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Abstract

Medical imaging is a cornerstone of modern healthcare. The ability to acquire images from

inside a patient has revolutionised the way doctors diagnose and treat diseases, with almost

all clinical pipelines now involving imaging to some degree. The development of these imaging

methods has led to the field of medical image computing, where a multitude of tools and tech-

niques have been proposed to aid clinicians and researchers in interpreting and analysing these

images. One such family of techniques involves generating synthetic medical images. Image

synthesis techniques are wide and varied, ranging from basic phantoms, to disease atlases, to

high resolution photo-realistic subject-specific images. Their applications are similarly diverse:

for developing novel acquisition protocols, training and testing algorithms, visualising changes

in disease, predicting particular image types from others, and improving image quality and

resolution. This thesis examines the use of medical image synthesis with a particular focus

on applications in neurodegenerative diseases. A method for synthesising subject-specific non-

pathological images from pathological images is first proposed and used for the unsupervised

brain lesion segmentation. We next show how generative adversarial networks (GANs) can be

used to both analyse the structural changes seen in patients with Alzheimer’s disease, and to

add or remove these changes from patient images to produce a subject-specific prediction of

disease progression. Finally we investigate how GAN-derived synthetic data can be used to

increase the size of training datasets, and under what conditions this additional data can lead

to an improvement across a variety of segmentation tasks. Within this context we explore two

situations: where only a small amount of labelled data is available, and where a large amount

of unlabelled data is also available. We show that the proposed methods can lead to signifi-

cant improvements in segmentation results, especially when a small amount of labelled data is

available.
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Chapter 1

Introduction

Ever since the first images from inside the human body were taken using X-Rays in 1895,

the field of medical imaging has progressed at a considerable rate. While traditional X-Ray

imaging has stood the test of time and is still used today, it has been joined by ultrasound,

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomog-

raphy (PET), and Single Photon Emission Computed Tomography (SPECT), among others.

Each of these imaging modalities fills an important and often complementary niche in clinical

practice providing greater insight into the human body in both health and disease than would

have ever been possible without them.

The desire for detailed images of the brain has driven much of this progress, leading to the devel-

opment of the field of neuroimaging. The modern-day clinician now has an arsenal of techniques

at their disposal allowing for highly detailed images of individual brain structures, as well as

precise measures of brain activity and processes such as metabolism and the accumulation of

proteins.

As imaging equipment becomes more and more prevalent, so too does the demand for com-

putational solutions to process and analyse the complex images being produced increase. As

such, the field of medical image computing has grown in parallel with that of medical imaging,

and now has many journals and conferences dedicated to its advancement. The overriding goal

is to develop computing techniques which can leverage the acquired imaging data to extract

8
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the maximum amount of useful information to improve patient outcomes. In pursuance of this,

Machine Learning (ML) algorithms have become ubiquitous with applications all across the

medical imaging spectrum: from identifying regions of interest (segmentation), to categorising

whole images (classification), to deriving characteristics from images (feature extraction), to

aligning multiple images (registration), to creating images from the raw data provided by the

scanner (reconstruction).

Though exceptions exist, the role of ML algorithms within these applications tend to remain

the same: to statistically analyse a large amount of data (to train), before applying this learning

to individual cases (to test or to deploy).

The impact of medical image computing cannot be underestimated. Computers have long

proven themselves adept at automating tasks which humans find laborious or even prohibitively

time-consuming. Medical image segmentation is one such task which has been massively aided

through the development of automated segmentation algorithms. Traditionally, human experts

would have been required to manually annotate images to, for example, outline the location of a

particular organ to enable further analysis of its shape or size. For many such tasks, automated

algorithms have been shown to perform as well as humans while taking a fraction of the time.

While the obsolescence of clinicians is unlikely, there will always be a role for computing in

aiding and supporting the clinical workflow, allowing for better patient outcomes with fewer

resources.

1.1 Image synthesis

One branch of machine learning is that of image synthesis. Image synthesis is the process

of generating an image with a specific set of characteristics, usually learned by analysing an

exemplar training dataset of images containing such characteristics. After this learning process,

a synthetic image can be generated either from scratch or by changing the appearance of a source

image.

Both of these applications are particularly useful in medical imaging. Medical images are
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expensive and time-consuming to acquire. Being able to generate synthetic images with the

desired set of characteristics from scratch is a cheap and powerful way of creating new data for

multiple applications. Another feature almost unique to medical images is that the same region

can be imaged in many different ways using different modalities or scanner settings. It is often

the case that images from multiple modalities are required to get a complete understanding of

a patient’s condition. The ability to transform an image produced through one modality to

one with the appearance of a different modality, therefore, has many applications, including

roles in image registration, reconstruction and quality enhancement, and in clinical tasks such

as segmentation and abnormality detection.

1.2 Contribution

In this thesis, we investigate several uses of image synthesis in medical imaging, with a focus on

applications in neurodegenerative diseases. This work is divided into two background and five

contribution chapters. Chapters 4, 5, and 6, 7, 8, are written so as to be able to be read largely

independently by those familiar with the area, with occasional references to ideas discussed

in earlier chapters. Detailed and relevant clinical and technical concepts are presented in

Chapters 2 and 3 respectively, with relevant sections referred to throughout the thesis to provide

further background detail. The main focus of these early chapters is to put the later work in

context within both the health-care and computer vision domains and to provide a primer for

those reading this thesis who are not familiar with the area. For the interested reader, we also

share some early work towards extending Generative Adversarial Networks into 3D, which is

discussed, along with other avenues for future work, in Chapter 9 and detailed in Appendix C.

The following pages contain a brief summary of each chapter and their contributions.
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Brain Lesion Segmentation through Image Synthesis and Outlier De-

tection

We first propose a novel image synthesis algorithm which can be used to transform images from

one modality into another. We use this to identify pathology visible on Magnetic Resonance

(MR) images by comparing real images to pathology-free synthetic images which have been

produced from an image type in which the pathology is not visible. We find that the pro-

posed method allows for unsupervised anomaly detection of white matter hyperintensities on

MRI, with segmentation accuracies significantly higher than that achieved using three popular

methods.

Published work

The work in this chapter has been published in the following articles:

Bowles, C., Qin, C., Ledig, C., Guerrero, R., Gunn, R., Hammers, A., Sakka, E., Dickie,

D.A., Valds Hernndez, M., Royle, N., Wardlaw, J., Rhodius-Meester, H., Tijms, B., Lemstra,

A.W., van der Flier, W., Barkhof, F., Scheltens, P., Rueckert, D., 2016, October. Pseudo-

healthy image synthesis for white matter lesion segmentation. In International Workshop on

Simulation and Synthesis in Medical Imaging (pp. 87-96). Springer, Cham.

Bowles, C., Qin, C., Guerrero, R., Gunn, R., Hammers, A., Dickie, D.A., Hernndez, M.V.,

Wardlaw, J. and Rueckert, D., 2017. Brain lesion segmentation through image synthesis and

outlier detection. NeuroImage: Clinical, 16, pp.643-658.
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Visual summary

Figure 1.1: Summary of figures from Chapter 4 (Brain Lesion Segmentation through Image
Synthesis and Outlier Detection). Left, overview of segmentation procedure. Top right, vi-
sualisation of proposed kernel regression based synthesis method. Bottom right, example of
pseudo-healthy image synthesis. Please see Chapter 4 for full details.
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GAN Augmentation: Augmenting Training Data using Generative

Adversarial Networks

We next investigate whether synthetic labelled training data derived from Generative Adver-

sarial Networks (GANs) can be used to expand existing manually labelled training datasets for

segmentation algorithms. We evaluate the process across two datasets from different modalities

(CT and MRI), using two segmentation algorithms, and under a variety of conditions where

real training data is limited. We also compare performance with and without a traditional aug-

mentation technique and perform a qualitative evaluation of the synthetic data. We find that

across all experiments, GAN augmentation can lead to a significant improvement in segmen-

tation accuracy where the amount of available data is severely limited, with the improvement

diminishing as more real labelled data becomes available.

Published work

This work has been made available as a pre-print at:

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D.A.,

Hernndez, M.V., Wardlaw, J. and Rueckert, D., 2018. GAN Augmentation: Augmenting

Training Data using Generative Adversarial Networks. arXiv preprint arXiv:1810.10863.
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Visual summary

Figure 1.2: Summary of figures from Chapter 5 (GAN Augmentation: Augmenting Training
Data using Generative Adversarial Networks). Top, the effects of GAN augmentation where
an increasing amount of real data are available. Bottom left, results of different augmentation
approaches. Bottom right, a sample of mixed real and synthetic images. Please see Chapter 5
for full details.
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GANsfer Learning: Combining labelled and unlabelled data for GAN

based data augmentation

We build on the previous chapter by extending the synthetic data generation procedure to in-

corporate additional unlabelled data. We show that this enables the GAN to produce labelled

images with greater anatomical variance. We use this to achieve both higher segmentation

accuracies and improved Alzheimer’s disease stratification scores from MR images by incor-

porating unlabelled elderly/pathological patient images into a dataset of predominantly young

and healthy patient images.

Published work

The work in this Chapter was submitted for publication in IEEE Transactions on Medical

Imaging and is in the process of revision. It has been made available as a pre-print at:

Bowles, C., Gunn, R., Hammers, A. and Rueckert, D., 2018. GANsfer Learning: Combining

labelled and unlabelled data for GAN based data augmentation. arXiv preprint arXiv:1811.10669.
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Visual summary

Figure 1.3: Summary of figures from Chapter 6 (GANsfer Learning: Combining labelled and
unlabelled data for GAN based data augmentation). Left, the proposed three-stage method
for combining labelled and unlabelled data in GAN training. Top right, a visualisation of
the distribution of generated images after each phase of training. Bottom right, a sample of
generated images after each phase. Please see Chapter 6 for full details.
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Modelling the Progression of Alzheimer’s Disease in MRI Using Gen-

erative Adversarial Networks - Parts A and B

Next, we develop a method which uses a class of deep neural networks called GANs to perform

semantic editing of MR images. In Part A of this Chapter, we show how this allows for particular

image characteristics, such as those associated with a disease, to be added or removed from

real images. We demonstrate the method on a dataset of Alzheimer’s Disease (AD) patients,

showing how the common features of the disease can be added or removed from real images.

In Part B we implement and extend the approach using a recently proposed high-resolution

GAN formulation allowing for the procedure to be performed on entire 1mm isotropic slices,

and demonstrate how the proposed method can also be used to discover associations between

clinical variables and imaging data.

Published work

The work in part A of this Chapter has been published in the following article:

Bowles, C., Gunn, R., Hammers, A. and Rueckert, D., 2018, March. Modelling the progression

of Alzheimer’s disease in MRI using generative adversarial networks. In Medical Imaging 2018:

Image Processing (Vol. 10574, p. 105741K). International Society for Optics and Photonics.
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Visual summary

Figure 1.4: Summary of figures from Chapters 7 and 8 (Modelling the Progression of Alzheimer’s
Disease in MRI Using Generative Adversarial Networks - Parts A and B). Top, the effects of
adding the characteristic features of AD to two regions of the brain through latent space image
arithmetic. Bottom, the difference in predicted year-to-year atrophy levels in AD patients with
and without the APOE4 allele, found through forming a model in latent space. Please see
Chapters 7 and 8 for full details.
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Future Work

Finally, we also share some ideas on how to effectively extend GANs into 3D, including some

early results, as well as suggestions for other directions for future work in this fascinating field.

We propose an approach to generating large or irregular image data by combining the output

of multiple GANs in such a way as to enforce local and global coherency, and demonstrate this

by creating 2mm isotropic MR volumes and high-resolution cortical surface data.



Chapter 2

Clinical Background

This chapter aims to place the content of this thesis within a clinical context. While the

contributions of this thesis are primarily technical, it is important to keep in mind the clinical

environment from which the proposed methods have been developed. It also provides a primer

for readers who come from a more technical background, or perhaps from non-neuroimaging

medical domains. This chapter starts with a basic overview of neuroanatomy, before progressing

into the different ways this anatomy can be imaged. We then turn our attention to dementia,

the main pathology explored in this thesis, from a purely clinical viewpoint: first describing the

various pathological pathways, before looking at how they are usually diagnosed, the role of

imaging within this process and the ethical considerations posed. We next look at small vessel

disease and stroke, the major causes of vascular dementia, in more detail. We then review the

Alzheimers Disease Neuroimaging Initiative (ADNI) and PredictND, two studies which have

contributed to the growth of this field. Finally, we discuss some of the datasets which provide

the data used in this thesis.

2.1 Neuroanatomy

The human brain is made up of two halves (hemispheres) and can be divided into three broad

tissue types: White Matter (WM), Grey Matter (GM) and Cerebrospinal Fluid (CSF). GM can

20
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be further divided into deep GM and cortical GM. As the name suggests, cortical GM makes

up the cortex, the brain’s outer layer with its characteristic wrinkled appearance containing

ridges (gyri) and troughs (sulci). The deep GM comprises a number of structures which reside

towards the centre of the brain.

GM structures are connected together by elongated nerve cells processes (axons). These con-

nections form the WM and allow for communication between structures. Individual axons in

the WM are surrounded by a tube of a fatty substance called myelin. This myelin sheath has

the dual purpose of insulating the axon from those nearby and speeding up the transmission of

signals along it.

Towards the centre of each hemisphere lie the lateral ventricles. These cavities contain and

produce CSF, a fluid with several functions including the delivery and removal of nutrients

and waste, suspension and protection of the brain from external forces, and insulation from

pathogens. Beneath the lateral ventricles lie the third and fourth ventricles, which funnel the

CSF towards the sub-arachnoid space, the area surrounding the cortex.

The brain is mostly symmetrical in structure, though not necessarily in function. While many

pathologies affect both sides equally (bilateral), many others affect one half more than the other

(unilateral). An overview of this anatomy can be seen in Figure 2.1.

2.2 Neuroimaging

Being able to acquire images from inside patients’ brains is invaluable for both disease diagnosis

and monitoring. Due to the multitude of structures and processes within the brain, there

has emerged a host of different modalities for this acquisition. Magnetic Resonance Imaging

(MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single Photon

Emission Computed Tomography (SPECT), among others, all have an important role to play

in understanding precisely how a patient’s brain in functioning.

Such methods can be divided into two types - quantitative and qualitative. In quantitative
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Figure 2.1: Overview of neuroanatomy as seen on a T1-weighted magnetic resonance image.
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imaging, the aim is to precisely measure the value of a property of the tissue being imaged.

For example, CT directly measures the density of structures, while PET and SPECT aim to

measure the concentration of radiation-emitting molecules in the tissue. In qualitative imaging,

the images produced are not direct measures of a particular tissue property, but are, instead,

measures derived from the interaction of a number of different properties. These approaches

can be weighted towards a particular property, such is the case in a number of different MRI

based methods, but they do not directly measure that property. While the majority of MRI

based methods are qualitative, some, such as Diffusion Weighted Imaging (DWI) (described

later), are quantitative. In addition, quantitative measures such as structure or blood volume

can be extracted from qualitative images.

2.2.1 Magnetic Resonance Imaging

MRI is one of the most flexible tools in the modern-day clinician’s repertoire. The technique

allows for myriad different types of 3-dimensional (3D) images to be produced from a patient,

providing information ranging from the exact locations of neural activity during different tasks,

to the sizes, shapes and tissue make-up of a patient’s brain structures. It has the advantage

over PET, SPECT and CT of not involving any ionising radiation, and therefore exposes the

patient to very little risk under regular usage.

At its heart, MRI measures a combination of two properties of the tissue it is imaging, T1 and

T2. The exact combination of these two properties that is measured depends on the type of

scan being performed, which is controlled by a set of Radio-Frequency (RF) pulses. The order

and time between these pulses is known as an Magnetic Resonance (MR) sequence or protocol.

MRI protocols can be divided into two types, 2-dimensional (2D) and 3D. In 2D acquisitions,

images are acquired as a series of 2D slices which are usually concatenated together to form

a 3D volume. On the other hand, 3D acquisitions simultaneously acquire the entire 3D image

volume. While 3D images can usually be used with few restrictions, care must be taken when

working with images which have been acquired in 2D. Firstly, it is usual for 2D acquisitions

do not have an isotropic resolution, and often low resolution in the through image plane.
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Moreover, it is also common for such images to be acquired with gaps between the slices, with

some regions of the image not measured. It is also important to consider that, in such cases,

the value associated with a voxel is a weighted integral of the signal coming from that location.

Any changes in signal strength occurring within the same voxel are therefore distributed over

the entire voxel, which means small variations in the signal can be lost. The advantage of 2D

acquisitions is that they are significantly faster, and are often necessary for protocols with long

acquisition times. However, care must be taken when working with such images to be aware of

their limitations.

The most used sequences are those which produce images which are more strongly weighted

towards the T1 property. These T1-weighted images provide good contrast between tissue types

and are mainly used to view a patient’s anatomy.

T2-weighted images, on the other hand, are particularly sensitive to water, which appears bright

on images acquired under a T2 sequence. This makes T2 images good at identifying lesions,

which often have high water content. However, the brain has a lot of naturally occurring

water in CSF, the signal from which can be confused with that coming from lesions. Fluid-

attenuated Inversion Recovery (FLAIR)([Hajnal et al., 1992]) images use a modified sequence

which cancels out this confounding signal from CSF, providing much greater specificity for

lesions. This, however, comes at a cost of resolution, meaning that, while T1 images are often

acquired at resolutions of 1mm3, FLAIR images are more commonly acquired in thick (eg.

5mm) slices.

Other sequences, such as those used for DWI and Functional Magnetic Resonance Imaging

(fMRI) are sensitive to the movement of molecules. In the case of DWI this allows for local

diffusion to be measured, while in fMRI, the destination of increased blood flow can be identified

indicating areas of increased brain activity. Contrast MR is also used, where the patient

is injected by or consumes a contrast agent with specific MR properties. The location of this

contrast agent can then be imaged. One application of this is in the brain is Magnetic Resonance

Angiography (MRA) where gadolinium is often used as a contrast agent which affects the T1

properties of surrounding blood. This allows for detailed maps of the arterial structure in a
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Figure 2.2: Example slices of a typical unprocessed T1-weighted MR image taken from the
ADNI dataset (see Section 2.5.1). Left to right: axial, coronal and sagittal views.

patient’s brain to be produced. This is particularly useful in assessing stroke risk.

One of the drawbacks of MRI is its potential to produce artefacts in the acquired images.

These are artificial effects that appear as a result of the failed acquisition or reconstruction of

an MR image. These can be caused by a number of factors including: patient movement during

scanning, the presence of metal objects such as fillings, the presence of air pockets such as in

the sinuses, and attempting to reconstruct an image from too little information.

2.2.2 Computed Tomography

CT is another common method to acquire brain images. Like MR, it can produce 3D images

covering the whole brain and can provide excellent contrast between different tissue types.

CT is less flexible than MR, only providing one method for image acquisition. It is, however,

cheaper and the equipment is more widely available.

CT acquisition involves transmitting X-rays through the patient onto a detector. Higher density

tissues will absorb more of the X-rays, with fewer, therefore, reaching the detector. By acquiring

these images from multiple directions around the Region of Interest (ROI), a detailed 3D image

can be built describing the absolute densities of the tissue in that region.

CT is primarily a way to image anatomy and is particularly sensitive to regions with extreme

densities such as bone and air. This makes it an effective way to image, for example, stroke
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Figure 2.3: Example slices of a typical CT image. Intensities scaled to show brain tissue.

lesions which tend to have a different density to surrounding tissue. Contrast CT is also

common. Similar to contrast MR, contrast CT involves using an extrinsic contrast agent to

affect the properties of the tissue being imaged. CT angiography is therefore also an option for

imaging blood vessels in the head, often using an iodine-based contrast agent.

2.2.3 Positron Emission Tomography

PET differs from the two methods already discussed in that it does not directly image anatomy.

Instead, PET purely images the location of an injected radiotracer. This makes it useful for

imaging the function of tissue. To acquire a PET image, the patient is first injected with a

positron-emitting radioactive tracer which has been designed to be transported to a particular

target of interest, eg. receptor protein. While there, the tracer will decay, releasing a positron

which will travel a short distance before encountering an election and mutually annihilating.

This process releases a pair of gamma waves in opposite directions which will pass through

tissue and be detected using a ring of detectors outside the body. Exactly which detectors are

activated defines a line along which the annihilation must have occurred. By detecting many

such pairs, the areas in which the tracer has congregated can be localised.

One of the most common uses of PET is to locate cancer, and in particular, new areas to which

cancer has spread. By using a tracer with similar properties to glucose (fluorodeoxyglucose

(FDG)), an image can be acquired which indicates areas of increased metabolism - an indicator

of cancer growth. In the brain, FDG accumulates in areas of neuronal activity (Figure 2.4),



2.3. Dementia 27

Figure 2.4: Example slices of a typical PET image.

allowing the reduced brain activity of dementia patients to be imaged.

2.2.4 Single Photon Emission Computed Tomography

SPECT is closely related to PET. It is also a functional imaging method which tracks the

location of a tracer within the body. Unlike PET tracers which emit a positron, SPECT

tracers decay directly into a gamma ray which is detected from outside the body. Detecting

just a single gamma ray, as opposed to the co-incident rays in PET, means SPECT images have

a lower spatial resolution than PET images. However, the radioisotopes used in SPECT tend

to have a longer half-life and are therefore cheaper to produce and do not require specialist

on-site equipment.

2.3 Dementia

Dementia is a term used to describe a number of diseases and conditions which result in

neurological damage. These diseases lead to a progressive deterioration of cognitive functions

until the sufferer can no longer function normally and may require round-the-clock care. In this

section, we examine the global impact of dementia, describe some of the diseases which cause

dementia and how they are diagnosed, and discuss some of the social and ethical questions

which arise in dementia care and research. Unless otherwise referenced, the information in
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this section comes from the Many Faces of Dementia course available online1 led by Dr Tim

Shakespeare, Alzheimers Research UK Fellow at the Dementia Research Centre, UCL Institute

of Neurology.

2.3.1 Global Impact

Dementia primarily affects the elderly with the incidence rising exponentially with age. We

live in a world with a rapidly ageing population, and as such, dementia is fast becoming one

of the biggest and most expensive threats to global health. The estimated number of dementia

sufferers worldwide is expected to rise from 46.8 million in 2015 to 74.7 million by 2030, with a

corresponding increase in global spending from $818bn (1.09% GDP) to over $2tn [Prince, 2015].

There is currently no cure for dementia with most treatments only targeting the symptoms. The

clear economic and human costs of this rapidly increasing incidence prompted the G8 Dementia

Summit in 2013 to initiate a global effort to tackle dementia with the primary aim of identifying

a cure or disease-modifying therapy by 2025 [Global Action Against Dementia, 2013].

2.3.2 Overview of types

There are four main diseases which are associated with dementia: Alzheimer’s Disease (AD),

Frontotemporal Dementia (FTD), Dementia with Lewy bodies (DLB) and Vascular Dementia

(VD). The following is a summary of each.

Alzheimer’s Disease

The most common cause of dementia is AD, accounting for 63% of dementia cases in the UK.

The early symptoms of AD include personality changes, short term memory problems and a

general struggle with everyday tasks such as handling money and navigation. As the disease

progresses, these problems become worse. Patients develop problems recognising faces, become

1www.futurelearn.com/courses/faces-of-dementia/1
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increasingly unable to carry out simple tasks such as getting dressed and short term memory

problems get worse leading to the inability to learn new information. Depending on the parts

of the brain most affected, patients may also experience hallucinations or delusions. Towards

the end of the disease’s progression, patients will be unable to function with any autonomy

and require help with even the most basic tasks, eventually becoming unable to communicate

entirely. Death is often caused by infection as opposed to the disease itself. For example,

difficulty swallowing could lead to pneumonia, whilst incontinence could lead to urinary tract

infections and urosepsis.

The pathological pathway of AD is characterised by the build-up of protein deposits in the brain.

In particular, amyloid protein amyloid-β 1-42 (Aβ42) begins to aggregate to form insoluble

plaques, whilst incorrectly folded tau proteins create insoluble tangles. These protein build-ups

eventually lead to cell death in the surrounding neurons.

Patients suffering from AD can be split into either sporadic or inherited cases. The latter,

known as Familial Alzheimer’s Disease (FAD), is rare, accounting for less than 1% of AD

cases [Bateman et al., 2011], and is caused by inheriting a faulty copy of genes APP, PSEN1

or PSEN2. These genes are autosomal dominant, meaning that if a parent has one there is a

50% chance of it being passed on to an offspring who will then develop the disease. If inherited,

the gene will trigger the pathological pathway described above and there is an almost certain

chance that the child will develop AD later in life. Compared to patients with sporadic AD,

those with FAD tend to develop symptoms earlier (aged 30-50).

Sporadic AD has no single discernible cause. A number of environmental factors such as diet

and lifestyle, as well as genetics, play a role (see Table 2.1).

A variation of sporadic AD is Posterior Cortical Atrophy (PCA) where the back of the cortex,

which is responsible for processing visual information, is primarily affected by the build-up of

plaques and tangles. Patients with PCA will experience problems with their vision, even if their

eyesight is perfect, and may, therefore, struggle with visual tasks such as driving or reading.

Other early symptoms include difficulty with spelling and calculation, however, memory tends

to be well preserved. As the disease progresses, these visual symptoms become worse until
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Table 2.1: A summary of the different genes known to have an effect on a patient’s risk of
AD [Farrer, 1997, Guerreiro et al., 2013, Genin et al., 2011, Kamboh, 1995].

Genes Frequency in population Increased risk of AD

MS4a, CR1, PICALM, BIN1,
CLU, CD2AP, CD33, EPHA1,
ABCA 7

>50% have at least 1 variant 1-20%

1 copy of APOE4 25% 300%

TREM2 0.3% 300%

2 copies of APOE4 2% 800%

the patient becomes effectively blind. During the late stage of the disease, the patient may

begin to lose other senses such as touch and eventually regress to the symptoms of late-stage

AD. Patients with PCA usually develop symptoms at a younger age than in sporadic AD with

current estimates of the prevalence of PCA suggesting that approximately 5% of patients who

develop AD before the age of 65 have PCA.

Frontotemporal Dementia

FTD is the name given to a set of diseases which affect the frontal and temporal lobes of the

brain. Accounting for 2% of dementia cases in the UK, FTD is relatively uncommon. As in

AD, damage is caused to these areas through the build-up of proteins. However, in the case of

FTD, these proteins are tau and ubiquitin. Memory is generally well preserved compared to

AD, with symptoms related to behaviour and language being common.

The most common form of FTD is Behavioural Variant Frontotemporal Dementia (bvFTD).

In bvFTD, the patient experiences changes in personality and behaviour. They may display

compulsive actions and develop inappropriate social behaviour along with a loss of empathy.

Changes in motivation and appetite are also common, especially overindulgence in sweet food.

As with all forms of dementia, bvFTD is incurable. However, as most of the symptoms are

behavioural, many treatment options do not involve medication, instead focusing on identifying
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and avoiding behavioural triggers.

Semantic Dementia (SD), Progressive Non-Fluent Aphasia (PNFA) and Logopenic Aphasia

(LPA) are three other forms of FTD. In all these conditions patients struggle with language,

often being unable to find the right words to say. Patients with SD find problems with under-

standing the meaning of words and facts. PNFA primarily causes difficulty with speech, with

patients often speaking slowly. Unlike in SD, the patient will still understand the meaning of

the words but have difficulty in articulating them due to an inability to control the muscles in

their mouth and face or to use the correct grammar. Similar to PNFA, patients with LPA will

often pause during speech and struggle to repeat a sentence they have just heard. Whilst LPA

is often classified under the header of FTD due to the parts of the brain which are affected, the

pathological causes often more closely resemble AD, with the build-up of amyloid plaques and

tau tangles. The type of FTD a patient may suffer from is heavily dependent on the part of the

brain which is affected, with patients with language problems usually showing a greater level

of atrophy on the left side of the brain than the right. In about 10% of FTD cases, the patient

may also suffer from a Motor-neuron Disease (MND) such as Amyotrophic Lateral Sclerosis, or

a movement disorder related to Parkinsons disease such as Corticobasal Syndrome or Progres-

sive Supranuclear Palsy, and certain FTD co-morbidity combinations are more common than

others. As with other dementias, death is usually caused by infection rather than the disease

itself. Patients with co-morbid MND can die relatively soon, within 2-3 years, whereas some

FTD patients may live 20 years or more.

FTD can be associated with a genetic cause, with three common autosomal dominant genes

linked to the development of roughly a third of FTD cases. These genes are Microtubule-

Associated Protein Tau, Progranulin, and C9orf72. Again, there is no direct relationship

between gene and type of FTD developed, however certain genes are more likely to lead to

particular combinations of FTD type and co-morbid disorders.
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Dementia with Lewy Bodies

DLB accounts for 4% of dementia cases in the UK. Again, damage is caused by the aggregation

of protein in the brain. In DLB, this protein is alpha-synuclein which aggregates into small

structures, Lewy Bodies, inside brain cells. Patients with DLB often suffer from hallucinations

and delusions, and it is strongly associated with Parkinson-like symptoms affecting movement.

Whilst it’s common for the symptoms of all dementia types to fluctuate over a few days, in

DLB these fluctuations can be much more rapid, sometimes over a duration of minutes.

The relationship between DLB and Parkinson’s disease is very close. The order in which

symptoms develop dictates whether a patient is given a diagnosis of DLB or a separate diagnosis

of Parkinson’s Disease with Dementia (PDD).

Vascular Dementia

Accounting for 17% of dementia cases in the UK, VD is the second most common cause of

dementia after AD. Unlike the dementias described so far, VD is not associated with abnormal

protein build-up in the brain. Instead, damage is caused to brain cells by a reduction in blood

supply as a result of damaged blood vessels [Kurz, 2001]. There are two major causes of damage.

The first is stroke, where the blood supply to part of the brain is interrupted, either as a result

of a blockage (ischaemic stroke) or a bleed (haemorrhagic stroke), both of which can cause

permanent damage. The second cause is Small Vessel Disease (SVD) in which the walls of the

blood vessels in the brain become harder and thicker, thereby restricting blood supply. The

symptoms of VD are largely dependent on the size, location and number of strokes, or degree

of SVD. Risk factors for both stroke and SVD include high cholesterol, high blood pressure,

diabetes and smoking.

Mixed Dementia

Up to 10% of dementia cases in the UK can be attributed to a mixture of two separate patholo-

gies. The most common of these combinations being AD and VD. However, due to completely
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unrelated pathological pathways, VD can be co-morbid with any other dementia type.

2.3.3 Clinical diagnosis of dementia

It is important for researchers, particularly those without a clinical background, to understand

the clinical protocols used when diagnosing patients with dementia. This allows for genuine

needs to be identified and solutions proposed.

The biggest risk factor for almost all types of dementia is age, with the vast majority of cases

occurring in the elderly. All cases of dementia are diagnosed based on patient history and a key

symptom is a change in cognitive function. However, this can occur slowly, often imperceptibly,

and with the patient unaware of any changes. Referral to a specialised dementia clinic is often

required as it can be difficult to identify these subtle changes during short GP appointments.

It is vitally important for the diagnosing clinician to speak to both the patient and their

family to gain an impression of the patient’s changes over time. As well as patient history,

a number of biomarkers exist for each type of dementia. Biomarkers are measurements of a

pathological process which can be extracted using techniques such as imaging or biopsy. These

measurements can be compared to predefined benchmarks to provide evidence for or against a

particular diagnosis.

Alzheimer’s Disease

According to the clinical guidelines current during the work on this thesis [McKhann et al., 2011],

a diagnosis of AD is initially made through the patient’s history. Information such as the time

and duration of symptom onset and the types of cognitive deficits exhibited will be recorded

and used to form a diagnosis. Providing there is no evidence for any other type of dementia, a

diagnosis of probable AD may then be provided. An increased level of certainty in the diagnosis

can be provided through a documented record of cognitive decline through formal examinations

or by genetic testing (in the case of FAD). Genetic testing is usually only carried out if there

is a strong history of early-onset AD in the patient’s family. Further levels of confidence in the
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Figure 2.5: Theorised changes in key biomarkers through the progression of AD. Figure
from [Aisen et al., 2010], adapted from [Jack et al., 2010], used with permission.

diagnosis can then be added through the collection of various biomarkers. These can include

the collection of CSF to examine the levels of Aβ42 and Tau proteins, the acquisition of struc-

tural MRI images to determine a level of tissue atrophy and the acquisition of PET images to

examine the levels of amyloid build-up or glucose metabolism. Figure 2.5 shows how a number

of biomarkers change from normal to abnormal during the progression of AD. The earlier the

biomarker changes from normal to abnormal, the earlier it can be used to identify a potential

case of AD. However, since cognitive function is the last to change, the patient is often not

referred to the clinic until the later stages, even when tests exist to potentially identify the

developing disease earlier.
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Frontotemporal Dementia

As a result of the many diseases which fall under the umbrella of FTD, diagnosis can be

difficult. As with AD, the first step is to establish a full patient history both from the patient

and their family or friends. Gaining information from the people close to the patient is especially

important in bvFTD as the patient may believe that they are behaving in a normal way, even

if they are not. Appendix A.1 shows a list of behavioural features of bvFTD, along with

some examples. Diagnosing clinicians will look for these signs to identify the patient as having

bvFTD, as opposed to other variants of FTD or other dementias. For the differential diagnosis

of the other FTD variants, a flow chart may be used, such as the one seen in Appendix A.1. A

key step in this chart which should be noted is that brain imaging is carried out, which ensures

patients suffering from non-degenerative pathologies, such as a tumour, are correctly identified

and not misdiagnosed [Warren et al., 2013].

Dementia with Lewy Bodies

Due to the similarity of symptoms, differentiating between DLB and PDD is difficult. In

practice, the diagnosis of PDD is given only in cases where the Parkinson’s symptoms, primarily

motor symptoms, appeared over a year before the onset of cognitive changes. Otherwise, a

diagnosis of DLB is given.

Vascular Dementia

One of the most commonly used diagnostic guidelines for VD is the NINDS-AIREN crite-

ria [Román et al., 1993]. These very specific guidelines aim to establish that the patient has

a sufficient level of cognitive impairment, evidence of cerebrovascular disease and that there

exists a temporal relationship between the two. In other words, cognitive decline began after a

cerebrovascular event or that there has been an abrupt or stepwise decline.
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Figure 2.6: Example slices from a patient showing the typical features of AD. Enlarged ven-
tricles (yellow), cortical atrophy (red) and hippocampal atrophy (blue).

Mixed Dementia

Mixed dementia cases can be challenging to diagnose, as the patient will often exhibit symptoms

from both diseases. Usually, if an MRI scan fulfils the imaging components of the NINDS-

AIREN criteria for probable VD and the patient also shows sufficient evidence for another type

of dementia, then a diagnosis of mixed dementia will be given. If there is some evidence of VD,

but not enough to satisfy the NINDS-AIREN criteria, then a diagnosis could be, in the case of

AD co-morbidity, “Alzheimer’s disease with a vascular component”, or similar.

2.3.4 Role of imaging

As discussed previously, a common effect of dementia is the shrinking of the patient’s brain.

The exact location and degree of this varies between the conditions and can be an important

distinguishing factor in their differential diagnosis. Whilst almost universally present, this

shrinkage can be subtle, especially in the early stages of the disease when forming a diagnosis

is the most challenging. Highly detailed images are required to identify these small changes

which are readily provided by T1-weighted MR images (see Figure 2.6).

Vascular dementia is less commonly associated with significant tissue loss and as such is un-

likely to be identified by measuring structural volumes. However, SVD and stroke, the com-

mon precursors to VD, can be identified and quantified using MRI. Whilst sometimes visible
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on T1-weighted MR images, these lesions are much more prominent on FLAIR images. The

appearance and classification of these lesions are discussed further in Section 2.4.

2.3.5 Ethical considerations in dementia diagnosis

Genetic testing, as often used to confirm cases of FAD and other inherited dementias, always

poses challenging ethical questions. In the case of autosomal dominantly inherited genes, it

is important to consider whether the patient wants to undergo genetic screening, as being a

carrier almost guarantees the development of dementia in later life. Not only does the discovery

of one of these genes impact the patient, but it also impacts their family as 50% of the patient’s

siblings, and one of their parents, will also be highly likely to develop dementia. Genetic

counselling is often made available in cases such as these to give the opportunity for the patient

and their family to make an informed decision before undergoing any genetic testing.

Whilst there are a number of different diseases which cause dementia, many symptoms are

shared across each of them. These include memory loss, planning and organisational difficulties

and personality changes. As a result, many sufferers require a great deal of care and support,

often from family members, the degree and scope of which will vary between cases depending

on the underlying disease and its progression. This can be particularly difficult for the carer as

the patient can often become unrecognisable from the person they were before.

Not only is there a social imperative that carers are looked after as well as the patient, there

are also economic benefits to considering how carers are impacted by clinical decisions made for

the patient. Of the $818bn global cost of dementia, $327bn (40%) is attributed to the informal

care of dementia patients by family carers [Prince, 2015]. This includes not only an estimate

of lost income due to lost time working but also the cost of medical conditions resulting from

the additional stress and anxiety being a carer can cause.

From a research point of view, it is important to consider what impact different fields of research

may have on the carer as well as the patient. This leads to an interesting debate. Should time

and money be spent on an accurate diagnosis of dementia when it does little to change the
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prognosis of patients, and the resources could instead be spent improving the lives of people

with dementia in other ways? This is an important question to consider, though its discussion

is beyond the scope of this work.

2.4 Cerebral Small Vessel Disease and Stroke

Cerebral small vessel disease is common in the elderly with severe cases leading to cognitive

impairment in the form of VD. While the cause of SVD is not always clear, risk factors in-

clude age, smoking, and elevated blood pressure [van Dijk et al., 2008]. SVD can manifest

in a number of ways [Wardlaw et al., 2013], usually as a result of intrinsic brain small vessel

abnormalities leading to an inadequate blood supply (ischaemia). Brain tissue damaged as a

result of ischaemia presents as bright (hyperintense) on T2-weighted MR images (eg FLAIR)

and often dark (hypointense) on T1-weighted images, see Figure 2.7. This is because ischaemia,

and associated demyelination, increases local water content in the brain. This causes a lower T1

signal, and higher T2 signal. This is SVD can also lead to lacunes (fluid filled cavities <20mm

diameter with an MR appearance similar to CSF, sometimes with a T2 hyperintense ring); en-

larged perivascular spaces (extra-cerebral fluid around vessels, < 2 mm diameter, similar MR

appearance to small lacunes without T2 hyperintense ring); and cerebral microbleeds (leakage of

blood cells into perivascular tissue, visible as <10mm diameter hypointensity on T2∗-weighted

and susceptibility weighted MR sequences) [Wardlaw et al., 2013].

Most attempts to automatically quantify SVD [Caligiuri et al., 2015] have focused on the ac-

curate segmentation of hyperintense lesions within the WM on FLAIR images. FLAIR is the

most useful MR sequence for the detection of these lesions as it is a T2-weighted sequence in

which signals from confounding sources of hyperintensity, primarily CSF, are cancelled out.

There has been comparatively little work on identifying the other manifestations of SVD such

as lacunes [Ghafoorian et al., 2017], perivascular spaces [Del C. Valdes Hernandez et al., 2013]

and microbleeds [Kuijf et al., 2012].
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Figure 2.7: T1 (left) and FLAIR (right) image of a subject with periventricular (A) and deep
(B) white matter lesions. Note that pathology is more visible on the FLAIR image than it is
on the T1 image.

2.4.1 A note on terminology

The terminology and definitions surrounding SVD and associated imaging features can vary

significantly between studies [Wardlaw et al., 2013]. To avoid confusion, this section defines the

following relevant terms explicitly in line with those given by Wardlaw et al. with examples of

each shown in Figure 2.8. The term White Matter Hyperintensity of Presumed Vascular Origin

(WMHpvo) refers to the lesions within the WM which appear hyperintense on T2-weighted MRI

(including FLAIR) which are often present in images of older people. WMHpvo are often sym-

metrical and their cause is unclear. The term Recent Small Subcortical Infarct (RSSI) refers

to a T2 / DWI hyperintense region indicating a region of recent tissue death (infarction). An

RSSI will evolve into either a lacunar cavity (T1 / T2 hypointense “space”, usually with a T2

hyperintense ring) or T2 hyperintensity. The term WMH is used to include all T2 hyperinten-

sities caused by WMHpvo, RSSIs, RSSIs which have evolved into T2 hyperintensity and the T2

hyperintense areas around lacunar cavities. Finally, the term cortical infarct is used to refer to

T2 hyperintense regions which appear wholly or partly in the cortical GM.

Whilst Multiple Sclerosis (MS) lesions also manifest as hyperintense regions within the WM
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Figure 2.8: Examples of different hyperintensities relating to SVD. Top left: White matter
hyperintensity of presumed vascular origin. Top right: Recent small subcortical infarct. Bottom
left: A: Evolution of a recent small subcortical infarct into a T2 hyperintensity, B: Lacunar cavity
forming at the edge of a White Matter Hyperintensity (WMH) of unclear origin. Bottom right:
Cortical infarct.
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on FLAIR [Polman et al., 2011], work in this thesis is primarily focused on the vascular causes

mentioned above, hence the definition of WMH is reserved to these, and MS induced hyper-

intensities are referred to separately as MS lesions where necessary. No other cause of T2

hyperintensity (eg cancer, traumatic brain injury) is discussed in this thesis, or present in any

experiments.

2.5 Dementia Neuroimaging Studies

2.5.1 The Alzheimers Disease Neuroimaging Initiative (ADNI)

ADNI [Mueller et al., 2005] is a large scale AD study launched in 2003 following the progression

of patients over several years (longitudinal). Its aim has been to investigate whether the diag-

nosis and onset prediction of AD can be improved via the use of imaging data, particularly MRI

and PET, combined with other clinical and cognitive biomarkers. Due to its success, this remit

was extended through two further studies, Alzheimers Disease Neuroimaging Initiative - Grand

Opportunity (ADNI-GO) [Alzheimer’s Disease Neuroimaging Initiative, 2010] and Alzheimers

Disease Neuroimaging Initiative - 2 (ADNI-2) [Weiner, 2014]. The former expanded the study

to include more patients from across the spectrum of AD, from early cognitive impairment,

through to confirmed AD. This, along with additional standardised tests, allowed for greater

insight into the earlier stages of the disease and symptom development. ADNI-2 secured fund-

ing to continue following the patients already enrolled in the first two studies, as well as to

recruit more patients from across the whole spectrum of the disease. Alzheimers Disease Neu-

roimaging Initiative - 3 (ADNI-3) [Weiner et al., 2017] began in August 2016 and is currently

ongoing. It continues to follow patients enrolled in ADNI-2 and aims to recruit up to 1200 new

subjects. It will introduce additional PET data in the form of both tau and amyloid imaging,

as well as a stronger focus on using MR for connectivity analysis.

The ADNI database currently holds detailed longitudinal data on over 800 patients, including:

patient/family history, imaging data (MR and PET), neuropsychological assessment scores,
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genetic information and CSF measurements (see http://adni.loni.usc.edu/data-samples/

adni-data-inventory for a full data description).

The ongoing success of ADNI is evident as it enters its 15th year. It has been credited with many

important findings, with the rubrics of the later studies heavily influenced by the discoveries of

those before them. The opening up of such a large amount of standardised data to the commu-

nity has undoubtedly led to a higher rate of discoveries than would otherwise have been possible.

This is perhaps made most evident when one considers a comprehensive 2013 review of studies

based upon the ADNI data contained over 100 pages and 300 references [Weiner et al., 2013].

Combining heterogeneous data from multiple studies in an unbiased way can be a considerable

source of work and is often impossible. Therefore, much of the attraction of the ADNI dataset

to researchers is the high degree of standardisation allowing for large amounts of data to be

analysed together with confidence and significant conclusions to be made. Many of these

conclusions have come in the search for new biomarkers [Hampel et al., 2008, Shaw et al., 2007,

Clark et al., 2007]. One of the biggest accomplishments of ADNI has been in the discovery of

CSF-based protein biomarkers for AD - Aβ42 and total tau [Shaw et al., 2009].

These biomarkers, among others, have been incorporated into machine learning systems for

diagnostic purposes. Such large scale homogeneous datasets are perfect for machine learn-

ing classification approaches, as evidenced by the large number of such studies, for exam-

ple: [Misra et al., 2009, Gray et al., 2013, Casanova et al., 2011, Abdulkadir et al., 2011]. One

study, called PredictAD [Mattila et al., 2011], demonstrated how such a classifier was able to

improve AD prediction [Liu et al., 2013] by being incorporated into a comprehensive decision

support system.

Use of Imaging Data

The increased prevalence of PET and MR scanners has accelerated the interest in image-

derived biomarkers. Alongside clinical and neurochemical biomarkers, imaging biomarkers are

increasingly being used in the diagnosis and stratification of dementia. One such biomarker is
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hippocampal volume, first tested using volumetry in 1999 [Jack et al., 1999], its potential was

later confirmed using data from the ADNI cohorts [Schuff et al., 2009].

One of the challenges faced when identifying imaging biomarkers is inhomogeneity within and

between datasets. Different scanners and acquisition protocols can lead to images with sub-

stantially different appearances. This is a challenge for many automated algorithms which

often rely on intensity differences between structures as features for segmentation or classifi-

cation. Comparisons between methods can, therefore, be a challenge - the best algorithm on

one dataset may not be the best on another. Many segmentation methods have been pro-

posed for MR images [Balafar et al., 2010], with many also applied to investigate dementia.

However, the choice of algorithm varies between studies, leading to further barriers to direct

inter-study comparisons. Multi-atlas segmentation has been shown to perform well across differ-

ent acquisition protocols [Babalola et al., 2008], and is, therefore, a valuable tool in the search

for imaging biomarkers. A step towards this has already been made in the publication of a

repository of ADNI images segmented using the MAPER algorithm [Heckemann et al., 2010].

This has also very recently been added to in [Ledig et al., 2018a], along with morphological

analysis [Ledig et al., 2018b] using an updated version of MAPER, called Multi-Atlas-Label

Propagation with Expectation-Maximisation based refinement (MALPEM) [Ledig et al., 2015].

Differential Diagnosis

ADNI has lead to great strides forward in the field of AD diagnosis, stratification, and mon-

itoring. However, the differential diagnosis of dementia has remained comparatively unex-

plored. [Shaw et al., 2007] highlighted the need for biomarkers which can separate cases of AD

from other dementias. While the pattern of glucose metabolism shown using FDG-PET has

been proposed for this purpose [Kannan et al., 2009, Herholz, 1995, Mazziotta et al., 1992], its

further study has been limited due to comparatively small sample sizes [Foster et al., 2007,

Dukart et al., 2011, Hoffman et al., 2000]. Larger studies into the use of FDG-PET have in-

stead focused on AD diagnosis [Silverman et al., 2001]. In addition to FDG-PET, atrophy

levels of cerebral structures have also been investigated as being potentially useful in discrimi-
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nating between the different dementia-causing diseases [Vemuri et al., 2011, Galton et al., 2001,

Burton et al., 2002].

2.5.2 PredictND

Large standardised datasets such as ADNI can provide a lot of data upon which machine

learning models can be trained, allowing for hypotheses to be tested without the relevant

information becoming obfuscated by noise. However, one must consider the implications of this

when applying models trained on such datasets to the more heterogeneous data usually found

in clinical practice. A model trained on standardised data will not generalise as well to other

datasets as one trained on data from a variety of sources, as it is likely to overfit its training

set. This can lead to over-confidence in the performance of a particular model on one dataset

where it was trained on another. To build confidence in a model, it is therefore important to

evaluate and, if necessary, train on data from more than one source. As such, studies which

combine data from multiple sites with different clinical protocols are valuable to both develop

algorithms and assess their generalisation capabilities.

PredictND is one such study. Launched in 2014, PredictND is a 4.2 million European project

with the aim of investigating all causes of dementia.

It has four objectives:

Scientific objectives:

• To develop an IT-supported clinical protocol for enabling early and objective differential

diagnostics of neurodegenerative diseases based on the principles of data-driven evidence-

based medicine.

• To develop a low-cost battery of tests for early detection of cognitive change.

Technical objectives:
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• To develop a decision support software tool to be used in clinical workflows for differential

diagnostics of neurodegenerative diseases.

• To develop an ICT ecosystem and objective diagnostics of neurodegenerative diseases.

The project involved the recruitment of up to 800 patients from across four clinical sites: Kuo-

pio University Hospital (Finland), Region Hovestaden (Copenhagen, Denmark), VU Medical

Center (Amsterdam, the Netherlands) and Hospital Perugia (Italy), from across the spectrum

of dementia-causing diseases. Such a large dataset offers a highly useful platform upon which

methods can be developed and tested. The multicenter nature of the study means that, while ac-

quisition protocols remain similar between sites, there were multiple scanners and staff members

involved in acquiring these datasets. As a result, the final collection of data is heterogeneous

and therefore provides the opportunity for the ability of methods to generalise to be explored.

An early study [Koikkalainen et al., 2016] investigated the differential diagnosis of dementia

between AD, FTD, VD, DLB and healthy controls using MRI-derived features from 504 pa-

tients. A number of features were extracted and combined using a Disease State Index (DSI)

classifier [Mattila et al., 2012], including: brain structure volumes, voxel and tensor-based mor-

phometry p-values for each structure, manifold learning projections, ROI-based grading features

and the authors’ own vascular burden measure. An overall balanced accuracy of 68.5% was

achieved. These results were further improved upon in [Tong et al., 2017].

Further to this, data acquired from 117 patients at the Kuopio University Hospital was analysed

in [Ángel Muñoz-Ruiz et al., 2016]. The DSI was used as part of a decision support tool to

perform the differential diagnosis of AD and FTD based on clinical, neuropsychological, genetic,

MRI, SPECT and CSF protein features and achieved a Area Under the Curve (AUC) of 0.97

and 0.94 for autopsy confirmed and clinically diagnosed cases respectively. Fifty subjects from

the same cohort were further investigated in [Cajanus et al., 2018] with the aim of exploring the

use of the same MR derived features as used in [Koikkalainen et al., 2016] above for the purpose

of bvFTD differentiation from AD, DLB and healthy control subjects. They found that, while

the features were useful for separating cases of bvFTD, AD and controls, the physical changes

in bvFTD and DLB were too similar to be reliably differentiated.
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2.6 Datasets

The work in this thesis is primarily technical, with novel techniques for analysing imaging data

being proposed. A number of different datasets are therefore used throughout the thesis for

their development and analysis. This section provides a brief description of each of these.

2.6.1 ADNI

The ADNI dataset provides a large amount of data for each patient including: clinical data

(demographics, clinical and cognitive assessments), MR images (processed and unprocessed

T1- and T2- weighted images, fMRI and Diffusion Tensor Imaging (DTI) available in the later

studies), PET images (multiple tracers, processed and unprocessed PIB, FDG and Florbetapir),

proteomic analysis and genotyping results. ADNI data is used in Chapters 7, 8 and 9.

2.6.2 Edinburgh SVD dataset

An SVD dataset was developed by colleagues at Edinburgh University and used extensively

within this thesis. This dataset contains 147 fully annotated subjects suffering from SVD. It

is a heterogeneous dataset containing data acquired using three different acquisition protocols.

All image data were acquired at the Brain Research Imaging Centre of Edinburgh2 on a GE

Signa Horizon HDx 1.5T clinical scanner (General Electric, Milwaukee, WI), equipped with

a self-shielding gradient set and manufacturer-supplied eight-channel phased-array head coil.

Details of the protocols used for acquiring the data are given in Table 2.2, and their rationale

is explained in [Valdes Hernandez et al., 2015]. Formal written consent from all subjects and

ethical approval was acquired from the Lothian Research Ethics Committee (09/S1101/54,

LREC/2003/2/29, REC 09/81101/54), the NHS Lothian R+D Office (2009/W/NEU/14), and

the Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/56) and conducted

according to the principles expressed in the Declaration of Helsinki.

2www.sbirc.ed.ac.uk
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Table 2.2: Summary of the acquisition and segmentation protocols present in the Edinburgh
dataset. 1[Valdes Hernandez et al., 2015, Valdés Hernández et al., 2013]

Protocol 1 2 3

Number 23 81 43

T1 TR/TE/TI (ms) 9/440 9.7/3.984/500
FLAIR TR/TE/ TI
(ms)

9002/147/2200 9000/140/2200

Ground Truth Expert corrected his-
togram segmentation

Multispectral colour-
fusion-based semi-
automatic segmenta-
tion 1

Expert corrected his-
togram segmentation

Lesion Types Present WMHpvo WMH / Cortical in-
farcts

WMHpvo

All image data were co-registered using FSL-FLIRT [Jenkinson et al., 2012] and mapped to the

patients T2-weighted space. Up to three lesions masks were created for each subject: WMHpvo,

and old and new stroke lesions. Lesions from images acquired under protocols 1 and 3 (Ta-

ble 2.2) were extracted using histogram-based thresholding on FLAIR and manually rectified by

an expert. Lesions from images acquired under protocol 2 were segmented by an expert follow-

ing the procedure described in [Valdes Hernandez et al., 2015, Valdés Hernández et al., 2013],

which uses a multispectral colour-fusion-based semi-automatic segmentation method and con-

siders hyperintense signals that simultaneously appear in all T2-based sequences.

As well as imaging data, clinical data including demographics, co-morbidities and imaging

features were also made available. These include: age, gender, diabetes, hypertension, hyper-

lipidaemia, smoking, cholesterol, the number of perivascular spaces in the basal ganglia, and a

measure of tissue atrophy. Imaging data from this dataset is used in Chapters 4 and 5, while

the clinical data is also used in Chapter 4.

2.6.3 OASIS

The Open Access Series of Image Studies (OASIS) is a project aimed at compiling and freely

distributing neuroimaging datasets in order to facilitate further research and discoveries in

neuroscience. The first dataset, OASIS-1, contains cross-sectional MRI data for 416 subjects
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aged 18-96, 100 of whom have been diagnosed with a stage of AD. OASIS-2 contains 150 older

(60-97) subjects which were examined over two or more visits. 72 subjects remained non-

demented throughout the study, 64 contained subjects which were, and remained, demented,

while 14 developed dementia during the course of the study. OASIS-3 contains a retrospective

dataset of 1098 patients compiled from across several studies over 30 years, including 609 non-

demented adults, and 489 at various stages of cognitive decline. This dataset contains clinical

data as well as data from a wide variety of MR and PET protocols. Data from OASIS-1 is used

in Chapter 6.



Chapter 3

Technical Background

This chapter reviews and summarises some of the key areas of machine learning and computer

vision explored in this thesis, particularly image synthesis, lesion segmentation and data aug-

mentation. We start by reviewing the image synthesis techniques currently available, starting

with purely generative methods for producing images from scratch, before moving on to condi-

tional methods where images are generated from a given source image. As well as the methods

themselves, we discuss their strengths and limitations, their similarities and differences, their

applications, and potential avenues for further work. We then turn our attention to lesion

segmentation and the various tools currently available, giving an overview of their development

and function. Finally, we examine the role of data augmentation in neuroimaging. The purpose

of this chapter is to both allow non-specialists to gain an overview of the field and to provide

a library of information to expand on the concepts mentioned throughout this thesis.

3.1 Image Synthesis

Image synthesis is the process of producing an artificial image with a particular desired set

of statistical properties. In medical image computing, this usually refers to generating images

which appear to have been generated using a particular imaging modality. Methods to do this

can be split into two broad categories: generative methods and conditional methods.

49
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The goal of generative methods is to be able to generate realistic images from a target modality

without a source image. These methods involve learning a low dimensional representation

which can then be sampled and mapped to an image.

In conditional methods, often referred to as modality transformation methods in the context

of medical imaging, the aim is to produce an image of one type, given an image of a different

type. For example, generating a subject-specific CT image from an MR image for the purpose

of attenuation correction in the reconstruction of a PET image acquired using a PET/MR

scanner [Cardoso et al., 2015].

This section provides a review of each family of methods, including the key developments and

applications in the field of medical imaging. We first explore the pure generative approaches,

before reviewing methods for modality transformation.

3.1.1 Generative methods

In machine learning, a generative model is a model which allows for samples from a distribution

to be generated once a set of underlying (latent) parameters are learned. An example of this

is a Gaussian mixture model, where an unknown target distribution is considered to be able to

be described as a weighted sum of K Gaussian distributions. The probability of a particular x

value being from this distribution can be given by,

p(x) =
K∑
i=1

φiN (µi, θi), (3.1)

where φi, µi and θi are respectively the weight, mean and standard deviation of the ith compo-

nent of the model. The Expectation Maximisation (EM) [Dempster et al., 1977] algorithm can

be used to estimate the value of these latent variables given a sufficient number of real examples

from the unknown distribution. New unseen samples can then be generated by sampling from

the learned distributions. These types of approaches work well in low dimensional cases and

where the expected form of the distribution can be predicted, however medical images are in-
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herently high dimensional with a typical MR image containing over 1 million voxels, and their

distribution within this high dimensional space is hard to predict. Techniques such as EM are

underdetermined when there are more parameters to learn than available examples and would,

therefore, require some form of dimensionality reduction or regularisation to be used on medical

images.

Deep learning has provided an alternative, data-driven, approach to generative models in au-

toencoders and Generative Adversarial Networks (GANs). Both approaches make no assump-

tion on the inherent structure within the data and instead provide a mapping from a simple

(usually a multi-dimensional Gaussian or uniform) distribution directly to the high dimensional

image distribution through a series of non-linear transformations. These transformations take

the form of a deep neural network which is learned using real training examples. Once the

model has been learned, new images can be generated by sampling from the simple distribution

and passing the outputs through the learned network.

Autoencoders

Autoencoders were first proposed in [Vincent et al., 2010]. The aim of an autoencoder is to

learn a low dimensional representation of a distribution by training on examples from this

distribution. In the case of large images, this involves chaining two Convolutional Neural

Networks (CNNs) together: an encoder and a decoder. The task of the encoder is to take as

input an image and to output a lower dimensionality encoding. The decoder’s role is to map

this encoding back into the original image with as little lost information as possible. Training

an autoencoder is simple and done in an end-to-end fashion. Real images are fed into the input

of the encoder network and passed through both networks, with a loss calculated between the

output of the decoder and the original image. The networks are optimised by minimising this

loss.

In order for the image to be accurately reconstructed by the decoder, the encoding provided

by the encoder must contain all the relevant information to describe any given image from the

distribution of training samples. This provides a low dimensional latent representation, which,
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combined with the decoder, yields a model for the image distribution. The size of this latent

space can be tuned empirically to balance the amount of compression provided with the quality

of the reconstructed images, with smaller latent spaces leading to greater compression at the

cost of a higher reconstruction error.

However, this formulation does not provide a complete generative model as there are no con-

straints on the distribution of the latent representation. It is therefore not possible to sample

unseen images using the model since it is not possible to know what is a valid latent encoding. As

a solution to this, Variational Autoencoders (VAEs) were proposed [Kingma and Welling, 2013]

to constrain the latent representation to form a Gaussian distribution. Sampling an unseen im-

age is then simply a matter of sampling from a Gaussian distribution and passing this through

the decoder.

Generative Adversarial Networks

An alternative to VAEs is provided by GANs. First proposed in [Goodfellow et al., 2014] GANs

are a class of neural networks which aim to learn to produce samples from a given distribution.

The task is formulated as a game with two players. The first player, the generator, attempts

to produce samples which the second player, the discriminator, cannot identify as fake when

compared to a set of real examples. A common analogy is that of an art forger (generator) and

a detective (discriminator). The forger has never seen a portrait before, but wants to be able

to paint them. The detective has no knowledge of art, but has a set of example portraits. The

game proceeds to cycle between the two players, with the forger attempting to paint a portrait,

and the detective attempting to identify the forgery by comparing it to real portraits. As the

game progresses, the forger learns what sort of features trick the detective and uses more of

these, leading the detective to have to become more sophisticated in turn. The two players

will continue to get better at their job, driving the other to improve. When the game ends,

the forger is able to produce highly detailed portraits, despite never having seen one, while the

detective is now an expert at spotting forged portraits.

In practice, these roles are taken by two neural networks. The generator maps a random vector
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z, which forms the latent representation, to an image, while the discriminator takes an image

and outputs a belief as to whether it’s real or synthetic. During training, the discriminator is

given a batch of real and synthetic images to learn from, with the loss function being a form of

classification error. The generator then produces a new batch of synthetic images to test the

discriminator, with its loss function being inversely proportional to the discriminator’s loss on

this batch.

The original GAN formulation as proposed in [Goodfellow et al., 2014] involves a generator

network G and discriminator network D, updated using the following algorithm:

while stopping criteria not reached do
for k steps do

Sample batch Z of size n from noise distribution
Compute EG =

∑n
i=1D(G(Zi))

Sample batch X of size n from real images
Compute EX =

∑n
i=1D(Xi)

Update parameters of D, θd, by ascending ∆θd
1
n

∑i=1
n [log(EX

i ) + log(1− EG
i )]

end
Sample new batch Z of size n from noise distribution
Compute EG =

∑n
i=1D(G(Zi))

Update parameters of G, θg, by descending ∆θg
1
n

∑i=1
n log(1− EG

i )

end
Algorithm 1: GAN training algorithm proposed in [Goodfellow et al., 2014].

where n is the batch size used during each iteration, and k is the number of times the discrimi-

nator is updated for each time the generator updates, set to 1 and in [Goodfellow et al., 2014].

Many approaches have since been developed based upon this framework, as well as several

offshoots such as conditional GANs which introduced adversarial losses to tasks such as style

transfer and super-resolution. These will be revisited later in Section 3.1.2. First, the de-

velopments to this basic GAN formulation will be discussed, maintaining the focus on pure

generative models.

An early development came with Laplacian GANs [Denton et al., 2015]. Here, the authors

proposed a multi-resolution approach, with a series of generator/discriminator pairs trained to

produce difference images leading to successively higher resolution images. During sampling,

the first generator produces a low resolution (8-by-8px) image from a random input vector
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z3. The resulting image is upsampled to 16-by-16px and fed as input into the next generator

along with a new random vector z2. The output of this generator is a difference image which,

when added to the upsampled input, produces a realistic higher resolution image. This process

is repeated twice more resulting in an image of size 64-by-64px. While this method is able

to produce higher quality larger images than the original GAN, the requirement for multiple

GANs means longer training times, and the inclusion of conditional elements in the sampling

procedure means significantly longer sampling times. There has been little further work in this

direction, however, the ideas of using multiple resolutions and performing conditional GAN

based super-resolution were developed further in [Karras et al., 2017] and [Ledig et al., 2016]

respectively with great success.

A major improvement was made on the original GAN in [Radford et al., 2015] with Deep Con-

volutional Generative Adversarial Networks (DCGANs) where training stability and image size

and quality were improved by modifying the architecture of D and G to remove fully connected

layers and replace pooling layers with (fractional) strided convolutions. The authors also in-

vestigate the latent representation provided by the input vector z. They demonstrate that

interpolation through this space from one vector to another results in a semantically sensible

transition from one image to the other in image space. Objects present in one image gradu-

ally transform into objects present in the other, with each image in the transition appearing

plausible. They also show that arithmetic in this latent space is also semantically reasonable in

image space. They first compute the average z vectors which correspond to images of smiling

female faces (z̄fs), neutral female faces (z̄fn) and neutral male faces (z̄mn). They then show

that if they take the vector ẑ = z̄fs − z̄fn + z̄mn the result in image space would be that of a

smiling male face - a semantically sensible outcome. A number of incremental improvements

were made in [Zhang et al., 2018] resulting in more stable training at higher resolutions.

Further developments upon this framework included using a least squared loss for the discrimi-

nator [Mao et al., 2017], while another major step forward was made in [Arjovsky et al., 2017]

where the authors backed up some convincing theoretical proposals with strong practical results.

One of the criticisms of the previous GAN formulations was the lack of a true image quality

related cost function, as well as there being a need to balance the number of training cycles
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provided to the two networks. Both of these problems were addressed in [Arjovsky et al., 2017]

by proposing the Wasserstein Generative Adversarial Network (WGAN). Their main contribu-

tion was to replace the Jenson-Shanon divergence approximating formulation of the previous

work, with one in which the discriminator approximates the Wasserstein distance instead. The

Wasserstein distance is an earth mover distance, which measures the total amount of work

which would need to be done to transform one distribution into the other by moving “mass”

from one region of the distribution to another region. This involves relatively simple changes in

the update steps in Algorithm 1: ∆θd
1
n

∑i=1
n [ER

i −EG
i ] and ∆θg

1
n

∑i=1
n EG

i for D and G respec-

tively. However, this solution to compute the Wasserstein distance is only valid over functions

which are 1-Lipschitz, ie, there are no two points on the function which are connected by a

slope with a gradient greater than 1. One final step is therefore required for the discriminator

to be a reasonable estimator of the Wasserstein distance, which is to constrain the weights to lie

within a fixed box. This is performed by simply clipping every weight to the range [−0.01, 0.01]

after each update step. The authors admit that this is not an elegant solution, however, the

resulting GAN proves to be very stable and effective on a wide variety of tasks. In addition,

with the optimally trained discriminator now providing an approximation of the Wasserstein

distance, the formulation has an image quality related cost function.

The issue of weight clipping was addressed in [Gulrajani et al., 2017] with the clipping proce-

dure replaced by an additional gradient norm penalty term within the discriminator objective

function. This naturally encourages the discriminator towards solutions which are 1-Lipschitz.

They demonstrate that the weight clipping approach leads to much simpler functions being

learned and that by replacing this with the additional penalty term, the capacity of the dis-

criminator increases, allowing for higher moments of the distribution to be learned.

A family of GANs which utilise an auto-encoder as the discriminator have also been pro-

posed [Zhao et al., 2016, Berthelot et al., 2017]. The theory is that a network which has been

trained to encode and decode a real image with minimal loss should also be able to do the same

to a synthetic image. Rather than training a generator to minimise the discriminator loss, the

generator is trained to match auto-encoder loss distributions between the real and synthetic

images.



56 Chapter 3. Technical Background

Another significant step towards larger image generation came with the Progressive Growing

of GANs (PGGAN) [Karras et al., 2017]. The proposed multi-resolution approach to training

is shown to reliably generate images up to 1024-by-1024px, well beyond the maximum of 256-

by-256px seen in previous formulations. It does this by progressively growing the size of the

networks, starting with a small GAN generating 4-by-4px images, and adding layers to both

the generator and discriminator throughout training, successively doubling the output image

size until the desired level is reached.

Within the PGGAN framework, the architecture follows the standard decoder- (generator)

encoder (discriminator) pattern, with the generator mapping from a latent vector to an image,

and discriminator mapping from an image to a single number. With an input vector of size |z|,

an initial 4-by-4 convolutional layer is followed by a 3-by-3 convolutional layer, each with |z|/2

filters. These are then followed by a series of blocks, each consisting of a nearest-neighbour

up-sampling layer and two 3-by-3 convolutional layers, with each layer in a block containing

half the number of filters as those in the previous block. Once the feature map size reaches

the desired image size, a final 1-by-1 convolutional layer compresses these to the final output

image (typically with 3 channels, for RGB-images). The discriminator architecture reflects the

generator, with down-sampling layers in place of the up-sampling layers, and the final layer

mapping to a single output value.

During training, the constituent up/down-sample blocks are introduced over time. The initial

architecture generates 4-by-4px images, with this size increasing as more blocks are added. The

transitions from one image size to the next within the generator are performed gradually, with

the output image during a transition being a weighted average between the up-sampled output

from the previous block, and the output of the new block. This weighting is changed linearly

through the transition period, thereby gradually increasing the impact of the new block. The

same processes are mirrored in the discriminator. In this way, the effect of suddenly introducing

randomly initialised parameters into the network is minimised, thereby maintaining consistent

image generation. Transition periods are measured in number of iterations and are typically

equal to the number of iterations spent between each transition.
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Developments in GAN architectures and training have been primarily driven by the computer

vision community for tasks such as natural image and video generation, texture synthesis, image

inpainting, style transfer and image editing. A discussion of these applications is beyond the

scope of this thesis, however, a comprehensive and accessible review of these applications up to

the end of 2017 is available in [Wu et al., 2017]. Applications of GANs in medical imaging are

reviewed further in the context of modality transformation in the next section, whilst the use

of GANs in data augmentation is reviewed at the end of this chapter.

Discussion

One of the main challenges in developing generative models is that of evaluation. Beyond visual

inspection, it is often difficult to assess the quality of generated images. However, a few metrics

have been proposed in the context of GANs to compare properties of the distribution of the

generated images to that of the real images:

• Wasserstein distance

As described previously, the Wasserstein distance can be used to measure the similarity

between two distributions, with [Arjovsky et al., 2017] showing that this could provide an

optimisable cost function which can be learned by a network. However, this only provides

an estimate, which may vary significantly between architectures and training times. It is

therefore not always suitable when comparing the outputs of different networks.

• Multi-scale structural similarity (MS-SSIM)

MS-SSIM was first proposed in [Odena et al., 2016] for use in GANs as a measure of

image diversity, exploiting an approach developed previously [Wang et al., 2004] for mea-

suring perceived image quality. It provides a score between 0 and 1, with higher values

corresponding to perceptually more similar images. A metric for image diversity can be

computed by calculating the mean score between randomly selected synthetic images,

with a lower score indicating less similar images and therefore more diversity. By com-

paring this mean score to one calculated on the training images, the diversity of the
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generated images can be compared to that of the training images. Note that this does

not assess image quality, only diversity.

• Sliced Wasserstein Distance (SWD)

Proposed in [Karras et al., 2017], the SWD is another multi-scale approach which aims to

assess both image diversity and quality revolving around extracting patches at multiple

resolution levels and computing the similarity between the patches extracted from the

real and synthetic images at each level. A set of images is first sampled. The Laplacian

pyramid for each image is computed by first downsampling the image to a base resolution.

Each successive level is defined as the difference image between an image downsampled

to twice the resolution as the previous level, and a 2-times upsampled version of the

previous level. From each of these levels, a set of patches are randomly sampled to

form a descriptor. These are grouped together with other descriptors extracted from the

same level from other images and are normalised (within channels if the image is multi-

channel). Once all the descriptors are extracted, the sliced Wasserstein distance (an

efficient approximation to the Wasserstein distance) is computed between the descriptors

extracted from the real and synthetic images at each resolution level. This approach allows

for a detailed understanding of where the two sets of images are different or similar. A

low score implies a high degree of similarity, so a low score at the base resolution level

suggests similarity within the low-frequency features such as broad shapes, wheres low

scores at higher resolutions suggest similarity at higher frequencies such as the fine details

and edges.

The sliced Wasserstein distance, as defined in [Rabin et al., 2012] estimates the Wasser-

stein distance by repeatedly projecting the distribution of descriptors onto a series of 1D

spaces. The Wasserstein distance in these spaces can then be calculated trivially and

summed to provide a score.

• Inception score

Used in [Zhang et al., 2018], the inception score was calculated by using an additional

pre-trained model to analyse the generated images to produce a conditional label dis-
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tribution. The motivation was that meaningful images will result in individual label

distributions with low entropy, while varied images will produce a marginal across a set

of generated images with high entropy. By combining these two, a score can be produced

which correlates well with visual quality and human classification. This is a useful tool

for developing pure generative GAN models and testing modifications and different tech-

niques. However, in order to be meaningful, it can only be used to compare methods

which have been trained on the same dataset, and that dataset must also be related to

the dataset used in training the classification model (ImageNet in this case). This limits

its applicability in niche fields such as medical imaging.

• Human testing

Given that the original aim of GANs was to be able to generate images which are indis-

tinguishable from real images to the human eye, it is perhaps unsurprising that the most

realistic method for evaluation is to ask humans to try and identify whether images are

real or synthetic. The authors of [Zhang et al., 2018] used Amazon’s Mechanical Turk (a

crowdsourcing platform which allows users to be paid small amounts to perform simple

web-based tasks) to ask people to differentiate between real and synthetic images. This

provided some useful scores for comparing methods. However, they found that results

from experiments within their own group differed significantly from those provided by the

users of Mechanical Turk. This raises questions over whether such a platform is a reliable

method of evaluation. A similar approach was taken in [Chuquicusma et al., 2018] where

the authors asked two radiologists to identify synthetic lung nodules. Whilst they could

consistently fool the more junior radiologist with 4 years experience, the senior radiologist

with 13 years experience could identify the synthetic lesions much more frequently.

Both of these results demonstrate the challenges of using humans to analyse synthetic

images. Experience, motivation and exposure to the type of images being analysed will

all play a part in the resulting scores. Being able to get meaningful results to compare

across experiments is challenging, and across studies, nearly impossible.

As it stands, the gold standard for evaluating a novel pure generative GAN technique or ar-
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chitecture is the inception score. Whilst allowing for meaningful comparisons between other

methods and the GAN itself, it cannot be used for evaluating performance on different datasets.

In these cases, a combination of MS-SSIM and SWD provides a good alternative, allowing com-

parisons to be made between any two sets of images. Using humans for analysis, whilst arguably

providing the measure most suitable to the task, has many complications which prevent such

a measure being used for anything more than a broad analysis.

There are, however, alternatives. GANs are often used as part of a bigger system or for a

particular application, such as domain adaptation, semantic inpainting and super-resolution.

In these cases, the best way to evaluate the GAN is simply to evaluate the system as a whole.

Changing the architecture or training procedure of the GAN should have a measurable impact

on the application the GAN is being used for, allowing for the most suitable architecture and

hyper-parameters to be found. This can, however, be an extremely slow process, especially if

the application requires long training times itself. In addition, care must be taken to avoid

overfitting a single dataset when taking this approach to evaluation. It is important to ensure

that standard rules regarding the separation of a test, validation and training set are followed

for the entire system, not only its individual components. For example, data which is used to

train the GAN component must not later form part of the test set for the entire system.

While the above approaches to evaluation look to measure the ability of methods to perform

pure image generation, it is also worth considering how to evaluate conditional GANs, where

one image is transformed into another image usually with the same content but a different

appearance. The above metrics which measure variation and “perceptual similarity” do not

take into account the need for the generated image to contain the underlying information

embedded in the original image. In these cases, it is necessary to include an additional metric

such as the Euclidean distance, cross correlation or mutual information between the two images.

By doing this, it is possible to evaluate an image based upon two measures. The first asks “Does

the generated image look like it belongs in the class of images to which it is being transformed?”,

while the second asks “Does the generated image have the same content as the original image?”.

In Chapters 5 and 6 of this thesis, GANs are used primarily as components within a larger
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system. We, therefore, perform evaluation by measuring the effect of the GAN on the system

as a whole. In Chapters 7 and 8 we train GANs using a Wasserstein loss and use this to assess

convergence prior to using the trained models.

3.1.2 Modality transformation

Early work [Hertzmann et al., 2001] in the field of natural image processing introduced the

idea of modality transformation under the moniker Image Analogies (IA). This work brought

together and extended a number of previous pieces of work from across the fields of machine

learning and image processing to present a flexible framework to perform image synthesis as

an effective solution to a variety of general image processing problems. These include super-

resolution, where the aim is to synthesise a higher resolution copy of an image; texture transfer,

where a source texture is applied to a new image; and artistic filters, where images with the

appearance of being produced using particular artistic styles are produced from images with

different artistic styles.

The idea was picked up by the medical imaging community as a tool to help solve a number

of problems being faced in the study of medical images. This work can be mostly split into

two main fields, super-resolution and modality transformation. The latter drawing parallels

with the artistic filters described in [Hertzmann et al., 2001] in being the task of generating an

image with the appearance of one imaging modality by using information from one or more

images from other modalities.

The ability to do this accurately allows for a number of interesting applications, for exam-

ple, in multi-modality registration [Iglesias et al., 2013, Dawant et al., 2012, Cao et al., 2014,

Cao et al., 2013, Roy et al., 2014a, Kroon and Slump, 2009, Chen et al., 2015b] where the prob-

lem can be reduced to mono-modality registration when one modality is synthesised from the

other. There are also algorithms for segmentation or classification which require an input

image from a certain modality. The ability to synthesise these modalities from another modal-

ity can expand the applicability of these algorithms, as demonstrated in [Roy et al., 2010,

Roy et al., 2013, Jog et al., 2015]. More recently, as alluded to earlier, the ability to synthesise
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a CT image from an MR image has received particular attention [Cardoso et al., 2015] as a

result of the rise of PET/MR scanners. An attenuation map is required to accurately recon-

struct a PET image. This is readily available in the form of a CT image in PET/CT systems,

however it must be inferred from the MR in PET/MR systems. Being able to synthesise an

accurate CT from an MR image solves this problem.

3.1.3 Overview of methods

This section contains an overview of the image synthesis methods currently available in the

literature. Whilst being closely coupled with the field of super-resolution, the focus of this

survey is to provide a background to modality transformation in the field of MRI. However,

key papers containing important developments from other fields including super-resolution and

non-MR medical image synthesis which have been transferred to the problem of MR modality

transformation have also been included. Papers pertaining to non-pathological image synthesis

have also been included, regardless of the modalities involved.

The literature is presented in four groups. First, are those methods which are derived from

the IA approach mentioned earlier. Next, are a set of methods which perform synthesis by

using regression techniques. Non-deep learning approaches which don’t fall into the previous

two categories then are presented, with deep learning methods reviewed finally.

Patch matching approaches

The framework proposed in [Hertzmann et al., 2001], which forms the foundation of many of

the algorithms developed since, uses a source image B along with co-registered images A and

A′, where A and B share the same statistical properties. The aim is then to synthesise B′ such

that B′ is related to B in the same way A′ is related to A. The basic framework proposed

employs a patch based approach, whereby for each patch in B, the closest patch A is found,

and the corresponding patch in A′ is propagated to the same location in output image B′. This

framework asks one major design question, the development of which has been the focus of
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much of the later work.

The question relates to finding the best match in A for a patch in B. Whilst A and A′ are

a single image pair, they can be thought of more simply as a collection of many pairs of

corresponding patches. There is, therefore, no reason to limit A and A′ to being a single image

pair when there may be more examples {A1, A
′
1;A2, A

′
2...} which also share the same statistical

relationship. In the case where many image pairs exist, there can be a very large number of patch

pairs. Exhaustively searching this large library for the optimum match for a given patch from B

can, therefore, be extremely time-consuming. Any method proposed based upon this framework

must, therefore, address this problem and find a balance between finding the most similar patch,

and the speed of computation. A related problem is that of deciding what similarity metric

to use to decide on the closest match. As pointed out in [Hertzmann et al., 2001], a simple

L2−norm may not necessarily provide the greatest perceptual similarity, and an alternative

may provide better, if slower, results.

Another important issue raised in [Hertzmann et al., 2001] is that of luminance remapping, or

intensity normalisation. If intensities in image B and in the library of patches {A,A′} do not

have an exact correspondence, then the search for an appropriate match may yield a suboptimal

result. This is a particular problem when using an L2−norm for similarity. This problem can

be demonstrated by considering A to be simply a darker version of B. Searching for the closest

patch in A to a given patch in B using an L2−norm is unlikely to result in the correct patch

being found due to the bulk intensity difference.

In [Hertzmann et al., 2001], the solution to the question of speed is to employ a multi-scale

approach using Gaussian pyramids and an approximate nearest neighbour approach to finding

the closest match. This method also benefits from using a relatively small library {A,A′}

comprising of only one image. The L2−norm is used for searching, however, in order to enforce

spacial coherency, the distances found are scaled by a factor which takes into account how

coherent a given patch will be given any already synthesised surrounding pixels. To address

the problem of bulk intensity differences, the authors propose applying a linear scaling to both

A and A′ which matches the means and variances of A to that of B.
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Several more proposals have been made based upon the IA framework which address these

problems in different ways. In [Roy et al., 2010], the authors apply the framework to the

problem of FLAIR image synthesis by augmenting source B and library {A,A′} to contain

information from T1- and T2-weighted (T1 and T2) images, {BT1, BT2} and {AT1, AT2, A
′}

respectively. The similarity metric used being the weighted sum of the L2−norms between

corresponding patches from both modalities and a coherence factor, seen in Equation 3.2.

Distance(i, j) =[wT1(j)||BT1(i)− AT1(j)||2

+ wT2(j)||BT2(i)− AT2(j)||2

+ λR(BT1(i), AT1(j), BT2(i), AT2(j))],

(3.2)

where i and j are the location of patches in the source and library images respectively, wT1 and

wT2 are spatially varying weights, λ is a weight controlling the relative importance of coherency,

and R is the coherence function shown in Equation 3.3.

R(BT1(i), AT1(j), BT2(i), AT2(j)) =
∑
k∈Ni

∑
l∈Ni

[||BT1(k)− AT1(l)||2

+ ||BT2(k)− AT2(l)||2],

(3.3)

where Ni and Nj are the neighbourhoods of i and j.

The authors add an additional step to the process by combining a number of the most similar

patches found using a non-local means [Buades et al., 2005] method. In [Roy et al., 2014b],

the authors use the same method to synthesise higher resolution versions of B′ by blurring and

under-sampling {BT1, BT2} and {AT1, AT2}. In both papers, the authors make the key assump-

tion that BT1 and AT1, and, AT2 and BT2 have the same respective intensity distributions and

therefore do not require normalisation to allow for the use of the L2−norm. They also propose

no method of speeding up the search, instead relying on a relatively small patch library derived

from a single image triplet.
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This method was further evolved to produce the publicly available1 MIMECS tool, presented

in [Roy et al., 2011] as a means to normalise images produced through different T1 acquisition

protocols to a standard intensity space in order to achieve more consistent anatomical seg-

mentations. The problem reverts back to one of synthesising an image B′ from corresponding

source image B and library {A,A′}. The non-local means method for combining patches and

coherence constraint is replaced by a method which uses the closest patches to regularise the

ill-posed inverse of the equation governing the physical acquisition of MR images, using tech-

niques from compressed sensing [Donoho, 2006]. The problem of search speed is addressed by

limiting the search space of A to locations which have same tissue type as the patch taken from

B, by applying a rough tissue segmentation algorithm to divide A and B into 6 tissue types.

Finally, the issue of intensity normalisation prior to synthesis is addressed by applying a linear

scaling to ensure that the peak of the histogram corresponding to the intensity of the white

matter is 1 in all images.

A large scale analysis of the applicability of image synthesis using MIMECS was presented

in [Roy et al., 2013]. The authors demonstrate the use of image synthesis in longitudinal data

normalisation, atlas construction, contrast normalisation (as in [Roy et al., 2011]), distortion

correction in diffusion images, super-resolution and FLAIR image synthesis. During the eval-

uation of the latter, the authors identify a limitation of MIMECS when it comes to its ability

to synthesise lesions. They suggest that this inability to synthesise lesions could be seen as a

useful feature for the purpose of lesion segmentation, through the subtraction of the synthetic

FLAIR image from the real FLAIR image, though no investigation into this is carried out.

Another technique to speed up the search for patches was introduced to the basic framework

in [Iglesias et al., 2013]. Using a patch library derived from multiple images, the search space

of A was reduced by first co-registering the images and then restricting the search to patches

coming from the areas close to the source patch in B. This, along with a hierarchical approach,

allowed for a patch library taken from 39 images to be searched in a reasonable time. This

approach was also used in [Konukoglu et al., 2013] where a Bayesian approach aims to find the

1www.nitrc.org/projects/image synthesis
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most likely patch from the library to use for the purpose of super-resolution.

Sparse coding [Aharon et al., 2006] was suggested as an efficient method to reconstruct patches

from a library for the purpose of super-resolution in [Rueda et al., 2013], which was further

developed in [Huang and Wang, 2013]. The motivation behind this approach relates to how

the optimal reconstruction of a patch to be used in B′ will be a linear combination of patches

in A′. The coefficients of this combination will be found be seeing which combination of patches

in A best reconstruct B. However, a sparse solution is desired as the correct result is more

likely to require a few similar patches to be combined, rather than a large number of dissimilar

patches. Such a sparse representation of a patch taken from location i in source B can be found

by solving,

α∗ = arg min
α

[λ||α||1 +
1

2
||Aα−B(i)||22], (3.4)

and the synthetic patch can be found through A′α∗.

Since this approach treats each patch irrespective of its neighbours, a further global regularisa-

tion step is applied to enforce continuity. However, this step uses information from the original

low-resolution image B, exploiting the fact they are from the same modality. Such an approach

may not be possible in the case of modality transformation.

Sparse coding was also employed for the registration of microscopy images using an otherwise

standard IA framework, first in [Dawant et al., 2012] and evaluated further in [Cao et al., 2014].

These propose novel solutions to the problem of searching the dictionary and intensity normal-

isation. The former is handled by randomly selecting a subset of the full dictionary to search,

whilst the latter is addressed by a simple scaling of image intensities to the range [0, 1].

An alternative approach to the data based global regularisation used in [Rueda et al., 2013] to

ensure coherence was proposed in [Ye et al., 2013]. This paper looks at the synthesis of T2 and

diffusion tensor imaging fractional anisotropy maps from T1 images, and introduces the idea of

the deliberate (as opposed to being observed as an unintended consequence in [Roy et al., 2013])
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Figure 3.1: Three example cases where pseudo-healthy T2 synthesis has been used to locate
abnormalities, reproduced from [Ye et al., 2013] with permission. Warped atlas refers to the
approach given in [Miller et al., 1993], whereas MP refers to Modality Propagation, the name
given to the proposed method.

synthesis of a non-pathological image B′ from a pathological source image B, or “pseudo-

healthy” image synthesis as they term it. Whilst not performing any objective analysis,

the authors show that synthesising a subject-specific pseudo-healthy image, and subtracting

this from the acquired image, provides a visually much clearer indication of pathology than

when subtracting a non-rigidly aligned atlas found using a similar approach to that described

in [Miller et al., 1993], shown in Figure 3.1.

The proposed method uses the basic IA framework, with a number of alterations. Firstly, the

library {A,A′} is comprised of up to 100 image pairs, thereby being heavily reliant on a fast

searching strategy. The authors use the local search approach used earlier [Iglesias et al., 2013,

Konukoglu et al., 2013] to limit the search for matching patches to those which came from

nearby locations through affine alignment. They also apply a novel approach whereby they

reduce the size of the library by only searching patches which come from the most similar images,

with similarity defined as the L2−norm at a local level. Put explicitly, when synthesising a
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Figure 3.2: The benefits of the proposed iterative approach, reproduced from [Ye et al., 2013]
with permission. The image corresponding to a single iteration clearly appears more noisy,
with the result after 3 iterations displaying fine details much more clearly.

patch at position x, the algorithm first looks at a large (approx. 3 times patch size) window

around x in each image. The most similar k images are found and the patches which fall

within this window in each image are searched to find the closest patch to the one at x. The

authors also employ an iterative approach to encourage coherency in the synthesised images.

During the first iteration, the image is synthesised as described. In subsequent iterations, the

L2−norm cost function is augmented by the addition of a term to reflect the similarity of the

chosen patch to the patch taken from the previously synthesised image. The relative weighting,

α ∈ [0, 1], of these two terms can be controlled to balance the two effects (Equation 3.5). The

authors demonstrate that this iterative approach improves synthesis results, demonstrated in

Figure 3.2.

Distance(i, j) = (1− α)||BT1(i)− AT1(j)||2 + α||B′T2(i)− A′T2(j)||2. (3.5)
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Another use of pseudo-healthy image synthesis was presented in [Tsunoda et al., 2014]. Here

the authors aimed to synthesise pseudo-healthy chest radiographs for the purpose of lung nod-

ule detection. The motivation behind this is the same as in [Ye et al., 2013]: the ability to

synthesise a pathology free image allows for abnormalities to be detected by the subtraction

of this image from the true acquired radiograph. The proposed algorithm optimises the search

speed using the commonly used database alignment and local search method, as well as heavily

(64×) downsampling the library images. To account for bulk intensity variations, the authors

use normalised correlation coefficient R as a similarity metric (Equation 3.6), in place of the

usual L2−norm. Again, no objective measures or solid segmentations are calculated, however,

the images provided clearly demonstrate the benefits of such a method.

R =
1

n

n∑
x=1

(f(x)− f̄)(t(x)− t̄)
σfσt

, (3.6)

where f(x) and t(x) are the intensities at position x of two patches being compared, n is the

number of voxels in each patch, f̄ and t̄ are the mean intensities of the two patches, and σf

and σt are the standard deviations of the intensities in each patch.

A final family of methods based loosely on the original IA framework and incorporating Bayesian

approaches have also been proposed [Konukoglu et al., 2013, Cao et al., 2013, Roy et al., 2014a].

These methods aim to find the probabilistically most similar patches in the library by treating

a patch as being drawn from a Gaussian mixture model with unknown mean and variance.

The goal is then to find the most likely patches in A given a patch in B. This can be solved

iteratively by using the EM algorithm. In [Konukoglu et al., 2013], the authors claim the full

algorithm to be intractable on MRI volumes and therefore propose an approximation. On

the other hand, the authors of [Cao et al., 2013] use the full algorithm incorporating sparse

coding and showed it to be applicable in the multi-modal registration of microscopy images.

The authors of [Roy et al., 2014a] also use the full algorithm for the purposes of MR to CT

synthesis for multi-modal registration. They point out that the algorithm has a complexity

of O(NL2) with L being the number of patches in library {A,A′}. For large L, this clearly
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becomes intractable, as such they limit L to the 40 nearest neighbours to make the complexity

manageable.

A comparison of the methods described so far can be seen in Appendix B, including the ap-

proaches taken to tackle the common problems and their application.

Regression methods

This family of approaches to the problem of image synthesis revolve around finding a function

which will map intensities from the source modality to those of the target modality. This

function is learned from a set of pairs of co-registered training images and can be spatially

variant.

The method proposed in [Kroon and Slump, 2009] to aid in registration aims to learn the cor-

respondence between the intensities of T1 and T2 images by finding the most common intensity

in the target modality for a given intensity in the source modality at each voxel, weighting

the contribution of each surrounding voxel by it’s distance using a Gaussian kernel. A single

image pair is used to train, and due to the need to have a large number of samples in order

to calculate a robust mode for each intensity value, large windows around each voxel are used.

The authors do not say how many bins they use to calculate the modes or give any indication

of any intensity normalisation procedure.

Put explicitly, to synthesis a voxel at location x, the N bin joint histogram Hx of the two

modalities around x must first be formed. Assuming A and A′ to be scaled to the range [0, 1],

this can be achieved by iterating though all the voxels y in a window around x,

Hx(bA(y)Nc, bA′(y)Nc) = Hx(bA(y)Nc, bA′(y)Nc) + e
||y−x||2

2σ2 . (3.7)

B′ can subsequently be synthesised at voxel x as follows,
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B′x = arg max
j

[Hx(bB(y)Nc, bjNc)]. (3.8)

Another regression method was proposed in [Jog et al., 2013] whereby the relationship be-

tween the intensities of patches from T1 and T2 images, and 1.5T T1 and 3T T1 images, are

learnt through the use of a non- spatially variant regression forest. A single pair of atlas im-

ages are used for training. Whilst not providing the full specification of the machine being

used, the authors do provide an interesting comparison to other methods in terms of com-

putation time. They report their method takes 3 hours to train their model, and 5-10 min-

utes to synthesise, compared to approx. 2-3 hours for [Roy et al., 2011] and approx. 1 hour

for [Miller et al., 1993]. They also provide objective metrics (Mean Squared Error (MSE) and

Universal Quality Index (UQI) [Wang and Bovik, 2002]) comparing their results to the results

of using these two methods, which indicate their method as being superior. However, these re-

sults are from a relatively small dataset (n = 4). This method was also used for the purpose of

registration in [Chen et al., 2015b], and a similar approach used for the super-resolution of DTI

images [Alexander et al., 2014]. Here, the regression forests learn a mapping from a 5× 5× 5

low-resolution patch to a 2× 2× 2 high-resolution patch for 6 diffusion tensor channels. Again,

the authors of neither paper report a method of intensity normalisation.

This regression forest approach was developed further in [Jog et al., 2015]. The regression for-

est input was augmented with the addition of a descriptor designed to give spacial context to

the patch. The outputs of these forests are used to form a pre-trained conditional random

field which is used to infer the final synthesised image. As part of their paper, the authors

show that this method can be used to fully synthesise pathological FLAIR images (in contrast

to [Roy et al., 2013]) from T1 images, and that segmenting lesions from these images with a

standard tool yields more accurate results than attempting to segment them from the corre-

sponding T1 images. This approach was further developed in [Jog et al., 2017] by introducing

a multi-resolution approach, where features are extracted and relationships learned at different

resolution levels, building a synthetic image from course to fine features.
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Other approaches

Deformable atlases were proposed as a method of generating a subject-specific image of a

particular modality in [Miller et al., 1993]. The method involves using deformable registration

to warp an atlas image from a target modality to the individual anatomy of the subject provided

in a source image.

A model-based approach, whereby the intrinsic physical properties of the tissue being imaged

are estimated from the available modalities was proposed in [Fischl et al., 2004]. The major

problem with this and similar approaches is the requirement to have MR scans taken using

particular sequences available. In fact, the authors also propose a novel acquisition sequence

from which it is easier to extract the relevant information. Naturally, there are therefore very

few images available acquired with this sequence, and the method can therefore not be used

retrospectively. Whilst being very different from the more data-driven approaches described in

this survey, it nevertheless provides an interesting alternative.

A method based upon registration and intensity fusion was proposed in [Burgos et al., 2014].

The method is used to synthesise CT from T1 MR images for the purpose of attenuation

correction for the reconstruction of PET/MR scans. The method can be briefly described as

follows. First, a set of MR and CT images from the same subject are registered to each other

using an affine transformation. Each MR image in this dataset is registered using a deformable

registration to a source MR image for which a corresponding CT is to be synthesised. The Local

Normalised Cross-correlation (LNCC) is subsequently calculated between the source image and

each of the registered MR images. This measure provides a local similarity between each

pair of images at each voxel. The CT images are then transformed using the same respective

transformations and a spatially variant weighted average of each of them is computed using the

LNCC maps computed previously as weights, yielding the final synthesised image.

Another approach to synthesis was proposed in [Vemulapalli et al., 2015], whereby synthesis is

to be carried out in what the authors refer to as an “unsupervised” setting. The difference

between this setting and those described in the papers surveyed so far in this section is that
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there is assumed to be no training data where both the source and target modalities for the

same subjects are available. Instead, only data from the target modality is available. The

method proposed has two steps. In the first, a set of candidate intensities for a particular voxel

are sought by finding the closest matching patches in the set of target modality images to a

given patch in the source image. The similarity metric used is Mutual Information (MI) which

is robust to comparisons between different modalities. The intensities of the centre voxels of

these patches are thus taken as the candidate intensities for the respective voxel location in

the synthesised image. The next step is to choose the best candidate voxels, whilst maximising

spatial consistency. This is done by selecting from the candidate intensities at each voxel

the weighted combination of intensities which will minimise a cost function consisting of a

weighted sum of two terms. The first being the MI between the resulting synthesised image

and the source image, the second being a metric measuring spatial consistency. This can be

solved using gradient descent. The resulting image is then refined through coupled sparse

representation.

The authors also apply their method to the standard setting where both source and target

modality training images are available, leading to an algorithm which develops the basic IA

framework from [Hertzmann et al., 2001]. They compare both this and their unsupervised

approach to the methods proposed in [Ye et al., 2013] and [Van Nguyen et al., 2015], reporting

comparable correlation and Signal to Noise Ratio (SNR) for the unsupervised method, and

superior results for the supervised approach.

The last approach surveyed in this category involves attempting to create a generative model

which describes the joint probability distribution of observing a pair of source and target

modality images given a set of previously observed image pairs [Cardoso et al., 2015]. The

advantage of having a full model such as this is that an image can be synthesised along with an

uncertainty. Not only can the most likely target modality image for a given source be found, but

each voxel can be associated with a distribution describing the confidence in the synthesised

image. The authors use this method to synthesise a CT from a T1 image, reporting results

which compare favourably to those of [Burgos et al., 2014].
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Figure 3.3: Two sets of images synthesised using three different methods, reproduced from
[Van Nguyen et al., 2015] with permission. Left to right: Source T1 image, real T2 image,
synthesised T2 using method proposed in [Ye et al., 2013], synthesised T2 using concatenated
spatial information, synthesised T2 using the proposed method. Red boxes indicate locations
of significant difference.

Deep learning (non-GAN)

A deep learning approach was proposed in [Van Nguyen et al., 2015]. A location sensitive deep

neural network was trained to synthesise T2 from T1 images and vice versa. The method fol-

lows a patch based approach in which target modality voxel intensities are synthesised from

source modality patches independently of each other. The main deviation from standard deep

learning architectures was the introduction of spatial information to the input of the network

in the form of the voxel location. The spatial information is introduced into the network in

a manner such as to tune individual sub-networks to particular spatial locations, which are

subsequently switched on or off during synthesis. The authors showed that this approach

yielded better results than simply concatenating the spatial information onto the intensity in-

formation to form the input layer. The paper includes an in-depth comparison to two other

methods [Ye et al., 2013, Cao et al., 2014], showing their method to be both much faster and

able to produce images with a significantly higher SNR. Figure 3.3 shows an example of syn-

thesised T2 images using a number of methods.

An alternative was proposed in [Sevetlidis et al., 2016] where modality transformation was per-

formed using an autoencoder-like architecture. The first half of the network encodes the content

of the source image to a latent representation, the second half reconstructs an image of the tar-



3.1. Image Synthesis 75

get modality from this latent representation. The intuition behind this approach is that a latent

representation of the source image must contain all the relevant information about anatomy

and structure. Reconstructing the target modality from this is then decoupled from the in-

put modality. This was exploited in [Chartsias et al., 2018] where a multi-modal network for

reconstruction was proposed. The authors encode multiple source modalities and fuse their

latent encodings. A number of different target modalities can then be reconstructed from this

latent representation. Fusion was performed using a pixel-wise maximum operator, meaning

that missing input modalities could be handled while still producing a sensible fused encoding.

In [Roy et al., 2017], head CT images were synthesised from ultra-short echo-time dual-echo

MR images, again for the purpose of attenuation correction, using a CNN based on inception

blocks [Szegedy et al., 2015].

Deep learning (GAN)

GANs have also been widely applied in the field of modality transformation. The methods

described in Section 3.1.1 focused on pure image generation, however perhaps the greater

impact of GANs has been the concept of an adversarial loss. This use of a separate network

to effectively learn a loss function has been credited with much of the improvement in image

quality seen compared to other generative models. This idea of an adversarial loss has therefore

been applied, separate from the generative component, across many applications within the

conditional image generation paradigm.

[Ledig et al., 2016] showed that an adversarially trained network could be used for highly re-

alistic super-resolution with the SRGAN, while [Yoo et al., 2016] added two discriminators to

provide both an image quality based loss and image relevance based loss for their domain

transfer network. pix2pix [Isola et al., 2017] uses an adversarial loss combined with a tra-

ditional loss to perform supervised (with paired training images) style transfer. This was

extended in CycleGAN [Zhu et al., 2017a] to use two adversarially trained networks for unsu-

pervised (without paired training images) style transfer. By training both a forwards (style

A to style B) and backwards (style B to style A) transfer network, they were able to intro-
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duce an additional cycle-consistency loss reflecting the fact that if an image is transferred

from style A to B and back again to A, it should be unchanged from the original image.

By penalising networks which break this consistency, they were able to perform style transfer

without the need for paired images. This approach has also made its way to modality trans-

formation in medical imaging, with adversarial loss driven networks producing PET images

conditioned on CT and ROI label maps [Bi et al., 2017], CT from MR images [Nie et al., 2016]

and normal from low dose CT images [Wolterink et al., 2017]. Generating PET images from

CT using a conditional GAN was investigated in [Ben-Cohen et al., 2017] and compared to

results using a fully convolutional network, with the conclusion that the fusion of the two

worked better than using the methods individually. Unsupervised synthesis using CycleGAN

has also been investigated [Chartsias et al., 2017, Jin et al., 2018] for MR and CT synthesis.

In [Huo et al., 2018], the authors propose a novel method for image segmentation without

ground truth in the target modality. They propose using a CycleGAN to learn to transform

from given modality A to a second modality B for which ground truth segmentations are

available and perform segmentation on the synthetic image. They show that both the GAN

and segmentation network can be trained simultaneously leading to improved segmentation

results. Conditional GANs have also been used for MR super-resolution [Chen et al., 2018c,

Sánchez and Vilaplana, 2018], registration [Dwarikanath et al., 2018, Yan et al., 2018] and the

reconstruction of MR [Quan et al., 2017] and PET [Wang et al., 2018] images.

Driven by the success of the adversarial loss function in GANs, many authors have begun to

include an adversarial component in segmentation tasks. The advantage of incorporating an

adversarial loss into these methods is that higher-order features of true segmentations can be

learned, such as topology, and the generated segmentation maps can be constrained to reflect

these. The general architecture of these approaches involve using an image-to-image network

such as a UNet [Ronneberger et al., 2015] to perform segmentation in a standard way, while also

adding a discriminator to evaluate the realism of the generated images. The UNet (generator)

is then updated using a combination of a typical cross-entropy segmentation loss on the ground

truth images, as well as the adversarial loss from the discriminator network.

This approach has been extensively applied to data from the series of MICCAI BRATS work-
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shops, which challenge participants to segment brain tumours on MR images into multi-

ple classes. [Xue et al., 2017] uses the approach on data from the 2013 and 2015 editions,

with [Rezaei et al., 2017] and [Li et al., 2017] applying similar approaches to data from the

2017 edition. The same method has also been applied to the segmentation of: MRI structures

[Moeskops et al., 2017]; vessels in retinal fundoscopic images [Son et al., 2017]; optic disks and

cups [Shankaranarayana et al., 2017]; organs on chest x-rays [Dai et al., 2017]; basal mem-

branes [Wang et al., 2017]; skin lesions [Udrea and Mitra, 2017, Izadi et al., 2018]; prostate

tissue [Kohl et al., 2017]; and the spleen [Huo et al., 2018] and liver [Yang et al., 2017]. All

of these studies demonstrated improved segmentation performance by including the adversarial

component.

Another approach to segmentation uses GANs as a means for unsupervised abnormality detec-

tion [Alex et al., 2017]. Here, the authors propose training a GAN on healthy image patches,

and using the discriminator at the end of training to assign a likelihood to test patches as to

whether it considers them real. Since the discriminator has only been trained on healthy images,

it should assign patches from non-healthy regions a low probability of being real. These proba-

bilities can then be used to identify regions of abnormality. When using such an approach, it is

important to ensure sufficient training data is available and that the discriminator has sufficient

capacity to learn the appearance of all non-pathological tissue. This can be a challenge as there

is often a large amount of natural variation which must be encoded within the discriminator.

Another interesting approach to segmentation was proposed in [Joyce et al., 2018], where seg-

mentation is treated as a modality transfer problem from “MR image” to “segmentation map”.

This allows for segmentation maps derived from an alternative modality to be used as the target

modality, requiring no manual labels for the source modality images. Consistency between the

generated segmentation maps and the source image must, however, be enforced, this is done by

adding additional costs: an autoencoder-like loss to ensure a similar image to the original can

be reconstructed from the segmentation maps, a term encouraging large segmentation maps,

and a term minimising the variance of regions covered by the segmentation maps.
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Discussion

Evaluation of synthesis methods: The question of how best to evaluate synthesis methods

is difficult. Most synthesis methods have been employed as a preprocessing step prior to further

analysis. As a result, the impact of the synthesis method can best be measured by comparing

results of the final algorithm with and without synthesis, or to other state of the art methods for

the individual applications. For example, methods which accurately synthesise high-frequency

elements may yield results which are better for segmentation, whereas those which tend to

accurately synthesise low-frequency components may be better for registration. Therefore the

question of what’s the best synthesis method may well be application specific.

Among the papers which aim solely for accurate synthesis, a variety of metrics have been used:

MSE [Jog et al., 2013, Cardoso et al., 2015], correlation coefficient [Vemulapalli et al., 2015],

SNR [Van Nguyen et al., 2015], UQI [Wang and Bovik, 2002] [Jog et al., 2013, Jog et al., 2015],

peak SNR [Jog et al., 2015] and structural similarity [Wang et al., 2004, Jog et al., 2015]. Such

a wide variety of metrics reported for a number of different applications and datasets makes it

difficult to establish the state of the art, while the papers which do compare objectively against

other methods papers [Van Nguyen et al., 2015, Cardoso et al., 2015, Vemulapalli et al., 2015],

are not rigorous enough to establish a hierarchy of methods.

In order to establish a state of the art and have some means to compare new methods to it, it

would be desirable to have a publicly available dataset to be used to establish a benchmark.

Should image synthesis continue to be an area of development within the medical imaging

community, it may become useful for there to be a framework within which different methods

can be compared to each other. This may lend itself well to a challenge organised at a conference

or workshop.

The role of registration: Accurate registration, whilst a long-standing problem which has

received a huge amount of attention, is still a non-trivial task, particularly in the case of multi-

modal data. In fact, several of the methods surveyed have used more accurate registration as

a motivation for image synthesis, turning a multi-modal problem into a mono-modal problem.
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Despite this, almost all methods involve registration of one form or another. The most common

application of registration is in establishing a training dataset or patch library. In the latter,

small misalignments may have significant consequences, yet these are rarely discussed in the

literature. Having a fast and accurate method to find the closest matching patch in A for a

given patch from B is not going to help if the patch then taken from A′ is several voxels separate

from the anatomy present in the patch taken from A.

A similar argument can be made for the methods which rely on regression. If there is misalign-

ment within the training data, it is easy to foresee a case where the model will learn incorrect

relationships as it relates intensities in one anatomical location to those in another. When

developing a method which relies on registration, particularly multi-modal, it is important to

consider what impact small registration errors will have and ensure the method is robust to

them.

While most methods involve some form of registration, some approaches, particularly those

which perform unsupervised synthesis such as [Vemulapalli et al., 2015] and those based on

the CycleGAN approach [Zhu et al., 2017b], avoid the need for accurate registration through

their use of unpaired image data, through a supervised approach tends to perform better where

paired data is available [Vemulapalli et al., 2015].

Search speed solutions for patch matching methods: The most simple solution to the

problem of search speed is to limit the size of library A to a single [Hertzmann et al., 2001,

Roy et al., 2014b, Roy et al., 2011] or pair [Roy et al., 2010] of atlases. The drawback of this

is that there may not be enough variability in A to capture all of the cases which can occur in

B. This may be acceptable when synthesising non-pathological images, where there is likely to

be little inter-subject variability at a patch level, however, it will be of a particular problem in

cases where B displays some pathology which is not captured in A.

Whilst potentially reducing the search space significantly, restricting the search by using tissue

segmentation, as described in [Roy et al., 2011], will cause the results to become dependent

on the quality of the segmentation. When it comes to synthesising patches which have been

wrongly segmented, the search for similar patches among those of a different tissue type will
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yield poor results. When the problem to be solved is that of improving segmentation accuracy,

as is the case in [Roy et al., 2011], the problem becomes circular. A time consuming iterative

approach may, therefore, be required to reach the true potential of the algorithm.

Co-registering prior to a local search, as used in [Iglesias et al., 2013, Konukoglu et al., 2013,

Ye et al., 2013, Tsunoda et al., 2014], will ensure that the search will be carried out among a

selection of representative candidate patches. However, because the appearance of WM and

GM is fairly homogeneous across an image, it is unlikely that the globally most similar patch

will lie in the local area being searched.

Considering these latter two approaches, it is possible to come to the conclusion that the former

will have a worse worst-case situation, in the rare case where you attempt to synthesise from

an incorrectly segmented patch, whilst being close to globally optimum in the other cases. The

latter may not find the globally optimal solution in the majority of cases but will be robust

enough to handle all cases reasonably well. The choice between the two will, therefore, depend

on the application, and whether it is better to have a globally more optimal solution, with

occasional artefacts, or an artefact free, but less optimal solution. Prevalence in the literature

suggests that the latter approach is more popular.

Random sampling, as used in [Rueda et al., 2013] should be seen as a last resort for the purposes

of limiting the size of a search when there is no prior information available which could be used

to otherwise guide the search. Even then, sampling from a more carefully selected subset may

yield better results. Such a subset could be chosen based upon having a similar mean and/or

variance to the given patch, for example.

Choice of similarity metric for patch-based methods: The majority of the patch based

approaches to synthesis require the choice of some sort of similarity metric. Most of the methods

surveyed here have used the L2−norm, however, some have chosen to use a Normalised Cross-

correlation (NCC). The authors in [Tsunoda et al., 2014] justify their choice of NCC by pointing

to its relative invariance to linear intensity differences, which is necessary for their application

to chest radiographs where bulk changes in intensity across an image is common. Bias field

corrected brain images tend not to have these problems, and so many methods with applications
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to brain images choose to use the L2−norm. There may, however, be occasions when NCC could

be preferable. Bias field correction is an important preprocessing step in many algorithms

which aim to remove the low-frequency changes in intensity associated with magnetic field

inhomogeneity within the MR scanner. However, bias field correction algorithms when applied

to FLAIR images which contain large volumes of hyperintense lesions can lead to a reduction

in contrast between the lesions and the surrounding tissue. It may, therefore, be desirable to

perform synthesis using images which have not been bias field corrected, and thus exhibit bulk

changes in intensity across the image. In this case, NCC may prove to be a more sensible choice

of similarity metric.

Pseudo-healthy image synthesis: The idea of pseudo-healthy image synthesis forms the

foundation of [Ye et al., 2013] and [Tsunoda et al., 2014], whilst being touched on as an unin-

tended consequence of FLAIR synthesis in [Roy et al., 2013]. This is an interesting topic as

the ability to synthesise images of healthy appearance from pathological images has potential

applications not only in abnormality detection but also in other areas such as registration.

The FLAIR images synthesised by the MIMECS algorithm in [Roy et al., 2013] are not truly

pseudo-healthy as they do still provide contrast between lesions and the surrounding WM. The

explanation provided is that, because the lesions have a similar intensity to GM in T1 images,

they are synthesised using patches taken from GM, and therefore have the slightly hyperintense

appearance of GM in the synthesised FLAIR image. This is partly a consequence of the global

search employed by MIMECS being able to match patches from anywhere in the image. It may

also be a consequence of the segmentation approach, with inaccurate segmentations of lesions,

a common occurrence in segmentation algorithms, leading to patches being searched for in the

wrong library.

Intensity normalisation: An important problem which many papers fail to propose a solution

to is that of intensity normalisation. In order to be able to accurately relate intensities between

images, it is important to ensure that a given intensity means the same in each image. This is

less important in some cases, for example when using CT images as CT data is fully quantitative.

It is also less important when alternative similarity measures to the L2−norm are used. For

regression methods, however, this is a vitally important step, the details of which are omitted
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in many such papers surveyed here.

Whilst MR images are not strictly quantitative, they are measures of physical parameters. Two

images of the same tissue should, therefore, be approximately linearly related, assuming the

impact of any bias field is minimal or can be removed prior to normalisation. It can, therefore,

be assumed that the optimum function to map intensities of different images to a standard

space will be approximately linear. The normalisation method used in [Rueda et al., 2013] of

scaling each image to have intensities between 0 and 1 violates this under all but the most ideal

circumstances, as it assumes identical intensity distributions between images. Any inter-image

variation in the maximum or minimum intensities relative to the key features of the intensity

histogram (for example, peaks corresponding to tissue types) will result in these features being

mapped to different intensities in different images. While the minimum intensity in an MR

image is fairly robust, the maximum is not and can be strongly affected by noise, artefacts or

pathology.

Matching the mean and standard deviations of each image, as used in [Hertzmann et al., 2001],

is more robust to noise, but will be vulnerable to variations in anatomy. The relative distribution

of tissue types in the brain is subject specific and is dependent on factors such as age and

pathology. This distribution will affect both the mean and the standard deviation of the

intensities in an image.

Finding the peak of the histogram of intensities in the WM and setting this to 1 as used

in [Roy et al., 2011, Roy et al., 2013] preserves the suspected linear relationship and is robust

to noise. However, pathology present in the WM can affect the peak value used, especially in

extreme cases.

Histogram matching, proposed in [Ye et al., 2013] should, under ideal circumstances, result in a

linear transfer function. However, like matching the peak of the WM histograms, this approach

will be strongly affected by pathology, particularly in the case of white matter hyper-intensities

visible in FLAIR images.

Another method, used in [Huppertz et al., 2011] where the aim is to perform normalisation
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in the presence of pathology, looks to define a robust fixed point which can be calculated for

all images and scaled to an arbitrary value. The authors use a probabilistic segmentation to

estimate the locations of WM and GM, after which the set of voxels for which the probabilities

of being WM or GM are high are selected. Within these two sets, outliers are removed by

treating the intensity distributions as Gaussian and keeping only those intensities which lie

within a 95% confidence interval. The means of these two sets are then calculated, providing a

robust mean of the WM and GM intensities. The mean of these two values is then calculated,

and a scaling is applied to the whole image such that this value will be set to an arbitrary fixed

number.

This approach aims to be robust to segmentation errors, common in pathological cases, by only

using the values for which there is a high degree of confidence that they are from WM or GM.

It then looks to be robust to intensity modifying pathology within these tissues by only using

values which fall within a confidence interval.

Possible areas of future investigation: A common technique when dealing with patch li-

braries is to augment them with reflections or rotations of the original patches, or to search

them using a rotationally invariant similarity measure [Grewenig et al., 2011]. None of the

methods reviewed here do that. It is possible that this is unnecessary due to the nature of the

images being synthesised. CSF, WM and deep GM tend to be very homogeneous, and therefore

inherently rotationally invariant at the patch sizes typically used. Cortical GM is less homo-

geneous, however, its folded structure means that there will be patches present at all angles,

meaning the library will already contain such patches without the need for augmentation. This

is true also for the boundaries between GM and WM. As these cases cover the majority of MR

images there may be little benefit to considering rotations or reflections within the patches,

however, the subject could be investigated, as it could allow for larger patch sizes to be used.

As detailed above, neither limiting the patch search space though segmentations or through

locality is ideal. A probabilistic segmentation may help address the problems associated with

the former, with samples taken from the sets of different tissue types according to the probability

of the given patch being of that type. A combination of the two methods may also prove useful,
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with local search used to ensure a reasonable match is found, and tissue-based search increasing

the chance of the optimal match being found.

Whilst not strictly image synthesis in the way presented here, a similar problem is presented

in [Zhang et al., 2012] where the aim is the super-resolution of 4-dimensional (4D) CT lung

images, consisting of a temporally varying 3D volume. The method proposed involves search-

ing a library of patches for the most appropriate ones to populate a slice between acquired

slices. Instead of using a static library, the method dynamically creates bespoke small libraries

based upon an estimation of where the anatomy looking to be resolved was likely to be at other

time points. Whilst not directly applicable in most applications described here, this solution

could provide inspiration for work in other areas. For example in longitudinal studies of at-

rophy, where an approximately true copy of the modality to be synthesised may be available

at a different time point. This approximately true image could then form a bespoke library

from which to synthesise the modality at other time points. One possible application for this

could be “updating” old scans of a patient in a longitudinal study when a change in protocol

leads to a different scanner or imaging sequence being used, such is the case in the BLSA

study [Shock et al., 1984]. As demonstrated in [Roy et al., 2011, Roy et al., 2013], segmenta-

tion algorithms are often more accurate on images acquired with particular protocols. Another

application could, therefore, be used to condition the older scans for use with a particular al-

gorithm. In both cases, the properties of a single image acquired with the new protocol could

be propagated back to the older scans.

3.2 Lesion Segmentation

WMH are commonly found in FLAIR MR images. Their aetiology is diverse but they are known

to be associated with a greater risk of stroke, dementia and death [Debette and Markus, 2010].

The quantification of WMH for use as a biomarker for diseases such as multiple sclerosis

(MS) [Fu et al., 1998], dementia [Barber et al., 1999] and diabetes [Tamura and Araki, 2015]

has lead to a large number of techniques for automatic WMH segmentation to be developed.
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A consequence of their diverse aetiology and the desire of automated segmentation approaches

to remove the need for manual segmentations in large scale studies and diagnostics is that there

exists an extremely large body of literature on the subject. A 2013 survey of lesion segmentation

methods applied to MS lesions alone found 80 papers which proposed an automated method, of

which 47 included quantitative analysis [Garcia-Lorenzo et al., 2013]. A comprehensive review

of these methods, along with those proposed since 2013 and those proposed for applications

in other fields would be extremely large and beyond the scope of this theses. The methods

described here are therefore limited to those which perform FLAIR image segmentation, and for

which implementations are readily available, and as such, provide a clear source of comparison

for any newly proposed method. First, however, we discuss how best to evaluate a novel

segmentation method so as to provide the most useful information.

3.2.1 How to evaluate a segmentation method

One of the key issues raised in [Garcia-Lorenzo et al., 2013] is that each paper proposing a novel

segmentation method will carry out an evaluation in a different way, with the main source of

difference being the data used. The performance of most methods will depend heavily on the

images used for evaluation. Each dataset will have images taken from different scanners at

different field strengths, with different acquisition parameters and different subjects of varying

age and degree of pathology. As such, any performance metrics pertaining to one method’s

application to a particular dataset cannot be compared directly to the metrics obtained when

using another method on a different dataset. The most useful results come from studies which

use multi-centre datasets for evaluation, demonstrating the proposed method’s ability to gener-

alise to heterogeneous data. However, only 13 papers in [Garcia-Lorenzo et al., 2013] reported

this.

In order to directly compare methods, they must be compared on the same dataset. This

provides a significant barrier to evaluation as the majority of authors do not make the code

for their method publicly available. The authors of a new method will likely not have the time

or desire to implement a large number of alternative methods. Even when the code is made
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available, it can be difficult to install, require modification to be applied to particular datasets,

or require the images to go through a time-consuming set of preprocessing steps.

The 2008 MICCAI MS lesion segmentation challenge [Styner et al., 2008] provided a platform

for methods to be compared against each other using a standard dataset. This allowed for

hitherto impossible comparisons to be made between a large number of methods on the same

dataset, allowing for a clear hierarchy of methods to be formed. However, a drawback of

a challenge such as this is that it provides no evidence of how a method will perform on the

heterogeneous datasets seen in the real world. A method may be tuned such that it will perform

very well on the cases and images provided by the challenge, yet be unable to generalise,

whereas another method may not perform as well on the challenge dataset, but achieve the

same level of performance on any other dataset. A future challenge could address this problem

by including data from multiple sources, including real-world clinically acquired data from a

variety of hospitals. However, it would be time-consuming and expensive to both acquire and

label such a large dataset

Another barrier to inter-method comparison is the choice of the metric used to perform the

evaluation. Many metrics have been proposed for the evaluation of segmentation a with corre-

sponding surface Sa and volume Va, with respect to a ground truth t with corresponding surface

St and volume Vt, some of which are given below:

• Dice Similarity Coefficient (DSC)

A measure of overlap between the volume of the computed segmentations and the corre-

sponding reference segmentations [Dice, 1945]. Provides an overall measure of the accu-

racy of the computed segmentation, but becomes more sensitive to errors for small lesions.

A DSC of 0 indicates no overlap, while a DSC of 1 indicates a perfect overlap.

Defined as 2|Va∩Vt|
|Va|+|Vt| .

• Jaccard Similarity (JS)
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Similar to DSC. A measure which is more sensitive to larger errors than DSC. Otherwise

monotonically equivalent in that J = DSC/(2−DSC). Defined as |Va∩Vt||Va∪Vt|

• Volume Similarity

A measure of the relative difference in total segmented volume between the computed and

reference segmentation. Compares the size of the two segmentations with no indication

of overlap. 2|Va|−|Vt|
|Va|+|Vt|

• Average Symmetric Surface Distance (ASSD) (mm)

A measure of the average distances between the surface of the computed segmentations

and reference segmentations, and vice-versa. Provides an indication of how well the

boundaries of the two segmentations align.

Defined as 1
2
(Σt=St(mindist(t, Sa)/|St|) + Σa=Sa(mindist(a, St)/|Sa|))

where mindist(p, S) is the smallest Euclidean distance between surface point p and any

point on S.

• Hausdorff Distance (HD) (mm)

A measure of the maximal distance between the surfaces of the computed and reference

segmentations. More sensitive to segmentation errors occurring away from segmentation

boundaries than ASSD.

Defined as max{{mindist(a, St), a ∈ Sa}, {mindist(t, Sa), t ∈ St}}, where mindist(p, S) is

the smallest Euclidean distance between point p and any point in S and max{A} returns

the greatest value in set A.

• Precision

The proportion of the computed segmentation which overlaps with the reference segmen-

tation. Provides an indication of over-segmentation. Ranges between 0 and 1.

Defined as |Va∩Vt||Va| .

• Recall
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The proportion of the reference segmentation which overlaps with the computed segmen-

tation. Provides an indication of under-segmentation. Ranges between 0 and 1.

Defined as |Va∩Vt||Vt| .

The following groupwise correlations can also be computed:

• Intra Class Correlation (ICC)

A measure of correlation between |Vt| and |Va|. Calculated as ICC(A,1) defined as

in [McGraw, K., Wong, 1996].

• Scatter and Bland-Altman plots

Scatter and Bland-Altman plots showing the relationship between |Va|/|Vic| and |Vt|/|Vic|.

The distribution of lesion volumes are often non-normal and hence non-parametric metrics

are used. Scatter plots show how closely the two sets of values are related, with a low

variance distribution along the line y = x indicating a strong correspondence. Bland-

Altman plots give a further measure of the agreement between the two sets of values,

robust to sample selection [Bland and Altman, 2010]. |Va|/|Vic|−|Vt|/|Vic|
0.5(|Va|/|Vic|+|Vt|/|Vic|) are plotted,

with the desire for the mean to be close to zero, indicating a lack of fixed bias, and

variance to be small, indicating a high degree of agreement. Visually it is also desired

that there are no general upward or downward trends in the data which would indicate a

volume dependent bias. These plots are associated with a number of metrics:

– Equation of best fit line: Of the form y = mx+ c, found by minimising the Sum of

Squared Errors (SSE). Indicates how close the relationship between the two datasets

is to the ideal (y = 1x+0). A larger value of |c| indicates a constant error independent

of lesion volume, while the a value of m differing from 1, indicates an error dependent

on lesion volume.

– SSE: Indicates how well the above equation fits the data.
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– r2: The square of the Pearson correlation coefficient. Indicates how strongly corre-

lated the two volume measures are with a value of 1 indicating a perfect correlation.

– Reproducibility Coefficient (RPC): Indicates how well the automated method repro-

duces the results of the reference volumes.

– Coefficient of Variation (CV): Indicates the strength of agreement between the two

volume measures.

– Mean: Indicates a fixed bias if different from zero. P-values signalling this difference

are also usually calculated.

When proposing a new method, there are therefore a number of evaluation steps which should

be taken to provide sufficient evidence of the method’s performance.

• Apply a selection of publicly available methods to act as reference points.

• Evaluate the new method on data from multiple centres where possible to demonstrate

its robustness to the heterogeneity found in real-world data.

• In the case non- disease specific methods, demonstrate their performance on a variety of

datasets containing images of patients with different diseases.

• Perform evaluation using a range of metrics, and provide analysis with reference to the

implications and limitations of each. Where possible, use direct (eg. DSC) and indi-

rect (eg. ability for segmentation volumes to predict disease state) metrics to provide a

measure of real-world applicability.

3.2.2 Publicly available segmentation methods

White matter hyperintensity segmentation

There are a number of publicly available methods for automatic WMH segmentation. This

section contains a description of each and where they can be found.
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The first pair of methods come from the Lesion Segmentation Toolbox2 - the Lesion Growth

Algorithm (LST-LGA) [Schmidt et al., 2012] and the Lesion Prediction Algorithm (LST-LPA).

In the former, which requires both a T1 and a FLAIR image, white matter, grey matter and

CSF segmentations are first obtained from the T1 image. These tissue segmentations are then

used to create a lesion belief map from the FLAIR image. This is first thresholded by a value κ

and the resulting segmentations are grown along hyperintense voxels. LST-LPA is a supervised

method for which a logistic regression model was trained on 53 MS patients with severe white

matter lesion loads. Both methods output a lesion probability map which the documentation

suggests should be thresholded at 0.5.

The LesionTOADs [Shiee et al., 2010] tool, 3 as a plug-in for MIPAV [McAuliffe et al., 2001],

combines the task of lesion segmentation with that of tissue segmentation by using an atlas-

based approach. An initial segmentation estimate is acquired by registering the image with an

atlas formed from the manual segmentations of a number of images and propagating the labels.

This segmentation is refined through a combination of assigning intensity centroids for each

tissue type and the successive shrinking and growing of the segmentation boundaries in order

to minimise an energy function. A key feature of this method is that it maintains the topology

of the segmentations from the initial atlas. Lesions will alter this topology and are therefore

modelled as part of the WM for the purposes of topological refinement, but maintain their own

intensity centroid.

A method4 [Souplet et al., 2008] developed for the 2008 MICCAI lesion segmentation challenge,

first performs tissue segmentation by using the EM algorithm with 10 classes - WM, GM, CSF,

6 GM/CSF partial volumes, and outliers mainly corresponding to vessels. Lesions are then

found by first selecting the voxels in the FLAIR image which have an intensity greater than a

threshold T such that T = µGM + 2σGM where µGM and σGM are respectively the mean and

standard deviation of the previously found GM class. These voxels are used as seed points for

subsequent expansion using morphological operations.

2available at: www.statistical-modelling.de/lst
3available at: www.nitrc.org/projects/toads-cruise/
4available at: www-sop.inria.fr/asclepios/software/SepINRIA/
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Finally, there are three further methods 5. These are STREM [Garcia-Lorenzo et al., 2008],

MS4MS [Garćıa-Lorenzo et al., 2008] and GCEM [Garćıa-Lorenzo et al., 2009]. STREM uses

a modified variant of the EM approach used above which removes the need for additional tissue

classes beyond WM, GM and CSF by allowing a certain number of voxels to fall out of the

model and be considered outliers. This encourages only those voxels which fit into the assumed

3 class Gaussian mixture to be classified, which leads to lesions being considered among the

outliers. These outliers are refined by ensuring they are indeed sufficiently far from the 3 class

distributions. Next, heuristic rules are imposed to remove false positives. First, the lesions

are located among the outliers by selecting those with an intensity greater than µWM + 3σWM

where µWM and σWM are respectively the mean and standard deviation of the WM class. Next,

small (< 3mm3) groups of connected voxels among the remaining outliers are removed. Finally,

connected voxels which do not share a border with the WM, or share a border with the brain

itself, are removed. The method was evaluated as part of the 2008 MICCAI lesion segmentation

challenge. Notable among the results is the extremely high specificity (0.9954) at a cost of very

low sensitivity (0.2562). This suggests that many lesions are being missed, perhaps as a result

of the heuristic rules being too strict.

The introduction of a mean-shift [Fukunaga and Hostetler, 1975] process to perform an initial

segmentation improved upon this method resulting in the MS4MS algorithm. Mean-shift is a

method of finding a local maximum in an image. A segmentation can, therefore, be found by

grouping voxels such that all voxels in a group share the same local maximum. In other words,

from any point in this set, repeatedly travelling in the direction of greatest increase in intensity

will lead to the same point. These regions are refined by merging nearby regions, with distance

defined as the Euclidean distance between the corresponding maxima, and by merging small

regions (< 3mm3) with neighbouring ones. These regions are next classified as inliers or outliers

by comparing their maxima to a Gaussian mixture model calculated as in STREM. Should a

given maximum be found to have a sufficiently small p-value to belong to the model, then it is

treated as a potential lesion. Finally, the same heuristic rules as used in STREM are used to

limit false positives.

5available at: www.irisa.fr/visages/benchmarks
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Finally, GCEM uses the results of STREM as initialisation of a graph cut procedure, whereby

a segmentation is found by applying a max flow algorithm [Boykov and Funka-Lea, 2006] to an

undirected graph where each node represents a voxel which is connected to its neighbours and

two special source/sink nodes. The objective is to find a labelling such that an energy function

is minimised. This function is a weighted combination of a regional term, which ensures voxels

having the same label have a similar appearance, and a boundary term, which ensures that no

boundaries exist between a set of voxels with the same label. The results of STREM allow for

an initialisation whereby voxels in the estimated lesions are connected to the sink node, and

the other voxels are connected to the source node.

Non-lesion segmentation methods

There are many segmentation tools which are publicly available for other types of segmentation

tasks. Work in this thesis makes extensive use of two of these: MALPEM [Ledig et al., 2015]

and DeepMedic [Kamnitsas et al., 2017b]. MALPEM is a structural segmentation tool which

segments a T1-weighted brain image into 139 anatomical structures. It is designed to be robust

to pathology and has therefore been used in studies of traumatic brain injury [Ledig et al., 2015]

and dementia [Ledig et al., 2018b]. MALPEM works by co-registering a number of labelled

atlases onto the target anatomy and propagating the labels from the atlas to the target im-

age. Labels from across the atlases are fused to give a single label for each voxel, which

is then refined by intensity using the EM algorithm. Such segmentations are valuable in

many processing pipelines, including intensity normalisation using WM and GM masks and

the construction of anatomical regions of interest. The publicly available implementation of

MALPEM also encapsulates a number of useful preprocessing steps: intensity inhomogeneity

correction using the N4 algorithm [Tustison et al., 2010], brain extraction using the PINCRAM

algorithm [Heckemann et al., 2015] and affine registration to a standard Montreal Neurological

Institute (MNI) space. Preprocessing using the MALPEM tool is performed on all T1-weighted

MR images used in this thesis, yielding bias corrected, brain extracted, co-registered images,

with accurate structural segmentations.
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DeepMedic is a general purpose segmentation network architecture which has been shown to

provide accurate multi-class segmentation results out-of-the-box with minimal modifications

across a number of tasks. It achieved the highest results in the 2015 ISLES ischemic stroke lesion

segmentation challenge, and formed part of an ensemble of methods [Kamnitsas et al., 2017a]

which won the 2017 BRATS challenge for brain tumour segmentation. It’s also achieved compet-

itive results in WMH segmentation [Guerrero et al., 2018]. The network is primarily configured

for 3D segmentation, though modifications required for 2D are presented in [Kamnitsas et al., 2017b].

Chapters 5 and 6 of this thesis employ DeepMedic as a reliable segmentation network architec-

ture to evaluate the effects of different approaches to data augmentation.

3.3 Data augmentation

Data augmentation is the process of expanding a training dataset by including additional data

derived from the available real data. In the case of imaging data, common methods for data

augmentation include rotation, translation, scaling, intensity scaling, reflection and random

deformations. The aim of data augmentation is to increase the number of training images

by introducing additional feasible data points. In the case of rotation augmentation, the real

images are rotated through a set of random angles, with the generated images introduced into

the dataset. Translation augmentation, scaling and random deformations are similar, novel

images are generated by applying random translations, scaling factors, or elastic deformations

to the original images. When using reflection augmentation, the available images are simply

reflected along one or more predefined axes. Finally, intensity augmentation involves generating

new images by changing the pixel intensities of the originals. This can be a simple scaling or can

aim to make more complex changes such as altering lighting conditions. The main benefit of all

of these methods is to reduce the potential for overfitting in a model trained on the data. For

example, in a small dataset, it is highly likely that irrelevant information such as the angle of an

image is coincidentally correlated with an image label. Learning this correlation will cause the

learning algorithm to incorrectly classify images at a different angle. By artificially rotating the

training images and including them in the training data, the coincidental correlation is removed
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and the learning algorithm must identify other features upon which to base its classification.

Simple forms of data augmentation such as rotation and translation can be considered a basic

form of image synthesis, where hitherto unseen cases are synthesised from the existing cases.

Used correctly, these simple methods are relatively low-risk, being unlikely to reduce learning

performance. Other forms such as random deformations are higher risk and their use should

be considered carefully. For example, augmenting using random deformations could reduce

performance in tasks where straight lines are a strong discriminative feature. Applying the right

forms of augmentation can lead to significant increases in performance [Krizhevsky et al., 2012,

Ronneberger et al., 2015]. Choosing the right method for data augmentation is, therefore, an

important step when developing or applying a learning algorithm. In practice, the choice as to

what forms of augmentation will be useful, and which may be potentially detrimental, comes

from domain knowledge and experimentation. For example, rotation augmentation should not

be applied when training a classifier where the orientation of image components was known to

be a discriminative feature. If such information is not known a priori, a series of experiments

could be performed to either ascertain whether orientation is indeed discriminative or to directly

assess the impact of the augmentation regardless.

As noted in [Krivov et al., 2017], the consensus within the medical imaging community ap-

pears to be to forgo extensive data augmentation in favour of preprocessing, particularly in

neuroimaging. The authors argue that the extensive range of preprocessing options available

for neurological images removes the need for many forms of data augmentation - why apply

rotation, translation and scaling augmentation when images can simply be co-registered, re-

moving all that irrelevant variation? Intensity augmentation is also made redundant through

bias correction and intensity normalisation. This is a fairly unique property of brain MR im-

ages, where, pending incremental improvements in reliability, normalisation is almost a “solved

problem”. There are a number of different tools available to address each of these sources of

variation, reflecting different needs for the degree of normalisation required and influence of

pathology. However, one exception is protocol normalisation, where the goal is to remove the

effects of different imaging protocols (as in [Roy et al., 2011]), which remains an area of active

research. Such steps are significantly harder to perform on natural images, where authors tend
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to fall back to data augmentation. One departure from this is in facial recognition tasks, where

facial alignment is a common preprocessing step, though differences in lighting conditions are

often still present and require addressing. The most common form of augmentation in neu-

roimaging is, therefore, reflection along the brain midline, as this will almost always provide

sensible synthetic images.

Random deformations have been shown to be useful in some biomedical image segmentation

tasks [Ronneberger et al., 2015, Milletari et al., 2016], however it is worth noting that these

applications (cell and prostate segmentation) involve relatively non-rigid structures, while the

authors of [Krivov et al., 2017] argue that applying such augmentations in neuroimaging would

likely counteract the extensive normalisation procedures and potentially introduce cases of

unrealistic anatomy. Despite this, there are likely theoretical advantages to applying some

form of deformation augmentation to neurological images, however realising these in practice

would involve the careful definition of what deformations are valid, and a practical way to

generate them. The authors of [Krivov et al., 2017] propose an alternative, which involves

propagating lesions from pathological images onto a number of healthy images, with promising

results.

Very recently, GANs have begun to be proposed as an alternative way to perform data aug-

mentation, with Chapters 5 and 6 of this thesis investigating this in detail.

The sources of variance in a dataset can be thought of as the intrinsic dimensions of the data.

Each image can be represented as a point in an n-dimensional space, with travel along each di-

mension corresponding to changes in a different mode of variation. Many dimensionality reduc-

tion methods exist to try and infer this underlying latent space, such as PCA [Wold et al., 1987],

Laplacian eigenmaps [Belkin and Niyogi, 2003], and t-SNE [Maaten and Hinton, 2008], how-

ever these require an estimate of the dimensionality of this space, i.e. how many sources of

variance there are, and do not always provide a method to back-project these points to their

original space to sample novel data points. Estimating this dimensionality can be difficult, espe-

cially in highly non-linear domains such as images. While ways exist to this [Ceruti et al., 2012,

Lombardi et al., 2011], these work best in low dimensions. GANs therefore have an advantage
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over such methods, as they do not require a strict estimate of the dimensionality of the under-

lying distribution and will work provided |z| is sufficiently large.

One of the earliest cases of using GAN derived synthetic data to augment training data was

proposed in [Chartsias et al., 2017]. The authors use a CycleGAN to learn to map between

unpaired labelled CT and MR images, thereby allowing labelled CT images to be transformed

into labelled MR images. This effectively allows for CT images to be used as MR training

images, leading to a 15% increase in DSC. The quality of the generated images was also eval-

uated and was found to be only slightly less valuable than real images, leading to a reduction

in DSC of only 5% when used in place of real images. A method like this can have many

applications in medical imaging, where there are many small labelled datasets available from

different modalities and different acquisition protocols. Being able to combine all such images

of the same pathology together using a series of CycleGANs is an exciting prospect. A similar

approach was presented in [Shrivastava et al., 2016] for the purposed of gaze estimation and

hand pose estimation, where instead of a separate dataset, the authors use a set of simulated

images. Like before, a conditional GAN is trained to apply a style transfer, in this case from

simulated appearance to realistic appearance, in order for the simulated images to be included

directly into a training dataset. The advantage of using simulated images is that, given a suit-

able model, they can be produced “to order” with specified characteristics, and therefore do

not require manual annotation. Another similar approach is made in [Mok and Chung, 2018],

effectively combining the previous two methods. A conditional GAN is used to map from a se-

mantic segmentation map to an MR image in a tumour segmentation task. The authors discuss

the issues regarding applying random deformations directly to MR images, and instead apply

the deformations to the segmentation maps containing both pathology and brain segmentation

masks. The GAN then converts this into an MR image in such a way as to ensure that the

final image is anatomically sensible (on the assumption that the GAN does not know how to

produce anything else). In this way, random deformations, effectively a model of variation,

can be used without risking image realism. While it is important to ensure the generation

of realistic pathology, it is also important that anatomic sensibility is enforced. For example,

generated images much follow basic anatomical rules such as the relative position of, and cor-
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relations between, particular structures. A well-trained discriminator should be able to detect

these anatomical abnormalities and ensure the generator does not produce such images. This

does, however, rely on training a sufficiently powerful discriminator, requiring a large enough

network and adequate training data.

A slightly different approach was taken in [Zhu et al., 2018]. Here, the authors use a conditional

GAN to learn to impose specific emotions upon neutral faces for data balancing in an emotion

classification task. A conditional GAN is used to learn a mapping from a neutral expression

to one of an underrepresented class. This is essentially a form of style transfer, where styles

are defined as emotional expressions. In this way, additional images can be generated with the

broad characteristics of the neutral faces but portraying different emotions. It is not difficult

to see such a method having an application in medical imaging - a conditional GAN could be

learned to add pathology to otherwise healthy images in order to introduce greater anatomical

variance to a small pathological training set. A somewhat opposite approach was also used

in [Antoniou et al., 2017], where instead to imposing the relevant characteristic (eg. emotion)

onto a set of images with irrelevant variation (eg. hair, eye, skin colour etc), the irrelevant

variation is learned and imposed on an image displaying the relevant characteristic.

The majority of methods discussed here incorporate some additional knowledge into the data

generation process in the form of a model (bold) or dataset (italics): In [Chartsias et al., 2017],

the authors use labelled CT images as a source from which to generate labelled MR images;

in [Shrivastava et al., 2016], the authors use model generated simulated images as source im-

ages; in [Mok and Chung, 2018], the authors use random deformations applied to real seg-

mentation maps and produce images conditioned on these; in [Zhu et al., 2018], the authors

use faces displaying neutral expressions as source images to produce images with a particular

expression; in [Antoniou et al., 2017], the authors use a related dataset to learn a set of realistic

modes of variation which can be imposed on a training image. While these are therefore no

longer strictly pure data-driven augmentation procedures (using training data only), they do

make an important point - that incorporating information from another source can potentially

yield significant improvements beyond what’s possible with pure data-driven approaches. This

style of data augmentation is investigated further in Chapter 6 of this thesis.
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Pure data-driven GAN based augmentation methods, where no additional information is pro-

vided beyond that which is present in the training image data, have received little attention

when compared to the conditional approaches described above, with only a few very recent pa-

pers found to be making use of such techniques in medical imaging. In [Amitai and Goldberger, 2018],

synthetic liver lesions are generated using a DCGAN architecture and used to augment a dataset

for the purpose of lesion classification. A similar approach is taken in [Moradi et al., 2018]

where synthetic normal and abnormal chest radiographs are generated using two DCGAN-like

architectures. Both of these papers report that using GANs for data augmentation leads to

improvements in classification accuracy for their respective tasks. In [Salehinejad et al., 2017],

synthetic chest X-rays are generated in order to balance an imbalanced 5 class dataset. A

separate GAN was trained on the available data from each class, after which synthetic images

were sampled so as to have an equal quantity of images from each class present in the training

dataset of a classifier, leading to significant increases in classification accuracy. Data balancing

with GANs has also been proposed in [Mariani et al., 2018].

These are some intriguing results which merit further investigation. If indeed it is the case

that GANs can be used as a simple prepossessing step, there may be potential to improve the

training of learning algorithms in many applications, with no additional data being required. It

also asks the question - How does a GAN learn to produce information which a classical (non-

GAN) CNN cannot extract from the same data? The answer is unclear and warrants further

investigation, but could be a consequence of loss function. The use of an adversarial loss could

be leading to better internal representations of the data within the network. Alternatively, an

adversarial loss means that GANs may be less prone to overfitting than classical CNNs, with

their outputs being a broader representation of the data than a CNN would typically learn.

Elucidating exactly why this is could lead to better loss functions being designed for classical

CNN training. While in [Amitai and Goldberger, 2018, Moradi et al., 2018], GANs are used to

grant an improvement by augmenting the training data in classification tasks, there are also

likely improvements to be made in segmentation tasks. This is investigated in Chapter 5 of

this thesis.
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3.4 Is synthesis worth it?

The work in this thesis focuses on the topic of image synthesis, however, it could be argued

that synthesis would not be necessary if learning algorithms were sufficiently trained with

proper regularisation since synthesis itself invents no new data. This asks two questions in

the context of this thesis. First, what is the advantage of using image-to-image synthesis,

rather than learning directly from the modalities which are available? And second, how can

training methods to generate synthetic training data lead to improvements in imaging tasks if

such images contain no information which could have otherwise been learned from the original

dataset?

To address the first question, we can consider that synthesis does allow us to indirectly inject

more information into the learning process in the form of the synthesis model. Such a model

must have been trained on examples of both modalities, and therefore encodes more information

than a model trained on a single modality. This could, for example, be in the form of a

spatial prior learned from across both datasets. The information contained in images which are

then passed through this synthesis model becomes augmented with the additional information

encoded within the model. Another benefit of synthesis is that it allows domain knowledge to

be combined with a data-driven approach. For example, it may be known that a particular

synthesis operator, which could be as simple as a Gaussian filter, increases the signal-to-noise

ratio for the features one wishes to detect. It has been shown [Maier et al., 2018] that hard-

coding these “known operators” is better than allowing a network to learn them for itself.

This suggests that, if it is known that a particular form of image synthesis can be beneficial

in detecting a particular feature, it is better to do this explicitly rather let the model learn it.

Taken to the extreme, one could argue that a reconstructed image contains no more information

that the raw data provided by an imaging device, however, learning from an image synthesised

from this data is usually preferable to learning from the raw data itself.

The second question, regarding how synthetic data produced from a dataset improves algorithm

performance when it contains no additional information beyond that which the dataset already

contained, is more difficult. Where no new information is present, one would not expect an al-
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gorithm trained on the synthetic data to outperform one trained on the original data. However,

as described earlier, this effect has been observed in multiple studies. If this improvement does

not stem from additional information, it must come as a result of the algorithms themselves.

For example, training a GAN prior to a segmentation network means we are using three net-

works to process the data, therefore it could be that the improvement seen is simply a result

of the training of more parameters. However, if this were the only reason, one would expect

that increasing the size of the segmentation network would have the same effect, which is not

the case. Instead, it is our belief that the improvement comes as a result of incorporating a

different loss function, namely, the adversarial loss within the GAN. The mechanism for this

is not clear, though it could be due to the adversarial loss being “softer” than traditional loss

functions. In abstract terms, an adversarial loss ensures that “A must be like B”, whereas

traditional loss functions try to ensure that “A must equal B”. In this way the training data is

seen more like a continuous distribution as opposed to a set of discrete points, thereby acting

against overfitting, particularly when the training dataset is small.

It is for these reasons that we believe the study of image synthesis is extremely relevant within

the medical imaging domain, and that its appropriate use can yield significant improvements

in multiple areas from across the discipline.



Chapter 4

Brain Lesion Segmentation through

Image Synthesis and Outlier Detection

4.1 Introduction

Cerebral Small Vessel Disease (SVD) can manifest in a number of ways, many of which result in

hyperintense regions visible on T2 Magnetic Resonance (MR) images. The accurate automatic

segmentation of these lesions is a key step in the diagnosis and study of SVD has been the

focus of many of the methods reviewed in Chapter 3. However, these approaches tend to be

limited to certain types of pathology, as a consequence of either restricting the search to the

white matter or by training on an individual pathology.

This chapter describes a general approach to White Matter Hyperintensity (WMH) segmen-

tation using modality transformation and outlier detection which is able to detect abnormally

hyperintense regions on Fluid-attenuated Inversion Recovery (FLAIR) regardless of the under-

lying pathology or location. This approach uses a combination of image synthesis, Gaussian

mixture models and one class support vector machines, and needs only be trained on healthy

tissue.

A novel modality transformation method using kernel regression to learn the expected relation-

101
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ships between T1 and FLAIR intensities at each location within the brain is first presented. This

method is particularly suited to the task of “pseudo-healthy” image synthesis in the presence

of T1 visible pathology. Subtraction of the pseudo-healthy FLAIR image from the acquired

FLAIR image then gives an indication of pathology. Gaussian Mixture Models (GMMs) are

then used to locate regions of the FLAIR image which are abnormally bright. These two pieces

of information are combined with an SVD atlas within a one class classification framework and

the output is post-processed using a Conditional Random Field (CRF).

The described method is unsupervised in the sense that it does not require any manually

segmented ground truth images to train on, and is, therefore, less prone to overfitting than

supervised methods. It is also flexible enough to segment a wide range of abnormalities without

needing to be trained on examples of different pathologies. It does, however, need to be trained

on non-pathological tissue. This can either be from images of healthy subjects, or from the

regions outside of manual segmentations of pathological images.

The remainder of this chapter is structured as follows. Section 4.2 contains a brief review of the

most relevant areas from Chapters 2 and 3. Section 4.3 describes both the synthesis method and

how the resulting images are used to form lesion segmentations. Next, Section 4.4 describes

a number of experiments which were carried out to compare the described method to three

established methods, while Section 4.5 contains the results of these experiments along with a

discussion. The chapter is then concluded in Section 4.6 with some discussion on potential

avenues for future research.

4.2 Background

Of the proposed methods to segment White Matter (WM) lesions, very few are publicly

available. Of these, the most common comparator methods belong to the Lesion Segmen-

tation Toolbox (LST). The LST contains two methods, the Lesion Growth Algorithm (LST-

LGA) [Schmidt et al., 2012] and Lesion Prediction Algorithm (LST-LPA). Both methods were

developed for the segmentation of Multiple Sclerosis (MS) lesions which, while caused by a dif-
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ferent process, appear similar on MR images (see Section 2.4). Due to these similarities in the

appearance of MS and WM lesions, MS [Garcia-Lorenzo et al., 2013, Lladó et al., 2012] and

WM lesion segmentation algorithms are often used interchangeably. As such, both methods

from the LST are commonly used as benchmarks when evaluating hyperintense lesion segmenta-

tion algorithms. Another publicly available method is LesionTOADS [Shiee et al., 2010], which

simultaneously performs both tissue and lesion segmentation in an unsupervised manner. At

the moment, LST-LPA is the closest the field has to a readily available and robust gold stan-

dard, having been shown to consistently offer good results across a number of datasets despite

being primarily an MS lesion segmentation tool. However, because of this, LST-LPA has a

number of limitations when it comes to detecting other sources of hyperintensity, particularly

those which extend into the grey matter such as cortical infarcts, as it employs a WM mask to

restrict its search.

The idea of pseudo-healthy image synthesis, where the aim is to synthesise a pathology free

subject specific image in a target modality, has been explored previously and is discussed in

detail in Section 3.1.3. Pseudo-healthy image synthesis has been used in several applications:

in [Ye et al., 2013] to perform tumour segmentation, in [Tsunoda et al., 2014] to detect lung

nodules on Computed Tomography (CT) images, and was suggested as a potential method for

WM lesion segmentation in [Roy et al., 2013].

Pseudo-healthy image synthesis is most useful when pathology is not visible on one modality,

but visible on another. By synthesising a pathology free version of the pathological modality,

abnormalities can be identified through subtraction. This can be a challenge in SVD where

pathology can be visible on both T1 and FLAIR images (Figure 2.7). In fact, existing methods

have been demonstrated to synthesise hyperintensities [Roy et al., 2013, Jog et al., 2017], and

even exploit this [Jog et al., 2015] for the purpose of lesion segmentation in the absence of

FLAIR. However, this chapter shows that careful design of the synthesis algorithm does allow

for a pathology free FLAIR to be synthesised in the presence of T1 visible pathology.
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4.3 Method

4.3.1 Overview

The proposed method treats the problem of lesion segmentation as an outlier detection task.

The first stage is to produce two likelihood maps:

LSYN, is formed by synthesising a healthy looking FLAIR image from a subject’s T1 image.

Subtraction of this synthetic FLAIR image from the subject’s true FLAIR image produces a

difference image which represents the likelihood of a FLAIR voxel intensity to be abnormal,

given the subject’s T1 image and an expected pre-determined relationship between healthy T1

and FLAIR intensities. This value is low in the presence of healthy tissue and high in the

presence of pathological tissue.

LFLAIR, represents the likelihood for a given FLAIR voxel to be abnormal given a pre-computed

GMM of expected FLAIR intensities at that location.

These likelihood maps are then combined with a White Matter Hyperintensity of Presumed

Vascular Origin (WMHpvo) probability atlas within a one-class classification framework to pro-

vide a single likelihood map reflecting the degree of abnormality at each voxel. Finally, a CRF

is applied, resulting in a binary segmentation.

LSYN, LFLAIR and the one-class classifier used to combine them all require a training set of

healthy subjects. LSYN a requires both T1 and FLAIR images, whilst LFLAIR and the one-class

classifier require FLAIR images. There is no requirement for the three training sets to include

the same subjects, however, it is practical to use the same set of FLAIR images. The T1 and

FLAIR images in this dataset are therefore referred to as Ttrain and Ftrain respectively.

4.3.2 Preprocessing

Preprocessing is required to normalise the images to a standard set of properties, ensuring

subsequent steps are robust to the heterogeneous image characteristics found both within and
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between medical imaging datasets. These preprocessing steps also compute a number of segmen-

tations and transformations which are required in subsequent steps. Preprocessing is identical

for both the training set and the images to segment, which are referred to from here as the test

set.

Registration

Registration is performed using the MIRTK suite of registration tools 1. A rigid transfor-

mation from the T1 to FLAIR image space is first computed. A Free Form Deformation

(FFD) [Rueckert et al., 1999] transformation (Resolution levels: 40mm, 20mm, 10mm, 5mm;

Image dissimilarity measure = Sum of Squared Differences (SSD); Bending energy weight = .1)

is then computed between the T1 image in FLAIR image space and an Montreal Neurological

Institute (MNI) template 2. The inverse transformation is also computed.

Bias correction, brain extraction and anatomical segmentation

A multi-atlas based anatomical segmentation tool called Multi-Atlas-Label Propagation with

Expectation-Maximisation based refinement (MALPEM) [Ledig et al., 2015] (described in Sec-

tion 3.2.2) is applied to the T1 image providing both binary and probabilistic segmentations

of 139 anatomical structures. As part of the segmentation process, MALPEM applies bias

field correction using the N4 [Tustison et al., 2010] algorithm and brain extraction using the

PINCRAM algorithm [Heckemann et al., 2015], outputting the resulting T1 image and brain

mask. WM and Grey Matter (GM) probability maps are computed from the probabilistic

segmentations.

Bias correction is performed separately on the FLAIR image using the N4 algorithm and the

T1 brain mask is transformed to FLAIR image space, re-sampled using nearest-neighbour in-

terpolation and used to crop the FLAIR image.

1Available at: biomedia.doc.ic.ac.uk/software/mirtk/
2ICBM 2009a Nonlinear Symmetric, available at: www.bic.mni.mcgill.ca/ServicesAtlases/

ICBM152NLin2009
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Intensity normalisation

Intensity normalisation is an especially important procedure since many subsequent steps in-

volve direct comparisons between voxel intensities across images from different subjects. How-

ever, the nature of hyperintense lesions means that several commonly used normalisation meth-

ods are inadequate. The often used approach of linear scaling of intensities to the range [0, 1]

with a certain percentage of the lowest and highest intensities saturated at 0 and 1 respec-

tively [Cao et al., 2014] will result in different intensity mappings dependent on the volume

of hyperintense lesions compared to the percentage of voxels saturated. Histogram match-

ing [Ye et al., 2013] suffers similar problems in the presence of hyperintensities. Scaling images

to have a zero mean and unit variance [Hertzmann et al., 2001] is also inadequate as the degree

of hyperintensity will bias both the mean and the variance of the image.

To make intensity normalisation invariant to the degree of hyperintensity and atrophy common

in elderly subjects, the method used in [Huppertz et al., 2011] is employed. Two sets of voxels

corresponding to WM and GM are produced by filtering probabilistic WM and GM masks to

include only voxels with a > 95% probability of being of that tissue class. Next, these two sets

are further refined by intensity to contain only intensities which fall within a 95% confidence

interval so as to remove outliers. This leaves two sets which are highly likely to contain WM and

GM, and which are not outliers within these groups, therefore corresponding only to healthy

tissue. The mean of each set of intensities is calculated to give the expected intensity of healthy

tissue in the WM and GM. The mean of these two values is subsequently calculated to provide

a single fixed point. Finally, image intensities are scaled linearly such that this fixed point is

set to the arbitrary value of 1000.

This method is applied to both the T1 image and FLAIR image, using the probabilistic WM

and GM masks derived from the previously computed anatomical segmentations. In the case

of the FLAIR image these masks are transformed to FLAIR image space and re-sampled using

linear interpolation.
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4.3.3 Training

In order to produce LSYN and LFLAIR, two sets of models are trained. The first is a synthesis

model that learns the relationship between T1 and FLAIR intensities. The second is a GMM

which learns the expected intensity distributions within a FLAIR image.

To account for imperfect tissue segmentation, common in the presence of hyperintense lesions,

and for intensity variations within a tissue type, both sets of models are computed in a voxel-

wise manner within MNI space. A separate model is produced for each voxel, computed using

information taken from a patch around that voxel in each co-registered training image. The

process of training both models is summarised in Figure 4.1.

Synthesis model

The key step for the computation of LSYN is the calculation of a pseudo-healthy FLAIR image

from a subject’s T1 image. The proposed method uses voxel-wise kernel regression to learn a

direct mapping between healthy T1 and FLAIR intensities at each voxel.

A set of n training image pairs Ttrain and Ftrain are transformed to MNI space using the

transformations calculated during preprocessing and re-sampled onto a 1mm isotropic voxel

lattice. Intensities in Ttrain are capped at a value tmax. At each voxel x, two one-dimensional

vectors tx and fx are formed from Ttrain and Ftrain respectively containing the voxel intensities

from an a-by-a-by-a patch around x in each image, with each vector being of length na3. A

kernel regression model Mx with bandwidth h is computed relating tx to fx and evaluated at

m equally spaced values k between 0 and tmax.

Mx(k) =

∑na3

i (K((tx(i))/h)fx(i))∑na3

i K((k − tx(i))/h)
, K(p) =

1√
2π
e−

1
2
p2 . (4.1)

Higher values of m and tmax result in more accurate synthesis at the cost of model size and

computation time, whilst the number of voxels (na3) must be sufficiently large to contain enough

information to fit the model. Preliminary experiments showed that m = 100, tmax = 1500, n =
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Figure 4.1: An overview of the training process.
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20 and a = 5 were sufficient to produce useful images whilst remaining tractable (< 24 hours

to train, < 1s to synthesise), with larger values having negligible impact on final results.

An example showing the models produced at two voxels is shown in Figure 4.2. The top

right figure clearly displays the desired relationships in a location which can contain WM,

GM or Cerebrospinal Fluid (CSF). The brightest T1 intensities correspond to darker FLAIR

intensities, corresponding to WM appearing brighter on T1 images than on FLAIR. GM appears

darker on T1 images and brighter on FLAIR, explaining the peak of the model. Finally, the

darkest T1 intensities correspond to CSF, as is the case on FLAIR, which is represented by

the leftmost section of the model. However, the top left figure shows the model formed in a

location containing only WM, equivalent to the rightmost section of the previous model. Since

there is no more information upon which to fit the model, the model extrapolates to predict

the same FLAIR intensity across the whole range of T1 intensities. This gives the model the

desired ability to predict normal looking WM even in the presence of hypo-intense T1 visible

lesions, such as those in Figure 2.7. This provides a set of models which can be used to predict

a FLAIR image corresponding to a T1 image on a voxel-by-voxel basis.

A consequence of using kernel regression for synthesis is that the contrast between WM and GM

in the synthetic image is reduced. This is due to the smoothing effect encouraging the model

away from the extreme intensity values and towards the mean. For a given T1 intensity, the

predicted FLAIR intensity is a weighted average of a set of observed FLAIR intensities. Because

of this, the predicted FLAIR intensity will necessarily lie between the maximum and minimum

observed intensities. As a result, the very highest and lowest FLAIR intensities would never

be synthesised. To correct this, an intensity transfer function is computed for each training

subject by using histogram matching (as implemented in MATLAB function imhistmatch with

256 histogram bins) to match the intensity histogram of the synthesised image to that of the

FLAIR image. The median of these transfer functions (Figure 4.3) is computed and used to

correct all images, the effects of which can be seen in Figure 4.4. As can be seen in Figure 4.3,

the primary effect of this transformation is to increase the contrast between the extremes,

thereby countering the tendency towards the mean caused by the regression model.
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Figure 4.2: Two models produced using kernel regression to act as a mapping from T1 to
FLAIR intensities. Top left: A model produced at a location within the WM which contains
only WM voxels. Top right: A model produced at a location which can contain WM, GM or
CSF voxels. Bottom left: Mean T1 training image. Bottom right: Mean FLAIR training image.
Note that the model produced from WM, GM and CSF voxels is more complex than the one
produced within the WM as a result of having to capture more intensity relationships, and that
the extrapolation in the case of the latter provides the ability for the model to predict healthy
WM FLAIR intensities even in the presence of T1 visible pathology.

Gaussian Mixture model

LFLAIR is a representation of the likelihood of a voxel intensity being abnormal given previous

knowledge of the expected distribution of intensities at each location. The distribution of
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Figure 4.3: Transfer functions computed to map synthetic FLAIR images to their corresponding
training FLAIR images. Thick blue line indicates the median which is used to correct all images.

Figure 4.4: Effects of intensity correction and registration of synthetic images on a (top)
pathology free and (bottom) pathological subject. (A) FLAIR image. (B) Rigidly registered
synthetic image. (C) Difference image from (A) to (B). (D) Rigidly registered intensity corrected
synthetic image. (E) Difference image from (A) to (D). (F) FFD registered intensity corrected
synthetic image. (G) Difference image from (A) to (F). Note that the intensity correction and
FFD registration do not prevent detection of the pathology (arrows).
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intensities found across the whole brain is wide and complex, however at a voxel level, these

distributions become narrower and easier to represent. It is common to treat intensities within a

single tissue class as belonging to a Gaussian distribution, hence why many tissue segmentation

algorithms are based upon an Expectation Maximisation (EM) framework [Zhang et al., 2001].

Intensities at a single voxel across a number of co-registered images will therefore likely belong

to either one (when the voxel lies within a tissue class) or a mixture of two (when the voxel lies

on the boundary between tissue classes) Gaussian distributions. An EM approach is therefore

used [McLachlan et al., 2019] to learn a GMM with two components from Ftrain at each voxel

in MNI space. Due to a limited number of training images and the need for a lot of samples to

confidently fit the GMM, voxels in a b-by-b-by-b patch around the target voxel are used, whilst

boundary cases are handled by only considering non-zero intensities. Preliminary experiments

showed that b = 5 provided sufficient information to confidently fit the models with 20 training

images. An example showing the models produced at the same two locations as shown in

Figure 4.2 is shown in Figure 4.5.

4.3.4 Testing

Having produced the two sets of models, they can now be applied to the test images to produce

LSYN and LFLAIR. A summary of the process can be seen in Figure 4.6.
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Figure 4.5: Two GMMs learned to represent the normal distribution of FLAIR intensities
around their corresponding voxel. Top: A model produced at a location near the boarder
between GM and WM. Middle: Mean FLAIR training image. Bottom: A model produced at a
location within the WM. Note that the model produced from the border between WM and GM
has two distinct components representing the two tissue types, whereas the model produced
from within the WM contains two very similar components.
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Figure 4.6: An overview of the process of creating the LSYN and LFLAIR likelihood maps.
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LSYN

To synthesise a voxel x of synthetic image S using regression model M , the corresponding voxel

in the subject’s T1 image, Tx, is capped at tmax and turned into an index i = dmTx/tmaxe. This

index is then used to index into Mx to give Sx. The intensities of S are finally adjusted using

the previously computed transfer function. An example of successful pseudo-healthy synthesis

in the presence of WMH can be seen in Figure 4.8.

As we will be performing voxel-wise comparisons of F and S, it is important to have a good

registration between them. As discussed earlier, studies have shown the benefits of using

synthetic images to achieve more accurate multi-modal registrations by reducing the problem

to a mono-modal one between the synthetic and target images. S is therefore registered directly

to F, producing SF. Despite this registration theoretically being rigid, a small non-linear term

is introduced. This is to make the registration more robust to artefacts present in the either

one of the images, in particular, distortions caused by eddy currents, and by partial volume

effects often caused by FLAIR images having a large slice thickness.

A special case must be made for the region around the ventricles. Small hyper-intensities

around the ventricular wall known as “bands” and “caps” are common in ageing and can be

a result of several phenomena [Barkhof et al., 2011]. The presence of these bands and caps in

the otherwise healthy training data leads to the undesired synthesis of clinically relevant WMH

around the ventricles, see Figure 4.7. To avoid this leading to inaccurate segmentations, the

intensities of WM in the synthetic images within 15 mm of the ventricles, as determined by a

distance transform, are capped at the value corresponding to the expected intensity of healthy

WM in this region.

LSYN is then computed as F−SF. At this point an approximate segmentation could be formed

by applying a threshold to LSYN, however, there are situations which could cause errors to

arise in the resulting segmentation. Artefacts in the T1 image, particularly ringing artefacts,

will cause errors in the synthesised image. These could introduce both false positives (seen in

Figure 4.9), and false negatives should the ringing negate the signal from a lesion. Cortical



116 Chapter 4. Brain Lesion Segmentation through Image Synthesis and Outlier Detection

Figure 4.7: An example where periventricular WMH has been synthesised. Left: Normalised
T1 image. Right: Corresponding synthetic FLAIR image.

infarcts can sometimes be synthesised as hyper-intense as a result of being treated like GM due

to their proximity to the cortex, seen in Figure 4.10. Whilst juxtacortical infarcts are brighter

than normal GM on T2-w images, the difference in intensity will be small, and could fall under

a threshold. Finally, the high slice thickness common in FLAIR images can result in partial

volume effects. These are particularly visible in the axial plane at the boundaries between CSF

and WM or GM, such as at the top of the 3rd and 4th ventricles and the base of the frontal and

temporal lobes. The synthetic image formed from the higher resolution T1 image will not suffer

these effects and will, therefore, appear brighter within the brain matter, leading to potential

false positives.

In order to limit false positives due to T1 artefacts and FLAIR partial volumes, and to reinforce

areas of small differences in LSYN such as could be seen in the case of lesions in or near the

cortex, additional information related to the brightness of the FLAIR image is required. This

is obtained from LFLAIR.
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Figure 4.8: A case where a lesion is correctly synthesised as the same intensity as the sur-
rounding WM. Left: T1 image. Middle: FLAIR image. Right: Corresponding synthetic FLAIR
image.

Figure 4.9: A case where ringing artefacts in a subject’s T1 image results in errors in the
synthesised FLAIR image whereby juxtacortical WM is synthesised as GM in the indicated
locations. Left: T1 image. Right: Corresponding synthetic healthy FLAIR image.

LFLAIR

To compute LFLAIR, a relative likelihood is computed at each voxel reflecting the likelihood

of that voxel being abnormal given the previously computed GMMs. To assign a likelihood to

a given voxel, x in a test image, the log-likelihood of the intensity of the voxel is computed

using the corresponding two- component GMM, parameterised by weights (w1,x,w1,x), means
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Figure 4.10: A case where a lesion close to the cortex is mistakenly synthesised as hyper-intense.
Left: T1 image. Middle: FLAIR image. Right: Corresponding synthetic FLAIR image.

(µ1,x,µ2,x) and standard deviations (σ1,x,σ2,x). The resulting value will be large for both abnor-

mally hyper- and hypo-intense voxels. To ensure only hyper-intense voxels are identified the

likelihood is set to zero in regions with a FLAIR intensity Fx less than mean of the average

intensities of GM and WM, previously set to 1000 during normalisation.

LFLAIR
x =


w1,x

1√
2σ2

1,xπ
e

Fx−µ21,x
2σ21,x + w2,x

1√
2σ2

2,xπ
e

Fx−µ22,x
2σ22,x if Fx ≥ 1000

0 otherwise

(4.2)

4.3.5 Combining LSYN and LFLAIR

To combine the information from LSYN and LFLAIR, a similar framework to that proposed

in [Karpate et al., 2015], where the authors combine a number of probability maps using a

supervised Support Vector Machine (SVM), is used. Unsupervised one-class SVMs, such as

in [Azami et al., 2016], were chosen to remove the need for labelled data and to maintain the

proposed method’s flexibility by allowing it to be used for general abnormality detection and

not be restricted to a particular pathology present in a training set.
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Training

The SVMs are trained using the same subjects which formed the training set used to train

the models used to produce LSYN and LFLAIR, with both likelihood maps in SVM space. A

3-by-1 feature vector is computed for each voxel containing the values of LSYN, LFLAIR and

an in house probabilistic WMHpvo atlas generated by averaging co-registered manual WMHpvo

segmentations, a full description of which can be found in [Chen et al., 2015a].

A separate one-class SVM is trained for WM and GM. Fifty-thousand training points are ran-

domly sampled from the feature vectors coming from each tissue class with an outlier percentage

of 5% and 0.3% for the WM and GM classifiers respectively. These percentages were chosen em-

pirically by visually assessing the resulting classifier’s tendency to over/under-segment within

each tissue class. Apparent over-segmentation lead to the outlier percentage being increased,

whilst under-segmentation lead to a decrease.

Testing

To analyse a test image, the corresponding LSYN and LFLAIR likelihood maps are combined

with the WMHpvo atlas to form a feature vector at each voxel. Vectors are then classified using

the previously trained one-class SVM corresponding to the tissue type which has the greater

probability at that voxel. If the voxel falls outside of the decision boundary, and therefore

considered an outlier, a score is formed for that vector defined as its distance from the decision

boundary. A single likelihood map, LSVM, is formed from these scores.

CRF refinement

To binarise and remove false positives from LSVM a final post processing step is applied, using

a 3-dimensional (3D) fully connected CRF, described first in [Krähenbühl and Koltun, 2011]

and extended to 3D and implemented in [Kamnitsas et al., 2017b].
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Protocol 1 2 3

Number (test/train) 18/5 70/11 39/4

T1 TR/TE/TI (ms) 9/440 9.7/3.984/500
FLAIR TR/TE/ TI
(ms)

9002/147/2200 9000/140/2200

Ground Truth Expert corrected his-
togram segmentation

Multispectral colour-
fusion-based semi-
automatic segmenta-
tion 1

Expert corrected his-
togram segmentation

Lesion Types Present WMHpvo WMH / Cortical in-
farcts

WMHpvo

Table 4.1: Summary of the acquisition and segmentation protocols present in the dataset.
1[Valdes Hernandez et al., 2015, Valdés Hernández et al., 2013]

4.4 Experiments

To evaluate the performance of the proposed method, it is compared to three of the publicly

available methods for lesion segmentation. Two methods from the LST, LST-LGA and LST-

LPA, and LesionTOADS 3.

4.4.1 Data

The data for evaluation comes from the Edinburgh SVD dataset described in 2.6.2 and sum-

marised in Table 4.1. The 20 subjects with the lowest lesion volume (so as to maximise healthy

tissue) were selected to form Ttrain and Ftrain and excluded from further analysis. The manual

masks for these subjects were dilated by one voxel and used to mask out regions of pathology

from the training process. Note that this step would not be necessary if pathology free subjects

were available to form the training set.

4.4.2 Evaluation metrics

A set of subject-wise similarity metrics were computed to quantify the performance of each

method by comparing segmentation volumes Va to target volumes Vt, and corresponding sur-

3Available at: www.nitrc.org/projects/toads-cruise
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faces Sa and St. These include Dice Similarity Coefficient (DSC), Average Symmetric Surface

Distance (ASSD), Hausdorff Distance (HD), Precision, Recall and Intra Class Correlation (ICC)

as defined in Section 3.2.1. Scatter and Bland-Altman plots along with their associated metrics

were also calculated, in addition to:

• Correlation with Fazekas score: Spearman’s rank correlation coefficient calculated be-

tween |Va|/|Vic| and a combined Fazekas score over all subjects, where |Vic| is a subject’s

intercranial volume mask. A Fazekas score is a clinical measure of WMH, comprising

of two integers in the range [0, 3] reflecting the degree of periventricular WMH and deep

WMH respectively. For the purposes of this comparison, the two scores were added giving

a single value in the range [0, 6],

and two volume dependent metrics which provide additional insight into the conditions in which

each method performs well, and where they are limited:

• Lesion volume dependent DSC (DSCl): The DSC calculated within the bounding box of

each lesion, separated into groups corresponding to very small (< 0.01 ml), small (0.01-

0.1 ml), medium (0.1-1 ml), large (1-10 ml), very large (> 10 ml) lesions. A lesion is

defined as a single connected component within the reference segmentation. The bounding

box of a lesion is defined as the smallest volume 3D box containing the lesion with

dimensions parallel to the axes of the global coordinate system,

• Subject volume dependent DSC (DSCs): The DSC for subjects separated into groups

corresponding to very low (< 5 ml), low (5-10 ml), medium (10-15 ml) and high (>15 ml)

lesion volume according to reference segmentations.

4.4.3 Compared methods

The methods were selected for comparison, LST-LPA, LST-LGA and LesionTOADS, are sum-

marised below. See Section 3.2.2 for further details.
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• LST-LGA: One of the methods available in the LST. LST-LGA [Schmidt et al., 2012] is

an unsupervised method which requires both a T1 and a FLAIR image. The T1 image is

used to create a tissue type segmentation using an expectation maximisation approach.

These tissue maps are propagated to the FLAIR image and used to create an initial

lesion belief map which is binarised using a tunable threshold, κ. The authors suggest a κ

value of 0.3, although they strongly encourage that this value is optimised for a particular

dataset. The resulting segmentation is used as a seed for a region growing algorithm. The

output of the algorithm is a probabilistic lesion map which must then be thresholded.

Parameters (suggested): κ (0.3), threshold (0.5).

• LST-LPA: The second algorithm available in the LST. LST-LPA is a supervised algorithm

which has been trained on 53 subjects with severe MS lesion patterns, and requires only

a FLAIR image. A number of covariates for a logistic regression model are derived from

the FLAIR image including a lesion belief map similar to the one produced by LST-LGA.

The trained model is then used to assign a lesion probability estimate for each voxel,

which is thresholded. Despite being supervised, the fact the model has been previously

trained means it can be directly applied without requiring a training set. Parameters

(suggested): threshold (0.5).

• LesionTOADS [Shiee et al., 2010]: This unsupervised algorithm introduces lesion seg-

mentation to a previously developed structural segmentation method - TOpology pre-

serving Anatomical Segmentation (TOADS) - by incorporating an additional lesion class.

TOADS performs iterative segmentation driven by both statistical and topological atlases

to ensure intensity and topological constraints are observed. LesionTOADS introduces a

new class within the WM, with the union of the lesion and WM class following the same

topological constraints as the original WM class. The algorithm requires both a T1 and

FLAIR image and outputs both a lesion and structural segmentation.

For each method, experiments were performed using both default parameters and optimised

parameters based upon a grid search across one or two parameters which maximised DSC. For

the proposed method these parameters relate to the CRF, with the default parameters being
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those suggested in the CRF implementation 4 adjusted for an isotropic voxel grid. During

optimisation, two parameters were varied. w(2) adjusts the relative weighting between the

two CRF energy terms, and σγ determines how strongly homogeneity within the segmented

region is enforced. Average subject-wise metrics and correlations for each method can be

seen in Table 4.2, whilst volume dependent metrics for the optimal parameters can be seen in

Tables 4.3 and 4.4. Significance testing at a 5% significance level was performed using Wilcoxon

signed rank tests on subject wise metrics, and by comparing 95% confidence intervals for ICC.

Whilst LST-LPA and the proposed method successfully ran on all subjects, LST-LGA and

LesionTOADS failed to run on two and three subjects respectively. Intercranial volume was

also unavailable for two subjects. Results are given across all subjects for which the method

was successful, whereas comparisons between methods were only taken across subjects which

were successfully processed by both methods.

The results were also analysed by grouping subjects into the three acquisition protocols and

computing the average DSC over each protocol, giving further insight into the strengths and

weaknesses of each method, Table 4.5.

4.4.4 Clinical validation

In addition to the above quantitative evaluation, a clinical validation was also performed by

examining the coefficients of a general linear model formed from the normalised segmentation

volumes of each method and a number of clinical and radiological variables. These coeffi-

cients are then compared to those formed from a model relating the variables to the reference

segmentations. The models are composed as such:

4Available at: github.com/Kamnitsask/dense3dCrf
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V ol%method
i =β0 + β1 Agei + β2 Genderi + β3 Diabetesi +

β4 Hypertensioni + β5 Hyperlipidaemiai + β6 Smokingi +

β7 Cholesteroli + β8 PV SBGi + β9 DeepAtrophyi + εi,

(4.3)

where V ol%method is the lesion segmentation volume for each method as a percentage of inter-

cranial volume, i indicates a particular subject, Diabetes, Hypertension and Hyperlipidaemia

are binary variables, Smoking is an integer (range [0,2] -never smoked, used to smoke, smokes),

Cholesterol (mmol/L), PV SBG is a radiological observation reflecting the number perivascular

spaces in the basal ganglia [Potter et al., 2015], DeepAtrophy is a radiological observation re-

flecting the degree of deep cortical atrophy [Farrell et al., 2009], ε is a residual error term and

β is the set of coefficients which minimises
∑

i εi. Gender is included to remove bias but is not

considered a risk factor and therefore not reported.

The strength of association between each clinical or radiological variable and the lesion volume

produced by each method were measured by conducting a t-test for each coefficient βi individ-

ually under the hypothesis that βi = 0. The test statistic is found by dividing the coefficient

estimate by its standard error computed during the fitting process. By setting a 5% significance

level, the set of variables which have the strongest association with the measured lesion volume

was found for each method.

An additional set of models were formed by replacing PV SBGi in Equation 4.3 with Fazekasi,

being the combined Fazekas score for subject i. Whilst expected to be strongly associated,

comparing the β8 coefficient calculated for each automated method to that calculated for the

reference segmentations provides a further indicator as to which methods more accurately model

the process of producing the reference segmentations.

Note that evaluation is carried out across only the subjects (n = 96) for which all clinical and

radiological variables are available.
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4.5 Results and Discussion

When comparing methods it is necessary to understand the aims and limitations of each al-

gorithm. The methods contained in the LST were developed to segment MS lesions, while

LesionTOADS aims to segment both WMH and MS lesions. These methods are therefore only

interested in lesions within the WM, and restrict their search to reflect this using a WM tissue

segmentation. On the other hand, the proposed method aims to segment all hyperintense le-

sions on FLAIR, including WMH, MS lesions and cortical infarcts, and as such, cannot restrict

the search to the WM. Both approaches have advantages and disadvantages, which are reflected

in the results and discussed in the following sections. The main advantage of restricting the

search to the WM is that it avoids false positives occurring in the GM. This is important as

GM can have a similar intensity distribution to WMH and MS lesions on FLAIR, and can

therefore be a considerable source of false positives. The obvious drawback is that such meth-

ods will struggle to identify cortical infarcts. Figure 4.11 shows some example segmentations

demonstrating the consequences of these approaches.
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Figure 4.11: A selection of segmentations showing the features of the proposed method and
LST-LPA. (A) and (B) show cases where both methods perform well. (C) shows a case where
the proposed method produces false positive voxels (arrow) in the GM, not present in LST-LPA
which does not consider GM. (D) shows a large infarct extending into the cortex where the
extension into the cortex (arrow) is poorly segmented by LST-LPA. (E) shows a case where
small lesions are missed by LST-LPA, despite considerable over segmentation (arrow).
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Table 4.2: Table showing the results of each method over the whole dataset. Optimal pa-
rameter combinations (see 4.4.3) indicated by *. Statistical differences between the closest
competitor (optimised LST-LPA) and the proposed method at a 5% significance level are bold.
For comparison, correlation between ground truth volumes and Fazekas scores is 0.829.

Method Parameters DSC ASSD HD Prec. Recall ICC Faz. Corr.

LST-LGA
κ = 0.3
t = 0.5

0.382 5.77 48.6 0.925 0.265 0.693 0.782

LST-LPA t = 0.5 0.536 2.60 37.3 0.926 0.416 0.874 0.846
LesionTOADS 0.497 2.74 34.3 0.667 0.498 0.488 0.358

LST-LGA
κ = 0.11*
t = 0.01*

0.473 4.54 39.9 0.698 0.403 0.836 0.767

LST-LPA t = 0.15* 0.683 1.62 33.3 0.759 0.681 0.952 0.805

Proposed
w(2) = 8*
σγ = 2.5*

0.703 1.23 38.6 0.763 0.695 0.985 0.862

4.5.1 Whole dataset analysis

When considering the dataset as a whole, Table 4.2 shows that the proposed method generally

outperforms the existing methods, with significant improvements in DSC, ASSD and ICC.

Despite being developed for and trained on MS lesions, LST-LPA performs very well, and is

the closest competitor across these metrics, with a significantly superior HD. This superior

HD can be explained by the reduced likelihood of false positives in the GM when compared

to the proposed method, as discussed earlier. Any tendency towards false positives far away

from real lesions, such as in the GM, will be strongly punished by HD. LesionTOADS and

LST-LGA both fall well short of LST-LPA and the proposed method. It is clear that the

suggested thresholds of 0.5 and κ of 0.3 result in considerable under segmentation and overall

poor results. It is however interesting to observe that these methods do achieve high correlations

with Fazekas scores despite lower performance compared to ground truth segmentation. This

suggests that a fully accurate segmentation may not be necessary to predict a Fazekas score. The

proposed method has the strongest correlation with Fazekas scores (0.862), which is stronger

that of the reference segmentations (0.829), though with a p-value of 0.18, it is not possible

to say conclusively that the automated method outperformed the reference segmentations in

this regard. Similarly, the power (56%, non-parametrically estimated through bootstrapping)

of the DSC comparison between LST-LPA and the proposed method suggests that additional

data would help to strengthen these conclusions.
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Figure 4.12: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage
of intercranial volume) from LesionTOADS to those from the reference segmentations.

Figure 4.13: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage
of intercranial volume) from LST-LGA to those from the reference segmentations.

The relative performance of each method compared to one another indicated by these results

are further supported by the scatter and Bland-Altman plots shown in Figures 4.12 to 4.15. We

see a clear visual improvement going from LesionTOADS to LST-LGA, to LST-LPA, and to

the proposed method, along with an improvement in the associated metrics. A common feature

of LesionTOADS, LST-LPA and LST-LGA is a tendency to underestimate lesion volumes at

larger lesion loads, whilst the proposed method appears unaffected. One contributory factor

towards this could be the intensity normalisation procedure which was chosen so as to be

unaffected by lesion load.
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Figure 4.14: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage
of intercranial volume) from LST-LPA to those from the reference segmentations.

Figure 4.15: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage
of intercranial volume) from the proposed method to those from the reference segmentations.

4.5.2 Volume specific analysis

Table 4.3: Lesion volume dependent DSC (DSCl) for each optimised method. Statistical dif-
ferences between the closest competitor (optimised LST-LPA) and the proposed method at a
5% significance level are bold.

Method <0.01 ml 0.01-0.1 ml 0.1-1 ml 1-10 ml >10 ml

LesionTOADS 0.077 0.155 0.333 0.514 0.629
LST-LGA 0.024 0.048 0.214 0.467 0.599
LST-LPA 0.094 0.198 0.496 0.691 0.797
Proposed 0.150 0.335 0.577 0.713 0.807
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Table 4.4: Subject volume dependent DSC (DSCs) for each optimised method. While the
proposed method obtains the largest DSCs values, the differences with the closest competitor
(optimised LST-LPA) are not significant

Method <5 ml 5-10 ml 10-15 ml >15 ml

LesionTOADS 0.157 0.440 0.426 0.614
LST-LGA 0.343 0.334 0.374 0.577
LST-LPA 0.558 0.615 0.569 0.762
Proposed 0.576 0.628 0.666 0.770

When the dataset is divided into subsets with different lesion volumes we see that the proposed

method performs better across all subsets. Whilst individually not significant at a 5% level

due to the lower power of the subsets, the consistency of these results leads to the significantly

higher DSC observed in Table 4.2. We also observe the trend that DSC increases as lesion

volume increases, shown in Table 4.4. This is an expected result and one which has been

frequently observed [Griffanti et al., 2016]. A similar trend is observed when examining results

on individual lesions in Table 4.3. The smaller the lesion, the lower the expected DSC. This is

a feature of DSC and can be explained by a number of factors. First, the larger lesions present

in subjects with a high total volume of lesions have a higher ratio of internal to boundary

voxels. Internal voxels tend to be more hyperintense and have more support from adjacent

voxels, leading to easier segmentation. Secondly, smaller lesions tend to be less hyperintense,

reducing the contrast with surrounding tissue, making them harder to segment. Finally if we

assume a rate of false positives due to noise or artefacts independent of total lesion volume,

these will have a much larger impact on the DSC for subjects with a low total lesion volume

than those with a high total lesion volume where the potential for true positives to counter the

effects of the false positives is much greater.

A consequence of the above is that the overall DSC reported in Table 4.2 is dominated by

the ability of the algorithm to detect large lesions. Over 80% of the total volume of lesions

belong to lesions with a size >1 ml, and over 95% belong to lesions > 0.1 ml. However, small

but strategically placed lesions can be clinically vital and the ability to detect these should

form part of the evaluation of an algorithm. The results in Table 4.3 allow us to compare the

performance of each method on differing sizes of lesion. We observe that whilst the proposed
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Table 4.5: Table comparing average DSC for each method on images belonging to each protocol.
Statistical differences between the closest competitor (optimised LST-LPA) and the proposed
method at a 5% significance level are bold.

Protocol 1 2 3

LesionTOADS 0.431 0.535 0.445
LST-LGA 0.322 0.453 0.568
LST-LPA 0.688 0.678 0.690
Proposed 0.645 0.710 0.719

method and LST-LPA get similar results on the larger lesions, the proposed method performs

much better than the other methods at detecting smaller lesions.

4.5.3 Protocol specific analysis

It is possible to gain further insight into the merits of each method by looking at the results

over each of the three protocols present in the dataset, allowing for more direct comparisons

between the methods. It is important to remember that subdividing the dataset in this way

leads to a loss of sample power. Whilst the lower sample size is offset by stronger differences

between LST-LPA and the proposed method in the cases of protocols 2 and 3 (power = 74%

and 57% respectively), these are still lower than desired and the small sample size for protocol

1 leads to a power of just 2%. As such the results should only be considered along with other

factors, such as algorithm design, to lend support to hypotheses regarding the strengths and

weaknesses of each method.

Images acquired under protocols 1 and 3 contain only WMHpvo and are therefore ideal cases for

both LST methods and LesionTOADS due to the lack of cortical infarcts. On the other hand,

images acquired under protocol 2 can contain both WMH and cortical infarcts, the latter being

more likely to be segmented by the proposed method. The results in Table 4.5 suggest that

LST-LPA performs better on protocol 3 than on protocol 2, whilst the metrics for the proposed

method are similar between the two protocols. This supports the hypothesis that LST-LPA

suffers in the presence of cortical infarcts.

Protocol 3 allows for a direct and fair comparison between the methods, as it does not contain
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cortical infarcts and is therefore not biased against the methods which only search in WM.

Despite this, the proposed method significantly outperforms the other methods on protocol 3,

indicating the superior results seen across the full dataset are not simply due to the ability to

detect cortical infarcts.

However, both the proposed method and LST-LGA perform worse on protocol 1 than protocols

2 and 3, whereas LST-LPA performs equally well on protocols 1 and 3. Whilst the power of the

comparison is extremely small, there are compelling reasons why LST-LGA and the proposed

method might not perform as well on protocol 1 as protocol 3. While LST-LPA uses only

the subject’s FLAIR image, LST-LGA and the proposed method use both T1 and FLAIR.

The FLAIR acquisition protocol differs very little across the three protocols, however, the

T1 acquisition does. The T1 images acquired under protocol 1 come from a spoiled gradient

echo sequence, as opposed to the magnetisation prepared fast gradient echo sequence used in

protocols 2 and 3. This leads to a lower contrast T1 images in protocol 1, and a negative effect

on the results of the two methods which use T1 images.

Finally, recent work [Haller et al., 2016] has shown that protocol-specific MR parameters can

systematically bias the results of automated volume estimation of a number of brain structures

by 4-5%. We must, therefore, consider the possibility of a similar effect being present when

estimating lesion volume. Whilst this is hard to observe from the results, given that the three

protocols differ by more than just MR parameters, it should be considered as a potential

contributory factor to explain the differences between the results from protocol 1 and those

from 2 and 3.

4.5.4 Clinical Validation

Looking for associations between clinical and radiological measurements and calculated lesion

volumes provides an alternative way to compare methods. Whilst the dataset used contains

a variety of pathologies and degrees of abnormality, and as such strong associations with all

risk factors are not expected, comparing what associations are found to those found using



4.5. Results and Discussion 133

Table 4.6: P-Values of the coefficients found using the model shown in Equation 4.3 . Bold
indicates statistical significance of the coefficients from 0 at a 5% level.

WMH Reference LST-LGA LST-LPA Proposed LesionTOADS

Age 0.82 0.88 0.11 0.55 5× 10−3

Diabetes 0.03 0.45 0.01 0.02 0.71
Hypertension 0.28 0.09 0.22 0.39 0.11
Hyperlipidaemia 0.37 0.87 0.24 0.29 0.78
Smoking 0.63 0.27 0.40 0.27 0.78
Cholesterol 0.95 0.04 0.12 0.11 0.53
PVSBG 4× 10−13 7× 10−7 2× 10−9 2× 10−8 0.13
DeepAtrophy 0.02 2× 10−5 3× 10−5 6× 10−4 0.40

Table 4.7: Coefficients of found using the model show in Equation 4.3 with Fazekas in place
of PV SBG. Bold indicates coefficients which are significantly different from 0 at a 5% level.

WMH Reference LST-LGA LST-LPA Proposed LesionTOADS

Age −3× 10−4 −5× 10−4 0.019 0.008 0.032
Diabetes 0.189 -0.083 0.477 0.248 -0.119
Hypertension 0.251 0.196 0.028 0.121 -0.118
Hyperlipidaemia -0.098 -0.065 -0.029 0.043 -0.103
Smoking -0.030 0.029 0.014 0.033 0.003
Cholesterol 0.107 -0.026 0.017 0.028 0.077
Fazekas 0.649 0.320 0.555 0.717 0.150
DeepAtrophy 0.002 0.012 0.013 0.010 -0.002

the reference segmentations provides confirmation that the methods being compared produce

segmentations with the same distribution across subjects.

Figure 4.6 shows that there is a strong association between the reference segmentation volumes

and perivascular spaces in the basal ganglia, deep atrophy and diabetes. This pattern is reflected

in the results from LST-LPA and the proposed method, suggesting a good correspondence

between these segmentations and the reference. The results from LST-LGA agree with two out

of the three associations but also suggests an association with cholesterol which is not present

in the reference. The results from LesionTOADS find only an association with age, sharing

no associations with that of the reference. These results are in keeping with the previous

observations, reinforcing the belief that LST-LPA and the proposed method both produce

more accurate segmentations than the other two.

The coefficients in Figure 4.7 suggest that an increase in 1 in the combined Fazekas score
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is associated with an increase in reference lesion volume of 0.649. This association is most

similar to that found using segmentations from the proposed method (0.717), with those from

LST-LPA (0.555) also similar. Again, LST-LGA is next closest, followed by LesionTOADS.

4.6 Conclusion

This chapter has presented a method for brain lesion segmentation through the use of a modality

transformation algorithm, regardless of underlying pathology. It has shown that an apparently

healthy FLAIR image can be synthesised from a subject’s T1 image and that the differences

between this synthetic FLAIR and the real FLAIR can be combined with information from

the real FLAIR to indicate the location of lesions. The resulting segmentations are objectively

superior to a number of established methods across a range of clinically relevant metrics, in-

cluding a particularly strong ability to detect smaller lesions. The results allow us to make the

following conclusions:

• The proposed method significantly outperforms the existing methods on a heterogeneous

dataset across most metrics.

• The proposed method does particularly well in cases with cortical infarcts, which are

undetected by other methods.

• One of the biggest advantages of the proposed method is its ability to detect smaller

lesions, something which, depending on the application, could be clinically highly relevant.

• Whilst not catastrophic, a limitation of the proposed method is that it requires both

FLAIR and T1 images, and any significant changes in T1 acquisition protocols may nega-

tively impact performance, see Table 4.5.

Future work will involve extending the framework to allow for the detection of unexpected

hypointensities, such as lacunar cavities, and other hallmarks of SVD such as microbleeds

and enlarged perivascular spaces. Modifying the approach to more readily handle a variety of
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acquisition protocols, either through sequence normalisation [Roy et al., 2013] or through an

extension of the regression model itself, will also make the method more robust.

Additionally, we mention in Section 4.3.4 that we must make a special case at the boundary

between the top of the ventricles and the WM due to the impact of partial volume effects being

particularly obvious in this area. This is one way that we reduce the impact of the high slice

thickness FLAIR data, however, there are other areas where this could be further addressed,

potentially leading to improvements. When working with low resolution or high slice thickness

data, it is important to avoid resampling the image where possible, as doing so can degrade the

image and lead to unrealistic appearances as the information from one large voxel is distributed

over a set of smaller voxels. In this work we do this by synthesising the synthetic FLAIR in

MNI space and then transform this into the FLAIR space, meaning the original FLAIR image

is never resampled. However, in the current formulation, each training FLAIR image must be

sampled onto MNI space to build the synthesis model. Future work will, therefore, investigate

methods to avoid the need for this transformation. In addition, the process of resampling the

higher resolution synthetic FLAIR image to the lower resolution real FLAIR image could also

potentially be improved by considering the voxel size so as to better replicate a single large

voxel in the real FLAIR image as a weighted average of multiple smaller voxels in the synthetic

FLAIR image, as opposed to sampling a single slice through the image volume.

Future work will also involve investigating the effects of the various pre-processing steps used

in the proposed approach. In particular, bias field correction algorithms can be affected by

large regions of pathology, especially WMH, and removing this step could potentially lead to

improvements. Additionally, while the choice of intensity normalisation procedure was carefully

chosen, measuring the impact of using alternative methods could highlight flaws or provide

additional confidence in the chosen method.

We have presented an approach to lesion segmentation motivated by various observations re-

garding the appearance of pathology in different MR imaging protocols. By doing so, we

were able to largely avoid the need for labelled training data. However, supervised meth-

ods are frequently shown to lead to more accurate segmentations, particularly those which
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utilise deep learning approaches. Work carried out in parallel to that described here (available

in [Guerrero et al., 2018]) demonstrated how a supervised neural network can achieve similar

performance to the method proposed in this chapter on the same data, while also differentiating

between different lesion types. However, this work also highlighted one of the drawbacks of such

approaches: the need for large amounts of accurately labelled training data. The following two

chapters investigate how image synthesis can be used to alleviate some of these drawbacks and

improve the performance of supervised deep learning approaches.



Chapter 5

GAN Augmentation: Augmenting

Training Data using Generative

Adversarial Networks

5.1 Introduction

One of the biggest issues facing the use of machine learning in medical imaging is the lack of

availability of large, labelled datasets. The annotation of medical images is not only expensive

and time-consuming but also highly dependent on the availability of expert observers. The

limited amount of training data can limit the performance of supervised machine learning

algorithms which often need very large quantities of data on which to train to avoid overfitting.

It is therefore of paramount importance to extract as much information as possible from what

data is available.

Data augmentation is commonly used by many deep learning approaches in the presence of lim-

ited training data. Increasing the number of training examples through the rotation, reflection,

cropping, translation and scaling of existing images is common practice during the training of

learning algorithms, as it allows for the number of samples in a dataset to be increased by
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factors of thousands [Krizhevsky et al., 2012]. Populating the training data with realistic, if

synthetic, data in this way can significantly reduce overfitting and thus not only improve the

accuracy but also the generalisation ability of deep learning approaches. This is of particular

importance in convolutional neural networks which cannot easily learn rotationally invariant

features unless there are a sufficient amount of examples at different angles in the training data.

Generative Adversarial Networks (GANs) offer a novel way to unlock additional information

from a dataset by generating synthetic samples with the appearance of real images. This

chapter proposes to use a GAN to model the underlying distribution of training data to allow

for additional synthetic data to be sampled and used to augment the real training data in two

brain segmentation tasks.

First proposed in [Goodfellow et al., 2014], GANs are a class of neural networks which aim

to learn to generate synthetic samples with the same characteristics as a given training dis-

tribution. In the case of images, this involves learning to produce images (via a generator)

which are visually so similar to a set of real images so that an adversary (the discriminator)

cannot distinguish between them. The original formulation has since been built on to address

problems such as training stability [Radford et al., 2015], low resolution [Berthelot et al., 2017,

Zhang et al., 2017, Karras et al., 2017] and the absence of a true image quality based loss func-

tion [Arjovsky et al., 2017], and applied to tasks such as super resolution [Ledig et al., 2016],

domain adaptation [Yoo et al., 2016], and reconstructing images from a minimal amount of

data [Yeh et al., 2016]. See Section 3.1.1 for further details.

Various methods for using GANs to expand training datasets have been recently proposed.

In [Shrivastava et al., 2016], the authors use an adversarial network to improve the quality of

simulated images and use these for further training. In [Antoniou et al., 2017], the authors train

a conditional GAN on unlabelled data to generate alternative versions of a given real image,

and in [Zhu et al., 2017b], the authors use a CycleGAN to impose emotions on neutral faces

to expand underrepresented classes. However, the use of non-conditional GANs to augment

training data directly as a preprocessing step with no additional data has only very recently

been explored [Amitai and Goldberger, 2018, Moradi et al., 2018], with promising results in
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medical image classification tasks.

5.2 Motivation

The general procedure when faced with a dataset to be used in a machine learning task is

to consider what sources of variance there are in the dataset and whether these are relevant

to the features which the user hopes to identify. These will fall into two categories, pertinent

and non-pertinent variance. Pertinent variance describes those features which are important to

whatever information the user wishes to extract. In medical imaging, these are often features

such as the size, shape, intensity and location of key components such as organs or lesions.

Non-pertinent variance describes the features which vary between images which are not related

to the important information the user wishes to extract. Examples of these are global intensity

differences, position within the image field of view and appearance of unrelated anatomy. Ex-

actly which sources of variance are pertinent or non-pertinent will depend on the application,

and may not be known apriori. For example, in neuroimaging, whether a lesion is in the left

or right hemisphere may or may not be diagnostically relevant, and so could fall into either

category. There are therefore no rules which will fit every situation, and as such, considering

and categorising each sort of variance is an important step requiring domain-specific knowledge.

Once the non-pertinent sources of variance have been identified, a decision is usually made on

how to address them. Keeping too much non-pertinent variance in the final dataset can not

only occlude the diagnostically important information but also lead to overfitting, especially in

the relatively small datasets often used in medical imaging, where the trained model may learn

to base its decision on coincidental correlations with irrelevant features. This is especially the

case in deep learning methods, where features are learned from the data, while more traditional

“handcrafted” features avoid much of this problem.

On the other hand, should non-pertinent variance be removed from the training set, it must

also be able to be removed from any test instances. Common methods to remove such infor-

mation include image registration to a standard space, intensity normalisation and cropping to
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a region of interest. These are powerful tools to remove a lot of non-pertinent variance, sub-

stantially simplifying the training data distribution, and importantly, can easily be applied to

test instances. For example, it is common in neuroimaging to perform intensity normalisation

(both global and local bias field correction), co-registration and brain extraction.

The alternative to removing non-pertinent variance is data augmentation. One of the goals

of data augmentation is to populate the data with a large amount of synthetic data in the

directions of these non-pertinent sources of variance. The aim of this is to reduce this variance

to noise, removing any coincidental correlation with labels and preventing its use as a discrimi-

native feature. An example of this would be to augment using rotations of real images in cases

where orientation is irrelevant to the desired model output.

There are however some sources of non-pertinent variance which can neither be removed or

augmented. For example, patient-specific variation in non-relevant anatomy. It may not be

possible to remove this anatomy through cropping or to define an accurate enough model to

augment this variance with realistic cases. Previous efforts [Krivov et al., 2017] have been

made to alleviate this particular source of non-pertinent variance by propagating lesions to

healthy brains, thereby incorporating additional examples of non-pertinent anatomical variance.

Despite this, there will always be sources of non-pertinent variance which cannot be removed

or augmented, for which the chosen model must account for.

The other use of data augmentation is to increase the amount of pertinent variance in a dataset.

This is a challenging problem which must be approached carefully with prior knowledge of the

source of the variance. Taking the example of lesion segmentation on brain images, additional

examples of lesions could be produced through careful deformation of existing lesions. However,

it would be important for such a procedure to follow specific rules which govern the appear-

ance of real lesions. To create such a procedure which can be applied with confidence and

generalises across all lesion examples would be difficult, time-consuming and highly applica-

tion specific. One example of such a method is provided in [Shrivastava et al., 2016] for the

purpose of gaze estimation. The authors simulated the pertinent variation by using a simula-

tor which would generate synthetic, labelled, samples, which were then made to look realistic



5.2. Motivation 141

through refinement. This was only possible as a complete model of the pertinent variance

could be produced. The absence of such a model, as is the case in many medical imaging

applications, makes such augmentation difficult and rare. Despite this, accurate augmentation

of pertinent variance can be extremely valuable, as it directly reduces the need for additional

training examples to be acquired. This is demonstrated by the substantial improvements seen

in [Shrivastava et al., 2016].

As noted in [Krivov et al., 2017], there is a tendency within medical imaging to prefer the re-

moval of non-pertinent variance as opposed to augmentation, and an acceptance that pertinent

variance cannot be reliably augmented. This is partly due to the ease at which much of the

non-pertinent variance can be removed, and partly due to the lack of suitable augmentation

procedures for many of the sources of non-pertinent variance in medical images. This is reflected

in [Kamnitsas et al., 2017b], where the authors choose to only employ reflection and intensity

augmentation for brain lesion segmentation, with even the latter omitted when using larger

datasets. On the other hand, in [Ronneberger et al., 2015], the authors strongly encourage the

use of augmentation in their application of microscopy images, particularly the application of

random elastic deformations. This demonstrates how careful consideration of the application

will dictate which types of augmentation are appropriate. Random elastic deformations may

be an appropriate model for microscopy images, in which the objects of interest (i.e. cells) are

generally fluid and unconstrained. Applying the same procedure to brain images could lead to

certain anatomical constraints such as symmetry, rigidity and structure being disregarded.

GANs offer a potentially valuable addition to the arsenal of augmentation techniques which

are currently available. One of the main potential advantages of GANs is that they take many

decisions away from the user, in much the same way as deep learning removed the need for

“handcrafted” features. An ideal GAN will transform the discrete distribution of training

samples into a continuous distribution, thereby simultaneously applying augmentation to each

source of variance within the dataset. For example, given a sufficient number of training ex-

amples of images at different orientations, a GAN will be able to produce examples at any

orientation, thereby replicating the effects of applying a rotation augmentation. While ori-

entation is a source of variance which can easily be augmented or removed using traditional
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methods, consider instead a more challenging source of variance such as ventricle size in brain

imaging. Again, given a sufficient number of training examples of patients with different dis-

crete ventricle sizes, a trained GAN will be able to produce examples along the continuum of all

sizes, from the smallest to the largest in the dataset. To perform the same kind of augmentation

using, for example, deformations would involve a complex model of realistic ventricle size and

shape and impact on the surrounding anatomy. By simultaneously learning the distribution of

all sources of variance, the GAN infers this model directly from the available data.

GAN augmentation should not, however, be considered a replacement for traditional augmen-

tation, rather a method to augment sources of variance which are difficult to augment in other

ways. One major advantage that traditional augmentation has over GAN augmentation is

the ability to extrapolate, as well as interpolate. GANs can provide an effective way to fill

in gaps in the discrete training distribution, but will not extend the distribution beyond the

extremes of the training data. For example, the training data may have examples at orienta-

tions from +90◦ to −90◦, yet test cases could be at any orientation. In this case, traditional

rotation augmentation would be necessary to extend the training data distribution to the other

orientations. In general, appropriate traditional augmentation procedures should be used to

extrapolate and extend the manifold of semantically viable images. GANs can then be used to

interpolate between the discrete points on this manifold, providing an additional data-driven

source of augmentation.

The main potential limitation of GAN augmentation is the ability of the GAN to generate

images with a high enough image quality. While great improvements have been made in the

field over the last few years, GANs cannot be relied upon to produce images with perfect fidelity.

In [Chuquicusma et al., 2018], the authors demonstrate that their GAN generated lung nodules

would routinely fool a radiologist with 4 years experience but would be frequently identified by

one with 13 years experience. However, both [Dosovitskiy et al., 2015] and [Richter et al., 2016]

demonstrate that perfect fidelity is not necessary to improve results with synthetic data. This

is not a problem for traditional augmentation procedures which do not significantly degrade

the images. Whether the advantage of additional data is outweighed by the disadvantage of

poorer quality images is one of the questions we hope to address in this chapter.
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5.3 Contribution

The results reported in [Amitai and Goldberger, 2018, Moradi et al., 2018] suggest that GANs

can have a significant benefit when used for data augmentation, though this is still a relatively

unexplored area. In this chapter, we investigate this use of GANs more thoroughly for the

purpose of medical image segmentation. An in-depth investigation into the effects of GAN

augmentation is first carried out on a complex multi-class Computed Tomography (CT) Cere-

brospinal Fluid (CSF) segmentation task using two segmentation architectures. By choosing

not to co-register the images in this dataset, we are able to examine how GAN augmentation

compares and interacts with rotation augmentation.

The transferability of the method is then evaluated by applying it to a second dataset of

Fluid-attenuated Inversion Recovery (FLAIR) Magnetic Resonance (MR) images for the pur-

pose of single-class White Matter Hyperintensity (WMH) [Wardlaw et al., 2013] segmentation.

This is a well-studied problem and poses challenges typical to medical image segmentation

tasks. WMH can be split into White Matter Hyperintensity of Presumed Vascular Origin

(WMHpvo) [Wardlaw et al., 2013], and stroke lesions, though for this application, they are

treated as a single class.

Aside from establishing whether GAN augmentation can lead to an improvement in network

performance, we answer the following 5 important questions:

• Does the choice of segmentation network architecture change the presence or degree of

improvement?

• How does GAN augmentation compare to traditional augmentation methods?

• Does the amount of synthetic data added affect this improvement?

• Does the amount of available real data affect this improvement?

• Does the approach generalise to multiple datasets?
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We also explore the distribution of generated images to better understand what modes of

augmentation are provided. This allows us to confirm that the GANs are producing images

which are different from those in the dataset. We also show how the procedure can generate

images with the same pathology, but different unrelated anatomy, and vice versa, demonstrating

the ability to perform these particularly challenging forms of augmentation. Finally, we examine

whether GAN augmentation leads to novel images unseen in the dataset.

5.4 Methods

We use a Progressive Growing of GANs (PGGAN) network [Karras et al., 2017] to generate

synthetic data. PGGAN was chosen on the basis of its training stability at large image sizes

and apparent robustness to hyperparameter selection, with only minor changes to the hyper-

parameters suggested in [Karras et al., 2017] proving suitable for all experiments. Whether

the choice of GAN architecture will affect the quality of the augmentation is unclear, however

there is evidence [Lucic et al., 2017] to suggest that different GAN architectures produce results

which are, on average, not significantly different from each other under optimal hyperparam-

eter selection, with the main difference between the methods being the ease at which these

hyperparameters can be found.

We train a PGGAN on 80k patches sampled from the available training data as a preprocessing

step prior to training a segmentation Convolutional Neural Network (CNN). The PGGAN is

trained on multi-channel image patches containing both the acquired image and manual seg-

mentation label, thereby learning the manifold containing this joint data. Synthetic examples

are then sampled randomly from this manifold using the trained generator and used to aug-

ment the same 80k patches upon which the GAN was trained, forming the training data used

when training the subsequent segmentation network. The standard generator architecture is

modified to output an image with the required channels (image + one or more segmentation

channels). The discriminator architecture is also modified to accept such multi-channel images

as input. The segmentation channels, whilst binary in nature, are mapped onto the same con-
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tinuous range as the image channels (i.e. mapped from Z2 to R) to allow both the image and

segmentation channels to be processed within the same convolution operator. The only other

alterations to the default PGGAN parameters are to increase the number of images shown at

each resolution level from 600k to 800k, and for CT experiments, to concatenate a 32x32 layer

of Gaussian noise at the start of the fourth (32x32) resolution level. This change was found to

aid in producing CT images with a more realistic noise pattern.

Each segmentation network was evaluated using a training, validation and test set, with the

training set consisting of the 80k patches sampled from the available training images with any

additional synthetic data added on top of this. During training, performance (as measured by

Dice Similarity Coefficient (DSC)) on the validation set was monitored, with the best model at

the conclusion of training applied to the test set.

5.5 Experiments

A set of experiments were designed to assess the effect of introducing GAN derived synthetic

data to a segmentation task. In these experiments, a number of key variables were modified:

• Amount of available real data: To simulate a situation with limited training data, the

amount of real data was artificially reduced by randomly selecting a percentage of the

available training data, prior to sampling the 80k training patches. We explored both a

moderate (50%) and extreme (90%) reduction in available data. Note that this reduc-

tion in available data is enforced for both the GAN and segmentation network training

stages, ensuring the GAN is never exposed to more labelled data than the corresponding

segmentation network.

• Amount of additional synthetic data: To investigate whether the amount of synthetic data

added to the real data affects the performance of a segmentation network, experiments
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were run with different amounts of additional synthetic data. To ensure equal access to

the information available in the real data between experiments, synthetic data is added

to the real data, increasing the size of the dataset, rather than replacing real data. The

amount of additional patches is therefore expressed as a percentage of the real patches.

For example an experiment with +50% synthetic data would use 120k patches (80k real

and 40k synthetic).

• Dataset: Two different datasets are explored to assess the ability for GAN augmentation

to generalise across segmentation tasks. The first dataset contains CT images with man-

ually delineated CSF labels split into into 3 classes: cortical CSF, brain stem CSF and

ventricular CSF. Data is split in the same way as in [Chen et al., 2018a], using the same

preprocessing and sampling procedures. This provides 500 manually labelled training im-

ages, with an additional 282 validation images, from 101 subjects. For these experiments,

the average DSC is used as the primary measure of performance, though results across

each class are also analysed.

The second dataset contains MR FLAIR images with manual binary WMH segmentations.

147 FLAIR images were acquired as described in [Valdes Hernandez et al., 2015] (see

Section 2.6.2 for further details). These were manually segmented, before being bias

corrected, brain extracted, rigidly co-registered and intensity normalised (as described in

Section 4.3.2), and randomly split into equal sized training, validation and test sets.

By selecting two dissimilar tasks (multi- and single-class segmentation) across two modal-

ities (CT and MR) we cover a wide range of likely applications for GAN augmentation.

• Segmentation network: We investigate three different segmentation networks across the

experiments. In [Chen et al., 2018a], the authors show that both UNet and Residual

UNet (UResNet) [Guerrero et al., 2018] architectures perform well on this CT dataset,

we, therefore, choose to explore both of these. The same hyperparameters were used as

in [Chen et al., 2018a]. DeepMedic [Kamnitsas et al., 2017b] is a popular general-purpose

segmentation algorithm which has been shown to perform well in many applications and

was therefore chosen as a third network to explore. DeepMedic was modified only so as
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to accept 128x128 2-dimensional (2D) patches.

Between these three, we represent the most popular CNN architectures currently in use.

• Augmentation: As discussed in Section [Krivov et al., 2017] extensive augmentation, be-

yond simple reflection, is rarely used in brain imaging due to the variety of preprocessing

options available and anatomical constraints of the brain. However, in order to examine

the interaction of GAN and rotation augmentation we elect not to perform coregistration

on the CT dataset. Of the other common forms of augmentation, reflection augmentation

is routinely performed in all experiments, translation augmentation is encapsulated in the

patch based approach, intensity augmentation is obviated by normalisation, and defor-

mations are not considered due to anatomical constraints (preserving shape, symmetry

etc.).

Table 5.1: Summary of experiments

% available
real data

% added syn-
thetic data

Segmentation
network

Dataset Augmentation type Repetitions

100, 50, 10 0, 50, 100 UNet,
UResNet

CT Rotation+GAN 8

100, 50, 10 0, 100 UNet CT None, GAN, rotation,
rotation+GAN

8

100, 50, 10 0, 12.5, 25,
37.5, 50, 100

UNet CT Rotation+GAN 8

100, 90, 80,
70, 60, 50, 40,
30, 20, 10

0, 50 UNet CT Rotation+GAN 8

100, 50, 10 0, 50, 100 DeepMedic MR GAN 14

Table 5.1 summarises the 5 sets of experiments which were carried out to answer the questions

posed earlier. In each experiment, the segmentation network is treated as a black box and

unchanged. This provides a fair platform upon which to observe the effects of GAN augmen-

tation by ensuring that any changes in performance are as a result of the additional synthetic

data, and not of changes in the network itself. The same PGGAN architecture is used in each

experiment, configured to produce images with a size of 128-by-128px. GAN training took 36

hours, each UNet took 4 hours, each Res-UNet took 24 hours and each DeepMedic network
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took 24 hours on an Nvidia GTX 1080 Ti or similar GPU. Examples of real and synthetic

patches generated for each dataset can be seen in Figure 5.1.

(a) Real (b) Synthetic

Figure 5.1: Examples of real and GAN generated synthetic patches for each dataset. Top:
CSF. Red: Cortical CSF. Green: Brain stem CSF. Blue: Ventricular CSF. Bottom: WMH.
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5.6 Results

5.6.1 Segmentation results

The following tables and graphs show the results over the two sets of experiments. All tables

show the average DSC, with the standard deviation in brackets. Results which are statistically

different (2-tailed t-test, 5% significance level) from those observed when no additional data is

introduced are shown in bold.

Table 5.2: CSF segmentation: Results with different proportions of the available training
data and varying amounts of additional synthetic data using UNet and UResNet architectures.

Available data

UNet UResNet

100% 50% 10% 100% 50% 10%

A
d
d
it

io
n
al

D
at

a

0% 88.9 (0.51) 86.0 (0.50) 76.9 (0.58) 86.8 (0.82) 82.7 (1.55) 72.5 (1.98)

50% 89.2 (0.30) 87.3 (0.46) 78.6 (1.04) 86.3 (1.44) 84.3 (1.31) 74.3 (1.63)

100% 89.3 (0.39) 86.9 (0.36) 78.4 (0.99) 86.3 (1.24) 84.1 (1.32) 74.7 (1.18)

Table 5.3: CSF segmentation: UNet results with different proportions of the available train-
ing data and different augmentation techniques.

Available data

100% 50% 10%

No augmentation 88.1 (0.32) 85.0 (0.58) 75.1 (0.60)

GAN augmentation 88.4 (0.41) 85.6 (1.33) 76.3 (1.77)

Rotation augmentation 88.9 (0.51) 86.0 (0.50) 76.9 (0.58)

GAN + Rotation augmentation 89.3 (0.39) 86.9 (0.36) 78.4 (0.99)
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Table 5.4: WMH segmentation: Results with different proportions of the available training
data and varying amounts of additional synthetic data.

Available data

100% 50% 10%
A

d
d
it

io
n
al

D
at

a
0% 66.0 (1.26) 61.4 (2.67) 52.2 (6.65)

50% 65.5 (1.21) 63.7 (0.69) 57.2 (4.09)

100% 64.8 (1.34) 62.8 (1.17) 55.7 (4.26)

Figure 5.2: CSF segmentation: Left: Average DSC for each class (coloured) and mean across
classes (black) as availability of real data varies. Solid lines show performance without GAN
augmentation, dashed lines show performance with +50% synthetic data, and dot/dashed lines
show the improvement seen with GAN augmentation. Right: Average DSC observed using a
UNet as synthetic data is added, when 100%, 50% and 10% of the total amount of real data
is used. Each coloured dot represents an experiment. Black circles show the mean with filled
circles indicating results significantly different from those without any additional synthetic data
as found through a 2-tailed t-test with a significance level set at p < 0.05.

5.6.2 Qualitative evaluation

Whilst various metrics exist for quantitatively evaluating synthetic images directly, these would

have little meaning in this case, especially as we have already indirectly evaluated the images
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through their application in data augmentation. Therefore, in addition to the quantitative

segmentation results, the generated images MR were also examined qualitatively to gain an

understanding of what extra information is being provided through GAN augmentation. Fig-

ures 5.3, 5.4 and 5.5 show samples of generated images (left of pair) along with their nearest

neighbours in the training dataset (right of pair) for the GANs trained on patches from 5,

25 and 50 images respectively. These images were examined by the author looking for three

features: Cases where lesions were duplicated on different anatomy; cases where lesions were

changed whilst anatomy stays the same; and cases where the nearest neighbour in the dataset

is substantially different from the synthetic image. The final feature is a sign that the GAN has

learned a manifold which contains some smooth regions which enables interpolation between

certain images, potentially including novel anatomy. A selection of these cases are indicated

using green arrows (same lesions, different anatomy), yellow arrows (same anatomy, different

lesions), and blue dots (completely new anatomy and lesions).
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Figure 5.3: 5 training images
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Figure 5.4: 25 training images
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Figure 5.5: 50 training images
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5.7 Discussion

It can be seen from across all of the results that GAN augmentation can provide a modest

but significant improvement in segmentation performance (when measured in terms of DSC)

in many cases. By far the strongest factor controlling the improvement seen is the amount

of real data available for training. There is a clear trend across all results that the greatest

improvements can be seen in cases where real data is limited. However, Figure 5.2 suggests

that there is perhaps a drop in improvement seen at the very lowest levels of available data.

This is possibly a result of there being too little data to properly train the GAN. Results on

the CSF data suggest that there are no circumstances in which using synthetic data leads to

worse results even when large amounts of real data is available. However, this is not reflected

in the WMH results in Table 5.4, where a loss in DSC is observed when all available data is

used. This suggests that there may be a tipping point associated with the amount of available

data, beyond which GAN augmentation harms rather than helps. This indicates that beyond

this point the synthetic data is not as useful as the data from which it is derived, implying

that the GAN does not completely reproduce the information from the training data. This

could either be as a result of lower image quality, or reduced variation. Care must, therefore,

be taken when applying this method in cases where plenty of real data is available. The exact

point at which synthetic data is no longer useful is likely application specific, and could only

be calculated through a series of experiments, gradually introducing additional real data. Such

an approach would be time-consuming as a new GAN would be required for each level of data.

However, for practical applications, it would not be necessary to find the exact tipping point,

since it is only important to know if GAN augmentation provides a benefit or not when all

available data is used.

The added benefit of GAN augmentation in cases of limited data can also be seen in the

DSC observed on the individual CSF classes in Figure 5.2. A ratio of 1.35:4.35:1 between

ventricular, cortical and brain stem CSF classes in the training set indicates a moderate class

imbalance, with examples of the former and latter being relatively limited. Figure 5.2 shows

that it is these two classes which benefit most from GAN augmentation. Of these, brain stem
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CSF segmentation appears to benefit the most, though this can be attributed to ventricular

CSF segmentation being an inherently easier proposition, and therefore being consistently well

segmented anyway.

Table 5.2 shows that there is little difference in the effect of GAN augmentation when using dif-

ferent CNNs. This, coupled with the WMH results, provides evidence that GAN augmentation

can benefit any segmentation network, regardless of architecture.

Figure 5.2 suggests that the amount of additional synthetic data makes little difference to

any improvement seen. There are no significant differences between any pair of results using

different quantities of synthetic data across all experiments. The observation that the approach

is robust to the amount of synthetic data added is welcome, as it suggests that the amount of

synthetic data is not an additional parameter which needs to be finely tuned. This, coupled

with the earlier observation that synthetic data does not impair performance when real data is

limited, makes GAN augmentation a practical proposition.

It is interesting to note that the improvements returned by using both traditional and GAN aug-

mentation, as seen in Table 5.3, are consistently more than the sum of the improvements given

by using the two methods separately. Whilst these differences are individually not significant,

this result provides strong evidence that the additional information provided by the two aug-

mentation methods are independent. It also suggests that when used together they are poten-

tially synergistic, an observation which agrees with the results in [Amitai and Goldberger, 2018].

This supports the hypothesis that GANs provide an effective alternative to traditional augmen-

tation when attempting to interpolate within the training distribution, but cannot extrapolate

beyond its extremes without the aid of traditional augmentation like rotation.

Figures 5.3, 5.4 and 5.5 provide an interesting insight into what additional information is being

provided by GAN augmentation. In the case of 5 training images (Figure 5.4), it is clear that

each generated image is based heavily on an image from the training set. This is not surprising

since there are very few images to train on, and little variation which can be learned. However,

there are subtle differences present in the majority of synthetic images, either in anatomy or in

pathology. There are cases where lesions present in the real image are not reproduced in the
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synthetic image, as well as cases where the shape and number of lesions present in the synthetic

image differ from those in the real image. Both of these effects can be extremely valuable to

prevent overfitting when training a model - the former decoupling the presence of lesions from

the surrounding anatomy, and the latter providing more variety of pathology. In Figure 5.4, we

can see that when the number of training images increases to 25, we begin to see cases where

there are no close matches in the training set, in addition to the cases of novel anatomy and

pathology seen previously. This trend gets even stronger in Figure 5.5 where all 50 training

images are used. There are often substantial differences between the synthetic images and

their closest real image, suggesting that the GAN has learned to produce data substantially

beyond what was provided to it. It is also reassuring to observe that these modifications appear

reasonable in all cases, with no obvious unrealistic lesions or anatomy being synthesised.

5.7.1 Conclusion

This chapter has presented a method for augmenting training data using GAN derived synthetic

images and demonstrated that this can improve results across two segmentation tasks. The

method has been shown to work best in cases of limited data, either through a lack of data or

as a result of class imbalance. Further experiments are required to fully assess its suitability

in other domains, though it has the potential to be a practical preprocessing step in a wide

range of applications. Applying GAN augmentation requires little overhead, involving only

the training of a single out-of-the-box GAN, does not involve optimising additional parameters

and has been shown to be low-risk by never damaging performance when training data is

limited. The exact amount of improvement expected is likely a complex function of the amount

of real data available, the amount and quality of synthetic data and the task itself. Many

more experiments are required to fully understand this relationship, however a conservative

interpretation of the results from the two typical segmentation tasks explored here suggests

that in cases where 5 − 50 labelled images are available, augmenting patches sampled from

these with an additional 10 − 100% GAN derived synthetic data has the potential to lead to

significant improvements in segmentation results as measured by DSC. Future work will involve
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investigating this relationship further, as well as in other areas such as classification, and to

evaluate the impact of different GAN architectures and parameters.

The approach taken in this chapter is similar to that of traditional data augmentation - no

additional information is added beyond that which was already present in the dataset. However,

the use of GANs offers the potential to incorporate more information into this process. The

next chapter looks to investigate this further by modifying the training procedure of a GAN to

allow for unlabelled data to be used in addition to the available labelled data, with the aim of

further improving the performance of supervised segmentation algorithms.



Chapter 6

GANsfer Learning: Combining labelled

and unlabelled data for GAN based

data augmentation

6.1 Introduction

Having previously demonstrated that Generative Adversarial Networks (GANs) can be used

to produce labelled images of high enough quality to perform learning on, and that these

images can be used for effective data augmentation in Chapter 5, we now consider whether

this approach can be improved by introducing unlabelled data. One of the limitations of

training GANs on relatively small amounts of data is that the resulting learned manifold will

be characterised by a small number of modes. The generator will, therefore, produce images

from around these modes, with only subtle variations. These subtle changes have proved

sufficient to reduce overfitting when performing data augmentation in Chapter 5, and in the

other applications reviewed in Section 3.3. However, there is clearly scope to improve upon this.

To be able to learn a smooth manifold, allowing for interpolations between points describing

real images, a critical mass of data is required. However, if such a large amount of labelled

data is available, there is likely little need to perform data augmentation and training a GAN

159
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becomes redundant. Instead, we wish to move towards learning this smooth manifold from a

substantially smaller number of labelled images. We propose to do this by leveraging a large

amount of unlabelled data in addition to the limited labelled images, using a technique inspired

by neural network transfer learning.

Transfer learning has proved to be an effective approach to neural network training across

many applications, including medical imaging [Shin et al., 2016]. It involves training a model

on a separate, usually very large, dataset, then applying it to the desired problem for which

there is comparatively little available data. This is usually done with some form of fine tuning,

where all or part of the pre-trained network is subsequently trained on the samples from the

target problem. The intuition behind this is that many of the useful low-level features will be

shared across tasks. At the lowest levels, these might be looking for simple edges and colours,

while slightly higher level features might be looking for line segments. It is only deeper in

the network that these features take on any meaning relating to the actual domain and, even

deeper, specific task. It, therefore, seems sensible to learn these low-level features on a separate

dataset. As demonstrated in [Shin et al., 2016], this dataset need not even be related to the

original dataset. This has several advantages including reducing computation time due to model

reuse, and increasing the quality of the learned features, especially in cases where there may

not be sufficient data to otherwise learn these optimal low-level features.

This process can be thought of as learning (or reusing) a general purpose feature extractor,

followed by learning how to interpret these features in the context of the task at hand. Feature

extraction and interpretation are decoupled and learned separately. We propose a similar

framework for training a GAN where we aim to decouple the learning of anatomical variation

and the learning of appearance. In the case of labelled images, appearance encompasses not

only pixel intensities in image space, but also the corresponding binary segmentation labels

contained in additional channels. The aim is therefore to learn the parts of the network which

correspond to the appearance from a small amount of available labelled images, while the parts

responsible for generating realistic anatomy are trained on a larger amount of unlabelled images.

Recent work [Madani et al., 2018] showed that incorporating unlabelled data using a GAN
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framework can lead to significant improvements in accuracy in a chest X-ray classification

task. The authors repurpose the discriminator as a classifier, forcing it to output a belief as to

whether an input image is diseased or not, as well as whether it is real or synthetic. In this

way, the discriminator uses unlabelled data to improve its ability to identify synthetic images,

thereby learning additional features which are useful for its secondary role of distinguishing

healthy from diseased images. By training on both tasks concurrently, the discriminator must

remain good at both tasks. A somewhat similar approach was presented in [Ross et al., 2018]

for endoscopic video segmentation. A conditional GAN using a UNet-like generator is first

trained on the unlabelled data to perform an arbitrary auxiliary task - in this case, an image

re-colourisation procedure. The goal of this is to pre-train the first half of the UNet as an

effective feature extractor by leveraging the unlabelled data. The labelled data is then used to

fine-tune the UNet in the target segmentation task. An increase in classification accuracy from

51% to 73-76% when labelled data is limited in [Madani et al., 2018], and in Dice Similarity

Coefficient (DSC) from 0.57 to 0.65 in [Ross et al., 2018] shows the potential for incorporating

unlabelled data into a classification system.

6.2 Methods

6.2.1 Rationale

We must first consider the structure of a GAN, the generator in particular, to understand which

layers are responsible for generating the anatomical structures, and which are responsible for

producing the realistic appearance of these structures. For the purposes of these experiments

we use the Progressive Growing of GANs (PGGAN) [Karras et al., 2017] architecture, which

aims to build a typical Deep Convolutional Generative Adversarial Network (DCGAN)-like ar-

chitecture gradually by adding additional layers during training. At the conclusion of training,

a possible generator architecture for a small network will look like that shown in Figure 6.1.

If we consider the final convolution process, Figure 6.2, we see that each of the output chan-

nels is simply a weighted sum of the feature maps from the penultimate layer. Therefore,
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when generating multi-channel output, with an image and one or more separate corresponding

segmentation maps (binary or continuous), we can observe that the features are semantically

linked to the structures present in the image (Figures 6.3 and 6.4).

Figure 6.1: Architecture of a typical PGGAN generator for a 3 channel 32-by-32px image from
a 256 element latent vector.

Figure 6.2: Final layer of the architecture from Figure 6.1 in greater detail showing how each
channel in the final image is a weighted sum of the elements from the penultimate layers.
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Figure 6.3: Penultimate layer feature maps generating a Magnetic Resonance (MR) image
patch. A linear combination of these patches is used to generate the final image. Note that
some feature maps have particularly high contrasts between certain structures, indicating their
use in producing these structures in the image and segmentation channels. Construction of the
final MR image and segmentation channels from these maps is shown in Figure 6.4. The three
maps with the strongest absolute corresponding weight for each visible segmentation channel
are shown. Red: Caudate. Blue: Thalamus. Green: Putamen. Note that some maps contribute
to multiple segmentation channels.

This is a very useful representation. The final layers generate a set of feature maps which can

be thought of as a set of image-specific bases which can be combined in different pre-learned

ways to yield both the image and corresponding segmentation channels. This shows that the
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Figure 6.4: The process of constructing an MR image and segmentation channels using a linear
combination of the feature maps shown in Figure 6.3. Read top-to-bottom, right-to-left the
output image using only feature maps up to that point are shown. Note how structures and
segmentations are introduced individually. MR and segmentation channels are scaled at each
stage for visualisation.

segmentation maps are only generated in the final layers, and they are generated from the same

feature maps which produce the image. This also follows when we consider that the PGGAN

grows over time during training, with the earlier layers tasked with generating low-resolution

images, and therefore the low-frequency information such as the anatomy, and the later layers

responsible for the higher frequency information such as texture. This can also be thought of
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intuitively by considering Figure 6.3: If it is possible to generate a set of feature maps which can

be combined to produce different anatomy, it follows these will produce sensible segmentations

when combined in the same way as in Figure 6.4.

Having established that the final layers are responsible for the appearance, and therefore the

segmentation maps, and that the earlier layers are responsible for the anatomical variance,

we can consider how to train these components separately. A traditional transfer learning

approach would involve training on the large unlabelled dataset first, and then refine the final

layers on the smaller labelled dataset. However, this would involve increasing the number of

output channels at the refinement stage, not only changing the desired output distribution

but also its dimensionality. This sudden change in the discriminator objective function was

found to confuse the network and cause a failure to converge. This is because the information

required to form the segmentations may not be present in the final layers, leading the network

to have to either effectively turn the final layers into a very small segmentation network, or

to restructure the entire network to allow for this information to be passed forward from the

earlier layers where the image anatomy is defined. We, therefore, propose to pre-train the

GAN using the small labelled dataset, and refine the early layers using the large unlabelled

dataset, before fine-tuning using a combination of both datasets. This avoids radically changing

desired output distribution, allowing for a smoother transition, and pre-conditions the network

to ensure sufficient information is present in the final layers to form the segmentation maps.

The details of this process are given below.

6.2.2 GANsfer Learning

Phase 1: Train the GAN until convergence using the labelled data.

The goal of this phase is to pre-train the generator and condition it to ensure the necessary

information to generate segmentations is present in the final layers. After this step, image

diversity will be low due to limited training data, however, image and segmentation quality will

be high.
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Phase 2: Fix the weights of the final three resolution levels of the generator and train a new

discriminator using the unlabelled data and the image channel from the generator output.

The goal of this phase is to learn more anatomical variation from the unlabelled data. Having

learned a set of weights in the final layers which produce segmentation maps, we can increase

image diversity by freezing these layers and continuing to train on the unlabelled data. Since

the real data are now only single-channel images, and the trained discriminator expects a

multi-channel image, we replace this with a new discriminator. This discriminator takes as

input the training images and the image channel from the generator output. To allow this new

discriminator to catch up with the generator, regular GAN training is performed using a ratio

of 100 discriminator updates to 1 generator update for the first 5 training cycles, mirroring the

pattern proposed for the start of training in [Arjovsky et al., 2017].

Phase 3: Train another discriminator using an equal mix of the segmentation channels of

labelled images and of the generated images after phase 2 as ground truth, and the segmentation

channels of the generator. Add this as a second discriminator to the GAN and perform regular

GAN training by training both discriminators and updating the generator according to the loss

from both discriminators. Gradually unfreeze layers of the generator up to the final layer.

The goal of this phase is to improve the quality of the generated images. The previous phase

taught the generator to produce greater anatomical variation, but this comes at a cost of image

quality due to the frozen layers. In this phase the frozen layers are gradually unfrozen, allowing

these weights to be re-optimised with respect to the earlier layers. This is similar to the original

training procedure of the PGGAN where layers for increasing resolutions are added in turn. This

phase can, therefore, be thought of as a second pass through the GAN, optimising each layer in

turn, thereby smoothly reattaching the newly trained early layers to the final layers. The final

convolution layer remains frozen to ensure the image and segmentation channels remain coupled.

During this phase the GAN is trained using two discriminators. The first is retained from phase

2 and ensures the generator retains its ability to produce varied images. The second is a newly

trained network which is trained purely on segmentation channels and ensures the quality of

the segmentation channels is preserved. Its training set consists of the segmentation channels
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from the labelled dataset, combined in equal parts with the segmentation channels from a new

dataset which is generated using the generator from the end of phase 2. This “self-teaching”

procedure ensures that the generator is encouraged not to forget the variation it has learned

previously. Without this, there would be a significant disparity in the anatomical variation

contained within the image dataset and segmentation dataset. Under these circumstances, the

two discriminators would be in conflict, with the image based discriminator encouraging greater

variation, and the segmentation based discriminator encouraging reduced variation.

In summary, phase 1 ensures the final layers of the generator produce feature maps which can be

linearly combined into images and segmentation maps. Phase 2 trains the early layers to gen-

erate increased anatomical variability. Phase 3 refines the generator to improve image quality.

The data produced by the generator can then be used for data augmentation. This whole pro-

cess is demonstrated in Figure 6.5. All network architectures are as described in Section 3.1.1,

configured to operate on 80-by-80px images with the appropriate number of channels, and are

trained using default hyperparameters and mirror data augmentation. Training is performed

in phase 1 for 360k images per resolution level, with another 360k for each transition period

between levels (3600k total). Phase 2 training is then performed for 120k images, with the last

3 generator up-sampling blocks and final layer frozen. Finally, phase 3 training is performed

for 180k images, with the third from last up-sampling blocks unfrozen for the first 60k, the

second from last unfrozen for the next 60k, and all parameters except the final layer unfrozen

for the final 60k. Training times were set to be the minimum time necessary to achieve the

goals of each stage.

6.3 Experiments

Experiments were devised to evaluate what effect the proposed method has when different

amounts of labelled data are available. We chose to investigate the task of multi-class deep grey

matter segmentation on T1-weighted MR images with 7 anatomical structures. This application

was chosen for three main reasons. Firstly, it is a typical medical image segmentation task,
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Figure 6.5: The three phases of GANsfer learning. Phase 1 trains the whole network with
generator (G) and discriminator (D) on labelled data (L) to produce synthetic data (S). Phase
2 trains the early layers of the generator using unlabelled data (U) and a new image based
discriminator (DI). Phase 3 reintroduces the later layers using a combination of both labelled
data, unlabelled data and previously synthesised images. It uses combined feedback from the
image based discriminator and a new segmentation based discriminator(DS).
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and as such, results on this task should provide an indication of performance on similar tasks.

Secondly, data for multi-class problems are particularly time-consuming to manually annotate,

and therefore provide a realistic use case for GANsfer learning. Finally, the relatively small

region of interest means that the GANs required can be trained to the full resolution of the

images in a reasonable amount of time, allowing for an extensive investigation with 5 fold

cross-validation.

6.3.1 Data

For the labelled dataset we use data provided for the MICCAI 2013 Grand Challenge on Multi-

Atlas Labelling1. This contains 35 images from the OASIS-1 dataset, manually annotated by

Neuromorphometrics, Inc2. Each image is accompanied by clinical information including age,

gender and Clinical Dementia Rating (CDR) - a 5 point rating scale for Alzheimer’s Disease

(AD) consisting of: healthy (CDR 0), very mild AD (0.5), mild AD (1), moderate AD (2) and

severe AD (3). Of the 35 images, 5 are repeated from the same subject and are discarded. The

remaining 30 images (Age: 18-90, median 25; Gender: 20F/10M; 29 healthy, 1 very mild AD)

are affinely co-registered to a standard space with a 1mm isotropic voxel grid and intensity

normalised to a zero-mean unit-variance across all non-background voxels, after which an 80-

by-80-by-60px region of interest, defined in common space and covering the deep grey matter

structures, is extracted. These images are then divided into 5 folds for cross-validation, each fold

containing 24 training and 6 testing images, and with each image contributing 60 2-dimensional

(2D) 80-by-80px axial slices.

Each slice has corresponding label information indicating the segmentation of the: Accumbens,

Amygdala, Caudate, Hippocampus, Pallidum, Putamen and Thalamus, in the form of 7 sep-

arate binary image channels. As demonstrated in Figure 6.4, the GAN will learn to produce

these channels from the same set of features which produce the MR channel. We, therefore,

preprocess the segmentation channels to make them more closely correlated with the intensities

within the MR channel. The aim here is to transform the binary segmentation channels into

1data available from www.synapse.org/#!Synapse:syn3193805/wiki/217780
2www.neuromorphometrics.com
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continuous channels, with a value of 0 outside of the segmented region, and a value which is

correlated with the corresponding MR intensities within the segmented region. We do this

by replacing the regions within the segmentation mask with “residual” values, reflecting the

contrast of the particular structure as compared to the surrounding White Matter (WM). To

preprocess each segmentation channel, we transfer the pixel intensities from the MR channel

into the corresponding region in the segmentation channel, and subtract an estimated WM

intensity. These values are then inverted if necessary to remain positive and used as the seg-

mentation channels for GAN training. This process is visualised in Figure 6.6.

Figure 6.6: Visualisation of segmentation prepossessing steps. A hypothetical intensity profile
showing the variation in MR image intensity along a line from left-to-right across an axial
slice. The dotted line shows the relative image intensity, while the two solid coloured lines
show the binary segmentation channels for the Putamen (green) and Thalamus (blue). The
dot-dashed lines show the new values within the associated segmentation channels, calculated
as the absolute difference between the MR intensities within these regions and the average WM
intensity. The relative intensities of different structures are also shown (not to scale). Note that
the new segmentation channels vary more smoothly, are correlated with MR channel intensity
and are measures of the local contrast of each structure.

A key purpose of this is to remove the sharp edges present in the binary segmentation channels.
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To generate these would require some of the feature maps in Figure 6.3 to have sharp edges,

which could not also be used to generate the MR channel. This would lead to a potential

decoupling of the parts of the network responsible for generating the MR and segmentation

channels. To preserve the ability of the network to produce realistic segmentations after further

training with unlabelled data, it is important that these processes are tightly linked. Towards

this end, it is also important that the contrast levels in the segmentation channels are similar

to the corresponding regions in the MR channel. All structures share a border with the WM, so

it is, therefore, appropriate to use WM intensity as a base from which to calculate the contrast

of each structure.

The unlabelled dataset consists of the entire OASIS-1 dataset. This contains 436 images (Age:

18-96, median 54; Gender: 268F/168M images; 336 healthy, 70 very mild AD, 28 mild AD, 2

moderate AD), of which 20 are repeated scans of the same healthy subject. These images are

preprocessed in the same way as described above. This dataset has a much older age profile

than the labelled dataset and contains many more examples of AD pathology. We hypothesise

that by incorporating this older more pathological data into the GAN training process, the

resulting network will produce more examples with features associated with old age and AD.

This will then lead to more accurate segmentations of subjects with these features.

6.3.2 Postprocessing

Figure 6.7: Post processing visualised on 3 segmentation channels. A) Mask derived from real
segmentations. B) Masked image. C) Binarised segmentation channels. D) Holes filled. E)
Intensity based threshold applied. F) Holes filled and spurs removed. Arrows indicate the effect
of each step.

Since the GAN is trained to produce non-binary segmentation channels, a set of postprocessing
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steps are required to binarise them and correct minor errors. These include small regions away

from the expected location of a structure (usually within the Grey Matter (GM)) having a non-

zero value in the corresponding segmentation channel, and synthesised segmentation channels

extending beyond the boundaries of the structure they represent. First, each image is assigned

a slice number through nearest neighbour comparison of the MR channel to the real training

images. A 3-dimensional (3D) mask is then defined for each segmentation channel containing

all points within 10mm of the union of all available labelled training images for that experi-

ment. The appropriate slice from this 3D mask is then used to remove any obviously incorrect

segmentations from each generated image. Each segmentation channel is then binarised and

any resulting holes removed through morphological closing and hole filling. The MR intensity

distribution within each structure is then calculated, with any pixels falling outside of the mean

+/− 2 standard deviations removed from the segmentation. Finally, any new holes are filled

and morphological opening removes any small disconnected components and spurs. This whole

process can be seen in Figure 6.7.

As well as post-possessing, the generated images are also filtered based on image quality. Whilst

generated images were generally found to be of reasonable quality, the generator can occasion-

ally produce unrealistic images. To filter these out, a score for each image defined as the

minimum Euclidean distance between the MR channel of each generated image and any image

from the full dataset is found. These are ranked and the generated images with scores above

the 75th percentile are removed. Unrealistic images were observed at a significantly lower rate

than this (less than 5%), however, we use this very conservative threshold to guarantee no

unrealistic images are kept, as removing realistic images is not detrimental since more can be

generated at very little cost. Examples of the highest scoring images are shown in Figure 6.8.

6.3.3 Segmentation network

To assess the quality of the synthetic data, we propose to train a segmentation network

with and without synthetic labelled data added to the available real labelled data. We use

DeepMedic [Kamnitsas et al., 2017b] for this purpose. DeepMedic is a general purpose segmen-
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Figure 6.8: Examples of 6 unrealistic generated images removed from the dataset.

tation network which has been shown to give good results in a variety of segmentation tasks. We

modify the default network architecture from 3D to 2D as described in [Kamnitsas et al., 2017b],

and otherwise use default hyper-parameters and settings, including left/right reflection aug-

mentation. Segmentations are evaluated using DSC (see 3.2.1). The primary metric used for

comparison is an overall DSC, treating all 7 tissue classes as foreground, though we also examine

the results for individual structures.

6.3.4 Impact of the quantity of available labelled data

For every learning task, there is a threshold beyond which additional labelled data provides

negligible improvement. The goal of augmentation is therefore to lower the amount of data

required to reach this optimal performance. Baseline experiments using 1, 3, 6, 12 and 24

labelled training images show no significant (two-tailed t-test, 5% significance level) difference

between experiments using 12 and 24 images (see Figure 6.13 later for full results), indicating

the that this optimal level of performance has been reached. The aim is, therefore, to achieve
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results closer to this level using fewer labelled images and augmenting with synthetic data.

Experiments were therefore performed by making 1, 3 and 6 labelled images available, taken

from the pool of 24 allocated training images at each fold. Despite not expecting any significant

performance increase on the baseline results when 12 and 24 labelled images are used, a subset

of experiments is also performed at these levels to better understand the effects of synthetic

data.

6.3.5 Impact of the quantity of synthetic data

The quality of synthetic data produced by the GAN will never be as high as real manually

labelled images. We must, therefore, consider the relative exposure the segmentation network

should get to the real and synthetic pools of training data. This is done by allowing the

segmentation network to sample from each pool of data with a different probability, effectively

allowing for different ratios between real and synthetic data to be explored. We consider 4

different ratios: 100:1, 10:1, 2:1 and 1:1. For example, a ratio of 100:1 means that for every 100

patches sampled from real data, 1 patch is sampled from synthetic data. Note that the pool of

synthetic images available is effectively infinite, hence it is highly unlikely to sample the same

image twice, while the pool of real images is relatively small, meaning the same region is likely

to be sampled multiple times during training.

6.3.6 GAN training with large amounts of data

Early experiments indicated that the GAN training process produced higher quality images

when trained on fewer (1, 3 or 6) labelled images than when more (12 or 24) images were avail-

able. Though more variation was observed when more images were used, the appearance would

suffer (see Figure 6.9). This can be attributed to the GAN attempting to perform interpolation

between exemplar images - behaviour which is not exhibited when few images are used, with

the GAN generating images from around these modes with small differences. Once a sufficient

amount of training images is provided, the GAN begins to attempt to produce images with
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greater variation. This is normal and usually desired GAN behaviour, however, it is counter-

productive in phase 1, where we desire high-quality images and variation is unimportant. This

perceived loss of quality is confirmed when we perform segmentation experiments using only

synthetic images after phase 1. Experiments on a single fold show an average overall DSC of

0.68, 0.73, 0.73, 0.68 and 0.64 when training on 1, 3, 6, 12 and 24 images respectively. To

avoid this behaviour having a negative impact on the final results in the cases where 12 or 24

labelled images are available, the training data in these cases is further split into groups of 6

images, and 2 or 4 GANs respectively are trained using each group. After training, synthetic

data from each GAN is combined and used to augment the real training data. Figure 6.10

shows an overview of the experimental setup across the 5 folds.

6.3.7 Full dataset analysis

A consequence of having limited labelled training data is that there is a similarly limited amount

of test data upon which the trained segmentation models can be tested directly. While the

30 labelled images are sufficient to perform simple DSC based comparisons between different

quantities of available data, they are insufficient for a deeper analysis. By only having one mild

AD subject and 6 subjects with an age greater than 50, these 30 images do not provide a robust

means of examining the effects on elderly and more pathological cases. We, therefore, perform

further indirect evaluation on the unlabelled data by applying the trained segmentation models

across the full dataset and using the volumes of the segmented structures as features to build

a classifier to differentiate between cases of very mild AD and mild or moderate AD (CDR 0.5

and CDR 1 or 2).

After removing all repeated scans and training images, 287 healthy, 69 very mild AD, 28 mild

AD and 2 moderate AD subjects remain available for analysis. Each image is segmented using

five of the trained models (one per level of available data) and the volumes of each structure

are extracted. These volumes form a 7-dimensional feature vector (one component for each of

the seven tissue classes) for each subject, which are used to train a simple logistic regression

classifier. Each experiment uses 5-fold cross-validation and is repeated 100 times. The observed
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Figure 6.9: 8 random samples from the generator after phase 1 training using 6 (left) and 24
(right) images. Despite having more training images, some images produced from 24 training
images appear of low quality with a “dirty” appearance or unrealistic anatomy. Those produced
from 6 training images are consistently of higher quality.
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Figure 6.10: An overview of the experimental setup. At the top, the 30 labelled images are
divided into training and test sets for 5 folds. For each fold, the training set is further divided
to simulate cases where 1, 3, 6, 12 or all 24 images are available for training. Underneath,
the process of training the required GANs and DeepMedic networks to investigate each level
of available labelled data (1, 3, 6, 12 and 24, colour coded as above) for a single fold is shown.
The available labelled and unlabelled data is first used to train a GAN using GANsfer learning.
The generator is then used to create a synthetic dataset. A DeepMedic network is then trained
by sampling (with varying probabilities) from the real and synthetic data, with the resulting
model used to segment the 6 test images for that fold. Note that in the case of 12 (red) and 24
(blue) labelled images, multiple GANs are trained on blocks of 6 images, rather than training
a single GAN on the all the images.

accuracy and Area Under the Curve (AUC) are calculated.

For these experiments, we use the models previously trained for one of the 5 folds, which was
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chosen as its training set does not contain the AD subject and has the lowest average age of all

folds (25). This choice of fold lets us explore the scenario where only labelled images for young

and healthy subjects are available, yet we wish to segment images of older and pathological

subjects. We also perform the same analysis using segmentations provided by Multi-Atlas-Label

Propagation with Expectation-Maximisation based refinement (MALPEM) [Ledig et al., 2015]

to allow for further comparisons. MALPEM is a 3D multi-atlas method to perform tissue

segmentation and has been applied successfully in AD progression studies [Ledig et al., 2018b].

MALPEM offers significantly (two-tailed t-test, 5% significance level) greater DSC results than

observed when using DeepMedic. This difference between the two methods is likely a result

of MALPEM being a 3D method, and therefore having access to more contextual information.

Baseline results using the two methods on a single fold show DeepMedic achieving an overall

DSC of 0.80, 0.85, 0.87 when using 1, 6 and 24 labelled images respectively, with MALPEM

achieving results of 0.80, 0.92 and 0.92 using the same subject atlases. The segmentations

provided by MALPEM using all training atlases can, therefore, be used as a surrogate for

manual segmentations. The agreement between these and the computed segmentations can be

analysed under the assumption that a greater overlap with MALPEM segmentations would

indicate greater accuracy. While not providing an absolute measure of performance, it does

allow for further insights to be obtained making use of the full unlabelled dataset. Using the

same structural segmentations as used in the classification experiment above, we compute the

overall and per-class DSC using MALPEM segmentations as reference. We then examine how

subject age and CDR classification affect the improvement seen when using synthetic data

augmentation.
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6.4 Results and discussion

6.4.1 Ablation and optimisation

To examine the impact of each stage of the proposed method we performed an ablation study

where we measure results at the end of each phase of GANsfer learning. We also examine the

impact of the segmentation channel pre- and post-processing, and the filtering of unrealistic

synthetic images. Using a single fold and one available labelled image, we performed segmen-

tation using the generator output at the end of each stage. We evaluated the synthetic data on

its own and combined in a ratio of 2:1 real to synthetic data. The results of this study can be

seen in Table 6.1.

Phase 1 is similar to the methods used in Chapter 5, and does not involve any additional

unlabelled data. It is, therefore, reassuring to observe that we do see an improvement in

segmentation performance. There is little difference when real data is used in addition to the

synthetic data. This suggests that the generated images encompass all the relevant information

from the real images, and are of sufficient quality to train from.

Table 6.1: Ablation study: DSC observed on a single fold using one labelled training im-
age at different stages during the GAN training pipeline. Results are given using synthetic
images produced by the GAN at the end of each training phase, with (+) and without real
data. Results when using binary segmentation channels (i.e. no pre- or post-processing of
the segmentation channels) are also shown with (BinCh/Filt) and without (BinCh/NoFilt) the
filtering of unrealistic synthetic images. The overall DSC, DSC for each structure, and mean
DSC across all structures are provided. Baseline results using no synthetic data are also shown
for reference.
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Overall Accum. Amyg. Caud. Hippo. Palli. Putam. Thal. Mean

Baseline 80.1 46.1 56.5 80.0 57.7 78.0 81.4 84.0 69.1

Phase 1 81.6 57.2 56.2 81.7 66.9 77.5 81.7 86.6 72.5

Phase 1+ 81.4 51.1 58.8 79.6 66.5 80.3 82.3 85.2 72.0

Phase 2 79.7 23.6 51.0 78.7 66.7 71.6 75.0 84.3 64.4

Phase 2+ 82.0 48.5 59.7 81.2 67.8 81.0 79.5 86.8 72.1

Phase 3 79.5 44.2 55.0 80.4 70.5 69.2 74.8 85.1 68.4

Phase 3+ 83.1 54.3 63.4 82.5 71.8 80.1 80.6 87.0 74.2

Phase 2&3 79.0 37.6 52.6 80.3 67.9 71.2 73.3 84.7 66.8

Phase 2&3+ 83.9 56.1 61.9 83.6 74.3 80.5 81.4 87.6 75.1

BinCh/NoFilt+ 80.7 40.3 58.9 76.9 60.5 76.7 80.5 86.6 68.6

BinCh/Filt+ 82.9 47.8 61.5 81.6 63.0 76.8 83.6 87.4 71.7

After phase 2, using the synthetic data alone leads to worse results than observed after phase

1, but when combined with real data, it produces better results. This can be attributed to the

synthetic data now containing additional information having been exposed to the unlabelled

dataset. There is, however, also a reduction in image quality, leading to a worse performance

when used on its own. This reduction in quality is addressed in phase 3, as evidenced by im-

proved results compared to those after phase 2. The best results were then found by combining

the synthetic data produced after phase 2 and phase 3. This improvement is mostly driven by

better hippocampal segmentation. Since the hippocampus is known to be affected by AD, it is

possible that by using both sets of synthetic data, we include more examples of AD pathology.

Alternatively, it could be that the segmentation network benefits from the additional variation

after phase 2, even if the images are more unrealistic, and that some of this variation is lost

during phase 3. Combining the two allows the network to be exposed to some additional varia-

tion, while also benefiting from the improved quality of the images produced after phase 3. All

future experiments, therefore, use a combination of synthetic data from phases 2 and 3.

The effects of each phase of training can also be visualised. Figure 6.11 shows a tSNE visuali-

sation [Maaten and Hinton, 2008] of training images, and synthetic images after each phase of
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Figure 6.11: T-Distributed Stochastic Neighbour Embedding (tSNE) visualisation of training
images, and the output from the same random selection of latent vectors after each training
phase. The single training volume contributes 60 images and the output after phase 1 follows
these closely. Images produced after phase 2 and phase 3 are further away, indicating greater
variability. Axes x1 and x2 correspond to the embedding coordinates found through tSNE.

training. A tSNE embedding allows us to visualise high dimensional data in a low dimensional

space. Points which are close in the high dimensional space will also be close in the low dimen-

sional embedding and vice-versa. This gives an indication of variation, but not quality. The

further away the points corresponding to the synthetic images are from those corresponding to

the real images, the more variation has been introduced. We are therefore looking to see points

progressively move away from the real images after phases 1 and 2, and to have not moved

closer again after phase 3.

Figure 6.12 shows sample output for two regions, at the end of each phase of training. These

show that, whilst there is a reduction in image quality after phase 2, this is rectified in phase

3 with no obvious loss of variability apparent in either Figure 6.11 or Figure 6.12.

Results when sampling real and synthetic data at different rates during DeepMedic training can
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Figure 6.12: GAN output after each phase of training covering two example regions. For each
region, 9 latent vectors were found which map to approximately the same image after phase 1
(first row). The output from the same latent vectors were then generated after phases 2 and
3. There is significantly more variation found after phase 2, at the cost of lower quality images
(second row). An improvement in quality, while maintaining variability, can then be seen in
the output after phase 3 (third row).

be seen in Figure 6.13. The results clearly show that more synthetic data is beneficial when less

real data is available. This is expected, as when more real images are available, more variation

is already present in the training set, and therefore the additional synthetic data will have less

impact, to the extent that when 12 or more real images are available, there is no evidence of

improvement at any ratio.
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Figure 6.13: Observed DSC at baseline, and with different sampling rates of synthetic data
during segmentation network training. There is a clear trend of more synthetic data being
useful as the amount of real data is reduced.
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6.4.2 Labelled dataset analysis

Using the optimal ratios found previously, we now examine the results across the labelled

dataset. Figure 6.14 shows the distribution of observed DSC values with and without synthetic

data at each level of available real data. Whilst we see significant improvements when 1 or 3

labelled images are available, neither of these is sufficiently large enough to score higher than

using 3 or 6 images respectively. However, when 6 labelled images are available, we do see

results which are not statistically different from those seen with 12 or 24 labelled images. It

is reasonable to assume from the lack of improvement between baseline DSCs for 12 and 24

images that this is approaching the maximum DSC which can be achieved on this dataset using

this segmentation algorithm.

Figure 6.14: Box plots showing the distribution of DSC across all 30 images. Each coloured
pair shows results with (*) and without synthetic data. Results within the bracket are not
significantly different from each other at a 5% significance level calculated using a series of
paired t-tests; all other results are significantly different from each other. The two outliers
common to each experiment correspond to the eldest subject (lowest DSC) and single very
mild AD subject (second-lowest DSC).

Observed DSC on each of the seven deep grey matter structures with and without synthetic

data can also be seen in Figure 6.15. It is interesting to note that the largest improvements
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in DSC can be seen in the hippocampus and amygdala, two structures which are known to

be affected by AD. This suggests that exposing the system to more examples of anatomical

variation in AD leads to an improvement in segmentation of these structures, even among a

predominantly healthy cohort.

While the segmentation of most structures is improved, this is not the case for the Putamen.

The reason for this is unclear and would require further investigation. However, it does have

particularly high baseline scores with only a small improvement seen when using more real

data, suggesting it is a relatively easy structure to segment with little room for improvement.

We observed in Chapter 5 that in such cases where sufficient data is already available, adding

synthetic data harms rather than helps. The performance on the Putamen may, therefore, be

another example where the loss of image quality in the synthetic images is not sufficiently offset

by the increased variation.
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Figure 6.15: Impact of using additional synthetic data on segmentation accuracy for each of the seven structures. Each pair of coloured
bars shows the difference between the baseline results (solid border) and results with the optimal amount of additional synthetic data
(broken border).
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6.4.3 Full dataset analysis

One benefit of using unlabelled data is that it extends the domain of training images from

generally young and healthy to older subjects with more cases of AD. The impact of this

can therefore only be fully measured on the full dataset. This was done by using MALPEM

segmentations as a surrogate for ground truth labels. Figure 6.16 shows how the observed

DSC varies with subject age, with and without synthetic data, along with a visualisation of

the distribution of ages within the labelled and unlabelled dataset. It is clear that in all cases

expected performance decreases as age increases, however, this effect is reduced when synthetic

data is used. We can also see that in the cases where 12 and 24 labelled images are available

there is little benefit to using synthetic data at the younger ages, agreeing with the results from

the labelled data. However, there does appear to be a larger improvement at the older end

of the age spectrum, beyond the range of ages provided by the labelled dataset. Figure 6.17

shows how the expected improvement in DSC varies with age across each structure. In each

case, there is a clear trend showing that the further away from the ages present in the labelled

dataset, the more benefit is given by using the synthetic data. This is particularly noticeable

in the caudate. The proximity of the caudate to the lateral ventricles means that its location

can vary significantly as the ventricles become enlarged by age, even if its volume is generally

preserved. It is, therefore, a structure which could suffer from a spatial bias being learned

when only a few healthy examples are provided, and is, therefore, a particular beneficiary of

the additional anatomical variation introduced by the unlabelled data.

Figures 6.18 and 6.19 show a similar analysis, using CDR in place of age. Once again, the

labelled dataset contains no examples of AD pathology, while the full dataset contains sig-

nificantly more. Again we observe a clear loss of expected segmentation accuracy as CDR

increases, but this effect is reduced when synthetic data is used.

The final experiment investigates whether using synthetic data leads to segmentations which

were more useful at stratifying cases of AD, in particular, distinguishing cases of very mild

AD (CDR 0.5) and mild/moderate AD (CDR 1/2). We also compare these results with those

found when using MALPEM segmentation volumes calculated using all 30 unique labelled
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images. Table 6.2 shows a clear benefit to both accuracy and AUC when synthetic data is

used, where we observe a statistically significant improvement in 8/10 cases. In fact, using

synthetic data increases the accuracy to a level that is close to that achieved by MALPEM,

and leads to significantly better results when measured by AUC. In the case where 6 real images

are available, the results show that the proposed method matches or outperforms MALPEM

using 80% fewer labelled images.

Figure 6.16: Overall DSC using MALPEM segmentations for reference at different ages. Results
for segmentations computed with (*) and without synthetic data augmentation for each level
of available labelled images (1,3,6,12,24) are shown. The relative age distributions for the full
labelled and unlabelled datasets are also shown. All data is smoothed using kernel regression
to highlight the overall trends.
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Figure 6.17: Difference in DSC using MALPEM segmentations for reference, overall and for each structure, at different ages. Pairwise
differences in observed DSC between segmentations computed with and without synthetic data augmentation for each level of available
labelled images (1,3,6,12,24) are shown. All data is smoothed using kernel regression to highlight the overall trends.
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Figure 6.18: Distribution of overall DSC using MALPEM segmentations for reference for subjects with different CDR levels. The number
of each group within the labelled and unlabelled datasets are also indicated.
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Figure 6.19: Distribution of paired DSC differences between results with and without synthetic data augmentation using MALPEM
segmentations for reference. Overall results and results for each structure are shown for subjects with different CDR levels. Outliers are
omitted for clarity.
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Table 6.2: CDR Prediction: Accuracy and AUC metrics comparing the ability of segmenta-
tion volumes to differentiate between CDR 0.5 and CDR 1 or 2 subjects when computed with
and without augmentation, and when using MALPEM (M). Results which are statistically dif-
ferent between corresponding baseline and augmentation results (2-tailed t-test, 5% significance
level) are shown in bold. Results which are not significantly different from (†) and significantly
higher than (∗) the corresponding results using MALPEM (2-tailed t-test, 5% significance level)
are also indicated.

Accuracy AUC

Number of images 1 3 6 12 24 (M) 1 3 6 12 24 (M)

Baseline 64.3 62.9 66.0 63.0 63.3
67.6

56.4 47.9 55.0 58.7† 57.6†

58.5
Augmentation 66.0 64.6 67.8† 62.6 66.6 57.0 56.7 65.6∗ 60.0∗ 66.7∗

6.4.4 Conclusion

In this chapter, we presented a method for incorporating unlabelled data into a segmentation

network. We propose a novel GAN training procedure, similar to transfer learning, which allows

a GAN to be trained on a mix of labelled and unlabelled data. The output of this GAN can then

be used to augment the real training data. We performed a number of experiments, simulating

cases where different levels of labelled data are available, and showed that the proposed method

leads to the generation of labelled images with greater anatomical variation than was present

in the labelled training data.

Three further sets of experimental results were presented. The first examined the effect of

using synthetic data as measured by DSC on the labelled dataset. We observed that significant

improvements can be made to DSC when small amounts of labelled training images are avail-

able, particularly in structures which are more strongly affected by AD. We also saw that by

augmenting with synthetic data, 6 labelled images could be used to achieve the same results

as 12 or 24 labelled images. Whilst this provides a useful indicator of performance, it does not

evaluate one of the key aims of the proposed method - to extend the domain of training set

from young and healthy to old and pathological. To evaluate this, we used a state-of-the-art
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3D multi-atlas segmentation method to generate surrogate ground truth labels for the entire

dataset. Using these, we showed how the expected DSC changes as age and AD diagnosis

varies. We observed that segmentation results are substantially reduced once the test images

fall outside of the domain of the training images either in terms of age or pathology. This

effect was reduced by introducing synthetic data, leading to greater improvements in DSC for

older subjects and those with AD. This confirms our hypothesis that exposing the network

to information from unlabelled images of older and more pathological subjects through the

synthetic data will lead to higher-quality segmentations of such subjects. Finally, the value

of these higher-quality segmentations was demonstrated by showing that the stratification of

AD between very mild and mild or moderate was significantly improved through the use of

synthetic data.

Future work will involve applying the proposed method in different domains and further eval-

uating its benefits. There were some cases where using synthetic data led to worse results,

particularly when ample training data was already available. This demonstrates that the syn-

thetic images are no substitute for real images, implying either a lower image or segmentation

quality. Investigating methods to improve image and segmentation quality will therefore also be

a subject of future work. In addition, the ability to synthetically generate training data means

that “bespoke” datasets can be created, for example, to address issues such as class imbalance.

Alternatively, datasets could be created which contain additional examples of under-represented

disease states or other demographics. Such an approach could even be taken during training,

where an increased loss observed on a particular region of the test domain is reacted to by

generating additional synthetic training data covering this region. Future work will therefore

also involve investigating these applications.

During the previous two chapters we have demonstrated one application of GANs in medical

imaging - for synthesising additional training data. However, there are many more potential

uses for GANs which have yet to be fully explored. Of particular interest is the latent space

learned by a GAN. So far in this thesis, we have simply sampled from this space to generate

synthetic training images. However, these spaces have a number of interesting properties which

we look to exploit in the remainder of this thesis.



Chapter 7

Modelling the Progression of

Alzheimer’s Disease in MRI Using

Generative Adversarial Networks -

Part A

7.1 Introduction

With an ageing population, neurodegenerative diseases are having an ever greater impact on

society. The most common of which, Alzheimer’s Disease (AD) has an estimated global cost

of US$818 billion [Prince, 2015] with the 46 million sufferers in 2015 expected to rise to 131.5

million by 2050. This demonstrates a clear and urgent need for a global effort to tackle the

disease, from earlier more accurate diagnosis, to patient care, to the search for new treatments.

Being able to accurately model the progression of AD is important for the diagnosis and prog-

nosis of the disease, as well as to evaluate the effect of disease-modifying treatments. AD is

associated with changes in the brain (described in more detail in Section 2.3.2). Primarily

these changes involve increased atrophy, where parts of the brain shrink as cells die. This atro-

194
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phy can be viewed on Magnetic Resonance Imaging (MRI) and is particularly apparent in the

hippocampus, around the cortex and around the lateral ventricles [Seab et al., 1988]. Methods

exist to quantify these changes such as the boundary shift integral [Freeborough and Fox, 1997]

to measure brain volume change and automated hippocampus segmentation methods to mea-

sure hippocampal volume [Schuff et al., 2009]. Many models have been proposed demon-

strating the development of these biomarkers, among others, including [Adak et al., 2004,

Caroli and Frisoni, 2010, Doody et al., 2001]. Whilst there has been success in modelling the

progression of AD related clinical biomarkers and image-derived features over the course of the

disease, modelling the expected progression as observed by Magnetic Resonance (MR) images

directly remains a challenge. Methods which model changes brain structures directly tend

to focus on image-derived surface meshes [Thompson et al., 2001, Costafreda et al., 2011], not

on the images themselves. In this chapter, we apply some recently developed ideas from the

field of Generative Adversarial Networks (GANs) which provide a powerful way to model and

manipulate MR images directly through a technique called image arithmetic. This allows for

synthetic images based upon an individual subject’s MR image to be produced expressing dif-

ferent levels of the features associated with AD. We demonstrate how the model can be used to

both introduce and remove AD-like features from two regions in the brain, and show that these

predicted changes correspond well to the observed changes over a longitudinal examination. We

also propose a modification to the GAN training procedure to encourage the model to better

represent the more extreme cases of AD present in the dataset.

The development of models such as this could have several applications. First, they would allow

clinicians to measure the progression of the disease in a patient against a predicted path, and

provide visual feedback to the patient and their family. They could also be used to measure

the impact of drug trials where actual disease progression can be compared to a predicted

intervention-free progression by comparing two images directly, as opposed to image derived

measurements. Finally, they could lead to a powerful tool for patient motivation. For example,

showing a patient a predicted progression with and without changes lifestyle, such as diet, could

provide additional encouragement to change their behaviour.

This chapter is divided into two parts. Here in Part A, we investigate the ability for the latent
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space learnt by GANs to create accurate predictions of AD progression. The work presented

in Part B of the chapter re-implements and extends the methods presented in Part A using a

more recent network architecture, unavailable at the time of the original work.

7.1.1 Generative Adversarial Networks

GANs, first proposed by [Goodfellow et al., 2014], have seen a lot of attention recently within

the field of computer vision. Many developments on the original architecture have been pro-

posed [Arjovsky et al., 2017, Tolstikhin et al., 2017, Zhang et al., 2017, Berthelot et al., 2017,

Radford et al., 2015, Gulrajani et al., 2017, Zhao et al., 2016], though they all follow the same

basic approach. Below is a brief summary of a GAN’s function, whilst a more detailed review

can be found in Section 3.1.1.

The goal of a GAN is to learn to generate synthetic samples from an unknown distribution

for which a set of real samples are known. For image tasks, this means being able to generate

synthetic images with the same characteristics as a training set of real images, ideally to the

degree that the synthetic images are indistinguishable from the real images. This goal is

accomplished through the playing of a game between two adversaries, the generator G and

discriminator D. In this iterative game, the goal of G is to learn a mapping from a low

dimensional random vector seed z to a high dimensional image such that D cannot distinguish

these synthetic images from the real training images. D, therefore, has the goal of learning

to distinguish the synthetic from the real images. After each round, G is updated according

to the loss observed by D on the latest batch of synthetic images. As the game plays out, G

becomes more sophisticated, eventually producing images with the desired characteristics of

those in the training set.

7.1.2 Image Arithmetic

One of the key features of GANs which we exploit in this chapter is the idea of image arithmetic,

where the characteristics of an image can be modified through simple arithmetic in a latent
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space. With a fully trained generator, the random seed z can be considered a latent encoding

of the resulting image G(z). The manipulation of an image’s latent encoding has predictable

and logically consistent effects on the resulting image. The classic example of this appears

in [Radford et al., 2015] where the authors train a GAN on a dataset of faces. They proceed

to show that by taking the latent encoding of an image of a man wearing glasses, subtracting

the encoding of an image of a man without glasses, then adding the encoding of an image of a

woman. The resulting encoding, when mapped back to image space, yields a woman wearing

glasses. In addition, they also demonstrate the continuity of the latent space by making small

modifications to the latent representations and showing that these corresponded to slightly

different faces and glasses of differing tints in image space.

The goal of the work described here is therefore to generate subject-specific predictions of AD

progression by isolating the latent encoding of the features which correspond to AD, and using

this to introduce or remove these features from real images. This is much like how the authors

of [Radford et al., 2015] isolate the features which correspond to glasses and add this to the

features of another face. In addition, the continuity of the latent space allows us to introduce

different amounts of these features by adding multiples of the isolated AD encoding. This

allows for a series of images showing the progression of AD pathology to be generated.

7.2 Method

The Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017] framework

was used as the basis for our experiments due to its simple and extensible formulation, and

robustness. The same framework and hyper-parameters as described in [Arjovsky et al., 2017]

were used. For the generator, we used a 256-dimensional input vector followed by 5 convolu-

tional layers with 1024, 512, 256, 128 and 1 (output) feature maps respectively. Convolutions

were performed with a stride of 2 to reach the desired output image size (64-by-64px). The first

convolutional layer used a 4-by-4 kernel, with subsequent layers using 3-by-3 kernels. As usual,

the discriminator architecture was set as the reflection of the generator with the final layer
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mapping to a single output. We modify the training procedure to address some deficiencies we

observed when using the standard framework.

7.2.1 Example re-weighting

A reduced ability to generate images with more extreme atrophy was observed during early

experiments. While similar to the phenomenon of “mode collapse” sometimes seen when train-

ing GANs, where the generator maps any input to approximately the same output, what we

observed was the GAN being unable to generate images from the extremes of the distribution,

despite learning a smooth manifold elsewhere. We hypothesised that this was due to a lack of

such examples in the training data and the tendency of a GAN to generate more “average”

images - the GAN will not waste some of its limited source of entropy in explaining variation

it rarely sees. To address this, we adopt a training data re-weighting schema similar to that

seen in the AdaBoost [Freund and Schapire, 1996] algorithm. A similar idea was proposed in

AdaGAN [Tolstikhin et al., 2017], where an ensemble of GANs are used. However, this would

be inappropriate for our use as having an ensemble of GANs would not allow a single latent

encoding for AD to be isolated.

Throughout training, during epoch t, each real image I in the training dataset T has an

associated weight wI,t and discriminator loss lI,t, with the loss for each batch B calculated as∑
I∈BwI,tlI,t. After each epoch, each wI,t is updated according to the following rule:

ε =
∑
I∈T

wI,tlI,t, α =
1

2
ln(

1− ε
ε

), wI,t+1 = wI,te
−αlI,t , (7.1)

with wI,0 = 1
|T| for all I. Note that since Equation 7.1 comes from the discrete version of

AdaBoost, in which the loss is expected to be binary (i.e. correct vs incorrect classification), it

is necessary to binarise the discriminator output. This was performed by applying a threshold of

0, which was found to be a reasonable decision boundary in the presence of batch normalisation

in the discriminator).
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This has the effect of increasing the weighting of those real images which are misclassified

(considered synthetic) by the discriminator. This forces the discriminator to better represent

the more extreme parts of the image distribution, which will, in turn, encourage the generator

to produce images from these regions. Figure 7.1 shows the relative weights of a selection of

training images during the early stages of training. During this period, 6 of these images are

identified as frequently misclassified and their weights increase until the discriminator learns to

accept them as real, upon which their weights decrease again.

Figure 7.1: Bottom: Graph indicating the relative weight of 64 randomly selected images over
the first 1000 iterations of training on a patch showing the hippocampus. Top: The 6 images
with the highest weights. Each image has one or more unusual properties which place them
towards the extremes of the image distribution. A,B&D: “Flattened” temporal lobe. C&F:
Considerable atrophy. E: Possible artefact in the top right.

7.2.2 Encoding an image

Once a GAN has been trained, the generator G provides a mapping from latent encoding z

to an image. However in order to manipulate the latent encoding of real images, a method to

map from real image I to optimal latent encoding z* is required, such that |(G(z*) − I)|2 is

minimised. One solution is to train a third network to map from image to latent space, trained

on batches of generated images and their corresponding encodings. Since the discriminator is

already a trained feature extractor, it is possible to avoid training a new network by instead

re-purposing the discriminator D by modifying the output layer to be of size |z|, and to retrain

D such that |(D(G(z)) − z)|2 is minimised. z* can then be found extremely quickly (<0.1
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second) through a single forward pass through the retrained discriminator.

An alternative suggested in [Yeh et al., 2016] and used in [Schlegl et al., 2017] is to find z* for

a given I using a gradient descent approach. We use a similar approach whereby |(G(z)− I)|2

is minimised by iteratively updating z so that it approaches z*. The main difference from the

method in [Yeh et al., 2016] is the omission of a perceptual loss term, as such a loss would

penalise the reconstruction of images from the extremes of the distribution, such as those with

considerable atrophy.

This approach can be accomplished simply by adding a layer to the beginning of G. This layer

is designed such that it outputs the pointwise multiplication of its input with a set of weights

w. By setting the inputs to a vector of ones of size |z|, the output of this layer, and therefore

the input to G, is w. The optimal values of w can now be learned such that |(G(w)− I)|2 is

minimised, with z* = w at the end of training. By setting the learning rate to 0.05, convergence

is reached in ∼20 seconds on a Tesla K80 GPU.

7.2.3 Isolating the visual appearance of AD using latent encoding

The latent encoding for AD can be found by subtracting the average latent encoding of a set of

images corresponding healthy subjects from those corresponding to AD subjects. The resulting

difference can then be added or subtracted from the latent encodings of real images to add or

remove the features of AD.

7.2.4 Experimental Setup

GANs were trained on examples of images with different levels of AD. These images were taken

from the ADNI dataset which contains images for over 1000 subjects with different levels of

AD; from Normal Controls (CN), through Mild Cognitive Impairment (MCI), to AD. Most

of these subjects have followup scans, with many showing a progression in the disease. This

results in thousands of images containing subjects at different stages of the disease. When
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training a GAN, it is important to have many examples of anatomical variation across the full

spectrum of the disease. With this in mind, we disregard the disease classification and whether

the image is a baseline or follow-up scan, so as to learn as much variation as possible. As a

result, training was performed on 6220 images. Each image was brain-extracted using PINCR-

RAM [Heckemann et al., 2015], bias-corrected using the N4 [Tustison et al., 2010] algorithm,

affinely co-registered to a 1mm isotropic Montreal Neurological Institute (MNI) template using

MIRTK1 and intensity normalised so as to have a zero mean and unit standard deviation. A

further 1000 images were preprocessed and kept separate for use in evaluation.

Two 64-by-64px regions were chosen for our experiments: A full resolution (1mm isotropic)

region in a coronal slice showing the hippocampus and temporal lobe, and an in-plane down-

sampled (3-by-3-by-1mm) transverse slice showing the lateral ventricles. To double the number

of training images available for the first experiment, regions from both hemispheres were taken,

with the images from the left side reflected and grouped with those from the right.

Four GANs were trained with an original WGAN and WGAN with re-weighting (WGAN+RW)

trained at each region. In all experiments, the size of z was set to 256. All GANs were trained

for 1100 epochs, well beyond the level of apparent convergence, taking approximately 10 hours

on a Tesla K80 GPU.

A set of 1000 additional images were reconstructed with each method, with a sample of results

shown in Figure 7.5. WGAN+RW was found to lead to visually more accurate reconstructions

in cases of high atrophy or other abnormality, with little difference between the methods seen

otherwise. The optimal latent encodings for each image using WGAN+RW were therefore cal-

culated for 784 CN, 1154 MCI and 434 AD images from the training data. The latent encoding

for AD, zAD, was then found as described previously. Images corresponding to G(z* + γzAD)

were generated at both locations for a CN subject showing the addition of the features of AD

where z* indicates the optimal latent encoding of the original image found through gradient

descent and γ controls the amount of these features introduced (Figure 7.7). Additionally, lon-

gitudinal images of an AD subject were predicted by a) Starting at the final image and removing

1https://github.com/BioMedIA/MIRTK
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AD features, and b) Starting at the baseline image and adding AD features (Figure 7.8).

7.3 Results and Discussion

7.3.1 GAN synthesis

Samples of images generated by the GANs can be seen in Figures 7.2 and 7.3. These were

produced using the WGAN+RW training schema. The generated images appear realistic with

no obvious flaws and cover a range of atrophy levels and patterns.

Figure 7.2: A random sample of synthetic images (bottom) of the hippocampus produced by
the GAN, with a selection of real images (top) for comparison.

7.3.2 Encoding and reconstruction

Figure 7.4 shows reconstructions using both the retrained discriminator and iterative approaches

to encode real images. The results after repeated encoding and reconstruction cycles were
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Figure 7.3: A random sample of synthetic images (bottom) of the ventricles produced by the
GAN, with a selection of real images (top) for comparison.

also produced. Whilst encoding and reconstruction is only performed once in the following

experiments, a lack of image degradation or “drift” after multiple applications is important

as small errors become amplified. It is clear that the iterative approach yields more accurate

reconstructions, even after multiple cycles. This improvement was considered to be worth the

significantly longer encoding time and was therefore used in the following experiments.

7.3.3 Impact of re-weighting

The advantages of re-weighting can be seen in Figure 7.5 which shows a number of examples

of cases with high levels of atrophy or other abnormalities which are accurately reconstructed

using WGAN+RW, but which result in errors without re-weighting.
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Figure 7.4: Examples reconstructions of three images using the two approaches. Top panel:
retrained discriminator network. Bottom panel: gradient descent over z. Recon shows the
reconstructed images according to the encoding calculated by each method. Reconn shows
the reconstructed images after n cycles of encoding and reconstruction. The first two images
come from the same subject at different time points. The subtle differences in atrophy level
are preserved using gradient descent over z, but lost using the retrained network.

7.3.4 Isolating the features of AD

Figure 7.6 shows the differences in average encoding between CN subjects and AD and MCI

subjects for the hippocampal images. By examining the components which are statistically sig-

nificantly (two-sample unpaired t-test, Bonferroni corrected for multiple comparisons) different
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Figure 7.5: Selection of images showing cases where WGAN+RW leads to better reconstruc-
tions. Arrows indicate inaccurately reconstructed regions, each associated with a high level of
atrophy or other abnormality.

between CN and AD subjects we can see which components are responsible for the differences

seen between CN and AD images, and in which direction they move as images start to display

stronger features of AD. As expected, the differences in these components between CN and

MCI are in the same direction, but smaller, showing how the features progress as subjects

move across the spectrum from CN, through MCI, to AD.

7.3.5 Adding and removing AD

Figure 7.7 shows the effect of adding multiples of the isolated features of AD in both locations.

In both cases the subjects’ general anatomy remains unchanged, however, the common changes

seen in AD begin to manifest themselves as higher amounts of AD is added: Enlarged ventricles

and cortical and hippocampal atrophy.

In figure 7.8, the effects of both adding and removing the features of AD from and AD sub-

ject with longitudinal data can be seen. AD is added to the baseline image, simulating the

progression of AD over two years, and removed from the 24-month image, reverting it back to

its baseline state. For the purposes of this experiment, zAD was scaled such that G(z*− zAD)

visually resembled the baseline image.

The predicted images show the same effects as those seen in real AD patients: an increase
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Figure 7.6: Visualisation of the average differences between the latent encoding of different
subject groups in each location. Red: AD and CN. Blue: MCI and CN. Only elements with
significant (two-sample unpaired t-test, p < 0.05/256) differences between AD and CN are
shown.

Figure 7.7: Progression showing the optimal reconstruction of a real image followed by recon-
structions with multiples of zAD added. Note the increasing presence of AD associated features.
Top: Enlarged ventricles and cortical atrophy. Bottom: Enlarged ventricles, hippocampal at-
rophy and enlarged sulci.

in ventricle size over time. However, we can also see some of the limitations of the proposed

method. The lack of resolution in the reconstructed images can mask the subtler changes and
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Figure 7.8: Images showing the addition and subtraction of AD features using a subject with
temporal data. The top row shows the real images at full resolution for a subject with AD at
baseline, 6 months, 12 months and 24 months. The second row shows the reconstruction of the
24-month image with predicted images for each other time point found by subtracting multiples
of zAD. The bottom row shows the reconstruction of the baseline image with predicted images
for each other time point found by adding multiples of zAD.

make accurate comparisons difficult. Also, the true atrophy progression is slightly asymmetric,

with the effects being more prominent in the right hemisphere. This difference is respected

when moving backwards from 24 months to baseline (it can’t remove atrophy which isn’t there)

but is missed when moving forwards from the baseline. The predicted 24-month image displays

more symmetric atrophy than seen in the real progression.
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7.4 Future Work

Several significant assumptions were made in this work, a) that progression from healthy to

AD is a linear process over time, b) atrophy patterns are symmetric, and c) morphological

changes are the same across all patients with AD. Whilst these have been sufficient to demon-

strate that the proposed method is able to make reasonable predictions, it is known that these

assumptions do not hold (a [Jack et al., 1999], b&c [Rabinovici et al., 2008]). There are also

many potential paths along which a healthy looking brain can progress to a more pathological

appearing brain (for example, symmetrically or not), which means that progression is difficult

to predict. However, given an true progression observed in a patient, it is a simpler task to

revert the image back to a healthier state. Future work will involve creating a subject-specific

latent AD encoding by incorporating clinical variables and subject anatomy to try and predict

the mode and speed of progression most likely for that subject.

Previous work [Suk et al., 2015] has shown that compression of an image to latent space using

stacked auto-encoders can lead to a powerful feature representation which can be used to classify

patients across the CN-MCI-AD spectrum. Our approach leads to a similar compression which

could also form the basis of a classifier. Figure 7.6 demonstrates this potential by showing

that there are features which vary significantly between CN and AD, which could be used as a

foundation for a classifier.

Our proposed method relies upon the GAN derived latent space facilitating image arithmetic.

While this has been repeatedly demonstrated empirically [Radford et al., 2015, White, 2016],

it is not clear whether this assumption always holds, and there is nothing in the GAN training

procedure which guarantees this property. It is clear that, when pushed to the extremes, image

arithmetic will fail. For example, continuously adding an AD vector eventually leads to no fur-

ther change as we attempt to extrapolate beyond the training data distribution. Additionally,

behaviour in these regions becomes unpredictable as the input vector will no longer be likely

under the random z distribution on which the space was learned. The assumption of linearity is

also not guaranteed, with linear changes in latent space not necessarily leading to linear changes

in image space. However, despite the lack of any mathematical guarantees, our experiments
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have shown that these assumptions do hold locally, if not globally, and provided changes are

small and the resulting vector is still likely under the random z distribution, the results appear

reasonable. Exploring the impact of these assumptions, and assessing under what conditions

they can be held, will be a subject of future work.

The optimal size of latent encoding z could also be further investigated. Preliminary experi-

ments suggested 256 provided a balance between the speed of convergence and the generation

of visually realistic images. However, a deeper investigation into this, whilst extremely time-

consuming, may yield better results. In addition, while the choice of using gradient descent

over z instead a third network to map from image to latent space was well motivated given the

results of the two methods, it may be the case that a third network could be the better option

in other applications, particularly if time was a major consideration. Future work will involve

investigating this further to establish under what conditions each approach is superior.

Finally, the proposed method’s main limitation is the relatively small image size of 64x64 pixels

which can be analysed. Whilst GAN formulations working at 128x128 [Berthelot et al., 2017]

and 256x256 [Zhang et al., 2017] pixels have been proposed, these are often associated with

long training times and large amounts of training data. 3-dimensional (3D) GANs are currently

limited to binary objects occupying relatively small regions in image space [Wu et al., 2016],

therefore containing much less complexity than MR images. The expansion of fast training

GANs into higher image sizes, and ideally into 3D, would improve the power of the proposed

method substantially.

7.5 Conclusion

We have demonstrated that the features corresponding to AD progression can be isolated using

a GAN derived latent feature space. This was used to show that an accurate subject specific

forecast for a typical AD progression can be found by reducing the subject’s MR image to a

latent feature space and adding the isolated latent encoding corresponding to the features of

AD, before reconstructing the image from the new latent encoding. To aid in this, we have
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also presented a modification to the WGAN training procedure which allows for more focus

to be placed on the rare and extreme examples in the training data. We have shown that

the proposed method produces images consistent with AD progression while maintaining each

subject’s unique anatomy and that this predicted progression corresponds well to that observed

through longitudinal examination.

We hope that this work can lead to a better understanding of the pattern of AD progression,

and provide a useful tool to both assess a patient’s disease trajectory and monitor their response

to treatment. Future work will involve calculating latent AD features which are tailored to the

subject by taking into account current disease state and clinical scores. Extending GANs to

higher image sizes and 3D MR images would also allow for more detailed predictions to be

made.

Part A of this chapter has shown one application of the proposed method. In the next part we

extend this work using an alternative architecture and investigate the ability of the proposed

method to build more complex models and predictions based on age, disease state and genotype.



Chapter 8

Modelling the Progression of

Alzheimer’s Disease in MRI Using

Generative Adversarial Networks -

Part B

8.1 Introduction

In Part B of this chapter, we further develop the ideas presented in Part A. One of the limitations

discussed previously is the relatively small region which can be investigated using the WGAN

framework due to training instability at higher image sizes. During the time since the work

described in Part A was carried out, alternative GAN formulations have been proposed, one of

which, the Progressive Growing of GANs (PGGAN) [Karras et al., 2017], allows for significantly

larger images to be generated. We, therefore, re-implement the methods from Part A of this

chapter using PGGAN to further investigate their potential.

Early experiments demonstrated a reduced ability to accurately encode a real image using

PGGAN. The potential reasons for this are discussed later. Because of this, the work in

211
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this part moves away from subject-specific progression prediction, towards the visualisation

of population-level changes throughout the stages of AD. Mentioned briefly in Part A of this

chapter, this is another potentially useful application of the proposed method. In Part A we

showed how the expected changes associated with AD can be imposed on an image. By applying

this approach to a large number of subjects, it is possible to aggregate these changes across

a population and visualise them. The differences in these average changes between different

populations can then lead to potentially valuable insights. For example, in a drug trial, the

effects of treatment can be visualised by comparing the average predicted changes between a

treated and untreated group. While we maintain our focus on AD, this approach can be applied

in any domain to observe the effect of any clinical variable on image data.

8.2 Materials and methods

The Alzheimers Disease Neuroimaging Initiative (ADNI) dataset used previously in Part A is

used again, with a focus on the axial view which had to be downsampled to a 3mm resolution

in the previous experiments, and can now be analysed at 1mm resolution.

A PGGAN is trained on the collection of single axial slices at full 1mm isotropic resolution,

producing images of size 256-by-256. The PGGAN architecture and training procedure is

unchanged from that described in [Karras et al., 2017]. The method from Part A for encoding

a real image I to optimal latent vector z* is modified to include an adversarial term. Whereas

previously we aimed to minimise |(G(z*)− I)|2, this was found to lead to blurred images when

using a PGGAN.

Introducing a discriminator loss from the already trained discriminator, as in [Yeh et al., 2016],

was found to be insufficient to steer the search away from these blurry regions of the learned

manifold. Instead, we choose to further train the discriminator by repeatedly showing it the

real image we wish to encode. In this way, the discriminator no longer learns to separate real

from generated images but instead aims to learn the features of the single target image, allowing

it to guide the generator towards this image. We choose to reuse the discriminator in this way
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as it is already a well-trained feature extractor for images of this type, and therefore requires

little additional training.

This training is performed in parallel with the gradient descent procedure to find z*. We also

initialised the search by finding the closest image as measured by Euclidean distance from a

set of 10000 generated synthetic images previously produced by the generator, and used the

corresponding latent vector ẑ to act as a starting point for the search. This ensures that the

iterative procedure to find z* does not get stuck in a local minimum, far away from the optimal

answer.

The final algorithm to encode image I to optimal latent vector z* is therefore shown in Algo-

rithm 2.

Given image I; starting point ẑ; generator G; discriminator D; loss weighting λ and
number of iterations k

Set z = ẑ
for i=1..k do

Compute EG = D(G(z))
Compute EI = D(I)
Update parameters of D, θd, by ascending ∆θd [E

I − EG]
Compute EG = D(G(z))
Compute EL = |(G(z)− I)|2
Update latent encoding, z, by descending ∆z[E

G + λEL]
end

Algorithm 2: Updated encoding procedure, introducing an adversarial loss from real image
I.

8.2.1 Image quality

Figures 8.1 and 8.3 show un-curated generated images. The image quality appears qualitatively

high, with high variation and little or no visible differences from real images, a sample of which

can be seen in Figure 8.2.
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Figure 8.1: A random sample of synthetic images.

Figure 8.2: A random sample of real images.
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Figure 8.3: A random sample of synthetic images (full resolution).

8.2.2 Single image encoding

Prior to running any experiments, we investigate the accuracy to which a latent encoding can

be generated for a real image using Algorithm 2 compared with the encoding procedure used

in Part A. Figure 8.4 shows how the original procedure tends to generate blurry images. This

comes as a result of there being small regions of the learned manifold which map to unrealistic

blurry images. A visual analysis of random synthetic images suggests that less than 0.5% of the
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manifold surface maps to these regions, however, they act as a sink point in almost all intensity

based searches for an optimal encoding. We also found that the discriminator considered images

sampled from this region as being real, despite their blurry appearance, hence incorporating a

trained discriminator loss, as in [Yeh et al., 2016], proves unsuccessful. However, training an

image specific discriminator to differentiate synthetic image from the single real image I, leads

to a discriminator loss which proved effective at ensuring a realistic image. A sample of these

can be seen in Figure 8.5.

Figure 8.4: An encoded image using the method used previously in Part A.

Despite appearing visually similar, the reconstructed images appear to have more errors than

was observed in Part A when using the WGAN on smaller images. There are several potential

causes of this. Firstly, the higher image sizes mean a greater level of variation which must

be matched in the generated images. This leads to a more complex search for z* with more

potential to end up in local minima. Another cause could be the learned manifold itself, while

the majority of the generated images appear realistic, there is no guarantee that all possible

images have a representative point on the manifold. There may be too much variation to be

encoded in a 512 element latent vector. The learning procedure of the PGGAN may contribute

to this. Once the higher resolution levels are reached, and the highest frequency information

becomes visible to the GAN, all the available source of entropy could have already been used to

produce variation in the lower frequency features. This could result in two behaviours. First,

the GAN could reuse entropy previously used for a low-frequency feature, such as ventricle size,
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for the purposes of describing high-frequency features, such as a particular region of cortical

folding. This would result in the two features being coupled, with one not generated without

the other, collapsing the manifold. Alternatively, the GAN could learn later layers which

effectively perform a super-resolution procedure based upon the output of the previous layers.

The manifold is learned at a low resolution, with the later layers simply adding detail on top

of this. However, since it would only learn one high-resolution image from each point on the

low-resolution manifold, many real images cannot be fully represented. The exact cause of

this, as well as the source of the blurry regions, would involve an extensive investigation into

the behaviour of the PGGAN architecture and training procedure. However, despite these

limitations, we proceed with our analysis. Whilst we are unable to accurately generate a

subject-specific image to produce a prediction of progression, as done in Part A of this chapter,

by analysing a sufficiently large amount of data we can perform population-level analysis and

visualise the changes on synthetic images.
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Figure 8.5: A set of encoded images using the method given in Algorithm 2.

8.3 Experiments

We run the following four experiments to investigate the ability of the proposed method to

detect the changes present in AD. In the first two, we look to validate the proposed method

by testing its ability to identify the expected changes in AD, as well as the differences between

each disease state.
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• The first experiment mirrors those performed earlier in Part A of this chapter, isolating

the latent signature for AD and using this to add the features of AD to generated images.

• We then extend this further to other disease states, examining the differences between

each pair of disease states, and averaging the predicted differences over the entire dataset

to visualise the average expected changes.

• We next incorporate age into the model by fitting a non-parametric kernel regression

model in latent space relating age to expected changes in each of the latent vector com-

ponents. This allows us to compare the expected year-to-year changes, and, by averaging

these, visualise the expected rate of change under each disease state.

• Having verified that the method can detect the more obvious changes, we proceed to a

more challenging task and perform comparisons with a simpler method. We examine

whether the proposed method can identify associations between clinical variables and

anatomical changes by isolating the effect of the Apolipoprotein E (APOE) genotype on

the expected rate of change of subjects with Late Mild Cognitive Impairment (LMCI)

and AD. Finally, we implement an alternative model based on pixel intensities in image

space, demonstrating the benefits of modelling in a latent space rather than image space.

8.3.1 Global differences in CN, Early Mild Cognitive Impairment

(EMCI), LMCI and AD

Our first experiment reflects those performed in Part A of this chapter. We take the average

computed optimal latent encodings of images of subjects which are healthy controls, and those

with EMCI, LMCI, and AD. For this experiment we use only the baseline images, providing 182

CN, 175, EMCI, 158 LMCI and 137 AD images. Signatures describing the difference between

the average encodings for each disease state (z̄{CN,EMCI,LMCI,AD}) and each other disease state

are computed, for example, zCN,AD = z̄AD − z̄CN . Figure 8.7 shows the effect of adding these

signatures to random generated images.
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We next add the appropriate signature to the latent encodings of all subjects belonging to each

disease state to produce a predicted image under each other disease state. For example, for

each CN subject, a predicted encoding for that subject under EMCI, LMCI and AD are gen-

erated by adding zCN,EMCI , zCN,LMCI , and zCN,AD respectively. These sets of latent encodings

are then passed through the generator and the resulting images are averaged. By examining

the differences between these average images, we can visualise the expected changes in image

intensity as groups progress from one disease state to the next. Figure 8.6 shows these expected

differences.

Figure 8.6: Average differences observed when turning a set of images corresponding to one
disease state into another by adding the corresponding disease signature.
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Figure 8.7: The effect of adding different disease signatures to random images. There is clear
ventricular enlargement between all disease states except CN and EMCI which appears mostly
unchanged. Arrows indicate some regions of increased cortical atrophy, which are more clearly
seen when moving from CN or EMCI to LMCI or AD.
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8.3.2 Predicted year-to-year tissue changes

In this experiment we look to utilise information about the age of the subjects to produce

a model which will show us the expected year-to-year tissue changes in each disease state,

and compare these to that of healthy ageing. A model is produced for each component of

an image’s latent encoding describing how it is expected to change as age and disease state

varies. For each component, a non-parametric model M is fitted using kernel regression with

a standard deviation of h = 5 years, relating age to the value of the that component in the

computed optimal latent encodings for each disease state. An estimate for the value of latent

component indexed at x ∈ {1..|z|} at age α for disease state S with associated set of latent

vector components Zx,S and corresponding ages α is therefore given by:

Mx,S(α) =

∑
i(K((αS(i))/h)Zx,S(i))∑
iK((α−αS(i))/h)

, (8.1)

K(p) =
1√
2π
e−

1
2
p2 . (8.2)

Figure 8.8 shows an example of this. While all the data is used to compute the model, we

restrict the domain to between the ages of 60 and 85, due to the scarcity of data points outside

this range reducing the reliability of the model for these values. The computed models for four

latent components for each of the disease states are shown in Figure 8.9. Using these models,

a predicted latent encoding for each subject at each age between 60 and 85 is then produced.

To predict component x at of latent encoding z at age α using model M for a subject with

disease state S with an image taken at age α0 with optimal encoding z*, the following equation

is used:

zx,α = z*x + [Mx,S(α)−Mx,S(α0)]. (8.3)
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Figure 8.8: Example of using kernel regression learn a relationship between age and one latent
component for subjects with AD. This shows how the expected value of a particular latent
component varies for subjects at different ages. We can see that, within the truncated range of
[60,85], the predicted value gradually rises from below to above 0.

Figure 8.9: Models learned for four latent components for each disease state with their domains
restricted to between 60 and 85.
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Once computed, these latent vectors are passed through the generator to give a set of images

describing a subject’s predicted progression from 60 to 85. One of these for each disease state

is shown in Figure 8.10. By taking the average over all subjects, an atlas is formed for each

disease state at each age. Figure 8.11 shows the average difference in intensity between each

such atlas and a baseline defined as the atlas computed for a 60-year-old CN subject.

Figure 8.10: Predicted progression of a synthetic image between the ages of 60 and 85 for each
disease state.
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A rate of change is then found for each disease state by examining the difference between atlases

from year to year. The average difference across each pair of consecutive years is computed,

giving a single image for each disease state showing the predicted rates of change of image

intensity, which can be seen in Figure 8.12.

Figure 8.11: Differences in image intensity between atlases predicted for each disease state and
age, and a baseline defined as the predicted atlas for a 60 year old CN subject.

Figure 8.12: Average difference in predicted atlas intensities across each pair of consecutive
years for each disease state.
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8.3.3 Effects of apolipoprotein E in LMCI and AD

It has been shown that the APOE is associated with the risk of developing AD (see Table 2.1),

with 1 or 2 copies of the ε4 allele being associated with a 300% and 800% increased risk of

developing AD respectively. It has also been reported [Nestor et al., 2008] that having at least

one copy of the ε4 allele increases the rate of ventricular enlargement, particularly in AD. As

a test of the proposed method’s ability to identify associations between clinical variables and

image properties, we repeated the previous experiment with the cohort split into two groups,

one containing the subjects with no copies of the ε4 allele (ε4−), and the other containing

subjects with one or more copies (ε4+). To increase the sample size, the LMCI subjects were

also used in addition to the AD subjects. This gives 113 ε4− cases and 182 ε4+ cases. The

difference between the calculated average rates of change can be seen in Figure 8.13. To examine

the stability of the method and to get a measure of the error in the predictions we perform

bootstrapping by repeating the experiment 50 times using a different subset of cases randomly

sampled with replacement from each group for each run. To ensure no data imbalance, only

113 cases are randomly sampled from each group. The results averaged across all runs can be

seen in Figure 8.14 along with a t-score map showing regions of significant difference.

Figure 8.13: Average year-to-year change in image intensity for ε4+ (left) and ε4− (right)
across all subjects.



8.3. Experiments 227

Figure 8.14: Average year-to-year change in image intensity for ε4+ (left) and ε4− (middle)
subjects, averaged over 50 runs, and t-value (right) map indicating regions of a significantly
higher rate of intensity change in ε4+ subjects.

8.3.4 Comparison to direct image analysis

In this section, we repeat some of the above experiments in image space in order to highlight

the similarities and differences to the proposed method.

The proposed method learns a model for age in the GAN derived latent space of the image data.

By fitting the same kernel regression model to each pixel in image space, a similar model can be

formed relating pixel intensity to age across different disease states. While this model cannot

be used to make subject specific predictions, it does predict average year-to-year changes in

pixel intensity. Specifically, the expected intensity difference δ from age α0 to α1 at pixel x for

disease state S can be calculated from image intensities Ix,S and corresponding ages αS as:

δx,S(α0, α1) = Mx,S(α1)−Mx,S(α0), (8.4)

Mx,S(α) =

∑
i(K((αS(i))/h)Ix,S(i))∑
iK((α−αS(i))/h)

, K(p) =
1√
2π
e−

1
2
p2 , (8.5)

where k = 5 to reflect the previous experiments. Using Equation 8.4, the average year-to-year

change in pixel intensity between the ages of 60 and 85 is then calculated as:
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δ̄x,S =
1

25

84∑
α=60

δx,S(α, α + 1). (8.6)

Figure 8.15 shows these changes for each disease state, while Figure 8.16 shows the same calcu-

lated over ε4+ and ε4− LMCI/AD subjects. For the latter, the same bootstrapping procedure

as used previously is employed.

Figure 8.15: Average year-to-year changes for each disease state calculated in image space.

Figure 8.16: Average year-to-year change in image intensity calculated in image space for ε4+

(left) and ε4− (middle) subjects, averaged over 50 runs, and t-value (right) map indicating
regions of a significantly higher rate of intensity change in ε4+ subjects.
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8.4 Discussion

Global differences in CN, EMCI, EMCI and AD

Figure 8.7 shows the expected changes as a synthetic image is changed from one disease state to

another. As expected, we see the biggest change when going from CN to LMCI and AD, while

we see very little change from CN to EMCI. The changes observed from EMCI to LMCI and

LMCI to AD are comparatively small in magnitude, but reflect those expected as the disease

progresses - particularly the enlargement of the lateral ventricles. When making larger changes,

from CN to LMCI or AD, or EMCI to AD, we can also observe a slight widening of the Sylvian

fissure, and in the case of CN to AD, atrophy at various points around the cortex become

apparent. When viewing the average changes across the dataset in Figure 8.6, we see the same

patterns. The primary differences between disease states appear around the ventricles, as well

as some evidence of cortical atrophy between CN/EMCI and LMCI/AD. Again, these findings

agree with the expected changes throughout the progression of AD, with ventricles and sulci

appearing enlarged as surrounding tissue atrophies.

8.4.1 Predicted year-to-year tissue changes

Figure 8.10 shows the predicted changes under each disease state between the ages of 60 and

85 projected onto a random image. Under normal ageing, we see little if any change, however

under EMCI we begin to see the ventricles appearing slightly enlarged, and, under LMCI and

AD, we see significant ventricular enlargement. When we look at the average differences from

a theoretical atlas for a healthy 60 year old in Figure 8.11, we see a clear pattern of ventricular

enlargement across each disease state, being much stronger in LMCI and AD than CN and

EMCI. The average year-to-year changes seen in Figure 8.12 reflect this, with the changes

apparent around the ventricles and Sylvian fissure being stronger in LMCI and AD than CN

and EMCI. We do however observe the highest year-to-year rate of change in LMCI, whereas

one might expect this to be in AD. One potential reason for this is that the ADNI cohorts tend

to include only mild cases of AD, as patients are often removed from the study once the severity
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of their AD increases. As a result, the dataset only contains images from patients within their

first few years of AD and therefore does not include examples covering the full range of atrophy

levels, leading to such changes being underestimated by the model.

8.4.2 Effects of apolipoprotein E in LMCI and AD

Figure 8.13 shows a clear difference in the average year-to-year changes between ε4− and ε4+

subjects, with an obviously increased rate of change in ε4+ subjects. The bootstrapping pro-

cedure gives us further confidence in the result. The method is shown to be stable, with the

average results seen in Figure 8.14 appearing similar to those shown in Figure 8.13, and with

a sufficiently small error range to indicate the difference between the two groups with a high

degree of confidence. These significantly different regions correlate well with those areas as-

sociated with atrophy in AD - most obviously around the ventricles, as well as around the

Sylvian fissure. This reflects the findings in [Nestor et al., 2008] of an increased rate of ven-

tricular enlargement in ε4+ subjects. While the exact pathological mechanism for the effect of

ε4 in AD is unclear, it is known to effect Aβ aggregation and is therefore linked to the same

downstream effects [Kim et al., 2009]. It, therefore, makes sense that ε4+ subjects will show

an increased rate of change in other areas as well as the ventricles, an assertion supported

by [Chalovich and Eisenberg, 2013], which reports that ε4 carriers suffer an accelerated reduc-

tion in cortical thickness in both health and disease. The increased rate of change around the

Sylvian fissure observed in ε4+ subjects is therefore not unexpected.

8.4.3 Comparison to direct image analysis

When modelling changes in pixel intensity directly in image space, we see an almost identical

pattern of year-to-year changes across each disease state in Figure 8.15, with AD again showing

less change than LMCI. However, this method fails to fully detect the difference in the year-to-

year changes between ε4− and ε4+ subjects. Average year-to-year changes shown in Figure 8.16

show little difference between the two groups, with only a slight indication of increased changes
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around the temporal horns of the lateral ventricles in ε4+ subjects. The regions of significant

difference observed through bootstrapping appears noisy with little evidence of an increased

rate of atrophy even around the ventricles. This demonstrates that while the simple analysis

in image space is sufficient to detect the most significant differences between disease states,

such as relative rates of atrophy, it fails to reliably detect subtler effects, such as that of APOE

genotype which was readily identified through the via space.

This can be explained by considering that for each age, the image space model uses only a

subset of the available images, weighted according to their ages relative to the target age. This

means that each image only contributes to a small region of the model. However, the latent

space model allows for a single image to be projected across all ages. The process of forming

an atlas at a specific age then uses information from across the entire dataset. This means

that the model at each age incorporates all examples of individual anatomical variation present

in the dataset. This effectively averages out the natural and irrelevant variations in anatomy,

reducing the noise and further exposing the effect of ageing.

Modelling in a latent space also has a number of advantages over image space beyond this

increased sensitivity:

• Modelling in a latent space allows for specific effects to be visualised directly on an image

as in Figure 8.10, rather than only predicting the average changes in intensity. This can

be useful in establishing in precisely what way these changes manifest themselves, for

example, whether these changes happen smoothly or suddenly.

• Using a latent space also allows for more complex relationships to be broken down. The

exact anatomy of an individual’s brain is a function of numerous genetic, disease and

age-related factors, on top of their own unique basic pattern of cortical folding defined

during the early stages of growth. A perfect model in latent space could account for all

of these, ie, zobserved = zbasic + zgenes + zdisease + zage.... With sufficient data, the effects of

each of these factors could be isolated and measured through simple arithmetic. We have

demonstrated how this allows longitudinal predictions to be made using cross-sectional

data by projecting each image across the entire range of ages.
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8.4.4 Applications

Being able to visualise the changes directly from images removes the need for an additional,

and often imperfect, feature extraction step. For example, in [Nestor et al., 2008], the authors

segment the ventricles to find their volume and use this feature to measure the effects of different

APOE genotypes, thereby identifying the connection between the rate of ventricular atrophy

and the presence of one or more ε4 alleles. The proposed method has detected the same effect

and also suggests an increased rate of atrophy around the Sylvian fissure. To identify this in

image space, a specific feature to measure this atrophy would need to be crafted and extracted

before a potential relationship between this feature and APOE genotype can be established.

Even assuming that such a feature could be consistently and accurately extracted, it would be

a time-consuming process which is unlikely to happen unless there is prior knowledge to suggest

such a relationship indeed exists.

However, the proposed method can only indicate expected changes in pixel intensity, and there-

fore provides no quantitative measure of these changes. We, therefore, see this method as a

way to highlight areas which could be subject to further investigation. Once the overhead of

GAN training and image encoding is carried out, it is a simple and fast process to visualise the

changes in an image dataset associated with any disease state or clinical variable. This allows

for fast, unsupervised, exploratory investigations into the relationships between any variable

and changes seen in the imaging data. Once a potential effect has been identified, further

feature based investigations could be carried out to confirm and quantify the effect.

8.5 Conclusion

In Part B of this chapter, we have demonstrated how the techniques proposed in Part A can

be applied using a different GAN architecture to analyse and generate larger images. We

showed that by performing analysis and producing models based upon the location of images

in a latent space, associations can be learned between disease state and image characteristics.

These associations were then projected onto synthetic images to visualise how the brain changes
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in different AD related disease states. By incorporating age into the model, predictions of year-

to-year changes under each disease state were made, allowing for the rate of progression to be

compared between states, both at a population level, and when projected onto individual MR

images.

Finally, we isolated the effect of a subject’s APOE genotype to examine the difference in year-

to-year changes between those with no ε4 allele and those with one or more, observing effects

consistent with the literature. When compared to the results using a simple model in image

space, we found a much greater sensitivity when modelling in latent space. We believe that

performing latent space analysis in this way provides a useful tool for detecting associations

between image features and disease state or clinical variables.

The drawback of modelling in a latent space is the need for an effective mapping between

the latent and image spaces. On the evidence of the results shown in both parts of this

chapter, GANs can provide an effective way of doing this. WGAN has been shown to learn a

highly representative manifold for lower resolution images, allowing for a near perfect mapping

between latent and image spaces. The PGGAN can be used at higher images sizes, but this

comes at a cost of learning a less representative manifold, where mapping to and from this

manifold does not always preserve high-frequency features such as cortical folding patterns.

Despite this, we have shown that the latent space is expressive enough to be used to learn the

relationships between clinical features and low-frequency imaging features. However, effects on

higher frequency features such as local regions of increased atrophy are likely missed as they

are not reliably encoded.

While we have shown that a given image can be projected across the age range, there is no

guarantee that these images are accurate representations of how that particular brain would

age, rather, we simply produce a prediction based upon the average changes observed over

the rest of the data. This assumes that everyone ages at the same rate and that the physical

changes associated with ageing manifest at the same ages. While this has proven to be ade-

quate to get the results described here, improvements could be possible with better individual

predictions. As discussed in Part A, this could be achieved by incorporating more individual
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patient information into the model.

Future work will involve using different GAN architectures, or to improve the PGGAN archi-

tecture/training procedure, to allow for better mappings between latent and image spaces at

high image sizes, with the ultimate aim of extending into 3D volumes.
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Future Work

Medical image computing, and in particular medical image synthesis, is a fast-moving field, with

each step forwards opening up many new avenues for exploration. This chapter shares some

ideas for such areas for investigation emanating from the work described so far. In addition, we

share a couple of early attempts at producing 3D images using GANs, an important step towards

the wider application of GANs within medical imaging. While neither method presented is

currently suitable for applied usage, we hope that they may provide a significant starting point

along two potential paths to 3D image generation.

9.1 Developments and extensions

This section aims to expand on the avenues for future work already discussed in each of the

previous chapters by providing some alternative approaches and suggestions in greater detail.

9.1.1 Brain Lesion Segmentation through Image Synthesis and Out-

lier Detection

As mentioned in Section 4.6, there are several ways in which the proposed method can be

improved, or extended to cover other pathologies. We demonstrated that comparisons with
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pseudo-healthy images can be an effective way of detecting pathology, however, the task of

realistic pseudo-healthy image synthesis remains a challenge. Our proposed kernel regression

approach performs this task well, nevertheless, this comes at the cost of poor visual quality

compared to other approaches. There are several ways in which GANs could be used to aid in

the generation of pseudo-healthy images:

• Post-process the images generated by our proposed kernel regression approach to make

them appear more realistic. This can be done in a similar way to [Shrivastava et al., 2016],

where they improved the quality of their simulated images by using a network with an

adversarial loss.

• Aggressively remove potentially pathological regions using a highly sensitive segmentation

algorithm such as Lesion Prediction Algorithm (LST-LPA) with a low threshold. These

missing regions can then be imputed through the method for image inpainting presented

in [Yeh et al., 2016], using a GAN trained on healthy Fluid-attenuated Inversion Recovery

(FLAIR) images. Such an approach will also remove the need for T1-weighted images.

Either of these methods could lead to more accurate pseudo-healthy images and perhaps re-

duce the amount of post-processing required by eliminating more false positives and allow-

ing for higher thresholds to be used. Another method for pseudo-healthy image synthe-

sis has been proposed since the work in this thesis [Schlegl et al., 2017] and very recently

explored further [Chen et al., 2018b, Chen and Konukoglu, 2018] by using generative models

to learn a manifold of healthy images and constraining the reconstruction of a pathologi-

cal image to lie on this manifold - thereby appearing healthy. Abnormalities can then be

found through subtraction. While the generated images MR shown in [Chen et al., 2018b,

Chen and Konukoglu, 2018] do not seem significantly higher quality than the ones generated

by our proposed method (poor resemblance to the real images, though with no pathology), this

is an interesting approach which warrants further investigation.
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9.1.2 GAN Augmentation: Augmenting Training Data using Gen-

erative Adversarial Networks

Using GANs for augmentation is still relatively new, and as such, there is a lot more to

be explored. We have presented several techniques for GAN augmentation for segmenta-

tion tasks, whilst others have shown its uses in classification [Amitai and Goldberger, 2018,

Moradi et al., 2018] tasks. In both of these applications, the first step should be to take the

proposed methods and apply them to many different cases across anatomy and modalities to

better understand how these approaches generalise.

9.1.3 GANsfer Learning: Combining labelled and unlabelled data

for GAN based data augmentation

The introduction of unlabelled data into GAN augmentation is also something which can be

explored further. We presented one method to do this, however, there are many others which

can also be investigated.

One alternative could be to use a generative adversarial transformation network to effectively

learn a set of transformations which could be used to deform a given image into a number of

other realistic images. As discussed, the main problem with using deformation augmentation

in medical imaging is that it is difficult to design a set of deformations which result in realistic

images, indeed a deformation which is valid for one image may not be for another. It may be

possible to learn a set of subject-specific deformations which can be used to transform a given

image in a number of valid ways.

The network would be trained on unlabelled images, with the role of the generator to take as

input a real image and output a realistically deformed version. The role of the discriminator

would be, as always, to ensure the output of the generator has a realistic appearance. With

sufficient regularisation to ensure the generator doesn’t just learn an identity mapping, the

generator could be then be used to provide a transformation to map a given labelled image onto
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a point in the learned manifold of unlabelled images. This transformation can also be applied

to the label channels, allowing for synthetic labelled data to be generated. Such an approach,

if possible, would reduce the burden on the generator to generate real images from scratch. By

only learning a transformation, and relying on the input image for the finer details, the resulting

images should be of high quality. Similar approaches which aim to learn a series of realistic

augmentations have already been proposed in [Lemley et al., 2017] and [Cubuk et al., 2018].

9.1.4 Modelling the Progression of Alzheimer’s Disease in MRI Us-

ing Generative Adversarial Networks

Section 7.4 briefly describes some direct improvements which could be made to the process

of generating subject-specific predictions, however, there are other avenues which could be

explored by using the techniques described in Chapter 7. In particular, the proposed method has

the potential to be a powerful tool in unsupervised data exploration. A proof of concept for this

was provided in Chapter 8, with promising results. Large imaging datasets such as UKBiobank

provide a valuable opportunity to measure correlations and associations between many clinical

variables and imaging features. Exploring such datasets by looking for associations between

a GAN derived latent space and clinical variables could yield some interesting discoveries.

However, we identified some limitations in using the PGGAN algorithm to encode large images.

If such image sizes are required, as is likely, more work must also be done to address some of

these limitations.

9.2 Higher resolutions and 3D GANs

Common to all of the GAN based techniques presented in this thesis is the desire to go to higher

image sizes and into 3D. One of the biggest drawbacks of current GAN formulations is their

poor scaling to larger image sizes which has limited their potential in the applications discussed

here. Both AD modelling and synthetic training data generation would benefit substantially
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from being extended to 3D. While PGGAN has been shown to generate images up to 1024-

by-1024, this is associated with 3-week training times on top-of-the-range hardware, and still

contains a significantly smaller number of pixels than would be required to generate 3D 1mm

isotropic brain images. The memory requirements required for such a high-resolution GAN are

well beyond what is routinely available in modern hardware, and as such will require a different

approach to simply increasing network size and compute power. In addition, current GAN

formulations are constrained to simple, rectangular images due to their convolutional nature.

This makes them unsuited to learning other types of data distributions common in medical

images such as surface data.

Parallel to the work presented in this thesis, we have also investigated methods for extending

GANs towards larger images sizes and into 3D. While none of these methods are mature enough

to be used in any of the applications presented in this thesis, they will form the basis of future

work.

We have decided to share the preliminary work for the most mature of these methods, in the

hope that it may inspire future work in this direction. This approach involves generating 2-

dimensional (2D), 3D or surface data at arbitrary resolutions by stitching together the output

of a number of individually trained smaller GANs. The full details of this can be found in

Appendix C.
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Conclusion

This thesis has described a number of contributions to the field of medical image synthesis.

Chapter 4 presented a novel image synthesis technique which was particularly suited to the

task of pseudo-healthy image synthesis. The proposed method was able to perform well at

lesion segmentation, outperforming several popular methods.

Another use of synthetic data to aid in lesion segmentation, among other segmentation tasks,

was investigated in Chapter 5. Here we demonstrated how using GAN derived synthetic training

data to augment CNN training datasets can lead to significant improvements in performance,

particularly in cases of limited data. We then built on this by showing how unlabelled data

can be incorporated into the synthetic data generation process to further increase the amount

of useful information which can be added to the training set. This was extended further in

Chapter 6 where unlabelled data was introduced in a novel GAN training procedure. This

improved the process of GAN augmentation by introducing synthetic labelled images with the

characteristics of older and more pathological subjects than were present in the labelled dataset.

This led to improved segmentation of images from elderly subjects and those suffering from

AD, resulting in improved differentiation between mild and more severe cases of AD,

An alternative use of GANs, and the latent representations they learn, was presented in Chap-

ters 7 and 8. Here, we demonstrated that certain image characteristics can be isolated and

added or removed from images. Whilst we demonstrated this in the context of AD, the method

240
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has the potential to be used in other applications, either as a method to generate subject spe-

cific synthetic images, or to identify the modes of variation between two groups of images. The

technique, originally developed using the WGAN framework, was re-implemented using PG-

GAN and applied to larger images. Further investigations were carried out, demonstrating the

potential for the method to identify associations between clinical variables and image features.

Finally, some avenues for future research were discussed in Chapter 9, including some early

experimental results for the task of generating larger, 3D and surface image data.
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Figure A.1: Bedside clinical assessment of the progressive aphasias: a simple algorithm (in-
formed by current consensus criteria for progressive aphasia6) for syndromic diagnosis of pa-
tients presenting with progressive language decline. The clinical syndromic diagnosis should
be supplemented by neuropsychological assessment, brain magnetic resonance imaging, and
ancillary investigations including cerebrospinal fluid examination. Warren, J. D., Rohrer, J.
D., & Rossor, M. N. (2013). Frontotemporal dementia. BMJ, 347(aug12 3), f4827f4827.
http://doi.org/10.1136/bmj.f4827
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Main behavioural features and subtypes* Examples

Disinhibition:

Socially inappropriate behaviour Inappropriately approaching, touching, or kissing strangers, verbal or physical aggression, fatuity, staring

Loss of manners or decorum Inappropriate laughter, jokes, or opinions that may be offensive to others, faux pas, lack of etiquette,

altered dress sense

Impulsive, rash, or careless actions Reckless driving, new onset gambling, buying or selling objects without regard for consequences

Apathy and inertia:

Apathy Lacking initiative, ceasing to engage in former activities or hobbies, poor personal hygiene

Inertia Needs prompting to initiate or continue routine activities, less likely to initiate or sustain a conversation

Reduced autonomy Environmental dependency, utilisation behaviours (such as handling or using items or reading signs aloud

when not required or appropriate to social context)

Loss of sympathy and empathy:
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Diminished response to other peoples needs and

feelings

Making hurtful comments or disregarding other peoples pain or distress, less warmth or interest toward

others (such as grandchildren, pets), hypoemotionality, failure to appreciate ambiguous social signals

(such as sarcasm)

Diminished social interest, interrelatedness, or

personal warmth

Decrease in social engagement, emotional detachment, distant from friends and relatives, reduced libido,

altered sense of humour

Perseverative, stereotyped, and compul-

sive or ritualistic behaviour:

Simple repetitive movements Tapping, clapping, rubbing, scratching, picking at self, humming, rocking

Complex, compulsive, or ritualistic behaviours Counting and cleaning rituals, collecting or hoarding, checking, ordering objects, walking fixed routes,

clock watching, new obsessional interests or preoccupations (such as religiosity, musicophilia)

Stereotypy of speech Habitual repetition of words, phrases, or themes

Hyperorality and dietary changes:

Altered food preferences Carbohydrate cravings (particularly sweets), food fads

Binge eating, increased consumption of alcohol

or cigarettes

Consuming excessive amounts of food, gluttony, rapid, messy eating, overfilling mouth, compulsive use of

alcohol or smoking
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Oral exploration or consumption of inedible ob-

jects

Pica, features of Kluver-Bucy syndrome

Loss of insight Unaware of or unconcerned by difficulties

Others:

Psychotic features Hallucinations (especially somatic or visual), delusions (especially somatic or paranoid)

Altered sensitivity to pain Hypochondriasis, heightened distress with innocuous stimuli, lack of distress in response to painful stimuli

Altered temperature sensibility Dressing inappropriate to climate

Table A.1: *Within the broad phenotype of behavioural variant frontotemporal dementia; clinical features in individual patients are
highly variable. Early features are often loss of warmth and empathy, social faux pas, and altered eating behaviour or food preferences.
Especially in association with expansions in the C9ORF72 gene. Warren, J. D., Rohrer, J. D., & Rossor, M. N. (2013). Frontotemporal
dementia. BMJ, 347(aug12 3), f4827f4827. http://doi.org/10.1136/bmj.f4827
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Method Library {A,A′} Search solution Speed solution Coherence solution Normalisation solu-

tion

Application

Image Analogies

[Hertzmann et al., 2001]

{Single source im-

age, Single target

image}

l2−norm + co-

herence metric

Small library,

approximate

nearest neigh-

bour

Augmented similar-

ity metric

Match mean and

standard deviation

Image filters, texture

synthesis, super resolu-

tion, texture transfer,

artistic filters, texture

by numbers

[Roy et al., 2014b,

Roy et al., 2010]

{Single T1 and T2

image pair, Single

FLAIR image}

l2−norm + co-

herence metric

Small library Augmented sim-

ilarity metric,

non-local means

patch combination

Assumed FLAIR synthesis,

super-resolution

MIMECS

[Roy et al., 2011,

Roy et al., 2013]

Varies, {Single 2D

image, single MR

image}

Compressed

sensing

Restricted

search space

from tissue

segmentations

NA Set peak of WM

histogram to 1

Longitudinal data nor-

malisation, atlas con-

struction, contrast nor-

malisation, distortion

correction in diffusion

images, super resolu-

tion and FLAIR syn-

thesis.
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[Iglesias et al., 2013] {Multiple PD im-

ages, Multiple T1

images}

l2−norm Restricted

search space

to local area,

multi-resolution

None FreeSurfer tool, no

details

Registration, segmen-

tation

[Zhang et al., 2012] {Low res 4D-CT

images, High res

4D-CT images}

l2−norm +

coherence mea-

sure, sparsity

constraint

Restricted

search to

patches taken

from expected

anatomical

location at

different time

point, cropped

images

Augmented similar-

ity metric

None mentioned,

CT quantitative

CT super resolution

[Rueda et al., 2013] {Low res MR im-

ages, High res MR

images}

l2−norm, spar-

sity constraint

Restricted

search space

from tissue

segmentations

Post-processing

regularisation

through back

projection

None mentioned Super resolution
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Modality Propaga-

tion [Ye et al., 2013]

Varies, {Multiple

MR images, Multi-

ple 2D images}

l2−norm (1st

iteration),

l2−norm + co-

herence metric

(subsequent

iterations)

Restricted

search space to

local area and

locally similar

images

Iterative refinement Histogram match-

ing

DTI-FA + T2 synthe-

sis from T1, Pseudo-

healthy T2 synthesis

[Tsunoda et al., 2014] {Multiple non-

pathological chest

radiographs}

Normalised

correlation

coefficient

Restricted

search space to

local area, down

sampling images

None NA (use of similar-

ity metric)

Pseudo-healthy radio-

graph synthesis

[Cao et al., 2013] Varies, {Multiple

microscopy images,

Multiple mi-

croscopy images}

EM, sparse cod-

ing

Small library None None mentioned Multi-modal registra-

tion, texture synthesis

[Roy et al., 2014a] Varies, {Single MR

image, Single CT

image}

EM Restricted

search by find-

ing a set of

similar patches

None None mentioned MR to CT registration
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[Dawant et al., 2012,

Cao et al., 2014]

Varies, {Single

microscopy image,

Single microscopy

image}

Sparse coding,

l2−norm

Small library None Scaling to [0, 1] Multi-modal registra-

tion, texture synthesis

Table B.1: Comparison of image synthesis methods based loosely on the Image Analogies [Hertzmann et al., 2001] framework. This
comparison includes: A) The method name (if provided). B) What image modalities were used as the source and target modalities. C)
The solution to finding the nearest patch. D) The solution to the problem of search speed. E) The solution to the issue of producing a
visually coherent image from distinct patches. F) The solution to the issue of intensity normalisation. G) The application the method
was used for.
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StitchGAN: Generating high resolution

2/3D images and surface data using

generative adversarial networks

C.1 Introduction

The level of detail required in modern day medical diagnostics continues to push images to

higher and higher resolutions. To handle this high resolution, computer vision techniques used

in the analysis of such images are often patch based, multi-resolution, or rely on dimensionality

reducing pre-processing steps. This avoids the need to process the entire image at once, reduc-

ing the computational complexity of these methods to manageable levels. Part of the enormous

success of Convolutional Neural Networks (CNNs) in this field can be attributed to their convo-

lutional nature making many architectures almost invariant to image size. Those architectures

which are often used to process a whole image, such as UNet [Ronneberger et al., 2015] and

auto-encoders [Vincent et al., 2010], can often benefit from pretraining [Sevetlidis et al., 2016]

or scale well with image size.

However, Generative Adversarial Networks (GANs) are notoriously unstable and have long

283
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training times even at modest resolutions. Because of this, GANs do not extend well to higher

dimensions and larger image sizes. GANs have been shown to have many exciting potential

applications in medical imaging, however this major hurdle must first be overcome. In this

section we propose an alternative to ever increasing memory and GPU requirements by gener-

ating large images through stitching the output of multiple small GANs together in a locally

and globally consistent way.

C.1.1 Related work

In [Yeh et al., 2016], the authors use GANs to perform image inpainting on a number of

datasets. In their experiments, the authors remove up to 80% of pixels from an image and

imputes their values by using a GAN to generate an image which is consistent with the remain-

ing pixels. This is done by performing a gradient descent over the generator input z, finding the

ẑ which minimises a cost function which penalises a weighted L1-norm between the generated

image and the remaining pixels, and a high discriminator loss.

C.1.2 Contribution

We propose StitchGAN, a method of generating high resolution 2-dimensional (2D) and 3-

dimensional (3D) images without increasing the memory or computational requirements, al-

lowing for arbitrarily large images be generated, beyond that which might usually fit in GPU

memory. We demonstrate that the approach also has the advantage of not being constrained

to simple 2/3D images, and can also be used to generate surface data.

C.2 Method

In StitchGAN, we use multiple independently trained GANs to generate images from different

locations within a larger image. The ultimate goal is to generate high resolution 2D and 3D

images by joining together these lower resolution sub-images. Naively joining the output from
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multiple GANs would be insufficient, as, even if the sub-images are completely realistic, the

resulting image will be disjointed and unrealistic. This presents two problems: how to ensure

that each sub-image corresponds to the same image (global coherency), and how to make sure

the joins between the sub-images are not visible (local coherency). We first describe the method

in terms of a 2D image, before later showing how it can be adapted to generate 3D images and

surface data.

C.2.1 Global coherency

We adapt the approach of [Yeh et al., 2016] by using a two-times under-sampled base image as

a foundation for the full resolution image. The pixels from this low resolution image are then

re-distributed throughout the higher resolution image space, providing every second pixel of a

high resolution image. The problem can then be described as one of missing information, and

the inpainting approach of [Yeh et al., 2016] employed. Since the image is now four-times as

large, four GANs are trained, one to perform inpainting in each quadrant of the high resolution

image.

Five GANs are therefore trained. The first is trained on images formed by taking every second

pixel along each dimension of the training images, and is then used to generate the synthetic un-

dersampled base image. The remaining four are trained on sub-images covering each quadrant

of the training images.

Sub-images which are consistent with the base image are generated by finding the optimal ẑk

for each quadrant k using:

ẑk = arg min
z
{ζ ‖L(Gk(z))− xk‖1 + λDk(Gk(z))} (C.1)

where xk represents the region in the low resolution image which corresponds to generator Gk

and associated discriminator Dk, L is a downsampling operator which samples every second

pixel and λ and ζ are weighting factors which control the influence of the two terms. The first
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term ensures that every second pixel in the generated sub-image matches the corresponding

pixel in the base image. The second term ensures that the generated image is still considered

real by the discriminator, and therefore remains realistic.

C.2.2 Local coherency

While Equation C.1 ensures that each sub-image is consistent with a low resolution image,

there will be new high frequency features generated within each sub-image. If these features

extend to the edge of a sub-image there will be discontinuities in the joint image if they are

not continued by their neighbours. To account for this we use overlapping sub-images and add

a third term with associated weight γ to Equation C.1:

ẑk = arg min
z
{ζ ‖L(Gk(z))− xk‖1

M̄ + λDk(Gk(z))+

γ ‖(Gk(z)− yk)‖1
M}

(C.2)

where y is an image containing any overlap from the sub-image’s neighbours which have already

been generated, M is a binary mask indicating these regions, and ‖‖M signifies the norm

evaluated only over the region indicated by M .

To generate a full high resolution image, a low resolution base image is first generated. Next,

a high resolution seed sub-image is generated at one location consistent with the base image

using Equation C.1. Starting from the seed sub-image’s neighbours, the remaining sub-images

are then generated using Equation C.2 so as to be consistent with both the base image and

any high resolution neighbours which have already been generated. Finally, each sub-image is

blended with its neighbours across a linear gradient. The training and inference procedures

and equations are shown graphically in Figures C.1 and C.2.
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Figure C.1: Division of a full resolution 2D image into a low resolution base image (Level 1)
and 4 overlapping sub images (Level 2). A single GAN is trained on each set of images.

C.2.3 Recursive generation

The proposed method is recursive, in that once a higher resolution image has been generated,

it can form the base image for an even higher resolution. In this way, arbitrarily high resolution

images can be generated. However, the number of networks required increases as the square

(2D) or cube (3D) of the number of resolution levels, so generating images more than 4-8 times

the size of that produced by an individual network becomes computationally challenging. In

each of the experiments shown here we use three resolution levels.

C.2.4 Similarities to dictionary learning

The proposed method can also be thought of an extension to patch based dictionary learning

methods such as those discussed in Section 3.1.3, whereby images are constructed by selecting

patches from a stored dictionary which best fit a set of criteria, often local and global coherency.

Within this paradigm, the dictionary is replaced with a GAN, allowing us to sample from the

entire learned manifold of potential patches, as opposed to the discrete points stored in a
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Figure C.2: Proposed inference procedure for a 2D image. A low resolution base image is
first generated (red). The generated pixels are then distributed throughout the 4 sub-images
(k = 1, 2, 3, 4). Each sub image is generated in turn following the given equation to ensure
consistency with the distributed base image pixels (red) and overlapping regions from previously
generated sub-images (green).

dictionary. This solves the search speed problem discussed i Section 3.1.3 by providing an

efficient GPU based gradient descent approach to patch matching, and addresses the problem

of enforcing local coherency by including it directly in the loss function.

C.2.5 Dynamic balancing of the generator and discriminator

One important, but rarely discussed, hyperparameter for GAN training is the ratio between the

discriminator (D) and generator (G) update cycles (referred to as k in [Goodfellow et al., 2014]).

Setting k = 1 is a common choice, however some propose more complex strategies, often with

little justification. For example, the authors of [Arjovsky et al., 2017] opt for a scheme with

k = 5 during normal training an k = 100 at the start of training and briefly for pre-defined

intervals thereafter. [Goodfellow et al., 2014] present the choice of k as a balance between

ensuring the optimality of D (perfect real / synthetic discrimination, a desired property) and

avoiding unnecessary and time consuming update cycles, and overfitting, when D is already at
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or near optimality. Intuitively, an optimal D allows for the most useful information to be fed

back to G, while a completely deficient D will provide nothing useful for G. We therefore have

two goals to maximise training efficiency: First, to only update G when D is near optimal,

and second, to only update D when D is far from optimal. With this in mind we propose the

following simple heuristic to dynamically adjust the ratio between D and G update cycles to

maximise the useful information passed to G, while minimising wasted training cycles.

while Stopping criteria not reached do
repeat

Sample batch m of size n from noise distribution
Compute EG = D(G(m))
Compute sensitivity as 1

n

∑
EG > 0

Sample batch r of size n from real images
Compute ER = D(r)
Compute specificity as 1

n

∑
ER < 0

Update D
until specificity > 0.75 and sensitivity > 0.75;
repeat

Sample batch m of size n from noise distribution
Compute EG = D(G(m))
Compute sensitivity as 1

n

∑
EG > 0

Update G
until sensitivity < 0.25;

end
Algorithm 3: Proposed dynamic training schema.

As well as speeding up and stabilising training, the proposed schema provides some useful

insight into the health of the system during training. Long periods of generator training (within

the second inner loop of 3) proved to be indicative of impending mode collapse. The most stable

training was associated with frequent swaps (no more than 50 iterations in one loop) between

the two inner loops, smooth changes in sensitivity and specificity, and an average of 5-10 times

more G updates than D updates.

C.3 Experiments

To demonstrate some potential applications of StitchGAN, we apply the technique to three

typical types of neurological imaging data. First, we demonstrate the method using simple
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2D slices from a T1-weighted 2D image. Despite these being within the abilities of of some of

the larger GAN formulations, we include these experiments for demonstration purposes. Next,

we show how the method can be used to generate cortical surfaces, before finally applying the

technique in 3D to generate 2-mm isotropic resolution 3D volumes.

C.3.1 2D Slice

In this experiment we generate 1mm isotropic 2D slices using data from Alzheimers Disease

Neuroimaging Initiative (ADNI) [Mueller et al., 2005]. All images collected as part of the

Alzheimers Disease Neuroimaging Initiative - 2 (ADNI-2) study were used, providing 6200

training images. Data was bias corrected (N4 [Tustison et al., 2010]), skull stripped (PIN-

CRAM [Heckemann et al., 2015]) and rigidly co-registered to a 1mm isotropic space. A single

radial slice was selected and used for training. To create the initial base image training set,

each image was down-sampled to a 4mm resolution giving an image size of 48-by-48px. For the

sub-image training set, 4 sets of overlapping 48-by-48px sub-images were extracted from 2mm

resolution down-sampled images, and 16 sets extracted from the original images (Figure C.3).

Due to the symmetry of the brain, the total number of sub-image sets can be halved by grouping

corresponding sub-images from opposite hemispheres together, leaving 11 GANs to be trained.

Figure C.3: Parcellation of 1mm isotropic 2D slice into a base image and overlapping sub-
images at different resolutions. Red squares indicate locations of each image set overlayed on
the average training image.
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C.3.2 Spherical surface projection of sulcal depth

An advantage of the proposed method is that generated images need not be simple planes. Here

we demonstrate how a surface describing the shape of an individual’s brain can be generated.

Data for this experiment comes from 618 subjects from the Human Connectome Project 1,

which provides pre-computed sulcal depth maps and surface templates. Figure C.4 shows an

example of a typical sulcal depth map used to a displace an average “very-inflated” cortical

surface template, projected onto a sphere, and projected onto a 2D plane using Mollweide

projection (as in [Kang et al., 2012].

Figure C.4: Example cortical surface map in three spaces. Left: Values used to displace cor-
responding vertices on an average “very-inflated” cortical surface template. Middle: Projected
onto a sphere. Right: Projected onto a 2D plane using Mollweide projection.

A sulcal depth map describes the displacement between an “inflated” and “very-inflated” White

Matter (WM) surface. By generating plausible synthetic sulcal depth maps and using these to

displace an average “very-inflated” surface, a set of synthetic cortical surfaces can be generated.

The synthetic depth maps are generated piece-wise on the spherical projection using SitchGAN.

A 128-by-64px Mollweide projection forms the 1
4

resolution base image, with 6 overlapping 96-

by-96px sub images covering the 1
2

resolution image, and another 24 covering the full resolution

image (Figure C.5).

As well as being able to generate high resolution depth maps, the proposed method also has

1http://www.humanconnectomeproject.org/
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Figure C.5: Parcellation of spherically projected sulcal depth map into a base image and
overlapping sub-images at different resolutions. Red squares indicate the location of the sub-
images on the 2D Mollweide projection. Only 2/24 locations shown at full resolution, and 3/6
at 1

2
resolution.

the advantage of only generating small regions from the surface at a time, and is therefore

significantly less effected by projection artefacts than if the whole surface was generated at

once.

C.3.3 3D volume

Using the same sample of ADNI data as used previously, we now generate full 3D volumes. An

optimal parcellation for highest resolution sub-images was formed so as to minimise the number

of individual networks required whilst maintaining a minimum overlap of 4mm (Figure C.6).
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Figure C.6: Parcellation of 2mm isotropic 2D volume into a base image and overlapping sub-
images at different resolutions. Red squares indicate locations of each image set overlayed on
the average training image.

C.3.4 Network architecture and parameters

The Wasserstein Generative Adversarial Network (WGAN) [Arjovsky et al., 2017] architecture

was used for all experiments. The architecture of each network was adjusted to fit the required

resolution of the experiment. For the 3D networks, the 2D convolutions were changed to

3D. All experiments used a batch size of 64, generator input size of 100, and generator and

discriminator learning rates of 5 × 10−5. Batch normalisation was used in the discriminator

only and optimisation was performed using stochastic gradient descent.
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When generating sub-images, the first is generated using Equation C.1, with subsequent images

generated using Equation C.2. Parameters ζ, λ, γ and learning rate α were chosen empirically

for each dataset and resolution level by examining the generated images. ζ controls how strongly

consistency with the previous resolution level was enforced. It was found to be important for the

2D applications, but less so in 3D. This can be attributed to the 3D patches covering a smaller

anatomical region, with less potential for anatomical variation, in addition to the more complete

contextual information provided by potential overlaps in the additional dimension. Consistency

with surrounding patches was therefore seen to be sufficient produce realistic results, with

a small ζ value only required to guide the process in cases with little or no overlap with

existing patches. λ controls the influence of the discriminator loss on the generated patches.

In [Yeh et al., 2016], this was necessary to ensure only realistic faces were proposed. In our

application, we found that there was little observable difference between the realism of patches

scored highly/lowly by discriminator at the end of training, and therefore a high λ value only

lead to less consistent images. This could be for a few reasons. Firstly the manifolds of

image patches used in these experiments are likely simpler than the manifold of faces used

by [Yeh et al., 2016]. The more complex manifolds are more difficult to learn and could therefore

lead to regions which do not map to realistic faces, requiring the λ term to encourage solutions

away from these regions. The simpler manifolds are easier to learn without such regions, and

therefore do no not require the λ term. The other possibility could be the use of WGAN in place

of the Deep Convolutional Generative Adversarial Network (DCGAN) used in [Yeh et al., 2016],

potentially leading to higher quality manifolds being learned. λ was therefore set to 0 in all 2D

experiments, and to 0.025 in the 3D experiments. This small value was found to be necessary as

the learned manifolds for the more complex 3D patches could occasionally produce unrealistic

images. λ, controlling local coherency, was kept at 1 in all experiments except when generating

the highest resolution 2D slice, where it was reduced to 0.2. In this case, a high value was

not necessary to enforce local coherency, however reducing it would lead to greater global

coherency, particularly in the form of symmetry. Finally the value of α showed little influence

on the quality of the final images, but was tuned for each set of experiments so as to ensure

convergence in a short a time as possible.
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C.4 Results

Sample generated images showing 2D, surface and 3D images, along with reference real images,

can be seen in Figures C.8, C.9 and C.7. Images at each resolution level are shown to demon-

strate the progression from under sampled base image to final full resolution image, as well as

exemplar real images.

Figure C.7: Results of 3D volume generation. The three stages of increasing image size are
shown through three orthogonal slices for two synthetic images, with a pair of sample real images
shown (bottom) for comparison. All images re-sampled to the size of the highest resolution
generated images (96-by-96-by-96px).
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Figure C.8: Results of 2D slice generation. The three stages of increasing image size are shown
for 6 synthetic images, with a set of real images shown (rightmost) for comparison. All images
re-sampled to the size of the highest resolution generated images (192-by-192px).
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Figure C.9: Results of suclal depth map generation applied to a surface atlas. The three stages
of increasing number of vertices (8.2k, 32.5k and 130k) are shown for two synthetic images, with
a pair of sample real images shown for comparison.
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C.5 Discussion

C.5.1 General appearance

The generated images appear reasonable, with a clear increase in quality from each resolution

to the next. Despite this, the highest resolution images are still visibly different from the

real images. There appears to be a lack of fine detail, particularly noticeable around the

white/grey matter boundaries in the Magnetic Resonance (MR) images. There are no obvious

discontinuities between the patches which make up the image, and successively higher resolution

images appear to be consistent with the previous lower resolution version. This suggests that

local and global consistency have been successfully enforced through equation C.2. However,

the lack of high resolution detail is one area in which the proposed method can be improved.

This can partially be attributed to the use of an L1 norm, something which is known to lead to

blurry solutions when applied to images, and one of the main reasons why the adversarial loss

provided by GANs is so successful. In theory, the realism term in equation C.2 should counteract

this effect, however we found that this term had little effect on the images being generated,

with there being little difference in the value of this term across the range of generated images.

Another factor could be that the GAN does not learn to produce particularly sharp images.

An examination of the output of one of the higher resolution GANs in Figure C.10 suggests

that this could be the case, with there being a clear distinction between the real and synthetic

patches. Since the proposed method is completely independent of GAN formulation, image

quality could be improved if more modern or future GAN formulations were used.

C.5.2 Anatomical diversity

Image diversity is an important factor in any generative model. An ideal model should be able

to produce images from across the entire manifold of real images. One of the drawbacks to the

proposed method is that once the initial low resolution base image is generated, the rest of the

process is theoretically deterministic. Whilst the subsequent gradient descent procedures are
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Figure C.10: Example GAN outputs for the highest resolution sub-images for each dataset.
Left: 2D MR slice. Middle: Sulcal depth map. Right: Slice through 3D MR volume. In
each case the left column shows a random selection of training samples with the right column
showing the a random selection of GAN output. Note how image details appear less defined in
the synthetic images.

stochastic, the optimal solutions they hope to find are fixed from the moment the base image

is generated. This acts to reduce the overall level of diversity since it implies a one-to-one

mapping between the low and high resolution image spaces, whereas in reality, there are many

valid high resolution images for a given low resolution image. The consequence of this can

be seen in Figure C.11 which shows that generated images tend to have a lower variance in

ventricle size/shape. One way to develop this method further would therefore be to address

this loss of diversity. One possible solution could be to limit the number of components of z

which are allowed to vary during the gradient descent step. Whilst this might lead to higher

pixel level errors, it would reintroduce a level of randomness to the generated patches, thereby

making the system no longer deterministic.
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Figure C.11: Left: Axial slices through real images. Right: Axial slices through generated 3D
images. Note the lower diversity in ventricle size and shape in the generated images.

C.5.3 Optimisation and run time

Whilst allowing for higher image sizes and surface data to be generated, the proposed method

does require long training and induction times. 3D generation involves the training of 27 3D

GANs, each taking approximately 20 hours to train. Generating an image then involves 52

rounds of optimisation each taking approximately 30 seconds. Generating a sufficient number

of images to calculate any of the objective metrics discussed in Section 3.1.1 is therefore com-

putationally challenging. This, combined with the long training times, means that performing

a detailed analysis of the impact of each parameter (GAN architecture and hyper-parameters,

patch size, location and overlap, relative influences of the terms in equation C.2 and patch

generation hyper-parameters) would be computationally intractable. These parameters were

therefore chosen empirically and by using heuristics. This is clearly not ideal and one of the

main areas for improvement for the development of the method would be to reduce the run

times and number of GANs required. More modern hardware and GAN formulations would

both speed up training and inference, and also potentially reduce the number of GANs required

by allowing a single GAN cover multiple regions in the high resolution images.
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C.5.4 Conclusion

We have presented a flexible method which can be used to allow GANs to generate images

beyond simple 2D squares. The method is still in its infancy and would need to be improved

in several areas before being applied to a real world problem, however there is potential for the

proposed method, or the ideas behind it, to provide a practical way to apply GANs to some

areas which would otherwise be inaccessible. One possible area where we see real potential is in

the generation of large histology images. These can be extremely large (> 100k-by-100k pixels,

see [Alexi et al., 2018] for examples) and are therefore well beyond the range of traditional

GANs. Such images also often have high translational invariance, and as such a single GAN

could be used at each resolution level, rather than one for each region. This dramatically

improves the scalability of the method allowing it to be applied at the extreme image sizes

required.
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