
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

A Fast Online Task Placement Algorithm for
Three-dimensional Dynamic Partial
Reconfigurable Devices
TINGYU ZHOU1, (Student Member, IEEE), TIEYUAN PAN 2, MICHAEL CONRAD MEYER1, (Member,
IEEE), YIPING DONG3, AND TAKAHIRO WATANABE1, (Life Member, IEEE)
1Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 8080135, Japan
2DENSO Corporation, Kariya 4488661, Japan
3China Key System & Integrated Circuit Co., Ltd, Wuxi 214072, China

Corresponding author: Tingyu Zhou (e-mail: shu-yu@asagi.waseda.jp).

This work was partly supported by Waseda University Tokutei Kadai 2018K-301 and 2019C-719.

ABSTRACT Three-dimensional (3D) integration technology provides a great opportunity for reconfigurable
devices to increase device performance. Nevertheless, there is no efficient data structure and task placement
algorithm to manage 3D dynamic partial reconfigurable (DPR) resources in literature. Inefficient algorithms
limit the performance of 3D DPR devices. This study addresses the issue of the 3D task placement problem
via a novel data structure named Maximal Empty Cuboid (MEC) list, which is proposed to manage the
unoccupied space on the 3D DPR device. No matter if a task is assigned or removed on the device, the
MEC list is updated in real-time to record 3D unoccupied resources so that the online task placement can
be executed in a shorter time. Experiments are carried out to evaluate the performance of the proposed task
placement algorithm, and results demonstrate that the proposed algorithm can make a reduction of at least
39% in terms of the task rejection ratio verifying the algorithm’s efficiency.

INDEX TERMS Online task placement algorithm, three-dimensional, dynamic partial reconfigurable devices,
maximal empty cuboid

I. INTRODUCTION

S INCE Integrated Circuits (ICs) were born in the 1960s,
they have been widely used in all aspects of our modern

lives. In the field of electronic information technology, Gen-
eral Purpose Processors (GPPs), such as Central Processing
Units (CPUs), have become a necessary component of various
computing devices.

GPPs with high flexibility can achieve any complicated
operations. However, GPPs are not designed for meeting
the requirement of fast real-time applications or large-scale
data processing, such as large matrix operations, sophis-
ticated image processing, and Artificial Intelligence (AI),
etc. To fully accelerate such specialized computation to
achieve higher performance, special-purpose ICs, including
ASICs, Graphics ProcessingUnits (GPUs), andDigital Signal
Processors (DSPs), etc., were designed. Such ICs lose a
significant portion of flexibility granted by GPPs in exchange
for performance gains. Once a special-purpose processor is
manufactured, its functionality can no longer be changed. In
a word, GPPs or special-purpose ICs cannot adapt to both the

growing flexibility and higher performance requirements.
Reconfigurable devices such as Field-programmable Gate

Arrays (FPGAs), provide a good method to balance the com-
puting performance and flexibility. Generally, it is composed
of three major components: Programmable Logic Blocks
(PLBs), Input-Output Blocks (IOBs), and Interconnections.
These programmable hardware resources provide the unique
ability of reconfiguration, which means the circuits of the
device can be reconfigured to achieve different functions
to meet requirements through reconfiguring programmable
resources. The reconfigurability enables the device to keep
high efficiency of hardware and obtain the programmability
of software to fill the gap between GPPs and special-purpose
ICs [1].
There are two leading reconfigurable technologies: static

and dynamic reconfiguration. In static reconfiguration, the
reconfigurable device needs to be powered off to load new
configuration data to reconfigure the necessary circuits.
Then, the device is restarted to execute a new function. In
contrast, dynamic reconfiguration allows for loading of new

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

configurations at run-time without taking the device offline.
According to the reconfiguration area, global and partial
reconfiguration are discussed in dynamic reconfiguration. In
global reconfiguration, configuration bitstreams provide all
information regarding the complete chip and configure the
entire device. However, in partial reconfiguration, only a
portion of the device is reconfigured, while the other parts
continue to operate without interrupting so that multiple
functions can be simultaneously implemented on a single
device. In this work, a dynamic partial reconfiguration scheme
is explored since its high flexibility and performance provide
great potential in the future.

On the other hand, with the growing requirements of device
performance and integration, 3D ICs gradually became the
future development trend due to its higher integration density,
shorter wire-length, and lower energy consumption compared
with 2D architecture [2]. In the reconfigurable computing
field, the application of a 3D dynamic partial reconfigurable
(DPR) device also became a research focus [3] [4].

To achieve higher performance on 3D DPR devices, a lot
of problems have to be solved, such as power consumption,
heat dissipation, and inter-tasks communication, etc. One of
the most important problems is the task placement problem,
which means deciding where to place an arriving task on
the device for efficient execution. For an application that
will be executed on a reconfigurable device, a host processor
first divides the application into amounts of small hardware
modules (tasks), as execution targets on the reconfigurable
device. Each task consists of a series of information, such
as the number of required hardware resources, lifetime and
execution deadline, etc. During application execution, the task
is assigned to proper elements on the device, then executed
and finally removed when it finishes. However, due to the
limitation of programmable hardware resources, it is usually
impossible to have enough resources to assign all arriving
tasks to the device simultaneously. Therefore, an appropriate
task placement position has to be determined at run-time
to obtain maximum utilization ratio of limited hardware
resources. This task placement problem is accompanied by
the entire application execution phase and directly affects the
3D DPR device performance. Studies for the task placement
algorithm to address this problem concentrate on the follow-
ing two aspects:
• Resource management: record and update pro-
grammable resource usage of the device in real-time;

• Placement strategy: decide the task position assignment.
Nevertheless, existing algorithms on this problem for 3DDPR
devices are inefficient [5] (time-consuming and lowplacement
quality), and there are no efficient methods for 3D resource
management as far as we know.

In this work, we propose a fast online task placement
algorithm based on a novel data structure called Maximal
Empty Cuboid (MEC) list for 3D DPR devices, which
possesses the advantages of fast execution time and high
placement quality. The main contributions of this paper are
summarized as follows:

• We propose a new data structure called Maximal Empty
Cuboid (MEC) list to describe 3D unoccupied reconfig-
urable resources and prove the upper limit of the number
of MECs in theory.

• We develop an MEC enumeration algorithm to quickly
update the MEC list to record the resource utilization in
real-time once a task is assigned or removed on the 3D
DPR device.

• We outline two placement strategies and discuss their
impact on placement quality.

• We demonstrate better overall performance in terms of
placement quality and execution speed compared to other
state of the art approaches [5] [6] through theoretical and
simulation studies.

The rest of this paper is organized as follows. Section
II gives a brief overview of related studies addressed the
task placement problem. In section III, we give the problem
formulation, including some basic models and details of our
proposed task placement algorithm. In Section IV and V, we
evaluate and analyze the proposed algorithm through theories
and experiments. Finally, in Section VI, we summarize the
paper.

II. RELATED WORKS
The 4D compaction algorithm proposed by T. Marconi et
al. [5] focused on the task placement problem on 3D DPR
devices. A 3D matrix is used to represent the status and the
earliest available time of the 3D programmable resources.
The algorithm traverses the 3Dmatrix and selects the position
that makes the arriving task have the earliest start execution
time and largest contact area with other ones, which can be
considered as four-dimensional compaction, i.e., both in 3D
spatial coordinates and time coordinate. The 4D compaction
algorithmmakes full use of the 3D device resources; however,
it has low efficiency due to the significant time consumption
for traversing multiple 3D matrices to find the best placement
position.
As far as we know, in addition to the 4D compaction

algorithm, there are few other effective algorithms, and data
structures proposedwhich target 3DDPRdevices in literature.
However, the task placement problem for a 2D DPR device
has been explored so much, where a lot of strategies and novel
data structures were proposed to make more efficient use of
limited hardware resources.
T. Marcroni et al. [6] proposed a novel Quad-corner (QC)

algorithm, which tries to assign tasks to the four corners of
the 2D DPR device according to task size and maintains a
free area in the center as much as possible, so as to keep
ample and consecutive space for future arriving tasks. J.
Tabero et al. [7] presented a Vertex List Set (VLS) as a
geometrical description on the whole reconfigurable device
of the available area perimeter. Each vertex list describes the
contour of each unoccupied area fragment on the device and
some of the vertexes (bottom-left BL and top-right TR) in it
are marked as candidates for task placement. During the task
placement process, the placement algorithm traverses each

2 VOLUME 4, 2016

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

𝒕𝟏
𝒕𝟐

𝒕𝟒𝒕𝟑

𝒕𝟓

𝒕𝟔

BL vertex candidates

TR vertex candidates

Quad-corner (QC) Vertex list set (VLS)

QC candidate

8
7
6
5
4
3
2
1

10 32 54 76 8

FIGURE 1. An example of QC and VLS representation on a 2D DPR device.

vertex list in VLS and tries to perform feasible task insertions
at each candidate vertex.

Nevertheless, one of the major drawbacks to using QC
and VLS is the fact that the limited searching candidates
may cause an executable position to not be found for a target
task in some cases. For example, in Fig.1, task C1-C5 (black
regions) are running on a 2D DPR device and the system
searches for an available position for a new arriving task C6. In
Fig.1, the candidate locations generated by the QC aremarked
as grey nodes, and the VLS of available regions is marked
by red lines. No matter whether searching for candidates in
QC or VLS, C6 cannot be assigned on the device due to the
limitation of searching candidates, although there is enough
space (blue frame) to accommodate it. Consequently, the
placement quality of these algorithms cannot be guaranteed
although the speed of them is fast. In [8] [9] [10] [11], a
Maximal Empty Rectangle (MER) list is proposed to manage
2D unoccupied hardware resources, which is defined as the
list of empty rectangles that are not fully covered by other
ones. The MER list records all maximal empty rectangles on
the 2D DPR device, which guarantees the task can find the
available position for it once the position exists to avoid the
placement quality problem that appeared in QC and VLS.
However, the frequent assignment and removal of tasks lead
to the MER list being updated all the time, thus a fast method
to enumerate all MERs is required.

Although several efficient placement algorithms for the
2D DPR device have been proposed, there are few 3D task
placement algorithms, and they are inefficient, that is, they do
not efficiently manage the unoccupied 3D DPR resources. In
this paper, an efficient data structure inspired by the concept of
MER on the 2D DPR device and the algorithm is presented to
solve the 3D task placement problem so that the performance
of the 3D DPR device is improved.

III. PROPOSED APPROACH
A. PROBLEM FORMULATION

This section describes the 3D DPR device model, 3D task
model, system model, and the proposed data structure. These
models are in accordance with related works in [5] [6] [7].

𝐱

𝐳

𝐲

(0, 0, 0) W

H

TH

2

4

3

Reconfigurable unit (RU)

Interconnections

FIGURE 2. A 3D dynamic partial reconfigurable device model.

1) 3D DPR Device and Task Models
Since the emergence of the concept of the 3D DPR device,
various 3D architectures are proposed [12] [13] [14]. Leeser
et al. [15] proposed a representative multi-layer architecture,
which can be considered as a stack of FPGA circuits with
connections between different layers. In particular, the first
heterogeneous 3D FPGA was produced by Xilinx in 2012,
which is comprised of four FPGA dies, each of which
is attached to one silicon interposer and connected using
Through-Silicon Via (TSV) technology [16]. Therefore, a
reconfigurable device (RD) of the proposed multi-layer 3D
DPR device is modeled as RD (,, �,)�), where,×�×)�
reconfigurable units (RUs) are arranged in a 3D array and
interconnections. The position of an RU is represented by
the left-most front corner coordinate RU (DG, DH, DI), where
0 ≤ DG < , , 0 ≤ DH < � and 0 ≤ DI <)�. As shown in
Fig.2, the bottom left-most front corner of the 3DDPR device
is defined as (0, 0, 0).
Tasks are generated by partitioning a given application and

considered as basic execution units. A 3D task C8 is defined
as C8 (F8 , ℎ8 , Cℎ8 , ; 58 , 3;8), where F8 × ℎ8 × Cℎ8 resources are
necessary for execution, F8 , ℎ8 and Cℎ8 are task width, height
and thickness respectively, and ; 58 means the lifetime of the
task C8 , which is the sum of configuration time and execution
time and 3;8 means the deadline, which is maximal waiting
time of the task C8 before placement. If the waiting time is
over 3;8 , the task C8 is discarded. A task can be assigned at an
arbitrary position on the 3D DPR device if there are enough
4<?CH 0A40B to be assigned to the task. Empty area means
the RUs on the device are not being occupied by any tasks
currently. Similar to the previous models in [5] [6] [7], we
assume that tasks are independent, with no priority constraints
with each other since these factors are related to the scheduling
order of the execution of the tasks.

2) Maximal Empty Cuboid List
To manage 3D available programmable resources, a Maximal
Empty Cuboid (MEC) list is proposed for a description of
empty areas on the 3D DPR device. The MEC list is defined
as follows:
Definition 1: An MEC 28 (2G8 , 2H8 , 2I8 , 2F8 , 2ℎ8 , 2Cℎ8) is an
empty cuboid that can not be fully covered by other ones and in
which a 3D task may be assigned, where (2G8 , 2H8 , 2I8) is the
bottom left-most front corner coordinate, 2F8 , 2ℎ8 and 2Cℎ8 are

VOLUME 4, 2016 3

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

10 𝐲

4 𝐱

𝐳

0 106

5

10

10 𝐲

4

0 106

5

10

10 𝐲

4 𝐱

𝐳

0 106

5

10

10

0 10

10Task

w = 6, h = 4, th = 5

𝐱

𝐳

𝒄𝟏(0,4,0,10,6,10)𝒄𝟎(0,0,5,10,10,5) 𝒄𝟐(6,0,0,4,10,10)

FIGURE 3. An example of an MEC list.

the width, height and thickness of the MEC 28 , respectively.
Fig.3 shows an example of an RD (10, 10, 10), where gray-

colored region represents a currently running task. In accor-
dancewith the device status, threeMECs 20 (0, 0, 5, 10, 10, 5),
21 (0, 4, 0, 10, 6, 10) and 22 (6, 0, 0, 4, 10, 10) are generated,
which are marked with blue frames.

An important property of an MEC is given in the following
theorem.
Theorem 1: Each surface of an MECmust touch another task
or the surface of the 3D DPR device.
Proof 1: Assume that there exists an MEC, one surface of
which is not in contact with any task or the surface of the
3D DPR device. Thus, the MEC can be extended in the
corresponding direction until it touches one task or device
surface. However, any new extended cuboid can fully cover
the MEC, which contradicts the definition of an MEC and
)ℎ4>A4< 1 is proved.

A critical problem comes with the application of the MEC
list since tasks are constantly assigned and removed on the
device.Once the status of the hardware resources on the device
changes, it will result in additional time to update the MEC
list. Therefore, it is necessary to explore fast and accurate
algorithms to enumerate all MECs in the current resource
status, which is the main work that we do.

3) Online Task Placement Model
Fig.4 shows the online task processing model for a 3D DPR
device, which is composed of a scheduling stage and a
placement stage with three main components: a scheduler,
a placer, and an area manager. The scheduler determines
which tasks are executed at the current time, the placer is
responsible for searching a suitable execution position for the
scheduled task and the area manager is used to record and
update unoccupied 3D resources [17].

When a new task arrives at the system based on a given
arriving time interval, a task with a closer deadline between
the new arriving task and waiting tasks is selected by the
scheduler. Then, the placer traverses an MEC list, which
describes the empty areas on the 3D DPR device. If there are
some MECs that can accommodate the arriving task, choose

Scheduler𝒕𝟑 𝒕𝟓 … 𝒕𝒏

𝒄𝟎 𝒄𝟏 …𝒄𝒎

Waiting task list (WL)

New tasks

MEC list
Area

Manager

Placer

Placement

𝒕𝟏 𝒕𝟐 … 𝒕𝒌
Running task list (RL)

Scheduling

FIGURE 4. Online task processing model.

one of them according to the assignment strategy (described
in section III-C) and add the task to a AD==8=6 C0B: ;8BC
(RL). Tasks in RL are sorted by descending order of rest
time to execute, where rest time is defined as the remaining
execution time of the task.After these operations, theMEC list
is updated by the area manager (described in section III-B).
If there are no MECs that can accommodate the scheduled
task, add the task to a F08C8=6 C0B: ;8BC (WL) where tasks are
sorted by descending order of tasks’ deadlines 3;. Once the
scheduler checks that a task execution is finished, remove it
from RL and update the MEC list by the area manager. If the
current time exceeds the deadline of a task in WL, the task is
rejected and removed from WL by the scheduler.
In the whole task processing, our research centers on the

placement stage and includes two main aspects:
• Propose a fast MEC enumeration algorithm to update
the MEC list at run-time for purpose of managing 3D
hardware resources;

• Explore the placement quality based on different assign-
ment strategies.

B. MEC ENUMERATION ALGORITHM
In the placement stage, the proposed MEC list is used to
record the unoccupied 3D DPR resources. Once a task is
assigned or removed on the device, the MEC list has to be
updated. Therefore, the updating speed directly affects the
performance of the device. In this section, an efficient MEC
enumeration algorithm with four steps: 1) connected MECs
selection, 2) stratification, 3) stratified MECs update, and 4)
extending, is described to enumerate all new MECs to update
the MEC list. Parameters used to describe the proposed MEC
enumeration algorithm are summarized in Table 1.
The overview of the MEC enumeration algorithm is shown

in Algorithm 1. It is applied to obtain the updated MEC
list after the target task C (F, ℎ, Cℎ, ; 5 , 3;) being assigned or
removed at position ?(G, H, I). Firstly, connected MECs of
the target task C are selected from MEC list � and moved in
connected MEC list �2 (line 5). After that, these connected
MECs in�2 are stratified and stored in a layer list !� (line 6).

4 VOLUME 4, 2016

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

TABLE 1. Variable definitions.

Parameter Definition

RD(, , � ,) �) 3D DPR device with size , × � ×) � .
C (F, ℎ, Cℎ, ; 5 , 3;) Target task C with size F ×ℎ× Cℎ, life time

; 5 and deadline 3; that will be assigned
or removed.

? (G, H, I) Position of the task C .
� = {20, 21, ..., 28 } Maximal Empty Cuboid (MEC) list.
�2 = {20, 21, ..., 2 9 } Connected MEC list and �2 ⊆ �.
2 (2G, 2H, 2I, 2F, 2ℎ, 2Cℎ) An MEC 2 ∈ � with the bottom left-most

front corner coordinate (2G, 2H, 2I) and
size 2F × 2ℎ × 2Cℎ.

!� = {;0, ;1, ..., ;Cℎ+1 } Layer list.
; (;G, ;H, ;I, ;F, ;ℎ, ;Cℎ) A layer ; ∈ !� with the bottom left-

most front corner coordinate (;G, ;H, ;I)
and size ;F × ;ℎ × ;Cℎ.

B (BG, BH, BI, BF, Bℎ, BCℎ) A stratified MEC with the bottom left-most
front corner coordinate (BG, BH, BI) and
size BF × Bℎ × BCℎ.

Algorithm 1 MEC Enumeration Algorithm
Require:

The MEC list: �.
The Connected MEC list: �2 .
The assigned or removed target task: C (F, ℎ, Cℎ, ; 5 , 3;).
The 3D DPR device: RD(,, �,)�)
The position of target task C: ? (G, H, I).
The layer list: !� = {;0, ;1, ..., ;Cℎ+1}.

Ensure:
Update the MEC list �.

1: � ← ∅;
2: for each ;8 ∈ !� do
3: ;8 ← ∅;
4: end for
5: SelectConMEC(�,�2 ,G,H,I,F,ℎ,Cℎ); /*Section III-B1*/
6: StratifyMEC(�2 , !�, G, H, I, Cℎ,)�); /*Section III-B2*/
7: UpdateStraMEC(!�, G, H, I, F, ℎ, Cℎ); /*Section III-B3*/
8: ExtendLayer(!�, I, Cℎ); /*Section III-B4*/
9: for each B8 in !� do
10: add B8 to �;
11: end for

Stratified MECs in candidate layers are updated according to
the task assignment or removal position ? (line 7). Then, by
extending the updated stratifiedMECs bottom-up, all updated
MECs can be obtained (line 8). Finally, theMEC enumeration
algorithm updates the MEC list � by adding the updated
MECs into � (line 9-11). Each step is explained in detail
below.

1) Connected MECs Selection (SelectConMEC)
When a task is assigned or removed, the MEC that is
2>==42C43 to the task needs to be updated in the MEC list.
The definition of ’connected’ is given as follows:
Definition 2: If there exists an overlap or contact between an
MEC and a task, the MEC is called a connected MEC of the

Task Position 𝑤 ℎ 𝑡ℎ
𝑡4 (0, 0, 4) 5 10 3
𝑡$5 (0, 0, 0) 2 10 4
𝑡%5 (5, 0, 0) 2 10 5
𝑡&5 (7, 0, 0) 1 10 2

𝟏𝟎

0 2 5 7 8 10

10

7
5
4
2 𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒕

FIGURE 5. Tasks on a 3D DPR device RD (10, 10, 10).

TABLE 2. MEC list in Fig.5.

Maximal Empty Cuboid 28 28 (2G8 , 2H8 , 2I8 , 2F8 , 2ℎ8 , 2Cℎ8)
20 (0, 0, 7, 10, 10, 3)
21 (2, 0, 0, 3, 10, 4)
22 (7, 0, 2, 3, 10, 8)
23 (5, 0, 5, 5, 10, 5)
24 (8, 0, 0, 2, 10, 10)

task, otherwise it is unconnected.
Fig. 5 shows an example of an RD(10, 10, 10), where black-

colored regions are the area occupied by running tasks (C1,
C2, and C3) and gray-colored cuboid C is a target task that
has finished executing to be removed. According to the task
information shown in Fig. 5, there are five MECs and detailed
information of them are listed in Table 2, where the 20, 21 and
23 are marked by colored frames in Fig.6(a), which represent
the MECs connected to the gray-colored task C since 20, 21,
and 23 are directly touched by the target task C. Fig.6(b) shows
the unconnected ones, 22 and 24.
Since the task assignment and removal merely affect the

MECs connected to them (proved in)ℎ4>A4< 2 below), the
others in the MEC list have no need to be operated in the
subsequent steps of the MEC enumeration algorithm. Thus,
the subsequent operations can be significantly reduced by
specifically selecting the connected MECs from the MEC
list.
Theorem 2: When a target task is assigned or removed on
a 3D DPR device, unconnected MECs of the task are not
affected by this operation.
Proof 2: For a task C, assume that there exists an unconnected
MEC 2′, which is affected when the task C is removed from
the 3D DPR device. The task removal operation releases
resources occupied by the task C, so that the affected MEC
2′ can be extended to a larger one. Since each surface of an
MEC must touch at least one task or surface of the device
(proved in Theorem 1), the extension of the 2′ means that at
least one task that 2′ in contact with is removed. Since only
task C is removed from the device at this time, there is only
one possible fact that the task C is the task that contact with
theMEC 2′. This contradicts the definition of an unconnected
MEC in Definition 2. Similarly, the theorem is proved.

VOLUME 4, 2016 5

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

10

0 105

4

10

7

872

𝑐$

𝑐%

𝑐&

5

2

(a) Connected MECs (20, 21 and 23)

10

𝑐$

𝑐%

10

7

0 5 872 10

4
5

2

𝑐&

(b) Unconnected MECs (22 and 24)

FIGURE 6. Connected and unconnected MECs in Fig.5.

𝑯

𝒑(𝒙, 𝒚, 𝒛)

𝐲

𝐳

𝐱
𝒘

𝒕𝒉

𝑾

𝑻𝑯

𝒉
𝒕

(a) A 3D task C at position ?.

𝒍𝟎(0,z)
𝒍𝟏(z,1)

𝒍𝒊(z+i-1, 1)
…

𝒍𝒕𝒉'𝟏(z+th, TH-th-z)

𝒘

𝒕𝒉

𝐳

𝐱

…

p	(x, y, z) 𝑾

𝑻𝑯

𝒑(𝒙, 𝒚, 𝒛)

𝒕

(b) Front view of the 3D DPR device
and layer list information.

FIGURE 7. Principle to generate a layer list !�.

2) Stratification (StratifyMEC)
To reduce the complexity of updating connected MECs at
the three-dimensional level, we layer the 3D DPR device for
subsequent processing in this stratification step.

The stratification step includes two primary operations:
1) build a layer list !� and select candidate layers, 2) cut
connected MECs and store stratified MECs information into
corresponding candidate layers.

Firstly, a layer list !� based on the placement position and
thickness of the target task is generated. The ’layer’ is defined
as follows:
Definition 3: A layer ;8 (;G8 , ;H8 , ;I8 , ;F8 , ;ℎ8 , ;Cℎ8) ∈ !�

is a space that is generated by horizontally slicing the 3D
DPR device according to the top and bottom surface of the
assigned or removed task, where (;G8 , ;H8 , ;I8) is the bottom
left-most front corner coordinate, ;F8 , ;ℎ8 and ;Cℎ8 are the
width, height, and thickness of the layer ;8 , respectively. Due
to the horizontal stratification, the basic information of the
layer ;8 can be represented as ;8 (0, 0, ;I8 ,,, �, ;Cℎ8), where
, and � are the width and height of the device, respectively.
Therefore, the above definition of a layer ;8 can be simplified
to ;8 (;I8 , ;Cℎ8).

In Fig.7(a), given a target task C (F, ℎ, Cℎ, ; 5 , 3;), it will
be assigned or removed at position ?(G, H, I). Fig.7(b) shows
the front view of the task C, where the space of the 3D DPR
device RD(,, �,)�) is cut into !� = {;0, ..., ;8 , ..., ;Cℎ+1}
in the I-axis, where 0 ≤ 8 ≤ Cℎ + 1. The I-axis value and
information of each layer is described in Fig.7(b).

As the layer list !� is constructed, connected MECs
for the target task are horizontally stratified and stored in
corresponding layers according to their I-axis value, where
’stratified MEC’ is defined as follows:

0 105

4

10

7

872

z

x 𝒍𝟎 (0,4)
𝒍𝟏 (4,1)

𝒍𝟐 (5,1)
𝒍𝟑 (6,1)

𝒍𝟒 (7,3)
Enlarge

𝑐*

𝑐+

𝑐,

5 𝒕
𝒕

FIGURE 8. An example of stratification.

TABLE 3. Layers and stratified MECs in Fig.7.

Layer Stratified MEC B8 2 9 (source of B8)
;0 (0, 4) B0 (2, 0, 0, 3, 10, 4) 21
;1 (4, 1) None
;2 (5, 1) B0 (5, 0, 5, 5, 10, 1) 23
;3 (6, 1) B0 (5, 0, 6, 5, 10, 1) 23
;4 (7, 3) B0 (0, 0, 7, 10, 10, 3) ,B1 (5, 0, 7, 5, 10, 3)∗ 20, 23

* Redundant stratified MEC.

Definition 4:A stratifiedMEC B8 (BG8 , BH8 , BI8 , BF8 , Bℎ8 , BCℎ8)
is an empty cuboid that is generated from horizontally slicing
connected MECs based on layer information, where (BG8 , BH8 ,
BI8) is the bottom left-most front corner coordinate, BF8 , Bℎ8
and BCℎ8 are the width, height, and thickness of the stratified
MEC B8 , respectively.
Fig.8 shows the front view of the 3DDPR device in Fig.6(a)

and the device is stratified into layer ;0 − ;4 according to the
principle shown inFig. 7. InTable 3, the first column shows the
layer list information, the second column shows the stratified
MECs information in each layer and 2 9 in the third column
means the stratified MEC B8 comes from the stratification of
the connected MEC 2 9 .
For example, the stratified MECs B0 and B1 in the layer ;4

are generated from the stratification of connected MECs 20
and 23, respectively. Besides, a redundant MEC may exist,
which can be completely covered by other stratified MECs in
the same layer. The redundant MEC is marked by * in Table
3 and needs to be removed.
Note that, the layers ;0, ;1, ;2, and ;4 in Table 3, aremarked as

20=3830C4 ;0H4AB for the next processing step, to the opposite
;3 is a non-candidate layer.
The principle for selecting a candidate layer is given as

follows:
Definition 5: For two adjacent layers ;8 and ;8+1, ;8+1 is a non-
candidate layer if the information of stratifiedMECs in the two
layers are completely the same except for their I-axis value
and thickness. Conversely, if not completely overlapping, ;8+1
is a candidate layer.
For the bottom layer ;0 and the top layer ;Cℎ+1, as long as

there exists stratified MECs stored in which, it is marked as
a candidate layer. Furthermore, ;1 is always considered as a
candidate layer since the bottom of the target task C is at ;1.
Algorithm 2 shows the pseudo-code of the stratification

6 VOLUME 4, 2016

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

Algorithm 2 StratifyMEC(�2 , !�, G, H, I, Cℎ,)�)
Require:

Task’s position and thickness: G, H, I, Cℎ.
3D DPR device’s thickness:)�.
Connected MEC list: �2 .
The layer list: !� = {;0, ;1, ..., ;Cℎ+1}.
Integers: 8, 9 .

Ensure:
Stratify connectedMECs into candidate layers. Function
Stratify (�2 , !�, G, H, I, Cℎ)

1: for each 2(2G, 2H, 2I, 2F, 2ℎ, 2Cℎ) ∈ �2 do
2: if 2I < I then
3: generate B(2G, 2H, 2I, 2F, 2ℎ, I − 2I);
4: RedundancyCheck(;0, B);
5: mark ;0 (0, I) as a candidate layer;
6: end if
7: if 2I + 2Cℎ > I + Cℎ then
8: generate B(2G, 2H, I+ Cℎ, 2F, 2ℎ, 2I+ 2Cℎ− (I+ Cℎ));
9: RedundancyCheck(;Cℎ+1, B);
10: mark ;Cℎ+1 (I + Cℎ,)� − I − Cℎ) as a candidate layer;
11: end if
12: if (2I ≥ I) and (2I < I + Cℎ) then
13: generate B(2G, 2H, 2I, 2F, 2ℎ, 1);
14: RedundancyCheck(;2I−I+1, B);
15: mark ;2I−I+1 (2I, 1) as a candidate layer;
16: end if
17: if (2I + 2Cℎ > I) and (2I + 2Cℎ < I + Cℎ) then
18: mark ;2I+2Cℎ−I+1 (2I + 2Cℎ, 1) as a candidate layer;
19: end if
20: end for
21: mark ;1 (I, 1) as a candidate layer;
22: for each candidate layer ;8 (;I8 , ;Cℎ8) do
23: ;I8 ← 8 + I − 1
24: for each 2(2G, 2H, 2I, 2F, 2ℎ, 2Cℎ) ∈ �2 do
25: if (2I ≤ ;I8) and 2I + 2Cℎ > ;I8 then
26: generate B(2G, 2H, ;I8 , 2F, 2ℎ, 1);
27: RedundancyCheck(;8 , B);
28: end if
29: end for
30: end for

End Function
Function RedundancyCheck (;, B)

31: if there is a B′ in ; that is included in B then
32: replace B′ with B;
33: end if
34: if there is no B′ in ; includes B then
35: add B into ;;
36: end if

End Function

step. We traverse the connected MEC list and compare the
task thickness with the bottom and top of its connectedMECs
since the layer at the bottom or top of a connected MEC
must be a candidate layer (line 1-20). In each candidate layer,
the information of stratified MECs is stored. Furthermore, to

x
0 105

10

y

z

10
5

𝒍𝟐𝒔𝟎 (5,0,5,5,10,1)

Task in 𝑙)
𝑙)𝑠+: stratified MEC in 𝑙)

𝒍𝟐𝒔𝟎

𝒕

(a) Before removing

0 105

y

z

10

x

𝑙%𝑠': updated stratified MEC in 𝑙%

Updated: 𝒍𝟐𝒔𝟎 (0,0,5,10,10,1)

𝒍𝟐𝒔𝟎

(b) After removing

FIGURE 9. An example of stratified MEC update in ;2.

TABLE 4. Candidate layers and updated stratified MECs in Fig.8.

Candidate layer Updated stratified MECs
B8 (BG8 , BH8 , BI8 , BF8 , Bℎ8 , BCℎ8)

;0 (0, 4) B0 (2, 0, 0, 3, 10, 4)
;1 (4, 1) B0 (0, 0, 4, 5, 10, 1)
;2 (5, 1) B0 (0, 0, 5, 10, 10, 1)
;4 (7, 3) B0 (0, 0, 7, 10, 10, 3)

avoid the lack of the stratified MECs information stored in
the candidate layer, the connected MEC list and candidate
layer information are compared again (line 22-30). It should
be noted that the redundancy check is necessary (line 31-36)
before each stratifiedMEC is stored in its corresponding layer.

3) Stratified MECs Update (UpdateStraMEC)
Stratified MECs in candidate layers except for ;0 and ;Cℎ+1,
need to be updatedwhen assigning or removing the target task.
From layer ;1 to ;Cℎ , the stratifiedMECs in the same layer have
the same thickness; thus, the ones in the same layer can be
considered as MERs in the G-H plane. A method proposed in
[11] is used to enumerate new MERs in a 2D plane after the
device status changes.
Fig. 9 shows an example of a stratified MECs update

process in layer ;2 mentioned in Fig.8. When the gray-colored
task C with size 5 × 10 × 3 located at position (0, 0, 4) is
removed, the stratified MEC in ;2 is updated from Fig.9(a) to
Fig.9(b). Similarly, the process of task assignment is reverse
to the removal process. Table 4 shows the stratified MECs
update results from the example in Fig.8, where the stratified
MECs marked with red are the updated ones.

4) Extending (ExtendLayer)
In the previous steps, connectedMECs on the 3DDPR device
have been updated in each layer for management. Contrary to
the stratification, in the final step, we need to extend updated
stratified MECs bottom-up to generate ultimate MECs and
obtain the final updated MEC list. The overview of the
extending step is described in Fig. 10, where the Cℎ is the
thickness of the target task. From the bottom to the top layer,
the candidate layers are searched and extended one by one.
Based on the position of the two candidate layers, there

are two main operations: ">E4 (Algorithm 3) and �><18=4

VOLUME 4, 2016 7

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

FALSE

TRUE

TRUE

TRUE

TRUE

Is 𝒑𝒓𝒆𝒗 ≤ 𝒕𝒉?

Is 𝒍𝒑𝒓𝒆𝒗 a
candidate layer?

𝒏𝒆𝒙𝒕 ← 𝒑𝒓𝒆𝒗 + 𝟏

END

𝒏𝒆𝒙𝒕 ← 𝒏𝒆𝒙𝒕 + 𝟏

𝒑𝒓𝒆𝒗 ← 𝒑𝒓𝒆𝒗 + 𝟏

FALSE

FALSE

Is 𝒍𝒏𝒆𝒙𝒕 a
candidate layer?

Is 𝒏𝒆𝒙𝒕 ≤ 𝒕𝒉 + 𝟏?

Is 𝒍𝒏𝒆𝒙𝒕 the top
layer ?

Move
(𝒍𝒑𝒓𝒆𝒗, 𝒍𝒕𝒉)

FALSE

TRUE

FALSE

END

END

𝒑𝒓𝒆𝒗 ← 𝒏𝒆𝒙𝒕

START

Initialization:
𝒑𝒓𝒆𝒗 ← 𝟎, 𝒏𝒆𝒙𝒕 ← 𝟎

Combine
(𝒍𝒏𝒆𝒙𝒕0𝟏, 𝒍𝒏𝒆𝒙𝒕)

Are 𝒍𝒑𝒓𝒆𝒗 and 𝒍𝒏𝒆𝒙𝒕
adjacent?

Move
(𝒍𝒑𝒓𝒆𝒗, 𝒍𝒏𝒆𝒙𝒕0𝟏)

TRUE
FALSE (Case 3)

(Case 2)

(Case 1)

FIGURE 10. Flowchart of extending step.

Candidate layer
Non-candidate layer

Combine𝒍𝒑𝒓𝒆𝒗

𝒍𝒏𝒆𝒙𝒕

𝒏𝒆𝒙𝒕 = 𝒑𝒓𝒆𝒗 + 𝟏

(b) 𝑙-./0 and 𝑙1/23 are adjacent.

𝒍𝒑𝒓𝒆𝒗

𝒍𝒕𝒉

…

Move

(a) 𝑙-./0 is the last candidate layer. ...…

𝒍𝒑𝒓𝒆𝒗

𝒍𝒏𝒆𝒙𝒕

𝒍𝒏𝒆𝒙𝒕5𝟏

Move
Combine

𝒏𝒆𝒙𝒕 > 𝒑𝒓𝒆𝒗 + 𝟏

(c) 𝑙-./0 and 𝑙1/23 are non-adjacent.

FIGURE 11. Extending step based on the position of candidate layers.

(Algorithm 4) in the extending step. There are three cases
marked in Fig. 10 as follows:
• case 1 : Layer ;?A4E is the last candidate layer and
?A4E < Cℎ: <>E4(;?A4E , ;Cℎ), as shown in Fig.11(a).

• case 2 : Layer ;?A4E and ;=4GC are candidate layers and
adjacent: 2><18=4(;?A4E , ;=4GC), as shown in Fig.11(b).

• case 3 : Layer ;?A4E and ;=4GC are candidate lay-
ers, while non-adjacent: <>E4(;?A4E , ;=4GC−1), then,
2><18=4(;=4GC−1, ;=4GC), as shown in Fig.11(c).

The pseudo-code of the move operation is shown in
Algorithm 3, where the thickness of the moved stratified
MECs should be updated (line 2 in Algorithm 3).

The pseudo-code of the combine operation is shown

Algorithm 3 Move (;0, ;1)
Require:

Two layers: ;0, ;1 .
Ensure:

Move all stratified MECs in ;0 to ;1 .
1: for each stratified MEC B8 (BG8 , BH8 , BI8 , BF8 , Bℎ8 , BCℎ8) in
;0 do

2: BCℎ8 ← BCℎ8 + (1 − 0);
3: move B8 to ;1;
4: end for

Algorithm 4 Combine (;=4GC−1, ;=4GC)
Require:

Two layers: ;=4GC−1, ;=4GC .
Ensure:

Combine stratified MECs in ;=4GC−1 and ;=4GC .
1: for each B8 in ;=4GC−1 do
2: for each B 9 in ;=4GC do
3: if B8 ⊃ B 9 then
4: if BI8 ≤ BI 9 then
5: BCℎ 9 ← BI 9 + BCℎ 9 − BI8;
6: end if
7: end if
8: if B8 ⊂ B 9 then
9: if BI8 + BCℎ8 ≤ BI 9 + BCℎ 9 and BI8 < BI 9 then
10: BCℎ8 ← BI 9 + BCℎ 9 − BI8 and mark B8;
11: end if
12: end if
13: if B8 = B 9 then
14: if BI8 ≤ BI 9 then
15: merge B8 and B 9 in ;=4GC ;
16: end if
17: end if
18: if B8 ∩ B 9 then
19: if no B′ in ;=4GC−1 that B=4F ⊆ B′ and BI′ < BI8

then
20: if no B′′ in ;=4GC that B=4F ⊆ B′′ and BI′′ +

BCℎ′′ > BI 9 + BCℎ 9 then
21: add B=4F to ;=4GC ;
22: end if
23: end if
24: end if
25: end for
26: end for
27: for each marked B8 do
28: move B8 to ;=4GC ;
29: end for

in Algorithm 4, where stratified MECs from two candi-
date layers are compared. When two compared stratified
MECs [B8(BG8 ,BH8 ,BI8 , BF8 ,Bℎ8 ,BCℎ8) in the layer ;=4GC−1 and
B 9 (BG 9 ,BH 9 ,BI 9 ,BF 9 , Bℎ 9 , BCℎ 9 in the layer ;=4GC] are mapped
in the same G-H plane, there are five kinds of relative positions
between them, which are given as follows:

8 VOLUME 4, 2016

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

𝑠"

𝑠# Update 𝒔𝒋

(a) B8 ⊃ B 9

𝑠"

𝑠#
Update 𝒔𝒊

(b) B8 ⊂ B 9

𝑠"

𝑠#
Update 𝒔𝒋

𝑐"
(c) B8 = B 9

𝑠"

𝑠#
Generate 𝒔𝒏𝒆𝒘

(d) B8 ∩ B 9

FIGURE 12. Relationships between B8 in ;=4GC−1 and B 9 in ;=4GC .

• B8 ⊃ B 9 means that B8 includes B 9 .
• B8 ⊂ B 9 means that B8 is included in B 9 .
• B8 = B 9 means that B8 is equal to B 9 , where BG8 = BG 9 ,
BH8 = BH 9 , BF8 = BF 9 and Bℎ8 = Bℎ 9 .

• B8 ∩ B 9 means that a part of B8 overlaps with B 9 .
• B8 × B 9 means that there is no overlap between B8 and B 9 .

In the last case, the combine operation cannot be done since
no overlap means there are no MECs that exist on which their
bottom belongs to the B8 and top belongs to the B 9 .
Fig.12 shows four scenarioswhere the combine operation is

possible. In case (a), the thickness of B 9 is updated (line 3-7 in
Algorithm 4). In case (b), the thickness of B8 is extended (line
8-12 inAlgorithm4) and B8 ismarked tomove to ;=4GC (line 27-
29 in Algorithm 4). In case (c), B8 and B 9 are merged to B 9 (line
13-17 in Algorithm 4). In case (d), a new MEC B=4F is gen-
erated and stored in ;=4GC (line 18-24), where B=4F becomes
B=4F (<0G(BG8 , BG 9), <0G(BH8 , BH 9), <8=(BI8 , BI 9), <8=(BG8+
BF8 , BG 9 + BF 9) −<0G(BG8 , BG 9), <8=(BH8 + Bℎ8 , BH 9 + Bℎ 9) −
<0G(BH8 , BH 9), <0G(BI8 + BCℎ 9 , BI 9 + BCℎ 9) −<8=(BI8 , BI 9)).
Fig. 13 shows an example of the extending step in Table 4,

where ;0, ;1, ;2 and ;4 are candidate layers. From ;0 to ;1, the
combine operation is done directly. The B0 in ;0 is included
by the B0 in ;1, therefore, the thickness of B0 in ;0 is updated
and moved to ;1, which is represented as B1 in ;1. From ;1
to ;2, B0 and B1 in ;1 need to be compared with the B0 in ;2,
respectively. The combine operation is the same as before and
extending results are shown in Fig. 13(b). From ;2 to ;4, they
are non-adjacent layers, thus a move operation is performed
to update the stratified MECs in ;2 and move them to ;3. Then
in the combine operation, B0, B1, and B2 in ;3 are compared
with B0 in ;4, respectively. It should be noted that, B0 in ;3 is
equal to B0 in ;4, thus we merge them into an entire MEC and
store it in ;4, which is marked as B0 in ;4 in Fig.13(c). After
processing all the candidate layers, all the stratified MECs
have been extended from the bottom to the top layer to get the
final extended MECs.

Finally, the layer list !� needs to be traversed and all the
extended MECs are moved to the MEC list (line 9-11 in
Algorithm 1). As a result, the connected MECs 20, 21 and 23

EXTENDING 1
𝒍𝟏𝒔𝟎	(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟏)
𝒍𝟎𝒔𝟎	(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟒)

Combine (𝒍𝟎, 𝒍𝟏)
𝒍𝟎𝒔𝟎 ⊂ 𝒍𝟏𝒔𝟎

𝒍𝟎𝒔𝟎(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟓) --- case(b) line 8-12
RESULTS

𝒍𝟏𝒔𝟎(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟏) 𝒍𝟏𝒔𝟏(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟓)

PROCEDURES

𝒍𝟏𝒔𝟎

𝒍𝟎𝒔𝟎

𝒍𝟏𝒔𝟎

𝒍𝟏𝒔𝟏𝒍𝟎

𝒍𝟏

Combine

(a) Extending 1

EXTENDING 2
𝒍𝟐𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟏)
𝒍𝟏𝒔𝟎(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟏), 𝒍𝟏𝒔𝟏(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟓)

Combine (𝒍𝟏,	𝒍𝟐)
𝒍𝟏𝒔𝟎 ⊂ 𝒍𝟐𝒔𝟎 𝒍𝟏𝒔𝟏 ⊂ 𝒍𝟐𝒔𝟎
𝒍𝟏𝒔𝟎 𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟐 ---case(b) line 8-12 𝒍𝟏𝒔𝟏(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟔)---case(b) line 8-12

RESULTS
𝒍𝟐𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟏) 𝒍𝟐𝒔𝟏(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟐) 𝒍𝟐𝒔𝟐(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟔)

PROCEDURES

𝒍𝟏𝒔𝟎
𝒍𝟏𝒔𝟏

𝒍𝟐𝒔𝟎

𝒍𝟐𝒔𝟏
𝒍𝟐𝒔𝟐

𝒍𝟐𝒔𝟎

𝒍𝟏

𝒍𝟐

Combine

(b) Extending 2

EXTENDING 3
𝒍𝟒𝒔𝟎(𝟎, 𝟎, 𝟕, 𝟏𝟎, 𝟏𝟎, 𝟑)
𝒍𝟐𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟏), 𝒍𝟐𝒔𝟏(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟐), 𝒍𝟐𝒔𝟐(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟔)

Move (𝒍𝟐, 𝒍𝟑)
𝒍𝟑𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟐), 𝒍𝟑𝒔𝟏(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟑), 𝒍𝟑𝒔𝟐(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟕)

Combine (𝒍𝟑, 𝒍𝟒)
𝒍𝟑𝒔𝟎 = 𝒍𝟒𝒔𝟎 𝒍𝟑𝒔𝟏 	⊂ 𝒍𝟒𝒔𝟎 𝒍𝟑𝒔𝟐 ⊂ 𝒍𝟒𝒔𝟎
𝒍𝟒𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟓) 𝒍𝟑𝒔𝟏(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟔) 𝒍𝟑𝒔𝟐(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟏𝟎)

---case(c) line 13-17 ---case(b) line 8-12 ---case(b) line 8-12
RESULTS

𝒍𝟒𝒔𝟎(𝟎, 𝟎, 𝟓, 𝟏𝟎, 𝟏𝟎, 𝟓) 𝒍𝟒𝒔𝟏(𝟎, 𝟎, 𝟒, 𝟓, 𝟏𝟎, 𝟔) 𝒍𝟒𝒔𝟐(𝟐, 𝟎, 𝟎, 𝟑, 𝟏𝟎, 𝟏𝟎)

PROCEDURES

𝒍𝟐𝒔𝟏
𝒍𝟐𝒔𝟐

𝒍𝟐𝒔𝟎

𝒍𝟒𝒔𝟎

𝒍𝟑𝒔𝟏
𝒍𝟑𝒔𝟐

𝒍𝟑𝒔𝟎

𝒍𝟒𝒔𝟎

𝒍𝟐

𝒍𝟒

Move

𝒍𝟒𝒔𝟎

𝒍𝟒𝒔𝟏
𝒍𝟒𝒔𝟐Combine

(c) Extending 3

FIGURE 13. Extending step of stratified MECs in Table 4.

in Fig. 6 are updated into: 2′0 (0, 0, 5, 10, 5), 2′1 (0, 0, 4, 5, 10, 6)
and 2′3 (2, 0, 0, 3, 10, 10).

C. ASSIGNMENT STRATEGIES

The MEC list stores all of the MECs of the 3D DPR device in
the current status, thus a scheduled task can find the executable
position by searching the MEC list. If several MECs can
accommodate the target task, it is necessary to use a proper
approach as an assignment strategy to choose the best one. In
this section, several assignment strategies are introduced and
combined with the proposed MEC enumeration algorithm.

VOLUME 4, 2016 9

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

3

Task Position 𝑤 ℎ 𝑡ℎ 𝑙𝑓	
𝑡1 (2, 0, 0) 5 3 3 4
𝑡'2 (0, 0, 0) 2 3 5 8
𝑡(2 (0, 3, 0) 3 7 7 7
𝑡)2 (7, 0, 0) 3 10 1 9

0

12

6

3

9

𝒕𝟏

2

8

10

𝒕𝟐
𝒕𝟑

𝒕

Time

𝒕
𝒕𝟏

𝒕𝟐

𝒕𝟑

z

x

y

0
1

5

7 10

3

7

2

10

10

3

FIGURE 14. Tasks and timeline of a 3D DPR device RD(10, 10, 10).

1) Best-Fit Strategy (BF)
If several MECs can accommodate the scheduled task,
the Best-Fit strategy [18] selects one MEC which has
the smallest volume difference 38 5 , which is calculated
as follows: given a task C (F, ℎ, Cℎ, ; 5 , 3;) and an MEC
28 (2G8 , 2H8 , 2I8 , 2F8 , 2ℎ8 , 2Cℎ8),

38 5 (28 , C) = 2F8 × 2ℎ8 × 2Cℎ8 − F × ℎ × Cℎ (1)

If there are several MECs with the same 38 5 , we calculate
the body diagonal 380(28), defined as follows:

380(28) =
√
2F2

8
+ 2ℎ2

8
+ 2Cℎ2

8
(2)

then the MEC with the smallest body diagonal is assigned to
the task.

2) Adjacency Heuristic Strategy (Adj)
The adjacency heuristic was proposed in [19]. When a placed
task touches other tasks or the surface of the 3D DPR device,
they are defined to be adjacent. Adjacent value is the sum of
surface area where a task and its adjacent ones are touching,
taking into account the time of contact. The main idea of
this strategy is selecting the position which has the largest
adjacent value with other tasks and device surfaces, so as to
make the remaining space on the device more complete and
continuous.

Given a task C (F, ℎ, Cℎ, ; 5 , 3;) and the task set) which is
adjacent to task C assigned at position (G, H, I), the adjacent
value � can be calculated as follows:

�(G, H, I, C) =
∑
C8 ∈)

�) (C8 , C) × <8=(; 5 , 48) + �'(C) × ; 5 (3)

where �) means the adjacent area between C and C8 , 48 is the
rest of the execution time of task C8 and �' represents the
adjacent area between the task and the 3D DPR device.

As shown in Fig. 14, at time 6, three tasks C1, C2, C3 are
executed on a 10 × 10 × 10 device, whose information is
shown in the table in Fig.14. At this time, if a new task C with
dimensions 5×3×3 arrives at the system and begins to execute
at the position (2, 0, 0), the adjacent area �'(C) between task

TABLE 5. Variable definitions.

Parameter Definition
= The number of tasks currently running on the device.
" The number of MECs.
< The number of MECs that connected to target task C .

TABLE 6. Time complexity of MEC enumeration algorithm

Step Time complexity
Connected MECs Selection $ (")
Stratification $ (< × Cℎ)
Stratified MECs Update $ ((= + (<8=(F, ℎ) +<)3) × Cℎ)
Extending $ (<2 × Cℎ)
Total $ (=+ (=+ (<8=(F, ℎ) +<)3) × Cℎ)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

5 0 0

1 5 0 0

2 5 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

Nu
mb

er
of

Cu
bo

ids

N u m b e r o f r u n n i n g t a s k s

 M E C
 C M E C

FIGURE 15. Relationship between the number of tasks, MECs, and connected MECs.

C and the 3DDPR device can be calculated as 5×3+5×3 = 30.
According to the relative position of the task C with C1, C2 and
C3, the adjacent area �) (C1, C), �) (C2, C), and �) (C3, C) are 9, 3
and 3, respectively. Based on the execution timeline of tasks,
the remaining execution time of C1, C2 and C3 can be calculated
easily. Therefore, the adjacent value �(2, 0, 0, C) is equal to
�) (C1, C) × <8=(4, 2) + �) (C2, C) × <8=(4, 3) + �) (C3, C) ×
<8=(4, 6) + �'(C) × 4 = 159.
Finally, according to Eq.3, the system can get all adjacent

valueswhen a new task is placed in different possible positions
and select the position with the largest �(G, H, I, C).

IV. THEORETICAL ANALYSIS
In this section, theoretical analysis is discussed to evaluate
the performance of the proposed task placement algorithm.
Definitions of additional variables are shown in Table 5,
where a task C (F, ℎ, Cℎ, ; 5 , 3;) will be assigned or removed at
position (G, H, I), = is the number of tasks that are currently
running on the 3D DPR device RD(,, �,)�), and " is the
number of MECs which contains < MECs connected to the
task C.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

A. TIME COMPLEXITY
The time complexity of each step in the proposed MEC
enumeration algorithm is shown in Table 6. Firstly, the MEC
list is traversed to select connected MECs. Thus the time
complexity of this step is $ ("). Then, the size and position
information of each connected MEC is compared with the
target task C to select candidate layers and stratify connected
MECs into corresponding candidate layers.

Thus the time complexity of stratification is$(<× Cℎ). For
each layer, the time complexity of stratified connected MEC
update is $(=+(F + <)3), as proved in [11]. The maximum
number of candidate layers that needs to be updated is Cℎ,
which means all the layers from ;0 to CCℎ are candidate layers.
Therefore, the time complexity for stratified MECs update is
$((= + (<8=(F, ℎ) + <)3)×Cℎ). In the final extending step,
from the bottom layer to the top layer, each candidate layer is
compared one by one. Thus, the time complexity is$(<2×Cℎ).
To ensure the efficiency of processing the MEC list, the

total number of MECs " when = tasks are executing on
the 3D DPR device should be explored. In Appendix A, the
upper limit of the number of MECs is proved to not be larger
than 12= + 9. Furthermore, Fig.15 shows the experimental
results about the relationship between the number of tasks,
MECs, and connected MECs, where the G-axis represents
the number of tasks that are currently running on the
3D DPR device RD(100, 100, 100). The blue line provides
confirmatory evidence that with the running task number
increases, the number of MEC increases in a linear manner.
Besides, from the red line, we can find that the number of
connected MECs is far less than that of MECs, which proves
that the connected MECs selection step effectively reduces
the scope of exploration for subsequent steps.

Thus the total time complexity of the above MEC enumer-
ation algorithm is $ (= + (= + (<8=(F, ℎ) + <)3) × Cℎ).
About the assignment strategies, the time complexity of the

Best-Fit strategy is $ (=) since the MEC list is traversed to
select the best one to assign the scheduled task. Additionally,
the adjacency heuristic strategy needs to traverse the running
task list, MEC list, and surfaces of the 3D DPR device
to calculate the adjacent value �(G, H, I, C), thus the time
complexity is $ (=2).

B. SPACE COMPLEXITY
Space complexity of the proposed algorithm consists of the
following parts: 1) an MEC list �, 2) a layer list !�. Thus,
the total space complexity is $ (" + < × Cℎ).

V. EXPERIMENTAL RESULTS AND EVALUATION
A. EXPERIMENTAL SETUP
To evaluate the performance of the proposed task placement
algorithm, we compare it with existing algorithms that focus
on the 3D task placement problem. Based on the literature
survey, we implement two algorithms for comparison. The
first one is the 4D compaction algorithm [5], which has
higher placement quality compared to other existing 3D task
placement algorithms. Another one named 3D QC is an

TABLE 7. Task sets for simulation.

Task set FA , ℎA , CℎA ; 5A [<B] Number of tasks
TS1 [1-5] [100-500] 500
TS2 [5-10]
TS3 [5-15]
TS4 [5-20]
TS5 [10-20]

extension of the Quad-corner algorithm proposed in [6]. The
Quad-corner algorithm has high efficiency when targeting on
a 2D DPR device. Thus we extend it from 2D to 3D.
We construct an experimental framework in C language

to implement our proposed and baseline algorithms. The
experimental environment is macOS 10.15.1, GCC 4.8 on 1.4
GHz Quad-Core Intel Core i5 Processor with 8 GB Memory.
Experiments are performed on a 3D DPR device with

50 × 50 × 50 reconfigurable units. There are five task sets,
each containing 500 tasks. Moreover, each task is randomly
generated according to the information given inTable 7,where
FA , ℎA , CℎA and ; 5A are ranges of task’swidth, height, thickness
and lifetime in each task set, respectively.
Note that the size of tasks in TS1[1-5] are so small that

the 3D DPR device RD(50, 50, 50) can accommodate all 500
tasks of TS1 simultaneously.

B. EVALUATION INDICATORS
Runtime overhead and placement quality of a task placement
algorithm have a significant influence on the performance
of the 3D DPR device. Thus, the average runtime and
rejection ratio introduced below, are chosen as two evaluation
indicators.
�E4A064 AD=C8<4 is the sum of searching time and

updating time, which is an indication of the speed of the
task placement algorithm. Searching time is the average time
to find an available position when a task is assigned. Updating
time is the average time to manage free space after removing
or assigning a target task.
'4 942C8>= A0C8> is used to evaluate the placement quality

of the task placement algorithm. When a task can not find
an available position until its given deadline, it will be
rejected.The equation to calculate the rejection ratio is defined
as follows:

'4 942C8>= A0C8> =

∑
∀C8 ∈'����)

F8 × ℎ8 × Cℎ8 × ; 58∑
∀C 9 ∈)$) �!

F 9 × ℎ 9 × Cℎ 9 × ; 5 9
(4)

where '����) means the set of tasks that are rejected from
the total task set)$)�!, where F, ℎ, Cℎ, and ; 5 represent
the width, height, thickness, and lifetime of the corresponding
task, respectively.

C. EVALUATION OF TASK PLACEMENT ALGORITHM
1) Evaluation of Runtime Overhead
For each task set shown in Table 7, we generate 500 tasks and
repeat 100 times to do experiments to get the average runtime.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

TABLE 8. Evaluation of average runtime.

Algorithm Process Average runtime (μs)
TS1[1-5] Ratio TS2[5-10] Ratio TS3[5-15] Ratio TS4[5-20] Ratio TS5[10-20] Ratio

4D compaction [5] Total 11458 249.09 7840 82.53 4399 29.73 2717 21.23 2081 37.16
(Searching/updating) (11456/2) (7838/2) (4397/2) (2716/1) (2081/<1)

3D QC [6] 24 0.52 169 1.78 161 1.09 186 1.45 187 3.34
(24/<1) (168/1) (158/3) (181/5) (178/9)

Proposed (MEC/BF*) 46 1.00 95 1.00 148 1.00 128 1.00 56 1.00
(1/45) (5/90) (3/145) (2/126) (< 1/56)

* Our proposed task placement algorithm is the combination of the MEC enumeration algorithm and the Best-Fit strategy.

To evaluate the runtime overhead fairly, the deadline of each
task is set to a value large enough to guarantee there is no
task rejected on the 3D DPR device. Experimental results of
total average runtime, which is the sum of searching time and
updating time for each algorithm, are shown in Table 8, where
the proposed task placement algorithm is the combination of
the MEC enumeration algorithm and the Best-Fit strategy
(MEC/BF).

As shown in Table 8, the total average runtime of proposed
MEC/BF algorithm is 46 μs, 95 μs, 148 μs, 128 μs and 56
μs for the task sets TS1 to TS5, respectively. For all task
sets, the speed of the MEC/BF algorithm is much faster than
the 4D compaction algorithm, especially when the task size is
small enough, the searching time of 4D compaction algorithm
is greatly increased. The reason is that the 4D compaction
algorithm has to traverse all scheduled tasks, running tasks
and each RU on the 3DDPR device, to find the best position to
assign arriving tasks. The time complexity of 4D compaction
algorithm is $ (, × � ×)� × <0G(=B × =)), where , , �,
)�, =B and = are the width, height, thickness of the 3D DPR
device, the number of scheduled tasks, and running tasks,
respectively. In addition, the 3D QC needs to traverse the
running tasks on the 3D DPR device with time complexity
$ (F × ℎ × Cℎ × =), where F, ℎ, Cℎ is the width, height, and
thickness of the assigned task, respectively. Therefore, when
the task size is small enough, such as TS1 in Table 8, the
3D QC has the shortest total average runtime compared with
4D compaction and the proposed MEC/BF. Nevertheless, the
speed of 3D QC is significantly affected by the task size so
that when the task size becomes larger fromTS2, the proposed
MEC/BF algorithm performs better.

In order to better analyze the runtime overhead of the
algorithms, Table 8 also shows the time spent by each
algorithm on searching and updating.

The searching time of the MEC/BF algorithm is shorter
than 4D compaction and 3D QC because the Best-Fit strategy
finds the available position by searching an MEC list with a
time complexity of $ (=).

From TS1 to TS5, with the task size becoming larger,
the number of running tasks or scheduled tasks on the 3D
DPR device is decreased. Thus, the searching time of the 4D
compaction algorithm is significantly reduced. For the 3D
QC algorithm, the searching time is related to not only the
number of running tasks but also the task size. Therefore,

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

2 5 0

7 5 0

0

5 0 0

1 0 0 0

Nu
mb

er
of

ME
Cs

N u m b e r o f r u n n i n g t a s k s

 T S 1 [1 - 5]
 T S 2 [5 - 1 0]
 T S 3 [5 - 1 5]
 T S 4 [5 - 2 0]
 T S 5 [1 0 - 2 0]

FIGURE 16. Number of MECs when task set TS1 to TS5 executed on the
RD(50, 50, 50).

from TS4[5,20] to TS5[10,20], the searching time of 3D QC
is decreased significantly since the number of running tasks
on the 3D DPR device is reduced even though the task size
becomes larger. For the proposed MEC/BF algorithm, Fig.
16 shows the number of MECs corresponding to the number
of tasks currently running on the 3D DPR device for the
task sets TS1 to TS5, where the number of MECs for TS2
is considerably more than TS1, so that the searching time is
increased from 1 μs to 5 μs. By contrast, from TS2 to TS5,
the searching time is decreased with the decreasing number
of MECs on the device.
In terms of updating time, the proposedMEC/BF algorithm

has the longest updating time. The reason is that the MEC
enumeration process needs to search all connected MECs
and update the information of them, while the 3D QC only
needs to update the 3D matrix occupied by the assigned
or removed task with time complexity $ (F × ℎ × Cℎ). The
updating time of the 4D compaction algorithm is shorter than
3DQC andMEC/BF due to the updating operation completed
by removing or adding a task into a scheduled task list or a
running task list.
With the task size becoming larger, the updating time of

3D QC is longer than before since a larger task size means
that a larger 3D matrix requires updating. From TS1 to TS3,
the updating time of MEC/BF becomes longer, although the

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

FIGURE 17. Rejection ratio with different deadline ranges.

number of running tasks on the 3D DPR device gradually
decreases. This is because the thickness of a task also has a
significant influence on the runtime of the MEC enumeration
algorithm. From TS4 to TS5, relative to the size of the 3D
DPR device 50 × 50 × 50, the size of the task is so large that
only a small number of tasks can be executed on the device
simultaneously, thus the updating time is gradually decreased
compared with TS3.

In general, the runtime efficiency of proposed MEC/BF al-
gorithm ismuch improved in comparisonwith 4D compaction
and 3D QC algorithms.

2) Evaluation of Placement Quality
To explore the relationship between task deadline and rejec-
tion ratio, tasks with different deadline ranges [1, 2], [2, 3],
[3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9] and [9, 10] (×100ms)
are given based on the task’s width, height and thickness
ranges of [5-15]. Task arrival time interval (AT) is set to 300
μs,whichmeans a new task arrives at the 3DDPRdevice every
300 μs. As shown in Fig.17, with the increase in task deadline,
the rejection ratio of each method decreases gradually. For the
reason that, if the deadline for each task is shorter, it is more
difficult for the task placement algorithm tomeet the deadline.

To explore the relationship between the task arrival time
interval (AT) and rejection ratio, tasks with different ATs 100
μs, 200 μs, ..., 1900 μs and 2000 μs are given. All the task’s
width, height, and thickness are randomly generated between
[5-15], and the deadline is set between [1-10] (×100) ms.
As shown in Fig.18, the rejection ratio for each algorithm
decreases with the increase of AT since a longer task arrival
time interval allows more possibilities for running tasks to be
finished, so the rejection ratio is lower.

The data gathered in Fig. 17 and Fig. 18 suggests that
proposed MEC/BF algorithm has the lowest rejection ratio.
Compared with the previous works, the total average rejection
ratio is reduced at least 39%. Moreover, the 4D compaction
algorithm has the highest average rejection ratio. Although
the 4D compaction algorithm places the arrival tasks more
compactly on the 3D DPR device by considering the relative
position between scheduled tasks and running tasks [5], it

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

Re
jec

tio
n r

ati
o (

%)

A T (� s)

 4 D c o m p a c t i o n
 3 D Q C
 M E C / B F
 M E C / A d j

A

FIGURE 18. Rejection ratio with different task arrival time intervals (AT).

takes a much longer time to search for a feasible position for
the current task than 3D QC and the proposed MEC/BF and
MEC/Adj algorithms. The longer runtime means other new
arriving tasks have to take more time to wait for calling so
that it is much easier to be rejected. The rejection ratio of 3D
QC is higher than MEC/BF and MEC/Adj algorithm because
the limitation of searching candidates in 3D QC prevents the
arriving task be placed although there is enough space on the
3D DPR device to accommodate it. In contrast, the proposed
MEC/BF and MEC/Adj algorithms can assign an arriving
task as long as there is enough space. The rejection ratio of
the MEC/Adj algorithm is higher than MEC/BF, as the time
complexity of adjacency heuristic $ (=2) is higher than Best-
Fit $ (=), although the adjacency heuristic places the task
more compactly than Best-Fit.
Fig. 18 demonstrates that the rejection ratio of the 4D com-

paction algorithm decreases faster than 3D QC. Moreover,
from point � the rejection ratio of 4D compaction starts to
be lower than 3D QC. The reason is that the 4D compaction
algorithm has a runtime close to 3D QC due to the reduced
number of running tasks on the device, and the algorithm
places tasks more compactly than 3D QC. When the runtime

VOLUME 4, 2016 13

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

advantages of 3D QC are not obvious, the gap in the rejection
ratio is gradually decreased.

VI. CONCLUSION AND FUTURE WORK
In this paper, to solve the problem of online task placement
on 3D dynamic partial reconfigurable devices, we propose a
novel data structure named MEC and an efficient algorithm.
When a task is assigned or removed, the connected MECs
of the target task are selected, and processed by stratifying,
updating, and extending.We ensure the efficiency of searching
the MEC list by proving the upper limit of the number
of MECs theoretically and experimentally. Furthermore, the
experimental results demonstrate that the runtime overhead of
the proposed task placement algorithm is greatly decreased,
and the rejection ratio is at least reduced by 39% compared
to 4D compaction [5] and 3D QC [6]. Therefore, the
performance of the 3D DPR device can be greatly improved.

Since the task placement is only one step in the overall
process of online task processing for dynamic partial recon-
figurable devices, as part of our future work, a scheduling
order based on task priority will be taken into consideration.
Furthermore, in reality, tasks require frequent data transmis-
sion in most applications, therefore the development of a new
placement strategy to further minimize task communication
overhead is necessary.

.

APPENDIX A THE UPPER LIMIT OF THE NUMBER OF MECS
For a 2D planer placement problem, a 10A-E8B818;8CH 6A0?ℎ
mentioned in [20] [21] is redefined as a graph that the vertices
of the graph correspond to the rectangle or the boundary
of the 2D DPR device and two vertices of the graph are
visible whenever there exists a vertical sightline between
two rectangles corresponding to the vertices [11]. An edge
between two vertices represents the visible relationship.

For a layout of tasks on a 3D DPR device, we consider the
six boundaries of the device as six surfaces !, ', �, �,* and
� (shown in Fig. 19(a)). According to the definition of the bar-
visibility graph, the visible relationship can be represented as
a left-right bar-visibility graph in the G-axis direction, a front-
back bar-visibility graph in the H-axis direction and an up-
down bar-visibility graph in the I-axis direction. We consider
tasks and the six surfaces as vertices. Thus the 3D layout
can be transformed into a 2D1>83-E8B818;8CH 6A0?ℎ, which is
defined as follows:
Definition 6:A cuboid-visibility graph� (+, �) is a union of
the left-right bar-visibility graph �G (+, �G), the front-back
bar-visibility graph �H (+, �H) and the up-down visibility
graph �I (+, �I), where its vertex set + is the same as �G ,
�H , or �I and its edge set � = �G ∪ �H ∪ �I .

Theorem 1 proved that each surface of an MEC must touch
another task or the surface of the 3D DPR device. Thus,
the edge between two vertices in a cuboid-visibility graph
represents there exists at least one MEC that touch with the
task or device’s surface represented by the vertices.

𝑩

1

2

𝑼

𝑫

𝑳 𝑹

𝑭

(a)A layout of two tasks
on a 3D DPR device

1

2

U

D

L R

B

F

(e) The cuboid-visibility graph

2

1
𝑳 𝑹

(b) Left-right bar-visibility graph

𝒆𝒙𝒊

2

1

𝑼

𝑫
(d) Up-down bar-visibility graph

𝒆𝒛𝒌

1
2

𝑭

𝑩

(c) Front-back bar-visibility graph

𝒆𝒚𝒋

z

FIGURE 19. An example of transforming a layout into a cuboid-visibility graph.

Theorem 3: Given a 3D DPR device and = non-overlapping
tasks placed on the device, where = ≥ 1, the total number of
MECs " is not larger than 12= + 9.
Proof 3: According to Definition 6, we consider trans-
forming the 3D DPR device into a cuboid-visibility graph
� (+, �), which is the union of a left-right bar-visibility graph
�G (+, �G), a front-back bar-visibility graph�H(+ , �H) and a
up-down visibility graph �I (+, �I), where �G , �H and �I is
the edge set of 4G8 , 4H 9 and 4I: , respectively. Thus, the set of
all MECs " on the 3D DPR device can be demonstrated by:

" =

(⋃
∀4G8 ∈�G

"4G8

) ⋃ (⋃
∀4H 9 ∈�H

"4H 9

) ⋃ (⋃
∀4I: ∈�I

"4I:

)
(5)

where "4G8 , "4H 9 and "4I: represent the MEC set that
touch two surfaces connected by 4G8 , 4H 9 and 4I: in the left-
right bar-visibility graph, front-back bar-visibility graph and
up-down bar-visibility graph, respectively.
According to Eq. 5, the number of MECs |" | in set "

satisfies the following Eq. 6.

|" | ≤
∑

∀4G8 ∈�G

��"4G8 �� + ∑
∀4H 9 ∈�H

��"4H 9 �� + ∑
∀4I: ∈�I

��"4I: ��
= |�G | +

∑
∀4G8 ∈�G

(
��"4G8 �� − 1) +���H �� + ∑

∀4H 9 ∈�H
(
��"4H 9 �� − 1) +

|�I | +
∑

∀4I: ∈�I
(
��"4I: �� − 1)

=
1
2
× (|�G | +

���H �� + ���H �� + |�I | + |�G | + |�I |) +∑
∀4G8 ∈�G

(
��"4G8 �� − 1) +

∑
∀4H 9 ∈�H

(
��"4H 9 �� − 1)+∑

∀4I: ∈�I
(
��"4I: �� − 1)

(6)

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

A A42C0=6;4-E8B818;8CH 6A0?ℎmentioned in [22] is the union
of two bar-visibility graphs and the total edge number of the
rectangle-visibility graph is not larger than 6= + 4, which has
been proved in [11]. For the 3D DPR device, any two of its
three bar-visibility graphs can be considered as a rectangle-
visibility graph. Thus, the number of edges |�G |,

���H �� and |�I |
in three bar-visibility graph satisfies the following equation:

|�G | +
���H �� ≤ 6= + 4���H �� + |�I | ≤ 6= + 4

|�G | + |�I | ≤ 6= + 4
(7)

The value of (
��"4G8 �� − 1) depends on the the number of tasks

between two vertices that are connected by the edge 4G8 in
�G , the same with the value of (

��"4H 9 �� − 1) and (
��"4:8 �� − 1).

When = tasks are placed on the 3D DPR device, the Eq. 8 is
satisfied, which was already proved in [11].∑

∀4G8 ∈�G
(
��"4G8 �� − 1) =

∑
∀4H 9 ∈�H

(
��"4H 9 �� − 1)

=
∑

∀4I: ∈�I
(
��"4I: �� − 1)

≤ = + 1

(8)

Therefore, when there are = tasks placed on the 3D DPR
device, where = ≥ 1, the total number of MECs |" |, is not
larger than 1

2 × (6= + 4) × 3 + 3(= + 1) = 12= + 9.

REFERENCES
[1] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems

and software,” ACM Computing Surveys (csuR), vol. 34, no. 2, pp. 171–
210, 2002.

[2] A. Rahman, S. Das, A. P. Chandrakasan, and R. Reif, “Wiring requirement
and three-dimensional integration technology for field programmable
gate arrays,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 1, pp. 44–54, 2003.

[3] V. Pangracious, Z. Marrakchi, and H. Mehrez, “An overview of three-
dimensional integration and fpgas,” in Three-Dimensional DesignMethod-
ologies for Tree-based FPGA Architecture. Springer, 2015, pp. 1–12.

[4] K. Sakuma, 3D Integration in VLSI Circuits: Implementation Technologies
and Applications. CRC Press, 2018.

[5] T. Marconi and T. Mitra, “A novel online hardware task scheduling and
placement algorithm for 3d partially reconfigurable fpgas,” in Field-
Programmable Technology (FPT), 2011 International Conference on.
IEEE, 2011, pp. 1–6.

[6] T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “A novel fast online
placement algorithm on 2d partially reconfigurable devices,” in Field-
Programmable Technology, 2009. FPT 2009. International Conference on.
IEEE, 2009, pp. 296–299.

[7] J. Tabero, J. Septién, H. Mecha, D. Mozos, and S. Roman, “A vertex-
list approach to 2d hw multitasking management in rtr fpgas,” Design of
Circuits and Integrated Systems (DCIS), pp. 545–550, 2003.

[8] M. Handa and R. Vemuri, “An efficient algorithm for finding empty space
for online fpga placement,” in Proceedings of the 41st annual Design
Automation Conference. ACM, 2004, pp. 960–965.

[9] J. Cui, Z. Gu, W. Liu, and Q. Deng, “An efficient algorithm for online
soft real-time task placement on reconfigurable hardware devices,” in
Object and Component-Oriented Real-Time Distributed Computing, 2007.
ISORC’07. 10th IEEE International Symposium on. IEEE, 2007, pp.
321–328.

[10] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez, “Empty
resource compaction algorithms for real-time hardware tasks placement on
partially reconfigurable fpgas subject to fault ocurrence,” in Reconfigurable
Computing and FPGAs (ReConFig), 2011 International Conference on.
IEEE, 2011, pp. 27–34.

[11] T. Pan, L. Zeng, Y. Takashima, and T. Watanabe, “A fast mer enumeration
algorithm for online task placement on reconfigurable fpgas,” IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 99, no. 12, pp. 2412–2424, 2016.

[12] S. Chiricescu, M. Leeser, and M. M. Vai, “Design and analysis of a
dynamically reconfigurable three-dimensional fpga,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 186–
196, 2001.

[13] C. Ababei, H.Mogal, andK. Bazargan, “Three-dimensional place and route
for fpgas,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 6, pp. 1132–1140, 2006.

[14] M. J. Alexander, J. P. Cohoon, J. L. Colflesh, J. Karro, and G. Robins,
“Three-dimensional field-programmable gate arrays,” in ASIC Conference
and Exhibit, 1995., Proceedings of the Eighth Annual IEEE International.
IEEE, 1995, pp. 253–256.

[15] M. Leeser, W. M. Meleis, M. M. Vai, S. Chiricescu, W. Xu, and P. M.
Zavracky, “Rothko: A three-dimensional fpga,” IEEE Design & Test
of Computers, vol. 15, no. 1, pp. 16–23, 1998.

[16] K. Saban, “Xilinx stacked silicon interconnect technology delivers break-
through fpga capacity, bandwidth, and power efficiency,” Xilinx, White
Paper, vol. 1, p. wP380, 2011.

[17] T. Zhou, T. Pan, and T. Watanabe, “A fast online task placement algorithm
on 3d partially reconfigurable devices,” in TENCON 2017-2017 IEEE
Region 10 Conference. IEEE, 2017, pp. 427–432.

[18] R. Ayadi, B. Ouni, and A. Mtibaa, “Exploring the temporal placement
for partially reconfigurable device,” in Communications, Computing and
Control Applications (CCCA), 2011 International Conference on. IEEE,
2011, pp. 1–4.

[19] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “A low fragmentation
heuristic for task placement in 2d rtr hwmanagement,” Field Programmable
Logic and Application, pp. 241–250, 2004.

[20] D. G. Kirkpatrick and S. K. Wismath, “Weighted visibility graphs of
bars and related flow problems,” in Workshop on Algorithms and Data
Structures. Springer, 1989, pp. 325–334.

[21] S. K. Wismath, “Characterizing bar line-of-sight graphs,” in Proceedings
of the first annual symposium on Computational geometry. ACM, 1985,
pp. 147–152.

[22] J. P. Hutchinson, T. Shermer, and A. Vince, “On representations of some
thickness-two graphs,” Computational Geometry, vol. 13, no. 3, pp. 161–
171, 1999.

TINGYU ZHOU was born in Chongqing, China
on April, 1995. She received her B.E. degree in
Software Engineering from Sichuan University in
2016. In 2017, she received the M.E. degree and
be currently working toward the Ph.D degree in
Graduate School of Information, Production and
Systems from Waseda University. Since 2019, she
has been a Research Associate in the IPS Research
Center ofWasedaUniversity. Her research interests
are reconfigurable computing and run-time map-

ping algorithm. She is a student member of IEEE.

TIEYUAN PAN was born in Donggang, China on
October 1988. He received his B.E and M.E.
degree from the University of Kitakyushu in 2012
and 2014, Ph.D degree from Graduate School
of Information, Production and Systems, Waseda
University in 2017. FromApril 2015 toApril 2017,
he had been a Research Associate in IPS research
Center of Waseda University. He is currently
working at DENSO Corporation. His research
interests are in combinatorial algorithm for VLSI

layout design and its applications.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2975254, IEEE Access

Zhou et al.: A Fast Online Task Placement Algorithm for Three-dimensional Dynamic Partial Reconfigurable Devices

MICHAEL CONRAD MEYER is currently an Assis-
tant Professor at Waseda University. He was previ-
ously a post-doctoral researcher at theUniversity of
Aizu in Fukushima, Japan, as amember of the Data
Networking Laboratory. He graduated from Rose-
Hulman Institute of Technology, in Indiana, USA,
with a B.S. in Computer Engineering in 2012, and
then with a M.A. in Engineering Management in
2013. In 2017 he received a Ph.D. in Comp. Sci.
and Eng. from the University of Aizu. He has

worked for Texas Instruments before starting his Ph.D., and before that he had
worked for Syntheon developing biomedical devices. His research interests
cover on and off chip networks, reliability and photonics.

YIPING DONG was born in Jiangsu pref., China,
in 1983. He received the B.E. degree in electronics
and engineering from Southeast University, China
in 2006, and the M.S. degree and Dr. degree
in Graduate School of Information, Production
and System, Waseda University, Japan in 2008
and 2011, respectively, where he worked in the
field of NoC, FPGA and artificial neural network.
He joined Research and Development Center of
HITACHI Corp. in 2012, where he worked in the

field of image processing and FPGA. In August 2014, he joined China Key
System & Integrated Circuit Co., Ltd, where he worked in the field of design
and application of FPGA, NoC design.

TAKAHIRO WATANABE was born in Ube, Japan
on October, 1950. He received the B.E. and the
M.E. in Electrical Engineering from Yamaguchi
University, and the Dr. Eng. from Tohoku Univer-
sity. In 1979, he joined Research and Development
Center of TOSHIBACorp., where heworked in the
field of LSI design automation. In August 1990, he
joined Yamaguchi University, the Department of
Computer Science and Systems Engineering, and
in April 2003, he moved to Waseda University,

Graduate School of Information, Production and Systems. His current
research interests are EDA algorithm, Microprocessor and MPSoC, NoC,
FPGA and their applications. He is a member of IEICE, IPSJ and IEEE.

16 VOLUME 4, 2016

