
A Personalized Smart Cube for

Scalable and Faster

Access to Data

by

Daniel Kwesi Antwi

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the MCS degree in

Computer Science

School of Electrical Engineering and Computer Science

Faculty of Engineering

University of Ottawa

c© Daniel Kwesi Antwi, Ottawa, Canada, 2013

Abstract

Organizations own data sources that contain millions, billions or even trillions of rows

and these data are usually highly dimensional in nature. Typically, these raw repositories

are comprised of numerous independent data sources that are too big to be copied or

joined, with the consequence that aggregations become highly problematic. Data cubes

play an essential role in facilitating fast Online Analytical Processing (OLAP) in many

multi-dimensional data warehouses. Current data cube computation techniques have

had some success in addressing the above-mentioned aggregation problem. However,

the combined problem of reducing data cube size for very large and highly dimensional

databases, while guaranteeing fast query response times, has received less attention.

Another issue is that most OLAP tools often causes users to be lost in the ocean of

data while performing data analysis. Often, most users are interested in only a subset

of the data. For example, consider in such a scenario, a business manager who wants

to answer the crucial location-related business question. ”Why are my sales declining

at location X”? This manager wants fast, unambiguous location-aware answers to his

queries. He requires access to only the relevant filtered information, as found from the

attributes that are directly correlated with his current needs. Therefore, it is important

to determine and to extract, only that small data subset that is highly relevant from a

particular user’s location and perspective.

In this thesis, we present the Personalized Smart Cube approach to address the above-

mentioned scenario. Our approach consists of two main parts. Firstly, we combine

vertical partitioning, partial materialization and dynamic computation to drastically

reduce the size of the computed data cube while guaranteeing fast query response times.

Secondly, our personalization algorithm dynamically monitors user query pattern and

creates a personalized data cube for each user. This ensures that users utilize only that

small subset of data that is most relevant to them.

Our experimental evaluation of our Personalized Smart Cube approach showed that

our work compared favorably with other state-of-the-art methods. We evaluated our

work focusing on three main criteria, namely the storage space used, query response

time and the cost savings ratio of using a personalized cube. The results showed that our

algorithm materializes a relatively smaller number of views than other techniques and it

also compared favourable in terms of query response time. Further, our personalization

algorithm is superior to the state-of-the art Virtual Cube algorithm, when evaluated

in terms of the number of user queries that were successfully answered when using a

personalized cube, instead of the base cube.

ii

Acknowledgements

I greatly thank God for helping me come this far in my education. His grace, favour

and faithfulness have been unceasing in my entire life. I also express my profound

appreciation to my supervisor, Dr. Herna L. Viktor for her valuable help, advice and

guidance during my graduate studies and also for being pivotal in exposing to different

aspects of computer science and research at the graduate level.

I sincerely acknowledge the financial support I received from the NSERC Stategic

Network on Business Intelligence (BI) through my supervisors.

A special thanks goes to my parents, Mr. Patrick Antwi and Mrs. Georgina Owusua,

for instilling in me, since an early age, the enthusiasm of learning and inspiring me to seek

higher education and to my dear siblings, Eric Boamah, Lydia Antwi and Diana Antwi

for their moral support and for always being there for me and giving me the courage to

go on in my journey

Last but not least, I am grateful to my great friends, Naki Ocran for agreeing to proof-

read my thesis, Mavis Manu and Anita Darkoh for always checking up on me about the

status of my thesis, Michael Mireku and Dela Deyoungster for their continued support

and encouragement and their insightful advice.

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contribution . 4

1.3 Thesis Organization . 5

I LITERATURE REVIEW 7

2 Data Warehouses and On-line Analytical Processing (OLAP) 8

2.1 Basic Concepts of Data Warehouse . 9

2.1.1 Data warehouse Architecture . 10

2.1.2 Star Schema - A logical database design 11

2.1.3 Materialized Views . 12

2.2 Data Cubes and OLAP . 12

2.2.1 Data Cube: A Multidimensional Data Model 12

2.2.2 Data cube traversal . 15

2.2.3 Data Cube Materialization . 16

2.2.4 OLAP Architecture . 18

2.3 Indexing Data Cubes . 20

2.3.1 Bitmap Indexes . 20

2.3.2 Bitmap Join Indexes . 21

2.3.3 Inverted Indexes . 21

2.4 Summary . 22

3 Data Cube Computation Techniques 24

3.1 Computation Methods . 24

3.1.1 2D Algorithm . 25

3.1.2 GBLP Algorithm . 26

3.1.3 Partitioned-Cube Algorithm . 27

vi

3.1.4 BUC Algorithm . 28

3.1.5 Condensed Cube Algorithms . 28

3.1.6 Dwarf Cube Algorithm . 29

3.1.7 Shell Fragment Approach . 31

3.1.8 Discussion . 33

3.2 Selection Methods . 35

3.2.1 Greedy Algorithm . 36

3.2.2 BPUS Algorithm . 37

3.2.3 Greedy-Interchange and Inner-Level Greedy algorithm 37

3.2.4 MDred-lattice Algorithm . 39

3.2.5 PBS Algorithm . 39

3.2.6 Inverted-Tree Greedy Algorithm 41

3.2.7 PGA Algorithm . 42

3.2.8 PickBorders Algorithm . 42

3.2.9 DynaMat Algorithm . 44

3.2.10 Discussion . 46

3.3 Summary . 49

II Personalized SMART CUBES for scalable, fast data ac-
cess 50

4 The Personalized Smart Cube Approach 51

4.1 Problem Definition . 52

4.2 Personalized Smart Cube Approach . 52

4.2.1 Smart View Algorithm . 57

4.2.2 Smart Materialization Algorithm 60

4.3 Personalization of Smart Cubes . 62

4.4 Querying the Personalized Smart Cube 65

4.5 Conclusion . 67

5 Experimental Design 68

5.1 Experimental Databases . 68

5.1.1 TPC-DS Database . 69

5.1.2 US Census 1990 Database . 69

5.1.3 Synthetic Database . 70

5.2 Experimental Setup . 71

5.2.1 Query Profile . 72

vii

5.3 Implementation Details . 72

5.3.1 Architecture of proposed system 73

5.3.2 Partitioning and View Materialization 74

5.3.3 Personalizing the smart cube . 76

5.3.4 Answering User Queries . 77

5.4 Summary . 78

6 Evaluation and Results 80

6.1 Criteria of Evaluation . 80

6.1.1 Cost and Memory . 81

6.1.2 Performance Factor . 81

6.1.3 Cost Saving Ratio (CSR) . 81

6.2 Experimental Results . 82

6.2.1 Storage Size . 83

6.2.2 Performance Factor and Query Processing Time 89

6.2.3 Cost Saving Ratio (CSR) . 96

6.3 Discussion . 97

6.4 Conclusion . 99

7 Conclusion 100

7.1 Discussion . 100

7.2 Thesis Contributions . 102

7.3 Future Work . 102

A List of Queries 104

viii

List of Tables

2.1 The original table from a sample database 22

2.2 Inverted Index for a single dimension A 23

2.3 Cuboid AB using inverted index . 23

3.1 Fact table for Sales cube . 30

3.2 The original dimension table with five (5) attributes 31

3.3 Inverted Indexes for Individual Dimensions A, B, C, D, and E 32

3.4 Cuboid for AB . 32

3.5 Comparison of data cube computation approaches 34

3.6 Comparison of data cube selection approaches 47

5.1 Effect of storage size on materialized cuboids 77

A.1 One (1) Dimensional Queries using TCP-DS Database 104

A.2 Two (2) Dimensional Queries using TCP-DS Database 105

A.3 Three (3) Dimensional Queries using TCP-DS Database 107

A.4 Four (4) Dimensional Queries using TCP-DS Database 109

A.5 Sample Queries using US Census 1990 Database 112

ix

List of Figures

2.1 A sample three (3) tier data warehouse architecture 10

2.2 A multidimensional model data cube [33] 13

2.3 Roll-up and drill-down operations . 14

2.4 The original query results and the pivoted query results 14

2.5 A top-down traversal example . 15

2.6 A bottom up traversal example . 16

3.1 Example of cube lattice . 26

3.2 The nodes selected by PBS [42] . 40

3.3 Sample data cube [29] . 44

4.1 A data cube example . 54

4.2 A Multidimensional Relation . 56

4.3 The space bound . 58

4.4 A sample Smart View . 59

4.5 A personalized data cube . 65

5.1 A star schema for a DWH of a retail application 70

5.2 The Architecture of the personalized smart cube 73

5.3 Process flow for smart cube with inverted indices 75

5.4 Process flow for smart cube with Bitmap index 76

5.5 Processing queries using the personalized smart cube 78

6.1 Storage size of materialized cube with no smart views: (50-C) T=2000000,

C=50, S=0, F=8. (100-C) T=2000000, C=100, S=2, F=10 84

6.2 Storage size of smart cube with no smart view (SMNV) compared with

Shell Fragment (SF): (SMNV) T=2,000,000, C=50, S=0, F=8. (SF)

T=2,000,000 C=50, S=0, F=3 . 84

6.3 Storage size of materialized cube with smart views: (50-C) T=2000000,

C=50, S=0, F=3. (100-C) T=2000000, C=100, S=2, F=10 85

x

6.4 Storage size of Smart Cube with Smart View (SMNV) compared with

Shell Fragment (SF): (SMNV) T=2,000,000, C=50, S=0, F=8. (SF)

T=2,000,000 C=50, S=0, F=3 . 85

6.5 Storage size for Different Fragments: (50-D) T=2,000,000, D=50, C=50,

S=0. (60-D) T=2,000,000, D=60, C=50, S=0 87

6.6 Storage size of SC compared with SF for Different Fragments: (50-D)

T=2,000,000, D=50, C=50, S=0 . 87

6.7 Storage size per row threshold: (50-D) T=2,000,000, D=50, C=50, S=0.

(70-D) T=2,000,000, D=70, C=50, S=0 88

6.8 Performance Factor with f = 3.38 and f = 11.39 89

6.9 Performance Factor Distribution for TPC-DS dataset 90

6.10 Performance Factor Distribution for US Census Data 90

6.11 Runtime of Query Profile (SmartCube vs. PickBorders) 91

6.12 Runtime of Query Profile (SmartCube vs. PBS) 92

6.13 Runtime of Query Profile (SmartCube vs. DynaMat) 92

6.14 Average query time per 100 trials: (US Census data 1990) T=500K . . . 93

6.15 Average query time for Smart Cube with no Smart View (SCNSV) and

Smart Cube with Smart View (SCSV): (US Census data 1990) T=500K . 94

6.16 Average query time for Smart Cube with no Smart View (SCNSV) and

Smart Cube with Smart View (SCSV): (TCP-DS data) T=3000,000 . . . 94

6.17 Runtime of Query Profile (SmartCube vs. Personal Cube) 95

6.18 DCSR per view for uniform queries on views 97

xi

List of Algorithms

1 The Shell Fragment Algorithm . 33

2 Pick Small Cuboid Algorithm . 43

3 The Smart Cube Construction Algorithm 55

4 The Smart Materialization Algorithm . 62

5 Data Cube Personalization Algorithm . 64

6 Query Answering Algorithm . 66

xii

Chapter 1

Introduction

Data Warehouses and Online Analytical Processing (OLAP) are widely used to aid the

understanding of corporate data, and aim at increasing the productivity in decision-

making processes that are supported by business applications [16]. A Data Warehouse is a

multidimensional database that stores subject oriented, integrated, time-variant and non-

volatile data, and is often modeled through a star schema composed of fact and dimension

tables [35]. While fact tables store numeric measures of interest, dimension tables contain

attributes that contextualize these measures. Also, attributes of a dimension may have a

relationship with other attributes of the dimension through hierarchies. A lower level to

higher level hierarchy has very concise data and several intermediate levels representing

increasing degrees of aggregation. All the levels together compose a data cube that allows

the analyses of numerical measures from different perspectives. For example in a retail

application, we can examine: (1) revenue per product, per customer city, per supplier

(lower level), (2) revenue by customer country and product category, revenue per year

(intermediate level), and (3) total revenue (higher level). OLAP software enables the

analytical processing of a Data Warehouse’s multidimensional data according to such

different levels of aggregation.

In Data Warehouses, materialized views store precomputed aggregated data to elimi-

nate overheads associated with expensive joins and/or aggregations required by analytical

queries. However, due to space and time limitations, we cannot store all these views.

So, given a certain storage cost threshold, there is a need for selecting the best views

to be materialized, i.e. views that fit the storage requirements and provide the lowest

response time to process OLAP queries. In the multidimensional model, more precisely

when considering data cubes, relationships between the views may be used in order to

define what is the best set of views. A view selection algorithm, in the context of data

cubes takes as input a fact table and returns a set of views to store, in order to speed up

1

Introduction 2

queries. The so-called fact table used in the context of a data cube, is usually a flattened

view that contains both numeric measures and dimension attributes. The performance

of the view selection algorithm is usually measured by three criteria, namely (1) the

amount of memory to store the selected views, (2) the query response time, and (3) the

time complexity of the algorithm. The first two measurements deal with the output of

the algorithm. Most of the works proposed in the literature consider the problem of

finding the best data to store, in order to optimize query evaluation time, while ensuring

that memory space needed by these data does not exceed a certain threshold, as fixed

by the user. There are, however, some variants of the problem depending on the na-

ture of data that can be stored, the chosen cost model and set of possible queries. The

prominent role of materialized views in improving query processing performance has long

been recognized. Interested readers are referred to [24][29]. Since data cubes are a set of

special views, their full and partial materialization have been studied since the concept

was proposed [21].

There are still pending problems with state-of-the-art OLAP techniques. That is,

OLAP users are usually only interested in a subset of the data, i.e. the data that are

most relevant to them. That is, on one hand they want perform analysis within this

subset and on the other hand they want to view this subset as a whole cube, within

which all the OLAP operators should be encapsulated. In traditional OLAP systems,

in order to achieve this goal, a user must take a series of actions such as selecting the

appropriate cuboid, performing SLICE or DICE operations and summing up. It takes

a considerable amount of time to get the wanted information, because many steps have

to be followed. Some approaches have been presented in the literature to solve this

problem. Some involve updating the dimension structure, defining a constraint cube,

and building a user defined virtual cube. All these can be termed as providing some

form of personalization to the data cube. In the next section, we provide a motivation

for our work, which also address this issue.

1.1 Motivation

In today’s world, most companies increasingly collect and store business-related data

into different repositories for later analysis. The need to merge such different and het-

erogeneous data sources has introduced an important problem for many companies; thus

the problem of size of the data and dimensionality. The task to compute a data cube

from such large and high dimensional data pose a problem to even the state-of-the-art

approaches. The major challenges associated with data cubes computed on very large

Introduction 3

and high dimensional data are storage, cost of query processing and ability to easily get

the most essential subset that is of most interest to the user. A data cube stores a large

amount of redundant information. This implies that, their size quickly explode when the

dimensionality increase. In the worst case, if only views are stored without indexes, the

storage complexity is 2n, where n is the number of dimensions. However, due to space

and time limitations, we cannot store all these views. We therefore resort to selecting

the best set of views that will optimize the global solution. The space consumed by a

data cube is an indicator of the time it takes to create the data cube [30]. Most of the

view selection solutions are designed to minimize the average query cost, but minimizing

average query cost may lead to solutions where some queries are optimized while others

are not. Finally, providing users with only the subset of data that is of most interest

to them is crucial for productivity and key decision making. This is because data ware-

houses contains very large data and most of these data are of little interest to analysts.

Moreover, most decision makers will prefer to have information only from the subset that

is of most interest to them, with as few clicks as possible.

The problem of data cube size can be tackled by using an appropriate materialization

approach. There are three main materialization approaches. The first is, full data cube

materialization which stores all 2n cuboids. This technique uses the biggest amount of

space and is therefore not feasible for large and high dimensional data. The second

technique is no materialization, which stores nothing and computes all queries on the-

fly. However, it’s query processing speed is too slow to be considered in real world

applications. Finally, partial data cube materialization stores only subset of the views

that will provide a good trade-off between storage space and query response time. The

problem of query processing time can thus be addressed by selecting the appropriate

storage structures. That is, storing only the views or storing the views together with

indexes. Personalization has been the preferred approach to provide users with only the

subset that is of most interest, without superfluous information.

Most of the previous studies in the literature has focused on reducing cube size

and query processing time [2][42]. These proposed methods are usually based on static

selection of beneficial views using some heuristic algorithm [29][30]. The problem with

these approaches are that they tend to select these views in advance, based on some

selection criteria, in other to optimize the global solution. However, these solutions are

usually not near optimal. For example, the total benefit of the Greedy algorithm is 0.63

times the total benefit of the optimal solution [30]. Other static solutions are based on

partitioning the dimension space [39]. Although data partitioning can reduce the storage

space tremendously, the size of the partition might end up exploding the storage space

exponentially. Other static techniques are based on using some dynamic data structures

Introduction 4

and storage techniques such as iceberg cube computation [11][28], dwarf or quotient

cubes [37][61], or computation of approximate cubes [9][52]. However, the storage size

of data cubes computed from these approaches explodes when dimensionality increases.

An alternate to static techniques are dynamic methods, that constantly monitors user

queries and materialize only those views that meet certain user criteria. Apart from cube

size and query processing, there has been some studies on selecting the subset of data

that is of most interest to the user [49] [65].

In a fast-changing world, users of OLAP systems require fast and unambiguous access

to information. They are interested in the system making some decisions for them, based

on their interest. For example, consider a scenario where a branch manager at location

X wants to answer a crucial business related question ”Why are sales in declining at

location X”. Knowing the manager’s location in advance implies that the data cube

can be computed such that the results of all his queries are relevant for his location.

That is, we can identify that data subset that is of interest to the user and compute a

personalized cube suited to that particular user. Most of the work done in the area of

personalization of data cubes have focused on selecting the relevant attributes [49] based

on user preference or computing virtual cubes based on user interest [65]. The problem

with these approaches are that the personalized cubes are computed in advance based on

interest, making the process static. User interest however, keeps changing, and therefore

any method that statically select cuboids to be materialized will not be able to stand

the test of time since these views will quickly become outdated.

Although the aforementioned prior research attempt to address various aspects of

the problem, they do not holistically address the combined problem of storage, query

processing time and the ability to provide users with only data that are of most interest

to them. These techniques either solves one or two of the challenges, using either a purely

static or a dynamic approach. Moreover, none of the proposed solutions is focused on

drastically reducing the storage space while guaranteeing query performance. This thesis

addresses these challenges, as will be discussed next.

1.2 Thesis Contribution

As mentioned previously, in this work we focus on reducing the space requirement of

a data cube drastically while guaranteeing query performance by combining static and

dynamic computation techniques. Secondly, we focus on providing users with only the

most interesting subset of data without including superfluous information. This is also

achieved by personalizing the data cube to individual users of the OLAP system. More

Introduction 5

specifically, we systematically follow a strict cube reduction strategy with the aim of

reducing the size of a data cube and improving query performance. We also focus on

dynamically personalizing the data cube for each user using their query patterns.

The main contribution of this thesis is in two parts. First, is the proposal of a novel

algorithm, that combines vertical partitioning, partial materialization and dynamic cube

computation to compute a data cube that drastically reduces the storage space while

guaranteeing query response time. Secondly, we propose a dynamic personalized cube

that provide users with the subset of the data that is of most interest to them.

We proceed as follows. First of all, we partitioned the dimension space vertically

into disjoint sets called fragments and computed localized cube for each fragment. The

computation of localized fragment cube for each fragment is done using partial cube

materialization. We further introduced a new algorithm for the partial cube material-

ization that reduces the number of views selected for materialization while guaranteeing

query performance. Our partial materialization algorithm selects only cuboids based on

a performance factor. However, we eliminate cuboids that do not provide any additional

benefit in terms to query performance. One problem with traditional vertical partition-

ing methods is that, certain queries can only be computed online by joining fragments;

this is a very expensive process. In order to reduce online cube computation, we propose

the Smart View algorithm. Smart Views are top layer views computed from attributes of

different fragments, by dynamically monitoring incoming queries and materializing only

the promising set of queries.

In order to ensure that users of OLAP cube are presented with only the data subset

that is of most interest to them, we introduced a personalization algorithm, that dy-

namically materializes information for individual users based on their interest. Given

a user’s interest, a limited amount of storage space, and a filter factor, we materialize

user queries that meet some pre-specified conditions. To personalize a data cube for a

given user, we constantly monitor incoming queries and add user interest to the filter

condition. Next, if the result query meets the filter factor and frequency threshold, it is

materialized for the given user.

1.3 Thesis Organization

The remainder of this thesis consists of seven chapters. Chapter 2 provides a literature

review on studies conducted in the area of data warehouse and data cubes in general.

We provide a description of terms and concepts that are utilized in data warehouses and

data cubes. Chapter 3 introduces data cube computation and selection techniques. We

Introduction 6

provide a description of data cube computation and present some of the computation

algorithms discussed in the literature. The data cube selection process is also described.

Some of the state-of-the-art data cube selection algorithms are presented and discussed.

Chapter 4 is dedicated to the introduction of our algorithms. A detailed explanation of

all algorithms we created is provided. Chapter 5 presents an experimental design which

contains a description of the different steps involved in the algorithms we described. In

Chapter 6, the criteria used to evaluate our Personalized Smart Cube approach are first

presented. Our data cube algorithms and personalization algorithms are evaluated in

this chapter and the results are discussed. Chapter 7 concludes and summarizes this

thesis and discusses possible future work.

Part I

LITERATURE REVIEW

7

Chapter 2

Data Warehouses and On-line

Analytical Processing (OLAP)

Data warehousing and Online Analytical Processing (OLAP) systems are valuable tools

in today’s competitive, fast-evolving world. Over the last several years, many organiza-

tions have spent millions of dollars in building enterprise-wide data warehouses. This

is because data warehouse and OLAP are widely used to aid the understanding of or-

ganization’s data, with the aim of increasing productivity in decision-making processes

within the organization [16].

Recall that a data warehouse is defined as a collection of subject-oriented, integrated,

non-volatile and time-variant data supporting management’s decisions-making process

[32]. Data warehouses generalize and consolidate data in multidimensional space. The

construction of data warehouses involves data cleaning, data integration, and data trans-

formation, and can be viewed as an important preprocessing step for data mining [27].

Moreover, data warehouses provide on-line analytical processing tools for the interactive

analysis of multidimensional data of varied granularity, which facilitate effective data

generalization and data mining.

OLAP has been an important tool for enterprise data analysis, as a method of orga-

nizing analysis oriented data. OLAP is a form of decision-support system that analyses

data across many dimensions [57]. In OLAP applications, the data cube provides a con-

ceptual representation of the multi-dimensional data that is generated by mapping the

functional attributes of the data to the dimensions of the cube. This makes it similar to

a multi-dimensional array. Multi-dimensional data cubes enables users to analyze data

conveniently. As a result, the operations in OLAP that aggregate and summarize the

data correspond to operations over the cells of the data cube [30]. Data cubes are de-

fined by dimensions and facts, or measure attributes. Dimensions are the perspectives or

8

Data Warehouse and Online Analytical Processing 9

entities with respect to which an organization wants to keep records [27]. For example, a

company may create a sales data warehouse in order to keep records of the store’s sales

with respect to the dimensions time, item, branch, and location. The measure attributes

are values of interest to an analyst, e.g. total sales, total cost, and so on.

This chapter presents an overview of the concepts of data warehouses, data warehouse

architecture, and the role of OLAP data cubes within the architectural framework. We

discuss the basic concept of data warehousing in Section 2.1. We first introduce the data

warehouse architectures, then describe the role of the star schema for logical database

design in a data warehouse. Materialized views are defined and their role in a data

warehouse is also anlayzed. In Section 2.2, we concentrate on OLAP architectures and

also define the concept of data cube materialization. Indexing, which is crucial for

performance improvement in OLAP data cubes, is explained in Section 2.3. We study

some of the most common indexing approaches used in OLAP data cubes. We finally

summarize the discussion in Section 2.4.

2.1 Basic Concepts of Data Warehouse

As mentioned earlier, a data warehouse is defined as a collection of subject-oriented, inte-

grated, non-volatile and time-variant data, supporting management’s decisions-making

processes [32]. These features presented distinguish data warehouse from other data

repository systems, such as relational database system, transaction processing system,

and file system.

• Subject-oriented: A data warehouse is organized around a major subject such as

retail sales. Rather than concentrating on the day-to-day operations and transac-

tion processing of an organization, a data warehouse focuses on the modeling and

the analysis of data for decision makers. Hence, data warehouses typically provide

a simple and concise view of particular subject issues by excluding data that are

not useful in the decision support.

• Integrated: A data warehouse is usually constructed by integrating multiple het-

erogeneous sources, such as relational databases, flat files, and on-line transaction

records. Data cleaning and data integration techniques are applied to ensure con-

sistency in naming conventions, encoding structures, attribute measures and so

on.

• Time-variant: Data are stored to provide information from a historic perspective

(e.g. the last 5 - 10years). Every key structure in the data warehouse contains,

Data Warehouse and Online Analytical Processing 10

either implicitly or explicitly, a time element.

• Nonvolatile: A data warehouse is always a physically separate store of data trans-

formed from the application data found in the operational environment. Due to the

separation, a data warehouse does not focus on transaction processing, recovery,

and concurrency control mechanism. It usually focuses on providing two operations

in data accessing: initial loading of data and access of data.

In summary, a data warehousing provides architectures and tools for business executives

to systematically organize, understand, and use their data to make strategic decisions. A

data warehouse is a semantically consistent data store that serves as a physical implemen-

tation of a decision support data model. It is often viewed as an architecture, constructed

by integrating data from multiple heterogeneous sources to support structured and/or

ad hoc queries, and decision making.

2.1.1 Data warehouse Architecture

In the literature, several data warehouse architectures are described [5][26], some of which

include independent data marts, data mart bus architecture with linked dimensional

data marts, hub-and-spoke, centralized data warehouse(no dependent data marts), and

federated. All these can be classified as adopting a three tier architecture [27]. Figure

2.1 shows a simplified three (3) tier architecture.

Figure 2.1: A sample three (3) tier data warehouse architecture

The bottom tier is a warehouse database server that is in most cases, a relational sys-

tem. However, a multidimensional system is some times used. Most relational databases

used as a warehouse database are modeled using the star schema, since it minimizes

the joins required for query computation [35]. Back-end tools and utilities are used to

Data Warehouse and Online Analytical Processing 11

feed data into the bottom tier from operations databases or other external sources (e.g.,

customer profile information provided by external consultants). These tools and utili-

ties perform extraction, cleaning and transformation (e.g., to merge similar data from

different sources into a unified format), as well as load and refresh functions to update

the data warehouse. The data are extracted using application program interfaces known

as gateways. A gateway e.g. Object Linking and Embedding Database (OLEDB) is

supported by the underlining Database Management System (DBMS) and allows clients

programs to generate SQL or MDX code to be executed at a server. This tier also stores

the meta-data repository. The middle tier is made up of the OLAP Server (data cubes)

and data marts. Data cubes are built based on the data structure and granularity of

data in the bottom tie. These data cubes are redundant copies of data that are defined

according to the users requirements for analysis. OLAP servers are implemented us-

ing either a relational OLAP (ROLAP) model or a multidimensional OLAP (MOLAP)

model. The top tier is the front-end client layer, which contains query and reporting

tools, analysis tools, and/or data mining tools.

2.1.2 Star Schema - A logical database design

Recall that the star schema design is often used to model a data warehouse database.

This database consists of a fact table that describes all transactions and a dimension table

for each entry [14]. For example, in a fictitious data warehouse, each sales transaction

involves several entries - a customer, a salesperson, a product, an order, a transaction

date, and the city where the transaction occurred. Each entity also has measure at-

tributes - the number of units sold and the total amount the customer paid. Each tuple

in the fact table consists of a reference, by means of a foreign key, to each entity in a

transaction and the numeric measures associated with the transaction. Each dimension

table consists of columns that correspond to the entry’s attributes. Computing the join

between the fact table and a set of dimension tables is more efficient than computing a

join among arbitrary relations.

Some entities, however, are associated with hierarchies, which the star schema do

not explicitly support. A hierarchy is a multilevel grouping in which each level consists

of a disjoint grouping of the values in the level immediately below it. For example, all

products can be grouped into disjoint sets of categories, which are themselves grouped

into disjoint set of families.

Data Warehouse and Online Analytical Processing 12

2.1.3 Materialized Views

Many data warehouse queries require summary data and therefore use aggregates. Ma-

terializing summary data can accelerate common queries [14] and eliminate overheads

associated to expensive joins or aggregations required by analytical queries. However,

due to space or time limitations, we cannot store the result of all queries. So, one has to

select the best set of queries to materialize. Thus the objective is to select the set of views

that can efficiently answer as many queries as possible. In the multidimensional model,

more precisely when considering data cubes, relationships between the views can be used

to order to define what is the best set of views. Recall, a view selection algorithm in

the context of data cubes takes as input a fact table and returns a set of views to store,

in order to speed up queries. The selection of part of the data cube for materialization

is a multi-criteria task [42]. Some of these are, the materialization granularity (full vs

fragments of views), the constraints taken into account (available storage space and/or

time window allowed for incremental update), presence of a target workload query, com-

plexity of the view selection algorithm, dynamic workload and the presence or absence

of indexes. As mentioned earlier, the performance of the view selection algorithms is

usually measured by three criteria [29], namely (1) the amount of memory to store the

selected views, (2) the query response time and (3) the time complexity of this algo-

rithm. Most of the proposed solutions formalizes the view selection problem so that the

returned solution minimizes the average query cost, while satisfying the imposed budget

space and/or update time constraints.

2.2 Data Cubes and OLAP

Recall that data warehouse and OLAP tools are based on a multidimensional data model

[27]. This model views data in the form of a data cube. These systems help to analyze

complex multidimensional data and provide decision support [60].

2.2.1 Data Cube: A Multidimensional Data Model

Data cubes are powerful tools that allow data to be modeled and viewed in multiple

dimensions. They support the analysis of the contents of data warehouses and databases

[50]. A data cube consists of the results of group-by aggregate queries on all possible

combinations of the dimension attributes over a fact table in a data warehouse. The

group-by construct is used by SQL to create a table of many aggregate values indexed by

a set of attributes. Materialization of summary views on the cube is critical for improving

Data Warehouse and Online Analytical Processing 13

the response time of OLAP queries and of operators such as roll-up, drill-down, and pivot

A data cube can be referred to as a multidimensional array. It is defined by dimension

attributes and measure attributes. In general terms, dimensions are the perspectives

or entities with respect to which an organization wants to keep records. Dimension

attributes are sometimes referred to as functional attributes [19][50]. Each dimension

may have a table associated with it, called a dimension table, which further describes

the dimension. A multidimensional data model is typically organized around a central

theme, such as sales. This theme is represented by measure attributes. Recall that, these

are attributes whose values are of interest to the analyst. The measures are contained in

a table called the fact table. A cell of a data cube is described by a unique combination

of dimension values.

Figure 2.2: A multidimensional model data cube [33]

Figure 2.2 depicts a small, practical data cube example, that considers a hypothetical

database of sales information maintained by a company. This particular data cube has

three dimension attributes - store, product, and time - and a single measure attribute -

product sales for a large chain of stores (sales is computed with the sum function). By

selecting cells, planes, or sub cubes from the base cuboid, we can analyze sales figures

at varying granularity. This example data cube can provide an aggregated total orders

for all combinations of stores, product and time. Such queries form the basis of OLAP

functions like roll-up and drill down.

Drill-down and roll-up OLAP operations depend on hierarchies [62] as introduced

earlier. A drill-down operation decomposes fact table data to lower levels of a hierarchy,

then increasing data details. Inversely, a roll-up operation aggregates fact table data to

upper levels of a hierarchy, then summarizing the data. Figure 2.3 shows example of

Data Warehouse and Online Analytical Processing 14

these operations adapted from [45], using existing hierarchies held by the Customer and

Store dimension tables. Notice the use of the group-by construct in this SQL statements.

Considering that the user firstly issued the query of Figure 2.3a and later issued the query

of Figure 2.3b, there was a drill-down operation based on both (c country) � (c city)

and (s country) � (s city). On the other hand, if the user had issued the query inversely,

there was roll-up operation based also on those mentioned hierarchies. The underlined

attributes in Figure 2.3 highlights these operations

Figure 2.3: Roll-up and drill-down operations

Figure 2.4: The original query results and the pivoted query results

Both the queries of Figure 2.3a and 2.3b exemplify the slice and dice operation,

which consists of applying filters to the resulting data, such as ”c country=’USA’ AND

s country=’USA’ AND d year >= 2003 AND d year <= 2013”, shown in Figure

2.3a. Finally, the pivoting operation enables reordering results by switching the axis

for columns and rows [15]. Figure 2.4 shows the results of the query in Figure 2.3a,

whose column d year was pivoted to be a row, providing the results of Figure 2.4b. The

representation of results in Figure 2.4b is also known as a cross table.

Data Warehouse and Online Analytical Processing 15

In total, a d-dimensional base cube is associated with 2d cuboids. Each cuboid rep-

resents a unique view of the data at a given level of granularity. However, storing all 2d

cuboids is not a feasible approach, since it becomes very large with a large d. Selecting

the appropriate cuboids for materialization is therefore crucial for an efficient data cube.

2.2.2 Data cube traversal

Data cubes can be traversed in a top-down fashion, for example Pipesort [2] or bottom-up

fashion, for example BottomUp Cube [11]. PipeSort follows paths in the search lattice

of the data cube. In the example in Figure 2.5, the raw data may be sorted first in a

first attribute order, such as C - B - A - D. Having sorted the data, cuboids sharing

some parts of the sort order may be evaluated. These cuboids are said to have a ”prefix”

common to the sort order. In this example, (C, B, A, D), (C, B, A), (C, B) and C will be

an ideal traversal order. This order may also incorporate the smallest-parent objective

of Gray et al. [21].

Figure 2.5: A top-down traversal example

BUC on the other hand traverses the data cube in a bottom-up and depth-first

fashion. Lets consider the example shown in Figure 2.6. This approach start with the

ALL node, which contains only one tuple, moving towards more and more detailed nodes

with more grouping attributes. Then, it sorts the relation according to A and isolates

the first set of tuples SA1 that share the same value in A. It proceeds recursively to node

Data Warehouse and Online Analytical Processing 16

AB passing SA1 as input. In that call, it re-sorts SA1 according to B and isolates the

first set of tuples SA1B1 that share the same values. It continues recursively finishing at

the root of the lattice, which contains all dimensions as its grouping attributes.

Figure 2.6: A bottom up traversal example

2.2.3 Data Cube Materialization

Recall that many data warehouse queries require summary data and therefore use ag-

gregates. Materialized views have been recognized as an effective query optimization

technique for a long time [13]. Since data cubes [21] are sets of special views, their

full and partial materialization have been studied as soon as this concept was proposed.

The challenges in exploiting materialized views are similar to the indexing challenges.

These are, identifying the best set of views to materialize [23][30], exploiting the mate-

rialized views to answer queries, and updating the materialized views during load and

refresh. The three main choices for data materialization given a base cuboid are No

materialization, Full materialization and Partial materialization.

Data Warehouse and Online Analytical Processing 17

No Materialization

This does not precompute any of the “nonbase” cubiods and thus leads to computing

expensive multidimensional aggregates “on-the-fly’,’ from raw data on request. No ma-

terialization has the problem of basing its performance on quick query response from the

database system where the raw data is stored. No extra space beyond that for the raw

data is required.

Full Materialization

Full materialization precomputes all of the cuboids. The resulting lattice of computed

cuboids is referred to as the full cube. This approach gives the best query response

time. However, precomputing and storing every cell is not a feasible alternative for most

data cubes, as the space consumed becomes excessive. This is because of the fact that,

for a very large database with high dimensionality, precomputing all 2d cuboids, where

d is the number of dimensions, it is prohibitive in terms of storage requirement and

computation time. It should be noted that the space consumed by the data cube is also

a good indicator of the time it takes to create the data cube, which is important in many

applications. If the data cube is to be indexed, then the spaced consumed also impacts

indexing and thus adds to the overall cost.

Partial Materialization

Partial materialization selectively computes a proper subset of the whole set of possible

cuboids. Partial materialization may also involve computing a subset of the cube, which

contains only those cells that satisfy some user-specified criterion, such as where tuple

count of each cell is above some threshold [11]. This approach is made possible because,

in data cubes, the values of many cells are computable from those of other cells in the

data cube [21][29]. This dependency is similar to spreadsheets, where the value of cells

can be expressed as a function of the values of other cells. We call these cells ”dependent”

cells. For example given (A,B,C) as a 3D data cube, we can compute the values of cells

(A,ALL,C) as the sum of the values of cells of (A,B1,C),.....,(A,Bn,C), where Bn is the

number of items of B. The more cells that are materialized, the better the query response

time. For large data cubes, however, we may be able to materialize only a small fraction

of the cells of the data cube, due to space and other constraints. Partial materialization

represents an interesting trade-off between storage space and response time [30]; thus

its important to pick the right cells to materialize. Partial Materialization of cuboids

should consider three factors. These are, identifying the subset of cuboids or sub-cubes

Data Warehouse and Online Analytical Processing 18

to materialize, exploiting the materialized cuboids or sub-cubes during query processing

and efficiently updating the materialized cuboids during load and refresh. Although

selecting the right materialization algorithm is crucial for the performance of an OLAP

data cube, its also important to select the right OLAP data cube architecture.

2.2.4 OLAP Architecture

Logically, OLAP servers present business users with multidimensional data from data

warehouses or data marts, without concerns regarding how or where the data are stored.

However, the physical architecture and implementation of OLAP servers must consider

data storage issues [27]. There are three main architecture implementations [14][27], as

will be discussed next.

Relational OLAP (ROLAP)

Relational OLAP servers are the middleware servers that sit in-between the relational

back-end server where the data warehouse is stored and the client front-end tools. RO-

LAP servers support multidimensional OLAP queries. It includes optimization for each

database management system (DBMS) back end, implementation of aggregation nav-

igation logic, and additional tools and services. ROLAP servers identify the views to

be materialized, rephrase user queries in terms of the appropriate materialized views,

and generate multi statement SQL for the back-end server. A noted advantage over the

other architectures is that ROLAP technology tends to have greater scalability. Also

relational data can be stored more efficiently than multidimensional data [59], although

improvements to MOLAP architecture is making the difference less obvious. ROLAP also

provides additional services such as query scheduling and resource assignment. Although

these servers exploit the scalability and transactional features of relational systems, in-

trinsic mismatches between OLAP-style querying and SQL can create performance bot-

tlenecks in OLAP servers. Bottlenecks are, however, becoming less of a problem with

OLAP-specific SQL extensions implemented in relational servers such as Oracle, IBM

DB2, and Microsoft SQL Server. The addition of functions such as median, mode, rank,

and percentile has extended the aggregate functions which are a key part of most data

cube computations. Other feature additions include aggregate computation over moving

windows, running totals, and breakpoints to enhance support for reporting applications.

A major problem with ROLAP was that multidimensional spreadsheets require group-

ing by different sets of attributes. In order to solve this problem Gray et al [21] proposed

two operators - roll-up and cube to augment SQL and address this requirement. Roll-up

of a list of attributes such as product, year, and city over a data set results in answer

Data Warehouse and Online Analytical Processing 19

sets with the following applications; (a) a query result that is grouped by products, year,

and city; (b) a query result that is grouped by product and year; and (c) a query result

that is grouped by product. Given a list of k columns, the cube operator provides a

group-by for each of the 2k combinations of columns. Such multiple group-by operations

can be executed efficiently by recognizing commonalities among them. When applicable,

precomputing can enhance OLAP server performance.

Multidimensional OLAP (MOLAP)

MOLAP is a server architecture that does not exploit the functionality of a relational

back end, but directly supports a multidimensional data view through array-based mul-

tidimensional storage engines [14]. MOLAP map multidimensional views directly to

data cube array structures. These array structures are basically n-dimensional array

data structures used to store the data cubes. They also enable implementation of mul-

tidimensional queries on storage layer view direct mapping. One principal advantage

of MOLAP over ROLAP is it’s excellent indexing properties; its disadvantage is poor

storage utilization, especially when the data is sparse [51]. However, sparse matrix com-

pression techniques may be explored. Many MOLAP servers adapt to sparse data sets

through a two-level storage representation and extensive compression. In a two-level

storage representation, denser sub-cubes are identified and stored as array structures,

whereas sparse sub-cubes employ compression technology for efficient storage utilization.

Traditional indexing structures can be used to index these dense smaller arrays. For

example, consider a fictitious database with 11 dimension attributes age, marital status,

gender, eduction, race, origin, family type, detailed household summary, age group, and

class of worker and measure attribute income. This data cube contains more than 16

million cells with only 16000 nonzero elements. In such a data cube the density is 0.001.

In reality, many data warehouses contain multiple small regions of a clustered dense re-

gions, with points sparsely scattered over the rest of the space [38][66]. Although MOLAP

servers offer good performance and functionality, they do not scale well for extremely

large data sizes [14].

Hybrid OLAP (HOLAP)

The hybrid OLAP approach combines ROLAP and MOLAP technologies, benefiting

from the greater scalability of ROLAP and the faster computation of MOLAP [14]. HO-

LAP servers identify sparse and dense regions of the multidimensional space and take the

ROLAP approach for sparse regions and MOLAP approach for dense regions. HOLAP

servers split a query into multiple queries, issues the queries against the relevant data

Data Warehouse and Online Analytical Processing 20

portions, combines the results, and then presents the result to the user. HOLAPs selec-

tive view materialization, selective index building, and query and resource scheduling are

similar to its MOLAP and ROLAP counterparts. Selecting the right architecture based

on the nature of data is important for building efficient OLAP data cube. However, per-

formance of an OLAP data cube, irrespective of the selected architecture, is determined

by the indexes selected and may be difficult to tune.

2.3 Indexing Data Cubes

Queries defined on Data Warehouses (called star join queries) are complex, since they

involve several joins, group-bys and selections. Indexes are solid candidates to opti-

mize such operations and considered as the foundation of the optimization techniques

in databases and data warehousing [10]. Indexing represent an important part of any

database system design as they can significantly impact workload performance, by en-

abling quicker and more efficient access to data. In the Data Warehouse context, when

we talk about indexing, we refer to two different aspects, namely (i) indexing techniques

and (ii) the index selection problem.

2.3.1 Bitmap Indexes

A promising approach to process complex queries in OLAP environment is to use bitmap

indexes [46][47]. A Bitmap index on an indexed attribute consists of one vector of bits

(i.e., bitmap) per attribute value, where the size of each bitmap is equal to the cardinality

of the indexed relation. The bitmaps are encoded such that the ith record has a value

of v in the indexed attribute if and only if the ith bit in each of the other bitmaps is set

to 0. This is called a Value-List index [46]. Consider a high-selectivity-factor query with

selection predicates on two different attributes. A conventional database optimizer would

generate one of the following three query plans: (P1) a full relation scan, (P2) an index

scan (using the predicate with lower selectivity factor) followed by a partial relation scan

to filter out the non-qualifying tuples, or (P3) an index scan for each selection predicate,

followed by a merge of the results from the two index scans. Due to the compact sizes of

bitmaps (especially for attributes with low cardinality) and the efficient hardware support

for bitmap operations (AND, OR, XOR, NOT), plan (P3) using bitmap indexes is likely

to be more efficient than a plan that requires a partial or full relation scan (plans (P1)

and (P2)). A simple cost analysis shows that evaluating plan (P3) with bitmap indexes

is often more efficient than using the conventional tid-list (tuple identifier list) based

indexes for queries with selectivity factor above some attribute cardinality threshold.

Data Warehouse and Online Analytical Processing 21

This is because tid-list based index also called inverted index store the actual values of

the record identifiers instead of 0s and 1s for the bitmap index, and is therefore not very

efficient for low cardinality attributes. Let N and r be the relation and query result

cardinalities, respectively. Assume that each tid is 4 bytes long and that one bitmap is

scanned per predicate. In terms of the number of bytes read, using bitmap indexes for

plan (P3) is more efficient than using tid-list based index if 2N
8
≤ 4(2r) ; i.e., r

N
≥ 1

32
.

Further operations on bitmaps are more CPU-efficient than merging tid-lists.

2.3.2 Bitmap Join Indexes

A Join index, considered as multiple table index, is well adapted for queries that require

fetching information from multiple tables. It involves calculating the result of joining

two tables on a join attribute and projecting the keys of the two tables. To join two

tables, one may thus use the join index to fetch the tuples from the tables followed by

a join. In a Data Warehouse, it is of interest to perform multiple joins on a fact table

and the corresponding dimension tables. Therefore, building a join index between the

keys of the dimension tables and the corresponding foreign keys of the fact table is very

important. If the join indexes are represented in bitmap, it is called a Bitmap Join Index

[10]. Using a Bitmap Join index, a multiple join could be replaced by a sequence of

bitwise operations, followed by a relatively small number of fetch and join operations.

2.3.3 Inverted Indexes

Inverted indexes are well-known methods in information retrieval [7]. An inverted index

for a collection of documents is a structure that stores, for each term (word) occurring

somewhere in the collection, information about the locations where it occurs. In partic-

ular, for each term t, the index contains an inverted list, consisting of a number of index

postings. Each posting in the index contains information about the occurrences of t in

one particular document d, usually the id of the document (the docID), the number of

occurrences of t in d (the frequency), and possibly other information about the locations

of the occurrences within the document and their contexts [64]. For example, an inverted

index list It of the form {56, 1,34} {198, 2,14,23} might indicate that term t occurs once

in document 56, at word position 34 from the beginning of the document, and twice in

document 198 at positions 14 and 23. We assume postings have docIDs and frequencies

but do not consider other data such as positions or contexts.

An inverted index for an attribute in a Data Warehouse consists of a dictionary of the

distinct values in the attribute, with pointers to inverted lists that reference tuples with

Data Warehouse and Online Analytical Processing 22

Table 2.1: The original table from a sample database

tid A B C

1 a1 b1 c1

2 a1 b2 c1

3 a1 b2 c1

4 a2 b1 c1

5 a2 b1 c1

the given value through tuple identifiers (tids) [12]. In its simplest form it is constructed

as follows. For each attribute value in each dimension, we register a list of tuple id

(tid) or record id (rid) associated with it. For example, in Table 2.1, attribute value a2

appears in tuples 4 and 5. The tid-list for a2 as shown in Table 2.2, contains exactly 2

items, namely 4 and 5. The resulting inverted index for the 5 individual dimensions are

shown in Table 2.2. The inverted index for multiple dimensions can also be computed

by using set operations of Intersection and Union. For example, Table 3.4 show the

result of a two dimensional cuboid AB from Table 3.4. This uses set intersection to

compute the intersection of the tid-lists of dimension A, and the tid-list of dimension B.

The computation of the two dimensional cuboid from a one dimensional cuboid is done

in a bottom-up fashion, similar to the Apriori algorithm for finding frequent item-sets

[3]. To reduce both space usage and I/O requirements in query processing, the inverted

lists are often compressed by storing the deltas (or offsets) between the stored references

[67]. The deltas are bit codes for representing very large numbers in other to reduce its

size. This approach makes small values more likely, and several compression schemes

that represent small values compactly have been suggested. One of the most efficient

compression methods according to recent study [12] is the PForDelta technique [68].

PForDelta stores deltas in a word-aligned version of bit packing, which also includes

exceptions to enable storing larger values than the chosen number of bits allowed.

2.4 Summary

In this chapter, we have outlined some descriptions and concepts relevant to OLAP data

cubes and data warehousing. We presented the concepts of data warehousing, explained

the basic architecture of a data warehouse and described the concept of materialized

views required for efficient cube computation. We also studied the concept of OLAP

and data cubes where we explained that OLAP systems are based on models that views

data in the form of a data cube. The different OLAP architectures were presented and

Data Warehouse and Online Analytical Processing 23

Table 2.2: Inverted Index for a single dimension A

Attribute Value TID List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

Table 2.3: Cuboid AB using inverted index

Cell Intersection Tuple ID List List Size

a1 b1 1 2 3 ∩1 4 5 1 1

a1 b2 1 2 3 ∩2 3 2 3 2

a2 b2 4 5 ∩2 3 φ 0

explained. MOLAP servers supports a multidimensional data view through array-based

multidimensional storage engine. ROLAP servers sit in-between the relational back-end

server where the data warehouse is stored and the client front-end tools, and generate and

translate queries based on appropriate materialized views. Finally, Hybrid OLAP counter

the disadvantages of the two architecture approaches. Data cube materialization is an

essential part of data cube construction, since it impacts both storage requirement and

query processing. The materialization option determines the space and time complexity

of the data cube. First, No Materialization has a very low space complexity since only

the source fact table is stored and very high time complexity. Full Materialization implies

very high space complexity, since the entire cube is stored and very low time complexity.

Partial materialization gives a trade-off between space and time complexity. Finally,

we introduced some indexing techniques used in OLAP data cubes, since it is crucial

for query performance improvement. We showed how indexing may help improve query

response time by using small and simple data structures or by reducing the space required

to store data using bits to represent data attribute values.

The next chapter introduces data cube techniques that are relevant for the Personal-

ized Smart Cube approach developed in this thesis.

Chapter 3

Data Cube Computation Techniques

Recall that data cube implementation is one of the most important and expensive pro-

cess in online analytical processing. It involves computing and storing of the results

of aggregate queries groupings on dimensions-attribute combinations over a fact table

in a data warehouse [42]. The precomputation and materialization of parts of, or the

whole of, the data cube is fundamental for improving the query response time of OLAP

queries and of operators such as roll-up, drill-down, slice-and-dice, and pivot [15]. Full

data materialization is ideal for fast access to stored cuboids, but will pose considerable

costs both in computation time and in storage space. In order to balance this tradeoff

between query response time and data cube storage requirements, several methods have

been proposed in the literature. We address the question: ”How can we compute data

cubes in advance, so that they are handy and readily available for query processing?”.

As a running example, we will consider a data cube that illustrates the computational

dependencies among the different group-bys in the cube lattice [30]. Figure 3.1 presents

cube lattice of a fact table R with three dimensions (A, B, C), where a lattice node label

is a concatenation of the corresponding dimension names.

In this chapter we study data cube computation, data cube selection and various

cube materialization (i.e., precomputation) strategies. We initially explain data cube

computation methods and introduce existing algorithms in Section 3.1. We then study

data cube selection methods in Section 3.2. Finally, in Section 3.3 we summarize this

chapter.

3.1 Computation Methods

Data cube computation involves scanning the original data, applying the required ag-

gregate function on all groupings, and generating the cube contents [42]. The main

24

Data Cube Computation Techniques 25

objective of computation algorithms is to place tuples that aggregate together (i.e, tu-

ples with the same values in the grouping attributes) in adjacent in-memory positions,

so that all group-bys can be computed with as few data scans as possible. The two main

alternative approaches that may be used to achieve such a tuple placement are sorting

and hashing [21] [33]. These are used to organize the data by value and then aggregate

with a sequential scan of the sorted data. As shown in 3.1, the lattice structure indicates

there is much commonality between a parent node and its children. Taking advantage

of this commonality may lead to particularly efficient algorithms. For example, if the

initial data in Figure 3.1 is sorted according to attributes ABC, then by sharing the

sorting cost, nodes ABC → AB → A → φ can be computed in a pipeline fashion. As-

summing A is country, B is city and C is store then, the cuboid ABC can be computed

using the group-by statement SELECT Country, City, Store FROM Tablename GROUP

BY Country, City, Store and AC can be computed by SELECT Country, City FROM

tablename GROUP BY Country, City where tablename is the name of the fact table.

Sorting and hashing are most efficient when the data processed fits in memory; otherwise,

external memory algorithms must be used, which incur greater I/O cost. To overcome

this drawback, most computation methods partition data into disjoint fragments that

do fit in memory, called partitions. Tuples are not placed into partitions randomly, but

according to the policy that tuples that aggregate together must belong to the same

partition.

3.1.1 2D Algorithm

The 2D algorithm [21] is a simple, initial algorithm for data cube computation [42]. It

computes each group-by directly from the original fact table and then takes the union

of all partial results for the data cube. The 2D algorithm is not efficient, since it has

exponential complexity with respect to the number of dimensions and takes no advantage

of the commonalities among the interim results of different group-bys. Hence, any data

structures, tuple sorting, or hash tables constructed for the computation of one group-

bys are never reused but are recreated from scratch, whenever necessary. Such behavior

renders it impractical. To overcome the main problems of this algorithm, all subsequent

algorithms identify a spanning tree T of the lattice whose edges indicate which node

(parent) will be used for computation of each node (child).

Data Cube Computation Techniques 26

Figure 3.1: Example of cube lattice

3.1.2 GBLP Algorithm

The GBLP algorithm [21] improves the efficiency of the 2D algorithm by computing each

node in the lattice using its smallest parent and not the original fact table. The group-

by operation may either be sort-based or hash-based, depending on the implementation.

The size of nodes tends to decrease as groups of tuples get aggregated and are replaced

with less detailed summary tuples as we move towards lower levels in the lattice. This

implies that selecting the smallest parent node always leads to faster computation of

a node. This algorithm computes each child node from the parent with the smallest

size. In reality, this algorithm obtains estimates of the size of each lattice node based

on a variety of statistical methods such as those presented in [25], [51], [54]. The main

disadvantage of the GBLP algorithm is that it only prunes the lattice into a tree, without

suggesting a particular way to traverse it. Lack of an efficient disk-access plan makes

GBLP impractical when dealing with large datasets that do not fit into main memory.

Gray et al, in their paper, presented a rough comparison between the size of the fact

table and the corresponding data cube. The size C of the fact table (in terms of number

of tuples) is approximated by C = C1×C2×C3 · · ·×CD, where Ci denotes the cardinality

(domain size) of the i-th dimension (i=1...D). The data cube only adds the value (ALL)

to each dimension, so the size in terms of number of tuples, is approximated by Ccube =

Data Cube Computation Techniques 27

(C1 + 1)× (C2 + 1)×· · ·× (CD + 1), making it slightly larger than the original fact table.

An argument is therefore made that, whenever the original fact table fits in memory, it

is highly likely that the data cube also fits in memory. The strength of this argument is

weakened [30] by the fact that C and Ccube, are actually rough estimations of the sizes

of the fact table and the data cube, respectively. In most real-world applications, the

corresponding formulas do not hold. An original fact table is generally sparse, so this

implies that its actual size is a small fraction of the size of the Cartesian product of the

domains of its attributes. The sparser the fact table is, the higher the quotient of the

cube size over the fact-table size is. Thus, the size of the data cube is expected to be much

larger than the size of the fact table in terms of number of tuples. To overcome these

memory size issues, other algorithms partition their execution tree into an appropriate

set of subtrees, each one of which has a small enough number of nodes so that they can

all be constructed concurrently, reducing memory requirements overall.

3.1.3 Partitioned-Cube Algorithm

Data in real applications tends to be sparse due to the following two reasons [51]. Firstly,

the number of dimensions of the original fact table is large and secondly some dimensions

of the original fact table have large domains. Recall that a data cube is sparse when

a large percentage of data cells contain zeros (0). Sparsity results in fewer aggregation

operations, since in sparse datasets, the number of tuples with the same dimension values

decreases. Consequently, the relative sizes of intermediate nodes in the cube lattice tend

to increase with sparsity. A large sizes of intermediate nodes introduce considerable I/O

costs to the computation methods presented here, since these methods sort (or hash)

and scan a potentially large number of such nodes during their execution. Therefore, the

previous method is considered to be ineffective when applied over sparse datasets, espe-

cially when these datasets are much larger than the available memory size. The objective

of the Partitioned-Cube Algorithm [51] is to extend the GBLP algorithm with a more

effective way of partitioning data, in order to reduce I/O and achieve faster computation

even when the original fact table is sparse. The Partitioned-Cube algorithm is recursive

and follows a divide-and-conquer strategy based on a fundamental idea that has been

successfully used for performing complex operations (such as sorting and join). That is,

it partitions the large tables into fragments that fit in memory and performs the complex

operation on each memory-sized fragment independently. Partitioning into smaller frag-

ments starts from the original fact table and proceeds recursively until all partitions fit

in main memory. For each memory-sized partition the Memory-Cube algorithm is called,

which computes entire sub-cubes inside memory. At each stage, the Partitioned-Cube

Data Cube Computation Techniques 28

algorithm proceeds as follows: It partitions the input table R into n fragments based

on the value of some attribute d and recursively calls itself n times passing as input of

every recursive call, one partition at a time. The union of the n results is the sub-cube

SC1 that consists of all nodes that contain d in their grouping attributes. Secondly, it

then makes one more recursive call to itself giving as input the more detailed node of

SC1 and fixing d to the value ALL. In this way, it computes the sub-cube SC2 that

consists of all nodes that do not contain d in their grouping attributes. The advantage

of this algorithm is that it’s I/O cost is linear to the number of dimensions. However,

when data is sparse, the algorithm might break earlier than expected.

3.1.4 BUC Algorithm

The BUC algorithm [11] was primarily introduced for the computation of Iceberg-Cubes,

which computes only those group-by tuples which an aggregate value (e.g count) is

above some pre-specified minimum support threshold (minsup). In other words, the

algorithm takes into further consideration only sets of tuples that aggregate together,

and for which the aggregate function returns a value greater than minsup. The name

of the algorithm (BottomUpCube) indicates the way it traverses the cube lattice. It

builds the cube in a bottom-up fashion, starting with the computation of the ALL node,

which contains only one tuple, moving towards more detailed nodes with more grouping

attributes, and finishing at the root of the lattice, which contains all dimensions as its

grouping attributes. This feature differentiates BUC from all previous methods, which

compute the cube moving top-down, and gives it the advantage of early pruning of

tuple sets that do not satisfy the minimum support criteria. Such pruning is similar

to the previously introduced Apriori algorithm [3]. That is, the sets of tuples that

do not satisfy minimum support at a node cannot satisfy it at any of its ancestors

either, and can therefore be pruned. Unlike previously discussed algorithms, to have

this pruning ability, BUC sacrifices any exploitation of parent/child commonalities in

the cube lattice. This pruning ability makes it particularly effective in the computation

of Iceberg-Cube. This is especially true when the original fact table is sparse, since it

generates fewer aggregations, making the satisfaction of minimum support more difficult,

and thus leading to more pruning.

3.1.5 Condensed Cube Algorithms

A condenced cube [61] is a fully computed cube that condenses those tuples, aggregated

from the same set of base relation tuples, into one physical tuple. Let us consider an ex-

Data Cube Computation Techniques 29

treme case as an example. Let relation R have only one single tuple r(a1, a2,, an,m).

Then, the data cube for R will have 2n tuples, (a1, a2,, an, V1), (a1, ∗, · · · , ∗, V2),
(∗, a2, ∗, · · · , ∗, Vm), (∗, a2, ∗, · · · , ∗, V3) , ...(∗, ∗, · · · , ∗, Vm), where m = 2n. Since there

is only one tuple in relation R, we have V1 = V2 = ... = Vm = aggr(r). Therefore, we

only need to physically store one tuple (a1, a2, · · · , an, V), where V = aggr(r), in the

cube together with some information indicating that it is a representative of a set of

tuples. For queries on any cuboid, we can return the value V directly without the need

of further aggregation. That is, for this example, the cube for R with 2n tuples may be

condensed into one tuple. In general, tuples from different cuboids in a cube, that are

known to be aggregated from the same set of tuples, can be condensed to one tuple. A

condensed cube has the following unique features:

• A condensed cube is not compressed. Although the size of a condensed cube is

smaller than the complete cube, it is not compressed.

• A condensed cube is a fully computed cube. It is not based on approaches that

reduce the size of a data cube by selectively computing some, but not all, cuboids

in the cube. Therefore no further aggregation function is required to answer queries.

• A condensed cube provides accurate aggregate values. It does not reduce the cube

size through approximation of any form.

• A condensed cube supports general purpose OLAP applications. It is different from

those proposals to reduce the size of a cube by tailoring it to only answering certain

types of queries.

3.1.6 Dwarf Cube Algorithm

A Dwarf Cube [55] is a highly compressed structure for computing, storing, and querying

data cubes. A Dwarf cube solves the storage space problem, by identifying prefix and

suffix redundancies in the structure of the cube and factoring them out of the store.

The main aim of a Dwarf cube [56] is to reduce the storage complexity of data cube to

O(T 1+1/logdC) where d is the number of dimensions, C is the cardinality of the dimensions

and T is the number of tuples. Thus, if we keep the number of tuples in the fact table

constant and start increasing the dimensionality of the fact table, the size of the Dwarf

increases only polynomially. The first form shows that the dimensionality d is raised to

logCT which is does not depend on d and is actually quite small for most realistic datasets.

The second form of complexity shows that the Dwarf size is polynomial with respect to

the number of tuples of the data set T . The Dwarf algorithm is the only technique that

Data Cube Computation Techniques 30

manages to identify whole sub-cubes as redundant and coalesce the redundancy from

both storage and computation time, without calculating any redundant sub-cubes [55].

Prefix redundancy can be understood by considering a sample cube with dimensions a, b,

c. Each value of dimension a appears in 4 group-bys (a, ab, ac, abc), and possibly many

times in each group-bys. For example for the fact table shown in Table 3.1, the value S1

will appear 7 times in the corresponding cube, and more specifically in the group-bys:

(S1, C2, P2), (S1, C3, P1), (S1, C2), (S1, C3), (S1, P2), (S1, P1) and (S1). The same

also happens with a prefix of size greater than one, where each pair of a, b will appear not

only in the ab group-by, but also in the abc group-by. The Dwarf algorithm recognizes

this kind of redundancy and stores every unique prefix just once.

Table 3.1: Fact table for Sales cube
Store Customer Product Price

S1 C2 P2 70

S1 C3 P1 40

S2 C1 P1 90

S2 C1 P2 50

Suffix redundancy occurs when two or more group-bys share a common suffix (like

abc and bc). For example, consider a value bj of dimension b that appears in the fact

table with a single value ai of dimension a (such an example exists in Table 3.1, where

the value C1 appears with only the value S2). Then, the group-bys (ai, bj, x) and (bj, x)

always have the same value, for any value x of dimension c. This happens because the

second group-by aggregates all the tuples of the fact table that contain the combination

of any value of the a dimension (which here is just the value ai) with bj and x. Since

x is generally a set of values, this suffix redundancy has a multiplicative effect. Suffix

redundancy is identified during the construction of the Dwarf cube and eliminated by

coalescing their space. What makes the Dwarf cube technique practical is the automatic

discovery of the prefix and suffix redundancies, without requiring knowledge of the value

distributions and without having to use sophisticated sampling techniques to figure them

out. Dwarf cubes have significant reduction in computation cost by identifying each

redundant suffix prior to its computation. Furthermore, because of the condensed size

of the Dwarf cube, the time needed to query and update is reduced compared to all

previous algorithms. The construction requires a single scan of the fact table. For the

first tuple of the fact table, the corresponding nodes and cells are created on all levels

of the Dwarf Structure. As the scan continues, tuples with common prefix with the last

tuple will be read. The necessary cells required to accommodate new key values as the

Data Cube Computation Techniques 31

algorithm progress through the fact table are created. At each step of the algorithm,

the common prefix P of the current and the previous tuple is created. The size of the

the Dwarf cube is defined as the total number of tuples it contains after data coalescing.

The redundancy of the cube is eliminated in the Dwarf cube and coalesced areas are only

stored once.

3.1.7 Shell Fragment Approach

The Shell Fragment Approach [39] was specifically designed to specifically compute data

cube for high dimensional databases. Since a data cube grows exponentially with the

number of dimensions, it is too costly in both computation time and storage space to

materialize a full high-dimensional data cube. The Shell Fragment algorithm is based on

an observation that, although a data cube may contain many dimensions, most OLAP

operations are performed only on a small number of dimensions at a time.

Table 3.2: The original dimension table with five (5) attributes

Tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

The Shell Fragment technique, therefore, partitions a high dimensional dataset into a

set of disjoint low dimensional datasets called fragments. The base dataset is projected

onto each fragment, and data cubes are fully materialized for each fragment. With the

precomputed shell fragment cubes, one can dynamically assemble and compute cuboid

cells of the original dataset online. This is made efficient by set intersection operations

on the inverted indexes which was previously mentioned. To illustrate the algorithm,

consider the sample database in Table 3.2. Let the cube measure be count(). The

inverted index is constructed as as follows. For each attribute value in each dimension,

we register a list of tuple IDs (tids) associated with it.

The inverted index in Table 3.3 may be generalized to multiple dimensions, where

one can store tid-lists for combinations of attribute values across different dimensions.

For example, suppose we are to compute the shell fragments of size 3. We first divide

the 5 dimensions into 2 fragments, namely (A, B, C) and (D, E). For each fragment,

we compute the complete data cube by intersecting the tid-lists in Table 2 in a bottom-

Data Cube Computation Techniques 32

Table 3.3: Inverted Indexes for Individual Dimensions A, B, C, D, and E

Attribute Value Tid List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

up depth-first order in the cuboid lattice. Thus, to compute the cells {a1b2∗}, the

intersection of the tuple ID lists of a1 and b2 is computed to get a new list {2, 3}. The

cuboid for AB is shown in Table 3.4.

Table 3.4: Cuboid for AB
Cells Intersection Tuple ID List List Size

a1 b1 1 2 3 ∩1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩1 4 5 4 5 2

a2 b2 4 5 ∩2 3 φ 0

After computing the cuboid for AB, we may then compute cuboid ABC by inter-

secting all pairwise combinations between Table 3.4 and the row c1 in Table 3.3. Notice

that, because the entry a2b2 is empty, it can be effectively discarded in subsequent com-

putations based on the Apriori Property [3]. The computed shell fragment indexes are

used to facilitate online query computation. The question is how much space is needed

to store them. Given a database of T tuples and D dimensions, the amount of memory

needed to store the shell fragments of size F is O(T (D
F

)(2F − 1)). The Shell Fragment

algorithm is depicted in Algorithm 1.

The advantage of this algorithm is that, it can drastically reduce the size of the data

cube. However, the challenge with this approach is how to select the right fragment size.

A fragment size of three (3) has been proposed to provide a good trade-off between storage

space and query performance but in real life application, this will result in too many

Data Cube Computation Techniques 33

Algorithm 1 The Shell Fragment Algorithm
Input: A base cuboid B of n dimensions: (A1, · · · , An).

Output: (1) A set of fragment partitions P1, · · · , Pk and their corresponding (local) fragment cubes,

and (2) and ID measure array if the measure is not tuple-count

1: partition the set of dimensions (A1, · · · , An) into a set of k fragments P1, · · · , Pk

2: scan base cuboid B once and do the following

3: insert each (tid,measure) into ID measure array

4: for each attribute value ai of each dimension Ai

5: build and inverted index entry: (ai, tidlist)

6:7: for each fragment partition Pi

8: build a local fragment cube Si by intersecting their corresponding tid-lists and computing their

measures

queries computed from more than one fragment and therefore result in poor performance.

3.1.8 Discussion

Data cube computation involves scanning the original data, applying the required aggre-

gate function on all groupings, and generating the cube contents [42]. The 2D algorithm,

represents the first attempt to introduce the idea of data cubes and its computation. It is

not an efficient algorithm, with exponential complexity. The GBLP algorithm improves

the performance of the 2D algorithm by computing each node in the lattice using its

smallest parent, not the original fact table. The main disadvantage of this method is

that it only prunes the lattice into a tree, without suggesting a particular way to tra-

verse it. Lack of an efficient disk-access plan makes GBLP impractical when dealing

with large datasets that do not fit in memory. The Partition-Cube algorithm is based

on the assumption that real world data tends to be sparse, and this sparsity results in

fewer aggregation operations. The Partitioned-Cube algorithm is recursive and follows

a divide-and-conquer strategy based on a fundamental idea that has been successfully

used for performing complex operations such as sort and join. Unlike the 2D and GBLP

algorithms which are exponential in nature, the I/O cost of Partitioned-cube is typically

linear to the number of dimensions. However, when sparsity increases as a result of data

increase, the number of redundant tuples also increases, leading to an earlier recursion

break. The BUC technique, however, takes into consideration only sets of tuples that

aggregate together, and for which the aggregate function returns a value greater than

minsup. The distinguishing feature of the BUC method is that it starts computation

from the apex (ALL) node, which contains only one tuple, moves towards more detailed

Data Cube Computation Techniques 34

nodes with more grouping attributes, and finishes at the root of the lattice which contain

all dimensions as its grouping attribute. The BUC technique performs very well even

in sparse environment. However, it has shown to suffer from the curse of dimensional-

ity. The Condensed Cube method aims to reduce the size of a data cube and hence its

computation time and storage overhead. It yields a fully computed cube that condenses

those tuples aggregated from the same set of base relation tuples into one physical tuple.

It has the advantage of reducing the size of the cube. However, it suffers from the curse

of dimensionality, since it creates a full cube. Another approach that aims to reduce the

storage complexity of a data cube is the Dwarf cube algorithm. A Dwarf cube eliminates

prefix and suffix redundancy by factoring them out of the data store. The Dwarf cube

algorithm has the advantage of a polynomial size and computation complexity with re-

spect to dimensionality increase. The disadvantage is that, when the cardinality increases

with a corresponding increase in dimensionality the storage and computation complexity

becomes exponential.

Table 3.5: Comparison of data cube computation ap-

proaches

Algorithm Advantages Disadvantages

2DAlgorithm It is very simple algorithm

GBLP More efficient than 2DAlgorithm Only prunes the lattice into a

tree, without suggesting a partic-

ular way to traverse it

Partition-Cube I/O cost is linear to number of

dimension

Sparsity in data may lead to ear-

lier recursion break

BUC Performs well, even when data is

sparse

Suffers from curse of dimension-

ality

Condensed

Cube

Reduces the size of data cube

drastically

Suffers from curse of dimension-

ality

Dwarf Cube Polynomial size and computation

complexity with respect to di-

mensionality increase

Exponential complexity with re-

spect to both dimensionality and

cardinality increase

Shell Fragment Linear complexity with respect to

dimensionality increase

Does not perform well for larger

fragment sizes

Finally, the Shell Fragment method attempts to reduce the size of the data cube as

dimensionality grows by partitioning the dimension space into small disjoint sets called

Data Cube Computation Techniques 35

fragment. A full data cube is then computed for each fragment. The advantage of this

method is that, for a fixed fragment, increase in dimensionality only means additional

fragments. Thus the relationship between storage size and dimensionality increases lin-

early. However, this method only works for small fragment sizes of 2 and 3, which is

too small for most real world queries. Furthermore, increasing the fragment size tends

to cause an exponential explosion in size. Table 3.5 summarizes the discussion with a

comparative study of all the techniques.

Apart from data cube computation, data selection methods (also referred to as the

view selection problem) is essential for an efficient data cube, since it determines which

part of the data cube will be materialized. Next, we discuss data selection methods.

3.2 Selection Methods

Recall that data cube Selection Methods (also known as the View Selection Problem

(VSP)) determine the subset of the data cube that will actually be stored [42]. Thus,

given a certain storage cost threshold, there is a need for selecting the best views to be

materialized, i.e views that fit the storage requirement and provide the lowest response

time to process OLAP queries. A data cube selection method takes as input a fact table

and returns a set of views to store in order to speed up queries [29]. These methods

are also referred to as cube materialization techniques. Recall that the performance of

cube selection techniques are usually dependent on three criteria, namely (1) the amount

of memory to store the selected view, (2) the query response time and finally (3) the

time complexity of the algorithm. As mentioned earlier, most of the works proposed in

the literature consider the problem of finding the best data to store in order to optimize

query evaluation time while the memory space needed by this data does not exceed a

certain limit fixed by the user. Their objective is thus usually to balance the trade-off

between the amount of resources consumed by the data cube and query response time.

The problem of selecting an optimum subset of a data cube is NP-complete, even under

some rather loose constraints [30]. Hence, all methods search for near optimum solutions

using appropriate heuristics. In effect, an effective selection method in general accelerates

computation as well, since partial cube materialization implies smaller cost of writing

the result to the disk and probably fewer aggregation operations. All the cube selection

methods can be categorized into five (5) main techniques. These are the techniques based

on greedy heuristics, random search heuristics, evolutionary heuristics, hybrid heuristics

and model-driven heuristics. In this section we will study the Greedy heuristics proposed

in the literature which is the focus of our work.

Data Cube Computation Techniques 36

3.2.1 Greedy Algorithm

The Greedy Algorithm [30] represents the first systematic attempt to find a solution to

the problem of selecting an appropriate subset of a cube for computation and storage. It

is based on a ”greedy” heuristic in order to avoid an exhaustive search in the space of all

possible solutions. The Greedy algorithm provides a solution to the selection problem

with the goal of minimizing the average time taken to evaluate a lattice node on-the-fly,

under the constraint that the number of nodes that are maintained in materialized form

is bounded. The space used by the materialized nodes plays no part in this approach.

This optimization problem is NP-complete [30] even in this simple setting. The algorithm

assumes that the storage cost(size) of each node is known a-priori. Let C(u) be the size

of node u, measured in terms of the number of tuples. Suppose also that there is a limit

k in the number of nodes that can be stored along with the root of the lattice. The root

is always materialized, since it contains the most detailed information and cannot be

computed from it’s dependents. Let S be the set of nodes that the algorithm selects. Set

S is initialized to the root of the lattice. The algorithm is iterative and terminates after

k iterations. In each iteration, one more node is added to S, building the final result in

steps. The choice of a node u in the ith iteration depends on the quantity B(u, S), which

is called the benefit of u relative to S and is calculated as follows.

1. For each node w ⊆ u, where w ⊆ u denotes that w is either u or one of its

descendants, let v be the node of least cost in S such that w ⊆ v. (Note that such

a node always exists and in the worst case it coincides with the root.) Then, define

the quantity Bw as Bw = max{C(v)− C(u), 0}.

2. B(u, S) is defined as B(u, S) =
∑

w⊆uBw.

In other words, the benefit of u relative to S depends on the improvement that its mate-

rialization (addition to S) offers in the cost of computing itself and all of its descendants.

For each w ⊆ u , the cost of computing w using u is compared with the cheapest cost of

computing w using some node v that already belongs to S. If u aids, which means that

C(u) < C(v), then difference C(v)− C(u) contributes to the total benefit, which is the

sum of all such differences. In the ith iteration, the Greedy algorithm inserts to S the

node u that does not belong to it and has the maximum benefit B(u, S).

The complexity of the Greedy algorithm is shown to be O(k × n2), where n is the

number of lattice nodes. Furthermore, the authors of Greedy proved that, regardless

of the given lattice, the total benefit of the Greedy is at least 0.63 times the total

benefit of the optimal solution. This, however, does not necessarily imply near-optimal

Data Cube Computation Techniques 37

performance. Nevertheless, it is an indication of certain guarantees in the effectiveness

of the algorithm.

3.2.2 BPUS Algorithm

The BPUS algorithm [30] is a variation of the Greedy algorithm. The difference between

the BPUS and Greedy algorithms, lies in the constraint that must be satisfied. Instead of

having a limit on the number of nodes that can be materialized, there is an upper bound

on the total storage space that the precomputed nodes can occupy. Again, this upper

bound does not include the space occupied by the lattice root, which is always stored.

The fact that BPUS takes into account the storage requirement of an OLAP server gives

a more realistic criterion, since in practice, storage is usually a limiting factor. BPUS

functions in the same way as the Greedy algorithm, proceeding iteratively and adding

nodes to the set S, while the upper bound of disk space occupied by the nodes in S

has not been exceeded. The only difference is in the way a node u is selected in the ith

iteration. The choice is not based on the absolute benefit B(u, S), but on the benefit

per space-unit that u occupies - BPUS selects the node that does not belong to S and

maximizes the fraction B(u, S)/C(u). A problem arises when there is a very small node

s with great benefit per space-unit and a much larger node b with similar benefit per

space-unit. Selecting s may exclude b from further selection, since it might no longer

fit. Nevertheless, BPUS also provides performance guarantees, similar to the Greedy

approach. That is if no lattice node occupies space larger than some fraction f of the

totally allowed storage space, then the total benefit of the solution of BPUS will be at

least (0.63− f) times the total benefit of the optimal solution.

3.2.3 Greedy-Interchange and Inner-Level Greedy algorithm

The general problem of choosing a set of views for materialization in a data warehouse

environment, given some constraint on the total space that can be used, in order to

optimize query response time was studied in [22]. The proposed algorithms are based

on a priori knowledge of queries that will be executed, their frequencies, and the cost of

updating the materialized views. However, the problem the authors state is more general

than the problem solved by the Greedy algorithm and the BPUS algorithm, since they

focus on the selection of nodes of the cube lattice, not only on the selection of any

view that can be materialized. The authors proposed two new algorithms, namely the

Greedy-Interchange algorithm and the Inner-Level Greedy algorithm.

The Greedy-Interchange algorithm starts from the solution generated by the BPUS

Data Cube Computation Techniques 38

algorithm and improves it by exchanging nodes that have not been selected with selected

nodes. Since the nodes have difference sizes, it is possible to exchange one or more nodes

with one or more other nodes. The algorithm iterates until there is no possible exchange

that improves the total benefit. Unfortunately, nothing has been proven about the

effectiveness of this algorithm, except for the obvious fact that it constructs a solution

at least is as good as the BPUS algorithm. Moreover, a great disadvantage of the

Greedy-Interchange algorithm is that there are no bounds on its execution time. In the

paper, the authors mention that in a great number of experiments, the algorithm usually

terminates after some time that is at most a factor 1.5 greater than the execution time of

BPUS. However, no strict bound has been theoretically proven. The Inner-Level Greedy

algorithm, however, takes into account the existence of indexes on the selected nodes,

which can also be stored if they positively affects the total benefit. Thus, the algorithm

selects not only nodes but indexes as well. The Inner-Level Greedy algorithm is also

iterative. In each iteration, it selects a subset C that may consist of either one node and

some of its indexes in a greedy manner or a single index of a node that has already been

selected in some previous iteration. In particular, the iteration consists of two steps:

1. In the first step, for each node vi, a set IGi is constructed and is initialized to vi.

Then, the indexess of vi are added one by one to IGi in order of their incremental

benefits, until the benefit per unit space of IGi with respect to S is maximized.

Here, S denotes the set of nodes and indexes already selected. The algorithm

chooses as C the IGi that has the maximum benefit per unit space with respect to

S.

2. In the second step, the algorithm selects an index of a node that already belongs

to S. The selected index is the one whose benefit per unit space is the maximum

with respect to S.

The benefit per unit space of C from first step is compared with that of the index

selected in the second step. The better one is added to S.

The complexity of the algorithm is O(k2×n2), where k denotes the maximum number

of nodes and indexes that fit in the space given according to the initial constraint, and

n is the total number of nodes and indexes among which the algorithm selects. It has

been proven that the total benefit of Inner-Level Greedy is at least 0.467 times the total

benefit of the optimal solution.

Data Cube Computation Techniques 39

3.2.4 MDred-lattice Algorithm

The MDred-lattice algorithm selects an appropriate subset of lattice nodes so that the

system responds efficiently to certain known queries, balancing at the same time the

space that this subset occupies on disk [8]. This implies that the algorithm optimizes

the average response time of queries in a particular workload and is not concerned with

the overall average query. Given a set of queries SQ as the workload of interest, the

algorithm defines the set of the so-called candidate views, which contains the lattice

nodes that will be beneficial if saved. A lattice node Vi belongs to the candidate-view

set, if it satisfies one of the following two conditions:

1. Node Vi is associated to some query qi ∈ SQ, in particular, the one that it contains

in its group-by clause, the same grouping attributes as Vi

2. There are two candidate views Vj and Vk, which have Vi as the most specialized

common ancestor.

Since the number of candidate views is too large in practice, the authors proposed a

variation of the algorithm that takes into account the estimated size of each candidate

view as well [42]. Depending on the sizes of the candidate views, it is decided whether or

not a level of the lattice is too specialized so materialization of its nodes does not offer

great benefit for answering the queries of interest. In this case, the nodes of the selected

level are substituted by some of their ancestors in higher levels.

3.2.5 PBS Algorithm

The PBS algorithm [53] is very similar to the BPUS algorithm, but uses a simpler

heuristic for solving the problem of selecting a cube subset for storage. As in the BPUS

algorithm, an upper bound on the total storage space that precomputed nodes can occupy

must be satisfied. PBS initializes some set S to the root of the lattice and then iterates,

each time selecting and adding into S the smallest remaining node, until it exceeds the

space limit posed by the initial constraint. Interestingly, the PBS algorithm proceeds

in a bottom-up fashion, traversing the lattice from smaller and more specialized nodes

towards larger and more detailed ones. Proceeding this way, the algorithm creates a

frontier that separates the selected nodes from the unselected ones. Recall that the lower

a node is in the lattice, the smaller it it, since the number of aggregations it has been

subject to increases from level to level. The algorithm is rather simple, since it calculates

no cost and does not take into account a benefit quantity like the Greedy and BPUS

algorithms. It only needs an estimation of the size of each node. Hence, its complexity

Data Cube Computation Techniques 40

is O(n × log n), where n is the number of lattice nodes. The factor n × log n comes

from ordering the nodes by their sizes. Figure 3.2 shows the lattice of a 4 dimensional

cube and the estimated size of each node in blocks. Let the available storage space

be 200 blocks. The nodes that are selected for storage have been shaded. The dashed

line denotes the frontier that separates the selected from the nodes not selected. Note

that 16 blocks remain unexploited. The main disadvantage of the algorithm is that it

sacrifices the quality of its results in order to accelerate the process. In particular as

for BPUS algorithm, the total benefit of the PBS solution is at least within a factor

of (0.63 − f) of the optimal algorithm total benefit (where f is the maximum fraction

of the size occupied by a node with respect to the total available space). For the PBS

algorithm, however, this property holds only under strict conditions. More precisely, such

performance guarantees can be given only for the subclass of Size Restricted hypercube

lattices (or SR-hypercube lattices), which have the following special ordering between

the sizes of parent and children nodes. For each pair of nodes u, w, where w is the

parent of u and different from the root, if k denotes the number of children of w, then

|u|/|w| ≤ 1/(1 + k). In other words, in SR-hypercube lattices, the size of a node is

equally distributed to its children, which have to be at least (1 + k) times smaller than

their parents.

Figure 3.2: The nodes selected by PBS [42]

Data Cube Computation Techniques 41

3.2.6 Inverted-Tree Greedy Algorithm

Most of the algorithms presented up to this point provide solutions to the view selec-

tion problem under a space constraint. Nevertheless, since the price/capacity ratio of

secondary storage media keeps decreasing, the limiting factor during the view selection

process is not always the space that is available for the storage of the selected material-

ized views; it can also be the time necessary for their incremental maintenance, a process

typical in data warehouses.

The view selection problem under a maintenance-cost constraint seems similar to the

view selection problem under a space constraint, except for one fundamental difference

[24] that makes it harder to solve. The space occupied by a set of views monotonically

increases when more views are added to the set, whereas the maintenance cost does not.

In other words, it is possible that the maintenance cost of a set of views decreases after

the insertion of one more view in the set. For example, if the latter is an ancestor of

some views in the original set and its updated data can be used as intermediate results to

accelerate the update process of its descendants. However, because of the non-monotonic

property of the update cost, a straightforward greedy algorithm, in the spirit of BPUS

algorithm, may produce a result of arbitrarily poor quality compared to the optimal

solution [24]. Inverted-Tree Greedy [24] is an algorithm that overcomes this problem.

The Inverted-Tree Greedy algorithm uses a measure called benefit per unit of effective

maintenance cost (referred to as benefit hereafter), which is similar to the benefit per

space-unit used by BPUS algorithm, but which takes into account maintenance costs in-

stead of storage costs [24]. As mentioned above, incrementally building the final solution

by greedily choosing the lattice node with the largest benefit with respect to the set S

of nodes already selected for materialization has been found to produce results of poor

quality. Alternatively, the Inverted-Tree Greedy algorithm iteratively selects the most

beneficial Inverted-Tree set with respect to S, consisting of a set of nodes P of the cube

lattice that do not belong to S. A set of nodes P is defined to be an inverted-tree set in a

directed graph G (in our case, the cube lattice) if there is a subgraph Tp in the transitive

closure of G such that the set of vertices of Tp is P and the inverse graph of Tp is a tree.

In other words, the Inverted-Tree Greedy algorithm works iteratively while the main-

tenance cost constraint is satisfied. At each step, it considers all possible inverted-tree

sets of the cube-lattice nodes that do not belong to S. Among them, it selects the one

with the largest benefit with respect to S and inserts its nodes into S. Note that, unlike

the greedy methods presented above, in each step, the Inverted-Tree Greedy algorithm

selects a set of nodes instead of a single one.

It has been proven [24] that under certain conditions such as view graph instances,

Data Cube Computation Techniques 42

which usually hold in practice, Inverted-Tree Greedy returns a solution S whose total

benefit is a least 0.63 times the total benefit of the optimal solution that incurs at most the

same maintenance cost. Unfortunately, in the worst case, the total number of inverted-

tree sets in a directed graph is exponential in the size of the graph, which increases

the computational costs of the method, raising some concerns about its applicability in

real-world applications.

3.2.7 PGA Algorithm

The PGA algorithm [44] uses a heuristic that is polynomial to the number of dimensions

D. The PGA algorithm is iterative, with every iteration divided into two phases, nomi-

nation and selection. During nomination, PGA selects a path of D promising nodes from

the root to the bottom of the lattice. The nodes in this path are the candidates consid-

ered for materialization in the second phase. The nomination process then moves down

one level. The nomination phase begins with the root as the parent node and estimates

the sizes of all its children nodes. The smallest child that has still not been selected

during previous iterations is nominated as a candidate view. The process continues until

the bottom of the lattice is reached. When the nomination phase completes, the PGA

technique moves to the selection phase, during which it selects for materialization the

candidate view with the largest estimated benefit. The benefit of materializing a candi-

date view is estimated based on some metadata and not calculated by recomputing the

query response time of all its descendants, as performed by BPUS algorithm. The PGA

algorithm avoids the two main sources of exponential complexity with respect to D of

all previous algorithms. First, during all iterations, it does not consider all remaining

nodes on the entire lattice, which are in the order of 2D, but only D candidate nodes.

Second, it does not calculate the benefit of a candidate node by visiting all its descen-

dants, which are again in the order of 2D in the worst case, but it estimates this benefit

in O(1) time based on specialized metadata. The authors show that the time complexity

is O(K ×D2), where K is the number of nodes finally selected.

3.2.8 PickBorders Algorithm

The PickBorders algorithm [29] propose a solution that gives a good trade-off between

memory usage and queries cost with reasonable time complexity. The aim of the algo-

rithm is to reduce the size of the data cube with a query performance guarantee. The

authors address the following problem. Given a real number f ≥ 1, their aim is to find

a set of cuboids S of minimum size so that cost(S) ≤ f ×mincost. Thus, they aim to

Data Cube Computation Techniques 43

name a set S of cuboids which, when materialized, the evaluation cost of queries does

not exceed f times the minimal cost. Moreover S should be minimal size. Clearly, if

S = C then this solves the problem. However, this solution is unrealistic because the

size of C is huge. Thus, a constraint is added to the problem to facilitate the selection

of the smallest S such that Cost(S) ≤ MinCost× f . The authors presented three sys-

tematic algorithms for selecting a subset of views to be stored. The first algorithm Pick

Small Cuboid (PSC), considers the situations where the size of the cuboids are known

or unknown a priori. In the case where it is known, computing the subset of views S

involves sorting the views and selecting those whose size is less than M/f . On the other

hand, if the size is unknown, then the sizes of all cubes can be computed before sort-

ing and selecting views that are less than M/f . Note that M is the Size of the base

cuboid. However, the condition size(c) ≤ M/f is anti-monotonic, that is if c ≤ c′ and

size(c) > M/f then size(c′) > M/f . That implies that the algorithm for selecting S is

exactly the Apriori algorithm [3]. Below is the detailed algorithm for PSC.

Algorithm 2 Pick Small Cuboid Algorithm
Input: Parameter f , fact table T.

Output: a partial data cube S

1: S = φ

2: C1={c ∈ C1 s.t |c| ≤M/f}
3: S = S ∪ L1

4: for(i = 1;Li 6= φ; i+ +) do

5: Ci+1={candidates generated from Li}
6: for each c ∈ Ci+1 do compute size(c)

7: Li+1={c ∈ Ci+1 s.t |c| ≤M/f}
8: S = S ∪ Li+1

9: Return S

A problem with the PSC algorithm is that the size of S might be too big and thus

could not be stored entirely. In order to reduce the size of S, the algorithm identifies and

stores only that subset of cuboids that can reduce the maximal cost of computing them

by a factor f . Thus, if only the maximal cubooids w.r.t f are stored, then the maximal

cost of cuboids are reduced. To reduce the maximal cost of cuboids, the authors identified

and eliminated the set of cuboids for which reduction is possible with respect to f . This

set is called the f-Reducible Set of Cuboids. A cuboid c is said to be f-reducible if it can

be computed from a cuboid whose size is less than the maximal cuboid divided by the

factor f .

For example, in Figure 3.3, the cuboid ABDE is not 10-reducible because none of

Data Cube Computation Techniques 44

Figure 3.3: Sample data cube [29]

its ancestors has a size less than Size(ABCDE)/10. The cuboid B is 10-reducible

because at least one of its ancestors has a size less than size(ABCDE)/10. Although

this improvement to the PSC algorithm reduces the space consumed by PSC, it does not

guarantee query performance. In order to guarantee the quality factor and reasonable

memory size, the solution is improved by iterating through the algorithm for different

values of f , that is f i where i is an integer ranging from 0 to blogf (M)c. The final

algorithm is shown below.

1: S = φ

2: for(i = 1; i ≤ blogf (M)c ; i+ +) do

3: S = S ∪ PSC(f)

4: f = f i

5: Return S

PickBorders guarantees two properties. First, the cost of its output S is bounded by

the minimal cost times the factor f . This property may be qualified as a global property.

Secondly, the same output guarantees that if we take each cuboid individually, its cost

with respect to S is also bounded by the minimal cost times f .

3.2.9 DynaMat Algorithm

All selection algorithms previously described are static in the sense that, given some

restriction regarding the available space and/or update time, and sometimes some de-

scription of the expected workload, they statically suggest a set of views to materialize

for better performance. Nevertheless, decision support data are dynamic, since both

data and trends in it keep changing. Hence, a set of views statically selected might

Data Cube Computation Techniques 45

quickly become outdated. Keeping the set of materialized views up to date requires that

some of the aforementioned view-selection algorithms may be rerun periodically, which

is a rather tedious and time-consuming task. The DynaMat algorithm overcomes this

drawback by constantly monitoring incoming queries and materializing a promising set

of views subject to space and update time constraints [36]. Another strong point of the

DynaMat algorithm is that it does not materialize entire views, but only the segments of

them that correspond to the results of aggregate queries. This is achieved using certain

types of range selection queries on the dimensions of interest. Hence, this algorithm

performs selection at a finer level of granularity. The segments are stored in a so-called

view pool, which is initially empty. The view pool V is the information repository that is

used for storing materialized results. The algorithm distinguishes two operational phases,

namely on-line and update. During the online phase the system answers queries. When

a new query arrives, the DynaMat algorithm uses a Fragment Locator to determine if it

can answer it efficiently using a segment already stored in the pool. A Directory Index

implemented using R-trees is maintained in order to support sub-linear search in the

view pool for finding candidate materialized results. R-trees are balanced search trees

that group nearby objects and represent them with a minimum bounding rectangle in

the next higher level of the tree. Interested readers are referred to [41] for a detailed

discussion. Otherwise, it accesses the source data stored in the fact table (and poten-

tially some relevant indexes) to answer the query. This decision is based upon a cost

model that compares the cost of answering a query through the repository with the cost

of running the same query against the warehouse. In both cases, after computing the

result, the DynaMat algorithm invokes an admission control module to decide whether

or not it is beneficial to store the result in the pool. If the result fits in the pool, the

admission control module always permits its storage for future use. Otherwise, if the

pool size has reached its space limit, the admission control module uses a measure of

quality (e.g., the time when a segment was last accessed) to locate candidate segments

for replacement. A segment already stored in the pool is considered for replacement only

if its quality is lower than the quality of the new result. If no appropriate replacement

candidates are found, the admission control module rejects the request for storage of

the new result in the pool. Otherwise, the approach applies some replacement policy

(e.g., Least Frequently Used (LRU)) to replace some old segments with the new one.

Thus, the algorithm guarantees that the size of the pool never exceeds its limits. During

the on-line phase, the goal of the system is to answer as many queries as possible from

the pool, because most of them will be answered quicker from the view pool than using

conventional methods, for example, using the source data warehouse. At the same time,

it quickly adapts to new query patterns and efficiently utilizes the system resources.

Data Cube Computation Techniques 46

During the update phase, the system receives updates from the data sources and

refreshes the segments materialized in the pool. In order to guarantee that the update

process will not exceed the available update-time window, the DynaMat algorithm es-

timates the time necessary for updating the materialized segments. If this exceeds the

system constraints, it again uses a policy based on the chosen measure of quality to dis-

card some segments from the pool and decrease the total time necessary for the update

process. Initially, it discards all segments whose maintenance cost is larger than the

update window. Subsequently, it uses a greedy algorithm that iteratively discards seg-

ments of low quality until the constraint is satisfied. (As already mentioned, discarding

some materialized data does not necessarily imply a decrease in the overall update time.

The algorithm takes this into account by not considering segments that contribute to

the acceleration of the update time of other segments for replacement.) The remaining

segments are updated and the system returns to the on-line phase.

3.2.10 Discussion

Selection Methods selects the best views to be materialized that would fit storage require-

ment and provide the lowest response time. The Greedy algorithm represents the first

systematic attempt. Its goal is to minimize the average time taken to evaluate a lattice

node ”on-the-fly”, under the constraint that the number of nodes that are maintained

in materialized form is bounded. A disadvantage of this method is that it assumes the

storage size of each node is known apriori. Also, the size can explode as it is not bound

by storage size. A variation of the Greedy algorithm called the BPUS algorithm, puts an

upper bound on the total storage space, instead of having a limit on the number of nodes

that can be materialized. The drawback of this algorithm is that, when there are very

small nodes with great benefit per space-unit and much larger nodes with similar benefit

per space-unit, selecting the smaller views may exclude the larger views, since there may

be no space. The Greedy-Interchange and Inner-Level Greedy algorithms are based on

apriori knowledge of queries that will be executed, their frequency, and cost of updating

the materialized views. Unlike the other approaches discussed so far, the MDred-lattice

algorithm is not concerned with overall average query performance, but optimizes the

average response time of queries in a particular workload. The objective of Mdred-lattice

algorithm is to select an appropriate subset of lattice nodes so that the system responds

efficiently to certain known queries, under the constraint of storage space. The problem

with this technique is the huge number of candidate nodes that are generated. The PBS

algorithm is similar to the BPUS algorithm, but with a simpler heuristic. The PBS

algorithm initializes some set S to the root of the lattice and then iterates, each time

Data Cube Computation Techniques 47

selecting and adding the smallest node into S until space limit is exceeded. Although

this algorithm is very fast and simple, it sacrifices the quality of the results.

Table 3.6: Comparison of data cube selection approaches

Algorithm Advantages Disadvantages

Greedy Guarantees a certain level of ef-

fectiveness by avoiding exhaus-

tive search in all spaces of all so-

lutions

Size of selected cube might exceed

space available

BPUS Storage space is never exceeded Some beneficial nodes might be

eliminated as a result of space

constraint

Greedy-

Interchange

& Inner

Level Greedy-

Interchange

Focuses on selecting nodes of a

cube lattice and not any view

that can materialized

There is no bound on the execu-

tion time

MDred-lattice Performs very well on workload

queries

Not concerned with overall aver-

age query

PGA Use of specialized meta data the

reduce the time of visiting the

candidate nodes from O(2D) to

O(1)

Might be time consuming and

might select a very large number

of views

PickBorders Guarantees a constant approxi-

mation factor of query response

time with respect to the optimal

solution

Difficult to select the right value

for f the performance factor

DynaMat A dynamic solution that re-

lieves the warehouse administra-

tor from having to monitor and

calibrate the system constantly

Complicated and time consum-

ing, especially for large databases

Unlike other algorithms, the Inverted-Tree greedy algorithm is based on the premise

that price of storage keeps decreasing, therefore storage constraint is not an appropriate

limiting factor. The Inverted-Tree Greedy algorithm uses the time necessary for incre-

mental maintenance as the limiting factor. The algorithm works iteratively, by selecting

Data Cube Computation Techniques 48

views that ensures that the maintenance cost constraint is satisfied. The disadvantage

of this approach is that, in the worst case, the number of Inverted-Tree set in a directed

graph is exponential to the size of the graph, thus increasing the computational cost of

the method. A peculiar problem in all the algorithms discussed so far is that they have

exponential complexity with respect to the number of dimensions D. The PGA algo-

rithm, therefore, avoids two sources of exponential complexity with respect to D of all

the previous algorithms. Firstly, during its iterations, it does not consider all remaining

nodes on the entire lattice but only a path of D candidate nodes. Secondly, it does not

calculate the benefit of a candidate node by visiting all its descendants. The disadvan-

tage is that, since it keeps selecting the smallest child at every iteration, it has the same

performance challenge as the PBS algorithm. All the methods discussed so far does not

guarantee query performance. The PickBorders algorithm selects views that guarantees

a constant approximation factor of query response time with respect to optimal solution

to be stored. The algorithm guarantees that the cost of its output S as well as the cost

of each individual cuboid is bounded by the minimal cost times a factor f . This is the

only systematic algorithm that provides such guarantees. It computes its solution by

sorting the cuboids and selecting those whose size is less then the M/f , where M is the

size of base cuboid and f is an input parameter. Unlike all the algorithms discussed

so far, which are static, the DynaMat algorithm on the other hand is dynamic. It con-

stantly monitors incoming queries and materializes a promising set of views subject to

space and update time constraint. It is based on the premise that, if a query result is

not wasted by discarding it, its generation cost could be amortized over multiple uses

of the result. This algorithm unifies the view selection and the view maintenance prob-

lems under a single framework. During updates, the DynaMat algorithm reconciles the

current materialized view selection and refreshes the most beneficial subset of it within

a given maintenance window. The main benefit of the DynaMat algorithm is that it

represents a complete self-tunable solution that relieves the data warehouse administra-

tor from having to monitor and calibrate the system constantly. However, the task of

automatically monitoring constantly the query pattern and periodically recalibrating the

materialized views is rather complicated and time consuming, especially in large data

warehouses where many users with different profiles submit their query. Table 3.6 shows

a comparison all of all the data cube selection approaches.

Data Cube Computation Techniques 49

3.3 Summary

In this chapter, we covered some of the main techniques used in data cube computa-

tion and selection. The concept of data cube computation was explained, and some of

the state-of-the-art computation algorithms were discussed. After generating the cube

content, there is the need to select the subset of data that will actually be stored. This

problem is referred to as the data cube selection problem. We studied the problem and

presented some of the solutions presented in the literature.

In the next chapter, we will introduce our algorithm for computing Personalized

Smart Cubes. .

Part II

Personalized SMART CUBES for

scalable, fast data access

50

Chapter 4

The Personalized Smart Cube

Approach

Recall that, in OLAP applications, a main focus is to optimize query response time. To

do so, we often resort to precomputing or materializing query results. However, due to

space or time limitations, we cannot store the result of all queries. So, one has to select

the best set of queries to materialize. In the multidimensional model, more precisely when

considering data cubes, the relationships between the views can be used in order to define

what the best set of views are. Another challenge is that the source data from which

data cube has to be computed are usually very large, with high dimensionality. However,

users are not interested in the entire data space. Rather, they are only interested in that

small subset that is of most interest to them. This user interest is not static and therefore

precomputing the personalized cube in advance for each user is not a practical solution.

In order to meet such impromptu changes in user interest, we have to constantly monitor

user behavior and personalize the data cube accordingly.

In this chapter we present our Personalized Smart Cube approach, which has been

developed to address the above-mentioned challenges. We start by presenting a formal

definition of the problem in Section 4.1. The details of the Personalized Smart Cube

algorithm is explained in Section 4.2 with a running example. The second part of the

algorithm, which focuses on the personalization of the Smart Cube, is presented in Section

4.3. After cube computation and personalization, we examine how queries are executed

on the personalized Smart Cube in Section 4.4. Finally we conclude with a summary in

Section 4.5.

51

Algorithms 52

4.1 Problem Definition

Given a fact table T defined as a relation where the set of attributes is divided into

two parts, namely the set of dimensional key attributes Di and the set of measures Mi.

In general, Di is a key of T . A data cube built from T is obtained by aggregating T

and grouping its tuples in all possible ways. That is, assuming that each c corresponds

to a cuboid, we perform all Group By c where c is a subset of Di. Let the data cube

computed from T be denoted by C. Let the dimensions of the data cube be denoted by

Dim. If C is a data cube, and Di is its dimensions, then |Di| = D. The set of cuboids

of C is denoted by v. Clearly |v| = 2D. The fact table T is a distinguished cuboid of v

and it is called the base cuboid denoted by cb. The size of a cuboid c is expressed by the

number of its rows and is denoted by size(c). The size of a set of cuboids S is denoted

by size(S). Note that, if s � w then cuboid s can be computed from cuboid w.

Assume the queries that are asked against C are all and only those of the form

SELECT * FROM c or SELECT * FROM T GROUP BY c where c is a cuboid from

C. There are three situations that needs to be considered here. The first one is where

only the base cubiod cb is stored (materialized). In this case, every query requires the

use of this cuboid and hence has a time cost that is proportional to the size of cb.

The second situation is the one where all cuboids are materialized. In this latter case,

the evaluation of each query consists of first locating the appropriate cuboid and then

scanning the corresponding cuboid, making its cost proportional to the actual size of

the query or cuboid. However, in real world situations memory space is limited and

therefore we cannot feasibly store all the 2D cuboids, or we do not have time to compute

the entire data cube. Rather, what is often done is a partial materialization, i.e. the

third case. The personalized smart cube algorithm we present next is based on smart

materialization, which is a partial cube materialization algorithm that select only the

views that guarantees a fast query response time.

4.2 Personalized Smart Cube Approach

From the above motivation, we propose a novel algorithm called the Personalized Smart

Cube. The Personalized Smart Cube algorithm uses three main techniques to reduce

the size of the data cube while guaranteeing query performance and catering for user

interest. These three techniques are data partition, partial materialization and dynamic

view materialization. The general idea is that, we first partition the multidimensional

data mart into disjoint set of views called fragments. A fragment is a view constructed

from dimensional attributes from one or two dimension tables and measure attributes

Algorithms 53

from the corresponding fact table. After the partitioning, each fragment will be a view

constructed from one or two dimension tables with the measure values that correspond

to the dimension tables. Next we compute a local cube from each fragment, using partial

data cube materialization, where each fragment view is considered as a base table.

The view selection algorithm for the partial cube materialization extends the Pick-

Borders algorithm as presented in Section 3.2. In our work, we select only cuboids whose

sizes are at most M/f and eliminate cuboids whose sizes are below the row threshold.

Note that, M is the size of the base cuboid of the fragment, and f is an input factor called

performance threshold. The row threshold is the minimum size of a cuboid (or view)

that gives an acceptable response time, such that any improvement in query response

time as a result of cuboids with tuples below this threshold is considered insignificant.

The row threshold is based on the premise that the size of a database table determines

its query response time [31]. Thus, smaller views with few tuples takes shorter time to

query than larger views with a large number of tuples.

Let us consider the following example as depicted in Figure 4.1. Assume the row

threshold is 200. This implies that the time required to process a table of 200 tuples is

the minimum acceptable time. Assume also that f = 4 , that is we select only views whose

sizes are below 2000/4. Thus, we first eliminate all cuboids with size below 200 to reduces

the search space for phase two of the algorithm where we select only cuboids whose

sizes are below 2000/4. The cuboids that meet these two conditions are retained using

inverted indexes. After the partitioning and view selection for local cube computation,

the size of the overall data cube computed is small, but with some drawbacks. The

major drawback is that user queries are mostly unpredictable and in most cases these

queries might be required to be computed from attributes of different partitions. In such a

situation, an online computation is required to answer these queries. This process is made

efficient by applying set operations, such as intersections and unions, on inverted indexes.

However, online computations can still be a very expensive process. In order to solve this

problem and reduce the amount of online computation, we introduce the idea of a Smart

View. These are views computed from attributes of two or more fragments based on user

queries. These queries are very dynamic, and therefore a set of views statically selected

might quickly become outdated. We therefore create a set of unmaterialized views from

incoming queries that cannot be answered by a single fragment. A promising set of views

from the unmaterialized views are materialized, depending on the space available, update

time, and benefit of materialization. This implies that incoming queries are constantly

monitored.

When OLAP users perform data analysis, they usually have their own interest or

expectation of the data. Even though they might not have any knowledge about the

Algorithms 54

Figure 4.1: A data cube example

data, they are usually interested in only a given subset of the data. This subset of data

is what the user is usually interested in, and all user inquires and analysis are based on

this subset. Any information outside this subset becomes superfluous to the user. In this

work, we assume that user interest is related to location. Therefore, as the user travels

their interest might also change. We call the subset of data the user Interest. In order

to identify the subset of data that is of most interest to a user, we constantly monitor

incoming user queries and filters, materializing the query results based on a cost model

and query frequency. The attributes together with the filter information is added to

the Directory Index statistics. The Directory Index is an index structure maintained to

hold necessary information including statistics required to create, maintain and search

for dynamic views. If the frequency is above a given threshold and cost with respect to

the cuboid from which it is computed is minimized, then the query result is materialized

for the given user. The cost model is based on performance threshold f . That is, only

cuboids whose size is less than or equal M/f are selected for materialization. (Recall

that M is the size of the cuboid from which the view is computed where f is threshold

value.) Based on the above discussion, the Smart Cube algorithm can be summarized as

follows.

The first part of the algorithm utilizes the benefit of shell fragmentation to reduce the

storage complexity of the data cube. The algorithm starts by adding a surrogate key (tid)

to the fact table to serve as a tuple identifier. The tid is used as row or tuple identifier

for constructing inverted indexes and for set operations such as intersection and union,

utilized during online computation. Next, we flatten the multidimensional star schema

into a single flat view to allow for the application of a vertical fragmentation function.

The problem of vertical fragmentation in multidimensional databases has been studied

Algorithms 55

Algorithm 3 The Smart Cube Construction Algorithm
Input: Multidimensional Relation R

Number of Partitions N,

Smart Size Threshold S,

Output: A set of fragment partitions {P1, · · · , Pk}

1: Add a surrogate key tid to the fact table;

2: Flatten the fact table and dimension table into a multidimensional view R;

3: Partition R into fragments {P1, · · · , Pk};
4: Scan fact table once and do the following

5: Insert each (tid, measure) into ID measure array

6: For each Dimension row in each partition

7: Build an Inverted Index entry (rowvalue, tidlist) or a bitmap entry

8: foreach fragment Partition Pi;

9: Build local fragment cube by materializing the most beneficial cuboid based on the cost model and

Row Threshold using Smart Materialization

10: Propagate bitmap index or inverted indexes to all materialized views using set intersection;

11: Continuously build Smart Views are monitoring in coming queries

12: Personalized the resultant cuboids using Smart Personalization

in [43], but the authors proposed no new algorithm for determining an optimal fragmen-

tation. However, [20] proposes an algorithm for determining an optimal fragmentation.

Following this idea, we fragmented our multidimensional database by selecting dimen-

sion attributes that minimizes the total number of rows. This is achieved by selecting

all the partition attributes from one or two dimension tables that reduces data sparsity.

To this effect, we computed the cardinalities all the attributes in the dimension space.

The cardinality ranges that forms a single fragment are then specified, for example we

may ensures that smaller cardinalities form a single fragment and bigger cardinalities

also forms their own fragments. Smaller cardinalities ensures that aggregations based

on those attributes are small, thus creating smaller fragments. Another simple approach

is to compute a fragment from one dimension table, since most dimension tables have

relatively smaller number of rows and hence aggregation over them will result in a small

fragment size.

Figure 4.2 shows an example of a multidimensional star schema. For example, if our

objective is to partition such a schema, we can create a partition by selecting all the

partition attributes from a single dimension table, together with measure attributes to

form a fragment. In some situations, because the data are temporal, we can add the

date and time dimension attributes to each fragment. A resultant fragment view will

be made up of the following attributes, i item id, i item desc, i current price, i brand,

Algorithms 56

Figure 4.2: A Multidimensional Relation

i class from the item dimension and ss coupon amt, ss sales price, ss list price from the

sales store fact table. If we add temporal information to each fragment view then the

following attributes will make up a fragment, s store id, s store name, s city, s country,

s county, s state, d date, d month, d year, ss coupon amt, and ss sales price. Vertical

partitioning of dimension space can reduce the storage complexity of the resulting data

cube drastically. To illustrate this, let us consider the data cube in Figure 4.1. A data

cube computed from dimensions A, B, C and D will generate 24 = 16 cuboids. However,

assume that we partition it into two, such that, we have the first fragment data cube

with dimensions A and B and second fragment data cube with dimensions C and D. In

this case, the storage complexity of computing the two cubes is 22 + 22 = 8. Before

computation of the local fragment cube, we build an Inverted index or Bitmap index for

each dimension row. Recall from Chapter 2 that Bitmap indexing has been successful to

improve the efficiency of important query classes involving selection predicates and joins.

It is most efficient when domain cardinality is low. Inverted indexes, on the other hand

is advantageous especially in high cardinality attribute domain. Both Inverted indexes

and Bitmap indexes facilitate easy online query computation of fragment cubes using set

operations.

The computation of local fragment cubes are build using our proposed Smart Mate-

rialization algorithm, as follows. The computation of a localized cube for each fragment

Algorithms 57

is done by selecting only the most beneficial cuboids for materialization and then build a

Bitmap or Inverted index for each selected cuboid. Next, we compute the Smart Views

by constantly monitoring and materializing incoming user queries to reduce online cube

computations. Smart views are cuboids computed from two or more fragment views.

The Smart Views are materialized based on the frequency of queries that are answered

using that view and also the benefit of materializing the view. Finally, we personalize

the Smart Cube by using the Smart Personalization algorithm. This algorithm takes

user interest as input and continuously monitor user incoming queries and materialize

the results for each user.

4.2.1 Smart View Algorithm

When a multidimensional view is partitioned into fragments and local cubes are computed

for each fragment, user queries are answered either from a single fragment or multiple

fragments. This implies that answering certain user queries requires joining multiple

fragment views using Inverted indexes to facilitate online computation of cuboids. In

order to reduce the number of online query computation, views capable to answering

queries that require on-line computation are created. These views are materialized every

time a user poses a query to the system which cannot be answered by existing views or

which the cost of answering the query using existing view is high. The most beneficial set

of views that are materialized are, however, done under the constraint of S; the storage

space allocated for these views. These materialized views are referred to as Smart Views.

The Smart Views cannot be statically selected because user queries are very dynamic. In

view of this, the Smart View algorithm extends the DynaMat Algorithm as introduced

in Section 3.2. It constantly monitors incoming queries and materializing a promising

set of views, subject to space and update time constraints. When a user poses a query,

the system uses a view locator to first check if it can be answered from a single fragment.

If not, the algorithm then checks within the existing Smart Views to determine whether

it can be efficiently used to answer the query. If no view is available to answer the user

query or if the cost of answering the query using existing view is too high, it then uses

Inverted indexes to compute the query online from multiple fragments. The resultant

view may or may not be materialized. This decision is based upon a cost model that

compares the cost of answering a query through the Smart View set V with the cost of

answering same query against the unmaterialized view computed from the intersection of

Inverted indexes. During this phase, the goal of our computation algorithm is to reduce

on-line computation through the Inverted indexes and to answer as many queries from

the Smart Views as possible. At the same time, the algorithm will adapt to new query

Algorithms 58

Figure 4.3: The space bound

patterns by creating new views and removing less frequently used views. When a user

query is computed from on-line computation, a view based on the query is created and

added to the pool. This, however, does not add to the storage space, since the view

is not materialized until it is deemed profitable to materialize. A promising view for

materialization must meet the following criteria:

• The number of queries answered using that view must meets a frequency threshold

• The cost of materialization minimizes the overall query cost

If the smart pool had unlimited storage space, the size of the materialized data would

grow monotonically over time. However, a space bound threshold on the system serves

as a constraining factor. In the case where the pool becomes full, a replacement policy

is applied to make space for new views. This can vary from a simple naive approach of

not admitting more materialized views to the smart pool, to known techniques such as

Least Recently Used (LRU) and First In First Out (FIFO), amongst others. Figure 4.3

depicts a Smart View pool with storage as the limiting factor that calls the replacement

policy.

The replacement policy is based on a goodness measure for choosing which of the

Smart Views we prefer. Each time the space limit for the Smart Views is reached we use

Algorithms 59

Figure 4.4: A sample Smart View

the goodness measure to determine whether to replace the views or not. The following

are are goodness measures we used.

• The time that the view was last accessed by the system to handle a query

goodness(f) = tlast access(f) (4.1)

This information is kept in the Directory Index, which we will discuss later. Using

this time-stamp as a goodness measure, results in an Least Recently Used (LRU)

type of replacement in both cases.

• The frequency of access freq(v) for the fragment

goodness(f) = freq(v) (4.2)

The frequency is computed using the statistics kept in the Directory Index and

result in a Least Frequently used (LFU) replacement policy

Figure 4.4, shows a sample Smart Cube made up of two fragment cubes and Smart

Views computed from fragment ABCD and EFGH. Each fragment is partially mate-

rialized with the views shaded in gray. For example, AGH is a view computed using

dimension attribute A from fragment ABCD and dimension attributes GH from frag-

ment EFGH. Notice that, although, a query with attributes AGH can be computed from

ACGH, the cost of computing it from AGH is less than the threshold value M/f . As-

sume the limit of the view pool storage for the Smart View is reached. Then, any extra

Algorithms 60

view that meets the frequency and cost threshold will have to replace an existing view

or views. In such a situation, we check the number of times each view has been used to

answer a query and sort them in ascending order. Subsequently, the view with the least

frequency is removed. The size available is checked to see if there is enough space to add

the new view. If not, the next least frequently used view is then removed. This process

continues until there is enough space for the new views to be added to the pool.

4.2.2 Smart Materialization Algorithm

After partitioning the multidimensional view, a local data cube is computed for each

fragment using a partial materialization algorithm. Next, we introduce our partial ma-

terialization algorithm, the Smart Materialization algorithm that aims to reduce the

number of cuboids materialized for each fragment. The aggregated base table for each

fragment is the base cuboid cb. Our algorithm reduces the number of views that are

materialized by eliminating views whose size is less than Row Threshold η and select-

ing only relatively small views that guarantees fast query response time. Given f an

input parameter called the performance threshold, a view is considered small if its

cost is less than M/f , where M = size(cb). Keeping small cuboids for materializa-

tion guarantees a certain quality when querying the data cube. To explain this further,

consider the data cube example in Figure 4.1. It represents the data cube lattice ob-

tained from a fact table T whose dimensions are A,B,C and D. Each node is a cuboid

and is labeled with its dimensions together with its size. There is an edge from c1 to

c2 if and only if c1 can be computed from c2, c1 6= c2 and there is no c3 such that

c3 6= c1, c3 6= c2, c3 can be computed from c2 and c1 can be computed from c3. The

topmost cuboid is the base cuboid and corresponds to the fact table. The minimal

cost of evaluating all queries corresponds to the case where each cuboid is precomputed

and stored. Thus, for this example minCost =
∑24

i=1 size(ci) = 5985. In contrast, the

maximal cost corresponds to the situation where only the base cuboid is stored. In

this case, every query is computed from ABCD and thus has a cost proportional to

the base cuboid size. Hence, maxCost = 24 × size(ABCD) = 16 × 2000 = 32000.

This is the minimal amount of memory required to answer all queries. Assume that

S = ABCD,AC. The performance measures of S are as follows: The memory required

to store S is Mem(S) = size(ABCD) + size(AC) = 2000 + 300 = 2300. The cost for

evaluating all the 24 possible queries is computed as shown: First, consider the stored

cuboid AC; this can be used to answer queries A,C,AC and apex. All these queries

can, also, be computed from ABCD. However, using this to compute say A will require

more time than using AC. Thus, the cost of S corresponds to the sum of costs of evalu-

Algorithms 61

ating AC,A,C and apex from the cuboid AC and all other queries from ABCD. Hence

Cost(S) = 4× size(AC) + 12× size(ABCD) = 25200.

Let us now consider the cuboid AC and BC. Their respective performance factors

with respect to S are f(AC, S) = cost(AC,S)
size(AC)

= 300/300 = 1 and f(BC, S) = cost(BC,S)
BC

=

size(ABCD)/150 = 2000/150 ≈ 13. This means that by storing ABCD and AC, the

cost of evaluating the query AC is exactly the minimal cost, but for evaluating the

query BC the cost is approximately 13 times the minimal one. However, although the

performance factor gives an approximation of the cost of executing queries, it does not

give an accurate picture of the query response time. This is because the time taken to

execute queries by most DBMS after a certain number to tuples remains the same even

if the number of tuples is further reduced [31][48]. For example, the time required to

execute a query on a 100 rows table might be the same as the time required to execute

the same query on a 20 row table, because they may involve the same number of I/Os.

Therefore, if we estimate this threshold we can reduce the search space significantly

Performance Factor : Let S be the set of materialized cuboids and c be a

cuboid of C. The performance factor of S with respect to c is defined by

f(c, S) = cost(c,S)
size(c)

. The average performance factor of S with respect to C ′ ⊆ C

is defined by f̃(C ′, S) =
∑

c∈C′ f(c,S)

|C′| .

Intuitively, the performance factor measures the ratio between the response time for

evaluating a query using S, a given materialized sample over the query time when the

whole data cube is materialized. This implies that the minimal cost to evaluate a query c

corresponds to size(c). When c is materialized, we reach the minimal cost. However, if c

is not materialized, it is evaluated using one of its ancestors present in S. The performance

factor therefore measures how far the time to answer c is, from the minimal time.

The algorithm starts by setting the set of materialized views to a Null set. We then

start from the base cuboid and list all the children of the base cuboid. The size of each

child node or cuboid is computed. If the size is less than M/f , it is added to the set of

Materialized cuboids. Next, we iterate through all the nodes generated and for each node

we generate a list of child nodes called candidates. The size of each cuboid generated is

computed and compared against M/f . If the size of a cuboid is less than this threshold

and the size of its smallest parent is less than the row threshold, then the cuboid is

added to the set of materialized cuboids. To show a simple example, the fragment cube

ABCD in Figure 4.4 is computed using performance factor f = 5 and Row threshold

η = 300. The shaded ones for example BCD, is materialized because 2000/5=400. AD

is also materialized. However, AD meets two criteria before it is materialized. Thus

250 < 2000/50 = 400 and 2000 is also greater than 300.

Algorithms 62

Algorithm 4 The Smart Materialization Algorithm
Input: Partition P

Number of Partitions N,

Parameter f,

Row Threshold η,

Output: S Set of materialized cuboids

1: for each P in parttions

2: Initialize the set of materialized views to an empty set φ

3: Initialize C1 to the set of all cuboids under base cuboid thus all children of cb

4: Initialize L1 to the set of all cuboids c in C1 such that |c| ≤M/f

5: S = S ∪ L1

6: for i = 1;Li 6= φ; i+ + do

7: Ci+1={candidates generated from Li}
8: for each c ∈ Ci+1do compute size(c)

9: Li+1 = c ∈ Ci+1s.t|c| ≤M/f

10: for each c ∈ Li do

11: if c′ > η s.t c′ � c Then

12: S = S ∪ {c}
13: end for

14: Return S

The procedure compute size is implemented either by calculating the actual size of

the cuboid argument or by using estimating size techniques such as those discussed in [4].

The cuboid size estimation technique is preferred when we want to reduce computation

time. The maximal complexity is less than 2D, since the algorithm does not go further

down the cube lattice when the row number threshold is reached. Indeed, even when

f = 1 and all cuboids have size less than M/f , not all cuboids will be computed unless

the minimum row number threshold is 1. Of course, in practice the minimum row number

threshold is far greater than 1 and f > 1, therefore the actual complexity is much less

than 2D. The interesting thing here is that the algorithm is run for each partition,

therefore reducing the overall complexity to much less than 2D.

4.3 Personalization of Smart Cubes

Recall that, in most very large data warehouses, users are mostly interested in only a

subset of the data and most data analysis is done within this subset. For example, a

manager in Ottawa might prefer to perform all his cube analysis within the Ottawa data

subset. That is, this manager might want to view the Ottawa data subset as a whole cube

within which all OLAP operations can be encapsulated. In order to meet this user need,

Algorithms 63

we have to personalize the data cube for individual users. Since users’ interests usually

arise in an impromptu way and usually changes over time, we cannot precompute this

personal cube for each user. Instead, we dynamically construct the cube by monitoring

user queries and materialize the results based on a cost model. Since space is limited,

we should not suppose that users have unlimited storage space available. In fact, usually

there are many users of the OLAP system, and different users have different levels of

priority. In this section, we suppose that a user constructs his Personalized Cube under

the constraint Ω of total available storage space.

First, the system continually monitors incoming user queries, taking into account the

frequency of the query and computing the profit of materializing the query. Using a

weighting method based on filter factor and frequency of query, we accept queries for

materialization in the personalize pool. Each time a new query is selected for materi-

alization, we check for available space. If space exist, we materialize, if not we replace

an outdated query. Note that only queries filtered on user interest are considered for

materialization.

User Interest : A user interest I of R is a filter over dimension levels. I =

p1∨p2∨· · ·∨pk, where pi = f(i,1)∨f(i,2)∨· · ·∨f(i,k), k is the number of attributes

of R and f(i,j) is a predicate about the jth attribute of R. Let R’=t|t ∈ R and

t meets I and ID=Aj|Aj is an attribute, and ∃pi = f(i,1) ∨ f(i,2) ∨ · · · ∨ f(i,k),
where f(i,j) is not a tautology, we call ID interesting attribute set, and Aj is

an interesting attribute.

The user interest I presented in this section is based on location. Thus, when a user

moves around his interest changes based on his current location. However, Interest can

also be based other attributes such as customer class, and product category, amongst

others.

Filter factor : Suppose that the total number of the dimension elements is α,

and there are only β elements that meets the user interest I. Then the filter

factor of I is δ = β
α

.

The algorithm as depicted above, is very similar to the one we saw for constructing

Smart View in Section 4.2. However, the cost of selecting a view to be materialized is de-

termined by the filter factor. The filter factor is the percentage reduction in size between

query result and the cuboid used in answering the query. The algorithm continuously

monitors a user’s incoming queries. The algorithm then adds the interest to the filter of

the query if its not already in the query. This ensures that all cube operations are done

Algorithms 64

Algorithm 5 Data Cube Personalization Algorithm
Input: User Query q

Cuboids C,

Storage Space Threshold Ω,

Accepted Thresholdl T ,

1: SET pool size =Ω

2: Initialize personalize pool to φ

3: Monitor incoming query q

4: for each query q

5: Add I to conditions of q if q does not already contain I

6: t = Compute size(q)

7: Compute the filter factor γ

8: Compute the frequency f

9: if Ω > 0 AND f + γ > T

10: Ω = Ω− t
11: Materialize q

12: P = P ∪ q
13: Update the accepted threshold based on existing query frequecy

14: else if(Ω = 0 AND f + γ > T) call replacement policy

under the constraint of user Interest. The size of the query result is then computed. This

result size is used to compute the filter factor. The frequency of the resultant query is

also computed by incrementing, by 1, any time the same query is issued. Next, we check

to see if the storage space threshold has not been exceeded, i.e. if there is enough space

to store the resultant query. We also compare the frequency and filter factor of the query

result with their respective thresholds. The filter factor is kept constant. However, the

frequency threshold might be initially set to a very low value, to allow all queries that

meet user interest as long as there is space to be added to the pool. As more queries are

materialized the frequency threshold is increased by using either the average threshold,

or median threshold or the modal threshold of existing materialized views. If the space

threshold reaches the limit, the replacement policy is used to replace new query results

with existing ones. The replacement policy used for Smart Views is used to handle new

queries that meet the requirement for addition into the pool.

So far, we have presented a partial materialization algorithm that reduces the space

and time complexity of the data cube computation. We have also personalized the cube

to ensure users get only the most interesting subset of data. The algorithms presented,

materializes views at different levels with the aim of reducing storage space while im-

proving query processing time. For example, a personalized cube can be computed on

the client while the Smart Cube is computed on the server. The challenge here is how

Algorithms 65

Figure 4.5: A personalized data cube

user queries will be answered by choosing the right cuboid for optimal performance.

Suppose a dataset R shown in Figure 4.5 has three dimensions: A, B, C and it has

one measure M. Assume the user interest I=‘a1’. Figure 4.5B shows the personalized

cube lattice and all the cells of this cube. The cuboid pair < (AB), (A′B′) > is a dataset

pair where AB is from the base cube lattice shown in Figure 4.5A and A’B’ is shown in

Figure 4.5B. Note that, in the example in Figure 4.5, the data cube is assumed to be

fully materialized.

4.4 Querying the Personalized Smart Cube

When a query q is posted to the system, we first scan the personalized cube to answer

q. Given a personalized pool P and a query q, P answers q if and only if for every

query posed to the pool, the exact same query is stored in the pool or the stored query’s

dimensions spans the whole domain of dimensions of the posed query. If no stored query

is found to answer the posed query, the Smart Cube is used to answer the query. In order

to simplify the process two Directory Indexes are kept, one for the personalized pool and

the other for the Smart Cube. The Directory Index is a set of indexes connected through

the lattice, as was shown in Figure 3.1. Each node has a dedicated index that is used to

keep track of all materialized views in the partition fragments and the views in the Smart

Algorithms 66

View pool. However, if the Directory Index corresponds to a personalized cube, then it

keeps track of all materialized queries and their corresponding views that are stored in

the pool.

OLAP Query : An OLAP query usually has the following format Q(measure,

cuboid, condition), where measure is aggregated value of a cell, cuboid is

representing requested dataset, and condition is restrictive predict over this

dataset with filter factor t.

Algorithm 6 Query Answering Algorithm
Input: query q

Directory Indexes P and M

Main Cube C

Personalize Cube C ′,

Output: R Query Response

1: Using Directory Index P search if query can be answered using personalize cube

2: if a view fragment is found search within the exact query fragment to respond φ

3: If query q cannot be answered by P Search the Directore Index M

4: Using M identify the right fragment thus where partition or Smart View section

5: Select the cuboid with the least cost that can answer the query.

6: Return query response;

The Directory Index P is the Directory Index for the personalized cube, while, M

is the Directory Index for the Smart Cube. The difference between the two Directory

Indexes is that M is sub-divided into two sections. The first section keeps track of

fragments and their cubes while the second section keeps track of the Smart Views. The

Directory Index for personalized cube, on the other hand, has only one section. This

Directory Index is made up of fragments r. For each fragment r of the Directory Index

there is exactly one entry that contains the following information:

• Hyper-plane ~r of the fragment

• Statistics (e.g. number of accesses, time of creation, last access)

• The father or parent of r similar to parent of a cuboid in a lattice

For our implementation we used R-trees similar to the DynaMat algorithm, based

on the ~r hyper-planes to implement these indexes. When a query q arrives, we scan

using all views ~q in the lattice, that might contain materialized queries r whose hyper-

planes ~r covers ~q. For example, if ~q = (1, 1000), (), Smith is the query hyper-plane

Algorithms 67

for dimensions product, store and customer, then we first scan the R-tree index for

view (product, customer) using rectangle (1, 1000), (Smith, Smith). If no cuboid is

found, based on the dependencies defined in the lattice, we also consider view (prod-

uct, store, customer) for candidate cuboid. For this view, we ”expand” the undefined

in the store dimension and search the corresponding R-tree using rectangle {(1, 1000),

(minstore,maxstore),(Smith, Smith)}. If a fragment is found, we ”collapse” the store

column and aggregate the measure(s) to compute the answer for q. Based on the content

of the pool or content of the materialized views, there are three possibilities. The first

is that, a stored query or view matches exactly the definition of the query. In this case

result R is retrieved to the user. If no exact match exists, assuming we are given a cost

model for querying the fragment, we select the parent or ancestor with the least cost

from the pool, to compute q. If no fragment can answer q, then control is sent to the

second Directory Index to search a cuboid within the Smart Cube to answer the query.

The search within the two Directory Indexes is hierarchical in nature. If no parent is

found to handle the query within the Directory Index for personalize cube, control is

transfered to the Directory Index of the Smart Cube.

4.5 Conclusion

In this chapter, the details of our Personalized Smart Cube approach were provided.

The proposed algorithms have the potential to ensure high query performance, by sys-

tematically adding and materializing views that keeps the overall data cube size small.

Our approach further dynamically personalizes the data cube for individual users. The

personalized Smart Cube approach includes the Smart Cube algorithm and the Person-

alization algorithm. First, we discussed the Smart Cube construction algorithm, where

we partitioned the cube into fragments and joined using Inverted Indexes. Next, we

reduced the rate of online computation by introducing the Smart View algorithm, that

dynamically materializes views based on user incoming queries. We also discussed our

materialization algorithm, that significantly reduces the computation complexity by us-

ing a Row Threshold. The Smart Cube computed from our algorithm so far produced

generalized results. However, users are mostly interested in only a subset of the data

that is of interest to them. To provide a solution to this problem we introduced the Per-

sonalized Smart Cube algorithm. Finally, we discussed our query answering algorithm.

In the next chapter we discuss how we evaluated our algorithm. We discuss how the

system was designed and the databases that were used.

Chapter 5

Experimental Design

In this thesis we introduced a novel Personalized Smart Cube approach for data cube

computation and personalization. In Chapter 4, we detailed the algorithms required in

computing the data cube, personalizing the data cube, and answering queries. In this

chapter we describe the databases that were used for implementing the proposed solution.

The implementation steps for the solution are presented, together with the definition of

the experiments performed.

First, in Section 5.1 we give a general description of the databases that are used in

our implementation. We describe the TPC-DS database, a synthetic database and the

US Census database. In Section 5.3 we briefly explain our implementation, as well as the

architecture of our proposed system. Specifically the implementation of the partitioning

and materialization algorithms are explained. Using activity diagrams, we depict the

major activities of the Smart Cube technique. Next, we show how we implemented the

data cube personalization, and we explore the impact of different storage allocations on

the personal cube on the system. The implementation of our query processing algorithm

is also detailed and the activity diagram of the process is presented. We examine the

various processes and the part they play within a query process task. Finally a summary

is presented in Section 5.4.

5.1 Experimental Databases

In this section, we describe the databases that were used in our experiments.

68

Experimental Design 69

5.1.1 TPC-DS Database

TCP-DS is a decision support benchmark that models several generally applicable aspects

of a decision support system, including queries and data maintenance [58]. Although the

underlying business model of TPC-DS is a retail product supplier, the database schema,

data population, queries, data maintenance model, and implementation rules have been

designed to be broadly representative of modern decision support systems. This data

mart contains nine (9) dimension table schema with each of their key constraints ref-

erentially connected to a fact table schema. The combined dimension attributes in the

dimension tables is 80 and the number of measure attributes in the fact table is 10. This

implies that a full cube materialization of the data mart will be infeasible due to the 280

lattices to store. The sales fact table schema contains 3,000,000 tuples.

Figure 5.1 shows part of the star schema representing our application, which is derived

from the TPC-DS star schema benchmark [58]. The store sales is the fact table that mea-

sures sales and orders, while customer, store, promotion and date dim are the dimension

tables that store descriptive attributes that categorized the facts. These dimension tables

are referenced by the fact table through foreign keys. In addition, the dimension tables

hold hierarchies that enable data aggregation according to different granularity levels,

such as (s country) � (s state) � (s city) � (s address), which is held by the dimension

table store, and (i manufact) � (i category) � (i subcat) � (i itemsk) which is held in

the dimension table item. Considering the mentioned hierarchy in the dimension table

Store, s country is the highest granularity level, which s address is the lowest granularity

level. According to [30], Q1 � Q2 if and only if it is possible to answer Q1 using just the

result of Q2, and Q1 6= Q2. Therefore, it is e.g possible to find out the revenue in a given

country by aggregating the results of the cities inside that country.

5.1.2 US Census 1990 Database

This database is a multivariate dataset with 2,450,000 tuples and 68 categorical at-

tributes [6]. It is an open source database located at (http://archive.ics.uci.edu/

ml/datasets/US+Census+Data+(1990)). It was collected as part of the 1990 US cen-

sus. The continuous variables have been discretized and the discrete variables that have

a large number of possible values have been collapsed to have fewer possible values.

The following are the attributes of the database age, ancstry1, ancstry2, Avail, Citi-

zen, Class, Depart, Disabl1, Disabl2, English, Feb55, Fertil, Hispanic, Hour89, Hours,

Immigr, Income1, Income2, Income3, Income4, Income5, Income6, Income7, Income8,

Industry, Korean, Lang1, Looking, Marital, May75880, Means, Military, Mobility, Mo-

Experimental Design 70

Figure 5.1: A star schema for a DWH of a retail application

billim, Occup, Ohterserv, Perscar, POB, Poverty, Pwgt1, Ragechld, Rearning, Relat1,

Relat2, Remplpar, Riders, Rlabor, Rowchild, Rspouse, Rvetserv, School, Sept80, Sex,

Subfam1, Subfam2, Tmpabsnt, Travtime, Vietnam, Week89, Work89, Worklwk, WWII,

Yearsch, Yearwkk, and Yrsserv.

5.1.3 Synthetic Database

This database contains 106 rows and 20 dimensions. Many observations have shown that

the attribute values of real dataset do not follow, in general, a uniform distribution.

Rather, they often follow a power law distribution [29]. That is, if we sort the values

of a given attribute in the decreasing order, then the frequency of the value of rank

i is proportional to 1
ia

, a > 0. a belongs mostly to the range [2,3]. Based on this

observation, this database is used in evaluating our algorithm follows the Zipf distribution

and varying Zipf factors. A Zipf factor of 0 means that the data is uniformly distributed.

By increasing the Zipf factor, we increase the skew in the distribution of distinct values

in the datasets. The Zipf factor used ranges from 0.0 to 3.0 with 0.5 intervals; these were

set by inspection.

Experimental Design 71

5.2 Experimental Setup

All algorithms are implemented in C# and all the experiments are conducted on an Intel

I5 generation processor 2.30 GHZ with 6GB of RAM. The system runs a Windows 7

operating system. We tested our approach on the SQL Server Database, using the well

known TPC-DS benchmark, Synthetic dataset and US Census 1990 dataset as previously

introduced. For each database, before data cube computation, the data is first prepro-

cessed. This consists of performing data de-duplication, replacing NULLS with NA and

Binning the dimension attributes where applicable. For example, the age dimension is

best utilized when it is binned into Age Group. After the database has been cleaned, the

data source is selected. If the source database is modeled as a star schema, we flatten

the tables using the key field to create a single view. The aim of this view is to allow

any query to be computed easily from multiple tables. When using the synthetic or the

US Census 1990 database, we do not need to flatten, since they are already flat files. We

varied the dimensionality and cardinality of the synthetic database by experimentation,

so as to evaluation our algorithm based on different database settings such as high di-

mensionality and very large databases, amongst others. When creating a partition from

a database that is modeled as a star-schema, we create the partition view by selecting

attributes of interest from one or two dimension tables and measures from the fact ta-

ble. This view is computed from a join between the dimension table primary key and

the fact table foreign key. However, if the dataset is not in the form of a star schema,

the attributes of interest are selected and partitioned based on what attributes are most

likely to be queried together and also what attributes will create a smaller sized view.

As part of evaluating our approach, we will also consider the performance of our system

when Smart Views are not used. We will refer to it henceforth as Smart Cube with no

Smart Views. When no Smart Views are used, it implies that queries which require a

join between two fragments are computed using Inverted Indexes. The performance gain

when the Smart Views are incorporated for answering queries will also be examined.

Finally, although the main function of the personalized Smart Cube is to provide users

with a subset of the data based on their interest, it is also meant to provide an ultra-fast

query response to users. We therefore evaluate performance gains by experimentally

analyzing them. We randomly generated 60 queries as shown in Appendix A, that is

tuned with different statistical properties. In order to ensure that our recorded query

times were reproducible, we executed the queries a number of times with the frequencies

of some queries being more than one. We used the average time and time elapsed to

evaluate the processing time. We also used query profiles in our experiment to evaluate

the query processing time, as discussed next.

Experimental Design 72

5.2.1 Query Profile

A query profile defines a sequence of queries randomly chosen from a set of distinct

query types [16]. In the sequence, each query type appears at least once, so that the

total number of repetitions of each query type in the sequence is equal to the cardinality

of the sequence. A query profile is the frequency distribution of query types found in

the sequence. For instance, in query profile 10 90, 10% of the query types have 90% of

the frequency, i.e. in a sequence composed of 100 queries and for 10 query types, the

frequency of one query type is equal 90, while the total frequency of the other types of

queries is 10. Query profiles emulate real word query pattern where a set of queries may

have frequencies of submission that are greater than, or less than, another set of queries.

5.3 Implementation Details

The most costly method to process queries over a data warehouse is to perform the

star-join, by joining all tables of the star schema and then perform filters, groupings

and sorting. This strategy provides prohibitive query response times, as discussed later.

On the other hand, the methods implemented in this section can improve the query

processing performance.

In our method, precomputed data is stored into tables after performing some oper-

ations. A vertically fragmented view [20] maintains the minimum set of columns of the

star schema that are necessary to answer a given query. We created our fragmented view

from the data mart by using all required columns from a dimension table and measure

columns from the fact table. The joins between the Dimension tables and the Fact table

were computed when composing the view, by using the key component of both tables.

The views are stored with the aim of improving query processing performance, since

joins are avoided and only filters and groupings needs to be computed to retrieve the

query answer. On the other hand, materialized views pre-compute the data warehouse

information that can be used to answer queries that are frequently issued. A materi-

alized view is built by creating a table to report pre-computed data from a fact table

that was jointed to a dimension table, and whose measures are aggregated. Since the

materialized view stores pre-computed aggregated data, processing a query avoids joins

and groupings, and drastically reduces the number of rows thus benefiting the filters.

Experimental Design 73

5.3.1 Architecture of proposed system

The architecture of the Personalized Smart Cube system is shown in Fig. 5.2. The

figure shows that our approach accesses various indexes to speed up the OLAP drill-

down, roll-up, slice-and-dice and pivoting operations. Before indexes are applied, the

system improves performance by partitioning, materializing and personalizing the data

cube. On the server side, our system operates a back-end relational database and employs

FastBit or Inverted indexes. The server side is responsible for building indexes, answering

queries over them, appending new rows and performing some online computations. The

queries are submitted by the client to the server, and the server uses query optimization

techniques to provide the answer rapidly with high performance. On the client side, the

user interacts with our system through a desktop application, submitting queries and

analyzing multidimensional data that are rendered on cross tables and charts. Whenever

a cross table is modified by the user to produce another view, the corresponding chart

is refreshed and synchronized with the cross table. Some implemented facilities allows

users to select attributes to index and autocomplete the query string to match the proper

syntax. Finally, other utilities manipulate internal files to maintain logs, access privileges,

configuration parameters, metadata and parsing.

Figure 5.2: The Architecture of the personalized smart cube

Experimental Design 74

The remainder of the subsections discuss the implementation process for view parti-

tioning, materialization, personalization and query processing.

5.3.2 Partitioning and View Materialization

Using the XML editor Mondrian Schema Workbench [1], we specify the dimension and

fact tables, the measures, hierarchies that exists in the data warehouse schema and

attributes to be indexed. The inputs are validated using the data warehouse schema.

If the validation is successful, the XML editor generates a XML document that stores

all the data warehouse schema specification and attributes to be indexed. The system

uses this information to compute the Smart Cube and build the indexes. Partitioning of

the data warehouse is done using SQL scripts to create the views. These views are not

materialized, but provide a table-like object to allow for smart materialization of each

fragment. The names of these views are passed to the application, which then iterates

through each fragment and computes the most beneficial views to materialized. The

attributes together with the metadata information for each view are also captured, to

allow for easy creation of temporary tables that will be used to materialize the views.

After gathering all the necessary information about the views to be materialized, an

XML document is parsed by the system. This document issues SQL statements and

dump commands or bulk copy commands on the DBMS, in order to compute the joins

and create temporary tables using a the appropriate database driver. The DBMS then

executes the script, generate the tables and populate it with information.

In order to facilitate efficient storage of the materialized views, Inverted indexes are

created for each materialized view. We also Index our materialized views using Bitmap

Indexes. The choice of the index used depends on the domain cardinality of the dimension

table. Bitmap Indexes are more suited for low cardinality domain, whereas Inverted

Indexes are more suited for high cardinality domain. Recall that the aim of these two

indexes are to (1) compactly store the data using compression techniques, for quick and

easy retrieval of information and (2) allow for online computation of cubes when user

query cannot be answered by any of the materialized cuboids. In our implementation we

used the FastBit tool for our Bitmap Indexing and PFORDELTA compression scheme

for the Inverted Index. FastBit is an open source tool for creating word-aligned hybrid

(WAH) [63] compression for bitmaps. If Fastbit is used, the system issues ardea and

ibis commands to the FastBit. While the former reads CSV files to store data into the

FastBit binary format, the latter effectively builds the Bitmap Index and stores it into

a directory. Finally, the system records metadata that fully specifies the index, e.g. the

names and types of the index columns, aliases and the available OLAP operations for

Experimental Design 75

that index. The log recording starts after the composition of SQL and dump commands

and finishes after metadata are recorded.

Recall that we created our Inverted Index using the PFORDELTA compression

scheme. This reduces the space required to store the Inverted Indexes created. Depend-

ing on the cardinality of the attribute domain of the dimension table, Bitmap Indexes

will be used in place of Inverted Index. (This is because Bitmap Indexes are more suited

to low cardinality domain than Inverted Indexes, whereas Inverted Indexes are more

suited to high cardinality domain.)

Figure 5.3: Process flow for smart cube with inverted indices

Figure 5.3 and Figure 5.4 shows how the partitioned cubes are created. The name

of the partitioned views serves as inputs for creating the materialized views or local

fragment cube. The computation of the Smart Cube uses the partition names to compute

the local fragment cubes as well as Smart Views. After cube computation, the system

composes the required SQL and dump commands for creating all the necessary cuboids

and sends it to the DBMS to be executed. The output is a set of materialized views.

These materialized views are then exported into CSV files as input to ardea and ibis to

compute (and build Bitmap Index if Fastbit is used). However, if Inverted indexes are

used then we do not need to create a CSV file from the materialized views. We only

parse the name of the materialized views to the compute Inverted Index command to

build the Inverted Indexes.

The idea of using Bitmap Index has the potential of improving query response time

Experimental Design 76

Figure 5.4: Process flow for smart cube with Bitmap index

especially for views computed from a join between multiple tables. For instance, sup-

pose the c country, s country, c state, s state, d year and ss revenue from our TPC-DS

dataset were specified to be indexed. This involves four different tables to be joined,

namely Customer, Store, Date and ,Store sales and selecting the appropriate attributes

to create a temporary table. The bitmap join indexes are then created on the attributes

of this temporary table. Note that Bitmap Indexes are most efficient when applied to

such low cardinality materialized views, that are made up of single tables or joins be-

tween different tables. It is important to also note that indexing such attributes would

enable roll-up or drill-down operations considering that (c country) � (c state).

5.3.3 Personalizing the smart cube

In personalizing our Smart Cube, we allocated a fixed size to hold all the materialized

views within our DBMS. This means that all personalized views were hosted on the

server side of the architecture. Different storage spaces were also allocated to each user,

in such a way that the sum of all the sizes allocated to all the users is equal to the

total space allocated for personalizing the cubes. Within the application, a Directory

Index was created that maps users to their views and contains statistics on how often a

materialized views is accessed by the user. The Directory Index also contains information

about all the personalized views. Therefore, it is used for searching the appropriate view

that will answer user query at the least cost. In our experiments, we use the 3,000,000

Experimental Design 77

tuples of our TPC-DS dataset. We then allocated the following storage space for each

user: 512MB, 128MB, 64MB, 32MB, 16MB and 8M. We selected the city called Fairview

as our filter location. The following were the materialization lists as shown in Table 5.1.

Table 5.1: Effect of storage size on materialized cuboids

Storage Materialized Cuboids

512MB All filtered cuboids where materialized

128MB One filtered cuboid was not materialized

64MB One filtered cuboid was not materialized

32MB there filtered cuboids were not materialized

16MB four filtered cuboids were not materialized

8MB The same as that when 16MB is allocated

Note that, when a user issues a query, the system will first attempt to answer the

user using the personalized cube. If no cuboid matches the user query, the system then

transfers control to the Smart Cube dictionary to answer the query. The next subsection

explains how queries are answered by the system.

5.3.4 Answering User Queries

When a data cube is built by a user, the metadata is recorded and the cube then becomes

available to be queried. The UML activity diagram shown in Figure 5.5 models how to

process queries using the system. Initially, the user types in the desired query. The

system parses the query and checks within the Directory Index for personalized cube to

see if user query can be answered using that personalized cube. If not, the system then

uses the Directory Index for the Smart Cube to identify the cuboid that best answers

the query.

The system subsequently checks for indexing. If indexes are available, the system

writes the proper command containing the query and the chosen index, and submits it

to the indexing application. The indexing application accesses the index and processes

the query. If no indexing is found, then the system submits the appropriate SQL query

and executes it on the DBMS. After processing the query, the system writes a CSV file

that contains the query results. The resulting CSV file is read by the system to build

cross tables or charts and renders it to the client. After the query execution, users are

able to perform various OLAP operations such as pivoting by dragging and dropping

columns or rows to switch axis of the cross table. Drill-down and roll-up are also allowed

on the requested attributes, if there is at least one hierarchy involved in the previous

Experimental Design 78

Figure 5.5: Processing queries using the personalized smart cube

query. For instance, if the previous query involves the s state attribute, a combo-box

will enable the attribute s country for the roll-up operation, and the attributes s city

and s address for drill-down operation. When Fastbit is used for indexing, the composed

queries do not require joins or grouping clauses. The columns listed in the SELECT

clause are used to aggregate results. Therefore, writing the query is a straigtforward

task for users, since only SELECT-WHERE clauses need to be written. Furthermore,

the slice-and-dice operation can be described as a restriction in the WHERE clause.

5.4 Summary

In this chapter, the details of the databases used for our experiments were provided.

We discussed the dimensions and fact table making up the database, and also discussed

the size of the databases, showing that it was appropriate for our intended purpose.

As described above in our implementation, the Personalized Smart Cube approach has

different components. In the first part, we saw how the DBMS is used to partition the

database to develop a smart way of materializing the views and to apply the appropriate

index with the aim of reducing the size as well as improving the query performance.

Secondly, we showed how the data cube was personalized at the server end using the

DBMS and our Directory Index. We also discussed how the materialization list is created,

after different storage spaces were allocated to various users. Finally, we discussed how

Experimental Design 79

query processing is accomplished within our system. The results from the evaluation of

our Personalized Smart Cube approach are described in the next chapter.

Chapter 6

Evaluation and Results

In chapter 4, we presented the Personalized Smart Cube approach, which addresses three

(3) of the major shortcomings of current data cube computation approaches. These are

reducing the data cube size, ensuring fast query processing time and providing the ability

to perform all user cube operations within the data subset that is of interest to a specific

user. The results of our experiments are based on the following research questions. Is the

overall size of our data cube smaller than the state-of-the-art? What is the relationship

between the data cube size and query processing time? Does personalization provide

additional query performance?

This chapter provides the results of a comparative study performed on the test

databases. It also shows the different types of evaluation methods used to assess the

effectiveness of our approach under various circumstances. This evaluation analysis is

carried out as a measure in determining and verifying the effectiveness of our proposed

methodology.

6.1 Criteria of Evaluation

The performance of our algorithm is evaluate on three main criteria based on the ques-

tions asked previously. These criteria are, the overall space consumed by the Personalized

Smart Cube, the query processing time and the performance of our personalization algo-

rithm in terms of cost savings. We will analyze the effect of various parameters on these

criteria and compare our approach to some state-of-the-art approaches based on these

criteria. Next we define the measures used to evaluate our algorithm.

80

Evaluation and Results 81

6.1.1 Cost and Memory

In our experiments, the amount of memory is expressed as the number of rows of the

materialized views set. Since all materialized views are stored on a storage device, we

also refer to the memory space as storage space. Instead of focusing only on the space

used to store our materialized views, we also analyzed the time used in computing the

data cubes. For the sake of our experiments, to compute the total space used by the

smart materialization algorithm, we added all the rows in all the materialized cuboids.

This is equal to
∑n

i=1 c∗i where n is the total number of materialized cuboids. The

computation time was derived from our prototype system using the timer module. In

order to ensure reproducibility of results, we executed the processes 50 times and report

the average execution time.

6.1.2 Performance Factor

Our computation of performance factor is based on the cost model as defined in [29]. Let

S ⊆ C be the set of materialized cuboids and v be a cuboid. Then Sv = w ∈ S|v � w

is the set of materialized cuboids from which v can be computed. We define the cost of

evaluating a query with respect to a set S as follows. If S does not contain any ancestor

of V the Cost(v, S) =∞ otherwise Cost(v, S) = minw∈SvSize(w). That is, the query is

evaluated by using one of its stored ancestors. The chosen ancestor is the one with the

fewer tuples. This is the measure usually used to estimate the time complexity [30]. Note

that when v ∈ Sv then cost(v, S) = size(v). This is the most advantageous situation for

v. We also define the cost of a set S as the cost of evaluating all queries with respect

to S, that is, cost(S) =
∑

c∈C Size(c). For our experiments, the performance factor is

based on the cost of a query q.

6.1.3 Cost Saving Ratio (CSR)

Cost Saving Ratio is the measure of the percentage of the total cost of the queries saved

due to hits in the Personalized Smart Cube. This measure is defined as:

CSR =

∑
i cihi∑
i ciri

(6.1)

where ci is the cost of execution of query qi without using the personalized smart

cube, hi is the number of times that the query was satified using the personalized smart

Evaluation and Results 82

cube and ri is the total number of references to that query. This metric is also used in

[18] for their experiments. Note that CSR is more appropriate metric than the common

hit ratio:
∑

i hi∑
i ri

because query costs are known to vary widely. The drawback in the above

definition for our case, is that it does not capture the different ways that a query qi might

”hit” the personalized cube. In the best scenario, qi exactly matches a view V . In this

case the savings is defined as ci, where ci is the cost of answering the query using the

smart cube. In the case where a parent view or an ancestor view is used in answering

qi the actual savings depend on how ”close” this materialized view is to the answer we

want to produce. If cf is the cost of querying the best such view v for answering qi, the

saving in this case is ci − cf . To capture all cases we define the savings provided by the

personalized Smart Cube P for a query instance qi as

si =


0 if qi can not be answered by P

ci if there is an exact match for qi in P

ci − cf If f from P was used to answer qi

(6.2)

using the above formula we define the Detailed Cost Saving Ratio as

DCSR =

∑
i si∑
i ci

(6.3)

DCSR provides a more accurate measure than CSR for OLAP queries. CSR uses a

”binary” definition of a hit, i.e. a query hits the personalized cube or not. For instance,

if a query is computed using a cuboid from the Smart Cube with a cost ci = 200 and

from a materialized view in the personalized cube with cost cf = 120, CSR will return

a savings of 200 for the ”hit”, while DCSR will return the difference in savings which is

80 units based on the previous formula.

6.2 Experimental Results

In this section we present the results of our experiments. We study the effect of various

parameter changes such as fragment size, dimensionality, row threshold and performance

threshold (f) on the results of our algorithm. A comparative study is also done by

comparing the result of our algorithm to some state-of-the-art approaches. The results

are evaluated based on the criteria previously presented. The main aim of our result is to

ascertain that our Personalized Smart Cube approach is able to answer the fundamental

questions that were asked.

Evaluation and Results 83

6.2.1 Storage Size

As noted earlier, the amount of memory is expressed as the number of rows of the ma-

terialized views set in order to simplify the computation of our data cubes. However,

storage size here is the actual space used to store the materialized views. Using the

synthetic database, we first analyzed the cost of storing the fragment cubes. As a nota-

tional convention, we use D to denote the number of dimensions, C the cardinality of

each dimension, T the number of tuples in the database, F the size of the fragment, and

S the skew or zipf of the data. First of all, to see the effect of dimensionality increase

on the storage cost, we generated two synthetic dataset with the same number of rows

but different cardinalities and varied the number of dimensions. For this experiment we

used a row threshold (R) of 1000. Recall that the bigger the row threshold, the more

views are prunned and therefore the fewer the number of materialized cuboids. The

smaller the threshold, the larger the number of cuboids that are materialized and the

larger the space required to store the cube. A row threshold value of 1,000 was selected

by experimentation, since it took on average 2 seconds to execute a SELECT query on a

thousand rows. This implies that storing views with rows less than 1,000 will not yield

major query performance benefits.

Effect of Dimensionality on Storage Size

The charts in Figure 6.1, Figure 6.2, Figure 6.4 and Figure 6.4 depicts how dimensionality

affect the space required to compute the data cube. In our first experiment, we were

concerned with the cost of storing the materialized cube. Specifically, we evaluate how

it scales as dimensionality grows. Figure 6.1 shows the effect as dimensionality increases

from 20 to 80. The number of tuples in both datasets were 2,000,000. The first dataset,

50-C, has cardinality of 50, skew of 0, and fragment size of 8. The second dataset, 100-C,

has cardinality of 100, skew of 2, and fragment size of 10. All values set by inspection.

It will be noted that, in both instance, because of partitioning, the storage space grows

linearly as dimensionality grows. This is expected, since additional dimensions only adds

more fragments to the data cube, which are independent of other cubes. The difference

in storage space between the two datasets had actually little to do with the cardinality

and can be attributed to the fragment size; the smaller the fragment size, the fewer

the number of materialized cubes are computed, although we do not compute full cube

materialization for each fragment.

In Figure 6.2, we compared the Smart Cube with no Smart Views with that of Shell

Fragment approach. Recall that the difference lies only in the computation of their local

fragment cubes. While the Shell Fragment approach computes a full local cube for each

Evaluation and Results 84

Figure 6.1: Storage size of materialized cube with no smart views: (50-C) T=2000000,

C=50, S=0, F=8. (100-C) T=2000000, C=100, S=2, F=10

Figure 6.2: Storage size of smart cube with no smart view (SMNV) compared with Shell

Fragment (SF): (SMNV) T=2,000,000, C=50, S=0, F=8. (SF) T=2,000,000 C=50, S=0,

F=3

fragment, Smart Cube with no Smart Views computes a partially materialized cube for

each fragment. The synthetic dataset that was used has 2,000,000 tuples, the cardinality

is 50, the skew is 0. A fragment size of 8, selected by inspection, was used for the Smart

Cube approach and fragment size of 3 was used for the Shell Fragment. The size of 3

was used for the Shell Fragment approach following [39], who showed that a fragment

size of 3 produced the optimum solution. The size of the cube for the Shell Fragment

was almost twice as big as the Smart Cube when we do not add the Smart Views. This

was to be expected, since the Shell Fragment computed full cube materialization for

each fragment. For example, for a table with 40 dimensions, using the Shell Fragment

approach, 8 cuboids where computed for each fragment for a total of 106 cuboids in all.

Evaluation and Results 85

Figure 6.3: Storage size of materialized cube with smart views: (50-C) T=2000000,

C=50, S=0, F=3. (100-C) T=2000000, C=100, S=2, F=10

Figure 6.4: Storage size of Smart Cube with Smart View (SMNV) compared with Shell

Fragment (SF): (SMNV) T=2,000,000, C=50, S=0, F=8. (SF) T=2,000,000 C=50, S=0,

F=3

The Smart Cube approach, however, computed a total of 62 cuboid, which is 58.5% less

than the Shell Fragment approach. A very small fragment size implies that the chances

that a query will be computed from a single fragment is very small. That is, all high

dimensional queries will always require online computation, which is very slow.

The two experiments in Figure 6.1 and Figure 6.2 show how dimensionality affects

the Smart Cube storage size. We used the Smart Cube with no Smart Views in the two

experiments, since our interest is to evaluate components of our approach systemically.

As was noted in Chapter 4, Smart Views, although increasing the number of materialized

views, also reduces the rate of online computation using Inverted Indexes. These are

materialized views that a computed based on user query pattern and limited by amount

Evaluation and Results 86

of predefined storage allocated.

In Figure 6.4 we analyze the effect of dimensionality on the Smart Cube. In this

experiment we again used the synthetic database as was used in the previous experiment.

The first database 50-C, has cardinality of 50 and skew of 0 and the second database,

100-C, has cardinality of 100 and skew of 0. The number of tuples in each of the two

databases is 2,000,000. The first database is partitioned into 8 fragments whereas the

second database is partitioned in 10 fragments. These values were set by inspection.

The result of this comparison shows a linear growth in storage size as dimensions grows

even though materialized views from the Smart Views were added to the smart cube.

As it can been seen from Figure 6.4, the size of the data cube computed for the 100-C

database is slightly larger than that of the data cube for 50-C database. This is because

of the fact that even though the fragment cubes for the 100-C database was larger, it

had bigger fragments. Therefore, most of the auto-generated queries did not create new

materialized views. Secondly the 100-C database has a cardinality of 100 as compared to

the 50-C database which has a cardinality of 50. This implies that the views created by

the 100-C database were larger and therefore fewer views were created for the allocated

storage space. After adding the Smart View to the Smart Cube, we compared the Smart

Cube to the Shell Fragment approach in terms of storage size as dimensionality grows.

Figure 6.4 shows the result of the comparison. The database and parameter settings is

the same as in the previous comparison. The addition of the Smart View to the Smart

Cube is still smaller than the Shell Fragment cube. It follows that the size of the resulting

Smart Cube is however, dependent on the storage space allocated for Smart Views.

Effect of Fragment Size on Storage Size

In [39] the authors showed that a fragment size between 2 and 4 strikes a good balance

between storage space and computation time. However, the Shell Fragment approach

was based on full materialization of each fragment cube. The increase in cube storage

size grows exponentially as the fragment size becomes greater than 3. The question arises

then, since we do not fully materialize our fragment cube, does changes in fragment size

also changes the size of our storage?

The size of the smart cube grows linearly as fragment size increase. We observe

from the experimental results that the number of materialized views for each fragment

is usually less than the 2n

2
, where the number of cuboids computed from a full cube

materialization is 2n. The difference between the two databases lies in the effect of di-

mensionality on the cube storage size, which from previous experiments we showed was

also linearly correlated. The dimensional size of the databases were set by experimen-

Evaluation and Results 87

Figure 6.5: Storage size for Different Fragments: (50-D) T=2,000,000, D=50, C=50,

S=0. (60-D) T=2,000,000, D=60, C=50, S=0

Figure 6.6: Storage size of SC compared with SF for Different Fragments: (50-D)

T=2,000,000, D=50, C=50, S=0

tation to evaluate our algorithm on very large databases. The 60-D database from the

Figure 6.5 requires larger storage than the data cube computed from the 50-D data set.

In Figure 6.15 we compared our approach with the Shell Fragment approach. Using a

synthetic dataset with 2,000,000 tuples, 50 dimensions, cardinality of 50 and skew of 0,

we analyzed the effect of fragment size on the cube storage size. The Shell Fragment

approach seemed to almost double the space required to store the fragment cube anytime

the fragment size is increased by one.

Evaluation and Results 88

Effect of Row Threshold on Storage Size

The row threshold prunes the search space by preventing further computation when the

size of the parent node is less or equal to the row threshold. In Chapter 4, we saw

that the larger the row threshold, the fewer the number of iterations or the shorter the

computation time, and vise versa. This also implies that, the larger the row threshold,

the fewer the number of materialized views. Now let us show experimentally how the

row threshold affects the cube storage size.

Figure 6.7: Storage size per row threshold: (50-D) T=2,000,000, D=50, C=50, S=0.

(70-D) T=2,000,000, D=70, C=50, S=0

Figure 6.7 shows the relationship between the row threshold value and storage space.

From Figure 6.7 it follows that there is an inverse relationship between the row threshold

and the storage space used by the resultant data cube. Thus, the larger the row threshold

the smaller the resultant data cube, and the smaller the row threshold the larger the

resultant data cube. This is very obvious, since the higher the row threshold the fewer

the number of materialized cuboids or views and hence the smaller the storage space

required to store the views. The row threshold also has a direct effect on query latency.

Determining the row threshold value is dependent on the domain in which the system is

been used. For example, for certain systems, users can wait for about 15 to 30 seconds

for a response to queries. Whereas, for certain mission critical systems, the users want

response instantly and therefore cannot afford a 20 seconds delay. Therefore, choosing

the right threshold is very critical to the response time of queries. It follows that there is

no fixed value for the row threshold, since it is very much dependent on the DBMS and

the specification of the server machine. As previously stated, another important criteria

for evaluating a data cube is the performance in terms of query processing. Next we

present our results in terms of query processing.

Evaluation and Results 89

6.2.2 Performance Factor and Query Processing Time

Recall from Section 6.1.2 that, by performance factor, we are referring to the cost of

evaluating a query posed to the system. In this section we will examine the query

evaluation performance as a result of materialization. We will also analyze the implication

of various factors on the speed of query processing. Our materialization algorithm reduces

the number of materialized views using the row threshold, this implies that our algorithm

generates fewer materialized views than other other approaches such as PickBorders and

PBS algorithms. The question we address here is whether fewer materialized views imply

a lower query execution performance.

Materialization and Performance Factor

We compared our approach to the PickBorders algorithm, with respect to their query

evaluation performances. We chose PickBorders because our partial materialization al-

gorithm of the local cube fragment extended the this algorithm. Recall that the per-

formance factor is based on the cost of evaluating a query. The databases used in this

experiment are the TPC-DS database and US Census database. In order to ensure a

valid comparison is done, we first computed the fragment cube using PickBorders and

then using our algorithm. The comparison was done using a single fragment cube. For

this experiment, we executed both the Smart Cube and PickBorders algorithms using

f = 3.38 and f = 11.39, where f is the performance threshold selected by inspection.

We also selected a row threshold R = 500 by inspection for the Smart Cube algorithm.

Figure 6.8: Performance Factor with f = 3.38 and f = 11.39

Figure 6.8 shows that the average performance of Smart Cube and the PickBorders

algorithms are comparable. From the result it follows that, the lower the performance

Evaluation and Results 90

Figure 6.9: Performance Factor Distribution for TPC-DS dataset

Figure 6.10: Performance Factor Distribution for US Census Data

threshold value f , the lower the cost of evaluating a query. This is because a lower f value

mean more views will meet the threshold and hence will be materialized. The higher

f value that is f = 11.39 implied that fewer views were materialized. This affected

the average performance factor negatively. A more careful look at the distribution of

the performance factors in Figure 6.9 and 6.10 shows that, even though the number of

materialized cuboids in Smart Cube is less than that of the PickBorders, it does not

have a negative impact on the performance. This further corroborate our assertion that

a lower performance factor implied a higher number of materialized views. The first

category represents the set of cuboids with performance factor 1; thus materialized views

and views whose least materialized ancestor have the same size. The second category

counts the cuboids with a performance factor in]1,2]. The third category counts the

cuboids with a performance factor in]2, 3.5] and so on. Recall that the Smart Cube

algorithm stores fewer number of cuboids than PickBorders algorithm, because it does

Evaluation and Results 91

not materialize those cuboids whose size is below the row threshold.

Query processing time

In order to assess how fast our algorithm is able to process queries, we executed different

query profiles against our system and compared it with the state-of-the-art PickBorders

and PBS algorithms. The database used was the TCP-DS database. The query profiles

were used to evaluate the response time under different scenarios of query submissions.

Using f = 11.39, selected by inspection, we conducted a test to compare the query

processing speeds of the data cube generated. The query profiles selected include 10 90,

20 80, 50 80, 66 80 and UNIFORM . The UNIFORM profile means that all query

types have the same frequency. Smart Cube was configured using row threshold η = 500,

and we used 30 distinct queries that were generated randomly. From Appendix A, a

sequence of 400 queries was submitted, and we gathered the elapsed time to process all

400 queries according to each profile. The value of f and η were selected by inspection.

Figure 6.11: Runtime of Query Profile (SmartCube vs. PickBorders)

Figure 6.11 shows the results, which indicates that the runtime for executing queries

using views created by Smart Cube is comparable to the runtime for executing queries

using views selected by PickBorders, considering all query profiles. This further indi-

cates that although SmartCube uses less materialized views and thus less storage space,

PickBorders does not outperform Smart Cube in terms of overall query execution time.

This, therefore, means that the selection of larger number of views does not necessarily

imply a large time reduction to process queries.

We also compared the Smart Cube technique with the PBS algorithm. PBS is known

to be a fast algorithm, and has broadly been used in comparative analysis, providing good

results [29][34] [40]. In Figure 6.12, the result shows that executing queries using views

Evaluation and Results 92

Figure 6.12: Runtime of Query Profile (SmartCube vs. PBS)

Figure 6.13: Runtime of Query Profile (SmartCube vs. DynaMat)

created using Smart Cube is more efficient than executing queries using views selected

by the PBS algorithm. This is because PBS naively selects the smallest unselected view

for materialization, without taking in to consideration the cost of materializing the view.

The result further corroborated our initial assumption that the selection of large number

of views does not necessarily imply a large time reduction to process queries.

In Figure 6.13, we compared our Smart Cube with DynaMat. The View Pool of

DynaMat was simulated as was done in [17] [36]. That is, it utilizes dedicated secondary

storage for managing the cache information (materialized views). The result showed

that the two approaches produced comparable results in terms of query processing time.

This can be attributed to the similarity between the DynaMat Pool and the Smart View

approach. While the Smart View method materializes the most frequent view used to

compute queries, the DynaMat algorithm materializes the results of the most frequent

Evaluation and Results 93

queries. DynaMat performs better in situations where the user queries are answered using

the pool with the results of the exact same query already stored in the view fragment.

The query processing time is similar when user queries are answered using the DynaMat

Pool but the exact same query is not stored, and thus has to be computed from existing

fragments. However, in general, more queries are answered using the Smart View since

it stores the base view used for answering queries, while the DynaMat Pool stores query

results. This implies that the chance that queries are answered using the Smart View

are higher than when using the DynaMat Pool if the same storage size is allocated for

both.

Fragment Size and query performance

In Figure 6.5 we saw the effect of fragment size on the storage size. Here, we will

evaluate the effect of fragment size on query performance. In order to do so, we used the

US Census database. In this section, we examine the implication of fragment size F on

the speed of query processing.

Figure 6.14: Average query time per 100 trials: (US Census data 1990) T=500K

Figure 6.14 shows the time needed to compute sub-cube queries or Range queries

for different fragment sizes. The US Census 1990 database had 500,000 tuples, and 40

dimensions was used. The results shows fast query response time, with 150ms even

when a 5D sub-cube is inquired; less for various type of queries. The results indicate

that having a larger fragment size results in non trivial speedups, especially for high

dimensional queries. This is because the probability of queries been answered from

a single fragment increases with larger fragment size. Since the result in Figure 6.14

does not include the Smart View, it is essential that we minimize processing of the tid-

lists using Inverted Indexes by ensuring all computation either happen in one or two

Evaluation and Results 94

Figure 6.15: Average query time for Smart Cube with no Smart View (SCNSV) and

Smart Cube with Smart View (SCSV): (US Census data 1990) T=500K

Figure 6.16: Average query time for Smart Cube with no Smart View (SCNSV) and

Smart Cube with Smart View (SCSV): (TCP-DS data) T=3000,000

fragments. An important advantage to answering a query from a single fragment is that,

for each fragment, multidimensional aggregates are already computed and stored.

As stated earlier, the data cube used for the experiment in Figure 6.14 does not include

the Smart Views. However, Smart Views are expected to improve the performance of

the Smart Cube by creating a top layer that links the individual fragments. In order to

see the effect of the Smart View on query response time, we used the same US Census

database as in Figure 6.14 and also the TCP-DS database. We computed our query

on the Smart Cube with Smart View and compared the result with the Smart Cube

with no Smart View. Figure 6.15 and Figure 6.16 shows the effect of different fragment

size on our Smart Cube approach. As was expected, the Smart Cube with Smart View

Evaluation and Results 95

outperformed the Smart Cube with no Smart View in both databases. It follows that

with the inclusion of the Smart Views, the performance of queries drastically improved;

even in the worse case from Figure 6.15, the execution time is 30ms. This value improves

as the fragment size increases. From our experiment, it follows that as fragment size

increases, performance of the two approaches begins to converge until reaches a point

where they converge. For the US Census database the query performance converged at

a fragment size of 10, while for the TCP-DS database the query performance converged

at fragment size greater than 12.

Personalization and query performance

As stated earlier, personalization provide the means by which a small subset of the data

is updated dynamically for each user. This data subset ensures that, when users query

the system, they get that small subset which is of interest to them, without superfluous

data. However, because user queries are answered by the personalized views which are

smaller in size, these queries are relatively faster than querying from the Smart Cube. We

tested the personalization algorithm against the following query profiles: 10 90, 20 80,

50 80, 66 80 and UNIFORM . Some modifications were done to the queries to ensure

we see the benefit of personalization on query performance. Thus, for the 10 90 profile

we ensured that the 10% of the queries that repeated 90% of the time could be answered

using the personalized cube. Also for the 20 80 profile, we ensured that the 20% of the

queries that repeated 80% of the time could also be answered using the personalized

views.

Figure 6.17: Runtime of Query Profile (SmartCube vs. Personal Cube)

The result of the experiment is illustrated in Figure 6.17. The graph shows an average

of 43% improvement in the query performance when the Personalized Smart Cube is

Evaluation and Results 96

used over Smart Cube. The performance of queries in the 10 90 and 20 80 profiles,

in particular, had about 50% improvement in query performance. This is because a

high percentage of queries within these two profiles can be answered by the Personalized

Smart Cube. The other query profiles also showed some moderate improvement in query

performance. However, the improvements in query processing time were not that large

because the queries within the profiles were distributed such that there is a fair percentage

of queries that can be answered using the Personalized Smart Cube. Note that queries

are either answered using the Personalized Cube or submitted to the Smart Cube for

processing. This implies the total runtime for processing queries is dependent on how

many queries within the query profile were executed by the Personalized Smart Cube and

how many queries were submitted to the Smart Cube for processing. If the Personalized

Smart Cube is able to answere a larger percentage of queries within the profile, then query

processing time is reduced. However, if it is not, and the base Smart Cube answers a

larger percentage of the queries, then query processing time increases.

6.2.3 Cost Saving Ratio (CSR)

Our Personalized Smart Cube algorithm is a dynamic algorithm that keeps monitoring

user queries and materializing based on the performance gain. We compared our algo-

rithm to the Virtual Cube algorithm using the TCP-DS database. We compared to the

Virtual Cube because, to the best of our knowledge, it is the only other algorithm pro-

vides users with a relevant subset of the data based on their interest. To account for cost

savings we executed the uniform query profile for different number of materialized views.

The uniform query profile is made up of queries that target uniformly the Personalized

Smart Cube and the base Smart Cube. This lack of locality of the queries represent

the worst-case scenario for the Personalized Smart Cube, since its dynamic and needs

to adapt on-the-fly to the incoming query pattern. For the Virtual Cube, this is not

an issue, because it is static and therefore computes the virtual cubes in advance based

on user interest I. The storage limit on both algorithms were set to the same value of

750MB.

The result in Figure 6.18 shows that generally cost savings increases as more views are

materialized for each user. Initially when the number of materialized views are between

0 and 10, the Virtual Cube had a higher cost savings than the Personalized Smart Cube.

This is because the Personalized Smart Cube was still learning the user query pattern

and therefore computing most of the queries using the base Smart Cube. The Virtual

Cube, on the other hand, precomputes the data cube using the user interest and a given

cost model. Therefore the views selected for materialization is the optimum solution.

Evaluation and Results 97

Figure 6.18: DCSR per view for uniform queries on views

When more views are materialized, the Personalized Smart Cube systematically studies

the user query pattern and cost savings increases. This implies that the percentage

number of queries answered using the Personalized Smart Cube increases compared to

the Virtual Cube algorithm. Although the Virtual Cube also increases the cost savings

with respect to increase in number of materialized views, this change is rather moderate,

since all views are precomputed.

6.3 Discussion

We started by evaluating our algorithms based on cost and storage size. Dimensionality

has always been a problem with data cube size, whether full or partial materialization

is used. We therefore evaluated the effect of dimensionality on our Smart Cube. The

result showed a linear increase in storage size as dimensionality increased, since increase

in dimensionality only means addition of extra fragments. Next, we analyzed the effect

of fragment size on the storage cost. For a full materialization of a fragment cube,

increasing of fragment size above 4 implied an exponential increase in storage space. On

the other hand, the results from our approach showed a linear increase in storage space

as fragment size increases. This linear increase in storage space as dimensionality and

fragment size increased was consistent, even when we added the Smart Views. Although

dimensionality and fragment size are the main factors that influence the overall storage

size of our Smart Cube, we further introduced the row threshold in our algorithm. The

function of the row threshold is to determine the minimum size of views that should be

stored. Since the value of the row threshold seems to influence the number of views that

would be stored, we experimentally analyzed its effect on the overall storage size of our

Evaluation and Results 98

data cube. The result shows, as was expected, that the larger the threshold value, the

fewer the number of cuboids and vise versa.

We further evaluated the performance factor and query evaluation time of the Per-

sonalized Smart Cube approach. Query processing time and the performance of a data

cube is influenced by various factors, which include the materialization approach (i.e.

the number of materialized views) and also the type of views that are materialized. The

fragment size of each partition also influences the query evaluation time, since the larger

the size the more the queries that can be answered from a single fragment. The per-

formance of our approach was evaluated for different f values. We then compared the

performance of our approach to that of the PickBorders algorithm. The result showed

that, the performance of our approach is comparable to that of the PickBorders algo-

rithm, but has the added advantage of materializing a fewer number of views and thus

having a smaller size. This contradicts the belief that fewer materialized views imply

slower query response time. This smaller number materialized views is as a result of the

fact that our Smart Materialization algorithm reduces the number of views selected for

materialization by eliminating views whose sizes are less than the row threshold. We also

compared our approach to that of PickBorders and PBS algorithms, in terms of query

processing time with different query profiles. The result showed that our algorithm out-

performed the PBS algorithm which had higher number of materialized cuboids than

our approach. We also compared our approach to the DynaMat algorithm and the re-

sults showed comparable performance. This is as a result of the fact that Smart View

algorithm is an extension of DynaMat algorithm. The larger the fragment size the more

storage required to store the data cubes and the better it performs with respect to query

processing. The effect of fragment size on average query execution time was evaluated

experimentally and the results showed that our technique generally performed well, even

when Smart Views where not used. We also compared our system to the Shell Fragment

approach. However, we did it for smaller fragment sizes, since computing larger fragment

size using Shell Fragment approach was prohibitive.

Finally our proposed system include cube personalization, which provide users with

the subset of data that is of most interest to them. This means that queries answered by

personalization are supposed to be processed very fast, as compared to queries answered

using the Smart Cube. We evaluated the query performance gain as a result of person-

alization. Another evaluation criteria used for our personalization algorithm was Cost

Saving Ratio (CSR) or Detail Cost Saving Ratio (DCSR). CSR is the measure of the

percentage of the total cost of the queries saved due to hits in the personalized data cube.

CSR is a consequence of the assumption that personalized cubes provide fast response to

queries than the Smart Cube. We therefore evaluated the query performance as a result

Evaluation and Results 99

of personalization. The result showed an average of 43% improvement in execution time.

Finally, we compared our personalization approach to that of the Virtual Cube method.

The result showed that, because of the dynamic nature of our personalization algorithm,

the DCSR was higher than that of the Virtual Cube.

The strength of the Personalized Smart Cube computation method is the ability to

first reduce the size of the data cube while guaranteeing performance. The second ad-

vantage is the provision of personalization in terms of user data requirements or users

data interest. Personalization first gives users only that subset of data they are inter-

ested in and also reduces the query response time even further. The advantage of our

methodology in reducing the size of the data cube can be attributed mainly to our smart

materialization algorithm, which reduces the size of the data cube by terminating mate-

rialization at a threshold. This approach does not only reduce our Smart Cube size, but

also reduces the time in computing the data cube.

6.4 Conclusion

In this chapter, we presented the results of evaluating the Personalized Smart Cube

approach and various aspects of the cube construction phase. We studied the effect of

running our algorithm on synthetic databases, real-world databases, and databases of

different sizes and dimensionality. Our algorithm was evaluated on two major criteria,

that is storage size and query performance. We compared our algorithms to the state-

of-the-art methods and the results showed that our algorithm outperformed them based

on the three main criteria for evaluation.

In the next chapter we summarize our thesis and present areas of future work.

Chapter 7

Conclusion

In this chapter we provide a summary of our work. We discuss the algorithms, results

and contributions of our work. We finally suggest some future directions.

7.1 Discussion

Partitioning of databases before cube computation has been know to reduce the curse

of dimensionality, by adding partition fragments as dimensionality increases. However,

computing local fragment cubes using full cube materialization technique introduces

additional problems. The main problem caused by such a technique is that, each frag-

ment has an exponential storage and computational complexity since it computes all 2d

cuboids, where d is the number of dimensions. This means that, for very large fragment

size, the computation time and storage space required for each fragment are prohibitive.

Partial cube materialization, however, provides an optimal trade off between storage

space and computation time complexity. Thus, with partial materialization, only the

most beneficial cuboids are saved.

Several solutions have been proposed in order to find the most relevant subset of

cuboids to store. The problem is then, with a constraint on the amount memory space

that can be utilized, how to provide a subset of cuboids so that the cost is minimized.

Most of the existing solutions suppose that the cuboids sizes are known in advance. This

is often not the case. Other work propose an approximation algorithm whose performance

guarantees that the gain of the returned solution cannot be less than a percentage of

that of the optimal solution. In this method the notion of performance is obtained by

comparing the returned solution to the ”worst” solution.

Data cubes are usually computed from data that are very large with high dimension-

ality. It provides a means to view the entire data from different perspectives. However,

100

Conclusion 101

users are mostly interested in only a subset of the data. They want all OLAP cube op-

erations to be done within the context of this subset. In order to meet such user needs,

the data cube is personalized for the user. Personalization in OLAP cubes has been

approached from different perspectives and context. Some perspective is related to mul-

tidimensional data presentation in which display data is adapted into constraint-based

adaptable data cube. Other personalization approaches are based on associating user

annotations to every piece of multidimensional data, while some are based on specifying

relevant data according to user preferences.

This thesis provided a detailed cube computation technique that capitalized on par-

titioning, partial materialization and data cube personalization based on dynamic com-

putation. In our materialization technique we addressed the problem of finding a set S

that provides a cost no more than minCost×f given f > 1, where f is a threshold value

provided by the user and minCost is the minimum cost of executing a query using a

node that is not a parent. This algorithm reduces the number of materialized cuboids by

ignoring views whose sizes are less then the row threshold. In other words, materializing

such cuboids do not provide any extra performance benefit. In order to improve query

processing time of all queries, including those computed from more than one fragment,

we dynamically compute Smart Views by constantly monitoring incoming queries from

users. The queries used for computing Smart Views are those that require more than

one fragment to compute.

In order to evaluate the performance and quality of our proposed Personalized Smart

Cube algorithm, we designed a prototype. We tested the system against the TPC-DS

database, the US Census 1990 database, and a synthetic database. The experiments

we conducted to evaluate the the Personalized Smart Cube shows, in general, that our

proposed solution compared favorably with state-of-the-art methods. We analyzed the

effect of data dimensionality and fragment size on the storage size and query evaluation

time of the Smart Cubes. We compared the output of our algorithm with the Shell

Fragment technique, evaluated on storage size. The results showed that our algorithm

utilizes less storage than the Shell Fragment technique. We evaluated the performance of

our algorithm in terms of query processing time by comparing it with the PickBorders and

PBS algorithms. The results showed that, in addition to our algorithm materializes fewer

views than both methods and thus computing a smaller cube, the query processing time

was comparable with the PickBorders algorithm and outperformed the PBS algorithm.

Finally, we evaluated our Personalized Cube on two criteria, namely query processing

time and Detailed Cost Saving Ration (DCSR). We compared our Personalized Cube

with the Virtual Cube algorithm. The results showed that initially, with a smaller

number of materialized views the Virtual Cube slightly performed better in terms of

Conclusion 102

DCSR. However, as more views were added the Personalized Cube performed better

than Virtual Cube due to the dynamic learning of user query pattern. The results also

showed a drastic improvement in query processing time when Personalized Cubes are

used, compared to Smart Cubes.

7.2 Thesis Contributions

Data cube computation, cube materialization techniques, and data cube personalization

have been studied separately in the research community over the years. Our main con-

tribution in this thesis is the combination of static and dynamic data cube computation

techniques in order to reduce the space required to store the data cubes as well as the

time required to process user queries. We also introduced a new algorithm that reduces

the number of materialized cuboids by eliminating cuboids that do not add additional

query performance, i.e. cuboids whose sizes are less than the row threshold.

The data cube computation technique involves partitioning the dimension space into

disjoint sets called fragments and computing a data cube for each fragment. The compu-

tation of the local fragment cube is done using our Smart Materialization algorithm. For

queries that require online computation using Inverted Indexes, we reduced the amount

of online computation by using dynamic data cube computation technique. This tech-

nique dynamically monitors users incoming queries and materializes the query results

based on some given criteria.

Our final contribution is that we proposed a dynamic data cube personalization al-

gorithm that monitors incoming queries and based on user interest, materializes results

based on a performance factor threshold. The benefit of cube personalization is that

it provides users with the data subset that is of most interest to them by filtering out

unnecessary information.

7.3 Future Work

The work presented in this thesis may be furthered in several other directions. Firstly,

our personalization algorithm is only based on user query pattern. However, this can

be extended to include situation awareness, where the context within which the query is

issued will be taken into consideration. This may include special events and situations

that might be of interest to the user. It will be interesting to explore the data for special

drifts or changes that happen within the data, to be considered when personalizing the

data cube.

Conclusion 103

Another possible direction is the following. Our algorithm serially go through each

partition computing the data cube, even though the partitions are disjoint sets. We

can therefore parallelize the computation of the fragment cube, so that cubes would be

computed at the same time. This may considerably reduce the computation time of the

Smart Cubes. Parallelization will not only reduce the computation time of the fragment

cubes, but also the computation of the Smart Views will be drastically improved, since

each fragment will be handled by a different process.

Another interesting area of future extension lies in the computation of the person-

alized cube. Our current approach uses the frequency of user access to a particular

view to determine whether it should be materialized for the user, or not. However, we

could investigate the use of newer and faster machine learning modules which would

produce better results of identifying which cuboids would provide the most benefit when

materialized.

Another suggestion for future work will be to go beyond personalized view materializa-

tion using relational databases and explore the possibility of computing the Personalized

Smart Cube using in-memory databases. In-memory databases do not need materializa-

tion to improve performance. Therefore, views computed for each user will not require

materialization, but will still provide fast, personalized answers.

Appendix A

List of Queries

Table A.1: One (1) Dimensional Queries using TCP-DS

Database

MDX User Levels Filters

1. SELECT [Measures].[Sales Price] ON 0,

[ITEM].[BRAND] ON 1 FROM [STORE SALES]

[ITEM].[BRAND] No Filters

2. SELECT [Measures].[Sales Price] ON

0, [ITEM].[BRAND].[NEON] ON 1 FROM

[STORE SALES]

[ITEM].[BRAND] i brand=

“Neon”

3. SELECT [Measures].[Sales Price] ON 0,

[ITEM].[CLASS].[DRESS] ON 1 FROM [STORE

SALES]

[ITEM].[CLASS] i class=

“dress”

4. SELECT [Measures].[Sales Price] ON

0, [ITEM].[CATEGORY].[MEN] ON 1 FROM

[STORE SALES]

[ITEM].[CATEGORY] i category=

“men”

5. SELECT [Measures].[Sales Price] ON 0,

[STORE].[STORE NAME].[ABLE] ON 1 FROM

[STORE SALES]

[STORE].[STORE NAME] s store name=

“able”

6. SELECT [Measures].[Sales Price] ON 0,

[STORE].[MANAGER].[SCOTT SMITH] ON 1

FROM [STORE SALES]

[STORE].[MANAGER] s manager =

“scott smith”

Continue on next page

104

List of queries 105

Table A.1 – continued from previous page

MDX User Levels Filters

7. SELECT [Measures].[Sales Price]

ON 0, [CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[OTTAWA] ON 1 FROM

[STORE SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[CITY]

a city= “Ot-

tawa”

8. SELECT [Measures].[Sales Price]

ON 0, [CUSTOMER].[CUSTOMER AD-

DRESS].[STATE].[CA] ON 1 FROM [STORE

SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[STATE]

a state= “CA”

9. SELECT [Measures].[Sales Price] ON 0,

[DATE].[YEAR].[2005] ON 1 FROM [STORE

SALES]

[DATE].[YEAR] d year= 2005

10. SELECT [Measures].[Sales

Price] ON 0, [DATE.SEASON

MONTH].[SEASON].[Winter].[January] ON

1 FROM [STORE SALES]

[DATE.SEASON

MONTH].[MONTH]

d season=

“Winter” and

d month=

“January”

Table A.2: Two (2) Dimensional Queries using TCP-DS

Database

MDX User Levels Filters

1. SELECT [Measures].[Sales Price]

ON 0, {[ITEM].[BRAND]. Children} *

{[STORE].[STORE NAME].[ABLE]. Children }
ON 1 FROM [STORE SALES]

[ITEM].[BRAND],

[STORE].[STORE NAME]

s store name=

“able”

2. SELECT [Measures].[Sales Price] ON

0, {[ITEM].[BRAND].[NEON]. Children} *

{[STORE].[STORE NAME].[ABLE]. Children}
ON 1 FROM [STORE SALES]

[ITEM].[BRAND],

[STORE].[STORE NAME]

i brand=

“neon” and

s store name=

“able”

3. SELECT [Measures].[Sales Price] ON

0, {[ITEM].[CLASS].[DRESS]. Children} *

{[STORE].[MANAGER].[SCOTT SMITH].

Children} ON 1 FROM [STORE SALES]

[ITEM].[CLASS],

[STORE].[MANAGER]

i class=

“dress” and

s manager= “

Scott Smith”

Continue on next page

List of queries 106

Table A.2 – continued from previous page

MDX User Levels Filters

4. SELECT [Measures].[Sales Price] ON 0,

{[ITEM].[CATEGORY].[MEN]. Children} *

{[STORE].[MANAGER].[JAMES CRETE].

Children} ON 1 FROM [STORE SALES]

[ITEM].[CATEGORY],

[STORE].[MANAGER]

i category=

“men” and

s manager=

“James Crete”

5. SELECT [Measures].[Sales Price] ON

0, {[STORE].[STORE NAME].[ABLE]. Chil-

dren} * {[CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[OTTAWA] . Children} ON 1

FROM [STORE SALES]

[STORE].[STORE

NAME], [CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY]

s store name=

“able” and

a city= “Ot-

tawa”

6. SELECT [Measures].[Sales Price] ON

0, {[STORE].[MANAGER].[SCOTT SMITH].

Children} * {[CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[OTTAWA] . Children} ON 1

FROM [STORE SALES]

[STORE].[MANAGER],

[CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY]

s manager =

“scott smith”

and a city =

“Ottawa”

7. SELECT [Measures].[Sales Price] ON

0, {[CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[OTTAWA]. Children} *

{[ITEM].[CLASS].[DRESS]. Children} ON 1

FROM [STORE SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[CITY],

[ITEM].[CLASS]

a city= “Ot-

tawa” and

i class=

“dress”

8. SELECT [Measures].[Sales Price]

ON 0, {[CUSTOMER].[CUSTOMER

ADDRESS].[STATE].[CA]. Children} *

{[ITEM].[CLASS].[DRESS]. Children} ON 1

FROM [STORE SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[STATE],

[ITEM].[CLASS]

a state= “CA”

and i class =

“dress”

9. SELECT [Measures].[Sales Price]

ON 0, {[DATE].[YEAR].[2005]. Chil-

dren}*{[ITEM].[CATEGORY].[MEN]. Children}
ON 1 FROM [STORE SALES]

[DATE].[YEAR],

[ITEM].[CATEGORY]

d year=

2005 and

i category=

“men”

Continue on next page

List of queries 107

Table A.2 – continued from previous page

MDX User Levels Filters

10. SELECT [Measures].[Sales

Price] ON 0, {[DATE.SEASON

MONTH].[SEASON].[Winter].[January]. Chil-

dren} * {[ITEM].[CATEGORY].[MEN]. Chil-

dren} ON 1 FROM [STORE SALES]

[DATE.SEASON

MONTH].[MONTH],

[ITEM].[CATEGORY]

d season=

“Winter” and

d month=

“January” and

i category=

“men”

Table A.3: Three (3) Dimensional Queries using TCP-DS

Database

MDX User Levels Filters

1. SELECT NON EMPTY

{[Measures].[Sales Price]} ON COLUMNS,

NON EMPTY{{[ITEM].[BRAND] } *

{[STORE].[STORE NAME].[ABLE], [STORE

NAME].[OGT] } * {[DATE].[YEAR].[2005]}}
ON 1 FROM [STORE SALES]

[ITEM].[BRAND],

[STORE].[STORE NAME],

[DATE].[YEAR]

s store name=

“able” and

d year=2005

2. SELECT [Measures].[Sales Price]

ON 0, {[ITEM].[BRAND].[NEON]} *

{[STORE].[STORE NAME].[ABLE]} ON

1 FROM [STORE SALES] WHERE

[DATE].[YEAR].[2005]

[ITEM].[BRAND],

[STORE].[STORE NAME],

[DATE].[YEAR]

i brand=

“neon” and

s store name=

“able” and

year=2005

3. SELECT [Measures].[Sales Price] ON

0, NON EMPTY{{[ITEM].[CLASS].[DRESS]}
* {[STORE].[MANAGER].[SCOTT SMITH]} *

{[DATE].[2005]:[DATE].[YEAR].[20010]}} ON 1

FROM [STORE SALES]

[ITEM].[CLASS],

[STORE].[MANAGER],

[DATE].[YEAR]

i class=

“dress” and

s manager= “

Scott Smith”

and d year

between 2005

and 2010

Continue on next page

List of queries 108

Table A.3 – continued from previous page

MDX User Levels Filters

4. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY{Order(

Order({[ITEM].[CATEGORY].[MEN]. Chil-

dren}*{[STORE].[MANAGER].[JAMES

CRETE]} * {[DATE].[YEAR].[2006],

[DATE].[YEAR].[2007]}, [Measure].[Sales

Price], BDESC),[DATE].CurrentMember.Name,

BASC)} ON ROWS FROM [STORE SALES]

[ITEM].[CATEGORY],

[STORE].[MANAGER],

[DATE].[YEAR]

i category=

“men” and

s manager=

“James Crete”

5. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY

{{[STORE].[STORE NAME].[ABLE]}
* {[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA],

[CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[KINGSTON]}} ON

1 FROM [STORE SALES] WHERE

[ITEM].[CATEGORY].[MEN]

[STORE].[STORE

NAME], [CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY],

[ITEM].[CATEGORY]

s store name=

“able” and

a city= “Ot-

tawa” or

“Kingston”

6. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY

{{[STORE].[MANAGER].[SCOTT SMITH].

Children} * {[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA] } *

{[DEMOGRAPHICS].[GENDER][Male]}}
ON ROWS FROM [STORE SALES]

[STORE].[MANAGER],

[CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY],

[DEMOGRAPH-

ICS].[GENDER]

s manager =

“scott smith”

and a city =

“Ottawa” and

d gender=

“male”

7. SELECT [Measures].[Sales Price]

ON 0, {[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA]. Chil-

dren} * {[ITEM].[CLASS].[DRESS]}*{
*{[DEMOGRAPHICS].[GENDER][Male]}
ON 1 FROM [STORE SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[CITY],

[ITEM].[CLASS], [DEMO-

GRAPHICS].[GENDER]

a city= “Ot-

tawa” and

i class=

“dress” and

d gender=

“male”

Continue on next page

List of queries 109

Table A.3 – continued from previous page

MDX User Levels Filters

8. SELECT [Measures].[Sales Price]

ON 0, {[CUSTOMER].[CUSTOMER

ADDRESS].[STATE].[CA]. Children} *

{[ITEM].[CLASS].[DRESS]. Children} ON 1

FROM [STORE SALES] WHERE [DEMO-

GRAPHICS].[MARITAL STATUS].[Divorced]

[CUSTOMER].[CUSTOMER

ADDRESS].[STATE],

[ITEM].[CLASS], [DEMO-

GRAPHICS].[MARITAL

STATUS]

a state= “CA”

and i class

= “dress” and

d marital status=

“divorced”

9. SELECT [Measures].[Sales Price] ON

COLUMNS, {[DATE].[YEAR].[2005]. Chil-

dren} * {[ITEM].[CATEGORY].[MEN]. Chil-

dren} ON ROWS FROM [STORE SALES]

WHERE [DEMOGRAPHICS].[MARITAL STA-

TUS].[Divorced]

[DATE].[YEAR],

[ITEM].[CATEGORY],

[DEMOGRAPH-

ICS].[MARITAL STATUS]

d year=

2005 and

i category=

“men” and

d marital status=

“divorced”

10. SELECT NON EMPTY

{[Measures].[Sales Price]} ON COLUMNS,

NON EMPTY{ {[DATE.SEASON

MONTH].[SEASON].[Winter].[January]}
* {[ITEM].[CATEGORY].[MEN]} *

{ [CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[OTTAWA]}} ON ROWS

FROM [STORE SALES]

[DATE.SEASON

MONTH].[MONTH],

[ITEM].[CATEGORY],

[CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY]

d season=

“Winter” and

d month=

“January” and

i category=

“men” and

a city= “Ot-

tawa”

Table A.4: Four (4) Dimensional Queries using TCP-DS

Database

MDX User Levels Filters

1. SELECT NON EMPTY

{[Measures].[Sales Price]} ON COLUMNS,

NON EMPTY{{[ITEM].[BRAND] } *

{[STORE].[STORE NAME].[ABLE], [STORE

NAME].[OGT] } * {[DATE].[YEAR].[2005]} * {
[DEMOGRAPHICS].[GENDER].[Male]}} ON 1

FROM [STORE SALES]

[ITEM].[BRAND],

[STORE].[STORE NAME],

[DATE].[YEAR], [DEMO-

GRAPHICS].[GENDER]

s store name=

“able” and

d year=2005

and d gender=

“male”

Continue on next page

List of queries 110

Table A.4 – continued from previous page

MDX User Levels Filters

2. SELECT [Measures].[Sales Price]

ON 0, {[ITEM].[BRAND].[NEON]} *

{[STORE].[STORE NAME].[ABLE]} * {
[DEMOGRAPHICS].[GENDER].[Male]}
ON 1 FROM [STORE SALES] WHERE

[DATE].[YEAR].[2005]

[ITEM].[BRAND],

[STORE].[STORE NAME],

[DATE].[YEAR], [DEMO-

GRAPHICS].[GENDER]

i brand=

“neon” and

s store name=

“able” and

year=2005

and d gender=

“male”

3. SELECT [Measures].[Sales Price] ON 0,

NON EMPTY{{[ITEM].[CLASS].[DRESS]} *

{[STORE].[MANAGER].[SCOTT SMITH]} *

{[DATE].[YEAR].[2005]:[DATE].[YEAR].[20010]}
* { [DEMOGRAPHICS].[GENDER].[Female]}}
ON 1 FROM [STORE SALES]

[ITEM].[CLASS],

[STORE].[MANAGER],

[DATE].[YEAR], [DEMO-

GRAPHICS].[GENDER]

class=

“dress” and

s manager= “

Scott Smith”

and d year

between 2005

and 2010 and

d gender=

“female”

4. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY{Order(

Order({[ITEM].[CATEGORY].[MEN]. Chil-

dren}*{[STORE].[MANAGER].[JAMES

CRETE]} * {[DATE].[YEAR].[2006],

[DATE].[YEAR].[2007]} * { [DEMOGRAPH-

ICS].[GENDER].[Female]},[Measure].[Sales

Price], BDESC),[DATE].CurrentMember.Name,

BASC)} ON ROWS FROM [STORE SALES]

[ITEM].[CATEGORY],

[STORE].[MANAGER],

[DATE].[YEAR], [DEMO-

GRAPHICS].[GENDER]

i category=

“men” and

s manager=

“James Crete”

and d gender=

“femal”

Continue on next page

List of queries 111

Table A.4 – continued from previous page

MDX User Levels Filters

5. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY

{{[STORE].[STORE NAME].[ABLE]}
* {[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA],

[CUSTOMER].[CUSTOMER AD-

DRESS].[CITY].[KINGSTON]} * { [DE-

MOGRAPHICS].[GENDER].[Female]}}
ON 1 FROM [STORE SALES] WHERE

[ITEM].[CATEGORY].[MEN]

[STORE].[STORE

NAME], [CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY],

[DEMOGRAPH-

ICS].[GENDER],

[ITEM][CATEGORY]

s store name=

“able” and

a city= “Ot-

tawa” or

“Kingston”

and d gender=

“femal”

6. SELECT NON EMPTY {[Measures].[Sales

Price]} ON COLUMNS, NON EMPTY

{{[STORE].[MANAGER].[SCOTT SMITH].

Children}*{[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA] } *

{[DEMOGRAPHICS].[GENDER].[Male]} *

{[PROMO].[PROMO NAME].[CALLY]}} ON

ROWS FROM [STORE SALES]

[STORE].[MANAGER],

[CUS-

TOMER].[CUSTOMER

ADDRESS].[CITY],

[DEMOGRAPH-

ICS].[GENDER],

[PROMO].[PROMO

NAME]

s manager =

“scott smith”

and a city =

“Ottawa” and

d gender=

“male” and

p promo name=

“cally”

7. SELECT [Measures].[Sales Price]

ON 0, {[CUSTOMER].[CUSTOMER

ADDRESS].[CITY].[OTTAWA]. Chil-

dren} * {[ITEM].[CLASS].[DRESS]}*{
*{[DEMOGRAPHICS].[GENDER].[Male]} *

{[PROMO].[PROMO NAME].[CALLY]} ON 1

FROM [STORE SALES]

[CUSTOMER].[CUSTOMER

ADDRESS].[CITY],

[ITEM].[CLASS], [DEMO-

GRAPHICS].[GENDER],

[PROMO].[PROMO

NAME]

a city= “Ot-

tawa” and

i class=

“dress” and

d gender=

“male” and

p promo name=

“cally”

8. SELECT [Measures].[Sales Price]

ON 0, {[CUSTOMER].[CUSTOMER

ADDRESS].[STATE].[CA]. Children}
* {[ITEM].[CLASS].[DRESS]} * {
[DATE].[YEAR].[2005]:[DATE].[YEAR].[20010]}
ON 1 FROM [STORE SALES] WHERE [DEMO-

GRAPHICS].[MARITAL STATUS].[Divorced]

[CUSTOMER].[CUSTOMER

ADDRESS].[STATE],

[ITEM].[CLASS], [DEMO-

GRAPHICS].[MARITAL

STATUS], [DATE].[YEAR]

a state= “CA”

and i class

= “dress” and

d marital status=

“divorced” and

d year between

2005 and 2010

List of queries 112

Table A.5: Sample Queries using US Census 1990

Database

MDX User Levels Filters

1. SELECT NON EMPTY

{[Measures].[Income 1]} ON COLUMNS,

NON EMPTY{{[CENSUS].[SEX].[MALE] } *

{[CENSUS].[MARITAL].[MARRIED] }} ON 1

FROM [US CENSUS]

[CENSUS].[SEX], [CEN-

SUS].[MARITAL]

Sex= “male”

and marital=

“married”

2. SELECT [Measures].[Income 1] ON

0, {[CENSUS].[DISABLED].[YES]} *

{[CENSUS].[CITIZEN].[YES]} ON 1 FROM [US

CENSUS]

[CENSUS].[DISABLED],

[CENSUS].[CITIZEN]

Disabled =

“yes” and

citizen = “yes

3. SELECT [Measures].[Income 1] ON 0,

NON EMPTY{{[CENSUS].[DISABLED].[NO]}
* {[CENSUS].[SEX].[FELMAL]}} ON 1 FROM

[US CENSUS]

[CENSUS].[DISABLED],

[CENSUS].[SEX]

Disabled =

“no” and sex =

“female”

4. SELECT NON EMPTY {[Measures].[Income

1]} ON COLUMNS, NON EMPTY

{{[CENSUS].[MARITAL].[SINGLE]}*{[CENSUS].[CITIZEN].[YES]

}} ON 1 FROM [US CENSUS]

[CENSUS].[MARITAL]

[CENSUS].[CITIZEN]

Marital= “sin-

gle” and Citi-

zen= “yes”

5. SELECT NON EMPTY {[Measures].[Income

1]} ON COLUMNS, NON EMPTY

{{[CENSUS].[CITIZEN].[NO]}} ON ROWS

FROM [US CENSUS]

[CENSUS].[CITIZEN] Citizen = “no”

Bibliography

[1] Mondrain Schema Workbench. http://mondrian.pentaho.com/documentation/

workbench.php,, 2013.

[2] Sameet Agarwal, Rakesh Agrawal, Prasad M Deshpande, Ashish Gupta, Jeffrey F

Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of

multidimensional aggregates. In Proceeding of Very Large Database Conference,

volume 96, pages 506–521, 1996.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In Proceedings of the 20th International Conference on

Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994.

Morgan Kaufmann Publishers Inc.

[4] Kamel Aouiche and Daniel Lemire. A comparison of five probabilistic view-size

estimation techniques in OLAP. In Proceedings of the ACM Tenth International

workshop on Data Warehousing and OLAP, DOLAP ’07, pages 17–24, New York,

NY, USA, 2007. ACM.

[5] Thilini Ariyachandra and Hugh Watson. Key organizational factors in data ware-

house architecture selection. Decis. Support Syst., 49(2):200–212, May 2010.

[6] K. Bache and M. Lichman. UCI Machine Learning Repository. http://archive.

ics.uci.edu/ml, 2013.

[7] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[8] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized views selection

in a multidimensional database. In Proceedings of the 23rd International Conference

on Very Large Data Bases, VLDB ’97, pages 156–165, San Francisco, CA, USA,

1997. Morgan Kaufmann Publishers Inc.

113

List of queries 114

[9] Daniel Barbará and Mark Sullivan. Quasi-cubes: exploiting approximations in mul-

tidimensional databases. ACM SIGMOD Record, 26(3):12–17, 1997.

[10] Ladjel Bellatreche and Kamel Boukhalfa. Yet another algorithms for selecting

bitmap join indexes. In Proceedings of the 12th International Conference on Data

Warehousing and Knowledge Discovery, DaWaK’10, pages 105–116, Berlin, Heidel-

berg, 2010. Springer-Verlag.

[11] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and

iceberg cube. In Proceedings of the 1999 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’99, pages 359–370, New York, NY, USA, 1999.

ACM.

[12] Truls A. Bjrklund, Nils Grimsmo, Johannes Gehrke, and system Torbjrnsen. In-

verted indexes vs. bitmap indexes in decision support systems. CIKM ’09, pages

1509–1512, New York, NY, USA, 2009. ACM.

[13] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating

materialized views. In Proceedings of the 1986 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’86, pages 61–71, New York, NY, USA,

1986. ACM.

[14] S. Chaudhuri, U. Dayal, and V. Ganti. Database technology for decision support

systems. Computer, 34(12):48–55, 2001.

[15] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and

OLAP technology. SIGMOD Rec., 26(1):65–74, March 1997.

[16] Andresson da Silva Firmino, Rodrigo Costa Mateus, Valéria Cesário Times, Lu-

cidio Formiga Cabral, Thiago Lúıs Lopes Siqueira, Ricardo Rodrigues Ciferri, and

Cristina Dutra de Aguiar Ciferri. A novel method for selecting and materializing

views based on OLAP signatures and grasp. JIDM, 2(3):479–494, 2011.

[17] F. Dehne, M. Lawrence, and A. Rau-Chaplin. Cooperative caching for

grid-enabled olap. Int. J. Grid Util. Comput., 1(2):169–181, December 2009.

[18] Prasad Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F. Naughton.

Caching multidimensional queries using chunks. In In Proceedings of the ACM

SIGMOD Conference on Management of Data, pages 259–270, 1998.

List of queries 115

[19] Steven Geffner, Divyakant Agrawal, and Amr El Abbadi. The dynamic data cubes.

In Proceedings of the 7th International Conference on Extending Database Technol-

ogy: Advances in Database Technology, EDBT ’00, pages 237–253, London, UK,

UK, 2000. Springer-Verlag.

[20] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. Applying vertical fragmentation

techniques in logical design of multidimensional databases. In Data Warehousing

and Knowledge Discovery, volume 1874 of Lecture Notes in Computer Science, pages

11–23. Springer Berlin Heidelberg, 2000.

[21] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data Cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min.

Knowl. Discov., 1(1):29–53, January 1997.

[22] Himanshu Gupta. Selection of views to materialize in a data warehouse. In Pro-

ceedings of the 6th International Conference on Database Theory, ICDT ’97, pages

98–112, London, UK, UK, 1997. Springer-Verlag.

[23] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman.

Index selection for OLAP. In Proceedings of the Thirteenth International Conference

on Data Engineering, ICDE ’97, pages 208–219, Washington, DC, USA, 1997. IEEE

Computer Society.

[24] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize

under a maintenance cost constraint. In Proceedings of the 7th International Con-

ference on Database Theory, ICDT ’99, pages 453–470, London, UK, UK, 1999.

Springer-Verlag.

[25] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-based

estimation of the number of distinct values of an attribute. In Proceedings of the

21th International Conference on Very Large Data Bases, VLDB ’95, pages 311–322,

San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[26] A. Hajmoosaei, M. Kashfi, and P. Kailasam. Comparison plan for data warehouse

system architectures. In Data Mining and Intelligent Information Technology Ap-

plications (ICMiA), 2011 3rd International Conference on, pages 290–293, 2011.

[27] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-

niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition,

2011.

List of queries 116

[28] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient computation of iceberg

cubes with complex measures. In ACM SIGMOD Record, volume 30, pages 1–12.

ACM, 2001.

[29] Nicolas Hanusse, Sofian Maabout, and Radu Tofan. A view selection algorithm

with performance guarantee. In Proceedings of the 12th International Conference

on Extending Database Technology: Advances in Database Technology, EDBT ’09,

pages 946–957, New York, NY, USA, 2009. ACM.

[30] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data

cubes efficiently. In Proceedings of the 1996 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’96, pages 205–216, New York, NY, USA,

1996. ACM.

[31] M. Ibrahim, J. Küng, and N. Revell. Database and Expert Systems Applications:

11th International Conference, DEXA 2000 London, UK, September 4-8, 2000 Pro-

ceedings. Database and Expert Systems Applications: 11th International Confer-

ence, DEXA 2000, London, UK, September 4-8, 2000 : Proceedings. Springer, 2000.

[32] W. H. Inmon, Claudia Imhoff, and Greg Battas. Building the Operational Data

Store. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[33] Antoaneta Ivanova and Boris Rachev. Multidimensional models: constructing data

cube. In Proceedings of the 5th international conference on Computer systems and

technologies, CompSysTech ’04, pages 1–7, New York, NY, USA, 2004. ACM.

[34] Panos Kalnis, Nikos Mamoulis, and Dimitris Papadias. View selection using ran-

domized search. Data Knowl. Eng., 42(1):89–111, July 2002.

[35] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide

to Dimensional Modeling. John Wiley & Sons, Inc., New York, NY, USA, 2nd

edition, 2002.

[36] Yannis Kotidis and Nick Roussopoulos. Dynamat: a dynamic view management

system for data warehouses. SIGMOD Rec., 28(2):371–382, June 1999.

[37] Laks VS Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube: How to summarize

the semantics of a data cube. In Proceedings of the 28th International Conference

on Very Large Data Bases, pages 778–789. VLDB Endowment, 2002.

List of queries 117

[38] Jianzhong Li, Doron Rotem, and Jaideep Srivastava. Aggregation algorithms for

very large compressed data warehouses. In Proceeding of the 25th VLDB Conference,

pages 651–662. Morgan Kaufmann Publishers, 1999.

[39] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-dimensional OLAP: a minimal

cubing approach. In Proceedings of the Thirtieth International Conference on Very

large databases - Volume 30, VLDB ’04, pages 528–539. VLDB Endowment, 2004.

[40] Zhou Lijuan, Ge Xuebin, Wang Linshuang, and Shi Qian. Research on materialized

view selection algorithm in data warehouse. In Computer Science-Technology and

Applications, 2009. IFCSTA ’09. International Forum on, volume 2, pages 326–329,

2009.

[41] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and

Y. Theodoridis. R-Trees: Theory and Applications (Advanced Information and

Knowledge Processing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[42] Konstantinos Morfonios, Stratis Konakas, Yannis Ioannidis, and Nikolaos Kotsis.

Rolap implementations of the data cube. ACM Comput. Surv., 39(4), November

2007.

[43] Derek Munneke, Kirsten Wahlstrom, and Mukesh Mohania. Fragmentation of mul-

tidimensional databases. In Proceedings of 10th Australasian Database Conf, pages

153–164, 1999.

[44] Thomas P. Nadeau and Toby J. Teorey. Achieving scalability in OLAP materialized

view selection. In Proceedings of the 5th ACM International Workshop on Data

Warehousing and OLAP, DOLAP ’02, pages 28–34, New York, NY, USA, 2002.

ACM.

[45] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. Performance

evaluation and benchmarking. pages 237–252. Springer-Verlag, Berlin, Heidelberg,

2009.

[46] Patrick O’Neil and Dallan Quass. Improved query performance with variant indexes.

SIGMOD Rec., 26(2):38–49, June 1997.

[47] Patrick E. O’Neil. Model 204 architecture and performance. In Proceedings of

the 2nd International Workshop on High Performance Transaction Systems, pages

40–59, London, UK, UK, 1989. Springer-Verlag.

List of queries 118

[48] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2003.

[49] Franck Ravat and Olivier Teste. Personalization and OLAP databases. In Stanislaw

Kozielski and Robert Wrembel, editors, New Trends in Data Warehousing and Data

Analysis, volume 3 of Annals of Information Systems, pages 1–22. Springer US, 2009.

[50] Mirek Riedewald, Divyakant Agrawal, Amr El Abbadi, and Renato Pajarola. Space-

efficient data cubes for dynamic environments. In Proceedings of DaWaK Confer-

ence, volume 1874 of Lecture Notes in Computer Science, pages 24–33. Springer,

2000.

[51] Kenneth A. Ross and Divesh Srivastava. Fast computation of sparse datacubes. In

Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB

’97, pages 116–125, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers

Inc.

[52] Jayavel Shanmugasundaram, Usama Fayyad, and Paul S Bradley. Compressed data

cubes for OLAP aggregate query approximation on continuous dimensions. In Pro-

ceedings of the Fifth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 223–232. ACM, 1999.

[53] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized view se-

lection for multidimensional datasets. In Proceedings of the 24th International Con-

ference on Very Large Data Bases, VLDB ’98, pages 488–499, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc.

[54] Amit Shukla, Prasad Deshpande, Jeffrey F. Naughton, and Karthikeyan Ramasamy.

Storage estimation for multidimensional aggregates in the presence of hierarchies. In

Proceedings of the 22th International Conference on Very Large Data Bases, VLDB

’96, pages 522–531, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers

Inc.

[55] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis Kotidis.

Dwarf: Shrinking the petacube. In Proceedings of the 2002 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’02, pages 464–475, New

York, NY, USA, 2002. ACM.

[56] Yannis Sismanis and Nick Roussopoulos. The dwarf data cube eliminates the highy

dimensionality curse. Technical Report UMIACS-TR-2003-120, University of Mary-

land, December 2003.

List of queries 119

[57] Zohreh Asgharzadeh Talebi, Rada Chirkova, Yahya Fathi, and Matthias Stallmann.

Exact and inexact methods for selecting views and indexes for OLAP performance

improvement. In Proceedings of the 11th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT ’08, pages 311–322,

New York, NY, USA, 2008. ACM.

[58] TPC. Transaction processing performance council (1.1.0), April 2013.

http://www.tpc.org/tpcds/.

[59] Panos Vassiliadis and Timos Sellis. A survey of logical models for OLAP databases.

SIGMOD Rec., 28(4):64–69, December 1999.

[60] Ganesh Viswanathan and Markus Schneider. OLAP formulations for supporting

complex spatial objects in data warehouses. In Proceedings of the 13th International

Conference on Data Warehousing and Knowledge Discovery, DaWaK’11, pages 39–

50, Berlin, Heidelberg, 2011. Springer-Verlag.

[61] Wei Wang, Jianlin Feng, Hongjun Lu, and J.X. Yu. Condensed cube: an effective

approach to reducing data cube size. In Data Engineering, 2002. Proceedings. 18th

International Conference on, pages 155–165, 2002.

[62] Robert Wrembel and Christian Koncilia. Data Warehouses And OLAP: Concepts,

Architectures And Solutions. IRM Press, 2006.

[63] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices with

efficient compression. ACM Trans. Database Syst., 31(1):1–38, March 2006.

[64] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query pro-

cessing with optimized document ordering. In Proceedings of the 18th International

Conference on World Wide Web, WWW ’09, pages 401–410, New York, NY, USA,

2009. ACM.

[65] Dehui Zhang, Shaohua Tan, Dongqing Yang, Shiwei Tang, Xiuli Ma, and Lizheng

Jiang. Dynamic construction of user defined virtual cubes. In Proceedings of the 6th

International Conference on Next Generation Information Technologies and Sys-

tems, NGITS’06, pages 287–299, Berlin, Heidelberg, 2006. Springer-Verlag.

[66] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. An array-based

algorithm for simultaneous multidimensional aggregates. In Proceedings of the 1997

ACM SIGMOD International Conference on Management of Data, SIGMOD ’97,

pages 159–170, New York, NY, USA, 1997. ACM.

List of queries 120

[67] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Com-

put. Surv., 38(2), July 2006.

[68] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar RAM-CPU cache com-

pression. In Proceedings of the 22nd International Conference on Data Engineering,

ICDE ’06, pages 59–59, 2006.

