclude DLANN,
ANN, C4.5, and C5.0 performed better than LDA, NB, NN,
and SVM when considering accuracy and elapsed time for
IoT datasets. C4.5 and C5.0 were identified to provide high
accuracy and processing speed whilst remaining memory
efficient. DLANNs and ANNs memory efficiency were poor
and computationally expensive although identified as having
the highest rates of accuracy. )e paper discusses an area of
research that was difficult to identify during literature review
given that most research into ML and IoTutilise DARPA or
KDD datasets. Although the paper includes novel research

into an area not commonly explored, the paper would have
benefited from a detailed discussion around the three
datasets provided by UCI.

With regard to preprocessor and balancing techniques,
Yin and Gai [19] discuss the challenges of data mining and
ML relating to new and enormous data types introduced to
solve complex problems. )e paper discusses classification
methods, preprocessing, feature selection, and data sam-
pling. )e publication explains that there are many classi-
fication algorithms available that are mostly based on
balanced high-quality datasets. Preprocessing is explained as
a commonmethod used to improve the accuracy of a dataset
by reducing the number of features selected and by sampling
well. )eir experimental activity is designed to understand
how to achieve and improve preprocessing techniques to
deliver high-quality datasets. C4.5 classifier was the only
algorithm used during experimentation to eliminate con-
flicting results across a range of 12 datasets. )e results
conclude that the accuracy of a classifier is more reliable
when feature selection is conducted prior to sampling data.
In the event that data are largely imbalanced, experimental
results conclude that it is better to undersample data rather
than oversample when considering minority class.)e paper
could have benefited with the inclusion of other prepro-
cessor stages into experimental activity to improve the ac-
curacy of a dataset further.

Critical analysis of the current literature identified the
following key areas of interest to address in this paper: power
consumption and network-related metrics, combination of
IoTattacks, MRHOF and OF0 vulnerability analysis, feature
selection, and the development of a novel dataset based on
IoT attacks. For instance, unlike [5, 14], our work in this
paper includes the combination of MRHOF and OF0 attacks
considering power consumption and network-related
metrics as part of a ML-IDS. Furthermore, unlike [17, 19], a
novel IoT dataset has been developed focusing on MRHOF
and OF0 attacks including preprocessing techniques, feature
reduction, sampling, and normalisation. Additionally, as far
as we are aware, no one else has successfully employed time
series ML classifiers alongside a novel IoT dataset, whilst
detecting a combination of attacks against multiple objective
function (e.g., OF0 and MRHOF) based on network and
power consumption metrics. Table 1 provides a summary of
our gap analysis based on the most relevant reviewed quality
papers.

3. Research Methodology

)e aim of this paper is to use ML to detect a combination of
attacks against OF0 andMRHOF, as two popular OFs for the
RPL protocol, based on power consumption and network
metrics using a novel dataset. )ese findings were based on
previous research in the field to produce a novel research.
)erefore, the considerations include the following:

(i) Identification and development of a novel dataset
focused on IoT features and attacks

(ii) Identifying the most successful deployment of ML
algorithms and classifiers
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(iii) )e impact of preprocessing, normalisation, feature
selection, and sampling on performance of ML
algorithms and classifiers

(iv) Employing and assessing the success rate of
detecting a combination of attacks against OF0 and
MRHOF

In this paper, eight experiments have been developed
and presented based on the remarks identified during gap
analysis presented in Table 1. Further detail will be provided
during the simulated experiments. Our research method-
ology follows CRISP-DM [20] that provides a structured
approach for ML-based projects. We employed the six
phases of CRISP-DM as follows:

(i) Business Understanding (literature review, devel-
opment of research questions, project methodology,
gap analysis, and research aims)

(ii) Data Understanding (exploring datasets)
(iii) Data Preparation (data preprocessing)
(iv) Modelling (ML algorithms and classifiers)
(v) Evaluation (performance evaluation)
(vi) Deployment (this phase is out of the scope of this

paper and will be discussed during future
recommendations)

4. Simulated Experiments

)is section is designed to outline simulated experiments
conducted following the CRISP-DM process based on our
research methodology. It includes data exploration, pre-
processing, ML classifiers, classifier ensemble, and feature
selection.)e experiments will be run a number of times in a
consistent manner to ensure the integrity of results. )ey are
designed as follows:

(i) Experiment 1—preprocessed dataset: considering
all attributes and metrics

(ii) Experiment 2—normalisation: considering all at-
tributes and metrics

(iii) Experiment 3—normalisation: considering net-
work attributes and metrics

(iv) Experiment 4—normalisation: considering power
attributes and metrics

(v) Experiment 5—considering feature selection
(vi) Experiment 6—considering classifier ensemble
(vii) Experiment 7—considering detecting attacks

against MRHOF and OF0
(viii) Experiment 8—considering detecting attacks

against MRHOF and OF0 with balanced class

4.1. Exploring Datasets. A range of approaches were con-
sidered during dataset exploration including publicly
available datasets, privately owned datasets, and imple-
mentation of an IoT lab to capture relevant data and IoT
simulation.

Publicly available datasets including DARPA 1998/1999/
2000 and KDD 1999 were considered since they are used in
71% of ML research experiments [17]. Despite these datasets
being available and well labelled, they do not have examples
of attacks that have occurred since the datasets were pro-
duced. )is is presenting an issue when considering attacks
against OF0, MRHOF, RPL, and IoT. Leading research
professionals, universities and corporate organisations were
approached and asked to provide raw datasets for research
purposes. For security, privacy, and the protection of in-
tellectual property, each of these organisations were un-
willing to share their privately owned datasets. )e
implementation of an IoTsensor lab was considered but was
unfeasible due to the limited budget and geographic location
of available resource.

)e identification and development of a novel dataset
focused on IoTfeatures and attacks was therefore conducted
using simulation. Alam et al. [18] acknowledge this approach
as difficult and time-consuming requiring significant work
to collect, label, and preprocess an IoT dataset to ensure
accuracy of results. A simulation dataset was produced to
meet project scope using Contiki and Cooja.)e raw dataset
was provided as a project resource to understand, analyse,
and evaluate prior to data preprocessing and modelling ML
algorithms to detect attacks against OF0 and MRHOF.

)e dataset contained 24 attributes based on network
and power metrics. )ey are all presented and detailed in
Table 2. )e dataset also includes 418 instances. Attribute
and incident metrics were captured in a Contiki and Cooja
simulation environment from various sensors during nor-
mal activity and in every 30 seconds whilst under attack. )e
simulation was configured with eleven network nodes and
one malicious node. )e malicious node can be seen in
Figure 1 labelled as number twelve.

Benign activity and four combined malicious attacks
were monitored during the simulation scenarios. )e
malicious attacks include Rank and Version, Rank and
Blackhole, Rank and Sybil, and Decreased Path Metric
against OF0 and MRHOF. Malicious and benign activities
can be identified as attribute 23 in our dataset and is the
selected class for our experiments. )e class is imbalanced.
)is will be rectified during the data preprocessing phase.

4.2. Data Preprocessing. Data preprocessing phase is
designed to prepare the raw dataset for our eight experi-
ments. Preprocessing and data reduction were essential
phases of the project. )erefore, sufficient time was spent
ensuring a suitably labelled dataset was created to provide
high-quality results for analysis. Data preprocessing is aimed
at reducing the complexity of a dataset, so ML models can
process data more accurately and faster than a raw dataset.
When implementing a data mining process, which is CRISP-
DM in this paper, preprocessing often requires more effort
and time than the entire data analysis process in excess of
50% total effort [21]. )e dataset in Table 3 shows a rep-
resentative example of some of the complex attributes and
instances that we captured over the simulation scenarios in
this paper. For the data preprocessing phase of this research,
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we have picked data cleansing, transformation and feature
reduction, normalisation and data analysis, sampling, as well
as training, testing, and cross-validation stages. )ey will be
applied on our raw dataset as follows.

4.2.1. Data Cleaning, Transformation, and Feature
Reduction. )e raw dataset seen in Table 3 was reviewed and
issues were identified such as missing, incomplete, and

inconsistent values. Additionally, the irrelevant data and
errors were identified. To reduce the complexity of the
10,032 entries within the raw dataset, data cleaning and
transformation was conducted to represent all data in a
standard numeric form. Table 4 describes the steps taken for
each feature.

Features that were of no benefit to theMLmodel, nor did
they contain relevant data, were removed from the dataset.
Similarly, instances were reviewed and the entries con-
taining no predictive power were removed reducing total
instances from 418 to 338. Entries that contained null values
or errors were replaced with themean value for that entry. At
this stage, the initial preprocessed dataset was completed and
was used later in the project postnormalisation and sam-
pling. It was important to use this dataset for initial as-
sessment and comparison against the final preprocessed
dataset to understand the effect that normalisation has on
overall performance.

4.2.2. Normalisation and Data Analysis. Normalisation is a
scaling technique that is used to provide a new range of data
from an existing range. Min-Max normalisation can be used
to fit data from one range into a predefined boundary in
another. Due to the dataset containing complex numbers,
statistical analysis was conducting. Additionally, standard
deviation was used to categorise data in a nominal format to
achieve the aim of predefined boundaries [22]. )e average
value of each attribute was taken, and the standard deviation
was calculated. A boundary range between 1 and 14 was
determined based on the diagram presented in Figure 2. For
example, numbers 7 and 8 represent the most normal be-
haviour, or behaviour closest to mean, and numbers 1 and 14
represent the most abnormal behaviour or behaviour fur-
thest from mean (Figure 2). Despite feature reduction
condensing entries to 7,098, an automated system was de-
veloped to produce a new range of data from the existing
range based on standard deviation and boundary selection to
ensure data normalisation was accurate and timely when
dealing with large datasets.

)e dataset in Table 5 shows a representative example of
the attributes and instances that have undergone data
cleansing, transformation, feature reduction, and normal-
isation phases of data preprocessing stage. As can be seen, all
of the values are numeric and fall between the boundary
range of 1–14. )e dataset is now in a format that is suitable
to be loaded intoWEKA [23] and converted to .arrf file prior
to sampling and creating training, testing, and cross-vali-
dation datasets. WEKA is a popular and powerful tool for
data mining and machine learning.

4.2.3. Sampling. Prior to conducting sampling for the final
preprocessed dataset, some housekeeping was performed
within WEKA. Package Manager was used to load numeric
to nominal format, randomization, and SMOTE filters. )e
.csv dataset was loaded intoWEKA and converted to .arrf file
and the numeric to nominal filter applied to ensure all
entries were stored in nominal format. A sampling strategy
was considered. It was identified that there was a class

Table 2: Explanation of dataset features.

Feature Remarks
Node Node ID
Received Packets successfully received
Dups Duplicate packets received
Lost Estimated lost packets
Hops Average number of hops
RtMetric Average routing metric
ETX Expected transmission count
Churn Next hop change count
Beacon interval Broadcast by node to sync the RPL network
Reboots Total number of reboots
CPU power Average CPU power consumption
LPM power Average low-power mode consumption
Listen power Average listen power
Transmit power Average transmission power
Power Average power consumption
On-time Power measure time
Listen duty cycle Percentage time listening signal is active

Transmit duty cycle Percentage time transmission signal is
active

Avg interpacket time Average delay between packets
Min interpacket time Minimum delay for the packet to arrive
Max interpacket
time Maximum delay for the packet to arrive

Simulation time Average simulation time
Malicious/benign Benign activity or type of attack
Objective function MRHOF or OF0

Figure 1: Simulation environment.
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imbalance for malicious and benign class (64, 140, 65, 33,
and 36 malicious/benign events distributed across the
dataset) (Figure 3). Guo et al. [24] acknowledge that ML
algorithms are typically sensitive to detecting majority class
and not minority. )erefore, a balanced dataset was used.

Class imbalance can be rectified by oversampling the mi-
nority class or by undersampling the majority class
depending on which event is to be identified. Oversampling
can reduce performance for large datasets and introduces the
possibility of overfitting if data are not randomised.
Undersampling introduces the possibility of removing im-
portant data when a minority class is particularly low, re-
ducing the amount of data available for training, testing, and
cross-validation. In this paper, both over- and under-
sampling techniques will be evaluated to ensure benign
activity, and IoT attacks will have the best opportunity of
being detected. We used SMOTE filter to oversample events
1, 3, 4, and 5 (Rank and Version, Rank and Blackhole,
Decreased PathMetric, and Rank and Sybil Attacks), so each
event had approximately 135 instances (Figure 4). Each time
SMOTE filter sampled, it placed new instances at the bottom
of the dataset introducing a possible overfitting.)erefore, at
the end of the filtering process, data were randomised with a
separate filter. Oversampling with SMOTE increased total
instances from 338 to 674. We also used spread subsample
filter to undersample events 1, 2, 3, and 5 (Rank and Version,
benign Events, Rank and Blackhole, and Rank and Sybil
Attacks) so that each event had 33 instances (Figure 5). To
adjust filter settings, random seed was set to 1 to ensure that
each sample was randomised. Undersampling decreased
total instances from 338 to 165.

Table 4: Data preprocessing steps.

Feature Remarks
Node Rounded to 0 decimal places
Received No change
Dups Feature removed
Lost No change
Hops Rounded to 0 decimal places
RtMetric Rounded to 0 decimal places
ETX Rounded to 0 decimal places
Churn No change
Beacon interval No change
Reboots Feature removed
CPU power Converted from W to fW (1× 10− 15)
LPM power Converted from W to fW (1× 10− 15)
Listen power Converted from W to fW (1× 10− 15)
Transmit power Converted from W to fW (1× 10− 15)
Power Converted from W to fW (1× 10− 15)
On-time No change
Listen duty cycle No change
Transmit duty cycle No change
Avg interpacket time No change
Min interpacket time No change
Max interpacket time No change
Simulation time Feature removed

Malicious/benign

All benign and malicious activities were grouped and values converted to numeric
1�Rank and Version Attack

2�Benign Activity
3�Rank and Blackhole Attack

4�Decreased Path Metric Attack
5�Rank and Sybil Attack

Objective function All values were converted to numeric
1�MRHOF, 2�OF0

99.7–100%

95%
68%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

μ – 3σ μ – 2σ μ – σ μ + σ μ + 2σ μ + 3σμ

Figure 2: Normalisation boundary range based on standard
deviation.
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4.2.4. Training, Testing, and Cross-Validation. To produce a
classifier, data are processed through a ML algorithm. Once
a classifier is produced, data are processed through the
classifier generating results for evaluation. It is important
that data processed through the ML algorithm and classifier
are not from the same dataset. )is project is resourced with
one simulation dataset; therefore, the dataset must be split
into training, testing, and cross-validation sets. Training data
contain 70% of total instances with the remaining 30% split
equally between testing and cross-validation sets. WEKA
does not have direct functionality to do this, so the resample
filter was exploited to achieve the aim for both SMOTE and
spread subsample datasets.

4.3. Machine Learning Algorithms and Classifiers. WEKA
was used to train, test, and cross-validate our selected five
classifiers: Näıve Bayes (NB), support vector machines
(SVMs), multilayer perceptron (MLP), Random Forest (RF),
and ZeroR classifiers. ZeroR was used to determine a per-
formance baseline.

NB was the first model to be built in WEKA and was
completed using default settings to take the product of
probabilities providing a forecast ratio to identify likely
outcomes. NB’s default options were not altered since the
dataset was in nominal format. )erefore, “useKernelEsti-
mator” and “useSupervisedDiscretization” were not re-
quired to be changed.

When developing SVM parameters, it is important to
understand that the model is designed to separate classifiers
using a boundary. When using WEKA’s LibSVM classifier,
setting a suitable boundary allowed the generalisation of a
training dataset to be more accurate. )is was achieved by
optimising parameters setting cost to “C” and kernel type to
“gamma,” relating to X and Y axis, respectively.

Default MLP settings were applied during the initial
classifier model and subsequently tuned to enhance results.
A critical parameter that was evaluated was hidden layers.
Hidden layer parameter within WEKA can be used to train
data on attributes, classes, or combinations of attributes and
classes. )is parameter can also be adjusted to determine the
number of layers within the MLP model. )e MLP model
used for experimentation consisted of three layers trained on
both attributes and classifiers. Increasing training time from
500 to 2000 epochs improved results allowing back-
propagation and a multilayer approach more time to train
each MLP layer.

When developing the RF algorithm, consideration was
made to the depth of the tree and number of features to be
randomly selected. )e default setting was applied, and the
depth of tree set and number of features were set to 0
(unlimited depth). When processing large datasets, these
values can be set to reduce the depth of the tree and number
of features to enhance the performance of the classifier. Since
the dataset is relatively small, the RF classifier was able to
process data with unlimited depth and features providing
best results overall.

4.4.ClassifierEnsemble. Classifier ensemble techniques were
used to gain highly accurate ML classifications through the
combination of multiple ML algorithms. )e parameters of
AdaBoost, Bagging, and Stacking were researched, and
experiments were conducted with the ML algorithms but
were unable to improve results beyond single classifiers.
Voting was used successfully. Additionally, classifier and
combination rule parameters were amended. However,
optimum results were obtained setting classifier to “MPL
and RF” with combination rule set to “Average of Proba-
bilities.” For all classifier models, excluding NB since the
option is not available, seed was set to zero ensuring random
number generation was not conducted, so comparison of
results would be consistent.

64

140

65

33 36

Rank and
Version Attacks

Benign Events Rank and
Blackhole

Attacks

Decreased Path
Metric Attacks

Rank and Sybil
Attacks

Class imbalance

Figure 3: Class imbalance malicious/benign class.
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140
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132

144

Rank and
Version Attacks

Benign Events Rank and
Blackhole
Attacks

Decreased Path
Metric Attacks

Rank and Sybil
Attacks

SMOTE (oversampling)

Figure 4: SMOTE oversample malicious/benign class.

33 33 33 33 33

Rank and
Version
Attacks

Benign
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Rank and
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Decreased 
Path Metric

Attacks

Rank and
Sybil

Attacks
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Figure 5: Spread subsample (undersample) malicious/benign class.
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4.5. Feature Selection. For the purpose of practical investi-
gation, feature selection was split into the following areas: all
dataset metrics, network metrics, and powermetrics. Each of
these areas were evaluated during Experiments 2–4 to un-
derstand which features provided greatest detection. Feature
selection was developed further during Experiment 5 re-
moving attacks that were not detectable based on power
consumption metrics.

)is section outlined the implementation of the CRISP-
DM process based on the steps described during research
methodology. )e application of data exploration, pre-
processing, ML classifiers, classifier ensemble, and feature
selection has been described in detail, and the results will be
presented in the next section.

5. Results and Analysis

)ere were eight simulated experiments conducted to capture
results for discussion. )e experiments were designed to
understand how ML can be used to detect a combination of
attacks against OF0 and MRHOF based on power con-
sumption and network metrics. )e experiments were also
designed to understand the impact normalisation, sampling,
feature selection, and classifier ensemble techniques have on
results. )e classifier ZeroR was used to determine a per-
formance baseline as a reference to consider when comparing
NB, SVM, MLP, and RF algorithms. )e baseline confirmed
malicious and benign classifier prediction at 20.59% which is
reasonable since there is a single benign behaviour and four
attacks. Each experiment becomes more complex during
investigation to deliver results and understand whether the
aims of this study have been achieved.

5.1. Experiment 1: Preprocessed Dataset—All Attributes and
Metrics. )e aim of Experiment 1 is to create classifiers for
each ML algorithm based on a preprocessed dataset con-
sidering all attributes and metrics. )is means considering
both power and network parameters from our novel dataset.
)e results are captured in Table 6 using 10-fold cross-
validation techniques for both SMOTE and spread sub-
sample balancing methods.

)e overall aim of Experiment 1 is as follows:

(i) Compare each classifier against ZeroR
(ii) Compare results from balancing techniques
(iii) Carry results forward to Experiment 2 for com-

parison against a normalised dataset

Correctly classified instances alone can lead to inaccurate
results when evaluating ML algorithms and classifiers.
However, for Experiment 1, this was considered a suitable
evaluation tool for comparison against ZeroR classifier at a
measurement of 20.59%.

As can be seen in Table 6, for SMOTE and spread
subsample balancing techniques, each classifier improved
performance on ZeroR with the exception of sub-
sample—SVM. Additionally, SMOTE outperformed sub-
sampling for this experiment. )ese results will be

considered against normalised preprocessed datasets for all
attributes and metrics in Experiment 2.

5.2. Experiment 2:Normalisation—AllAttributes andMetrics.
)e aim of Experiment 2 is to create classifiers for each ML
algorithm based on a normalised preprocessed dataset for all
attributes and metrics. )is means considering both power
and network parameters from our novel dataset. )e results
are captured in Table 7 using 10-fold cross-validation
techniques for both SMOTE and spread subsample bal-
ancing techniques.

)e overall aim of Experiment 2 is as follows:

(i) Compare each classifier against Experiment 1 results
to understand the impact of normalisation

(ii) Compare balancing techniques on the overall per-
formance of classifiers

(iii) Identify highly efficient algorithms for detecting
specific attacks

(iv) Carry results forward to Experiments 3 and 4 to
compare against network and power metrics

Correctly classified instances will be used initially to
compare the value normalisation plays within ML. We
considered root mean square error (RSME), mean absolute
percentage error (MAPE), receiver operating characteristics
(ROC), correctly classified instances, and confusion matrix
as evaluation metrics for Experiments 2–6.

As can be seen in Table 7, for SMOTE and spread
subsample, balancing each classifier post-preprocessing and
normalisation improved performance on Experiment 1 with
the exception of SMOTE–NB. Additionally, in Experiment 2,
SMOTE outperformed subsampling and SMOTE–MLP
outperforms all other classifiers.

We have also observed the confusion matrix and ac-
curacy by class which resulted in the recognition of highly
efficient algorithms for detecting specific attacks for each
classifier.

)e following highly efficient algorithms were identified:
SMOTE–NB for Decreased Path Metric attacks with a ROC
of 0.99, SMOTE–MLP for Rank and Blackhole Attacks with
a ROC of 1.00 (Rank and Version and Decreased Path
Metric attacks scored ROC 0.99), and SMOTE–RF for
detecting all attacks with a ROC in excess of 0.99 for each.

Table 6: Experiment 1 results.

Correctly classified
instances (%)

Balancing technique
average (%)

ZeroR 20.59 20.59
SMOTE–NB 86.14

73.76SMOTE–SVM 34.65
SMOTE–MLP 91.09
SMOTE–RF 83.17
Subsample–NB 52.00

34.00Subsample–SVM 12.00
Subsample–MLP 24.00
Subsample–RF 48.00
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)ese results will be considered against network and
power metrics in Experiments 3 and 4 with a focus on ROC
average, to determine performance of a classifier. Overall, in
Experiment 2, MLP and RF algorithms performed best when
balancing and normalisation had been oversampled (Table 7).

5.3. Experiment 3: Normalisation—Network Attributes and
Metrics. )e aim of Experiment 3 is to create classifiers for
each ML algorithm based on a normalised preprocessed
dataset for network attributes and metrics. )e results are
captured in Table 8 using 10-fold cross-validation tech-
niques for both SMOTE and spread subsample balancing
techniques.

)e overall aim of Experiment 3 is as follows:

(i) Compare each classifier against Experiment 2 results
to understand the significance of network attributes
and metrics on a classifier performance

(ii) Compare balancing techniques
(iii) Identify highly efficient algorithms for detecting

specific attacks
(iv) Carry results forward to Experiment 4 to compare

against power metrics

As seen in Table 8, reducing the dataset to only include
network metrics improved performance for all classifiers
during Experiment 3 with the exception of SMOTE–RF.
Additionally, SMOTE outperformed the spread sub-
sampling technique. Moreover, highly efficient algorithms
for detecting specific attacks using the confusion matrix
were SMOTE–NB, SMOTE–MLP, and SMOTE-RF which
detected each attack with a ROC in excess of 0.99. SMO-
TE–MLP successfully identified Rank and Blackhole Attacks
100% of the time with no errors. )ese results will be
considered against power metrics in Experiment 4.

5.4. Experiment 4: Normalisation—Power Attributes and
Metrics. )e aim of Experiment 4 is to create classifiers for
each ML algorithm based on a normalised, preprocessed
dataset for power attributes and metrics. )e results are
captured using 10-fold cross-validation techniques for both
SMOTE and spread subsample balancing techniques.

)e overall aim of Experiment 4 is as follows:

(i) Compare each classifier against Experiments 2 and 3
results to understand the significance of power
attributes and metrics on the classifier performance

(ii) Compare balancing techniques
(iii) Identify highly efficient algorithms for detecting

specific attacks for classifier ensemble
(iv) Carry results forward to Experiment 5 to compare

against classifier ensemble techniques to improve
performance for power metrics

As can be seen in Table 9, reducing the dataset to only
include power metrics significantly decreased performance
for all classifiers during Experiment 4. It is worth noting that
despite reducing the performance significantly each classifier
performed better than the ZeroR baseline of 20.59%,
demonstrating that power metrics obtain predictive power.
Additionally, SMOTE outperformed subsampling
techniques.

Given the confusion matrix, there were no highly effi-
cient classifiers for detecting specific attacks. However, there
were some moderately efficient classifiers that should be
considered for evaluation during Experiments 5 and 6.

Decreased Path Metric and Rank and Version Attacks
were detected based on power consumption metrics during
Experiment 4. SMOTE–NB detected Decreased Path Metric
attack with a ROC of 0.90. SMOTE–MLP detected De-
creased Path Metric and Rank and Version Attacks with a
ROC of 0.91 and 0.94, respectively. SMOTE–RF detected
Decreased Path Metric and Rank and Version Attacks with a
ROC of 0.93 and 0.96, respectively.

In conclusion, Decreased Path Metric and Rank and
Version Attacks were detected based on power consumption
metrics during Experiment 4.

5.5.Experiment5:FeatureSelection. )e aim of Experiment 5
is to use feature selection based on the results of Experiment
4. NB, MLP, and RF algorithms will be considered with
SMOTE sampling. It was clear that Decreased Path Metric
and Rank and Version Attacks were detectable based on
power consumption metrics. Investigating results of Rank
and Blackhole and Rank and Sybil Attacks, it is likely that
using ML to detect specific attacks against OF0 andMRHOF
based on power consumption may not be possible.

)e overall aim of Experiment 5 is as follows:

Table 7: Experiment 2 results.

RSME MAPE (%) ROC average Correctly classified instances (%) Balancing technique average (%)
ZeroR N/A N/A N/A 20.59 20.59
SMOTE–NB 0.23 24.22 0.98 84.31

87.99SMOTE–SVM 0.27 22.01 0.89 82.35
SMOTE–MLP 0.16 10.15 0.99 93.14
SMOTE–RF 0.16 20.48 0.99 92.16
Subsample–NB 0.32 41.90 0.88 68.00

65.00Subsample–SVM 0.51 79.83 0.64 36.00
Subsample–MLP 0.29 31.20 0.91 76.00
Subsample–RF 0.28 55.86 0.94 80.00
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(i) Remove Rank and Blackhole and Rank and Sybil
features from the dataset

(ii) Identify highly efficient algorithms for detecting
Decreased Path Metric and Rank and Version At-
tacks based on power consumption for use in Ex-
periment 6

As can be seen in Table 10 and after considering eval-
uation metrics, MLP performed best based on power con-
sumption metrics postfeature selection. It is noted that RF
performed similarly to MLP with a larger RSME margin.

Given the confusion matrix, the following highly effi-
cient algorithms for detecting Decreased Path Metric and
Rank and Version Attacks were identified: SMOTE–NB
detected Decreased Path Metric attack with a ROC of 0.93.
SMOTE–MLP detected Decreased Path Metric and Rank
and Version Attacks with a ROC of 0.89 and 0.90, re-
spectively. SMOTE–RF detected Decreased Path Metric and
Rank and Version Attacks with a ROC of 0.89 and 0.91,
respectively.

Overall, Decreased Path Metric and Rank and Version
detection improved significantly based on power con-
sumption metrics postfeature selection and MLP performed
best in total.

5.6. Experiment 6: Classifier Ensemble. )e aim of Experi-
ment 6 is to exploit AdaBoost, Bagging, Stacking, and Voting
classifier ensemble methods to increase the likelihood of
detecting Decreased Path Metric and Rank and Version
Attacks based on power consumption metrics.

)e overall aim of this experiment is as follows:

(i) Use AdaBoost and Bagging classifier techniques to
increase the likelihood of detection

(ii) Use Stacking and Voting classifiers for classifier
ensemble

As can be seen in Table 11, AdaBoost, Bagging, and
Stacking while utilising NB, MLP, and RF classifiers were
unable to increase performance beyond what had already
been captured during Experiment 5. Voting was established
using combinations of NB, MLP, RF, and SVM.

A combination of MLP and RF with minimum proba-
bility selected as the combination rule provided the best
results. Addressing the confusion matrix, voting with MLP
and RF classifiers detected Decreased Path Metric and Rank
and Version Attacks with a ROC of 0.86 and 0.96, re-
spectively. Voting with SVM and NB classifiers detected
Decreased Path Metric and Rank and Version Attacks with a
ROC of 0.81 and 0.91, respectively. Overall, Decreased Path
Metric and Rank and Version detection improved signifi-
cantly based on power consumption metrics postclassifier
ensemble utilising Voting with MLP and RF.

5.7. Experiment 7: Detecting Attacks against MRHOF and
OF0. )e aim of Experiment 7 is to understand the success
rates of detecting attacks against MRHOF and OF0. As the
most successful classifier identified during experimentation,
MLP will be used to assess if there is any difference in
detecting attacks against the two objective functions.

)e overall aim of this experiment is as follows:

(i) Assess success rate of detection for MRHOF and
OF0 for network and power metrics

(ii) Assess success rate of detection for MRHOF and
OF0 for network metrics

(iii) Assess success rate of detection for MRHOF and
OF0 for power metrics postfeature selection

Table 8: Experiment 3 results.

RSME MAPE (%) ROC average Correctly classified instances (%) Balancing technique average (%)
SMOTE–NB 0.19 19.13 0.99 86.28

88.68SMOTE–SVM 0.25 19.67 0.90 84.29
SMOTE–MLP 0.15 11.15 0.99 93.07
SMOTE–RF 0.18 24.58 0.99 91.09
Subsample–NB 0.30 40.63 0.92 76.00

71.00Subsample–SVM 0.47 69.85 0.69 44.00
Subsample–MLP 0.28 29.25 0.94 76.00
Subsample–RF 0.25 51.16 0.96 88.00

Table 9: Experiment 4 results.

RSME MAPE (%) ROC average Correctly classified instances (%) Balancing technique average (%)
SMOTE–NB 0.38 73.45 0.80 47.06

52.45SMOTE–SVM 0.45 63.58 0.70 49.02
SMOTE–MLP 0.33 61.44 0.86 55.88
SMOTE–RF 0.33 62.01 0.86 57.84
Subsample–NB 0.25 78.88 0.73 32.00

37.00Subsample–SVM 0.52 84.82 0.60 32.00
Subsample–MLP 0.42 79.08 0.71 40.00
Subsample–RF 0.43 77.07 0.68 44.00
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Experiment 7 was designed to understand the success
rate of detecting attacks against MRHOF and OF0. For each
experiment, MRHOF and OF0 instances were removed
independently of one another allowing the MLP classifier to
train, test, and cross-validate results. MLP was used to assess
if there was any variance in detecting attacks between the
two objective functions. All network and power metrics were
considered initially, removing MRHOF and OF0 instances
independently of one another, with malicious and benign
activity remaining as the selected class.

Removing MRHOF reduced instances to 178. Removing
OF0 reduced instances to 293. As can be seen in Table 12, the
ML model was better at detecting attacks against MRHOF
than it was against OF0.

5.8. Experiment 8:DetectingAttacks againstMRHOFandOF0
with a Balanced Class. )e aim of Experiment 8 is to un-
derstand the success rates of detecting attacks against
MRHOF and OF0 with a balanced class. As the most suc-
cessful classifier identified during Experiment 7, MLP using
network metrics will be used to assess if there is any dif-
ference in detecting attacks against the two objective
functions. )e overall aim of this experiment is as follows:

(i) Assess success rate of detection for MRHOF and OF0
with a balanced class for network metrics

Before each experiment, MRHOF and OF0 were bal-
anced using SMOTE oversampling technique. Instances
were then removed independently of one another allowing
the MLP classifier to train, test, and cross-validate results.

In general, Experiment 8 was designed to understand the
success rate of detecting attacks against balanced MRHOF
and balanced OF0 objective functions. )is experiment
builds on results captured during Experiment 7 to under-
stand if the MLP classifier is better at detecting com-
bined attacks against MRHOF than OF0. As can be seen in
Table 13, the ML model was better at detecting attacks
against MRHOF than it was against OF0 despite objective
function being balanced. )is supports findings identified
during Experiment 7.

6. Discussions

In this section, the research questions stated at the beginning
of this paper are addressed as follows:

(i) RQ1. Is there an available IoTdataset that is suitable
to meet the research scope, or is the development of
a novel dataset required?
Buczak and Alam [17, 18] discuss research into ML,
IDS, and IoT, identifying that DARPA and KDD
datasets are often used since collecting, labelling,
and preprocessing IoT data are difficult and time-
consuming. A novel approach was taken to identify
and develop a dataset focused on IoT features and
attacks. )e raw dataset that we provided in this
paper included IoT features and attacks. Pre-
processing, normalization, and sampling of raw data
was time-consuming; however, it was worthwhile.
Furthermore, the novel dataset can be shared for
further research in this field since correctly labelled
IoT datasets are a scarce resource within the re-
search community. )e dataset contained a number
of limitations that could be improved upon in future
to enhance performance. Dataset limitations are
discussed in the next section.
RQ1 answer summary: in this paper, a novel dataset
was developed focused on IoT features and attacks.

(ii) RQ2. What is the impact of preprocessing, nor-
malisation, feature selection, and sampling on
classifier performance?
Yin and Gai [19] discuss challenges to be considered
when developing an imbalanced dataset with a focus
on preprocessing, normalisation, sampling, and
feature selection. Experiments 1, 2, and 5 were
designed to understand the impact of preprocessing,
normalization, and feature selection have on per-
formance. Experiments 1–4 were designed to un-
derstand sampling strategy. Experiments 1 and 2
concluded that each classifier post-preprocessing
and normalisation improved performance by
19.29% on average based on balancing techniques
for each ML algorithm. Experiments 1–4 concluded
that SMOTE performed better than spread sub-
sample by 46.32% on average based on balancing
techniques. Experiment 5 concluded that feature
selection can be used to remove IoT attacks that
were not relevant to detection through power
consumption metrics. After feature selection, in-
cluding the removal of Rank and Blackhole and
Rank and Sybil Attacks, the attack detection is

Table 11: Experiment 6 results.

RSME MAPE (%) ROC average Correctly classified instances (%)
Voting–MLP and RF 0.24 45.60 0.92 84.21
Voting–SVM and NB 0.32 53.51 0.87 69.47

Table 10: Experiment 5 results.

RSME MAPE (%) ROC average Correctly classified instances (%)
SMOTE–NB 0.32 59.61 0.85 68.33
SMOTE–MLP 0.12 44.20 0.91 75.00
SMOTE–RF 0.26 46.28 0.91 73.33
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increased by 29.67% based on correctly classified
instances.
RQ2 answer summary: preprocessing, normal-
isation, feature selection, and sampling techniques
are critical processes that provide significant impact
on overall ML performance.

(iii) RQ3. What is the most successful deployment of ML
algorithms and classifiers?
Haq et al. [15] reviewed 49 related studies and
discussed classifier deployments including single
and ensemble methodologies. SVM is identified as
the most common algorithm for IDS. When con-
sidering classifier ensemble techniques, neutral
network and fuzzy logic combinations are most
common. )e results from Experiments 2, 3, and 5
concluded thatMLP, followed closely by RF, was the
most successful ML model for time series events
with SVM performing worst in contrast to [15].
Table 14 presents average results from Experiments
2, 3, and 5 for RSME, MAPE, ROC, and correctly
classified instances displaying overall performance.
Overall performance of ML algorithms appeared
less accurate than [14] at 99.44% and in some in-
stances [16] at 86.78% since power statistics have
been included, lowering average results signifi-
cantly. Including the power metric results was
important since they provide an honest evaluation
of the project, and the results can be developed upon
in future research resolving limitations.
RQ3 answer summary: classifier ensemble voting
technique, using the top two performing models
MLP and RF, was the most successful deployment of
ML algorithms and classifiers with a ROC of 0.97.

(iv) RQ4. Are ML algorithms more successful in
detecting combined attacks against MRHOF or OF0?

)e authors in [7, 8] identify a gap in research
regarding IDS for combination of IoT attacks using
ML. Confusion matrices for MLP and RF were
reviewed to understand what attacks were suc-
cessfully detected based on network and power
metrics. Reviewing network metrics, it was identi-
fied that Rank and Blackhole Attacks were detected
100% of the time with no errors. Other attacks were
detected successfully based on network metrics with
a ROC score of 0.99 or above. Overall performance
was reduced as benign activity was often incorrectly
classified as an attack with a ROC score of 0.96 and
precision rate of 78.15%. As indicated during the
conclusion of Experiment 4, Rank and Blackhole
and Rank and Sybil Attacks were not successfully
detected based on power metrics with true positive
rates of 33.33% and 50.00%, respectively.

Reviewing confusion matrices for MLP and RF in
Experiment 6, it was clear that the ensemble tech-
niques significantly enhanced performance beyond
results captured during Experiment 4 taking power
metrics into consideration. Overall performance was
improved from 57.84% correctly classified instances
with a ROC of 0.86 to 84.21% and 0.93, respectively.
Demonstrating power metrics can be used to detect a
combination of IoT attacks. Decreased Path Metric
and Rank and Version Attacks were detected with
true positive rates of 70.00% and 81.31%, respectively.

RQ4 answer summary: the ML algorithms were
better at detecting attacks against equally balanced
MRHOF than OF0.

Table 13: Experiment 8 results.

RSME MAPE (%) ROC average Correctly classified instances (%)
OF0 MLP network metrics 0.38 52.82 0.75 57.84
MRHOF MLP network metrics 0.21 19.34 0.97 87.26

Table 14: Overall performance of the ML algorithm.

RSME MAPE (%) ROC average Correctly classified instances (%) Overall performance of ML algorithm
Voting (MLP and RF) 0.19 21.38 0.97 87.08 1
MLP 0.14 21.83 0.96 87.07 2
RF 0.20 30.45 0.96 85.53 3
NB 0.25 34.17 0.94 79.64 4
SVM 0.32 30.09 0.83 71.89 5

Table 12: Experiment 7 results.

RSME MAPE (%) ROC average Correctly classified
instances (%)

OF0 and MRHOF
comparison average (%)

OF0
MLP all 0.40 54.21 0.75 55.88

49.67MLP network 0.39 52.85 0.80 56.86
MLP power 0.43 80.70 0.66 36.28

MRHOF
MLP all 0.22 21.17 0.97 84.31

71.24MLP network 0.21 19.34 0.97 87.25
MLP power 0.42 77.20 0.71 42.16
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7. Conclusion, Limitations,
and Recommendations

)is paper aims to detect IoT combined attacks of Rank and
Version, Rank and Blackhole, Decreased PathMetric, as well
as Rank and Sybil against two IoT’s popular objective
functions of OF0 and MRHOF using machine learning al-
gorithms.)is aim was stablished based on a comprehensive
gap analysis across high-quality research papers in the field.
In order to successfully achieve this aim and due to lack of
suitable IoT datasets, a novel dataset was developed focused
on IoT’s network and power features as well as IoTcombined
attacks. Preprocessing, normalisation, feature selection, and
sampling were identified as critical processes significantly
impacting performance. Voting as a classifier ensemble
technique, using top performing models MLP and RF, was
identified as the most successful deployment of ML classifiers.
Specific attacks were detected successfully based on network
and power metrics; benign activity was also detected suc-
cessfully and could be employed to prevent zero-day IoT
attacks. )e ML model was better at detecting attacks against
equally balanced MRHOF than OF0. Addressing our cap-
tured results, our machine learning approach was successful
in detecting all combined attacks against OF0 and MRHOF
based on the network and power metrics in which MLP and
RF algorithms were the most successful classifier deployment
for single and ensemble models.

Although our initial aims were achieved, there were
limitations in research and simulated experiments that
present opportunities for future researchers to consider.
Areas of the project that provide opportunities in future
include the continued development of an IoT dataset, ML
algorithms and classifiers, sampling, feature selection, and
novel MRHOF, OF0, and RPL attacks. For instance, our
dataset contained four implemented combined attacks that
were successfully identified using network metrics. Only two
combined attacks were able to be detected using power
metrics. It is recommended that further research is con-
ducted to understand attacks that can be identified by power
metrics, for instance, distributed denial of service (DDoS)
attacks. We recommend the implementation of an IoT
sensor lab in order to produce a large IoT dataset based on
project limitations. Additionally, the literature review ac-
knowledged a large range of MRHOF and OF0 attacks that
could be used to meet project scope. )e selected attacks
were useful for detecting network metrics but provided
limited success based on power metrics. It is recommended
that a wider range of MRHOF and OF0 attacks are included
in future datasets with a focus on those attacks that impact
power metrics.
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