
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2017

Tensor methods for high-dimensional analysis and visualization

Ballester-Ripoll, Rafael <javascript:contributorCitation(’Ballester-Ripoll, Rafael’);>

Abstract: Most visual computing domains are witnessing a steady growth in sheer data set size, com-
plexity, and dimensionality. Flexible and scalable mathematical mod- els that can efficiently compress,
process, store, manipulate, retrieve and visual- ize such data sets are therefore of paramount importance,
especially for higher dimensions. In this context, tensor decompositions constitute a powerful mathe-
matical framework for compactly representing and operating on both dense and sparse data. Initially
proposed as an extension of the concept of matrix decom- position for three and more dimensions, they
have found various applications in data-intensive machine learning and high-dimensional signal process-
ing. This thesis aims to help bridge these aspects and tackle modern visual com- puting challenges under
the paradigm of a common representation format, namely tensors. Many kinds of data admit a natural
representation as higher-order tensors and/or can be parametrized, learned, or interpolated in the form
of compact ten- sor models. Numerous tools that are native and unique to said decompositions exist
for analysis and visualization, and such tools can be exploited as soon as the known ground-truth is ab-
stracted into this kind of reduced representation. To this end we develop a volume compression algorithm
tailored to high reduction rates in visualization applications; we explore compressed-domain processing
possibilities including multiresolution convolution, derivation, integration and summed area tables; we
produce visualization diagrams directly from compressed tensors via interactive reconstruction; and we
propose sensitivity analysis algorithms for model interpretation and knowledge discovery. Emphasis is
placed on compactness and interactivity and is addressed via careful tensor format selection and model
building, as well as a range of auxiliary technical tools including out-of-core memory management, adap-
tive quantization, parallelized multilinear algebra operations, and others. We conclude that the models
chosen result in a viable and fruitful toolbox for data of diverse origin, size, dimensionality, resolution,
and sparsity.

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-149680
Dissertation
Published Version

Originally published at:
Ballester-Ripoll, Rafael. Tensor methods for high-dimensional analysis and visualization. 2017, Univer-
sity of Zurich, Faculty of Economics.

https://doi.org/10.5167/uzh-149680

Tensor Methods
for High-dimensional
Analysis and Visualization

Dissertation submitted to the
Faculty of Business, Economics and Informatics
of the University of Zurich

to obtain the degree of
Doktor der Wissenschaften, Dr. sc.
(corresponds to Doctor of Science, PhD)

presented by
Rafael Ballester-Ripoll
from Spain

approved in October 2017 at the request of

Prof. Dr. Renato Pajarola
Dr. Peter Lindstrom

The Faculty of Business, Economics and Informatics of the University of Zurich
hereby authorizes the printing of this dissertation, without indicating an opinion
of the views expressed in the work.

Zurich, October 25, 2017

The Chairman of the Doctoral Board: Prof. Dr. Sven Seuken

ABSTRACT

Most visual computing domains are witnessing a steady growth in data set size,
complexity, and dimensionality. Flexible and scalable mathematical models that
can efficiently compress, process, store, manipulate, retrieve, and visualize such
data are therefore of paramount importance, especially for higher dimensions. In
this context, tensor decompositions constitute a promising mathematical frame-
work for compactly representing and operating on both dense and sparse data.
Initially proposed as an extension of the concept of matrix decomposition for three
and more dimensions, they have found various applications in data-intensive vi-
sualization, machine learning, and high-dimensional signal processing.

This thesis aims to help bridge these aspects and tackle modern visual com-
puting challenges under the paradigm of a common representation format, namely
tensors. Many kinds of data admit a natural representation as higher-order tensors
and/or can be parametrized, learned, or interpolated in the form of compact ten-
sor models. Numerous tools that are native and unique to said decompositions
exist for analysis and visualization. They can be exploited as soon as the known
ground-truth is abstracted into this kind of reduced representation.

To this end we develop a volume compression algorithm tailored to high reduc-
tion rates in visualization applications; we explore compressed-domain processing
possibilities including multiresolution convolution, derivation, integration, and
summed area tables; we produce visualization diagrams directly from compressed
tensors via interactive reconstruction; and we propose sensitivity analysis algo-
rithms for model interpretation and knowledge discovery. Emphasis is placed on

i

ii

compactness and interactivity and is addressed via careful tensor format selec-
tion and model fitting, as well as a range of auxiliary technical tools including
adaptive quantization, multiresolution data management, parallelized multilinear
algebra operations, and others. We conclude that the tensor methods adopted re-
sult in a viable and fruitful toolbox for data of diverse origin, size, dimensionality,
resolution, and sparsity.

KURZFASSUNG

Datensätze in den meisten Bereichen des Visual Computing zeigen ein stetiges
Wachstum in Grösse, Komplexität und Dimensionalität. Flexible und skalier-
bare mathematische Modelle, die es erlauben diese Daten auf effiziente Weise
zu komprimieren, verarbeiten, speichern, manipulieren, abzurufen und zu visu-
alisieren, sind daher von grösster Wichtigkeit, besonders für höherdimensionale
Daten. In diesem Zusammenhang stellen Tensor-Dekompositionen ein vielver-
sprechendes mathematisches Framework für das kompakte Repräsentieren und
Bearbeiten von sowohl dicht- als auch dünnbesetzten Datenmodelle. Ursprünglich
als Erweiterung des Konzepts der Matrix-Dekomposition für drei und mehr Di-
mensionen vorgeschlagen, fanden sie zahlreiche Anwendungen in den Bereichen
datenintensive Visualisierung, machinelles Lernen und höherdimensionale Sig-
nalverarbeitung.

Das Ziel dieser Dissertation ist es dazu beizutragen, diese verschiedenen As-
pekte zu überbrücken und Herausforderungen im modernen Visual Computing
mithilfe eines gemeinsamen Repräsentationsformats, dem Tensor, zu bewältigen.
Viele Formen von Daten erlauben eine natürliche Repräsentation als Tensoren
höherer Ordnung und/oder können als kompakte Tensor-Modelle parametrisiert,
gelernt oder interpoliert werden. Zahlreiche Werkzeuge, massgeschneidert für
diese Dekompositionen, existieren für die Analyse und Visualisierung und können
benutzt werden, sobald die bekannten Referenzdaten in diese reduzierte Form der
Repräsentation abstrahiert wurden.

Dazu entwickeln wir einen Kompressionsalgorithmus für Volumendaten, der

iii

iv

auf die hohen Kompressionsraten in entsprechenden Visualisierungs-Anwendungen
zugeschnitten ist; wir erforschen Möglichkeiten zur direkten Bearbeitung kom-
primierter Daten, einschliesslich Konvolution in Mehrfachauflösung, Ableitung,
Integration und Integralbilder; wir erzeugen Visualisierungs-Diagrammen direkt
aus komprimierten Tensoren durch interaktive Rekonstruktion; und wir schlagen
Algorithmen vor zur Sensitivitätsanalyse für die Modellinterpretation und Wis-
sensentdeckung. Der Schwerpunkt liegt auf kompakter Repräsentation und In-
teraktivität, was wir erzielen durch die Auswahl entsprechender Tensorformate
und Modellanpassung, sowie auch eine Reihe zusätzlicher Hilfswerkzeuge, ein-
schliesslich solcher zur adaptiven Quantisierung, Management mehrfachaufgelöster
Daten, Durchführung parallelisierter Operationen aus der multilinearen Algebra
und ähnliches. Wir schlussfolgern dass die Anpassung von Tensor-Methoden
zu einem nützlichen und vielfältigen Sortiment an Werkzeugen führt, einsetzbar
für Daten unterschiedlicher Herkunft, Grösse, Dimensionalität, Auflösung und
Dichte.

ACKNOWLEDGMENTS

First of all I want to express my gratitude towards my advisor, Renato Pajarola.
The support and freedom he provided were essential for all the ideas developed in
this thesis. He was always open and eager about new lines of research, which is
especially important in such a flexible and interdisciplinary topic. I wish to thank
all present and past VMML members for the great atmosphere they created and
continue to create. I thank David and Enrique for their interactions and sustained
work on various fruitful tensor-related projects and results, their ability to get in-
volved in very diverse ideas, and their help on good programming practices and
creative thinking. I thank Susanne for helping introduce me to the field and shar-
ing her resources and experience at the beginning of my PhD, and Oliver for his
insights during these first years. Special thanks go also to my second advisor, Peter
Lindstrom, for his inspiration and knowledgeable input on effective compression.
I am also grateful towards Ivan Oseledets for giving me the opportunity of being
a visitor at his lab, and towards his students, especially Maxim and Evgeny, for
interesting conversations on tensor methods from very different angles.

I give special thanks to my parents and sister for their encouragement and pos-
itiveness during this period, to my uncle José Ismael for sharing his deep passion
for science and his counseling on research life, and to my wife Dorina for her
unwavering support and advice at both the academic and personal levels.

Finally, I acknowledge the Swiss National Science Foundation (grant 200021-
132521) and the University of Zurich’s Forschungskredit (grant FK-16-012), that
helped fund my research during the first and last parts of my PhD, respectively.

v

CONTENTS

Abstract i

Kurzfassung iii

Acknowledgments v

Notations xiii

List of Figures xv

List of Tables xvii

I Dense Data: Compression and Processing 1

1 Introduction 3
1.1 High-dimensional Visualization Challenges 4
1.2 Tensor Decompositions . 4
1.3 Research Questions . 5
1.4 Proposed Framework . 6
1.5 Contributions . 7
1.6 Dissertation Overview . 10

vii

viii CONTENTS

2 Tensor Models 11
2.1 Overview . 12
2.2 CANDECOMP/PARAFAC . 12
2.3 Tucker . 13
2.4 Tensor Train . 15
2.5 General Tensor Networks . 16
2.6 Variants and Hybrid Models . 17
2.7 Operating with Tensors . 18

2.7.1 Factor Matrix Operations 18
2.7.2 TT Format . 18
2.7.3 Adaptive Cross-Approximation 19

3 Tensor Compression 21
3.1 Overview . 22
3.2 Background . 23
3.3 Compression with Tucker . 24

3.3.1 Core Reduction . 24
3.3.2 Further Remarks . 25

3.4 Proposed Algorithm . 25
3.4.1 HOSVD Transform . 27
3.4.2 Adaptive Chunk Partitioning 27
3.4.3 Mask Encoding . 28
3.4.4 Factor Quantization . 29

3.5 Decompression . 29
3.6 Results . 29
3.7 Discussion . 30

4 Multiresolution Filtering 37
4.1 Overview . 38
4.2 Background . 39

4.2.1 Multiresolution Filtering 40
4.3 Octree Tucker Decomposition 41
4.4 Tensor Compressed Domain Filtering 42
4.5 Proposed Multiresolution Filtering 44

4.5.1 Overview . 44
4.5.2 Decomposition Stage . 46
4.5.3 Basis Factor Matrix Filtering 47
4.5.4 Reconstruction . 48
4.5.5 Rendering . 48

4.6 Results . 49
4.6.1 Software and Hardware Used 49

CONTENTS ix

4.6.2 Datasets and Parameters 50
4.6.3 Multiresolution Remarks 51
4.6.4 Guided Filter Extension 51
4.6.5 Filtering Performance . 53
4.6.6 Rendering Performance 58

4.7 Discussion . 59

5 Histogram Reconstruction 61
5.1 Overview . 62
5.2 Background . 63

5.2.1 Efficient Multidimensional Histograms 63
5.2.2 Summed Area Tables and Integral Histograms 64

5.3 Integral Histogram Tensor Compression 65
5.3.1 Slice Compression . 66
5.3.2 Sum-and-Compress . 67

5.4 Histogram Reconstruction . 68
5.4.1 Spatial Tensor Basis Manipulation 69
5.4.2 Querying a TT-Compressed IH 70

5.5 Non-rectangular ROIs . 71
5.5.1 Non-rectangular Reconstruction 71
5.5.2 Histogram Field Reconstruction 73

5.6 Results . 74
5.6.1 Hardware and Software Used 74
5.6.2 Scalar Field Integral Histograms 74
5.6.3 Vector Field Entropy . 76
5.6.4 Cross-Correlation Queries 78

5.7 Discussion . 78

II Sparse Data: Interpolation and Learning 83

6 Surrogate Modeling 85
6.1 Overview . 86
6.2 Background . 87
6.3 Construction of TT Surrogates 88

6.3.1 Preliminaries: Variable Range Discretization 88
6.3.2 Construction From a Black-Box System 88
6.3.3 From Categorical Data 89
6.3.4 From an Auxiliary Regressor 89
6.3.5 From Another Low-Rank Decomposition 90

6.4 Visualization in the TT Format 93

x CONTENTS

6.4.1 Reconstructing Compressed Subspaces 93
6.4.2 From Tensor Train to Parallel Coordinates 93
6.4.3 Bivariate Projections . 94
6.4.4 Finding Interesting Subspaces 94

6.5 User Interaction . 96
6.6 Results . 97

6.6.1 Synthetic Simulation . 97
6.6.2 Saint-Venant Flood Model 98
6.6.3 GEMM Matrix Product in the GPU 99

6.7 Discussion . 102

7 Sensitivity Analysis 105
7.1 Overview . 106
7.2 Background . 108

7.2.1 Sobol Decomposition . 108
7.2.2 Variance Components . 108
7.2.3 Related Indices . 109
7.2.4 Tensor Surrogates and Sensitivity Analysis 110

7.3 The Sobol Tensor Train . 111
7.4 Computing Aggregated Indices 113
7.5 Global Sensitivity Metrics and Queries 115

7.5.1 Relevant Subsets of Variables 115
7.5.2 Other Constraints . 116

7.6 Results . 116
7.6.1 Sobol “G” Function . 116
7.6.2 Piston Simulation . 118
7.6.3 GEMM Product . 119

7.7 Discussion . 120

8 Conclusions 123
8.1 Summary . 124
8.2 Future Work . 125

8.2.1 High-dimensional Compression 125
8.2.2 Categorical Visualization 126
8.2.3 Multivalued Data . 126
8.2.4 Smooth Tensor Completion 126
8.2.5 Content-based Surrogate Navigation 127

A Decomposition Algorithms 129
A.1 From Dense Data . 129

A.1.1 CP . 129

CONTENTS xi

A.1.2 Tucker . 129
A.1.3 TT . 131

A.2 From a Fixed Sparse Sample Set 131
A.3 Adaptive Sampling . 132

B Tensor Decomposition Software 137

Bibliography 139

Curriculum Vitae 159

NOTATIONS

Acronyms

ACA Adaptive cross approximation
ALS Alternating least squares
ANOVA Analysis of variance
CP CANDECOMP/PARAFAC
CUR Column-row matrix factorization
DCT Discrete cosine transform
DOG Difference of Gaussians
ETT Extended tensor train
FT Fourier transform
HOOI Higher-order orthogonal iteration
HOPM Higher-order power method
HOSVD Higher-order SVD
HT Hierarchical Tucker
IH Integral histogram
LHS Latin hypercube sampling
LOD Level of detail
PCA Principal component analysis
PCE Polynomial chaos expansion
PSNR Peak signal-to-noise ratio
QOI Quantity of interest

xiii

xiv NOTATIONS

RLE Run-length encoding
RMSE Root-mean-square error
ROI Region of interest
SA Sensitivity analysis
SVD Singular value decomposition
TT Tensor train
WT Wavelet transform

Symbols

u A vector (order-1 tensor)
U A matrix (order-2 tensor)
T A tensor of any order
U[i, :] NumPy notation: i-th row of a matrix
u[0:k] NumPy notation: the first k elements of a vector
T [i] i-th slice of a tensor train core along the spatial mode
N Number of tensor dimensions
I, In Tensor sizes, 1 ≤ n ≤ N
R,Rn Tensor ranks
< ·, · > Dot product
|| · || Frobenius norm
◦ Element-wise (Hadamard) product
� Khatri-Rao product
⊗ Kronecker product
×n Tensor-times-matrix along the n-th mode
U ∗ u Column-wise convolution of a matrix with a vector
† Moore-Penrose pseudoinverse
ε Relative error between two tensors
T(n) n-th mode unfolding of a tensor T
σ

(n)
i i-th generalized singular value along the n-th mode
̂ Missing item in a list, e.g. x1, . . . , x̂n, . . . , xN
U Uniform distribution
N Normal distribution

LIST OF FIGURES

1.1 Proposed high-dimensional visualization pipeline 7

2.1 3D CP decomposition . 13
2.2 3D Tucker decomposition . 14
2.3 5D TT decomposition . 16
2.4 Tensor network examples . 17

3.1 TTHRESH’s chunk sizes . 28
3.2 Quality curves for several compressors 32
3.3 Speed of several compressors . 33
3.4 Two example volumes (I) . 34
3.5 Two example volumes (II) . 35

4.1 Architecture of modern octree-based volume rendering systems . . 38
4.2 2D example of multiresolution Sobel artifacts 41
4.3 Tucker-compressed octree: brick cores and global factors 42
4.4 Factor matrix subselection and subsampling 43
4.5 CP/Tucker convolution with a 3D filter 44
4.6 Filtering three factors: before and after 45
4.7 Filtering in a multiresolution Tucker octree 46
4.8 Proposed multiresolution filtering architecture 50
4.9 Sobel operator: naive vs. compressed-domain 52
4.10 Visual results for several filters and volumes 57

xv

xvi LIST OF FIGURES

4.11 Difference of Gaussians and Sobel: frame-by-frame timings 58
4.12 Guided filter: frame-by-frame timings 59

5.1 Pipeline of tensor-based histogram look-up 63
5.2 Querying an integral histogram 64
5.3 Average histogram accuracy . 66
5.4 Integral histogram compression example 69
5.5 Example data sets . 74
5.6 Example of rectangular and Gaussian queries 76
5.7 Histogram reconstruction: performance comparison 77
5.8 Hurricane vector field: results . 80
5.9 Cross-correlation windows in the hurricane vector field 81

6.1 Adaptive cross approximation . 89
6.2 Tucker and TT vs. TT-Tucker . 91
6.3 Hamming mask tensor of order 2 95
6.4 Parallel coordinates from a TT surrogate 98
6.5 Trellis display of a TT surrogate built with ACA 100
6.8 TT surrogate for the GEMM experiment 101
6.6 Interactive navigation of a TT surrogate 103
6.7 Surfaces with highest/lowest variance 104
6.9 Trellis display of a TT completed with ALS 104

7.1 Proposed sensitivity analysis pipeline 107
7.2 Indexing Sobol tensor trains . 115
7.3 Sobol indices for the 25D Sobol function 117
7.4 Combined contributions for the three surrogates 121

LIST OF TABLES

3.1 Data set description . 30

4.1 Visualization workflow for several related methods 40
4.2 Difference of Gaussians: relative error 54
4.3 Sobel operator: relative error . 55
4.4 Guided filter: relative error . 55
4.5 Difference of Gaussians: filtering and reconstruction times 56
4.6 Sobel operator: filtering and reconstruction times 56
4.7 Guided filter: filtering and reconstruction times 57

5.1 Space/time complexity for the proposed method 73
5.2 Compression results for all data sets considered 75

6.1 Parameters of the Saint-Venant flood model 99
6.2 Parameters of the GEMM OpenCL kernel 101

7.1 Sobol function: highest indices 118
7.2 Sobol function: highest aggregated indices 118
7.3 Parameters of the Piston function 119
7.4 Piston function: highest indices 120
7.5 Piston function: highest aggregated indices 120
7.6 GEMM: highest indices . 121
7.7 GEMM: highest aggregated indices 121

xvii

xviii LIST OF TABLES

7.8 Answering sensitivity analysis queries 122

A.1 List of completion and adaptive sampling algorithms 135

Part I

Dense Data: Compression and Processing

1

1C H A P T E R

INTRODUCTION

3

4 1 INTRODUCTION

1.1 High-dimensional Visualization Challenges

Our rapidly increasing ability to generate data is now more than ever unmatched
by our ability to make sense out of it. The importance of visual computing has
grown in parallel to modern data acquisition capabilities; its applications are far-
reaching and have strong ties with computer graphics, machine learning, applied
mathematics and statistics, data science, and beyond. A few key aspects of visual-
ization are especially challenging when data is complex and/or high-dimensional:

• Storage and display: memory and network bandwidth bottlenecks are a
growing limitation for massive multidimensional data sets, and they increas-
ingly require suitable compression strategies. For example, 3D tomography
scans, image stacks, hyperspectral images or time varying data are all much
more demanding than their lower-dimensional counterparts.

• Feature extraction: separating important attributes from unimportant back-
ground can be a manifold task and can range from noise removal to edge
detection to computation of statistical properties.

• Interactivity: real-time exploration continues to be a critical target for many
graphics and visualization systems. The well-known curse of dimensional-
ity makes it harder for algorithms and architectures to perform satisfactorily
with limited computing resources.

• Missing values or regions: the ability to predict or interpolate an output over
unobserved points or spaces is a fundamental aim of machine learning and
is instrumental in transforming raw sparse data into knowledge.

• Model interpretation: questions such as “Which independent variables af-
fect more strongly this model’s response?” or “Are these observations mostly
explicable by isolated effects, or are they the result of a more complex in-
teraction network?” arise frequently during the data exploration process.
They move in a virtuous circle with respect to visualization, both benefiting
it and arising from it.

1.2 Tensor Decompositions

As a result of the challenges listed above it has become crucial to exploit math-
ematical tools that can compactly learn, represent and extract features from data.
Matrix representations, in particular, are a cornerstone of many applications on
bivariate information: signal processing, graphs and networks, dimensionality re-
duction for unstructured data, recommender systems, etc. High-dimensional data

1.3 Research Questions 5

sets, however, possess a much richer structure than what a matrix can capture. Ini-
tially proposed as an extension of the singular value decomposition (SVD) for 3
and more dimensions, tensor decompositions and their backbone (multilinear al-
gebra) address this issue in a wide range of disciplines. There are several ways to
define such extensions, each giving rise to a different approximation model. Pio-
neering decomposition models such as CANDECOMP/PARAFAC, Tucker or the
higher-order singular value decomposition (HOSVD) were originally developed
as compact multiway dimensionality reduction techniques. These concepts later
spawned many applications in signal processing and data mining. Furthermore, a
variety of additional decompositions have been proposed.

More recently, tensor methods have become a versatile and increasingly used
tool in computer graphics and visualization. For instance [Wu et al., 2007] and
[Wu et al., 2008] developed a hierarchical partitioning for visual data compres-
sion, outperforming the wavelet transform (WT) in terms of feature preserva-
tion. [Suter et al., 2011a] proposed a graphics processing unit (GPU) decompres-
sion algorithm for parallel, real-time large data visualization. [Wetzstein et al.,
2012] introduced tensor light field glasses-free 3D displays. [Ruiters and Klein,
2009] and [Ballester-Ripoll and Pajarola, 2016] decomposed bidirectional texture
functions, and [Costantini et al., 2008] used HOSVD for fast video texture syn-
thesis. Other applications include denoising [Rajwade et al., 2013], [Zhang et al.,
2015a], data recovery and inpainting [Oseledets et al., 2008], [Kressner et al.,
2013], [Chen et al., 2014], [Filipović and Jukić, 2015], face transfer [Vlasic et al.,
2005], [Vasilescu and Terzopoulos, 2007], deep learning [Novikov et al., 2015],
etc. For a more comprehensive compilation of tensor applications in these and
other areas we refer the reader to the surveys [de Lathauwer, 2009], [Kolda and
Bader, 2009], and [Grasedyck et al., 2013].

In short, tensor representations are compact, lossy for most purposes, and offer
multiple ways to manipulate data in its compressed format.

1.3 Research Questions

Despite the past developments on tensor theory and applications in a range of
scientific disciplines, two important research questions remain open as we detail
next.

RQ1 Are tensor decompositions applicable for interactive visualization of di-
verse data types (in terms of sparsity, dimensionality, size, etc.)? Numerous
tensor-based applications have been proposed that work for specific kinds
of visual data, but efforts towards one single pipeline for sampling, analysis
and visualization are scarce as of yet.

6 1 INTRODUCTION

RQ2 Is there a flexible enough specific tensor format that can work as a standard
representation for such distinct visual data types? Several decompositions
exist that are tailored to varying settings in visual computing. But is there a
“sweet-spot” model that can best serve as a golden standard?

We answer positively and constructively the first question by defining a visu-
alization pipeline that has tensor decompositions at its core, along with a set of
tools and numerical recipes that can deal with different analysis and visualiza-
tion purposes: compression, statistical properties, global optimization, interactive
exploration, signal processing, etc.

The answer to the second question is also positive, but two-fold. On the one
hand we favor mainly two models: the Tucker model (and its particular case the CP
model) for lower-dimensional and large-scale dense data sets, and the TT model
which is more suitable for higher-dimensional data. On the other hand, both mod-
els are close relatives within the context of tensor networks, and can be seen as
particular cases of a certain common format as we will describe later in this thesis.

1.4 Proposed Framework

This dissertation revolves around one central concept, i.e. tensor decomposition
for multidimensional visual data, and the unique possibilities that such a flexible
and rich mathematical framework brings about. The proposed pipeline (Fig. 1.1)
is as follows:

1. As an input we have multidimensional data, often complex and large-scale
and sometimes sparse, that we need to handle, visualize, and understand;

2. There is a learning stage, in which a model is fitted that can generalize the
data by removing the irrelevant structures (noise, redundant information)
while keeping its essential behavior and interesting features;

3. A common representation, a tensor decomposition, compactly captures the
aforementioned features under the highly versatile low tensor rank assump-
tion (namely, the premise that the data of interest admits a sufficiently good
low-rank tensor expansion);

4. Owing to the decomposition’s reduced size and unique mathematical prop-
erties, efficient compressed-domain operations are designed and applied
that reveal abstractions and its essential attributes;

1.5 Contributions 7

5. The features extracted are communicated to a user via modern computer
graphics and visualization diagrams and techniques, thereby facilitating re-
sponsive knowledge discovery and intuitive understanding of the initial data
set.

Multidimensional Data

• Volumes, image stacks
• Time-varying and multi-valued data
• Sparse data
• Mathematical functions
• Parameter spaces/surrogate models

Visualization

• Volume rendering
• Subspace reconstruction
• Projections
• Parallel coordinates
• Linked plots

Tensor Decompositions

• CANDECOMP/PARAFAC
• Tucker/HOSVD
• Tensor train
• Tensor networks

Sampling

• Compression
• Completion
• Interpolation
• Adaptive sampling

Operations

• Spatial selection
• Filtering
• Statistics
• Histograms
• Sensitivity analysis

Figure 1.1: Tensor decompositions are the fundamental link in the proposed high-
dimensional visualization pipeline. Several tools exist for fitting tensors to various kinds
of data, producing common compressed formats with advantages such as multilinearity,
efficient decompression and optimization algorithms.

1.5 Contributions

The pipeline we just outlined consists of several contribution units. Even though
each of them focuses on a different challenge, they share a number of multilin-
ear algebra techniques. Here we list the main contributions proposed in this dis-
sertation, broken down according to their scope, along with their corresponding
scientific publications.

Multidimensional Compression

• “Lossy Volume Compression Using Tucker Truncation and Thresholding”
[Ballester-Ripoll and Pajarola, 2015]

8 1 INTRODUCTION

• “TTHRESH: Tensor Compression for Multidimensional Visual Data” [Ballester-
Ripoll et al., 2017]

We have investigated the benefits of Tucker core thresholding and concluded
that it outperforms earlier truncation-based approaches in terms of quality vs.
compression ratio. This has led us to introducing TTHRESH (from Tucker thresh-
olding), a lossy compression algorithm forN -dimensional data over regular grids.
It leverages the Tucker decomposition together with adaptive quantization, run-
length and Huffman encoding to store the transform coefficients’ relative posi-
tions as sorted by their magnitude. The proposed algorithm is the first of its
kind that supports arbitrary target accuracy via adaptive quantization. Previous
related approaches fixed the number q of quantization bits per transformed coef-
ficient, and sometimes even the number of ranks. Instead, our method improves
the compression-accuracy trade-off curve by using thresholding granularity at the
single-coefficient level combined with adaptive selection of q.

Our scheme outperforms other state-of-the-art volume compressors at low-to-
medium bit rates, as required in data archiving and distribution for e.g. visualiza-
tion purposes. Further advantages of the compression format include a) extremely
fine bit-rate selection granularity; b) upper-bounded resulting L2 error; and c)
support for arbitrary number of dimensions.

Multiresolution Filtering

• “Multiresolution Volume Filtering in the Tensor Compressed Domain”
[Ballester-Ripoll et al., 2017]

Signal processing and filter operations are important tools for visual data pro-
cessing and analysis. Due to GPU memory and bandwidth limitations, it is a
challenge to apply interactively complex filter operators to large-scale volume
data. We propose a novel Tucker-based multiresolution filtering algorithm inte-
grated into an interactive volume visualization system. The raw volume data is
decomposed offline into a compact hierarchical (octree-based) tensor approxima-
tion model. We then demonstrate how convolution filter operators can effectively
be applied in the compressed domain. To prevent aliasing due to multiresolution
filtering, our solution filters at the full spatial volume resolution at a very low cost
in the compressed domain and reconstructs and displays the filtered result at vari-
able level-of-detail. The proposed system is scalable, allowing interactive display
and filtering of large volume datasets that may exceed the available GPU memory.

Compressed Histograms

• “Tensor Decompositions for Integral Histogram Compression and Look-
Up” [Ballester-Ripoll and Pajarola, 2017]

1.5 Contributions 9

Histograms are a fundamental tool for multidimensional data analysis and pro-
cessing, and many applications in graphics and visualization rely on computing
histograms over large regions of interest (ROI). Integral histograms (IH) greatly
accelerate the calculation in the case of rectangular regions, but come at a large
extra storage cost. Based on the Tucker and tensor train decomposition models,
we propose a new compression and retrieval algorithm to reduce the overall IH
memory usage by several orders of magnitude at a user-defined accuracy. We
encode the borders of the desired rectangular ROI in the IH tensor-compressed
domain and reconstruct the target histogram at a high speed which is independent
of the region size. By tensor-decomposing the ROIs, we furthermore generalize
our method to support regions of arbitrary shape, rather than solely rectangles.

Visualizing Tensor-based Surrogate Models

• “A Surrogate Visualization Model Using the Tensor Train Format” [Ballester-
Ripoll et al., 2016]

Complex simulations and numerical experiments typically rely on a number
of parameters and have an associated score function, e.g. with the goal of maxi-
mizing accuracy or minimizing computation time. However, the influence of each
individual parameter is often poorly understood a priori and the joint parameter
space can be difficult to explore, visualize and optimize. We model this space as an
N-dimensional black-box tensor train (TT) to be learned from a sparse set of sam-
ples. Upon learning and compactly expressing this space as a surrogate visualiza-
tion model, informative subspaces are interactively reconstructed and navigated in
the form of charts, images, surface plots, etc. By exploiting efficient operations in
the TT format, we are able to produce diagrams such as parallel coordinates, bi-
variate projections and dimensional stacking out of highly-compressed parameter
spaces. We demonstrate the proposed framework with several scientific simula-
tions that contain up to 14 parameters and billions of tensor grid points.

Sensitivity Analysis of Tensor Surrogates

• “Sobol Tensor Trains for Global Sensitivity Analysis” [Ballester-Ripoll et al.,
2017]

Sobol indices are a widespread quantitative measure for variance-based global
sensitivity analysis (SA), but computing and utilizing them remains challenging
for high-dimensional systems. We propose the TT model as a common interface
for Sobol index computation. We introduce the Sobol tensor train, which com-
pactly represents a range of variance-based Sobol indices for all possible joint

10 1 INTRODUCTION

variable interactions. Our formulation allows efficient aggregation and subselec-
tion operations as we are able to obtain related indices (closed and total indices,
superset importance measures) at negligible cost. Furthermore, we exploit an
existing global optimization algorithm within the TT framework for variable se-
lection and model analysis tasks. Our algorithms are demonstrated in various
analytic and real-world engineering simulations and data sets.

1.6 Dissertation Overview

The dissertation is structured in two parts. Both parts follow the proposed pipeline
(Fig. 1.1) and are equally concerned with model building, operations in the com-
pressed domain, and interactive visualization.

Part I deals with large-scale compression and manipulation: a spatial data set
is available in a full format and is a priori too large to handle, process, or visualize.

• Ch. 2 introduces the most relevant models for the dissertation: CP, Tucker,
TT, and a few others. It also outlines a range of operations that can be
applied to compressed tensors.

• Ch. 3 covers the attractive properties that make Tucker-based compression
possible and describes the TTHRESH algorithm in detail, including numeri-
cal and visual results.

• Ch. 4 integrates Tucker compression into a multiresolution filtering frame-
work in the form of an out-of-core, octree-based volume rendering system.

• Ch. 5 delves further into compressed-domain manipulation in order to ex-
ploit integration and summed area table look-up, and derives a retrieval sys-
tem for approximate histograms.

Part II is concerned with sparse data that must be interpolated directly in a
compressed format; i.e. the full data set is never available or even fully recon-
structed.

• Ch. 6 exploits tensor learning techniques and adaptive sampling and intro-
duces visualization diagrams that can be efficiently produced from tensors
in their compressed form.

• Ch. 7 develops algorithms for sensitivity analysis and model interpretation,
based on a novel compressed representation that stores all possible joint
interactions between variables.

• Finally, Ch. 8 concludes the dissertation with a summary and gives direc-
tions for future work.

2C H A P T E R

TENSOR MODELS

11

12 2 TENSOR MODELS

2.1 Overview

Tensor decompositions express N -dimensional arrays as sums of separable ten-
sors, i.e. T [x] ≈ T̃ [x] =

∑
r u

(r)
1 [x1] · · ·u(r)

N [xN]. Each element is thus approx-
imated by a multilinear expression, i.e. by sums of products of the compressed
model’s parameters. However, there are several ways in which these parameters
can interact, be stored and multiplied together; most importantly, the vectors u

(r)
n

may be shared and reused across several addends. Each such way gives rise to
a different decomposition and a different definition of a tensor rank, each with
distinct properties, asymptotic computational costs, and specific advantages and
disadvantages. We generally follow the notation introduced in a few key literature
papers including [de Lathauwer et al., 2000b], [Kolda and Bader, 2009], and [Os-
eledets, 2011].

2.2 CANDECOMP/PARAFAC

The canonical decomposition (CANDECOMP/PARAFAC, or CP, also known as
parallel factor or Kruskal decomposition) was the earliest extension of the concept
of matrix rank to more than two dimensions [Hitchcock, 1927], [Harshman, 1970].
CP is thereby the most straight-forward generalization of the SVD to N ≥ 3, as it
extends pairs of left and right eigenvectors toN -tuples of vectors. The approxima-
tion is built as a linear combination T̃ of N -tuples of disjoint 1D basis functions,
arranged in columns in the so-called factor matrices U(n) (or simply factors), with
weight coefficients λλλ:

T̃ [x] = T̃ [x1, . . . , xN] =
R−1∑

r=0

λλλ[r] ·U(1)[x1, r] · · ·U(N)[xN , r] (2.1)

where R is the CP rank, or sometimes just tensor rank. This can be written more
succinctly with the Kronecker product (⊗) as

T̃ =
R−1∑

r=0

λλλ[r] ·U(1)[:, r]⊗ ...⊗U(N)[:, r], (2.2)

and is illustrated in Fig. 2.1. We can also write Eq. 2.2 using double bracket
notation as T ≈ [[λλλ; U(1), ...,U(N)]]. The λλλ can be optionally absorbed column-
wise by the factors U(n) and omitted in the notation. For compactness we also use
sometimes λr := λλλ[r] and U

(n)
r := U(n)[:, r].

One important difference with respect to the SVD is the loss of orthonormality,
i.e. U(n)T · U(n) need not be the identity matrix I for any n-th factor in a CP

2.3 Tucker 13

decomposition. Also, the set of N -dimensional tensors of fixed CP rank R is not
closed in RN , and thus finding the best rank-R approximation of a given tensor
is an ill-posed problem [de Silva and Lim, 2008]. On the positive side, the CP
format needs O(INR) elements for storage, i.e. is linear w.r.t. the number of
dimensions.

U(1)

U(2) U(3)I1 I3I2

R R R

{R i

j k���

Figure 2.1: The CP approximation model in 3D, highlighting as gray rows the 3 sub-
spaces that are needed to reconstruct a single voxel [i, j, k]: the rows U(1)[i, :], U(2)[j, :]
and U(3)[k, :], one from each factor matrix.

2.3 Tucker

The Tucker decomposition [Tucker, 1966] is also known as the N-mode principal
component analysis (N-PCA), N-dimensional SVD (N-SVD), and low multilinear
rank approximation (LMLRA). Tucker and the closely-related higher-order sin-
gular value decomposition (HOSVD [de Lathauwer et al., 2000b]) are among the
most popular tensor models of choice in the computer graphics and visualization
literature. Tucker generalizes CP by including all interactions between its factor
columns, weighted by an N -dimensional core B of size R1× ...×RN (the Tucker
ranks):

T̃ [x] =

R1−1∑

r1=0

· · ·
RN−1∑

rN=0

B[r1, . . . , rN] ·U(1)[x1, r1] · ... ·U(N)[xN , rN] (2.3)

or, with Kronecker products,

T̃ =

R1−1∑

r1=0

· · ·
RN−1∑

rN=0

B[r1, . . . , rN] ·U(1)[:, r1]⊗ · · · ⊗U(N)[:, rN] (2.4)

This format can also be understood via the concept of multiway projection,
also known as tensor-times-matrix product (TTM), which extends the 2D matrix-
matrix product. The n-th mode TTM between a tensor B of size I1 × ... × IN

14 2 TENSOR MODELS

and a matrix U of size J × In is a form of tensor contraction, usually denoted as
B ×n U [de Lathauwer et al., 2000b]. It contracts U row-wise with T along its
n-th dimension to yield a tensor of size I1 × ...In−1 × J × In+1 × ...× IN . Note
that “contraction” here does not refer to size: a TTM operation on a tensor can
reduce (when J < In) as well as increase (when J > In) its size.

The notation presented allows us to write the Tucker decomposition as a se-
quence of TTM operations:

T̃ = B ×1 U(1) ×2 ...×N U(N) (2.5)

or even more compactly, T̃ = [[B; U(1), . . . ,U(N)]]. See also Fig. 2.2.

I3

I1

U(3)

R3

R1

R2

U(1)

I2

U(2)

B
i

j

k

Figure 2.2: The 3D Tucker approximation model, highlighting the 3 factor rows that are
needed to reconstruct a single voxel (i, j, k): the rows U(1)[i, :], U(2)[j, :] and U(3)[k, :]
of each factor matrix.

The Tucker factor matrices can be interpreted as dictionaries: each N -tuple of
basis functions yields, via the Kronecker product, a separable N -D array. The set
of all possible N -plets (atoms) defines a dictionary (known as Kronecker dictio-
nary), and the Tucker core contains the linear coefficients that accompany them.

These equations do not have a unique solution in terms of factors U(n). In the
literature, the Tucker model usually refers to expressing the data in that decom-
posed form with any factors. However, column-wise orthonormal factors are often
sought because they define an immediate one-to-one mapping between any input
tensor and its transform. HOSVD is an algorithm for obtaining a particular Tucker
decomposition by taking the singular vectors of the unfolded tensor as basis ele-
ments. It brings in some benefits, including orthonormal factor matrices and core
sparsity (many elements close to zero), and is in many ways the most natural mul-
tiway generalization of the matrix SVD [de Lathauwer et al., 2000a]. The HOSVD
truncation (i.e. discarding high-rank terms of the HOSVD) is quasi-optimal, in the
sense that the resulting error is at most

√
N times the error of the best possible

2.4 Tensor Train 15

Tucker solution with the same rank (see [Hackbusch, 2012], Theorem 10.3). On
top of this, the popular higher-order orthogonal iteration (HOOI) [de Lathauwer
et al., 2000b] applies HOSVD iteratively to further refine the solution (see also
App. A).

The main disadvantage of the Tucker format is that it must storeO(RN+INR)
elements, hence it still suffers from the curse of dimensionality w.r.t. to N . In
practice it is mostly used for up to a handful of dimensions only, and in this cases
it often achieves very attractive compression rates. There are connections between
these models and other tools such as the SVD, the Fourier, cosine and wavelet
transforms, and polynomial chaos expansions (see also [Ballester-Ripoll et al.,
2015], and Sec. 6).

2.4 Tensor Train

As mentioned earlier, classical tensor models have a number of drawbacks regard-
ing algorithmic complexity. No stable procedure exists for decomposing a tensor
into CP, and determining the exact number of CP ranks is known to be an ill-posed
problem. Conversely, stable algorithms that obtain the Tucker decomposition do
exist [de Lathauwer et al., 2000b], but the format still requires exponential space
w.r.t. the number of dimensionsN . To overcome these issues and unite the advan-
tages of both CP and Tucker, a newer decomposition model named tensor train
(TT) was recently proposed [Oseledets, 2011]. Previously it was known only in
the quantum physics community as matrix product states or linear tensor network.
In the TT model each dimension 1 to N is encoded with one 3D tensor core T (1)

to T (N). Element-wise,

T̃ [x] =
∑

r

T (1)[0, x1, r1] . . . T (n)[rn−1, xn, rn] . . . T (N)[rN−1, xN , 0] (2.6)

where 1 ≤ xn ≤ In for n = 1, ..., N . In matrix product notation,

T̃ [x] = T (1)[x1] · ... · T (N)[xN] (2.7)

where T (n)[xn] is a shorthand for the xn-th slice along mode 2, i.e. T (n)[:, xn, :].
See Fig. 2.3 for an illustration. The core dimensions are Rn−1 × In × Rn for
n = 1, ..., N . The integersR0, . . . , RN are the TT ranks, whereR0 := RN := 1 by
convention. More compactly we can also write T̃ = [[T (1), . . . , T (N)]]. One may
equivalently write 2.6 in terms of rank-1 or vectorized tensors; a comprehensive
list is available in [Lee and Cichocki, 2017].

TT’s main advantage w.r.t. CP is its robustness: the set of tensors with fixed
TT rank forms a manifold in RN , and there exists an error-bounded decompo-
sition algorithm (TT-SVD [Oseledets, 2011], see also App. A). In addition, the

16 2 TENSOR MODELS

R1
R1

R2
R3

R2 R3

R4

R4

T (1) T (2) T (3) T (4) T (5)

Figure 2.3: A 5D tensor train of size 3 × 5 × 4 × 5 × 4. By multiplying the highlighted
slices together we obtain the element T [1, 1, 0, 2, 3].

TT format needs O(INR2) elements and thus grows linearly w.r.t the number
of dimensions N , unlike Tucker. Note also the speed of TT when reconstruct-
ing a single element: only certain slices of the compressed data participate in the
calculation, which is a sequence of matrix-vector products requiring O(NR2) op-
erations. On the other hand, with Tucker the whole core with RN elements must
be traversed. Depending on the data, however, Tucker may need a smaller R than
TT for a comparable compression quality.

Since its inception, the decomposition has found use in many different high-
dimensional problems, ranging from quantum chemistry [Kazeev et al., 2014] to
stochastic partial differential equations [Konakli and Sudret, 2015] or probabilis-
tic graphical models [Novikov et al., 2014], with the latter having applications
in image processing and computer vision, among others. A further link exists
that connects the tensor train (more specifically its tensorized version QTT) with
the wavelet transform [Oseledets and Tyrtyshnikov, 2011; Kazeev and Oseledets,
2013].

Several toolboxes and numerous algorithms have been implemented for the
CP, Tucker and TT format, see also App. B.

2.5 General Tensor Networks

Both Tucker and TT are particular cases of tensor networks (TN). A TN graph-
like representation that defines compactly the structure of a tensor decomposition.
Multiarrays are represented by nodes, and physical or virtual dimensions by edges.
Physical edges are also called spatial or free edges. Connecting two edges (free
or otherwise) is equivalent to contracting their nodes along a dimension, i.e. it
corresponds to canceling two variables in the Einstein summation convention. See
Fig 2.4 for several examples.

Other networks include hierarchical Tucker (HT for short, also known as tree
tensor network), projected entangled pair states (PEPS), and the tensor chain

2.6 Variants and Hybrid Models 17

x
I1 I1

U
I2

I2

I3

I4

I1 T

I1 I2

S VU

R R
I1

U x
I2

T

I2

I3

I4

R4

R3

R2

R1I1
U(1)

U(2)

U(3)

U(4)

T T
I2 I3 I4

R3R2R1

I1

T (1) T (2) T (3) T (4)

Vector Matrix 4D tensor

Matrix times vector SVD

4D Tucker 4D TT

Figure 2.4: Graphical representation of several tensor networks, ranging from multidi-
mensional objects (top row) to matrix expressions (mid row) to tensor decompositions
(bottom row).

(also known as tensor ring [Zhao et al., 2016]). We refer the reader to the sur-
vey [Cichocki et al., 2016] and the dissertation [Handschuh, 2015] for more in-
depth analyses of tensor networks and their graphical representation, flexibility
and growing potential for efficient big data manipulation and optimization.

2.6 Variants and Hybrid Models

Many structural variations and additional constraints can be imposed on these
main models to obtain more custom decompositions. For example, one may
enforce a block-like structure (block tensor decomposition, or BTD [De Lath-
auwer, 2008a], [De Lathauwer, 2008b]) or hierarchical/multiresolution partition-
ing schemes, e.g. [Wu et al., 2008] and TAMRESH [Suter et al., 2013]). Sparsity
was imposed by [Ruiters and Klein, 2009] to form a sparse tensor decomposi-
tion (STD), which is an independently proposed sparse version of the tensor train.
K-clustered tensor approximation (K-CTA) was contributed by [Tsai and Shih,
2012]. It is a semi-sparse decomposition that represents separate data slices via

18 2 TENSOR MODELS

disjoint slice-wise clusters within the Tucker core. The multiway K-clustered ten-
sor approximation (MK-CTA) [Tsai, 2015] extended this idea to slices along all
possible tensor modes. Many of these models emphasize high data reduction rates
and especially fast random access (as demanded by interactive surface rendering
of 3D scenes).

2.7 Operating with Tensors

2.7.1 Factor Matrix Operations

Certain transformations on the CP/Tucker factor matrices have a useful effect on
the output tensor T̃ that results from Eqs. 2.1 to 2.5. Factor rows map to axis-
aligned hyperslices from the input, while factor columns (ranks) map to axis-
aligned hyperslices of the transform. Removing rows prior to reconstruction re-
sults in a subtensor of the original input, while removing ranks results in a coarser
approximation. Furthermore, if instead of a matrix U(n) we use a linear combi-
nation of its rows u(n) := cTU(n) (where c is a vector with In entries), then the
reconstruction produces the combination of the corresponding hyperslices along
the n-th mode. In the Tucker case, this means that B ×1 U(1) ×2 ...×n u(n) ×n+1

...×N U(N) equals

In∑

k=1

c[k] · T̃ [..., k, ...] = T̃ ×n cT , (2.8)

where we have written a tensor-times-vector (TTV) product on the right-hand side
(a mode-n TTV computes the dot product between a vector and each mode-n ten-
sor fiber). For matrices, it holds that B ×1 U(1) ×2 ... ×n (A ·U(n)) ×n+1 ...×N
U(N) = T̃ ×n A. In particular, we can downsample the factors column-wise to
obtain downsampled versions of our data. This principle was first exploited in vol-
ume visualization by [Suter et al., 2013] and further analyzed in [Ballester-Ripoll
et al., 2015], [Ballester-Ripoll and Pajarola, 2015]. We frequently use similar ma-
nipulations in this thesis, especially in Ch. 4 and Ch. 5. Last, note that equivalent
spatial manipulation properties hold for many other tensor decompositions; for
example in TT one must use combinations of core slices instead of matrix rows.

2.7.2 TT Format

Multiplication/division of a TT tensor by a scalar α is achieved by simply mul-
tiplying/dividing one of its cores (say, the first) by α [Oseledets, 2011]. Tensor-
tensor addition is written as (T1 + T2)[x] := T1[x] + T2[x] and has the following
cores:

2.7 Operating with Tensors 19

(
T (1)

1 [x1] T (1)
2 [x1]

)
(first core)

(
T (n)

1 [xn] 0

0 T (n)
2 [xn]

)
(1 < n < N)

(
T (N)

1 [xN]

T (N)
2 [xN]

)
(last core)

To subtract two tensors, we use the same addition method but flip first the
second tensor’s sign (done by flipping the sign of, say, its first core).

The element-wise (or Hadamard) product (T1 ◦ T2)[x] := T1[x] · T2[x] arises
from a slice-wise Kronecker product:

(T (1)
1 [x1]⊗ T (1)

2 [x1]) · ... · (T (N)
1 [xN]⊗ T (N)

2 [xN]) (2.9)

This product has many applications. Convolution between two N-dimensional
TT tensors, for example, can be obtained by computing each tensor’s Fourier
transform (FT) along the spatial dimension on every TT core, followed by element-
wise product and inverse FT [Rakhuba and Oseledets, 2015].

2.7.3 Adaptive Cross-Approximation

The so-called adaptive cross-approximation (ACA) for the TT format [Oseledets
and Tyrtyshnikov, 2010b], [Savostyanov and Oseledets, 2011] is a type of pro-
gressive sampling scheme that allows to approximate all mentioned operations
and others at cost O(INR3) at most, i.e. devoid of the curse of dimensionality.
These include arbitrary element-wise functions, differentiation, integration, con-
volution, and more [Cichocki et al., 2016], [Lee and Cichocki, 2017]. The ranks
needed may grow as a result of such operations. It is crucial to keep them rea-
sonably low at all stages of any computational pipeline, otherwise the benefits
of tensor compression vanish. An error-bounded rounding algorithm called TT-
round [Oseledets, 2011] exists to re-compress down any tensor when needed by
means of a sequence of N − 1 SVD truncations. ACA is exploited and covered in
more detail in Ch. 6; see also App. A.

Global Optimization

ACA has been successfully used to find the (approximately) maximal element
in modulus of a tensor [Dolgov et al., 2014], [Oferkin et al., 2015], as it was
empirically found that the subtensors accessed during ACA very often contain
such maximal elements. The variant known as rectangular maxvol is a tool even

20 2 TENSOR MODELS

more efficient for this task [Mikhalev and Oseledets, 2015] and is the one we use
(released in [ttp,]). This effectively allows solving global optimization problems
in the TT format, a very attractive feature we make use of in Ch. 6 and 7.

3C H A P T E R

TENSOR COMPRESSION

21

22 3 TENSOR COMPRESSION

3.1 Overview

As outlined earlier, this part of the dissertation is devoted to dense tensors. The
challenge we tackle first is multidimensional compression, which is a significant
actor in data-intensive visualization. Two frequent goals in scientific or visual
computing applications are a) to reduce the complex initial input to alleviate com-
putational bottlenecks, while b) aiming for a faithful and efficient reconstruction.
This is the case when memory or time restrictions are an issue. Lossy compression
is often the prescribed strategy, since complex and large data sets rarely benefit
much from lossless compression (especially if they use floating-point precision).
If the compressed data set is to be used for subsequent computational analysis
and/or to be fed into simulation routines, typically very small errors are tolerated.
Conversely, if visualization is to follow decompression, then higher error rates are
acceptable.

Depending on the specific application, sometimes certain additional targets are
desirable. These include fast support for random-access decompression, fine com-
pression rate granularity, asymmetry (faster decompression than compression),
bounded error, support for higher-dimensions, ease of parallelization, etc. For
these reasons the compression problem is both broad and challenging, and no
catch-all solution exists as of yet.

Contribution

We introduce TTHRESH, a tensor compressor for visualization applications whose
foremost priority is data reduction at high compression ratios. In particular, while
the ratios we achieve at low error tolerance are reasonable, we outperform state-
of-the-art methods on the higher error spectrum. Our algorithm also possesses
advantages that are inherent to multilinear transforms in general and tensor de-
compositions in particular, including support for linear manipulation of the data
set in the compressed domain (recall Sec. 2.7.1).

Definitions

The RMSE (root-mean-square error) between a tensor of size I1 × · · · × IN and
an approximation T̃ is ‖T − T̃ ‖/√I1 · · · IN . For our experiments we use the
normalized PSNR (peak signal-to-noise ratio) in terms of the RMSE as follows:

PSNR(T , T̃) = 20 · log10

(
max{T } −min{T }

2 · RMSE(T , T̃)

)
(3.1)

3.2 Background 23

3.2 Background

Several 3D lossy compression algorithms have been proposed in the recent liter-
ature. ISABELA [Lakshminarasimhan et al., 2011] focuses on spatio-temporal
data with heavy high-frequency components; it works by sorting elements into
a monotonic curve which is then fitted using B-splines. A more recent example
of strategy based on linearization is SZ [Di and Cappello, 2016]. With SZ, each
coefficient is either predicted using low-degree polynomials on its preceding val-
ues, or truncated in its IEEE 754 binary representation. Sparse coding approaches
such as COVRA [Gobbetti et al., 2012] require slow heuristics or greedy algo-
rithms at compression, but are fast to decompress. This makes them suitable for
compression-domain direct volume rendering (see also the survey [Balsa Rodrı́guez
et al., 2013]); in particular, COVRA is defined as an octree multiresolution hier-
archy.

A prominent and long-standing family of methods are the ones that exploit lin-
ear transforms, including very well-known decompositions such as DCT/Fourier
or multidimensional wavelets. They are based on the fact that real-world signals
tend to be sparse in certain transformed domains. VAPOR [Clyne et al., 2007],
for example, uses Haar wavelet-based compression integrated into an interactive
volume and flow exploration tool. ZFP [Lindstrom, 2014] is a floating-point com-
pressor using custom (but fixed) transform matrices that emphasizes fast random
access and can act as a transparent layer on top of raw C/C++ arrays. It does so
via fixed-rate encoding, although a variable-rate variant was also proposed.

More recently, several transform-based compression algorithms have been de-
fined that use data-dependent basis. This is precisely the idea behind the Tucker
model. It trades off better transform-domain sparsity for the cost of storing learned
bases, which tends to be small (especially for higher dimensions). Early Tucker-
based compression approaches for visual spatial data include [Wang and Ahuja,
2004], [Wu et al., 2007] and [Wu et al., 2008]. Progressive tensor rank reduction
has been shown to reveal features and structural details at different scales also in
volume data [Suter et al., 2010a; Suter et al., 2010b]. Further recent efforts in the
context of tensor compression include [Tsai, 2009; Tsai and Shih, 2012; Ballester-
Ripoll et al., 2015; Ballester-Ripoll and Pajarola, 2015; Tsai, 2015], [Suter et al.,
2011b; Suter et al., 2013] and [Balsa Rodrı́guez et al., 2014] for interactive vol-
ume visualization, and [Wetzstein et al., 2012] for 3D displays.

24 3 TENSOR COMPRESSION

3.3 Compression with Tucker

3.3.1 Core Reduction

The Tucker decomposition (recall Sec. 2.3) of a tensor T of size I = (I1, . . . , IN)
is always exact when all ranks are kept:

T [x] =
I−1∑

r=0

B[r] ·U(1)[x1, r1] · · ·U(N)[xN , rN] (3.2)

provided that every U(n) is an invertible matrix of size In× In and B has the same
size as T . The factors then define an invertible transformation between T and
B. The HOSVD produces orthogonal factors by taking each U(n) as the leading
left singular vectors of the n-th mode unfolding T(n) (see also App. A). In other
words, it uses the PCA transform matrix of the set of all fibers from T , taken
along the n-th mode. One advantage of this tensor formulation is the simplicity of
higher-order extensions: the format is flexible and readily applicable to any shape
and dimensionality, and the decomposition always exists.

The HOSVD transform coefficients are generally quasi-sparse. The transform
decorrelates the data at all spatial scales, but does so without explicit space par-
titioning, i.e. avoiding tree-like structures or multiresolution filter banks. The
task of capturing correlation at many scales is thus undertaken by each individual
rank. However, the question of how to partition the coefficients for an effective
variable-rate compression is unclear a priori. Fortunately, the HOSVD algorithm
is guaranteed to produce core slices that are non-increasing in norm [de Lathauwer
et al., 2000b]:

σ
(n)
1 ≥ σ

(n)
2 ≥ ... ≥ σ

(n)
N (3.3)

Furthermore, from the factor matrix orthonormality it follows that the mean square
error (MSE) induced by eliminating a coefficient is proportional to its squared
magnitude. These facts have been exploited in the past as the basis of several
truncation-based HOSVD compression schemes [Wu et al., 2008], [Suter et al.,
2013], [Suter et al., 2011b], [Ballester-Ripoll et al., 2015], whereby the least im-
portant trailing core slices along each dimension are discarded. However, there
are two important aspects that have not been further pursued by these previous
approaches. First, although the slice truncation idea is sound as motivated by
Eq. 3.3, its granularity is very coarse. Elimination strategies on a coefficient-by-
coefficient basis (rather than slice-by-slice) have potential for reducing error. Sec-
ond (and regardless of the coefficient elimination method chosen), how to encode
the surviving coefficients remains an open issue. The apparent usual distribution
(Fig. 3.1) invites to use a logarithmic transform. For example, [Suter et al., 2013]
use a 9-bit logarithmic quantization scheme: 1 bit for the coefficient sign and 8 for

3.4 Proposed Algorithm 25

its magnitude after taking the logarithm of its absolute value. The authors realized
the extreme importance of the first element B[0, 0, 0] (the hot corner) and thus
decided to save it separately at full double floating-point precision; this strategy
was replicated in other works [Suter et al., 2011b], [Ballester-Ripoll and Pajarola,
2015]. Nevertheless, a truly adaptive compression approach for the HOSVD has
not been explored. The strategy we propose generalizes the thresholding-oriented
analysis of [Ballester-Ripoll and Pajarola, 2015]: we sort and adaptively parti-
tion the set of coefficients according to their relative magnitude, and encode each
chunk at a variable quantization resolution.

3.3.2 Further Remarks

Many transformations do not significantly affect the HOSVD. For example, if one
permutes some slices of T along one or more dimensions, its HOSVD will pro-
duce the same core B and factors (with their corresponding rows permuted). Other
possible transformations that can be encoded on a HOSVD-compressed data set
without modifying B include translating the data, padding it with zeros, upsam-
pling it with linear interpolation, scaling by a constant, and several others. Many
usual data reduction approaches are guaranteed to actually improve HOSVD core
sparsity, including downsampling, box-filtered decimation, convolving with any
kernel that has band-limited Fourier transform, etc. Discarding the last level of
a 3D separable wavelet transform, for instance, is equivalent to zeroing-out 7 oc-
tants of the Tucker core.

3.4 Proposed Algorithm

Our compression pipeline consists of four main stages. First, the HOSVD algo-
rithm is run on the N -dimensional data set to yield N orthogonal square factor
matrices and an N -dimensional core of the same size as the original. Second, the
core coefficients are sorted and partitioned into chunks according to their absolute
magnitude; each chunk’s coefficients are quantized with a different number q of
bits. Third, the presence masks of each chunk are losslessly compressed using
run-length encoding (RLE) followed by Huffman encoding. Last, the factor ma-
trices are quantized column-wise, with each column using a different number of
bins. All components are immediately streamed upon generation through zlib’s
lossless compression algorithm before finally writing to disk. The pass through
zlib provides a small extra compression (below 5%). See Alg. 1 for a pseudocode
of our compression pipeline; its individual building blocks are detailed next.

26 3 TENSOR COMPRESSION

Algorithm 1 Compress an N -dimensional tensor T of size I1 × · · · × IN at a
prescribed mean squared error ε.
1: for n = 1, . . . , N do
2: T(n) := unfold(T , n) {Size In × (I1 · · · În · · · IN)}
3: Tcov

(n) := T(n) ·TT
(n) {In × In covariance matrix}

4: Λ(n),U(n) = eig(Tcov
(n)) {Full decomposition; eigenvalues Λ(n) in non-increasing order}

5: T(n) := U(n)T ·T(n) {Right part Σ ·VT of the SVD}
6: T := fold(T(n)) {Back to original size}
7: end for
8: a := flatten(T)
9: s := sort(abs(a)) {Non-decreasing order}

10: m := argsort(abs(a)) {Indices that map back to the original ordering, i.e. s[m[i]] =
abs(a[i])}

11: i0 := 0 {First threshold}
12: M := {0, . . . , I1 · · · IN − 1} {Mask to record coefficients not saved yet}
13: for q = 0, . . . , 63 do
14: Find the largest 0 ≤ iq+1 ≤ I1 · · · IN such that

error(s[iq : iq+1 − 1])

iq+1 − 1− iq
≤ ε

where the error(u) is defined as ‖u − dequant(quant(u, q), q)‖2 {Since error() grows
monotonically with iq+1, we use binary search}

15: c := (0, . . . , 0) {Presence bits: I1 · · · IN zeros}
16: M∗ :=M
17: for each 0 ≤ j < I1 · · · IN such that iq ≤m(j) ≤ iq+1 do
18: Save quant(a[j], q)
19: c[j] := 1 {Mark as saved}
20: M∗ :=M∗ \ j
21: end for
22: Save Huffman(RLE(c[M]))
23: M :=M∗

24: ifM = ∅ then
25: Exit loop {The whole core has been encoded}
26: end if
27: end for
28: ifM 6= ∅ then
29: Save remaining coefficients inM explicitly with 64-bit floating point
30: end if
31: for n = 1, . . . , N do
32: for j = 1, . . . , In do
33: Save quant(U(n)[:, j], q

(n)
j) {q(n)j as in Eq. 3.6}

34: end for
35: end for

3.4 Proposed Algorithm 27

3.4.1 HOSVD Transform

In general one can directly compute the left and right singular vectors of each
unfolding T(n) in one run of any standard SVD algorithm. In volume compres-
sion, however, we usually have T(n) ∈ Rn×m with n � m. In such cases it is
much more efficient to compute first the uncentered covariance matrix Tcov

(n) :=

T(n) · TT
(n) and then obtain all left singular vectors U(n) from the full eigenvalue

decomposition Tcov
(n) = U(n)Λ(n)U(n)T . Since T

(n)
cov is a real symmetric matrix,

its eigenvalue diagonalization always exists and we can use Eigen’s specialized
SelfAdjointEigenSolver class. The remaining rightmost part of the SVD
follows from

Σ(n)V(n) = (U(n))−1T(n) = U(n)TT(n) (3.4)

as the factor matrix U(n) is orthogonal. We have found that one ALS iteration (i.e.
the plain HOSVD decomposition) is enough for practical convergence.

3.4.2 Adaptive Chunk Partitioning

Once the Tucker core B is available we can turn to our adaptive quantization and
encoding scheme. Note that we have not incurred yet any loss of accuracy beyond
machine precision, since all ranks are preserved. Our goal now is to produce an
approximate core B̃ so that each coefficient B̃[x] ≈ B[x] contributes equally (on
average) to the overall final error. More specifically, we will split up the coef-
ficients in groups (chunks) so that each chunk’s total error is proportional to its
size and is quantized with a different number of bits q. Let us consider the array
s of core coefficients in absolute value, sorted in ascending order. We have ob-
served (Fig. 3.1) that its elements generally grow at a much faster rate the latter
they appear in the sorted magnitude curve. If we were to keep q constant as we
move towards the larger elements, the chunk sizes would need to be dramatically
reduced in order to keep their overall errors proportional. Having many small
chunks is clearly undesirable since they incur in large overhead, namely their re-
spective minimum/maximum bounds plus their presence masks (see next section).
To balance this we increase q by 1 after each chunk. The extra bit halves the aver-
age per-coefficient error and thus adaptively counteracts the roughly exponential
increase in magnitude as we progress along the curve.

Each q-th chunk is encoded using q + 1 bits per coefficient, with each first
bit storing the sign and the remaining q bits the following linear quantization.
Element-wise:

s[j] 7→ round

(
(2q − 1) · abs(s[j])− abs(s[iq])

abs(s[iq+1 − 1])− abs(s[iq])

)
(3.5)

28 3 TENSOR COMPRESSION

with abs(s[iq]) and abs(s[iq+1 − 1]) being the first and last elements of the q-
th chunk (and therefore, its minimum and maximum bounds), which are stored
separately and without loss. The only exception is the first chunk q = 0, which
uses zero bits overall and does not need a sign (all its elements are mapped to 0).
We quantize and save all coefficients within each chunk in the order they appeared
in the flattened core tensor (not in their order in s after sorting by absolute value),
so that they can be directly and efficiently set back in place during decompression.

0.0 0.5 1.0 1.5

Coefficient number ×107

−2.5

0.0

2.5

5.0

lo
g(

ab
s(

co
re

va
lu

e)
)

(b) PSNR = 35

0.0 0.5 1.0 1.5

Coefficient number ×107

−2.5

0.0

2.5

5.0

lo
g(

ab
s(

co
re

va
lu

e)
)

(c) PSNR = 50

0.0 0.5 1.0 1.5

Coefficient number ×107

−2.5

0.0

2.5

5.0

lo
g(

ab
s(

co
re

va
lu

e)
)

(d) PSNR = 65

Figure 3.1: Resulting adaptive chunk sizes along the Foot’s sorted core curve at three
target PSNR levels. In each plot the leftmost chunk is zeroed-out, while remaining chunks
use an increasingly large number q of quantization bins.

3.4.3 Mask Encoding

The quantization approach discussed above takes care of coefficients’ magnitude
but disregards their original position in the core. We encode this crucial informa-
tion separately and without loss, using a vector of presence bits c and a setM that
keeps coefficient positions that have not yet been quantized. The system works as
a sieve: newly processed coefficients at each chunk are marked as ones in c. Then
c[M] = {c[j] | j ∈ M} is compressed by RLE and Huffman encoding. Finally,
these coefficients are crossed out from the mask M. Thus, the bit streams that
need to be compressed after each chunk become progressively smaller.

This chunk partitioning and encoding strategy generalizes both HOSVD trun-
cation [Suter et al., 2013], [Suter et al., 2011b], [Ballester-Ripoll et al., 2015]
and hard-thresholding [Ballester-Ripoll and Pajarola, 2015]. The latter defines
only three kinds of coefficients: the zeroed-out, the quantized, and the single hot-
corner. Instead, the proposed method works with a variable number of threshold-
defined chunks, each of which is handled in the same way but with an increasing
parameter q ≥ 0. Note that the size of the final compressed masks can vary in
principle if we either a) choose a FORTRAN-style core flattening (instead of C-
style), or b) permute the input dimensions in some way. In practice we have found
such variations to influence very little the overall compressed file size.

3.5 Decompression 29

3.4.4 Factor Quantization

The square factors {U(n)}n usually account for a small proportion of the overall
NNZ compared to the tensor core (except for very low bit-rates). We choose to
quantize their columns independently, based on the observation that each factor
column interacts with exactly one core slice. We quantize the j-th column of
the n-th factor using a number of bits q based on the maximal q value of all its
interacting core slice coefficients:

q
(n)
j = max

{
q(B[

n−1︷ ︸︸ ︷
:, . . . , :, i,

N−n︷ ︸︸ ︷
:, . . . , :])

}
+ k (3.6)

where k is a constant. Conservative values of k are advisable as factor columns are
typically much smaller than their corresponding core slices. In our experiments
we found k = 2 to be the best compromise, and we use this value throughout all
measurements.

3.5 Decompression

Decompression follows straightforwardly by inverting the described steps: the
core is populated chunk by chunk using Huffman and RLE decoding plus linear
dequantization, and then reconstructed via N TTM products. This is significantly
faster than compression since a) no covariance and eigenvalue decomposition are
needed; and b) no chunk thresholds need to be selected.

3.6 Results

We have tested the proposed method with three 8-bit unsigned int and five 64-bit
float data sets (Tab. 3.1).

We have measured the compression performance of TTHRESH against two
state-of-the-art compressors, SZ and ZFP. For SZ we use the relative error bound
mode and vary the relative bound ratio parameter, while for ZFP we use the fixed
accuracy mode and vary its absolute error tolerance. Since these methods do
not support integer data types, we first cast all 8-bit volumes to 64-bit floats; we
measure compression ratios w.r.t. the original data. Fig. 3.2 shows the resulting
error curves in terms of PSNR vs. compression ratio over all sample volumes. In
Figs. 3.4 and 3.5 we present several renderings before and after compression with
TTHRESH at two levels of quality.

Regarding computational speed, we plot in Fig. 3.3 the compression and de-
compression times for the smallest data set (the Teapot, 11.1MB) as well as for

30 3 TENSOR COMPRESSION

Table 3.1: The 8 data sets used in this chapter.

Name Dimensions Type Size Source
Foot 256× 256× 256 8-bit unsigned int 16 MB The Volume Library [iap,]

Boston teapot
(with a lobster) 256× 256× 178 8-bit unsigned int 11.1 MB The Volume Library [iap,]

Engine 256× 256× 256 8-bit unsigned int 16 MB The Volume Library [iap,]
Channel
pressure 512× 512× 512 64-bit float 512 MB

Johns Hopkins
Turbulence Database [jht,]

Viscosity 384× 384× 256 64-bit float 288 MB
Miranda simulation
[Cabot and Cook,]

Density 384× 384× 256 64-bit float 288 MB
Miranda simulation
[Cabot and Cook,]

U 288× 192× 28 64-bit float 11.8 MB
Community Earth

System Model [ces,]

Jet-U 400× 250× 200 64-bit float 152.6 MB
Sandia National Laboratories

[Grout et al., 2011]

one of the 512MB ones (the Isotropic-fine). Our method is between 0.5 and 2 or-
ders of magnitude slower than ZFP, although it compares somewhat better against
SZ. It is rather asymmetric as we expected (Sec. 3.5). Note also that the varying
accuracy curves between all three compared algorithms make a fully fair compar-
ison difficult. For consistency with Fig. 3.2 we do the comparison in terms of time
vs. compression ratio, but TTHRESH fares better in terms of quality in large parts
of the error spectrum.

3.7 Discussion

We observe that the proposed algorithm achieves very competitive accuracy at
medium to high compression ratios and consistently outperforms other compres-
sors at high ratios; see the higher PSNR curves for our method in the middle to
right regions of each plot from Fig. 3.2. The overtaking point at which TTHRESH

surpasses other algorithms typically produces renderings that are already close to
visually indistinguishable to the original data set. This is especially true for higher
bit-depths. We believe the method is thus a good choice for applications with sig-
nificant error tolerance (chiefly, visualization-related). Since each threshold is
chosen on a coefficient by coefficient basis, the range of possible final errors has
an extremely high resolution. Also, the error that arises from the core compres-
sion is upper-bounded thanks to the careful selection of inter-chunk limits within
the coefficient curve. The compressed-domain filtering and resampling features
are rather unique strengths of the tensor decomposition framework, only possible
thanks to its multilinearity. Any separable filter and resampling can be applied at

3.7 Discussion 31

little cost by manipulating the factors column-wise after dequantization and be-
fore the final Tucker reconstruction. This is often much more challenging in other
compression methods, especially non-transform ones. Last, even though Lanczos
results are visually superior when lowering a data set’s resolution, we believe the
other decimation methods remain useful for e.g. region selection, projections, etc.

Limitations

As discussed before, TTHRESH’s favorable compression rates come at the price
of its monolithic approach to the whole transform core. This makes it signifi-
cantly slower than the other tested methods. Random-access decompression is
relatively costly, as one must traverse the whole core in all cases. For exam-
ple, while progressive transmission is possible in principle (it suffices to send the
smallest chunks first), a full decompression of each partial core is still required.
We have developed TTHRESH focusing primarily on data reduction rates, and less
so on general compression/decompression speed. We have realized that these
speeds (especially compression) can be notably increased at a relatively small ac-
curacy cost, for example by adding a core truncation step during the HOSVD, or
by early-stopping the binary search that determines the chunk sizes. This will be
the subject of future investigation.

32 3 TENSOR COMPRESSION

0 10 20 30

Compression ratio

20

40

60

80

100

P
S

N
R

Foot

TTHRESH

ZFP

SZ

0 50 100 150

Compression ratio

0

25

50

75

100

125

P
S

N
R

Boston teapot

TTHRESH

ZFP

SZ

0 5 10 15 20

Compression ratio

20

40

60

80

100

120

P
S

N
R

Engine

TTHRESH

ZFP

SZ

0 50 100 150 200

Compression ratio

20

40

60

80

100

120
P

S
N

R
Jet-u

TTHRESH

ZFP

SZ

0 20 40 60 80

Compression ratio

20

40

60

80

100

120

P
S

N
R

U

TTHRESH

ZFP

SZ

0 200 400

Compression ratio

40

60

80

100

120

140

160

P
S

N
R

Viscosity

TTHRESH

ZFP

SZ

0 50 100 150 200

Compression ratio

25

50

75

100

125

150

P
S

N
R

Density

TTHRESH

ZFP

SZ

0 50 100 150

Compression ratio

20

40

60

80

100

120

140

P
S

N
R

Channel

TTHRESH

ZFP

SZ

Figure 3.2: Compression quality curves (higher is better) for our method compared to SZ

and ZFP over 8 example volumes.

3.7 Discussion 33

0 20 40 60 80

Compression ratio

−1

0

1

2

lo
g

1
0
(c

om
pr

es
si

on
ti

m
e)

(s
)

Teapot

TTHRESH

SZ

ZFP

0 50 100 150 200

Compression ratio

0

1

2

3

lo
g

1
0
(c

om
pr

es
si

on
ti

m
e)

(s
)

Isotropic-fine

TTHRESH

SZ

ZFP

0 20 40 60 80

Compression ratio

−1.0

−0.5

0.0

0.5

1.0

lo
g

1
0
(d

ec
om

pr
es

si
on

ti
m

e)
(s

)

Teapot

TTHRESH

SZ

ZFP

0 50 100 150 200

Compression ratio

0.5

1.0

1.5

2.0

lo
g

1
0
(d

ec
om

pr
es

si
on

ti
m

e)
(s

)

Isotropic-fine

TTHRESH

SZ

ZFP

Figure 3.3: Compression (top row) and decompression (bottom row) times for two vol-
umes and a range of different compression ratios.

34 3 TENSOR COMPRESSION

Figure 3.4: Two example volumes (I): the Foot CT scan and the Boston teapot. Rows
from top to bottom: original, higher quality, and lower quality.

3.7 Discussion 35

Figure 3.5: Two example volumes (II): the Engine and the Channel turbulence simulation.

4C H A P T E R

MULTIRESOLUTION FILTERING

37

38 4 MULTIRESOLUTION FILTERING

4.1 Overview

Modern interactive large-scale volume rendering systems typically rely on com-
pressed and out-of-core multiresolution data structures [Balsa Rodrı́guez et al.,
2014]. Such systems precompute volume subregions at all possible resolutions
(levels of detail, LOD), also known as octree bricks. During visualization they
keep bricks of different LODs in GPU memory at once. Besides interactive vi-
sual exploration, more advanced data analysis tasks require additional data selec-
tion and processing operations. Many signal processing operations, for example
filtering, are expensive and challenging to apply across the variable LOD hierar-
chy. Filter operations are best integrated into the visualization application, and
if possible performed efficiently in a compressed form. In this chapter we de-
velop and demonstrate multiresolution filtering in an octree-based visualization
system using tensor decomposition. We keep the multiresolution volume data in a
memory-efficient form until the latest possible stage before rendering on the GPU
(Fig. 4.1). Furthermore, we assume that in addition to the cost for loading com-
pressed volume data from disk to main and into GPU memory, also the cost for
decoding –preferably on the GPU just before display– is intrinsic to most mul-
tiresolution volume visualization systems, as are the costs for LOD selection and
rendering.

GPUCPU

compact
multiresolution
volume data

octree
hierarchy

decoding of
compressed
LOD nodes

loading required
octree nodes

from disk

LOD selection
of visible

volume octree
nodes

rendering
decoded

volume bricks

Figure 4.1: Typical interactive large-scale multiresolution compressed volume visualiza-
tion pipeline.

Contribution

We show [Ballester-Ripoll et al., 2017] how a multiresolution tensor-compressed
volume representation can support efficient filter operations, and to do so seam-
lessly across variable reconstruction resolutions. Our solution applies convolution
operations directly on the decomposed volumes. This approach generates faster
and more accurate filtering results on the selected visible and variable LOD vol-
ume bricks than applying the filter to the decoded raw bricks at different resolu-
tions. Furthermore, we integrate this algorithm into a state-of-the-art interactive
visualization application, fully compatible with out-of-core multiresolution vol-

4.2 Background 39

ume rendering. The entire factor matrix convolution filtering, downsampling and
brick reconstruction process exploits GPU massive parallelism and run at interac-
tive rates for large volumes.

4.2 Background

Large-scale multiresolution visualization systems must support fast variable LOD
access and rendering. For instance, [Hadwiger et al., 2012a] propose a render-
ing architecture for dense and anisotropic datasets obtained by stitching high-
resolution 2D tiles. The data is downsampled from its original full resolution
in real time. Filtering operations beyond anti-aliasing filters (noise removal, edge
detection, etc.) are fundamental in several visualization settings, see for exam-
ple [Jeong et al., 2009] and [Treib et al., 2012]. See also [Soltészová et al., 2017]
for a completely visualization-driven approach, where only voxels whose filtering
will produce a significant pixel difference are processed in the first place. Brick
boundaries constitute an additional problem in octree-like hierarchies. [Sicat et al.,
2014] describe a 3D multiresolution system based on sparse probability density
functions that enables consistent and smooth low-pass filtering at multiple resolu-
tion levels. However, their representation is not smaller than the input volumes,
and only low-pass filter operations for anti-aliasing are demonstrated.

Fourier, discrete cosine or wavelet transforms (FT, DCT, WT respectively)
have been used in the past for efficient interactive multiresolution volume vi-
sualization [Yeo and Liu, 1995; Grosso et al., 1996; Lippert et al., 1997], also
for managing large-scale out-of-core volume data [Rodler, 1999; Ihm and Park,
1999]. More recently, novel approaches like vector quantization, tensor decompo-
sition or sparse coding have successfully been proposed for large multiresolution
volume rendering, see e.g. [Guthe et al., 2002; Schneider and Westermann, 2003;
Fout and Ma, 2007; Suter et al., 2011b; Gobbetti et al., 2012; Suter et al., 2013] as
well as the survey [Balsa Rodrı́guez et al., 2014]. While vector quantization and
sparse coding do not lend themselves well to efficient filtering, transform-based
compression like FT, DCT and WT are better suited for signal processing oper-
ations. Based on a compressed WT volume representation, [Treib et al., 2012]
decompress and evaluate turbulence properties of velocity-vector time-varying
volumes during rendering on the GPU. However, that approach is designed for
datasets fully fitting into GPU memory at each frame and filters at the full original
resolution only.

Overall, while compression domain volume rendering is a well-explored and
established paradigm, the problem of efficient filtering over an out-of-core com-
pressed LOD hierarchy has not yet been properly addressed in the context of mul-
tiresolution interactive visualization. Tab. 4.1 summarizes several possible visual-

40 4 MULTIRESOLUTION FILTERING

ization pipelines, including the proposed one.

Table 4.1: Visualization pipelines for several approaches: O = uncompressed data in
a multiresolution octree format; OC = octree with compressed volume data; C = com-
pressed full resolution data (no LOD); D = decompression to full resolution; DL = de-
compression to target LOD; L = downsample to target LOD; F = filter; F∗ = filter in the
compressed domain (much faster than F).

Method Observations RAM GPU

Multiresolution visualization Uncompressed data must fit in
GPU; artifacts when filtering O F

[Gobbetti et al., 2012],
also [Suter et al., 2013] No filtering OC; DL

[Treib et al., 2012] No LOD: full resolution data
must fit in GPU C; D; F

Filter after decompression
before downsampling

Must filter full resolution data
even at low LODs OC; D; F; L

Filter after downsampling Slower than our method;
artifacts when filtering OC; DL; F

Ours Accurate LOD filtering at any
resolution OC; F∗; DL

4.2.1 Multiresolution Filtering

According to the sampling theorem in digital signal processing, downsampling a
signal by a factor k will result in aliasing whenever its frequency spectrum is wider
than a band of size 2π/k. It is challenging to filter large volume data in an inter-
active LOD based rendering system, since different downsampling levels demand
filtering at various downsampled resolutions. More specifically, three possible
options for compression-based multiresolution filtering can be considered:

1. Filtering after decompression before downsampling (FD). The most accu-
rate reduced resolution filtered result can be achieved by filtering the orig-
inal high resolution signal with the unmodified filter kernel, followed by
downsampling the result. This is computationally prohibitive since it re-
quires decompression and filtering of the full resolution data, even when
only a lower resolution LOD is actually needed for visualization. This
approach defeats the purpose of using an octree representation altogether,
since only leaf nodes (i.e. full resolution bricks) are ever read.

2. Filtering after decompression and downsampling (DF). If the input signal
T is downsampled by a factor 2f , also the filter kernel G should equally
be downsampled before convolution. In addition to losing detailed filter

4.3 Octree Tucker Decomposition 41

responses, some compact filters simply cannot be downsampled at all be-
cause the resulting filter mask size K/2f would be too small to capture the
essential kernel properties (e.g. K = 3 and f > 1). In this cases, this strat-
egy must resort to applying the unmodified kernel to variable LOD regions,
which entails incorrect results. See Fig. 4.2 for a comparison of FD vs. DF
on a sample image.

3. Tensor-approximated filtering (TAF). Filtering can be performed in a cost-
efficient way in a transformed and compressed domain, yet ensuring the
filter operator’s accurate full resolution response. The data to be visualized
can directly be reconstructed at the desired spatial resolution and LOD after
filtering. This approach is the only one in this context that can cope with
both large data sizes and several resolution levels at once.

(a) No filtering (b) FD (c) DF

Figure 4.2: (a) Image with variable resolution quadrants, subsampling from 1:1 down to
1:8. Sobel operator applied (b) before downsampling (FD) and (c) after downsampling
(DF). FD shows a much smoother response across resolution discontinuities.

4.3 Octree Tucker Decomposition

A multiresolution hierarchy (without support for filtering) was defined and com-
bined with Tucker compression in [Suter et al., 2013]. Given an input volume
octree, their algorithm computes (Fig. 4.3):

• Three global basis factor matrices U(n) with row dimensions In equal to the
input size and Rn columns for n = 1, 2, 3

• A small core tensor Bijk ∈ RR1×R2×R3 for each octree node, obtained by
truncating the HOSVD factors [de Lathauwer et al., 2000b]

42 4 MULTIRESOLUTION FILTERING

A volume brick Bijk on level l can be reconstructed as Bijk ×1
↓lU

(1)

Ji1
×2

↓lU
(2)

Jj2
×3

↓lU
(3)

Jk3
, with the factor matrix row ranges J{i,j,k}n corresponding to the

brick’s spatial location; see also 4.4. Note that for bricks on level l, the global
factor matrices are first subsampled by the factor 2H−l in the row dimensions,
indicated by ↓lU(n), before reconstruction. Assuming a volume of size I3 and
octree bricks of size B3, setting the core tensor dimension to R = B/2 results in
a compact format requiring only a) three thin global factor matrices with 3I · R
elements in total; and b) 23l core bricks of size B3/8 at each level l, amounting
(geometric series) to a total of ≈ I3/7 core elements across all octree levels.

...

global factor
matrices

octree node
data bricks

core tensors

U(1)

U(2)

U(3) node 0

node 1 node 8

node (8H+1-1)/7 - 1node iBijk

level 0

level 1

level H

Bi jk

Figure 4.3: Our system and [Suter et al., 2013] keep three global factor matrices and one
small core tensor for each octree node.

We adopt the hierarchy from [Suter et al., 2013] with one key alteration: we
always work with the full resolution global factor matrices, which allows multi-
scale filtering in the compressed domain. This important modification preserves
the original spatial resolution information, a critical property as we will show in
Sec. 4.5.

4.4 Tensor Compressed Domain Filtering

Tensor decompositions allow for easy basis manipulation owing to their multi-
linearity (Sec. 2.7), and the Tucker format is no exception. Orthonormal Tucker
factors provide a convenient and immediate bijection between any tensor and its
transform. Thus, each factor row maps one-to-one onto a slice (or hyperslice)
of the input data set. Furthermore, linear combinations of rows produce linear
combinations of the corresponding slices (Fig. 4.4).

For example, we can convolve any Tucker-compressed tensor by a separa-
ble kernel G[x] = g(1)[x1] · g(2)[x2] · g(3)[x3] by column-wise factor convolution

4.4 Tensor Compressed Domain Filtering 43

(1)

(2)

U
(1)
J1

U
(2)
J2

J1 U
(3)
J3

U(1) U(2) U(3)

#lU(1)

J2
I1 I2

J3

I3

#lU(2) #lU(3)

R1 R2 R3

Figure 4.4: (1) Factor matrix row subranges U
(n)
Jn

allow for spatial selection of a sub-
volume J1 × J2 × J3. (2) Downsampled factor matrices ↓kU(n) reconstruct to lower
resolution data.

(Fig. 4.5):

T̃ ∗ G = B ×1 (U(1) ∗G1)×2 (U(2) ∗G2)×3 (U(3) ∗G3)

Furthermore, we can approximate non-separable 3D convolution kernels as a
sum of S rank-1 tensors G ≈ G̃ =

∑S
s=1 g

(1)
s ⊗ g

(2)
s ⊗ g

(3)
s (CP decomposition).

Each filter factor column can be applied in the compressed Tucker domain by
accumulating rank-1 filter convolutions:

T̃ ∗ G̃ =
S∑

s=1

B ×1 (U(1) ∗ g(1)
s)×2 (U(2) ∗ g(2)

s)×3 (U(3) ∗ g(3)
s) (4.1)

In other words, instead of convolving a 3D filter with the volume data in the
spatial domain, we can apply S 1D convolutions on the factor matrices in the
tensor compressed domain. A rank-S filter of sizeK3 directly applied on a volume
of size I3 in the spatial domain would amount to O(I3K3) operations, while the
application of the decomposed filter on the factor matrices, i.e. all U(n) ∗ g

(n)
s ,

only costs 3 · O(IKRS). Now, assume we partition the input I3 volume into
bricks of size B3, and each is compressed with R Tucker ranks. Note that R and
S are rather small numbers, with R = B/2 � I and S < K, often even S ≤ 3.
Given a per-brick reconstruction cost of O(B3R), a full reconstruction amounts
to O(I3R) with R < B � I in total for the finest level of resolution. Therefore,
the volume reconstruction greatly dominates the compressed domain filtering cost.
Nonetheless, in a compressed data visualization system, the decompression cost is
an inherent part of the rendering algorithm itself and has to be performed anyway.

44 4 MULTIRESOLUTION FILTERING

eT ⇤ G

filter filter

filter =

G

u(1)

g(1)

g(2)

g(3)filter
u(2) u(3)

(u(1) ⇤ g(1))⌦ (u(2) ⇤ g(2))⌦ (u(3) ⇤ g(3))

⌦ ⌦

(a)

=

filter g(1)
filter g(2) g(3)filter

B ⇥1 (U(1) ⇤ g(1))⇥2 (U(2) ⇤ g(2))⇥3 (U(3) ⇤ g(3))

B

eT ⇤ G

filter G

U(1) U(2) U(3)

⇥1 ⇥2 ⇥3

(b)

Figure 4.5: Separable convolution filter G applied to a 3D CP (a) and Tucker (b) tensor
decomposition.

Thus, tensor decomposition domain filtering is not an overhead introduced on top
of compression domain volume rendering but rather a cost reduction compared to
direct volume filtering.

Note that besides filter convolutions, other frequency domain manipulation
techniques are possible in the tensor domain. For example, one can apply any
band-pass filter by i) computing the DCT column-wise on the factor matrices;
ii) removing the desired frequencies; iii) performing the inverse DCT; and iv)
reconstructing (see Fig. 4.6).

4.5 Proposed Multiresolution Filtering

4.5.1 Overview

The basic framework described above in Sec. 4.4 allows tensor compressed do-
main filtering as suggested in option 3 (TAF). For online multiresolution filtering,
we first apply the convolution filter G̃ on the full resolution global factor matrices
to obtain U

(n)
∗ and then downsample them by the factor 2H−l for octree height H

4.5 Proposed Multiresolution Filtering 45

(a) Original (b) Column-wise DCT (c) Result after filtering

Figure 4.6: Left: Tucker factor matrices of the Bonsai CT volume (2563, compressed
to 128 ranks). Center: discrete column-wise cosine transform. Right: low-pass filtered
result after keeping only the lowest 20% DCT frequency components and converting back
from frequency domain (equivalent to convolution with a sinc kernel). The color map acts
on the absolute values; the Tucker core remains always unchanged.

and target resolution level l. The resulting matrices ↓lU(n)
∗ are then used for the

reconstruction of the filtered volume as illustrated in Fig. 4.7(b), with each brick
using a matrix chunk.

If the columns of each n-th Tucker factor span the leading left singular vec-
tors of a volume’s n-th unfolding, then progressive reconstruction is possible, i.e.
quality degrades smoothly as we discard rightmost columns. To guarantee this
in our multiresolution system, we keep one copy of the global factor matrices
for each octree level and re-orthogonalize their chunks accordingly during pre-
processing, see also Fig. 4.7(a). For example, for the first level below the octree
root corresponding to 2×2×2 nodes, the factor matrices are vertically split in half
U(n) → {U(n)

J1
n
,U

(n)

J2
n
}, each part is re-orthogonalized U

(n)

Jin
→ U

′(n)

Jin
, and finally

stitched together again into one tall matrix U
′(n)

J1
n
∪U

′(n)

J2
n
→ U

′(n).
During interactive visualization, after selecting a convolution filter and pro-

cessing the factor matrices as outlined above, the displayed LOD octree node
bricks must all be updated and reconstructed according to Eq. 4.1. Each brick
requires three specific filtered and downsampled chunks. For example, a third
level brick Bijk would be reconstructed using its core tensor Bijk, from octree
level l = 3, and the matching rows J{i,j,k}n of the corresponding filtered third level
matrices ↓3U

′′′(n)
∗ .

We handle inter-brick border artifacts and discontinuities by incorporating a
number m of overlapping border rows when splitting the global factor matrices
vertically into 2l segments for octree level l. In other words, each core encodes a
brick plus certain margins. This allows for correctly convolving with kernel sizes
up to 2m. These extra rows do not cause additional reconstruction cost as they are
only needed to define the tensor decomposition and for filtering the basis factors.

46 4 MULTIRESOLUTION FILTERING

re
-o

rth
og

on
al

iz
at

io
n

du
rin

g
pr
ep
ro
ce
ss
in
g

per octree-level
re-orthogonalized

global factor
matrix copies

U(1)
U(2)

U(3)

U(n)

U(n)
⇤

level 0 level 1 level H

...

level 2

J0
n

Ji
n

J j
n

U
0(n) U

00(n) U
0···(n)

filtered global
factor matrices

downsampled and
filtered global

factor matrices

#1U
0(n)
⇤#0U(n)

⇤

#2U
00(n)
⇤

#HU
0···(n)
⇤

U
0(n)
⇤ U

00(n)
⇤ U

0···(n)
⇤

(a)

in
te
ra
ct
iv
e

fil
te

rin
g

an
d

do
w

ns
am

pl
in

g
on

 th
e

C
PU

 o
r G

PU

(b)

Figure 4.7: (a) Chunk-wise basis factor matrix re-orthogonalization for each octree level
during the pre-process. (b) Filtering and downsampling of the factor matrices at all levels
at run-time.

4.5.2 Decomposition Stage

For simplicity in the exposition we assume a regular input volume of size I3.
Our system uses volume bricks of size B3 with B = 64 for good performance.
The global Tucker decomposition factor matrices are of size I × R with R =
B/2 = 32 and the octree node core tensors have thus R3 = B3/8 elements
each. The convolution filters are of variable size K, and if non-separable will
be approximated by a rank-S CP tensor decomposition, usually only requiring
S ≤ 3.

During the pre-process stage, the input volume T is decomposed into three
learned global factor matrices U(n) using an ALS algorithm (App. A.1.2) with 3
iterations per mode. The octree hierarchy of core tensors has height log2(I/B)+1.
The implementation follows the outline given in [Suter et al., 2013], especially
with respect to using memory mapping and parallelization for handling large in-
put volume datasets. A key difference, however, is that the factor matrices are

4.5 Proposed Multiresolution Filtering 47

Algorithm 2 Building an H-level tensor octree from input volume T .
1: [[B,U(1),U(2),U(3)]] := TUCKER(T)
2: for l = 1, . . . , H do
3: for i = 1, . . . I1/B do
4: chunk(U

′···(1), i) := LSV(chunk(U
′···(1), i))

5: end for
6: for j = 1, . . . I2/B do
7: chunk(U

′···(2), j) := LSV(chunk(U
′···(2), j))

8: end for
9: for k = 1, . . . I3/B do

10: chunk(U
′···(3), k) := LSV(chunk(U

′···(3), k))
11: end for
12: for all i = 1, . . . I1/B, j = 1, . . . I2/B, k = 1, . . . I3/B do
13: B′···ijk := T ′···ijk ×1 chunk(U

′···(1), i)T ×2 chunk(U
′···(2), j)T ×3

chunk(U
′···(3), k)T

14: end for
15: end for

not stored downsampled for each octree level. Instead, we keep H full resolution
copies; each copy is separately re-orthogonalized into 2l chunks of 2H−l consec-
utive rows for each octree level l as outlined in the previous section. Such copies
are critical to preserve the full spatial information at every octree level.

Alg. 2 shows the modified pre-process with the routine chunk() selecting the
2H−l factor matrix rows for the i, j or k-th chunks, and LSV() performing the re-
orthogonalization over the selected rows by taking the R leftmost singular vectors
from the SVD. Note that in this step the overlapping border rows are also incorpo-
rated but not explicitly shown for simplicity. Each Tucker core is finally computed
by projecting the corresponding input volume brick at the right resolution, denoted
by Tijk, onto the basis factor matrices.

4.5.3 Basis Factor Matrix Filtering

Whenever a new convolution filter is selected at run-time, the global factor matri-
ces on the different octree levels are all convolved column-wise by the appropriate
filter vector as U

′···(n)
∗ ← U

′···(n) ∗ g(n). The visible volume bricks have then to be
reconstructed (on the GPU) before they can be rendered again. The filter may be
selected from a predefined set, constructed using an editor, or discretized from an
analytic expression. The filtering of the basis factor matrices, which takes a very
small portion of the total time (see also Sec. 4.6), is also performed in parallel on

48 4 MULTIRESOLUTION FILTERING

the GPU.
The user can apply any separable filter directly, but if a generic filter G is

given, a (very) low rank-S CP decomposition
∑S

s=1 g
(1)
s ◦ g

(2)
s ◦ g

(3)
s must be

first obtained, e.g. with ALS. Prominent examples of this category include the
Laplacian of Gaussian, unsharp masking, and the Difference of Gaussians (DOG).
For commonly used filters, their low-rank CP decomposition can be precomputed
and readily provided to the user. Given the decomposed filter kernel, the visible
volume bricks can then be reconstructed as in Eq. 4.1 and described in Alg. 3.

More complex operators may even rely on non-linear combinations of sim-
ple convolution steps. For instance the Sobel operator, an example of fast edge
detection, is computed in 3D as

√
(T ∗ Gx)2 + (T ∗ Gy)2 + (T ∗ Gz)2 (4.2)

where Gx,Gy, and Gz are gradient-estimating kernels along each spatial axis. They
are all separable individually but their overall aggregated filter effect is not.

4.5.4 Reconstruction

Bricks must be newly decompressed when either the LOD in the corresponding
octree nodes changes or a new filter operation is requested during interactive visu-
alization. LOD-based updates have been extensively discussed and demonstrated
in many interactive multiresolution volume rendering approaches and we can fo-
cus primarily on the filtering aspect. Alg. 3 outlines the filtering and reconstruc-
tion steps involved when a brick Bijk needs to be updated. First, the filter’s 1D
basis components g(n) are convolved column-wise with the basis factor matrices,
thus U

′···(n) → U
′···(n)
∗ , computed over row segment ranges J{i,j,k}n . Second, the

required downsample() is performed on these factor matrix segments for each
given level l, hence U

′···(n)
∗ → ↓lU

′···(n)
∗ . These first steps, lines 3 to 5 in Alg. 3,

are in fact not carried out for each single brick individually but are all done in one
go. With the filtered and downsampled factor matrices, the brick Bijk is eventu-
ally reconstructed. If the filter is represented by a rank-S CP decomposition, this
process is iterated S times and the results accumulated in Bijk. As illustrated in
Fig. 4.8, all crucial computational steps (filtering, downsampling and reconstruct-
ing) are performed on the GPU.

4.5.5 Rendering

The view-dependent LOD based volume rendering follows the principles of the
TAMRESH system [Suter et al., 2013] and is outlined in Fig. 4.8. For each ren-
dered frame, the multiresolution octree representation is traversed and the required

4.6 Results 49

Algorithm 3 Reconstructing a volume brick Bijk from the level l, while applying
a rank-S CP-decomposed convolution filter G ≈∑S

s=1 g
(1)
s ◦ g

(3)
s ◦ g

(3)
s .

1: Bijk := 0
2: for s = 1, . . . S do
3: ↓lU

′···(1)
∗ := downsample(U

′···(1) ∗ g
(1)
s)

4: ↓lU
′···(2)
∗ := downsample(U

′···(2) ∗ g
(2)
s)

5: ↓lU
′···(3)
∗ := downsample(U

′···(3) ∗ g
(3)
s)

6: for all i = 1, . . . I1/B, j = 1, . . . I2/B, k = 1, . . . I3/B do
7: Bijk := Bijk + Bijk ×1 chunk(↓lU

′···(1)
∗ , i)×2

chunk(↓lU
′···(2)
∗ , j)×3 chunk(↓lU

′···(3)
∗ , k)

8: end for
9: end for

10: return Bijk

LOD nodes are selected and rendered using ray-casting. The LOD selection and
rendering mechanism exploits pooling and caching of bricks between rendering
frames. Therefore, bricks only have to be loaded and reconstructed if they are not
already cached from an earlier displayed frame.

4.6 Results

Note: the following experimental measurements, volume renderings and support-
ing text were produced and published [Ballester-Ripoll et al., 2017] in joint work
with David Steiner from the Visualization and MultiMedia Lab. The resulting re-
port is here reproduced from the manuscript for completeness, and its attribution
is shared by all coauthors.

4.6.1 Software and Hardware Used

Our system is implemented in C++/OpenGL on top of Equalizer [Eilemann et al.,
2009], a scalable parallel rendering framework for OpenGL-based applications.
For its convenience in graphics and visualization we use the C++ library vmm-
lib [vmm, c], which uses BLAS and LAPACK parallel routines to optimize ten-
sor operations including Tucker decomposition and reconstruction. We extended
the parallel GPU-based volume ray-casting application described in [Suter et al.,
2013] to incorporate our modified Tucker bases and filtering process. Both Tucker
brick reconstruction and matrix downsampling/filtering were implemented using
CUDA, while octree traversal and core uploading is undertaken by the CPU. All

50 4 MULTIRESOLUTION FILTERING

memory
mapped

core
tensor
octree

global
basis
factor

matrices

interaction handler

CPU

GPU

filtered and downsampled
factor matrices

core tensor
bricks

volume
rendering
shaders

LOD manager

user
input

tensor
reconstruction

shaders

visible volume
bricks

tensor
approximation
compressed
volume data

pool of
uncompressed bricks

filter operator
matrix downsampler

Figure 4.8: Overview of the proposed multiresolution volume filtering and rendering
system.

such updates are asynchronous. Octree decomposition was performed on the CPU
using vmmlib [vmm, c] using OpenMP parallelization. Our results have been ob-
tained on a 32-core Intel Xeon CPU E5-2650 v2 with 2.60GHz and 32GB of
memory, equipped with a GeForce GTX 970 graphics card with 4GB of memory.

4.6.2 Datasets and Parameters

Our test datasets include the Bonsai (2563, 16 MB), the Hazelnut (5123, 128 MB),
the Flower (10243, 1 GB), and the Garlic (20483, 8 GB). All volumes are 8-bit
micro-computed tomography (µCT) using X-rays. The Hazelnut, Flower and Gar-
lic are available from [vmm, a], while the Bonsai is from [iap,]. For interactive
visualization we apply a constant logarithmic 9-bit quantization scheme on the
octree cores as proposed in [Suter et al., 2013], resulting in total tensor octree
sizes of 3MB, 21.5MB, 167.7MB and 1.30GB, respectively. While this scheme
results in lower compression quality than the adaptive quantization introduced in
Ch. 3, its reconstruction is much more GPU-friendly. We used borders of size

4.6 Results 51

m = 8 (m = 10 for the Garlic). Note that the Garlic in its raw form exceeds
the available GPU memory by a factor of 2. It would be unfeasible to store the
whole uncompressed volume in the GPU at all times; such large volumes mo-
tivate using compressed visualization techniques. We will use the shortcuts FD
(filter before downsampling), DF (downsample before filtering), and TAF (tensor
approximation domain filtering) as introduced earlier.

4.6.3 Multiresolution Remarks

In a multiresolution rendering where regions of different LOD resolutions are
adjacent to each other, filtering after downsampling causes sharp discontinuities
along the borders between LODs. As shown in the top row of Fig. 4.9, lower
resolution spatial voxel filtering leads to sudden recognizable blurring and loss of
high-frequency detail: in the right half-images, the edges are detected at a coarser
scale than in the full-resolution version (left half-images). On the other hand, our
method in the bottom row achieves a much more homogeneous overall result even
across LOD resolution boundaries.

The Sobel operator from these experiments has a small kernel size of K = 3.
A more correct application of this filter over lower-resolution bricks would require
downsampling its kernel, but its size 3×3×3 is too small. With the Tucker-octree
filtering, however, this is feasible via global factor matrices, which have the full
original resolution and can ensure edge detection at the correct spatial scale. These
matrices have only size I × R. A naive filter before downsampling (FD), on the
other hand, would have to process the full reconstructed volume of size I3.

4.6.4 Guided Filter Extension

We have already shown how to compute the Sobel operator, which is non-linear
but is nonetheless tractable via a combination of linear components. We have like-
wise implemented a tensor-reconstructed version of the guided filter [He et al.,
2010], a non-linear edge-preserving filter popular for denoising that exhibits very
good behavior near edges. Our implementation corresponds to the case where the
guiding volume is identical to the input volume. A modification of our system was
needed to this end: since the filter requires variances of all fixed size windows, we
have to store a compressed version of the squared original data set. We only keep
one set of factor matrices, as we have observed that they can be used to compress
the squared bricks at a similar approximation error. Whenever the filter is applied,
the squared brick cores are loaded from disk and kept synchronized with the reg-
ular brick cores. See Alg. 4 for the full details of our per-brick guided filtering
plus reconstruction process. Note that, like the Sobel operator, we must perform
the non-linear operations (line 6 to 8 in Alg. 4) after tensor reconstruction. In ad-

52 4 MULTIRESOLUTION FILTERING

(a) baseline vs. downsample
followed by filter (DF)

(b) baseline vs. downsample fol-
lowed by filter (DF) (slice)

(c) baseline vs. ours (TAF) (d) baseline vs. ours (TAF) (slice)

Figure 4.9: Multiresolution filtering with the Sobel operator of the Bonsai: full spatial
resolution I = 256 in the left image half; and 1:2 reduced resolution in the right half of
the image. (a,b) Filtering in the spatial voxel domain after downsampling (DF) shown
as volume and image slice views, with features suddenly becoming coarser on the right
compared to the baseline on the left. (c,d) Reconstruction of filters applied to the basis
factor matrices in the tensor domain (TAF) leads to less resolution dependent results.

dition, the last box filters must be (approximately) adapted to the target resolution
level. The error introduced this way is much smaller than with the naive approach
as shown in Tab. 4.4.

Tabs. 4.2 to 4.4 show the relative numerical errors ε = ‖T∗ − T̃∗‖/‖T∗‖ of
filter results between the ground truth (FD) and DF as well as our method TAF for
three different filters. The data set is tensor-compressed and reconstructed in all
cases, the only difference being the downsampling stage (done after reconstruction

4.6 Results 53

Algorithm 4 Apply guided filter and reconstruct one brick (i, j, k) at hierarchy
level l with given window size w and damping factor δ
Require: Cores B′ijk and B′∗ijk
Require: Corresponding factor chunks U

′···(n) for n = 1, 2, 3
1: B(1) := downsample(boxfilter1D(U

′···(1), w))
2: B(2) := downsample(boxfilter1D(U

′···(2), w))
3: B(3) := downsample(boxfilter1D(U

′···(3), w))
4: M := B′ijk ×1 B(1) ×1 B(2) ×1 B(3) {Per-window mean}
5: S := B′∗ijk ×1 B(1) ×1 B(2) ×1 B(3) {Per-window raw second moment}
6: V := S −M2 {Per-window variance}
7: A := V/(V + δ) {Per-window ak from [He et al., 2010]}
8: B := (1−A)M{Per-window bk from [He et al., 2010]}
9: w̄ := max(1, round(w/(2l)))

10: Ā := boxfilter3D(A, w̄ × w̄ × w̄)
11: B̄ := boxfilter3D(B, w̄ × w̄ × w̄)
12: ↓lU

′···(1) := downsample(U
′···(1))

13: ↓lU
′···(2) := downsample(U

′···(2))
14: ↓lU

′···(3) := downsample(U
′···(3))

15: return Ā ◦ (Bijk ×1
↓lU

′···(1) ×2
↓lU

′···(2) ×3
↓lU

′···(3)) + B̄

but before spatial filtering in DF, and before reconstruction but after basis matrix
filtering in TAF). The accuracy of the TAF processing is significantly higher than
that of the spatial domain filtering applied after downsampling DF. The number of
ranks was set to R = I/2 as no octree hierarchy was used for this error evaluation
study.

4.6.5 Filtering Performance

To demonstrate the feasibility of our compression domain volume filtering ap-
proach, we measured the filtering and reconstruction performance of our proposed
TAF compared to spatial domain filtering after downsampling (DF). In our test
system, the rendering is temporarily halted whenever filtering is invoked, and re-
sumed again after it is completed and all visible bricks have been reconstructed.
This approach displays the full final filtered result as soon as possible, resulting in
interactive response times (which depend on the filter complexity).

We rendered 4 datasets at an image resolution of 10242 pixels, and applied a
DOG filter to them using the standard deviations of σ1 = 1 and σ2 = 5. The
DOG has rank S = 2, as it can be written as a small CP decomposition with
(λ1, λ2) = (1,−1) and factor columns corresponding to two 1D Gaussian kernels.

54 4 MULTIRESOLUTION FILTERING

Table 4.2: Difference of Gaussians with σ1 = 1, σ2 = 5: Relative errors ε =
‖T∗ − T̃∗‖/‖T∗‖ for different compressed datasets and downsampling factors: DF vs.
the groundtruth (filtering, then downsampling) and TAF vs. the groundtruth. Our TAF
approach achieves virtually no error at all resolution levels. Rank number was chosen as
R = I/2

ε
Downsampling factor

1 2 4 8

DF

Bonsai 0 0.8541 1.6948 3.2063
Hazelnut 0 0.7871 1.5211 2.7220
Flower 0 0.8133 1.7143 3.1692
Garlic 0 0.7981 1.7209 4.4781

TAF

Bonsai 5.15 · 10−6 2.89 · 10−6 2.66 · 10−6 5.59 · 10−6

Hazelnut 4.54 · 10−7 2.91 · 10−6 3.09 · 10−6 4.55 · 10−6

Flower 6.62 · 10−7 4.86 · 10−6 5.41 · 10−6 8.87 · 10−6

Garlic 9.88 · 10−6 2.59 · 10−5 3.35 · 10−5 5.98 · 10−5

The average timings for filtering and reconstruction as performed on the GPU are
reported in Tab. 4.5, using three different filter sizes of K = 5, 9, 17. We used
brick border overlaps of size 8. Note that the DOG standard deviations of σ1,2 do
not affect the timings which only depend on the filter size K. We measured and
averaged 30 test runs for each configuration, and in order to ensure high quality
rendering for realistic view configurations, the LOD parameter for voxel (brick)
selection was chosen such that a voxel is projected onto no more than 2×2 screen
pixels.

Even though the inaccurate DF approach does not require immediate recon-
struction (as spatial filtering is done on the raw bricks), it still requires 3 separable
filter passes over the N voxel bricks of size B3 for each of the S ranks of the filter
kernel. In contrast, the TAF approach performs the rank-S approximated DOG
filter linearly on the R columns of the factor matrices only, independent of the
number N and size B of the voxel bricks. This leads to extremely fast filtering in
the compressed domain for virtually any filter size K, and also faster overall final
results even after taking reconstruction into account as demonstrated in Tab. 4.5.
Tensor reconstruction costs dominate the factor matrix filtering by several orders
of magnitude, but are still consistently lower than traditional spatial filtering (DF).
In other words, not only does tensor basis filtering offer more accurate results at
lower resolution scales, but it is also faster even when accounting for the necessary
brick reconstruction time.

For large volumes, accurate spatial filtering of the full resolution volume data
followed by downsampling (FD) would be infeasible in real time. First, the dataset
is limited in size since its full resolution version must fit into the GPU memory

4.6 Results 55

Table 4.3: Numerical relative errors ε = ‖T∗ − T̃∗‖/‖T∗‖ for the Sobel operator with
R = I/2. The error in our method is due to the non-linear operations performed after
reconstruction, but is overall significantly smaller than the naive approach

ε
Downsampling factor

1 2 4 8

DF

Bonsai 0 0.6030 1.3385 1.9533
Hazelnut 0 0.5655 1.1121 1.4488
Flower 0 0.5504 1.0976 1.5396
Garlic 0 0.4768 0.8157 1.1637

TAF

Bonsai 4.28 · 10−7 0.1166 0.3053 0.5393
Hazelnut 5.56 · 10−7 0.1257 0.3272 0.5532
Flower 8.88 · 10−7 0.1573 0.3898 0.6026
Garlic 1.23 · 10−6 0.2659 0.6160 0.8216

Table 4.4: Numerical relative errors ε for the guided filter withR = I/2, δ = 5000. Note
the error incurred by non-linear operations, which is again smaller for TAF

ε
Downsampling factor

1 2 4 8

DF

Bonsai 0 0.0740 0.1642 0.2439
Hazelnut 0 0.1284 0.2753 0.3821
Flower 0 0.1134 0.2603 0.3717
Garlic 0 0.0351 0.0813 0.1285

TAF

Bonsai 9.55 · 10−8 0.0087 0.0231 0.0331
Hazelnut 1.10 · 10−7 0.0142 0.0379 0.0608
Flower 1.46 · 10−7 0.0115 0.0312 0.0487
Garlic 1.88 · 10−7 0.0038 0.0099 0.0148

whenever the whole volume is visible. Second, the filtering operation would al-
ways entail maximal cost and be especially inefficient for strongly downsampled
renderings of zoomed-out views on screen. Having to reconstruct the full resolu-
tion in all cases for filtering means that the LOD hierarchy is not exploited at all,
which defeats the purpose of using multiresolution volume rendering in the first
place.

To put the performance results in perspective to previous work, in [Treib et al.,
2012] the reported average timings for uploading and decompressing a 10243-
sized scalar field are 1.3s, without accounting for the subsequent full resolution
filtering costs. Our framework, on the other hand, exploits a hierarchical structure
to render volume regions at adaptively different resolution levels. The LOD se-
lection coupled with tensor-based compression is able to deliver complete filtered

56 4 MULTIRESOLUTION FILTERING

results at times well below half a second. However, performance cannot directly
be compared as in [Treib et al., 2012] the volume data has to be fully loaded on
the GPU and is only processed after decompression, thus it does not support LOD
based compression domain filtering and rendering.

Tabs. 4.6 and 4.7 show equivalent experiments for the Sobel operator and
guided filter. The former has a fixed kernel size of 3, while for the latter we ran
again 5, 9 and 17. The filtering timings in these cases combine both the convolu-
tion in the compressed domain and the necessary post-processing steps thereafter.
While these filters are non-linear and more expensive than the DOG counterpart,
they are still faster and more accurate than the naive DF implementation.

Table 4.5: Difference of Gaussians: filtering and reconstruction times (inms) for all four
datasets, comparing DF vs. TAF for different kernel sizes. Timing values are averaged
over 30 test runs using the DOG filter (with σ1 = 1 and σ2 = 5) of size K = 5, 9, 17. No
immediate reconstruction is required for the spatial domain filtering DF.

Filtering (ms)
N. of

bricks
Kernel size Recons-

truction (ms)5 9 17

DF

Bonsai 55 114.93 154.56 234.77 −
Hazelnut 111 224.46 297.59 445.12 −
Flower 141 257.13 320.38 450.07 −
Garlic 315 491.19 603.53 775.51 −

TAF

Bonsai 55 0.13 0.16 0.16 35.85
Hazelnut 111 0.18 0.20 0.24 72.33
Flower 141 0.29 0.32 0.42 91.73
Garlic 315 0.50 0.61 0.87 204.24

Table 4.6: Sobel operator: filtering and reconstruction times (in ms) for all four datasets

N. of bricks Filtering (ms) Reconstruction (ms)

DF
Bonsai 55 143.53 −

Hazelnut 111 290.86 −
Flower 141 369.56 −
Garlic 315 825.31 −

TAF
Bonsai 55 44.84 48.25

Hazelnut 111 90.44 97.68
Flower 141 113.97 122.78
Garlic 315 255.71 272.17

Fig. 4.10 shows exemplary screenshots of the renderer’s state before and after
the tensor-domain filtering process of applying the DOG and the guided filter
alternatively.

4.6 Results 57

Table 4.7: Guided filter: filtering and reconstruction times (in ms) for all four datasets
(δ = 3000)

Filtering (ms)
N. of

bricks
Window size Recons-

truction (ms)5 9 17

DF
Bonsai 50 240.64 316.76 476.01 −

Hazelnut 86 401.21 519.61 772.58 −
Flower 247 1066.04 1320.99 1853.28 −
Garlic 362 1325.84 1603.21 2020.86 −

TAF
Bonsai 50 159.23 196.84 270.87 42.42

Hazelnut 86 265.49 323.09 441.08 72.87
Flower 247 728.59 853.54 1105.52 207.72
Garlic 362 955.71 1087.20 1290.67 306.55

Figure 4.10: Top row: 4 volumes. Middle row: guided filter result (w = 5 and δ = 5 for
the Bonsai, w = 5 and δ = 10 for the Hazelnut, w = 9 and δ = 10 for the Flower, and
w = 17 and δ = 30 for the Garlic). Bottom row: Difference of Gaussians (σ1 = 1, σ2 =
5; filter kernel size K = 17 except for the Bonsai, which used K = 9).

58 4 MULTIRESOLUTION FILTERING

4.6.6 Rendering Performance

We also evaluated the interactive performance of our system with the three largest
volumes, including the 8GB Garlic. We use a camera path starting from a zoomed-
out view and progressing towards a more detailed close-up, with a filtering step
applied at frame 437. The timings in Fig. 4.11 to Fig. 4.12 reveal that for inter-
active visual exploration the vast majority of time per frame is spent on rendering
(volume ray casting), while the time required for incremental reconstruction of
updated LOD volume bricks is much less significant. This behavior is consistent
with the related TAMRESH system [Suter et al., 2013], as outlined in Sec. 4.5.5.
Note that the total frame time is less than the sum of rendering and reconstruction,
since LOD volume brick updates are asynchronous and incremental. Figs. 4.11
and 4.12 show the frame-by-frame computing costs, broken down by individual
tasks (rendering, tensor reconstruction, and filtering).

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

T
im

e
 (

m
s)

Frame

Total frame time
Rendering
Async. reconstruction
Sync. reconstruction

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

T
im

e
 (

m
s)

Frame

Total frame time
Rendering
Async. reconstruction
Sync. reconstruction

Frame 108 Frame 300 Frame 437 Frame 439 Frame 510 Frame 589 Frame 128 Frame 280 Frame 437 Frame 439 Frame 516 Frame 567

Figure 4.11: Timings for the interactive visualization of the Garlic with a DOG filter op-
eration (left) and the Hazelnut with the Sobel operator (right). We show the time required
per frame for rendering (blue), asynchronous reconstruction for LOD updates (green)
and synchronized reconstruction due to filtering (red), as well as the total time required
to produce each frame (gray). The DOG uses kernel size K = 17, and σ1 = 1, σ2 = 5.

A synchronized reconstruction of all visible volume bricks is needed after a
filter operation has been invoked, as opposed to normal asynchronous LOD up-
dates and rendering during viewpoint changes. Nevertheless, such reconstruction
delays the next displayed frame only by a fraction of a second. In Figs. 4.11
to 4.12 this is indicated by the reconstruction cost peaks in red. Thus, after the
user initiates a filter operation, the system can still react and update the rendered

4.7 Discussion 59

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600

T
im

e
 (

m
s)

Frame

Total frame time
Rendering
Async. reconstruction
Sync. reconstruction

Frame 82 Frame 304 Frame 437 Frame 439 Frame 508 Frame 528

Figure 4.12: Timings for the interactive visualization of the Flower with a guided filtering
in-between (w = 5, δ = 1000).

image of the complete filtered result at an interactive rate. In the given example,
a frame update time of about one third of a second is the only delay a user expe-
riences for applying a (complex) filter operation, before interactive rendering of
the now filtered volume resumes. Note that all overhead costs are reflected by the
total frame time (gray), including initialization and finishing of a frame, CPU and
GPU data management and transfer; and in the case of filtering, setting up and
uploading filter kernels, etc.

4.7 Discussion

We presented a novel multiresolution volume filtering framework that can con-
volve variable-resolution data directly in the tensor compressed representation
before reconstruction and rendering. The core idea is the fact that Tucker de-
composition yields 1D basis components where the time-frequency duality can be
inexpensively exploited. The proposed basis decomposition for each LOD hier-
archy level actually contains the full resolution information, which ensures that a
linear filter convolution can faithfully and homogeneously be applied at any spa-
tial resolution and displayed at variable LOD. We show both numerical results
and visual examples of our compression domain filtering approach, demonstrat-
ing its superior accuracy and higher speed compared to spatial domain filtering of
downsampled volume data. This also applies to non-linear filters as long as they
consist of linear components to some extent, as we have shown for the Sobel op-

60 4 MULTIRESOLUTION FILTERING

erator and the guided filter. The advantages become more significant with coarser
LODs; this makes the proposed method especially suitable for large-scale volume
representation, filtering and visualization. This is because larger models require
more hierarchy levels and, potentially, present a larger disparity in resolution lev-
els across the volume at each frame. Our method can compute and display filter
operations at interactive rates on data that does not fit on GPU memory.

The proposed framework has certain limitations. First, non-linear operations
for complex filters must be performed after tensor reconstruction, and thus such
filters only benefit partially from our multiresolution system. On the other hand,
linear but high-rank filters increase the computational cost. Lastly, the size m of
the brick borders affects the filter correctness: small borders restrict the range of
possible filter kernel sizes to K ≤ 2m, while wide borders imply decreasing the
compression quality.

In view of the very low costs of tensor-compressed domain volume filtering,
and given that the Tucker reconstruction can be performed interactively, in the
future we will investigate the feasibility of per-frame online reconstruction. Being
able to render while decompressing on the fly would allow loading and storing
the data always in its compressed format, which is a more space-efficient usage of
the GPU memory. This would in turn relax the need for frequent out-of-core data
fetching, further alleviating the upload overhead in the rendering pipeline.

5C H A P T E R

HISTOGRAM RECONSTRUCTION

61

62 5 HISTOGRAM RECONSTRUCTION

5.1 Overview

In the previous chapter we showed how to apply filtering operations to large,
tensor-compressed volumes. However, filters and convolution are not the only
analysis and feature extraction operations that we would like to exploit. His-
tograms, for example, are widely used in many visualization applications and are
important tools in segmentation, object tracking and classification, volume ren-
dering, and more. Recent advances in data acquisition technology are giving rise
to increasingly large data sets that often require histogram queries over large data
regions. Developing algorithms for compact representation and fast histogram
computation is thus an area of active research. The integral histogram [Porikli,
2005], that we denote IH, is a very time-efficient way to obtain a histogram over
any rectangular axis-aligned region in a Cartesian space. It extends the concept of
summed area table (SAT) [Crow, 1984] by storing a cumulative histogram at each
table entry. In exchange for its high query speed, this data structure is very redun-
dant: it causes a manifold increase of the input data size and may often exceed
available memory resources. For instance, in the present chapter we consider a
128MB micro-CT. If 64 histogram bins are used, the resulting 32GB integral his-
togram (4-byte integers are needed) does not fit into GPU or even main memory in
most desktop environments, and queries require several expensive non-contiguous
disk accesses. This makes compressing histograms in their integral form an im-
portant target. The goal is to reduce storage needs to a manageable amount while
still allowing a faster histogram calculation than a brute-force traversal of the orig-
inal data.

Contribution

We contribute the first tensor-based algorithm for compressed IH look-up. The
proposed system (Fig. 5.1) compresses first the IH of the input image or volume
along with the indicator functions for the desired types of region of interest (ROI):
box, Gaussian, sphere, etc. For look-up the compressed IH is convolved with the
query ROI and reconstructed to produce the desired histogram array. Our method
a) allows decreasing both size and query time as needed, at the expense of a vari-
able loss in response accuracy due to compression; and b) can handle arbitrary
regions, as opposed to other methods that are limited to axis-aligned rectangles.
Furthermore, while directly computing a histogram over a ROI requires many
non-sequential memory accesses, in tensor reconstruction the compressed repre-
sentation is always traversed in the same dimensional order, which allows a more
memory-optimized computation.

5.2 Background 63

Notation

ROI sizes are denoted with the letter K. When ROI indicator functions are com-
pressed via tensor decompositions, we write their ranks as S. Last, B is the num-
ber of histogram bins.

Region types

Integral
histogram

Compressed
integral

histogram

Compressed
region types

Region basis
adaptation

Tensor
reconstruction

Input Output
histogram

Tensor
compression

Decomposition stage Look-up stage

Figure 5.1: Pipeline of tensor-based histogram decomposition and reconstruction.

5.2 Background

5.2.1 Efficient Multidimensional Histograms

When processing large regions of interest within multidimensional data sets, com-
putational costs are a usual concern in real-time visualization applications. A
common approach for efficient histogram generation is avoiding redundant com-
putations, e.g. with incremental sliding windows [Weiss, 2006; Wei and Tao,
2010] or identifying overlapping regions [Berger et al., 2012]. Alternatively,
other methods focus on directly computing the desired histogram features from
the data [Kass and Solomon, 2010; Hadwiger et al., 2012b]. In [Hadwiger et al.,
2012b] and [Sicat et al., 2014], pixel or voxel neighborhood information is com-
pactly represented as a sparse sum of Gaussian probability density functions,
which allows for convenient retrieval of features used in filtering and for applying
a transfer function in volume rendering. On the other hand, some tools compute
histograms of a transformation of the data; some examples include the histogram
of gradients (HoG, a method to extract robust feature descriptors) and its vari-
ants [Dalal and Triggs, 2005], and the 2D histogram, which takes into account
gradient information (useful for e.g. segmentation and transfer function selec-
tion).

64 5 HISTOGRAM RECONSTRUCTION

5.2.2 Summed Area Tables and Integral Histograms

The SAT is a data structure for fast and constant-time integral look-up over rect-
angular regions [Crow, 1984]. In 1D it is just a discretization of the Fundamen-
tal Theorem of Calculus: by storing the cumulative sum of an array F [n] :=∑n−1

i=0 f [i] (withF [0] := 0), one can compute an arbitrary definite integral
∑b−1

a f(i)
in constant time as the difference of F at the interval borders, F [b] − F [a]. For
higher dimensions N ≥ 2 the integral is given by the sum of values (with al-
ternating signs) from the 2N corners of the box region. SATs have been proven
useful in computer graphics, especially in volume rendering, and parallel inte-
gration and filtering algorithms have been developed for the GPU for fast SAT
generation [Hensley et al., 2005; Nehab et al., 2011; Schlegel et al., 2011].

The IH emerged as a natural extension of SATs for histogram look-up by
adding a bin dimension [Porikli, 2005], and SAT querying algorithms can be in
principle adapted to query it. The idea works as follows. Each bin b = 1, . . . , B
is representable as a binary mask with the same shape as the original data: an
entry is set to 1 if and only if the corresponding input pixel has the value b. Then,
each binary mask’s integral is encoded using an SAT, and all resulting tables are
stacked along a new dimension of size B to yield the final IH. To retrieve a his-
togram from a certain target rectangle, an SAT query is performed for each bin
over that region. Fig 5.2 illustrates the IH look-up for the 2D (image) case.

Figure 5.2: Querying a 2D integral histogram over a rectangular region (highlighted in
green) requires 4 look-ups per bin.

The IH data structure generalizes easily to high dimensions [Tapia, 2011],
and requires B · 2N value look-ups to compute the final result. A slice of the
size of the original data must be stored for every value bin, which can render
the uncompressed IH too large to be used interactively. Compression approaches
have been explored; for example, rectangle area sums can be efficiently com-
puted over wavelet-decomposed data [Wu et al., 2000]. [Lee and Shen, 2013]
proposed WaveletSAT, a lossless wavelet-based compression scheme for integral

5.3 Integral Histogram Tensor Compression 65

histograms. They report fast query times and compression rates of 1:8 and more
compared to the original IH size, for data up to 2563 voxels. However, the method
is still limited to axis-aligned rectangular regions, and can only deal with other
types of regions by approximating them as sums of rectangles. An improvement
in this direction was proposed by [Heckbert, 1986]. Based on repeated SAT in-
tegration, the author devised a procedure to obtain integrals across regions which
are defined by polynomials and not just rectangles. Non-rectangular regions are
often preferred indeed, e.g. Gaussian (to achieve rotation-invariance) or 3D cross-
neighborhoods [Lundstrom et al., 2006], or complex segmented target regions.
In this context, our tensor-compressed histogram querying algorithm emphasizes
low storage needs and flexibility regarding target region shape.

5.3 Integral Histogram Tensor Compression

Let T be a multidimensional array of size I1 × · · · × IN , for example an image
(N = 2) or a volume (N = 3). The full IH I of T can be computed from its
level-set stack L, which has size I1 × ...× IN ×B and is defined as:

L[x1, ..., xN , b] =

{
0 if T [x1, ..., xN] 6= b

1 if T [x1, ..., xN] = b

To eventually get I, one needs to calculate all cumulative partial sums of L’s
slices along the last dimension. The result has size (I1 + 1)× · · ·× (IN + 1)×B.
Element-wise, each I[x1, ..., xN , b] is defined as:

{
0 if in = 0 for some n∑x1,...,xN

i1,...,iN=1 L[i1 − 1, ..., iN − 1, b] otherwise

Note that whereas L is highly sparse, the cumulative I is not. While one can
already use L to compute histograms by direct integration, we choose to compress
the array I instead. The motivation is that we found that histograms reconstructed
from a tensor-compressed I are much more accurate for the same number of co-
efficients. The columns L[x1, ..., xN , :] have little correlation between each other:
any value change between two points (e.g. T [x1, ..., xN] 6= T [y1, ..., yN]) im-
plies that 〈L[x1, ..., xN , :],L[y1, ..., yN , :]〉 = 0. On the other hand, every column
I[x1, ..., xN , :] depends on the whole region between it and the origin I[0, . . . , 0, :
]; thus, columns close to each other have very similar contents. To support this
observation, we show in Fig. 5.3 the histogram reconstruction accuracy from com-
pressing L versus compressing I.

Now, the question of how to efficiently compress I arises. The most straight-
forward approach would be to build the full I explicitly, and then compress it.

66 5 HISTOGRAM RECONSTRUCTION

0 1000000 2000000 3000000 4000000 5000000 6000000

NNZ

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

el
at

iv
e

er
ro

r
(%

)
Non-cumulative

Integral histogram

Figure 5.3: Average histogram accuracy for rectangular ROIs of size 323 within a brick of
size 643 (Bonsai data set). The target error during compression ε is decreased as we move
left to right; each result dot is the average reconstruction error of 100 regions placed at
random. Using the IH I instead of the level-set L leads to a much smoother degradation
as well as faster histogram reconstruction over rectangular regions; see also Sec. 5.4.

However, note that for medium or large models this quickly becomes impractical.
Fortunately, thanks to the versatility of the TT format, we are able to split up any
tensor and incrementally build up its compression. We namely combine two steps:

• An algorithm to compress any slice of the IH, i.e. on a bin-by-bin basis;

• A sum-and-compress procedure to combine and merge existing compressed
slices into one single compressed tensor.

We detail next how we address each of these separate steps.

5.3.1 Slice Compression

Any full dense tensor can be decomposed in the TT format via the TT-SVD al-
gorithm [Oseledets, 2011], which successively unfolds the data and computes the
singular value decomposition (SVD) on the result, one mode at a time. The de-
sired target error 0 ≤ ε is defined beforehand and is the only parameter. TT-SVD
guarantees that the final relative error will be no larger than the target ε.

Let Sb be the b-th bin slice of the IH, i.e. I[:, . . . , :, b]. We compute it in-
dependently of all other bin slices: first we create a binary mask from the input
data, and then we compute its SAT. We now apply the TT-SVD algorithm to com-
press Sb into a TT tensor with N cores at a prescribed accuracy ε. Note that this

5.3 Integral Histogram Tensor Compression 67

ε affects only the global quality of the IH and that relative errors of individually
reconstructed histograms (Secs. 5.4 and 5.5) will differ, especially with respect to
the region size.

The original TT-SVD uses a sequence of tensor unfoldings, interleaved with
SVD decompositions that progressively remove one dimension at a time to pro-
duce one core and thus reduce the overall tensor size [Oseledets, 2011]. Such
unfoldings flatten the tensor into a matrix in various orderings so as to remove
redundancy along one dimension at a time. We observed that in our applications
these unfoldings are often very tall or wide matrices. Therefore, and similarly
to our compression algorithm in Ch. 3, we obtain the necessary singular vectors
via the eigenvalue decomposition of covariance matrices. We call this modified
routine TT-EIG and found it to be significantly faster than standard SVD. Al-
though these two approaches have a different numerical behavior and their result-
ing singular vectors and values may differ, these differences are negligible for the
compression rates and real-world multidimensional signals that we tested. The
complete procedure is given in the Appendix.

5.3.2 Sum-and-Compress

As argued before, IHs are often too large to be manipulated as a whole. Given a
multidimensional data set T and a number of bins B, we propose an incremental
algorithm that progressively adds one slice at a time. We start with b = 0, and at
each slice 0 ≤ b < B we take a compressed IH of bins [0, b − 1] and produce an
IH for bins [0, b]:

1. We compute the b-th slice of the IH (of size I1 × · · · × IN) and compress it
into a TT tensor A as outlined above in Sec. 5.3.1.

2. We add an indexing core at the end with B elements that encodes the value
b using one-hot encoding, i.e. all its elements are 0, except the b-th one
which is 1. As a result, the modified TT A encodes now a tensor of N + 1
dimensions with size I1 × . . . IN × B. It has zeros everywhere outside its
b-th slice.

3. We add this TT to our partial IH. Adding two tensors is a straightforward
operation [Oseledets, 2011]. The result encodes now an IH for all bins [0, b].

4. We recompress the result to remove any redundant information that may
have appeared. We achieve this by means of the TT-round procedure, which
is related to TT-SVD, its full details are given in [Oseledets, 2011].

Our incremental algorithm Alg. 5 given below exploits the fact that each com-
pressed slice is small enough to be handled separately. Although the ranks are

68 5 HISTOGRAM RECONSTRUCTION

reduced after each recompression, the overall IH compressed size tends to grow
as we work our way towards the last bin. Steps 3 and 4 are computationally in-
tensive, especially when the accumulated IH is large. In order to reduce this cost
we merge the IH slices in a recursive, binary-tree fashion: slice 0 is merged with
slice 1, the result is merged with the combination of 2 with 3, and so on. Each tree
root Rc encodes the IH for 2c consecutive slices, and we create Rc+1 by joining
it with the next 2c slices. This strategy ensures that, asymptotically, most merge
operations involve only small tensors.

Fig. 5.4 shows the accuracy of the proposed IH compression over a 40962

grayscale image.

Algorithm 5 Build an integral histogram I from an input tensor T with B bins
and error parameter ε, using sum-and-compress combined with TT-EIG.

1: for b = 0, . . . B − 1 do
2: // Compute and compress the b-th slice of the IH of T
3: A := TT-EIG(I[:, . . . , :, b], ε)
4: B := ones(1×B × 1) // This core indexes the bin
5: B[0, b, 0] := 1 // One-hot encoding
6: A := [[A(1), . . . ,A(N),B]] // Append the indexing core
7: c := 0
8: whileRc exists do
9: A := TT-ROUND(A+Rc, ε)

10: DeleteRc

11: c := c+ 1
12: end while
13: Rc := A
14: end for
15: I = zeros(I1 × · · · × IN ×B)
16: forRc do
17: // Gather and sum all remaining roots
18: I := I +Rc

19: DeleteRc

20: end for
21: return I

5.4 Histogram Reconstruction

All tensor decompositions are multilinear in nature. This is a key feature that
we exploit in this section and makes several compressed-domain operations very
efficient.

5.4 Histogram Reconstruction 69

(a) Original (b) After compres-
sion

(c) Error (x100
amplified)

Figure 5.4: Integral histograms are well compressible using the TT decomposition model.
Column (a): three evenly-spaced IH bins for the Waterfall image with B = 64. Column
(b): IH bins after TT compression to (1, 64, 51, 1) ranks. Column (c): absolute difference,
magnified 100-fold to ease visual appreciation.

5.4.1 Spatial Tensor Basis Manipulation

Linear operations can be applied on a compressed IH I = [[I(1), . . . , I(N),B]] by
slice-wise manipulating its TT cores. If instead of a core I(n) we use a weighted
sum of its slices I(n) :=

∑In
i=0 c[i] · I(n)[:, i, :] (where c is a vector with In + 1 en-

tries), then the reconstruction produces a linear combination of the corresponding
hyperslices along the n-th mode. In tensor notation, this means that

[[I(1), . . . , I(n) ×2 c, . . . , I(N),B]] = I ×n c, (5.1)

where we have used tensor-times-vector (TTV) products. An n-mode TTV com-
putes the dot product between all tensor vectors along its n-th dimension and an
external vector.

Eq. 5.1 allows us to reconstruct histograms from a compressed IH over various

70 5 HISTOGRAM RECONSTRUCTION

ROI types: next we cover the case of rectangular regions, and later in Sec. 5.5 we
extend the method to non-rectangular query ROI shapes.

5.4.2 Querying a TT-Compressed IH

Let T be a tensor data set of size I1 × · · · × IN , and ω a target region of interest
(ROI), defined by the following indicator function,

ω[x1, . . . , xN] =

{
1 if x1 ∈ [i1, j1), . . . , xN ∈ [iN , jN)

0 otherwise

Let S be the summed area table of T , and 0 and 1 denote either i or j for
the 2N vertices of ω. Thus, S[0, ..., 0] corresponds to S[i1, ..., iN], S[1, 0, ..., 0] to
S[j1, i2, ..., iN], and so on. The summation of T over ω can be obtained from S
by adding and subtracting the following 2N terms [Tapia, 2011]:

j1−1∑

x1=i1

· · ·
jN−1∑

xN=iN

T [x] =
∑

p∈{0,1}N
(−1)N−‖p‖1 · S[p] (5.2)

The norm ‖ · ‖1 counts the number of elements of value 1 in [p] and deter-
mines the parity of each summand. For example, the SAT result in the 2D case
is S[j1, j2] − S[j1, i2] − S[i1, j2] + S[i1, i2]. For N dimensions this requires 2N

look-ups in the multiarray S , with 2N−1 positive terms and 2N−1 negative terms.
Thanks to multilinearity, tensor decompositions allow conversion of multidi-

mensional operations into a sequence of equivalent 1D operations. In particular
we can easily translate Eq. 5.2 into the TT compressed domain: it suffices to sub-
tract the core slices that delimit the rectangle borders. Thus, we define

I(n) := I(n)[:, jn, :]− I(n)[:, in, :]

for n = 1, . . . , N ; each is a matrix of shape Rn−1 × Rn. The last core B is
unchanged: it is not a spatial axis, since it encodes the histogram bins. The desired
histogram is then obtained as

I(1) · · · I(N) · B[:, :, 0]

See the Appendix for an example illustration of these reconstruction formulas
in the 2D case.

5.5 Non-rectangular ROIs 71

5.5 Non-rectangular ROIs

So far we have outlined how to integrate histograms only over rectangular regions.
However, more general ROIs are supported as well, i.e. where the membership of
every point to the query region is weighted by a real value in [0, 1]. Such cases
are interesting e.g. when rotation-invariant descriptors are desired (i.e. where the
region’s membership function is radial) or when the membership is only estimated
with a certain probability below 1 (e.g. a confidence heatmap arising from a seg-
mentation procedure). Note that an IH in its original form is only optimal for
rectangular regions and is not easily applicable in these more general cases.

In this section we make a distinction between reconstructing single histograms
(as before) and the more general case in which blocks of histograms are desired.

5.5.1 Non-rectangular Reconstruction

In order to reconstruct one histogram from I over non-rectangular region we use
the following identity:

∫ K

0

f(x) · g(x) dx = −
∫ K

0

(∫ x

0

f(y) dy

)
· g′(x) dx

which holds if either f(x) or g(x) are 0 at both x = 0 and x = K. In its discrete
form, it means that to find the sum of a weighted array we can just compute the
sum of the cumulative array (the IH in our case), weighted by the derivative of the
weights. Each IH slice is represented by f , while g plays the role of our ROI’s
indicator function. In practice, we need the TT decomposition of our target ROI.
Let R = [[R(1), . . . ,R(N)]] be an N -dimensional TT tensor encoding the ROI
with ranks S1, . . . , SN−1, and ∆R its derivative along all dimensions. Each bin b
of the desired histogram follows from a dot product between ∆R and a window
on the corresponding slice of I:

〈I[i1:j1, . . . , iN :jN , b],∆R〉 (5.3)

We compute the tensor dot product from Eq. 5.3 by successively fusing the
cores of ∆R and I(n) via tensor contractions (for more details on dot products in
the TT format, see [Oseledets, 2011]). The last core simply indexes the bins and
does not vary; in particular we compute the dot product for all bins at once.

In Table 5.1 we show the asymptotic costs in terms of space, precomputing
time and query time for several histogram reconstruction methods, including ours
and the related method WaveletSAT [Lee and Shen, 2013] (which is lossless and
limited to rectangular ROIs only).

72 5 HISTOGRAM RECONSTRUCTION

Algorithm 6 Given an IH I compressed with ranks R1, . . . , RN , reconstruct a
histogram over a non-rectangular region of bounding box [i1, j1]× · · · × [iN , jN]
whose indicator function is approximated by a TT R = [[R(1), . . . ,R(N)]] with
ranks S1, . . . , SN−1

1: // Compute ∆R fromR by deriving along all axes
2: for n = 1, . . . , N do
3: ∆R(n)[:, 0, :] = R(n)[:, 0, :]
4: for i = 1, . . . , In − 1 do
5: ∆R(n)[:, i, :] := R(n)[:, i, :]−R(n)[:, i− 1, :]
6: end for
7: end for
8: F :=

(
1
)

// 1× 1 tensor
9: for n = 1, . . . , N do

10: F := contraction(F , I(n))
11: // F has now size In ×Rn × Sn−1

12: F := contraction(F ,∆R(n))
13: // F has now size Rn × Sn
14: end for
15: // F has now size RN × SN = RN × 1 = RN

16: return F ·B[:, :, 0] // Vector-matrix product: the result is a histogram with B
elements as expected

5.5 Non-rectangular ROIs 73

Total space Precomputing time Query time
(box ROI)

Query time
(box ROI)

Brute force IN 0 O(KN) O(KN)
IH INB O(INB) O(2NB) O(2NKNB)

IH (precomputed
convolution) INB O(NIN log2(I)B) O(2NB)

O(2NB) (assumes ROI
shape never changes)

WaveletSAT
[Lee and Shen, 2013] No closed formula O(IN log2(N)N) No closed formula Not supported

TT (proposed method) (N − 1)IR2+
IR+RB

O(NIR3)
[Oseledets, 2011] O(NKR2) +RB O(NIR2S2) +O(RB)

Table 5.1: Asymptotic space and time costs for several methods. The whole uncompressed
IH is used in the second and third algorithm. The third algorithm filters each bin slice
by means of the fast Fourier transform (FFT), and the resulting convolutions are stored
separately to achieve faster query times (but this assumes an invariant filter kernel).

5.5.2 Histogram Field Reconstruction

In this last contribution section we extend our framework to reconstruct many
histograms at once, namely over a collection of sliding ROIs that produce a his-
togram field. This operation gives a mapping between each input pixel/voxel and
the histogram of its neighborhood, and is equivalent to a bin-by-bin convolution
with the ROI’s indicator function. To this end we now use the identity

f ∗ g =

(∫
f

)
∗ g′

instead of the one from Eq. 5.3. In discrete form, it allows us to compute the
histogram of the input over a sliding ROI by simply convolving our IH I with
the region’s derivative ∆R. In other words, we need to convolve two tensors
in the TT format. We implement this for separable regions ω = ω(1) ⊗ · · · ⊗
ω(N), a case that is handled by simply convolving the TT cores along the spatial
dimension [Rakhuba and Oseledets, 2015]. More specifically, we build a new
tensor I∗ = [[I(1)

∗ , . . . , I(N)
∗ ,B]] with each n-th core defined as

I(n)
∗ := I(n) ∗∆w(n) (5.4)

where ∗ denotes convolution of a 3D tensor (the TT core) with a vector along its
second (spatial) axis and ∆ is again the discrete differential operator, here applied
to a vector.

74 5 HISTOGRAM RECONSTRUCTION

5.6 Results

We implemented1 and evaluated the proposed compression/decompression strate-
gies on one image, three scalar volumes and one volume vector field.

5.6.1 Hardware and Software Used

Our code and tests were written in Python 3.5 and run on an Intel i7-4810MQ
at 2.80GHz with 4 cores and 4GB of main memory. Operations for TT manip-
ulation make use of the ttpy toolbox [ttp,], a Python/FORTRAN library based
on an earlier MATLAB package for the TT format. All compressed tensors as
well as reconstructed histograms are handled in 64-bit floating point format. We
compare our approximate results with respect to groundtruth histograms com-
puted via brute-force counting, namely NumPy’s histogram() function. As
we are aware that brute-force histograms are highly-parallelizable, we also imple-
mented a GPU-accelerated version of single histogram reconstruction that takes
advantage of CuPy [cup,], a high-level NumPy-like interface for CUDA that
can also seamlessly integrate handwritten kernels. Our kernel exploits CUDA’s
atomicAdd() operation and CuPy’s bincount kernel, and was run using
an NVIDIA Quadro K2100M GPU with 2GB of memory.

5.6.2 Scalar Field Integral Histograms

We have evaluated our proposed compression with four scalar fields including a
40962 grayscale picture of a Waterfall [wat,] and three µCT scans of a Bonsai
tree [vol,] (size 2563), a Lung (size 5123) and a Flower [vmm, b] (size 10243), all
shown in Fig. 5.5 and originally having 8-bit depth.

(a) Waterfall, 40962 (b) Bonsai, 2563 (c) Lung, 5123 (d) Flower, 10243

Figure 5.5: The four scalar fields used in our experiments: an image (a) and three µCT
volumes (b), (c), (d).

1Our code is available at https://github.com/rballester/tthistograms.

5.6 Results 75

As a preprocessing step, pixels or voxels are linearly mapped into the desired
number of bins B: element-wise, x 7→ bx ·B/256c, with B = 64 and B = 128 in
our experiments. Table 5.2 summarizes our compression algorithm’s performance
and results during the decomposition stage: time needed, compressed size, TT
ranks, etc. Our compressed IH I takes at most a few hundred MB for the largest
datasets, mainly depending on each data set’s complexity; thus it is always one or
two orders of magnitude smaller than the full uncompressed IH.

Waterfall Bonsai Lung Flower Hurricane
Size (MB) 16 16 128 1024 21.70
B 64 128 128 128 128
Computing time (s) 1282.26 1085.48 2070.83 28138.90 4958.32
Full IH (GB) 4 8 64 512 10.84
Error target ε 0.0005 0.0001 0.0002 0.000015 0.0001
Compressed IH (MB) 181.32 38.34 205.15 85.61 281.28
IH compression ratio 22.59 213.69 319.45 765.50 39.49
TT ranks 100, 57 53, 137, 89 87, 271, 106 53, 121, 37 127, 535, 56

Table 5.2: Compression results for the 5 data sets we have tested.

Fig. 5.6 demonstrates the results for two separable ROI query examples on
the Waterfall image and their resulting histograms (exact and approximated). The
query regions are a square and a 2D Gaussian, and are queried as described in
Sec. 5.4 and Sec. 5.5 respectively.

Using the four scalar field data sets as a benchmark, we have gathered query
performance results for a range of regions. These results are reported in Fig. 5.7.
For each data set we consider ROIs of increasing size placed on the data set’s
center. For Gaussian regions we chose σ as 1/4 of the region’s size in all cases.
Each histogram was reconstructed 3 times; the final time is the average.

In relation to the brute-force approach, our new method performs significantly
faster, even compared to a CUDA implementation, with more pronounced bene-
fits for larger queries and datasets. As we expected, slicing operations (besides
the bin counting itself) are a significant bottleneck in brute-force methods. This
is much less of a burden for TT reconstruction, since it works with whole core
slices and therefore needs fewer random accesses. The relative query error due to
the compression is also shown to drastically diminish with increasing ROI query
sizes. Note that rectangular queries demand a constant number of operations with
our method, and this is reflected in the roughly constant TT reconstruction time.
This is not the case for the Gaussian, whose costs increase moderately. Further
discussions are given below in Sec. 5.7.

76 5 HISTOGRAM RECONSTRUCTION

0 10 20 30 40 50 60
Bin

0

2500

5000

7500

10000

12500

15000

Co
un

t
Box

Groundtruth
TT

0 10 20 30 40 50 60
Bin

0

2000

4000

6000

8000

10000

Co
un

t

Gaussian
Groundtruth
TT

Figure 5.6: Example: 64-bin histograms across two rank-1 rectangular 2D regions using
TT compression to (64, 51) ranks, with a 1:78.7 memory reduction from the original IH
size. The TT box look-up over 5122 pixels took 0.08ms while the brute-force took 4.2ms.
The Gaussian query over 7682 pixels took 4.4ms while the brute-force took 23.0ms.

5.6.3 Vector Field Entropy

Our second experiment involves a 3D vector field, namely the wind speed coordi-
nates from the 25th timestep of the Hurricane NCAR data set, available from [hur,
]; see Fig. 5.8. The original vector field contains 100 height slices, each of which
has 500×500 data points. We removed the first 9 height slices, since they intersect
with parts of Florida’s terrain and thus contain missing values. The experiment
consisted in computing 3D Shannon entropy fields based on the wind orientation
histogram; such fields have applications in feature extraction, information-aware
streamline placement and visualization, etc. [Xu et al., 2010; Lee and Shen, 2013;
Chen et al., 2016]. To this end we quantize the wind direction at each voxel us-
ing 128 quasi-uniform regions on the spherical surface. The local histogram for
a voxel is thus defined as the directional bin count for all wind information on a
neighborhood of the voxel. The final field is the Shannon entropy of every local
histogram, computed across the whole data set [Xu et al., 2010]. Once the win-
dow shape and size is provided, we compute the histogram field in one go as we
detailed in Sec. 5.5.2.

Results are reported in Fig. 5.8 where we show the hurricane (a rendering of its
vapor density), its global directional histogram, and several entropy fields for box
and Gaussian local neighborhoods using both the proposed method and a brute-

5.6 Results 77

500 1000 1500 2000 2500 3000 3500
ROI size

4

3

2

1

0

1

lo
g1

0(
tim

e)
 (s

)

Waterfall

500 1000 1500 2000 2500 3000 3500
ROI size

5

4

3

2

1

lo
g1

0(
re

la
tiv

e
er

ro
r)

Waterfall

25 50 75 100 125 150 175 200
ROI size

4

3

2

1

0

1

lo
g1

0(
tim

e)
 (s

)

Bonsai

25 50 75 100 125 150 175 200
ROI size

5

4

3

2

1

lo
g1

0(
re

la
tiv

e
er

ro
r)

Bonsai

50 100 150 200 250 300 350 400
ROI size

4

3

2

1

0

1

lo
g1

0(
tim

e)
 (s

)

Lung

50 100 150 200 250 300 350 400
ROI size

5

4

3

2

1

lo
g1

0(
re

la
tiv

e
er

ro
r)

Lung

0 100 200 300 400 500
ROI size

4

3

2

1

0

1

lo
g1

0(
tim

e)
 (s

)

Flower

0 100 200 300 400 500
ROI size

5

4

3

2

1

lo
g1

0(
re

la
tiv

e
er

ro
r)

Flower

Box: brute-force
Box: brute-force (CuPy)
Box: TT

Gaussian: brute-force
Gaussian: brute-force (CuPy)
Gaussian: TT

Figure 5.7: Left: Average histogram reconstruction times for both box- and Gaussian-
shaped regions. Right: Relative error of each reconstructed histogram. Our proposed
TT representation generally outperforms brute-force approaches in terms of speed (even
when they are CUDA-accelerated), and does so by an increasing margin as we increase
the ROI size.

78 5 HISTOGRAM RECONSTRUCTION

force approach. The latter is especially prohibitive for non-rectangular regions;
it works by computing one FFT multidimensional convolution per histogram bin.
Our method achieves a manifold speed-up factor, also for the rectangular case,
while its results deviate very little from the exact groundtruth values given by the
brute-force.

5.6.4 Cross-Correlation Queries

A simple, yet effective approach for interactive visualization of high-dimensional
vector fields, for example of histogram features, is user-driven transfer function
selection. Essentially, a 1D array w of B weights is defined and its dot prod-
uct with each histogram is computed; the resulting scalar is displayed through a
suitable colormap. If w and the histograms are all normalized, the result is the
normalized cross-correlation (NCC) between a template and all possible window
neighborhoods.

As a last experiment we consider again the hurricane wind IH (Sec. 5.6.3) and
obtain its NCC w.r.t. arbitrary windows within our proposed TT representation.
We first precompute offline a histogram field over all neighborhoods of a fixed
size as in the previous section, and then store the norm of each histogram. During
interactive exploration we allow the user to define a template window W whose
histogram w we extract (Secs. 5.4 and 5.5) and normalize. We then weigh the last
TT core with w along its second dimension, i.e. use B ×2 w instead of B, and
finally reconstruct (Eq. 5.4) and divide by the precomputed norms. The resulting
multiarray summarizes each window’s histogram into one single scalar, namely
the correlation between the window’s directional histogram and that of the tem-
plate W . This way, the user can highlight and identify regions whose local wind
behavior is similar. Note that the NCC lies between 0 and 1 as our feature vectors
(histograms) are non-negative. Fig. 5.9 shows visualization results for a number
of different windows W of size 8× 8× 91, with response times under 2 seconds.

5.7 Discussion

Based on these numerical experiments we observe that our proposed compressed
representation takes up much less space than the conventional IH approach as
shown in Table 5.2. This is useful when the uncompressed IH strains or exceeds
the available computational and memory resources. The compression is lossy
and comes at the expense of a variable compression error, see also Fig. 5.7. We
observe that, in general, bigger data sets can be compressed better than smaller
ones. The same applies for sparse data sets: all tensor slices that are filled with
zeros (e.g. Bonsai or Flower) are represented in a TT compressed format with

5.7 Discussion 79

zero-filled core slices, and in particular without increasing the TT ranks.
In terms of speed, TT reconstruction always becomes faster than naive brute-

force traversal with ROIs of a certain size or larger. This overtaking point depends
on the data set and prescribed ε, but usually is reached already by regions that are
100x or 1000x times smaller than the data set. As regards compression, our pro-
posed incremental approach is robust and effective even for very large (512GB)
integral histograms. Preprocessing times can take up to several hours, but such
times are not uncommon for compression algorithms for large multidimensional
data. If this time is taken into account, the break-even number of queries needed
for our method to be overall faster than the naive traversal amounts to thousands
(hundreds for histogram field reconstruction). However, we work under the asym-
metry assumption, i.e. where interactive reconstruction is of paramount impor-
tance, especially when user interaction is involved.

Compared to wavelet-based alternative compression methods such as Wavelet-
SAT [Lee and Shen, 2013], our method a) results in higher reduction rates (thanks
to lossy compression and its use of adaptive transform bases); b) can recon-
struct histograms over non-rectangular regions; and c) can apply transfer function
weighing (and in particular, compute histogram field cross-correlations) at a small
cost in the compressed domain. Its main drawback is of course the compression
error introduced, but we found this relative error to be insignificant over medium
to large ROIs, whereas the case of small ROIs is less important since brute-force
traversal is actually the fastest method for such regions anyway.

Our proposed reconstruction over Gaussian regions is significantly slower than
its rectangular counterpart. However, it still outperforms the brute-force, usually
even when exploiting GPU parallelism. We would like to highlight that, although
general IHs are not well suited for non-rectangular regions, the tensor decompo-
sition framework makes such queries possible thanks to its multilinearity and the
range of compression-domain processing operations that it offers. The prescribed
accuracy during compression is the main parameter of our system, and it results
in a trade-off between smaller size and faster query time on one side versus lower
error on the other side.

80 5 HISTOGRAM RECONSTRUCTION

(a) Vapor density (volume rendering)

Latitude Longitude

He
ig

ht

(b) Wind directional histogram, B = 128

(c) Box regions: brute-
force (59.8s)

(d) Gaussian regions:
brute-force (1316.4s)

(e) Box regions: TT
(1.9s)

(f) Gaussian regions:
TT (23.8s)

Figure 5.8: (a) A 500 × 500 × 91 hurricane vector field at its 25th timestep; (b) di-
rectional histogram for its (latitude, longitude, height) wind coordinates, grouped into
128 bins on the spherical surface; (c-f) entropy fields for both box- and Gaussian-shaped
neighborhoods of size 20 × 20 × 91, computed via brute-force vs. our proposed method
(Sec. 5.5.2).

5.7 Discussion 81

Figure 5.9: Normalized cross-correlations between the hurricane wind vector field and
six different template windows of size 8×8×91. Brighter colors indicate higher histogram
neighborhood correlations with a template whose center in each case is indicated by the
red marker. This region-picking technique works in fact as a dynamic histogram transfer
function selector that can e.g. highlight specific rain bands. Computation times ranged
between 1.86s and 1.99s for these examples.

Part II

Sparse Data: Interpolation and Learning

83

6C H A P T E R

SURROGATE MODELING

85

86 6 SURROGATE MODELING

6.1 Overview

Up to this point we have been concerned with dense tensors: full, entirely avail-
able multiarrays arising from high-resolution simulations and scanning devices.
But often, one must deal with situations in which entire regions (or even the vast
majority) of a tensor’s domain of interest are unknown. The main goal is then to
interpolate (learn) these missing regions, and often to do so implicitly, i.e. never
handling the whole newly completed data in an explicit form. Surrogate mod-
els (also known as meta-models or response surface models) aim precisely for
this. They approximate the true unknown model and can be cheaply evaluated.
Sometimes they also allow for direct manipulation and computation of quantities
of interest (QOI). Take for example a smooth 1D splines interpolation of a few
(x, y) pairs. The interpolation’s global maximum, among other properties, can be
estimated efficiently from the model without having to sample it extensively.

Parameter spaces are prominent examples of incomplete tensors: they encode
the set of all possible parameter combinations that can influence a simulation or
experiment, along with their output (often, in the form of a single scalar value
corresponding to a score). Interactive exploration and knowledge discovery of
such spaces can greatly assist in the understanding of a simulation’s behavior;
however, they grow exponentially in size with the number of input parameters N
(curse of dimensionality). Instead of precomputing and saving the interpolated
data, surrogate models provide a routine to approximate any given element on
demand. Therefore, once a good surrogate is available, the challenge is effectively
shifted to the visualization domain. In this context, we aim for a tool that can be
used for acquiring and compactly representing high-dimensional black-box spaces
as well as for efficient visualization in the form of subspace selection, user-defined
queries, on-demand statistics, etc.

Contribution

We tackle this sampling and visualization problem under the paradigm of ten-
sor decompositions, and propose the TT format as a framework that provides a
compact representation of the complete parameter space to operate with. Com-
plex inter-variable dependences are encoded within the tensor ranks. The basic
features of our framework include parameter tensor sampling and interactive re-
construction of arbitrary subspaces. The user can navigate the parameter space
and visualize predictions in real time by moving a focus point. These capabilities
are efficiently supported by the TT format, even when the dense parameter space
contains billions of points. As an evaluation we showcase our framework with
some examples of selection queries in parameter spaces using a global-to-local
navigation strategy to browse different focus + context visualization diagrams.

6.2 Background 87

The TT model and its unique properties are central to all stages of our pipeline,
which is the first to display TT parameter spaces in an interactive analysis and
visualization application.

Notation

Throughout this and the next chapters, a space of N parameters forms a Cartesian
grid arising from a tensor product and has size I1 × · · · × IN . We consider vi-
sualization diagrams that can be expressed as a set of M freely-moving indices,
usually with M ≤ 3. For example, a univariate plot is a subspace with M = 1, a
surface plot (or an overlay of several 1D plots) has M = 2, etc.

We denote tuples of indices as ααα ∈ {0, 1}N and ααα ⊆ {1, . . . , N} interchange-
ably: a 0 (resp. 1) in the former notation means an index is absent (resp. present)
in the latter. If a function f : R4 → R only depends effectively on the two
last variables, we may alternatively write ααα = [0, 0, 1, 1] or ααα = {3, 4}, and
fααα(x) ≡ fααα(xααα) ≡ f3,4(x3, x4) similarly to [Sudret, 2008], [Owen, 2014]. Car-
dinality of a set of variables is denoted as |ααα|, and coincides with the Hamming
weight (bit sum) of its binary representation. Last, we write tuple complements as
−ααα ≡ {1, . . . , N} \ααα.

6.2 Background

Visualization has long played a fundamental role in systematic analysis of dense
data sets and parameter spaces [Chan, 2006], [Nocke et al., 2007], [Brecheisen
et al., 2009], [Amirkhanov et al., 2010]. Interactive frameworks such as Ensemble-
Vis [Potter et al., 2009], for example, deliver a collection of linked overview
and statistical displays. The iLAMP method [dos Santos Amorim et al., 2012]
uses multidimensional projection combined with interactive selection of points
and subspaces in high-dimensional data sets. A related strategy by [Anand et al.,
2012] exploits iteratively refined random projections to maximize the visual dis-
parity in different subspaces. A recent interactive system for the segmentation
of medical images [Pretorius et al., 2015] provides previews and thumbnails to
assist in the estimation of good hyperparameters for segmentation algorithms.
ParaGlide [Bergner et al., 2013] is a region-based parameter sensitivity analysis
tool that partitions the parameter space into regions that represent distinct out-
put behavior. This subdivision helps users in their understanding of qualitative
differences among high-dimensional model outputs. This is similar in spirit to
Morse-Smale complex-based approximations, which for example have been used
together with dimensionality reduction techniques to produce a geometric sum-
mary of the space [Gerber et al., 2010]. [Tatu et al., 2012] use an interestingness-
guided subspace search algorithm and various similarity functions to guide the

88 6 SURROGATE MODELING

users during the visualization. For a compilation of further techniques for high-
dimensional scientific visualization, see the survey [Kehrer and Hauser, 2013].

Many such visualization systems are highly domain-specific, and others rely
on explicit (uncompressed) data representations. While some do evaluate sur-
rogates on the fly during exploration, no prior analysis and visualization system
exists that exploits the powerful tools made possible by tensor models.

6.3 Construction of TT Surrogates

The first key part of our pipeline is obtaining a high-quality TT interpolant. For-
tunately, many models can be accurately represented by a low-rank TT model.
For example, multiplicative functions (i.e. with the form f1(x1) · · · fN(xN)) have
exactly rank 1, while additive terms (i.e. f1(x1)+ · · ·+fN(xN)) have exactly rank
2. More generally, we can build TT surrogates in a wide range of settings.

6.3.1 Preliminaries: Variable Range Discretization

In order to build the tensor product grid I1 × · · · × IN for our N -variable space,
our TT surrogate f̃(x) ≈ f(x) discretizes each variable’s domain as a finite set
xn(1) < · · · < xn(In). To record or evaluate an entry x, each coordinate xn must
be first quantized to match the corresponding axis discretization. This is not a
problem in practice, and discretizing the variable space is indeed a usual feature
of several sampling strategies such as factorial design, Morris’ method, one-at-a-
time design, etc. [Iooss and Lemaı̂tre, 2015]. If needed, the grid can be refined
by simply increasing the sampling resolution before building the surrogate, and
all important TT operations have linear cost w.r.t. the spatial dimensions In. For
simplicity we use nearest-neighbor interpolation to convert (quantize) an arbitrary
real x to integer tensor indices 0, . . . , In − 1.

6.3.2 Construction From a Black-Box System

Black-box sampling is the scenario in which new samples X = {x1, . . . ,xP} are
to be chosen and evaluated from scratch with no prior information on the inner
workings of the true model. In other words, one has the freedom to define a set of
samples X and run the simulation on it, and can do so adaptively, round by round,
in order to minimize the model’s generalization error. Adaptive cross approxi-
mation (ACA) builds a progressive sampling plan on the low-rank assumption; it
is an example of design of experiments (DOE). ACA constructs the plan by pro-
gressively sampling certain tensor fibers: sets of samples obtained by fixing all
parameters but one. This is a case of one-at-a-time sampling, which can improve

6.3 Construction of TT Surrogates 89

the DOE’s overall efficiency (see also [Saltelli et al., 2008], 2.4.2). This guaran-
tees that all possible discretized values for every variable are used at least once.
Here we use an alternating minimal energy method to select the fibers [Dolgov
and Savostyanov, 2014], an algorithm whose implementation has publicly been
released as part of the Python ttpy toolbox [ttp,]. See Fig. 6.1 for an example of
ACA structured sampling scheme in a 3D tensor.

Figure 6.1: Progression of the sampling plan during an ACA for a 3D tensor.

6.3.3 From Categorical Data

Tensors are discrete data structures indexed by discrete axes and thus support
categorical variables in a natural way (consider for example the 2D case: the rank
of a matrix is not affected if we permute its columns and/or rows). Populating
the missing entries of a tensor without any prior assumption about smoothness
is known as tensor completion and is a very convenient tool for regression on
categorical variables. It is similar to the better known problem of low-rank matrix
completion for N = 2, but specific algorithms for N ≥ 3 of course depend
heavily on the particular decomposition format chosen (CP, Tucker, TT, etc.). We
have implemented an alternating least squares (ALS) completion algorithm in
the TT format, modified from [Grasedyck et al., 2013]. We use it to learn a 14D
categorical data set (see Sec. 6.6.3). It is essentially a block coordinate descent,
whereby one core is optimized at a time and the error is provably non-increasing.
See App. A.2 for full details on the algorithm.

6.3.4 From an Auxiliary Regressor

More generally, one may want to interpolate the given training set first with a pre-
ferred regression method: support vector machines, radial basis functions, Gaus-
sian processes, etc. One can then sample this auxiliary surrogate using ACA to
build an approximate TT representation. This is a rather flexible approach and
is feasible as long as the intermediate regressor can be approximated well by a
surrogate of low TT ranks. Under this assumption, ACA works as a universal tool
to reduce any model into the TT format, usable whenever an ad-hoc conversion in
the compressed domain (such as the ones discussed next) is not available.

90 6 SURROGATE MODELING

6.3.5 From Another Low-Rank Decomposition

Several well-known surrogate models are actually based on a low-rank expression,
or can easily be cast as a low-rank format. We can convert from these cases more
directly instead of relying on the general ACA as just discussed in Sec. 6.3.4.

From CP

TT ranks are bounded from above by CP ranks [Oseledets, 2011], and the proof is
constructive: given a rank-R CP decomposition [[U(1), . . . ,U(N)]], an equivalent
TT expression [[T (1), . . . , T (N)]] can be straightforwardly built as:

T (n)[xn] :=

{
U(n)[xn, :] if n = 1 or n = N

diag(U(n)[xn, :]), n = 1, . . . , In if 1 < n < N
(6.1)

where T (n)[xn] is a shortcut for T (n)[:, xn, :]. Using this formula we can convert
an arbitrary low-rank CP surrogate into a standard TT representation.

From Tucker

A TT can be also obtained from a Tucker decomposition, although TT ranks are
not bounded by Tucker ranks (and vice versa). To do this conversion we start with
the Tucker approximation formula

T̃ = [[B; U(1), . . . ,U(N)]] (6.2)

and then compress its core in the TT format:

T̃ ≈ [[[[B(1), . . . ,B(N)]]; U(1), . . . ,U(N)]] (6.3)

This can be also regarded a sequence of TT cores, each compressed by a ma-
trix U(n). By multilinearity, the right-hand side of Eq. 6.3 equals the following
expression

[[B(1) ×2 U(1), . . . ,B(N) ×2 U(N)]] (6.4)

Eq. 6.3 is a so-called TT-Tucker decomposition, originally considered in [Os-
eledets and Tyrtyshnikov, 2010a]. This format generalizes Tucker, since it uses a
(compressed) core and factor matrices, and also TT, as it is a sequence of (com-
pressed) TT cores. In this sense, and given the major roles played by Tucker
and TT in our work, TT-Tucker positively answers our second research question
posed in Sec. 1.3. See Fig. 6.2 for a graphical representation in terms of tensor

6.3 Construction of TT Surrogates 91

networks, similarly to [Cichocki et al., 2016] (recall Sec. 2.5). The final TT cores
are retrieved by explicitly performing the tensor-times-matrix operations:

T (n) = B(n) ×2 U(n) (6.5)

which increases the overall size, but is still linear w.r.t. N .

I2

I3

I4

I1a)

A

I2

I3

I4

R4

R3

R2

R1I1
U(1)

U(2)

U(3)

U(4)

b) A

I2 I3 I4

R3R2R1

I1

c)

A

I2 I3 I4

R3R2R1

I1

S1 S2 S3 S4

U(1) U(2) U(3) U(4)

d)

B

T

T (1) T (2) T (3) T (4)

T (1) T (2) T (3) T (4)

Figure 6.2: a) A full 4D tensor T ; b) in Tucker format; c) in TT format; d) in the hybrid
TT-Tucker format. The latter representation generalizes both Tucker and TT, and can be
computed in two alternative but equivalent ways: either via TT compression of the Tucker
core B (left path), or via Tucker compression (along the 2nd mode) of each individual
TT core T (n) (right path). Similarly, the Tucker format may be cast to TT by following
either the path b)-a)-c) (full decompression and compression) or the much less expensive
b)-d)-c).

From Polynomial Chaos Expansions

PCE surrogate models [Soize and Ghanem, 2004] have been used in stochastic
modeling and uncertainty quantification for decades. A PCE is based on a set ofN
polynomial bases P(1), . . . ,P(N) with each infinite basis P(n) = {P(n)

0 ,P(n)
1 , . . . }

being orthogonal w.r.t. a marginal PDF dFn over a real interval Ωn:

92 6 SURROGATE MODELING

∫

Ωn

P(n)
i (xn)P(n)

j (xn) dFn(xn) = 0 ∀n iff i 6= j (6.6)

The PCE of bounded degree D approximates a function f : Ω = Ω1 × · · · ×
ΩN ⊂ RN → R as a truncated expansion in terms of these bases:

f(x) ≈
(D,...,D)∑

ααα=(0,...,0)

fααα ·Ψααα(x) (6.7)

with

Ψααα(x) :=
N∏

n=1

P(n)
αn (xn) (6.8)

We can convert any such PCE representation into a TT surrogate as follows, at
the expense of only a small discretization error that can be easily adjusted (recall
Sec. 6.3.1). Eq. 6.7 is interpretable as a continuous Tucker decomposition, with
the fααα acting as the elements of a core of size (D + 1)N . To obtain a standard
Tucker format we just need to define its factor matrices. Each factor U(n) has size
In × (D + 1) and is found by sampling the corresponding polynomial basis over
the discretized variable range xn(1), . . . , xn(In):

U(n)[i, j] := P(n)
j (xn(i)) (6.9)

After this we can apply the conversion method detailed in Sec. 6.3.5 to get the
equivalent TT representation.

Alternatively, we may also convert a low-rank PCE expansion [Konakli and
Sudret, 2016] to TT by means of the CP conversion method above. Such low-rank
expansions define a continuous CP as

f(x) ≈
R∑

r=1

λr ·Ψr(x) (6.10)

with each rank-1 component arising from N functions that admit a low-degree
polynomial expansion:

Ψr(x) :=
N∏

n=1

(
D∑

d=0

α
(n)
rd · P

(n)
d (xn)

)
(6.11)

and can be converted into standard PCE via discretization, analogously to Eq. 6.9.

6.4 Visualization in the TT Format 93

6.4 Visualization in the TT Format

6.4.1 Reconstructing Compressed Subspaces

Standard visualization diagrams such as 1D and surface plots, tables, and combi-
nations thereof (hierarchical axis, dimensional stacking, overlaid plots, etc.) can
be viewed as discretized axis-aligned subspaces of T . It is straightforward to fix
or restrict the movement of multilinear indices within any tensor decomposition.
In the TT format in particular, we can set the n-th parameter to its k-th value by
substituting the tensor core T (n) with a Rn−1 × 1× Rn core, namely T (n)[:, k, :].
The asymptotic reconstruction cost isO(IkR+R2), where k is the number of free
parameters. We decompress such tensors by a sequence of matrix products and
multiarray reshaping operations, similarly to the Tucker model. Since our simula-
tions’ behavior can be usually captured accurately using only a few TT ranks, in
our experiments the subspace reconstruction cost was always in the order of a few
milliseconds.

6.4.2 From Tensor Train to Parallel Coordinates

In order to further illustrate the versatility of such a TT parameter representation,
we detail here how to obtain a parallel coordinates diagram from our compressed
tensor T . While this type of diagrams is applied to sparse data mostly, one can
extend it to a dense space by varying the polyline styling. We make the opac-
ity of each polyline proportional to the value at its corresponding position in the
tensor (in the spirit of density-based parallel coordinates [Heinrich and Weiskopf,
2013]). We assume linearity, so the total opacity of a segment equals the sum of
the opacities of all polylines that include it. Thus the opacity of all InIn+1 seg-
ments between two adjacent coordinates n and n+ 1 in the diagram is determined
by the sum of T along all indices fixing the n-th and (n + 1)-th ones. This sum
yields an In × In+1 matrix S: for each entry (i, j), a segment with opacity S[i, j]
connecting abscissas i and j is to be drawn in the diagram. We compute this ma-
trix by projecting (summing) T along all dimensions but n and n + 1. Note that
in the TT format this only requires summing the affected cores along their second
mode. In total we have to display (N − 1)I2 segments and perform O(NI2R2)
operations, as opposed to the O(NIN) operations that a naive traversal of the full
uncompressed tensor would take. The steps are summarized in Alg. 7.

Note that the pairs (n, n + 1) traverse the dimensions in their original order,
but any reordering of coordinates is possible if we sum over the appropriate sets
of indices.

94 6 SURROGATE MODELING

Algorithm 7 Plot a parallel coordinates diagram from a surrogate TT T with ranks
R1, . . . , RN−1.

for n in 1, . . . , N − 1 do
for m in 1, . . . , N do
C(m) :=

∑Im−1
im=0 T (m)[:, im, :] {Projection along the m-th mode, cast as a

tensor of shape Rm−1 × 1×Rm}
end for
C(n) := T (n)

C(n+1) := T (n+1)

C := [[C(1), . . . , C(N)]] {C has size 1× · · · × In × In+1 × · · · × 1}
S := decompress(C) {S has size In × In+1}
for i in 1, . . . , In do

for j in 0, . . . , In+1 − 1 do
source := (n, i)
target := (n+ 1, j)
opacity := S[i, j]
drawSegment(source, target, opacity)

end for
end for

end for

6.4.3 Bivariate Projections

In Alg. 7 the projections onto all consecutive pairs of dimensions (n, n + 1) are
computed. It is straightforward to compute the projection of T onto every other
possible pair of parameters. Each projection forms a 2D array (image), and one
can arrange theN2−N possible images as a matrix with an empty diagonal. Note
that, if one normalizes the colormap to the data range, displaying projections is
equivalent to displaying averages.

6.4.4 Finding Interesting Subspaces

Users often ask themselves in what parameter regions the surrogate’s output is
especially responsive. We tackle here the problem of finding the axis-aligned k-
dimensional subspace that has the highest (or smallest) possible variance. Note
that the solution space is large as there are

(
N
k

)
· IN−k possible such subspaces

within an ambient tensor of size IN . We cast this as a global optimization problem
in the TT format, which we then solve using ACA as outlined back in Sec. 2.7.3.
First of all let us introduce the Hamming mask tensor of order k, denoted asMk,
which has size 2N . For each entry ααα ∈ {0, 1}N ,

6.4 Visualization in the TT Format 95

Mk[ααα] :=

{
1 if ααα has k non-zeros
0 otherwise

(6.12)

This mask will play a role in the next chapter as well. We are able to buildMk

in a compressed form using only k + 1 ranks (Fig. 6.3). It is best understood as
a deterministic finite automaton that reads N symbols out of the alphabet {0, 1}.
Each core slice is the state transition matrix corresponding to one of the two pos-
sible input symbols. Reconstructing one element from a TT is equivalent to taking
a vector and multiplying it by a sequence of matrices. The vector at the n-th step
has size k + 1 and encodes how many non-zeros have been encountered so far: a
‘1’ at its first position means none, a ‘0’ followed by a ‘1’ means one, etc. The
core slices transform this vector counter to account for the new symbols as we
traverse the sequence. The first slice of each core is the identity matrix, since it
corresponds to the symbol 0 (which does not alter the counter of non-zeros). The
other slices, however, must increment the counter, i.e. shift the ‘1’ one position
towards the right. They are therefore implemented as a shifted identity matrix.
The last core simply checks if the total number of non-zeros found until the end
matches k or not.

0 1 0
· · ·

1 0 0

10 0

00 1

00 0

01 0

10 0

00 1

10 0

00 1

00 0

01 0

10 0

00 1

0

1

0

0

0

1

Figure 6.3: The Hamming mask tensor train Mk for order k = 2. At each position
ααα ∈ {0, 1}N it contains a ‘1’ if and only if |ααα| = k, and 0 otherwise. It is compressed
with N cores (rank k + 1) using 2(k + 1)2(N − 2) + 4(k + 1) elements in total.

We now proceed as follows: we build a TT V that compactly encodes the
variances for all possible subspaces of any dimensionality 0 ≤ k ≤ N . Every
position V [x] encodes one such subspace: each zero index xn = 0 means that
the corresponding dimension n is one of the k free dimensions of the subspace,
while the remaining indices xn ≥ 1 determine the N − k anchor point position.
Let M̄N−k be a TT tensor of size (I1 + 1) × · · · × (IN + 1) built as follows:
for each core n, its first slice is the first slice of the n-th core ofMN−k, whereas
the remaining ones are the second slice repeated In times. We then multiply V
element-wise with M̄N−k; this filters out all subspaces that have dimension other
than k. Finally we just find the global maximum of the resulting tensor. See the
full details in Alg. 8; this restrict-and-search strategy will also prove useful in
Ch. 7.1.

96 6 SURROGATE MODELING

Algorithm 8 Discover the axis-aligned subspace of dimension k with maximal
variance. To this end we write the variance in two parts: Var[X] = E[X2]−E2[X].

{First part T1 = [[T (1)
1 , . . . , T (N)

1]]: raw second moment of all possible sub-
spaces}
S := T 2 = T ◦ T {Element-wise square}
for n in 1, . . . , N do
T (n)

1 [:, 0, :] = 1
In
·∑In

in=1 S(n)[:, in, :] {First slice: the mean of S}
T (n)

1 [:, 1:In + 1, :] = T [:, 1:In + 1, :] {Remaining slices: copy of S}
end for
{Now, similarly for the second part T2 = [[T (1)

2 , . . . , T (N)
2]]}

for n in 1, . . . , N do
T (n)

2 [:, 0, :] = 1
In
·∑In

in=1 T (n)[:, in, :]

T (n)
2 [:, 1:In + 1, :] = S[:, 1:In + 1, :]

end for
V := T1 − T2 {Variances of all possible subspaces}
V := V ◦ M̄N−k {Set to zero all subspaces that do not have dimensionality k}
return s := arg max{V} {Index of N elements}
{s encodes the best subspace: its k free dimensions are marked as k zero en-
tries. Its non-zero entries encode the (N −k)-dimensional anchor point that the
subspace passes through}

6.5 User Interaction

The previous sections have covered the building blocks of our navigation sys-
tem: sampling paradigms and efficient analysis and visualization tools that can be
leveraged from a TT decomposition. Here we describe the interaction elements
available for the user for the overall knowledge discovery process.

Data Acquisition

The sampling stage is straightforward for the user, as it always follows three se-
quential steps:

1. Specify a numerical simulation to interface with, or a fixed set of data sam-
ples.

2. Define the space: number of parameters and sampling density along each
axis.

6.6 Results 97

3. Run a suitable model fitting procedure (ACA or otherwise) with chosen
accuracy.

Analysis and Interactive Exploration

There are two main diagram types: the ones that display a general summary of the
space (global visualization) and the ones that allow a local-to-global visualization
strategy.

• Global visualization:

– Show a parallel coordinates diagram (Sec. 6.4.2). The ordering of
dimensions can be varied, and each parameter’s movement can be re-
stricted to a subinterval.

– Show uni- or bivariate projections (Sec. 6.4.3).

– Analysis: show global extrema, interesting subspaces

• Localized navigation: a series of subspace tensors are shown, each grouping
one or more parameters together. The navigation window is centered on one
focus point, signaled by vertical bars for 1D diagrams and red markers for
2D diagrams). Each diagram shows how the simulation will behave when
its parameter(s) is/are moved while the rest are fixed on the focus. The focus
point can be interactively modified by displacing its bars and markers.

6.6 Results

We have tested the proposed visualization criteria on a number of settings. We
use Python 3.5 and exploit the ttpy toolbox [ttp,], a Python/Fortran library for TT
manipulation that supports, among others, compression from full explicit tensors,
slicing, decompression, truncation (rounding), and cross-approximation for any
dimensionality.

6.6.1 Synthetic Simulation

We defined the following 5-parametric synthetic model as a first example:

f(x, y, z, w, t) =

{
x+ 10 · sin(y)− z2/100 if 20 ≤ w ≤ 30

0 otherwise

Note that t is a non-essential dimension as it has no influence on the model out-
put. Our grid discretization is (1, . . . , 50) for n = 1, . . . , 5, so the resulting ten-
sor product space has

∏N
i=1 In = 505 ≈ 3.1 · 108 elements, out of which the

98 6 SURROGATE MODELING

ACA method sampled 26650 elements to produce a compressed TT-tensor with
ranks (2, 2, 2, 2) and 800 double-precision values. Due to this synthetic model
being composed of elementary mathematical functions, the ACA approximation
achieves a relative error ε < 10−15 over a test set of 4096 samples drawn via Latin
hypercube sampling (LHS, [McKay et al., 1979]) on the domain.

The parallel coordinates diagram in Fig. 6.4 gives a good macroscopic overview
of each variable’s influence, e.g. the linear contribution from x, the sinusoidal
pattern of y, and the bandpass condition imposed by w. Computing the opacities
for the

∑N−1
n=1 InIn+1 = 10000 segments from the compressed tensor took only

6.0ms.

Figure 6.4: Parallel coordinates diagram for the synthetic simulation, directly extracted
from the compressed T .

6.6.2 Saint-Venant Flood Model

This model [Lamboni et al., 2013] estimates the maximum annual river height H ,
the water overflow S, and the cost C of a dike as a function of 8 parameters (see
Tab. 6.1):

H =

(
Q

BKs
√

(Zm−Zv)/L

)(3/5)

S = Zv +H −Hd − Cb
C = 1S>0 + 1S≤0 · (0.2 + 0.8(1− e−1000/S4

)) + 0.05 ·min(Hd, 8)

(6.13)

6.6 Results 99

Table 6.1: Parameters of the Saint-Venant flood model

Variable Description Units Range
Q Maximal annual flow m3/s [500, 3000]

Ks Strickler coefficient m1/3/s [15, 100]
Zv River downstream level m [49, 51]
Zm River upstream level m [54, 56]
Hd Dike height m [7, 9]
Cb Bank level m [55, 56]
L Length of river stretch m [4990, 5010]
B River width m [295, 305]

We choose C (total cost of the project measured in millions of euros) as the
output to predict, i.e. f(x) := C. Note that it is a piece-wise defined and non-
differentiable function. We discretize the grid using I = 128 bins per dimension
and build our model with ACA using 132224 function evaluations (maximum rank
R = 9), which achieves ε ≈ 0.013% on a test set of 4096 sample points (again,
drawn using LHS).

Fig. 6.5 shows a Trellis display, another example of suitable tensor diagram.
Such displays are similar to the related technique known as dimensional stacking:
two dimensions are nested inside another two. The two outer ones move in a
limited set of values, while the inner ones move in their full range. Trellis displays
are able to deliver global contents of a tensor up to 4 dimensions. Since all slices
are aligned and parallel to the axes, reconstruction from a TT is extremely fast. In
Fig. 6.5 the tensor was projected (summed) along 4 dimensions.

Fig. 6.6 shows the global maximum of the space (which took 2.9 seconds to
estimate) and the predictions along fibers and surfaces that pass through it. Two
examples of interesting 2D subspace selection (Sec. 6.4.4) are given in Fig. 6.7.
Since the ambient space has size 1288, there are

(
8
2

)
·1288−2 ≈ 1.23 ·1014 possible

surfaces.

6.6.3 GEMM Matrix Product in the GPU

Our last experiment is a parallel computing example: we measured the computa-
tion time of 32-bit floating point matrix-matrix products in a graphics processing
unit (GPU) according to 14 parameters and optimization techniques (loop un-
rolling, thread block-size, vector data types, etc.). The input variables are essen-
tially discrete, since they are highly non-linear [Nugteren and Codreanu, 2015]
and can take only a handful of different values at most (usually a few powers of
2). We have chosen to build our TT surrogate using tensor completion as we de-
scribed in Sec. 6.3.3. The specific algorithm is dynamic ALS (see full details in

100 6 SURROGATE MODELING

15.00 43.11 71.22 99.33
Ks (m1/3/s)

49.00

49.66

50.32

50.98

Z
v

(m
)

7.00 8.57
Hd (m)

55.00

55.39

55.79

C
b

(m
)

Figure 6.5: Trellis display of our Saint-Venant surrogate model. The model is summed up
along the four dimensions that are not shown. Such diagrams are excellent at delivering
complex interactions across the whole domain of variables. The summation took 5.8ms,
while reconstructing the 16 slices (2.6 · 105 points in total) took 11.4ms in total.

App. A.2). The product analyzed is A ·B = C with all three matrices having size
2048× 2048. We use the highly-tuneable GEMM kernel provided in the package
CLTune [Nugteren and Codreanu, 2015], a generic auto-tuner for OpenCL kernels
written in C++. Tab. 6.2 summarizes the 14 parameters and their input ranges (see
the CLTune paper for further details).

We generated this data set with a workstation running Ubuntu Linux 16.04,
equipped with an Intel Core i5-4690 3.5GHz processor and a GeForce GTX680
GPU with 4GB of memory. The data set consists of 12080 samples taken uni-
formly at random (without repetition) among the 1327104 total possible variable
combinations. Each sample was measured 25 times and averaged in order to re-
duce noise effects. All GEMM running times are considered in logarithmic scale
both for training and analysis as advised in [Falch and Elster, 2017]. We split the
data as 70%, 15%, and 15% for training, validation and test, respectively. The
best TT surrogate was obtained after 25 ALS iterations, which took 28.7 seconds.
It has ranks R1 = · · · = R13 = 8 for a total of 2224 non-zero elements, and it

6.6 Results 101

Table 6.2: The 14 parameters of the GEMM OpenCL kernel

Variable(s) Description Domain

Mwg, Nwg
Per-matrix 2D tiling at

workgroup level {16, 32, 64, 128}

Kwg
Inner dimension of 2D tiling

at workgroup level {16, 32}
MdimC , NdimC Local workgroup size {8, 16, 32}
MdimA, NdimB Local memory shape (when enable) {8, 16, 32}

Kwi Kernel loop unrolling factor {2, 8}
Mvec, Nvec

Per-matrix vector widths
for loading and storing {1, 2, 4, 8}

Mstride, Nstride
Enable stride for accessing off-chip

memory within a single thread {yes, no}

LA, LB
Per-matrix manual caching
of the 2D workgroup tile {yes, no}

achieved a relative error of ε ≈ 3.4% on the test set (see Fig. 6.8).

3 4 5 6 7 8

log(actual time)

3

4

5

6

7

8

lo
g(

pr
ed

ic
te

d
tim

e)

Figure 6.8: Surrogate obtained via TT completion for our GEMM experiment:
groundtruth vs. prediction over the test set (1812 points), with relative error ε ≈ 3.4%

Fig. 6.9 shows a Trellis display for this categorical data set. Note that such
displays are able to show the full domain in the case of categorical variables,
since they do not require discretization.

102 6 SURROGATE MODELING

6.7 Discussion

We have described a visualization system that creates and operates on a surrogate
model in order to predict and help analyze the behavior of scientific simulations.
Cross-approximated sampling algorithms, in particular, relieve the user from te-
dious trial-and-error explorations, while tensor decompositions offer many possi-
bilities for manipulating and visualizing multidimensional data. Thanks to the TT
model one can combine these two aspects into one single framework. In our sys-
tem, the output of the simulation with respect to its parameters was considered as a
high-dimensional space and compressed into a low-rank tensor. TT constructions
scale linearly with the number of parameters and the amount of sampled points.
We have shown how the user can select and effectively reconstruct interesting sub-
spaces from the compressed domain in real time and interactively. Several types
of visualization diagrams and techniques can benefit from the compactness and
efficiency of the TT framework.

6.7 Discussion 103

1000 2000 3000

Q (m3/s)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

50 100

Ks (m1/3/s)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

49 50 51

Zv (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

54 55 56

Zm (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

7 8 9

Hd (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

55.0 55.5 56.0

Cb (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

4990 5000 5010

L (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

295 300 305

B (m)

0.6

0.8

1.0

1.2

C
os

t
(M

E
U

R
)

(a) Fiber-based

Q (m3/s)

500
1000

1500
2000

2500
3000

Ks (m1/3/s)20
40

60
80

100

C
os

t
(M

E
U

R
)

0.6

0.8

1.0

1.2

Zv (m)

49.0
49.5

50.0
50.5

51.0
Zm (m)

54.0
54.5

55.0
55.5

56.0

C
os

t
(M

E
U

R
)

0.6

0.8

1.0

1.2

Hd (m)

7.0
7.5

8.0
8.5

9.0
Cb (m)

55.0
55.2

55.4
55.6

55.8
56.0

C
os

t
(M

E
U

R
)

0.6

0.8

1.0

1.2

L (m)

4990
4995

5000
5005

5010
B (m)296

298
300

302
304

C
os

t
(M

E
U

R
)

0.6

0.8

1.0

1.2

(b) Surface-based

Figure 6.6: Navigation of the Saint-Venant model. The draggable focus point is shown as
vertical bars for the fiber plots and as circle markers for the surface plots. It is currently
set as the global maximum of the tensor and can be moved interactively.

104 6 SURROGATE MODELING

L (m)4990
4995

5000
5005

5010

B (m)
296

298

300

302

304

C
ost

(M
E

U
R

)

0.6

0.8

1.0

1.2

(a) Lowest variance ≈ 2.36 · 10−6

Q (m3/s)500
1000

1500
2000

2500
3000

L (m)

4990

4995

5000

5005

5010

C
ost

(M
E

U
R

)

0.6

0.8

1.0

1.2

(b) Highest variance ≈ 0.0487

Figure 6.7: Axis-aligned surfaces with the lowest and highest variance in the Saint-
Venant surrogate model. The first took 4.81 seconds and passes through Q =
2133.86,Ks = 15, Zv = 50.40, Zm = 54, Hd = 9, Cb = 56, while the second took 3.98
seconds and passes through Ks = 15, Zv = 51, Zm = 54, Hd = 7, Cb = 55, B = 295.

16 32 64 128
Mwg

16

32

64

128

N
w
g

8 16 32
MdimC

16

32

K
w
g

Figure 6.9: Trellis display for our GEMM completed tensor (whiter is better, i.e. lower
predicted GEMM running times). Again, dimensions not shown are averaged.

7C H A P T E R

SENSITIVITY ANALYSIS

105

106 7 SENSITIVITY ANALYSIS

7.1 Overview

In the previous chapter we have proposed several ways to build and visualize TT
surrogate models. In this last technical chapter we turn to the analytical side of
tensor-learned computational models and physical simulations, in particular to as-
sessing the influence of each input variable (and all combinations thereof) on the
model’s output. The quantitative study of such influences is known as sensitivity
analysis (SA). When the variables are stochastic, the propagation of their uncer-
tainty towards the model output must also be taken into account. We focus on
variance-based SA, often referred to as analysis of variances (ANOVA), and in
particular the so-called Sobol decomposition. It approximates the parametrized
model as a sum of simpler functions, each depending on only a subset of the orig-
inal set of variables. The sensitivity to each variable is then reflected by the func-
tions that depend on it, and can therefore be estimated as their relative contribution
to the output’s overall statistical variance. These relative variances have become a
standard tool for global SA in the last few decades [Saltelli et al., 2008], [Sudret,
2008], [Marrel et al., 2009], [Owen et al., 2013], [Iooss and Lemaı̂tre, 2015].

A popular method to compute such variance indices is via Monte Carlo (MC)
integration estimators on a suitable set of samples within the variable space (the
sampling plan). This was already outlined in Sobol’s original paper [Sobol, 1990]
and has gained momentum thereafter. However, MC convergence is slow w.r.t
the number of samples available [Iooss and Lemaı̂tre, 2015]. Structured sampling
plans exist that improve convergence, e.g. Latin hypercube sampling or quasi-
random sequences (quasi-MC). If needed one may favor estimators for total effect
indices, i.e. quantities of interest (QOI) that aggregate indices of diverse orders to-
gether. Unfortunately, a plan tailored to estimate a particular index, or set thereof,
may be suboptimal for other indices. In practice, analysts often choose to restrict
the Sobol decomposition to interactions of low-order (e.g. up to 2), and/or per-
form a prior dimensionality reduction in what is known as screening (e.g. freezing
seemingly unimportant variables). Such simplifications greatly reduce the compu-
tational complexity, but pose a risk: they might fail to detect significant complex
interactions between variables, and over-zealous reduction can harm subsequent
processing steps in the analysis pipeline.

A complementary approach to direct MC estimation is building a surrogate
model in an offline preliminary step. The surrogate acts as an interpolator that is
fast to evaluate and can approximate the true unknown model at arbitrary sampling
points [Queipo et al., 2005]. This strategy is attractive when sample acquisition is
expensive or highly dynamic, especially if the analyst would like to estimate new
indices on demand. Furthermore, several surrogates can produce Sobol indices in
a more direct manner [Iooss and Lemaı̂tre, 2015], thus avoiding MC integration
altogether. However, dealing with high-dimensional parametric systems, i.e. with

7.1 Overview 107

Global Sensitivity AnalysisModeling

Direct Approximation

- Adaptive Cross Approximation
- Tensor Completion

From Low-Rank Approximation

- CP Decomposition
- Tucker Decomposition
- Polynomial Chaos Expansion

Via Auxiliary Regression

- Support Vector Regressor
- Neural Networks
- Gaussian Processes
- …

Closed Sobol Tensor

SC

Total Sobol Tensor

ST

Sobol Tensor

S

Superset Sobol
Tensor

SS

Tensor-Train Surrogate

Hamming Mask
Tensor

M
Queries

Figure 7.1: Pipeline for TT-based global sensitivity analysis, building upon Ch. 6: a
model with N input variables is approximated as an N -dimensional tensor, from which
we extract a compact 2N tensor S approximating all 2N − 1 variance components. This
tensor can be then used for various aggregation, analysis and query/optimization tasks.

a significant number N of input variables, remains a major challenge. Even if the
chosen surrogate scales well with the dimensionality [Konakli and Sudret, 2016],
the sheer number of sensitivity indices is by definition exponential, as there are
2N − 1 indices, out of which

(
N
M

)
for any fixed order 1 ≤ M ≤ N may be

chosen. For moderate or large values of N , general queries of the form “retrieve
the largest indices of any order” or “compute the total variance for interactions
of order up to k” quickly become computationally intractable.

To address these problems we propose a data structure that compactly stores
all Sobol sensitivity indices in a compressed form, namely in the TT format.
While formulas to compute individual or aggregated Sobol indices from vari-
ous low-rank surrogates have been already derived in the recent literature [Rai,
2014], [Dolgov et al., 2014], [Konakli and Sudret, 2016], our approach is the first
to assemble the complete set of indices in a unified and compact tensor format that
can be manipulated and queried for statistics, model reduction, visual analytics,
and more. See Fig. 7.1 for a summary diagram of our pipeline.

Contribution

We introduce the Sobol tensor S, an N -dimensional TT-compressed multiarray
encoding all possible 2N − 1 variance components for global SA, and show its
derivation from an arbitrary TT surrogate model. We further extract the related ag-
gregated tensors SS , SC and ST containing the superset, closed and total Sobol in-
dices, respectively. All these indices can be derived from each other via union/in-
tersection operations that are translated to the tensor-compressed domain as sim-
ple matrix additions and subtractions. By combining these ideas with existing

108 7 SENSITIVITY ANALYSIS

optimization algorithms for the TT format we are able to answer several compu-
tationally challenging types of global SA queries that often arise during variable
selection and model interpretation.

7.2 Background

7.2.1 Sobol Decomposition

Let us first introduce the ingredients that build up the Sobol indices and their vari-
ants. Variance-based SA dates back to the early 20th century and comprises a set
of related techniques for statistical analysis of multidimensional data, out of which
the ANOVA is arguably the most widely known. Let F (x) = F1(x1) · · ·FN(xN)
be a separable probability distribution function (PDF) on a rectangle Ω = [0, 1]N

and f : Ω → R be an L2-integrable function. Thus, x = (x1, . . . , xN) ∈ Ω is a
vector of random variables, distributed according to F , and f(x) has a variance.
The goal is to identify how much of that variance is attributable to each individual
random variable xn, and combinations thereof. The Sobol decomposition, also
known as the functional ANOVA or Hoeffding decomposition [Hoeffding, 1948;
Efron and Stein, 1981; Sobol, 1990], splits up f into 2N terms, each of which
depends on a different subset of its input variables:

f(x) =
∑

ααα⊆{1,...,N}

fααα(x) (7.1)

where each fααα(x) only depends effectively on xααα and is built as

∫

Ω−ααα

f(x)−

∑

βββ(ααα

fβββ(xβββ)

 dF−ααα(x−ααα) (7.2)

with f∅(x) = f∅ = E[f] =
∫

Ω
f(x) dF (x).

7.2.2 Variance Components

The unnormalized variance componentsDααα are defined as the variance contributed
by each of the fααα, w.r.t. the PDF F : Dααα := Var[fααα]. Thus, the Sobol decomposi-
tion builds up a partition of the overall variance D:

D =
∑

ααα

Dααα = V[f] = E[f 2]− E2[f] =

∫

Ω

f(x)2dF (x)− f 2
∅ (7.3)

The normalized variance components Sααα (or just variance components) in turn
map the relative variances w.r.t. the total model variance:

7.2 Background 109

S : P({1, . . . , N}) \ ∅ → [0, 1]
Sααα := Dααα/D∑

ααα Sααα = 1
(7.4)

where P(·) is the power set operator, i.e. every non-empty subset of {1, . . . , N}
has an associated index.

These indices are an invaluable tool in many SA settings [Saltelli et al., 2004],
for example in factor prioritization (reducing uncertainty), factor fixing (identify-
ing non-influential variables), risk minimization, reliability engineering, etc. They
can be helpful to select good dimension orderings that lead to more compact surro-
gate models (example 5.8 from [Bigoni, 2015]; also considered in [Dolgov et al.,
2014]). They are hyperedges of a hypergraph, since they encode n-ary relations
within subsets of {1, . . . , N}. Alternatively they can be thought of in terms of set
cardinalities, as the sum of all Sααα equals 1 (see e.g. [Owen, 2013] and [Saltelli
et al., 2008], Sec. 1.2.15).

Several surrogate models lend themselves well to direct estimation of such in-
dices. Examples in the literature include PCE of bounded degree [Sudret, 2008],
low-rank sums of separable PCE terms [Konakli and Sudret, 2016], Gaussian pro-
cesses [Marrel et al., 2009], TT [Dolgov et al., 2014], spectral TT [Bigoni et al.,
2016], etc. However, there are 2N − 1 possible QOI after excluding the trivial
tuple ααα = [0, . . . , 0] ≡ ∅. As N grows, this magnitude poses challenges in both
the computational and the model interpretation aspects.

7.2.3 Related Indices

One may derive alternative useful indices by adding and/or subtracting together
the Sααα, effectively configuring a set algebra.

Total Indices

Denoted as STααα , they are also called upper indices [Owen, 2013]. They represent
all joint indices that include any variable from ααα:

STααα :=
∑

βββ|ααα∩βββ 6=∅

Sβββ (7.5)

For example, in a 3-variable model we have ST1,2 = S1 + S2 + S1,2 + S1,3 +
S2,3 + S1,2,3. If |ααα| = 1 we are encoding the total influence of a single variable
also accounting for its higher-order interactions with all other variables. In this
case the indices sometimes are called total effects [Homma and Saltelli, 1996],
and have been used to identify and select the most relevant variables, for example
by sorting STn and choosing the k largest [Fock, 2014], [Abualrub et al., 2017].

110 7 SENSITIVITY ANALYSIS

However, this criterion may lead to overestimating variables that exhibit large
overlapping variance contributions.

Closed Indices

Denoted as SCααα , they are also called first-order indices [Sudret, 2008] or lower
indices [Owen, 2013]. They sum the variance contributions of all non-empty
tuples contained in ααα:

SCααα :=
∑

βββ|ααα⊇βββ

Sβββ (7.6)

For example, for 3 variables we have SC1,2 = S1 + S2 + S1,2. Also, for any
single variable n we have SCn = Sn. The closed indices can be written in terms of
the total indices as STααα = 1− ST−ααα.

Superset Indices

The SS aggregate all indices that contain a tuple [Hooker, 2004]:

SSααα :=
∑

βββ|ααα⊆βββ

Sβββ (7.7)

For example, SS1,2 = S1,2 + S1,2,3.

7.2.4 Tensor Surrogates and Sensitivity Analysis

Tensor decompositions make for attractive surrogates owing to their natural mul-
tidimensionality and fast decompression, as also argued in the previous chapter.
Several examples [Espig et al., 2011], [Litvinenko et al., 2013], [Dolgov et al.,
2014] target solutions of multiparametric partial differential equations (PDEs).
[Konakli and Sudret, 2016] proposed an interpolator via sums of separable PCE-
based functions (low-rank approximations, LRA) and showed how to extract Sobol
indices out of them. This is related to the CP decomposition, with the main differ-
ence that their factors are continuous and are sought within the subspace spanned
by a few leading orthogonal polynomials. [Vervliet et al., 2014] demonstrated
CP-based tensor completion and visualization for the melting point of an alloy,
depending on the concentration of its 10 different constituent materials. [Ballester-
Ripoll et al., 2016] proposed visualization diagrams for TT-format surrogates of
several mechanical simulations, emphasizing multidimensionality and real-time
reconstruction.

A few papers have extracted Sobol indices from TT surrogates. [Dolgov et al.,
2014] build their decomposition using ACA and derive properties and statistics

7.3 The Sobol Tensor Train 111

including means, covariances, level sets, and individual Sobol indices. [Zhang
et al., 2015b] developed a hierarchical uncertainty quantification algorithm using
TT and PCE to estimate a circuit’s response depending on its subcomponents’
behavior. [Rai, 2014] gives formulas to compute Sobol indices from a range of
low-rank approximation surrogates, including TT-based.

7.3 The Sobol Tensor Train

We now introduce our proposed Sobol tensor train, denoted as S, which has di-
mension N and size 2 along each dimension for a total of 2N elements. Such
2×· · ·×2 tensors are not unusual, see for example the so-called quantized tensor
train (QTT) and the closely-related wavelet tensor train (WTT) [Oseledets and
Tyrtyshnikov, 2011], as well as the recent multilinear regressors known as expo-
nential machines [Novikov et al., 2016]. S hence records the variance components
for all n-ary interactions:

Sααα ≈ Sααα = S[j1, . . . , jN] = S(1)[j1] · · · · · S(N)[jN] (7.8)

with jn = 1 if n ∈ ααα and 0 otherwise (recall that we are using the shortcut
[k] to indicate the k-th slice along the second mode, i.e. [:, k, :]). To construct
it we combine the definitions of Sobol decomposition (Sec. 7.2.1) and variance
components (Sec. 7.2.2) with the TT formulation as follows.

Proposition 7.3.1. Let x = (x1, . . . , xN) be a vector of independent random vari-
ables with distributions F1, . . . , FN , and let T = [[T (1), . . . , T (N)]] be a TT sur-
rogate f̃(x) ≈ f(x). Then, each term f̃ααα of the Sobol decomposition of f̃ is given
by Tααα = [[T (1)

ααα , . . . , T (N)
ααα]], where each core slice (matrix) is defined as

T (n)
ααα [in] :=

{
E[T (n)] if n /∈ ααα
T (n)[in]− E[T (n)] if n ∈ ααα (7.9)

for all n and all slices in = 0, . . . , In−1, where E[T (n)] := 1
In
·∑In−1

i=0 Fn[in] T (n)[in]
is the discretized expectation operator along the n-th dimension, i.e. a matrix ob-
tained as the average of the n-th core’s slices, weighted by the n-th PDF term.

Proof. Consider a tuple ααα and an arbitrary sampling point x = (x1, . . . , xN)
corresponding to the tensor entry i = (i1, . . . , iN). We want to show that the TT
approximation of f̃ααα is

Tααα(x) =
N∏

n=1

T (n)
ααα [in] (7.10)

112 7 SENSITIVITY ANALYSIS

with T (n)
ααα [in] as in Eq. 7.9. Expanding the |ααα| subtractions that are multiplied

together in Eq. 7.10 we get a sequence of 2|ααα| additions and subtractions:

∑

βββ|βββ⊆ααα

(−1)|ααα|−|βββ|
N∏

n=1

T̂ (n)
βββ [in] (7.11)

with

T̂ (n)
βββ [in] :=

{
E[T (n)] if n /∈ βββ
T (n)[in] if n ∈ βββ (7.12)

Recall that T (n) encodes the model f̃ ’s response along the n-th axis, while
E[T (n)] represents its integration along that axis. Therefore Eq. 7.11 becomes

∑

βββ⊆ααα

(−1)|ααα|−|βββ|
∫

Ω−βββ
f̃(x)dF−ααα(x−ααα)

=

∫

Ω−ααα
f̃(x) dF−ααα(x−ααα)−

∑

βββ|βββ⊂ααα

f̃βββ(xβββ) = f̃ααα(xααα)
(7.13)

Eq. 7.9 can be intuitively interpreted as follows: Variables not in ααα must be
integrated over their domain of existence, and f̃ααα does not effectively depend on
them. Their corresponding cores are accordingly constant. For variables in ααα, on
the other hand, we must keep the original function but subtract from it the lower-
order expectations; these are all correctly accounted for thanks to multilinearity.

Since we can obtain the term fααα for any ααα via Eq. 7.9, we can already obtain
any arbitrary variance component Sααα by computing the variance of Tααα. However,
a more expeditious method allows us to produce all components at once. First
note that the following tensor T∗ of size (I1 + 1) × · · · × (IN + 1) compactly
encodes all 2N Sobol decomposition terms:

{
T (n)
∗ [0] := E[T (n)]

T (n)
∗ [j] := T (n)[j − 1]− E[T (n)] for j = 1, . . . , In

(7.14)

Each core in the tensor T∗ is but a combination of the two types of slices of
Eq. 7.9. Therefore it contains Tα for all possible ααα ⊆ {1, . . . , N}, and so it ap-
proximates fααα(x)∀ααα,x. We have now all necessary components to construct our
Sobol tensor S: we need to compute V[fααα]/D = E[(fααα −E[fααα])2]/D in the com-
pressed domain. The procedure, detailed in Alg. 9, also obtains the unnormalized
variance indices Dααα.

If the input surrogate has TT-ranks R1, . . . , RN−1, then S may have at most
ranks R2

1, . . . , R
2
N−1. The squaring (line 2 from Alg. 9) can be achieved either

7.4 Computing Aggregated Indices 113

Algorithm 9 Given a TT surrogate T = [[T (1), . . . , T (N)]] of size I1 × · · · × IN ,
extract the compressed Sobol tensor S of size 2× · · · × 2.

1: Compute T∗ as in Eq. 7.14 {T∗ encodes fααα ∀ααα}
2: Compute T∗∗ := T∗ ◦ T∗ = T 2

∗ {T∗∗ encodes f 2
ααα ∀ααα}

3: for n = 1, . . . , N do
4: D(n)[0] := T (n)

∗∗ [0]

5: D(n)[1] := 1
In
·∑In−1

i=0 Fn(xn(i)) T (n)
∗∗ [i+ 1]

6: end for
7: D := [[D(1), . . . ,D(N)]] {D encodes V[fααα] ∀ααα}
8: D :=

∏N
n=1(D(n)[0] +D(n)[1]) {Total variance V[f]}

9: S := D/D {Normalize variances by overall variance D}
10: return S

by ACA or by slice-wise Kronecker product if the rank is low enough (recall
Sec. 2.7.2). All other operations cannot increase any of the ranks. Lastly, note
that the first coefficient in the tensor S∅ = S[0, . . . , 0] = f̃∅/D is not a Sobol
index; we set it to zero if needed with a simple rank-1 correction:

S ← S −
(
f̃∅/D

0

)
⊗

N−1 terms︷ ︸︸ ︷(
1
0

)
⊗ · · · ⊗

(
1
0

)
(7.15)

7.4 Computing Aggregated Indices

Aggregated indices require up to an exponential number of addends if computed
naively. But thanks to the multilinearity of the proposed tensor decomposition,
we can obtain all such QOI at once and at very little cost as we describe next.

Superset Sobol Tensors

We recall now the notion of superset indices from Sec. 7.2.3, which capture the
aggregate dependence with respect to a group of indices; i.e. variance components
over ααα plus the indices of all variable tuples that are a superset of ααα. If S is
available, we can derive a superset Sobol tensor SS = [[SS(1), . . . ,SS(N)]] that
approximates any SSααα ≈ SSααα . We construct its cores by slice-wise manipulation of
the original cores:

{
SS(n)[0] := S(n)[0] + S(n)[1]

SS(n)[1] := S(n)[1]
(7.16)

114 7 SENSITIVITY ANALYSIS

The rationale is that variables that are present in a tuple (encoded by the second
slices, j = 1) should stay present, while the rest (first slices, j = 0) should
be accounted for both when they are absent and when they are included. As an
example, let us consider in 2D the second superset index SS2 := S12 +S2. Eq. 7.16
yields

SS2 = SS(1)[0] · SS(2)[1] = (S(1)[0] + S(1)[1]) · S(2)[1]

= S(1)[0] · S(2)[1] + S(1)[1] · S(2)[1] = S1 + S12

(7.17)

as expected. Conversely, one may extract S from SS by reverting the slice-wise
transformations:

{
S(n)[0] = SS(n)[0]− SS(n)[1]

S(n)[1] = SS(n)[1]
(7.18)

We wish to emphasize the compactness and convenience of the relations given
by Eqs. 7.16 and 7.18. A naive sum to obtain a superset index of order K out
of the variance components S would require 2N−K additions. For example, for
N = 3 and ααα = {1} we have SS1 = S1 +S12 +S13 +S123. Conversely, producing
indices S from SS needs 2N−K mixed additions and subtractions as dictated by
the inclusion-exclusion principle from combinatorics. For instance, S1 = SS1 −
SS12 − SS13 + SS123. On the other hand, Eqs. 7.16 and 7.18 need only O(NR2)
operations in the TT format.

Closed Sobol Tensors

Similarly to Eq. 7.16, we derive the closed Sobol tensor SC from S as follows:

{
SC(n)[0] := S(n)[0]

SC(n)[1] := S(n)[0] + S(n)[1]
(7.19)

The logic here is that indices absent in a tuple should stay absent, while present
indices should be accounted for when they are missing also (since we want to sum
all subsets). The converse equation reads

{
S(n)[0] = SC(n)[0]

S(n)[1] = SC(n)[1]− SC(n)[0]
(7.20)

7.5 Global Sensitivity Metrics and Queries 115

ST
1,2

S[1, 1, 0] ST [1, 1, 0]

SC
1,2

SC [1, 1, 0] SS [1, 1, 0]

Index {1, 2} ⌘ [1, 1, 0]

S1,2

S1,3
S2,3

S1,2,3

S1

S3

S2

SS
1,2

Figure 7.2: Examples of variance components S and total ST , superset SS , and closed
Sobol indices SC for a 3-variable model, interpreted as set cardinalities. Each colored
region area is obtained by multiplying the indexed slices from its corresponding tensor.

Total Sobol Tensors

Our last aggregated tensor is the total ST and can be obtained via the complement
operation as STααα = 1 − SC−ααα. Let us define a complement tensor S̄C , defined for
each tuple as S̄Cααα := SC−ααα. We extract this tensor from SC by simply swapping the
two slices of each core:

{
S̄C(n)[0] := SC(n)[1]

S̄C(n)[1] := SC(n)[0]
(7.21)

and the final result ST = 1− S̄C follows from a tensor-tensor element-wise sub-
traction (accomplished as described in Sec. 2.7.2). To retrieve SC back from ST
it suffices to repeat the whole transformation.

7.5 Global Sensitivity Metrics and Queries

7.5.1 Relevant Subsets of Variables

A classical task in SA is to “select the k variables that account for the most vari-
ance”, or alternatively “select the smallest set variables that account for at least
(say) 99% variance”. The mask tensor Mk, introduced back in Ch. 6, allows

116 7 SENSITIVITY ANALYSIS

us to define restricted searches. For instance, the single most important variance
component of order k is

arg max
ααα

{
(S ◦Mk)ααα

}
(7.22)

which we solve using a state-of-the-art global optimization algorithm in the TT
format, just as before. One may also use ST ,SC or SS instead of S depending
on the task at hand. For example, the Sααα do play the dominant role in factor
prioritization, but for factor fixing one is advised to seek a tuple with the smallest
total index [Saltelli et al., 2008].

We also useMk to compute the overall per-order contributions: the tensor dot
product

< S,Mk > (7.23)

gives us the combined order k indices
∑
|ααα|=k Sααα.

7.5.2 Other Constraints

The mask tensorMk restricts optimization queries such as Eq. 7.22 to tuples of
a given order. However, the analyst may seek a model simplification that satisfies
different (and possibly additional) constraints, e.g. that certain variables must, or
must not, become frozen. Such conditions can be easily encoded on a new mask
tensorM. This mask can be, say, filled with 1’s, or can be a Hamming maskMk.
Then, if for instance a variable 1 ≤ n ≤ N should be fixed (i.e. simplified) it is
sufficient to fill the second slice of the n-th core ofM with zeros. This effectively
restricts the search to {ααα |n /∈ ααα} as desired, because all entriesMααα where n ∈ ααα
will become zero. Conversely, if we wish to ensure that a variable is not fixed (i.e.
remains active in the new simplified model), we just have to fill the first slice of
the n-th core ofM with zeros.

7.6 Results

Our experiments were conducted in Python 3.5 using the same environment as the
previous chapter.

7.6.1 Sobol “G” Function

This function has been extensively used in the SA literature owing to its flexibility
and relatively high-order interactions. It is defined as

f(x) :=
N∏

n=1

|4xn − 2|+ an
1 + an

(7.24)

7.6 Results 117

being ai random coefficients sampled from a uniform distribution U(0, 1) and
xn ∼ U(0, 1) the n function variables. Note that f is non-differentiable at one
point, namely (0.5, . . . , 0.5). We can expect to get an exact TT interpolator (up
to machine precision) of f as it is a product of univariate functions and therefore
it has a rank 1. Our test example uses N = 25 dimensions and we discretize
each variable into I1 = · · · = I25 = 64 possible values. The ACA used 3200
evaluations of f and was able to achieve a relative error of ε ≈ 4.646 · 10−15 over
a test set of 4096 samples drawn at random using LHS. Extracting the Sobol TT
from the surrogate took 4.93 seconds using ε = 10−6 as the ACA relative error for
the squaring step in Alg. 9. Fig. 7.3 shows every value of an and its corresponding
first-order Sobol index, computed using our method (Alg. 9).

0 5 10 15 20 25

n

0.0

0.2

0.4

0.6

0.8

a
n

−6.4

−6.2

−6.0

−5.8

−5.6

−5.4

−5.2

lo
g
(S

n
)

Figure 7.3: The 25 random values chosen for an and their resulting Sobol values (de-
picted in logarithmic scale).

Tab. 7.1 shows the 5 highest variance components of any order from our
method, which in this case are only order-1 effects. We also show the indices as
estimated directly from sampling the TT surrogate via the Sensitivity Analysis Li-
brary (SALib [Herman and Usher, 2017]) in Python, with varying number of sam-
ple points P . Finally and to complete the cross-check, we list the analytical Sobol
values for comparison [Sobol, 2003]: Dn = 1/(3(1+an)2), D =

∏
n(Dn+1)−1,

and Sn = (
∏

nDn)/D. Tab. 7.2 shows the highest aggregated indices (i.e. total,
closed and superset) of order 1, 2, and 3 separately.

We observe that the TT indices are accurate to almost 4 decimal digits. The
indices computed by SALib become closer as more samples are taken, further
supporting the correctness of our method. Note that for this function SALib re-
quired a very large number of samples to obtain results with a similar level of

118 7 SENSITIVITY ANALYSIS

Table 7.1: Highest variance components for the Sobol G function

Index
Value

Sobol TT
SALib

Analytical
(P = 520000) (P = 5.2 · 106) (P = 5.2 · 107)

S17 0.0053 0.0147 0.0110 0.0073 0.0054
S11 0.0052 -0.0001 0.0053 0.0052 0.0054
S9 0.0050 0.0237 0.0084 0.0053 0.0051
S7 0.0044 -0.0038 0.0035 0.0039 0.0045
S24 0.0042 0.0259 0.0062 0.0042 0.0042

Table 7.2: Highest aggregated indices of order 1, 2, and 3 for the Sobol G function

Order Index / Variable(s)
Total Closed Superset

1 ST17 = 0.2452 SC17 = 0.0053 SS17 = 0.2452
2 ST11,17 = 0.4296 SC11,17 = 0.0122 SS11,17 = 0.0586

3 ST9,11,17 = 0.5657 SC9,11,17 = 0.0209 SS9,11,17 = 0.0136

precision as compared to our proposed method. We attribute this to the function’s
high dimensionality, which can be nonetheless well handled with the TT.

7.6.2 Piston Simulation

This is a more complex model that measures the cycle time of a piston simula-
tion [Kenett and Zacks, 1998]. The output is defined analytically on 7 variables
as

f(x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

(7.25)

with

V =
S

2k

(√
A2 + 4k

P0V0

T0

Ta − A
)

A = P0S + 19.62M − kV0

S

(7.26)

The full list of parameters and their input ranges is detailed in Tab. 7.3. Our
model was generated with ACA, stopped after 43904 function evaluations, again

7.6 Results 119

Table 7.3: Parameters of the Piston function

Variable Description Units Distribution
M Piston weight kg U(30, 60)
S Piston surface area m2 U(0.005, 0.02)
V0 Initial gas volume m3 U(0.002, 0.01)
k Spring coefficient N/n U(1000, 5000)
P0 Atmospheric pressure N/m2 U(90000, 110000)
Ta Ambient temperature K U(290, 296)
T0 Filling gas temperature K U(340, 360)

with I = 64 bins per dimension. It has 10496 non-zero elements and maximum
rank R = 7, and it achieves ε ≈ 0.077% over an LHS-acquired test set. Note that
the TT model is again built with fewer samples than those needed by SALib’s MC
algorithm, and that it is able to compute indices of arbitrary order a posteriori.
Extracting the Sobol TT took 5.70 seconds in this case.

For further comparison we have also computed a PCE approximation of this
function via 4096 training samples chosen similarly to the test set. To build the
model we take the 4 first Legendre polynomials for each variable. Then we com-
press the PCE-Tucker core into a TT model as detailed in Sec. 6.3.5 with a relative
error of 0.5%, resulting in R = 22. The resulting TT-PCE model approximates
the training set with a relative error ε ≈ 0.38%, and achieves ε ≈ 1.22% on the
test set.

As shown in Tab. 7.4, our analysis reveals that only the 4 first variables have a
significant first-order effect. Their numerical values are consistent with the results
reported in [Owen et al., 2013] (after normalization). Also, the most important
tuple interactions arise from these very same variables. The triplet {S, V0, k}
in particular has a closed index of about 95% as reported in Tab. 7.5. Overall,
interactions of order 3 and above play a relatively small role.

7.6.3 GEMM Product

In this final experiment we compute the Sobol indices (Tabs 7.6 and 7.7) out of
the TT model learned in the previous chapter (Sec 6.6.3). The Sobol tensor took
12.32 seconds to build. Our results indicate a relatively large presence of high-
order interactions; this matches the prior knowledge that GPU kernel optimization
is a challenging high-dimensional parameter space, and that the parameters’ in-
fluences tend to be highly inter-dependent [Nugteren and Codreanu, 2015]. In
particular the most important first-order index (from Mwg) is only about 6%, and
all order-1 indices combined explain only less than one fourth of the total model

120 7 SENSITIVITY ANALYSIS

Table 7.4: Highest variance components for the piston function (interactions of order 3
and above are not supported by SALib)

Index Var(s)
Value

Sobol TT Sobol TT-PCE
SALib on TT SALib
(P=160000) (P=160000)

S2 S 0.5545 0.5585 0.5562 0.5563
S3 V0 0.3207 0.3238 0.3215 0.3215
S1 M 0.0390 0.0396 0.0389 0.0391
S2,4 S,k 0.0242 0.0211 0.0252 0.0250
S4 k 0.0212 0.0200 0.0219 0.0221
S3,4 V0,k 0.0129 0.0117 0.0121 0.0118
S2,3,4 S,V0,k 0.0094 0.0066 - -
S1,3 M ,V0 0.0050 0.0046 0.0053 0.0053
S2,3 S,V0 0.0046 0.0043 0.0045 0.0044
S1,2 M ,S 0.0046 0.0048 0.0036 0.0035

Table 7.5: Highest aggregated indices of order 1, 2, and 3 for the piston function

Order Index / Variable(s)
Total Closed Superset

1 ST2 = 0.5987 SC2 = 0.5545 SS2 = 0.5987
{S} {S} {S}

2 ST2,3 = 0.9374 SC2,3 = 0.8799 SS2,4 = 0.0343
{S,V0} {S,V0} {S,k}

3 ST1,2,3 = 0.9776 SC2,3,4 = 0.9475 SS2,3,4 = 0.0098
{M ,S,V0} {S,V0,k} {S,V0,k}

variability. We also use this real-world data set to test our querying routines; we
report some sample results in Tab. 7.8 involving various aggregated indices.

To conclude this section we show in Fig. 7.4 one bar chart per data set, con-
taining the overall relative variance broken down by interaction order.

7.7 Discussion

We have introduced a compact data structure that gathers all Sobol indices from
any TT-based surrogate model, and have given algorithms to extract various ag-
gregated indices from it. The proposed aggregation algorithms capitalize on the

7.7 Discussion 121

Table 7.6: Highest variance components for the GEMM matrix product function

Index Var(s)
Value

Sobol TT SALib on TT
(P=300000)

S1,2,4 Mwg ,Nwg ,MdimC 0.0842 -
S1,4 Mwg ,MdimC 0.0790 0.0799
S2,4 Nwg ,MdimC 0.0675 0.0754
S1 Mwg 0.0643 0.0539
S1,2 Mwg ,Nwg 0.0628 0.0686
S1,4,5 Mwg ,MdimC ,NdimC 0.0330 -
S1,2,4,5 Mwg ,Nwg ,MdimC ,NdimC 0.0319 -
S4 MdimC 0.0286 0.0257
S4,5 MdimC ,NdimC 0.0225 0.0165
S2 Nwg 0.0198 0.0051

Table 7.7: Highest aggregated indices of order 1, 2, and 3 for the GEMM matrix product

Order Index / Variable(s)
Total Closed Superset

1 ST1 = 0.6979 SC1 = 0.0643 SS1 = 0.6979
{Mwg} {Mwg} {Mwg}

2 ST1,4 = 0.8960 SC1,4 = 0.1718 SS1,4 = 0.4380
{Mwg ,MdimC} {Mwg ,MdimC} {Mwg ,MdimC}

3 ST1,2,4 = 0.9540 SC1,2,4 = 0.4060 SS1,2,4 = 0.2301
{Mwg ,Nwg ,MdimC} {Mwg ,Nwg ,MdimC} {Mwg ,Nwg ,MdimC}

1 2 3 4 5

Order

0.0

0.1

0.2

C
om

b
in

ed
S

ob
ol

in
d

ic
es

(a) Sobol G function

1 2 3 4 5

Order

0.00

0.25

0.50

0.75

C
om

b
in

ed
S

ob
ol

in
d

ic
es

(b) Piston

1 2 3 4 5
Order

0.0

0.2

0.4

C
om

bi
ne

d
S

ob
ol

in
di

ce
s

(c) GEMM

Figure 7.4: Combined contributions for orders 1 to 5 for all three models, efficiently
computed using Eq. 7.23

format’s multilinearity and have very little overhead cost. We combine these ideas
with mask tensors, which allow us to define restricted queries and thus aid in
model reduction/interpretation tasks. We believe the tensor train has a great po-
tential as a canonical format for approximation of multiparametric systems, and

122 7 SENSITIVITY ANALYSIS

Table 7.8: Once the Sobol TT is available, we can satisfy efficiently various types of
queries as detailed in Sec. 7.5 using mask tensors, constrained search and TT global
optimization

Query Result Value Computing
time (s)

Variable that interacts
the most with {LA, LB} Mwg

SS1,13,14 = 0.0263
(as high as possible)

0.3598

Variable that interacts
the least with Mwg

Nstride
SS1,12 = 0.0069

(as low as possible)
0.4237

Highest closed 3-tuple
that avoids Mwg

Nwg, MdimC , NdimC
SC2,4,5 = 0.1828

(as high as possible)
0.2786

Highest closed 3-tuple
that includes Mwg

Mwg, Nwg, MdimC
SC1,2,4 = 0.5940

(as high as possible)
0.3686

Six variables that
can be frozen with

the least impact

Kwg, Kwi,Mvec,
Nvec,Mstride, Nstride

ST3,8,9,10,11,12 = 0.2365
(as low as possible)

0.7307

the proposed methods for sensitivity analysis can be understood in the context
of this trend. The presented framework is flexible in a variety of settings, and
supports arbitrary orders of significant variable interactions in higher-dimensional
models.

8C H A P T E R

CONCLUSIONS

123

124 8 CONCLUSIONS

8.1 Summary

In this thesis we have contributed several novel tensor-based algorithms to tackle
a range of compelling challenges in large-scale signal processing, scientific anal-
ysis, and visualization. We believe the proposed pipeline answers satisfactorily
RQ1 and RQ2 (Sec. 1), and we hope it will help consolidate the tensor decompo-
sition framework as a powerful toolbox for multidimensional data in these fields.

We first focused on large data sets of relatively low dimensionality that are
fully known in an explicit form. The proposed TTHRESH (Ch. 3) strives to opti-
mize Tucker-based compression at the transform-coefficient level. It is the first
approach to do so via adaptive quantization, and it achieves excellent compres-
sion rates at the error tolerance levels that are adequate for visualization. In Ch. 4
we incorporated compressed-domain filtering operations into an octree multires-
olution structure. To this end we employ full-resolution factors together with
variable-resolution cores. The former are filtered and downsampled on demand
and then used to back-project the corresponding brick cores to ensure a homoge-
neous response across varying LOD. Our system is a coherent extension to pre-
vious tensor-based multiresolution visualization systems. A further application
of factor manipulation was given in Ch. 5, where we query compressed summed
area tables and integral histograms via matrix row subtraction and column-wise
convolution. Our look-up data structure provides a compromise between the high
speed of integral histograms and the space efficiency of brute-force traversal.

In the second part of the dissertation we dealt with sparse data, namely ob-
servations from experiments and numerical simulations with up to dozens of di-
mensions. We treated this as a regression problem to be solved in the TT format
in Ch. 6, where we also used TT global optimization and outlined and tested sev-
eral visualization diagrams. The last technical contribution, Ch. 7, builds further
upon these ideas and makes heavy use of compressed-domain manipulation and
adaptive sampling schemes to accomplish various sensitivity analysis tasks and
queries over TT-based surrogate models. Our methods are compact and scalable
to many dimensions. To the best of our knowledge, ours is the first approach that
can handle and use all sensitivity indices at once.

The proposed framework is highly flexible in several aspects. We have shown
tensor decompositions to be suitable for both cardinal and ordinal/categorical data,
for either dense or sparse samples, and for any dimensionality. New dimensions
can be stacked or concatenated to existing decompositions. Tensors are in all
ways just as versatile for 3 and more variables as matrices are for bivariate data.
The field is growing both theoretically and in applications, with several recent
tensor developments pointing to pressing trends like deep learning or the Internet
of things.

The most important feature we demonstrated is the ability to modify, query

8.2 Future Work 125

and analyze the data in its compressed form. Multilinearity is straightforward to
apply and inherent to all exploited formats: it works along the factor columns for
CP/Tucker, and slice-wise along the cores for TT. This already allows for differen-
tiation, rectangle integration, and any kind of linear transform. The second gener-
ation of tools arises from adaptive sampling and provides advanced operations that
are important for analysis and visualization, such as element-wise functions and
global optimization. In this context, the TT format deserves a special mention. It
is the only model considered in this thesis that a) grows well with dimensionality;
b) has stable decomposition algorithms; and c) supports a wide variety of scalable
sampling and manipulation techniques. It is thus a safe model choice applicable
in most situations. Tucker is more competitive for N = 3; however, both TT
and Tucker are particular cases of TT-Tucker (Ch. 6), which we believe gives a
positive answer to RQ2 as a good “universal model” for the goals we pursued.

Several mathematical tools pervade the presented analysis and visualization
pipeline, and several ideas that arose when facing a specific challenge were often
applicable to other settings as well. These include:

• The concept of tensor rank is key to all algorithms developed. More ranks
allow matching the available data better, but entail higher computational
compression/decompression costs, may require higher number of samples,
and often result in overfitting. Fewer ranks produce a coarser approxima-
tion of the ground-truth, but reduce the computational burden and may gen-
eralize better –in the sense of more meaningful visual features, smoother
interpolation, etc.

• Several compressed-domain operations that are beneficial in dense data are
similarly useful for analyzing surrogate models fitted on sparse data sets.
For example, the inclusion-exclusion principle translates naturally to any
tensor format. We used it to both query tensor-compressed SATs and IHs
(Ch. 5) and to efficiently compute arbitrary sensitivity indices in a compact
form (Ch. 7).

• Global optimization is the ideal tool for custom-defined queries on both
plain tensor models (Ch. 6) and derived tensors (namely the Sobol tensor
and variants, Ch. 7). See also the next section for more future possibilities.

8.2 Future Work

8.2.1 High-dimensional Compression

Several extensions and opportunities related to high dimensional dense data are
still open. For example, a multiresolution Tucker octree could be defined for

126 8 CONCLUSIONS

time-varying volumes, although it is not clear a priori how to achieve frame re-
construction real-time in such an architecture. In addition, a compressor using
adaptive quantization (as in Ch. 3) in the TT or TT-Tucker formats, instead of
Tucker, could have a great potential for high-dimensional data reduction. How-
ever, such formats are more asymmetric than CP or Tucker: dimension ordering
matters as argued in Ch. 5, and variables that are given a central core tend to need
more ranks. In addition, TT cannot be thresholded directly like the Tucker core,
and tools like core orthogonalization [Oseledets, 2011] will play a necessary role.
These difficulties will require careful investigation.

8.2.2 Categorical Visualization

The tensors we built had always discrete axis, and the last tensor we sampled in
Ch. 6, the GEMM experiment, had categorical variables. However, several further
lines of research for categorical data are approachable on the visualization side.
We believe many diagrams that are suitable for categorical data (mosaic plots,
parallel sets, bar charts, etc.) will combine excellently with tensor surrogates,
especially for high numbers of dimensions. Such diagrams can be potentially en-
hanced by various analysis tasks that are feasible in the tensor framework, e.g. via
global optimization, as similarly to what we did. After all, tensor decompositions
were born precisely for categorical data (in the field of psychometrics).

8.2.3 Multivalued Data

We wish to investigate more deeply TT surrogates for multi-valued models. Rather
than training a separate model per individual output, we would like to work on a
single tensor with an extra dimension (core) to index the outputs. One may then
perform joint TT visualization and analysis, e.g. reconstructing linked plots at
once in an ensemble fashion, or obtaining a Sobol TT with an extra indexing di-
mension that allows conjunct sensitivity queries over the multiple outputs.

8.2.4 Smooth Tensor Completion

We have used tensor completion, which is a powerful paradigm for categorical
data in non-adaptive situations. However, its application to continuous variables
is more delicate. Techniques such as DCT or PCE, for example, incorporate
smoothness-based priors by fixing their bases. In the future we will increasingly
use smoothness-aware completion strategies, for example using similarity matri-
ces [Narita et al., 2011]. Such techniques will allow us to build low-rank ten-
sors from non-adaptive, smooth data sets without having to convert from another
model, e.g. PCE.

8.2 Future Work 127

8.2.5 Content-based Surrogate Navigation

The global optimization algorithm exploited in Ch. 6 and Ch. 7 opens up many
avenues of research. One such direction is query-by-sketch for surrogate models,
whereby a user would search and identify trends in the model by drawing curves
or shapes. For example, he/she could ask which parameter combinations result
in ascending/descending patterns in the surrogate’s output. Such an application
would be of great aid in knowledge extraction and interactive exploration, as it
would allow the user to quickly and intuitively jump to interesting focus points
across the whole domain of variables.

AA P P E N D I X

DECOMPOSITION ALGORITHMS

Three different kinds of tensor decomposition algorithms exist depending on the
nature of the input: dense data, sparse data, and adaptive sampling (i.e. when we
can sample on demand, but not the whole tensor).

A.1 From Dense Data

A.1.1 CP

The first question is how to select the number of CP ranks R; CORCONDIA [Bro
and Kiers, 2003] is an algorithm that performs a consistency diagnostic to com-
pare different numbers of components. If the desired number of ranks is known or
estimated, there is an alternating least squares (ALS) algorithm known as higher-
order power method (HOPM) [Kolda and Bader, 2009]. The algorithm fixes N -1
matrices and then solves for the remaining one; this is cyclically done for every
matrix. While a rank-R decomposition is not always unique, in practice ALS
finds very good solutions for most purposes concerning visual data sets. HOPM
is detailed in Alg. 10.

A.1.2 Tucker

The first proposed decomposition algorithm for the Tucker model was the so-
called Tucker1 [Tucker, 1966]. It is a truncation of a decomposition nowadays
known as HOSVD, which is in many senses a higher-order generalization of the

129

130 A DECOMPOSITION ALGORITHMS

Algorithm 10 The higher-order power method (HOPM) computes a rank-R CP
decomposition of a tensor T in K iterations.

1: λλλ := zeros(R)
2: U(n) := init() ∀n = 1, . . . , N
3: for k = 1, . . . ,K do
4: for n = 1, . . . , N do
5: V := U(1)TU(1) ◦ · · · ◦U(N)TU(N) {The term U(n)TU(n) is skipped}
6: U(n) := T(n)(U

(N) � · · · �U(1))V† {The term U(n) is skipped}
7: for r = 0, . . . , R− 1 do
8: λλλ[r] := ‖U(n)[:, r]‖
9: U(n)[:, r] = U(n)[:, r]/λλλ[r]

10: end for
11: end for
12: end for
13: return [[λ; U(1), . . . ,U(N)]]

2D matrix SVD [de Lathauwer et al., 2000a]. However, such a truncation is not
theoretically optimal in terms of best fit (although it is proven to be close [de Lath-
auwer et al., 2000b]). For this reason, ALS algorithms were designed in order to
improve upon it: [Kroonenberg and Leeuw, 1980] contributed TUCKALS3, the
first ALS procedure for finding a least-squares 3D Tucker tensor approximation.
Later ALS approaches such as [Kroonenberg, 1983], [Ten Berge et al., 1987] or
the higher-order orthogonal iteration (HOOI) [de Lathauwer et al., 2000b] were
developed to optimize or accelerate the basic TUCKALS. We use the version of
HOOI as provided in [Kolda and Bader, 2009] (Alg. 11). It can be seen as an ex-
tension of the HOSVD initialization, since each matrix is populated with singular
values at each mode optimization.

Algorithm 11 The higher-order orthogonal iteration (HOOI) computes a rank-
(R1, . . . , RN) Tucker decomposition of a tensor T in K iterations.

1: U(n) := init() ∀n = 1, . . . , N
2: for k = 1, . . . ,K do
3: for n = 1, . . . , N do
4: P := T ×1 U(1)T ×2 · · · ×N U(N)T {The term U(n)T is skipped}
5: U(n) := Rn leading eigenvectors of P(n)P(n)

T

6: end for
7: end for
8: B := T ×1 U(1)T ×2 · · · ×N U(N)T

9: return [[(B; U(1), . . . ,U(N))]]

A.2 From a Fixed Sparse Sample Set 131

A.1.3 TT

A full tensor can be TT-decomposed via the TT-SVD algorithm [Oseledets, 2011],
which successively unfolds the data, computes the SVD on the result, and trun-
cates it. This algorithm is non-iterative and separates one dimension at a time.
It has cost O(NIR3); see Alg. 12 for a version with fixed ranks. Alternatively,
the ranks can be determined on the fly in terms of a user defined relative error
0 ≤ ε ≤ 1. The algorithm guarantees that the final error will not be larger than
ε, and in fact it is usually smaller. For a detailed description of the rank-adaptive
TT-SVD and its theoretical error bounds we refer the reader to the original pa-
per [Oseledets, 2011].

Algorithm 12 TT-SVD algorithm [Oseledets, 2011] to build a rank-
(R1, . . . , RN−1) TT decomposition.

1: M := unfold(T , I1 × I2 · · · IN)
2: for n = 1, . . . , N − 1 do
3: U,Σ,V := SVD(M)
4: T (n) := reshape(U[:, 0:Rn − 1], Rn−1 × In ×Rn) {R0 = 1 by convention}
5: M := reshape(Σ[0:Rn − 1, 0:Rn − 1] ·V[:, 0:Rn − 1]T , RnIn+1 ×Rn+1)
6: end for
7: T (N) := reshape(M, RN−1 × IN × 1)
8: return [[T (1), . . . , T (N)]]

A.2 From a Fixed Sparse Sample Set

The problem of tensor completion arises often in signal processing and machine
learning, and is a useful tool to handle e.g. corrupted regions in images or vol-
umes, or learn unknown entries in a parameter space from a limited sparse set
of observations. In the same way that algorithms for dense tensor decomposi-
tion generalize earlier matrix techniques, also the tensor completion framework is
based on previous 2D results. The field is related to multidimensional compressive
sensing [Caiafa and Cichocki, 2013].

More formally, suppose Ω ⊂ {1, . . . , I1} × · · · × {1, . . . , IN} is a set encod-
ing certain tensor entries and f |Ω represents the known values at these entries.
Then, a recovered tensor T is sought such that a) T (Ω) = f |Ω; and b) T has low
rank. Condition a) is often relaxed and incorporated as a penalization term into
a score function (e.g. Lagrangian relaxation) in the presence of noise, or when-
ever accuracy loss is acceptable to certain extent in exchange for a sufficiently
low-parametric representation. Condition b) also accepts different formulations:
one may impose that the ranks (under the tensor rank definition of choice) are

132 A DECOMPOSITION ALGORITHMS

upper-bounded or even fixed to some value. For instance, the Riemannian opti-
mization framework fixes the number of ranks and considers the set of tensors
in RI1×...×IN that have such number of ranks [Steinlechner, 2015]. Then, a score
function is minimized over such sets. Riemannian methods require that such set
forms a manifold. This is the case for the Tucker, TT or HT rank definition, but
not for CP: the set of rank-R CP tensors is not closed, since there exist sequences
of rank-R tensors such that their limit has rank other than R (the so-called border
rank).

An alternative strategy is to relax the rank constraint, for example by using the
matrix nuclear norm ‖A‖∗ as the minimization target. It is defined as the sum of its
singular values (in absolute value) and is known to be the tightest convex envelope
of the rank function for the 2D case. A number of algorithms generalize the norm
‖ · ‖∗ to the tensor case and then make use of convex solvers to find the recovered
tensor T . A comprehensive survey on tensor completion (and more general tech-
niques to produce low-rank decompositions) was compiled by [Grasedyck et al.,
2013].

In this thesis we have implemented and used an ALS completion algorithm for
the TT format. This strategy seeks a solution in the manifold of fixed TT ranks;
it is based on the ALS detailed in [Steinlechner, 2015]. Optimizing each core re-
quires first computing two sequences of matrix-matrix products (the left and right
product chains) for each training sample. Our implementation uses memoization
from core to core to avoid recomputing these chains every time; see Alg. 13.

A.3 Adaptive Sampling

The quest for adaptive tensor sampling schemes started, unsurprisingly, in the
matrix case. The CUR matrix decomposition (also known as pseudo-skeleton
or, alternatively, column-row factorization) reconstructs a matrix from a well-
structured subset of its samples, namely its rows and columns [Bebendorf, 2000],
[Tyrtyshnikov, 2000]. CUR takes its name from the three matrices that take part
in the approximate reconstruction of an input A ∈ RI1×I2:

A ≈ CU−1R (A.1)

where C ∈ RI1×R, U ∈ RR×R, and R ∈ RR×I2 . The matrices C and R consist of
R selected columns and rows from A, respectively, while U is the intersection of
C and R. This is a crucial difference with SVD, which defines its own transform
vectors. Thanks to the CUR decomposition, only O(IR) elements (instead of
O(I2)) must be sampled and stored to learn and represent the full matrix A. If A
has rank R, then C and R can be chosen so that Eq. A.1 is exact. Otherwise, the
best possible R-approximation comes from selecting the rows and columns that

A.3 Adaptive Sampling 133

Algorithm 13 TT-ALS rank-R completion with K sweeps from a set (X,y) of
known samples. X is a matrix of size P × N and y is a vector of size P . The
initial solution is [[T (1), . . . , T (N)]]. This dynamic algorithm maintains two arrays
L and R to store the left and right product chains for all sample points in X.
For each data point (x, y) and n-th core these chains equal l =

∏
i<n T (i)[xi]

and r =
∏

i>n T (i)[xi]. Then, we must find the core slice T (n) that minimizes
‖l·T (n)[xn]·r−y‖ = ‖(rT⊗l)·vec(T (n)[xn])−y‖ (linear least-squares problem).

1: {Initialization}
2: for n = 1, . . . , N − 1 do
3: L(n) := ones(1, P, 1)
4: R(n+1) := ones(1, P, 1)
5: end for
6: for n = N − 2, . . . , 1 do
7: for p = 1, . . . , P do
8: R(n)[:, p, :] := T (n+1)[:,X[p, n+ 1], :] · R(n+1)[:, p, :]
9: end for

10: end for
11: {K sweeps}
12: for k = 1, . . . , K do
13: {Left-to-right sweep}
14: for n = 1, . . . , N − 1 do
15: {Optimize the n-th core, slice-by-slice}
16: for i = 1, . . . , In do
17: A := matrix of size 0×R2

18: for p |X[p, n] = i do
19: addRow(A,R(n)[:, p, :]T ⊗ L(n)[:, p, :])
20: end for
21: b := {y[p] |X[p, n] = i}
22: S := leastSquares(A,b) {Best core slice for all points it affects}
23: T (n)[:, i, :] := reshape(S, R×R)
24: end for
25: for p = 1, . . . , P do
26: {Update next L by multiplying with the newly computed core T (n)}
27: L(n+1)[:, p, :] := L(n)[:, p, :] · T (n)[:,X[p, n], :]
28: end for
29: end for
30: {The right-to-left sweep works analogously, with n = N, . . . , 2 and updat-

ingR instead of L}
31: end for

134 A DECOMPOSITION ALGORITHMS

produce an intersection U with the largest determinant in modulus [Goreinov and
Tyrtyshnikov, 2001]. Geometrically, given a set P of points in an N -dimensional
space (with |P | > N) we wish to select a set Q ⊂ P (with |Q| = N) such that
the parallelepiped spanned by the vectors in Q has the largest possible volume.
The maxvol algorithm [Tyrtyshnikov, 2000], [Goreinov et al., 2008] is a very ef-
fective adaptive heuristic that proceeds by adding a few rows and columns at a
time. Maxvol and its variant the rectangular maxvol have other uses such as fea-
ture selection or finding maximum elements in matrices [Mikhalev and Oseledets,
2015].

CUR and maxvol have been generalized to N dimensions in the form of the
so-called adaptive cross approximation (ACA). Some early contributions in this
direction include [Espig et al., 2009] for CP and [Oseledets et al., 2008] and [Ca-
iafa and Cichocki, 2010] for the Tucker format, and have been used for e.g. vol-
ume completion in human brain data sets. ACA has been later blended in with the
TT formulation [Oseledets and Tyrtyshnikov, 2010b]. It has since then emerged
as a powerful paradigm for efficient multidimensional data sampling and manip-
ulation. Only O(NIR2) samples must be taken in order to recover (interpolate)
a full IN TT tensor, i.e. a number proportional to the number of coefficients in
the compressed tensor [Savostyanov and Oseledets, 2011]. Analogously to the 2D
case, many useful transformations in a TT (for example, computing element-wise
functions) require manipulating only the cross entries and fibers of the input. In
this thesis we use the implementation from the ttpy toolbox [ttp,] (open-source,
written in Python), since it also includes many manipulation routines for the TT
format.

Tab. A.1 lists many important tensor completion and adaptive sampling algo-
rithms that have been proposed for various formats and settings.

A.3 Adaptive Sampling 135

Method Tensor Type Adaptive?
[Bebendorf, 2000] Matrix Yes

[Tyrtyshnikov, 2000] Matrix Yes
[Candès and Recht, 2009] Matrix No

[Espig et al., 2009] CP Yes
[Espig et al., 2011] CP No

[Oseledets et al., 2008] Tucker Yes
[Goreinov, 2008] Tucker Yes

[Caiafa and Cichocki, 2010] Tucker Yes
[Kressner et al., 2013] Tucker No
[Ballani et al., 2013] HT Yes

[Ballani and Grasedyck, 2015] HT Yes
[Silva and Herrmann, 2015] HT No

[Oseledets and Tyrtyshnikov, 2010b] TT Yes
[Savostyanov and Oseledets, 2011] TT Yes

[Steinlechner, 2015] TT No
[Grasedyck et al., 2015] TT No

[Bengua et al., 2016] TT No

Table A.1: Several completion and adaptive sampling algorithms, from the matrix case
up to more recent models.

BA P P E N D I X

TENSOR DECOMPOSITION
SOFTWARE

Multiway array data structures are often recognized readily by modern languages
and libraries; for instance, both Python (via NumPy) and MATLAB support arrays
of arbitrary dimensionality. The C++ header-only library Eigen [eig,] supports
them via the Eigen::Tensor core module; TensorFlow [ten, b] is another option. A
wide range of programming languages provide operations at the tensor level in-
cluding slicing, reshaping, tensor-scalar operations, tensor contraction, etc. Next
we list only the subset of libraries that can actually compute decompositions out
of tensor arrays (we have compiled a periodically updated list in [pub,]).

Kolda and Bader’s Tensor Toolbox [Bader et al., 2015] is one of the earliest
packages for MATLAB and features sparse and dense CP and Tucker decompo-
sitions. Tensorlab [Sorber et al.,] supports these and TT, as well as other highly
structured and hybrid representations (optionally, with constraints such as non-
negativity). It also includes several completion algorithms. The Laboratory for
Tensor Decomposition and Analysis (TDALAB) [tda,] and TensorBox [ten, a]
are two MATLAB libraries tailored (among others) to blind source separation
(BSS). MATLAB Tensor Tools (MTT) [mtt,] is oriented towards computer vision
applications and supports non-negative tensor factorization (NTF) as well as in-
cremental decomposition procedures, including CP and Tucker defined on sliding
windows for exploiting local temporal correlation such as video scenes in fore-
ground/background segmentation settings. Regarding tensor completion tasks,

137

138 B TENSOR DECOMPOSITION SOFTWARE

GeomCG [geo,] provides routines for Tucker format inpainting within the Rie-
mannian optimization framework on the manifold of tensors with fixed multilinear
rank. The Riemannian framework for the case of tensors in TT form is supported
by the TTeMPS Toolbox [tte,], while the Hierarchical Tucker Toolbox [htt,] is
concerned with the HT format.

In Python, the library scikit-tensor [sci,] obtains CP and Tucker among others
for both sparse and dense tensors. NTFLib [ntf,], on the other hand, emphasizes
non-negative factorizations focusing on sparse data. TensorLy [ten, c] provides
both non-negative and general CP and Tucker decompositions for dense data and
dives further into learning and vision applications by contributing tensorized ridge
regression algorithms for these formats. For the TT model, ttpy [ttp,] provides
basic decomposition routines as well as rounding, adaptive sampling of black-
box tensors, eigenvalue and linear system solvers, etc. Many of its core features
are actually implemented in FORTRAN (and there is also an alternative MAT-
LAB implementation of the toolbox [ttt,]). The Python TensorToolbox [pyt,]
provides functional (continuous) versions of the TT format. Polara [pol,] imple-
ments sparse tensor factorizations with a focus on recommender systems.

Finally, SPLATT [spl,] can be used to compute CP out of sparse tensors in
C++. The vmmlib [vmm, c] supports CP and Tucker decompositions of dense
tensors, and uses BLAS and LAPACK parallel routines to optimize matrix opera-
tions. The deep learning framework Caffe2 [caf,] supports TT-compressed fully
connected layers. There is also a C++ library for the TT format [cpl,] that exploits
parallelism via the OpenMP API.

BIBLIOGRAPHY

[hur,] 2004 SciVis Contest.
http://sciviscontest-staging.ieeevis.org/2004/data.
html.

[cpl,] C++ TT library.
https://bitbucket.org/dzheltkov/c-tt-library.

[caf,] Caffe: A deep learning framework.
http://caffe.berkeleyvision.org/.

[ces,] Community Earth System Model by the National Center for Atmospheric
Research.
http://www.cesm.ucar.edu/index.html.

[cup,] CuPy: A numpy-compatible matrix library accelerated by CUDA.
https://cupy.chainer.org/.

[eig,] Eigen: a C++ template, header-only library for linear algebra.
http://eigen.tuxfamily.org/.

[wat,] Furong Waterfalls. https://commons.wikimedia.org/wiki/
File:1furongpanorama2012.jpg.

[geo,] GeomCG: Tensor completion by Riemannian optimization.
http://anchp.epfl.ch/geomCG.

139

http://sciviscontest-staging.ieeevis.org/2004/data.html
http://sciviscontest-staging.ieeevis.org/2004/data.html
https://bitbucket.org/dzheltkov/c-tt-library
http://caffe.berkeleyvision.org/
http://www.cesm.ucar.edu/index.html
https://cupy.chainer.org/
http://eigen.tuxfamily.org/
https://commons.wikimedia.org/wiki/File:1furongpanorama2012.jpg
https://commons.wikimedia.org/wiki/File:1furongpanorama2012.jpg
http://anchp.epfl.ch/geomCG

140 BIBLIOGRAPHY

[htt,] HT Toolbox: A MATLAB toolbox for the construction and manipulation
of tensors in the hierarchical Tucker format.
http://anchp.epfl.ch/htucker.

[iap,] IAPR-TC18 data sets.
http://www.tc18.org/code_data_set/3D_images.php.

[jht,] Johns Hopkins Turbulence Database.
http://turbulence.pha.jhu.edu/newcutout.aspx.

[pub,] A list of public tensor decomposition software.
http://github.com/rballester/tensor_notes/blob/
master/implementations.md.

[mtt,] Matlab Tensor Tools: Matrix and tensor tools for computer vision.
http://github.com/andrewssobral/mtt.

[ntf,] NTFLib: Sparse beta-divergence tensor factorization library.
http://github.com/mnick/scikit-tensor.

[pol,] Polara: a recommender system and evaluation framework.
http://github.com/Evfro/polara.

[vol,] Real world medical datasets.
http://volvis.org/.

[vmm, a] Research datasets from the Visualization and Multimedia Lab.
http://www.ifi.uzh.ch/vmml/research/datasets.html.

[sci,] scikit-tensor: a Python module for multilinear algebra and tensor factoriza-
tions.
http://github.com/mnick/scikit-tensor.

[spl,] SPLATT: The surprisingly parallel sparse tensor toolkit.
http://shaden.io/splatt.html.

[tda,] TDALAB: Laboratory for tensor decomposition and analysis.
http://www.bsp.brain.riken.jp/TDALAB/.

[ten, a] TensorBox: a MATLAB toolbox for tensor decompositions.
http://www.bsp.brain.riken.jp/˜phan/index.html#
tensorbox.

[ten, b] Tensorflow – an open source software library for machine intelligence.
http://www.tensorflow.org/.

http://anchp.epfl.ch/htucker
http://www.tc18.org/code_data_set/3D_images.php
http://turbulence.pha.jhu.edu/newcutout.aspx
http://github.com/rballester/tensor_notes/blob/master/implementations.md
http://github.com/rballester/tensor_notes/blob/master/implementations.md
http://github.com/andrewssobral/mtt
http://github.com/mnick/scikit-tensor
http://github.com/Evfro/polara
http://volvis.org/
http://www.ifi.uzh.ch/vmml/research/datasets.html
http://github.com/mnick/scikit-tensor
http://shaden.io/splatt.html
http://www.bsp.brain.riken.jp/TDALAB/
http://www.bsp.brain.riken.jp/~phan/index.html#tensorbox
http://www.bsp.brain.riken.jp/~phan/index.html#tensorbox
http://www.tensorflow.org/

BIBLIOGRAPHY 141

[ten, c] TensorLy: a fast and simple Python library for tensor learning.
https://github.com/tensorly/tensorly.

[pyt,] TensorToolbox: tensor train and spectral tensor train decomposition.
https://pypi.python.org/pypi/TensorToolbox/.

[ttt,] TT-Toolbox: the MATLAB tensor train toolbox.
http://github.com/oseledets/TT-Toolbox.

[tte,] TTeMPS: A toolbox for tensor train / matrix product states.
http://anchp.epfl.ch/TTeMPS.

[ttp,] ttpy: Python implementation of the TT-toolbox.
http://github.com/oseledets/ttpy.

[vmm, b] Visualization and MultiMedia Lab’s Research Data Sets.
http://www.ifi.uzh.ch/en/vmml/research/datasets.
html.

[vmm, c] vmmlib: A Vector and Matrix Math Library.
http://vmml.github.io/vmmlib/.

[Abualrub et al., 2017] Abualrub, T., Jarrah, A., Kallel, S., and Sulieman, H.
(2017). Mathematics Across Contemporary Sciences: AUS-ICMS, Sharjah,
UAE, April 2015. Springer Proceedings in Mathematics & Statistics. Springer
International Publishing.

[Amirkhanov et al., 2010] Amirkhanov, A., Heinzl, C., Reiter, M., and Gröller,
M. E. (2010). Visual optimality and stability analysis of 3DCT scan positions.
IEEE Transactions on Visualization and Computer Graphics, 16(6):1477–
1486.

[Anand et al., 2012] Anand, A., Dang, T. N., and Wilkinson, L. (2012). Visual
pattern discovery using random projections. In Proceedings IEEE Conference
on Visual Analytics Science and Technology, pages 43–52.

[Bader et al., 2015] Bader, B. W., Kolda, T. G., et al. (2015). MATLAB
Tensor Toolbox version 2.6. http://www.sandia.gov/˜tgkolda/
TensorToolbox/.

[Ballani and Grasedyck, 2015] Ballani, J. and Grasedyck, L. (2015). Hierarchical
tensor approximation of output quantities of parameter-dependent PDEs. SIAM
Journal on Uncertainty Quantification, 3(1):852–872.

https://github.com/tensorly/tensorly
https://pypi.python.org/pypi/TensorToolbox/
http://github.com/oseledets/TT-Toolbox
http://anchp.epfl.ch/TTeMPS
http://github.com/oseledets/ttpy
http://www.ifi.uzh.ch/en/vmml/research/datasets.html
http://www.ifi.uzh.ch/en/vmml/research/datasets.html
http://vmml.github.io/vmmlib/
 http://www.sandia.gov/~tgkolda/TensorToolbox/
 http://www.sandia.gov/~tgkolda/TensorToolbox/

142 BIBLIOGRAPHY

[Ballani et al., 2013] Ballani, J., Grasedyck, L., and Kluge, M. (2013). Black box
approximation of tensors in hierarchical tucker format. Linear Algebra and its
Applications, 438(2):639 – 657.

[Ballester-Ripoll et al., 2017] Ballester-Ripoll, R., Lindstrom, P., and Pajarola, R.
(2017). TTHRESH: Tensor compression for multidimensional visual data. In
preparation.

[Ballester-Ripoll and Pajarola, 2015] Ballester-Ripoll, R. and Pajarola, R.
(2015). Lossy volume compression using Tucker truncation and thresholding.
The Visual Computer, pages 1–14.

[Ballester-Ripoll and Pajarola, 2016] Ballester-Ripoll, R. and Pajarola, R.
(2016). Compressing bidirectional texture functions via tensor train decom-
position. In Proceedings Pacific Graphics Short Papers.

[Ballester-Ripoll and Pajarola, 2017] Ballester-Ripoll, R. and Pajarola, R.
(2017). Tensor decompositions for integral histogram compression and look-
up. IEEE Transactions on Visualization and Computer Graphics, PP:1–12.

[Ballester-Ripoll et al., 2016] Ballester-Ripoll, R., Paredes, E. G., and Pajarola,
R. (2016). A surrogate visualization model using the tensor train format. In
SIGGRAPH ASIA 2016 Symposium on Visualization, pages 13:1–13:8.

[Ballester-Ripoll et al., 2017] Ballester-Ripoll, R., Paredes, E. G., and Pajarola,
R. (2017). Sobol tensor trains for global sensitivity analysis. ArXiv e-prints.

[Ballester-Ripoll et al., 2017] Ballester-Ripoll, R., Steiner, D., and Pajarola, R.
(2017). Multiresolution volume filtering in the tensor compressed domain.
IEEE Transactions on Visualization and Computer Graphics, PP:1–14.

[Ballester-Ripoll et al., 2015] Ballester-Ripoll, R., Suter, S. K., and Pajarola, R.
(2015). Analysis of tensor approximation for compression-domain volume vi-
sualization. Computers & Graphics, 47:34–47.

[Balsa Rodrı́guez et al., 2013] Balsa Rodrı́guez, M., Gobbetti, E., Guitián, J.
A. I., Makhinya, M., Marton, F., Pajarola, R., and Suter, S. K. (2013). A
survey of compressed GPU direct volume rendering. In Eurographics State of
The Art Reports (STAR).

[Balsa Rodrı́guez et al., 2014] Balsa Rodrı́guez, M., Gobbetti, E., Iglesias
Guitián, J. A., Makhinya, M., Marton, F., Pajarola, R., and Suter, S. K. (2014).
State-of-the-art in compressed GPU-based direct volume rendering. Computer
Graphics Forum, 33(6):77–100.

BIBLIOGRAPHY 143

[Bebendorf, 2000] Bebendorf, M. (2000). Approximation of boundary element
matrices. Numerische Mathematik, 86(4):565–589.

[Bengua et al., 2016] Bengua, J. A., Phien, H. N., Tuan, H. D., and Do, M. N.
(2016). Efficient tensor completion for color image and video recovery: Low-
rank tensor train. CoRR, abs/1606.01500.

[Berger et al., 2012] Berger, R., Dubuisson, S., and Gonzales, C. (2012). Fast
multiple histogram computation using Kruskal’s algorithm. In Proceedings
IEEE International Conference on Image Processing, pages 2373–2376.

[Bergner et al., 2013] Bergner, S., Sedlmair, M., Moller, T., Abdolyousefi, S. N.,
and Saad, A. (2013). Paraglide: Interactive parameter space partitioning for
computer simulations. IEEE Transactions on Visualization and Computer
Graphics, 19(9):1499–1512.

[Bigoni, 2015] Bigoni, D. (2015). Uncertainty Quantification with Applications
to Engineering Problems. PhD thesis.

[Bigoni et al., 2016] Bigoni, D., Engsig-Karup, A., and Marzouk, Y. (2016).
Spectral tensor-train decomposition. SIAM Journal on Scientific Computing,
38(4):A2405–A2439.

[Brecheisen et al., 2009] Brecheisen, R., Vilanova, A., Platel, B., and ter
Haar Romeny, B. (2009). Parameter sensitivity visualization for dti fiber track-
ing. IEEE Transactions on Visualization and Computer Graphics, 15(6):1441–
1448.

[Bro and Kiers, 2003] Bro, R. and Kiers, H. A. (2003). A new efficient method
for determining the number of components in PARAFAC models. Journal of
Chemometrics, 16:387–400.

[Cabot and Cook,] Cabot, W. H. and Cook, A. W. Reynolds number effects on
Rayleigh-Taylor instability with possible implications for type Ia supernovae.
Nature Physics, 2:562 – 568.

[Caiafa and Cichocki, 2010] Caiafa, C. and Cichocki, A. (2010). Generalizing
the column–row matrix decomposition to multi-way arrays. Linear Algebra
Applications, 433(3):557–573.

[Caiafa and Cichocki, 2013] Caiafa, C. F. and Cichocki, A. (2013). Multidimen-
sional compressed sensing and their applications. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 3(6):355–380.

144 BIBLIOGRAPHY

[Candès and Recht, 2009] Candès, E. J. and Recht, B. (2009). Exact matrix com-
pletion via convex optimization. Foundations on Computational Mathematics,
9(6):717–772.

[Chan, 2006] Chan, W. W.-Y. (2006). A survey on multivariate data visualiza-
tion. Technical report, Department of Computer Science and Engineering.
Hong Kong University of Science and Technology.

[Chen et al., 2016] Chen, M., Feixas, M., Viola, I., Bardera, A., Shen, H., and
Sbert, M. (2016). Information Theory Tools for Visualization. AK Peters Visu-
alization Series. CRC Press.

[Chen et al., 2014] Chen, Y.-L., Hsu, C.-T., and Liao, H.-Y. M. (2014). Simulta-
neous tensor decomposition and completion using factor priors. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 36(3):577–591.

[Cichocki et al., 2016] Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao,
Q., and Mandic, D. P. (2016). Tensor networks for dimensionality reduction
and large-scale optimization: Part 1 low-rank tensor decompositions. Founda-
tions and Trends in Machine Learning, 9(4-5):249–429.

[Clyne et al., 2007] Clyne, J., Mininni, P., Norton, A., and Rast, M. (2007). In-
teractive desktop analysis of high resolution simulations: application to tur-
bulent plume dynamics and current sheet formation. New Journal of Physics,
9(8):301.

[Costantini et al., 2008] Costantini, R., Sbaiz, L., and Süsstrunk, S. (2008).
Higher order SVD analysis for dynamic texture synthesis. IEEE Transactions
on Image Processing, pages 42–52.

[Crow, 1984] Crow, F. C. (1984). Summed-area tables for texture mapping. In
Proceedings ACM SIGGRAPH, pages 207–212.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In Proceedings IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 886–893.

[De Lathauwer, 2008a] De Lathauwer, L. (2008a). Decompositions of a higher-
order tensor in block terms — part i: Lemmas for partitioned matrices. SIAM
Journal on Matrix Analysis and Applications, 30(3):1022–1032.

[De Lathauwer, 2008b] De Lathauwer, L. (2008b). Decompositions of a higher-
order tensor in block terms – Part II: Definitions and uniqueness. SIAM Journal
on Matrix Analysis and Applications, 30(3):1033–1066.

BIBLIOGRAPHY 145

[de Lathauwer, 2009] de Lathauwer, L. (2009). A survey of tensor methods. In
Proceedings IEEE International Symposium on Circuits and Systems, pages
2773–2776.

[de Lathauwer et al., 2000a] de Lathauwer, L., de Moor, B., and Vandewalle, J.
(2000a). A multilinear singular value decomposition. SIAM Journal of Matrix
Analysis and Applications, 21(4):1253–1278.

[de Lathauwer et al., 2000b] de Lathauwer, L., de Moor, B., and Vandewalle,
J. (2000b). On the best rank-1 and rank-(R1, R2, ..., RN) approximation of
higher-order tensors. SIAM Journal of Matrix Analysis and Applications,
21(4):1324–1342.

[de Silva and Lim, 2008] de Silva, V. and Lim, L.-H. (2008). Tensor rank and the
ill-posedness of the best low-rank approximation problem. SIAM Journal on
Matrix Analysis and Applications, 30(3):1084–1127.

[Di and Cappello, 2016] Di, S. and Cappello, F. (2016). Fast error-bounded lossy
hpc data compression with SZ. In International Parallel and Distributed Pro-
cessing Symposium, pages 730–739.

[Dolgov et al., 2014] Dolgov, S. V., Khoromskij, B. N., Litvinenko, A., and
Matthies, H. G. (2014). Computation of the response surface in the tensor
train data format. arXiv preprint 1406.2816.

[Dolgov and Savostyanov, 2014] Dolgov, S. V. and Savostyanov, D. V. (2014).
Alternating minimal energy methods for linear systems in higher dimensions.
SIAM Journal on Scientific Computing, 36(5):A2248–A2271.

[dos Santos Amorim et al., 2012] dos Santos Amorim, E. P., Brazil, E. V., II,
J. D., Joia, P., Nonato, L. G., and Sousa, M. C. (2012). iLAMP: Exploring
high-dimensional spacing through backward multidimensional projection. In
Proceedings IEEE Conference on Visual Analytics Science and Technology,
pages 53–62.

[Efron and Stein, 1981] Efron, B. and Stein, C. (1981). The jackknife estimate of
variance. Ann. Statist., 9(3):586–596.

[Eilemann et al., 2009] Eilemann, S., Makhinya, M., and Pajarola, R. (2009).
Equalizer: A scalable parallel rendering framework. IEEE Transactions on
Visualization and Computer Graphics, 15(3):436–452.

[Espig et al., 2009] Espig, M., Grasedyck, L., and Hackbusch, W. (2009). Black
box low tensor-rank approximation using fiber-crosses. Constructive Approxi-
mation, 30(3):557–597.

146 BIBLIOGRAPHY

[Espig et al., 2011] Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H. G.,
and Zander, E. (2011). Efficient analysis of high dimensional data in tensor
formats. Lecture notes in computational science and engineering.

[Falch and Elster, 2017] Falch, T. L. and Elster, A. C. (2017). Machine learning-
based auto-tuning for enhanced performance portability of opencl applications.
Concurrency and Computation: Practice and Experience, 29(8).

[Filipović and Jukić, 2015] Filipović, M. and Jukić, A. (2015). Tucker factor-
ization with missing data with application to low-n-rank tensor completion.
Multidimensional Syst. Signal Process., 26(3):677–692.

[Fock, 2014] Fock, E. (2014). Global sensitivity analysis approach for input se-
lection and system identification purposes – a new framework for feedforward
neural networks. IEEE Transactions on Neural Networks and Learning Sys-
tems, 25(8):1484–1495.

[Fout and Ma, 2007] Fout, N. and Ma, K.-L. (2007). Transform coding for
hardware-accelerated volume rendering. IEEE Transaction on Visualization
and Computer Graphics, 13(6):1600–1607.

[Gerber et al., 2010] Gerber, S., Bremer, P.-T., Pascucci, V., and Whitaker, R.
(2010). Visual exploration of high dimensional scalar functions. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):1271–1280.

[Gobbetti et al., 2012] Gobbetti, E., Iglesias Guitián, J., and Marton, F. (2012).
COVRA: A compression-domain output-sensitive volume rendering architec-
ture based on a sparse representation of voxel blocks. Computer Graphics
Forum, 31(3):1315–1324.

[Goreinov, 2008] Goreinov, S. A. (2008). On cross approximation of multi-index
arrays. Doklady Mathematics, 77(3):404–406.

[Goreinov et al., 2008] Goreinov, S. A., Oseledets, I. V., Savostyanov, D. V., Tyr-
tyshnikov, E. E., and Zamarashkin, N. L. (2008). How to find a good submatrix.
Research Report 08-10, ICM HKBU, Kowloon Tong, Hong Kong.

[Goreinov and Tyrtyshnikov, 2001] Goreinov, S. A. and Tyrtyshnikov, E. E.
(2001). The maximal-volume concept in approximation by low-rank matrices.
Contemporary Mathematics, 280:47–51.

[Grasedyck et al., 2015] Grasedyck, L., Kluge, M., and Krämer, S. (2015). Vari-
ants of alternating least squares tensor completion in the tensor train format.
SIAM Journal on Scientific Computing, 37(5):A2424–A2450.

BIBLIOGRAPHY 147

[Grasedyck et al., 2013] Grasedyck, L., Kressner, D., and Tobler, C. (2013).
A literature survey of low-rank tensor approximation techniques. GAMM-
Mitteilungen, 36(1):53–78.

[Grosso et al., 1996] Grosso, R., Ertl, T., and Aschoff, J. (1996). Efficient data
structures for volume rendering of wavelet-compressed data. In Proceedings
Winter School of Computer Graphics. Computer Society Press.

[Grout et al., 2011] Grout, R., Gruber, A., Yoo, C., and Chen, J. (2011). Direct
numerical simulation of flame stabilization downstream of a transverse fuel jet
in cross-flow. Proceedings of the Combustion Institute, 33(1):1629 – 1637.

[Guthe et al., 2002] Guthe, S., Wand, M., Gonser, J., and Strasser, W. (2002).
Interactive rendering of large volume data sets. In Proceedings IEEE Visual-
ization, pages 53–60. Computer Society Press.

[Hackbusch, 2012] Hackbusch, W. (2012). Tensor spaces and numerical ten-
sor calculus, volume 42 of Springer series in computational mathematics.
Springer, Heidelberg.

[Hadwiger et al., 2012a] Hadwiger, M., Beyer, J., Jeong, W.-K., and Pfister, H.
(2012a). Interactive volume exploration of petascale microscopy data streams
using a visualization-driven virtual memory approach. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2285–2294.

[Hadwiger et al., 2012b] Hadwiger, M., Sicat, R., Beyer, J., Krüger, J., and
Möller, T. (2012b). Sparse PDF maps for non-linear multi-resolution image
operations. ACM Transactions on Graphics, 31(6):133:1–12.

[Handschuh, 2015] Handschuh, S. (2015). Numerical methods in tensor net-
works. Dissertation, Universität Leipzig, Leipzig.

[Harshman, 1970] Harshman, R. A. (1970). Foundations of the PARAFAC proce-
dure: Models and conditions for an “explanatory” multi–modal factor analysis.
UCLA working papers in phonetics, 16:1–84.

[He et al., 2010] He, K., Sun, J., and Tang, X. (2010). Guided image filtering. In
European Conference on Computer Vision: Part I, pages 1–14.

[Heckbert, 1986] Heckbert, P. S. (1986). Filtering by repeated integration. In
Proceedings ACM SIGGRAPH, pages 315–321.

[Heinrich and Weiskopf, 2013] Heinrich, J. and Weiskopf, D. (2013). State of the
art of parallel coordinates. In Proceedings Eurographics 2013 (State of the Art
Reports), pages 95–116.

148 BIBLIOGRAPHY

[Hensley et al., 2005] Hensley, J., Scheuermann, T., Coombe, G., Singh, M., and
Lastra, A. (2005). Fast summed-area table generation and its applications.
Computer Graphics Forum, 24:547–555.

[Herman and Usher, 2017] Herman, J. and Usher, W. (2017). SALib: An open-
source python library for sensitivity analysis. The Journal of Open Source
Software, 2(9).

[Hitchcock, 1927] Hitchcock, F. L. (1927). The expression of a tensor or a
polyadic as a sum of products. Journal of Mathematics and Physics, 6:164–
169.

[Hoeffding, 1948] Hoeffding, W. (1948). A class of statistics with asymptotically
normal distribution. The Annals of Mathematical Statistics, 19(3):293–325.

[Homma and Saltelli, 1996] Homma, T. and Saltelli, A. (1996). Importance mea-
sures in global sensitivity analysis of nonlinear models. Reliability Engineering
& System Safety, 52(1):1–17.

[Hooker, 2004] Hooker, G. (2004). Discovering additive structure in black box
functions. In ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 575–580.

[Ihm and Park, 1999] Ihm, I. and Park, S. (1999). Wavelet-based 3D compres-
sion scheme for interactive visualization of very large volume data. Computer
Graphics Forum, 18(1):3–15.

[Iooss and Lemaı̂tre, 2015] Iooss, B. and Lemaı̂tre, P. (2015). A Review on
Global Sensitivity Analysis Methods, pages 101–122. Springer US, Boston,
MA.

[Jeong et al., 2009] Jeong, W., Beyer, J., Hadwiger, M., Vazquez, A., Pfister, H.,
and Whitaker, R. (2009). Scalable and interactive segmentation and visualiza-
tion of neural processes in em datasets. IEEE Transactions on Visualization
and Computer Graphics, 15(6):1505–1514.

[Kass and Solomon, 2010] Kass, M. and Solomon, J. (2010). Smoothed local
histogram filters. ACM Transactions on Graphics, 29(4):100:1–10.

[Kazeev et al., 2014] Kazeev, V., Khammash, M., Nip, M., and Schwab, C.
(2014). Direct solution of the chemical master equation using quantized tensor
trains. PLoS Computational Biology, 10(3):1–19.

BIBLIOGRAPHY 149

[Kazeev and Oseledets, 2013] Kazeev, V. A. and Oseledets, I. V. (2013). The
tensor structure of a class of adaptive algebraic wavelet transforms. Preprint
2013-28, ETH SAM, Zürich.

[Kehrer and Hauser, 2013] Kehrer, J. and Hauser, H. (2013). Visualization and
visual analysis of multifaceted scientific data: A survey. IEEE Transactions on
Visualization and Computer Graphics, 19(3):495–513.

[Kenett and Zacks, 1998] Kenett, R. and Zacks, S. (1998). Modern Industrial
Statistics: Design and Control of Quality and Reliability. Duxbury Press.

[Kolda and Bader, 2009] Kolda, T. G. and Bader, B. W. (2009). Tensor decom-
positions and applications. SIAM Review, 51(3):455–500.

[Konakli and Sudret, 2015] Konakli, K. and Sudret, B. (2015). Low-Rank Ten-
sor Approximations for Reliability Analysis. In International Conference on
Applications of Statistics and Probability in Civil Engineering.

[Konakli and Sudret, 2016] Konakli, K. and Sudret, B. (2016). Global sensitiv-
ity analysis using low-rank tensor approximations. Reliability Engineering &
System Safety, 156:64 – 83.

[Kressner et al., 2013] Kressner, D., Steinlechner, M., and Vandereycken, B.
(2013). Low-rank tensor completion by riemannian optimization. BIT Nu-
merical Mathematics, pages 1–22.

[Kroonenberg and Leeuw, 1980] Kroonenberg, P. and Leeuw, J. (1980). Principal
component analysis of three-mode data by means of alternating least squares
algorithms. Psychometrika, 45(1):69–97.

[Kroonenberg, 1983] Kroonenberg, P. M. (1983). Three-mode Principal Compo-
nent Analysis: Theory and Applications. Leiden: DSWO Press.

[Lakshminarasimhan et al., 2011] Lakshminarasimhan, S., Shah, N., Ethier, S.,
Klasky, S., Latham, R., Ross, R., and Samatova, N. F. (2011). Compressing
the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data,
volume 1, pages 366–379.

[Lamboni et al., 2013] Lamboni, M., Iooss, B., Popelin, A., and Gamboa, F.
(2013). Derivative-based global sensitivity measures: General links with sobol
indices and numerical tests. Mathematics and Computers in Simulation, 87:45–
54.

150 BIBLIOGRAPHY

[Lee and Cichocki, 2017] Lee, N. and Cichocki, A. (2017). Fundamental tensor
operations for large-scale data analysis using tensor network formats. Multidi-
mensional Systems and Signal Processing, pages 1–40.

[Lee and Shen, 2013] Lee, T.-Y. and Shen, H.-W. (2013). Efficient local statis-
tical analysis via integral histograms with discrete wavelet transform. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2693–2702.

[Lindstrom, 2014] Lindstrom, P. (2014). Fixed-rate compressed floating-point ar-
rays. IEEE Transactions on Visualization & Computer Graphics, 20(12):2674–
2683.

[Lippert et al., 1997] Lippert, L., Gross, M., and Kurmann, C. (1997). Compres-
sion domain volume rendering for distributed environments. In Proceedings
EUROGRAPHICS, pages 95–108. also in Computer Graphics Forum 16(3).

[Litvinenko et al., 2013] Litvinenko, A., Matthies, H. G., and El-Moselhy, T. A.
(2013). Sampling and Low-Rank Tensor Approximation of the Response Sur-
face, pages 535–551. Springer Berlin Heidelberg.

[Lundstrom et al., 2006] Lundstrom, C., Ljung, P., and Ynnerman, A. (2006).
Local histograms for design of transfer functions in direct volume render-
ing. IEEE Transactions on Visualization and Computer Graphics, 12(6):1570–
1579.

[Marrel et al., 2009] Marrel, A., Iooss, B., Laurent, B., and Roustant, O. (2009).
Calculations of Sobol indices for the Gaussian process metamodel. Reliability
Engineering and System Safety, 94:742–751.

[McKay et al., 1979] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979).
A comparison of three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics, 42(1):55–61.

[Mikhalev and Oseledets, 2015] Mikhalev, A. Y. and Oseledets, I. V. (2015).
Rectangular maximum-volume submatrices and their applications. arXiv
preprint 1502.07838.

[Narita et al., 2011] Narita, A., Hayashi, K., Tomioka, R., and Kashima, H.
(2011). Tensor Factorization Using Auxiliary Information. In Gunopulos, D.,
Hofmann, T., Malerba, D., and Vazirgiannis, M., editors, Machine Learning
and Knowledge Discovery in Databases, volume 25, pages 501–516. Springer
Berlin Heidelberg.

BIBLIOGRAPHY 151

[Nehab et al., 2011] Nehab, D., Maximo, A., Lima, R. S., and Hoppe, H. (2011).
GPU-efficient recursive filtering and summed-area tables. ACM Transactions
on Graphics, 30(6):176:1–11.

[Nocke et al., 2007] Nocke, T., Flechsig, M., and Böhm, U. (2007). Visual ex-
ploration and evaluation of climate-related simulation data. In Simulation Con-
ference, pages 703–711.

[Novikov et al., 2015] Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov,
D. P. (2015). Tensorizing neural networks. In Advances in Neural Informa-
tion Processing Systems, volume 28, pages 442–450.

[Novikov et al., 2014] Novikov, A., Rodomanov, A., Osokin, A., and Vetrov, D.
(2014). Putting MRFs on a tensor train. In Jebara, T. and Xing, E. P., edi-
tors, Proceedings 31st International Conference on Machine Learning (ICML),
pages 811–819.

[Novikov et al., 2016] Novikov, A., Trofimov, M., and Oseledets, I. (2016). Ex-
ponential machines. arXiv preprint.

[Nugteren and Codreanu, 2015] Nugteren, C. and Codreanu, V. (2015). Cltune:
A generic auto-tuner for opencl kernels. In International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip, pages 195–202.

[Oferkin et al., 2015] Oferkin, I., Zheltkov, D., Tyrtyshnikov, E., Sulimov, A.,
Kutov, D., and Sulimov, V. (2015). Evaluation of the docking algorithm based
on tensor train global optimization. Bulletin of the South Ural State University:
Mathematical Modelling and Programming, 8(4):83–99.

[Oseledets and Tyrtyshnikov, 2011] Oseledets, I. and Tyrtyshnikov, E. (2011).
Algebraic wavelet transform via quantics tensor train decomposition. SIAM
Journal on Scientific Computing, 33(3):1315–1328.

[Oseledets, 2011] Oseledets, I. V. (2011). Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317.

[Oseledets et al., 2008] Oseledets, I. V., Savostianov, D. V., and Tyrtyshnikov,
E. E. (2008). Tucker dimensionality reduction of three-dimensional arrays in
linear time. SIAM Journal on Matrix Analysis and Applications, 30(3):939–
956.

[Oseledets and Tyrtyshnikov, 2010a] Oseledets, I. V. and Tyrtyshnikov, E. E.
(2010a). Tensor-tree decomposition does not need a tree. In Linear Algebra
and its Applications.

152 BIBLIOGRAPHY

[Oseledets and Tyrtyshnikov, 2010b] Oseledets, I. V. and Tyrtyshnikov, E. E.
(2010b). TT-cross approximation for multidimensional arrays. Linear Alge-
bra Applications, 432(1):70–88.

[Owen et al., 2013] Owen, A., Dick, J., and Chen, S. (2013). Higher order Sobol
indices. ArXiv e-prints.

[Owen, 2013] Owen, A. B. (2013). Variance components and generalized Sobol
indices. SIAM Journal on Uncertainty Quantification, 1(1):19–41.

[Owen, 2014] Owen, A. B. (2014). Sobol indices and shapley value. SIAM/ASA
Journal on Uncertainty Quantification, 2(1):245–251.

[Porikli, 2005] Porikli, F. (2005). Integral histogram: A fast way to extract his-
tograms in cartesian spaces. In Proceedings IEEE Conference on Computer
Vision and Pattern Recognition, pages 829–836.

[Potter et al., 2009] Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutri-
aux, C., Pascucci, V., and Johnson, C. R. (2009). Ensemble-vis: A framework
for the statistical visualization of ensemble data. In IEEE International Con-
ference on Data Mining Workshops., pages 233–240.

[Pretorius et al., 2015] Pretorius, A., Zhou, Y., and Ruddle, R. (2015). Visual pa-
rameter optimisation for biomedical image processing. BioMed Central Bioin-
formatics, 16(11):1–13.

[Queipo et al., 2005] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T.,
Vaidyanathan, R., and Tucher, P. K. (2005). Surrogate-based analysis and op-
timization. Progress in Aerospace Sciences, 41:1–28.

[Rai, 2014] Rai, P. (2014). Sparse Low Rank Approximation of Multivariate
Functions – Applications in Uncertainty Quantification. Doctoral thesis, Ecole
Centrale Nantes.

[Rajwade et al., 2013] Rajwade, A., Rangarajan, A., and Banerjee, A. (2013).
Image denoising using the higher order singular value decomposition. IEEE
Trans. Pattern Anal. Mach. Intell., 35(4):849–862.

[Rakhuba and Oseledets, 2015] Rakhuba, M. V. and Oseledets, I. V. (2015). Fast
multidimensional convolution in low-rank tensor formats via cross approxima-
tion. SIAM J. Scientific Computing, 37(2).

[Rodler, 1999] Rodler, F. (1999). Wavelet based 3D compression with fast ran-
dom access for very large volume data. In Proceedings Pacific Graphics, pages
108–117.

BIBLIOGRAPHY 153

[Ruiters and Klein, 2009] Ruiters, R. and Klein, R. (2009). BTF compression via
sparse tensor decomposition. Computer Graphics Forum, 28(4):1181–1188.

[Saltelli et al., 2008] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cari-
boni, J., Gatelli, D., Saisana, M., and Tarantola, S. (2008). Global Sensitivity
Analysis: The Primer. John Wiley & Sons, Ltd.

[Saltelli et al., 2004] Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.
(2004). Sensitivity Analysis in Practice: A Guide to Assessing Scientific Mod-
els. Halsted Press, New York, NY, USA.

[Savostyanov and Oseledets, 2011] Savostyanov, D. V. and Oseledets, I. V.
(2011). Fast adaptive interpolation of multi-dimensional arrays in tensor train
format. In Proceedings 7th International Workshop on Multidimensional Sys-
tems (nDS).

[Schlegel et al., 2011] Schlegel, P., Makhinya, M., and Pajarola, R. (2011).
Extinction-based shading and illumination in GPU volume ray-casting. IEEE
Transactions on Visualization and Computer Graphics, 17(12):1795–1802.

[Schneider and Westermann, 2003] Schneider, J. and Westermann, R. (2003).
Compression domain volume rendering. In Proceedings IEEE Visualization,
pages 293–300.

[Sicat et al., 2014] Sicat, R., Krüger, J., Möller, T., and Hadwiger, M. (2014).
Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2417–2426.

[Silva and Herrmann, 2015] Silva, C. D. and Herrmann, F. J. (2015). Optimiza-
tion on the hierarchical Tucker manifold - applications to tensor completion.
Linear Algebra and its Applications, 481:131–173.

[Sobol, 2003] Sobol, I. (2003). Theorems and examples on high dimensional
model representation. Reliability Engineering & System Safety, 79(2):187 –
193.

[Sobol, 1990] Sobol, I. M. (1990). Sensitivity estimates for nonlinear mathemat-
ical models (in Russian). Mathematical Models, 2:112–118.

[Soize and Ghanem, 2004] Soize, C. and Ghanem, R. (2004). Physical systems
with random uncertainties: Chaos representations with arbitrary probability
measure. SIAM Journal on Scientific Computing, 26(2):395–410.

154 BIBLIOGRAPHY

[Soltészová et al., 2017] Soltészová, V., Birkeland, Å., Stoppel, S., Viola, I., and
Bruckner, S. (2017). Output-sensitive filtering of streaming volume data. Com-
puter Graphics Forum, 36(1):249–262.

[Sorber et al.,] Sorber, L., Van Barel, M., and De Lathauwer, L. Tensorlab v1.0.
http://esat.kuleuven.be/sista/tensorlab/.

[Steinlechner, 2015] Steinlechner, M. (2015). Riemannian optimization for high-
dimensional tensor completion. Technical Report 05.2015, Mathematics Insti-
tute of Computational Science and Engineering, EPFL.

[Sudret, 2008] Sudret, B. (2008). Global sensitivity analysis using polynomial
chaos expansions. Reliability Engineering and System Safety, 93(7):964 – 979.

[Suter et al., 2013] Suter, S., Makhynia, M., and Pajarola, R. (2013). TAMRESH:
Tensor approximation multiresolution hierarchy for interactive volume visual-
ization. Computer Graphics Forum, 32(3pt2):151–160.

[Suter et al., 2011a] Suter, S. K., Iglesias Guitián, J. A., Marton, F., Agus, M.,
Elsener, A., Zollikofer, C. P., Gopi, M., Gobbetti, E., and Pajarola, R. (2011a).
Interactive multiscale tensor reconstruction for multiresolution volume vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
17(12):2135–2143.

[Suter et al., 2011b] Suter, S. K., Iglesias Guitián, J. A., Marton, F., Agus, M.,
Elsener, A., Zollikofer, C. P., Gopi, M., Gobbetti, E., and Pajarola, R. (2011b).
Interactive multiscale tensor reconstruction for multiresolution volume vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
17(12):2135–2143.

[Suter et al., 2010a] Suter, S. K., Zollikofer, C. P., and Pajarola, R. (2010a). Ap-
plication of tensor approximation to multiscale volume feature representations.
In Proceedings Vision, Modeling and Visualization, pages 203–210.

[Suter et al., 2010b] Suter, S. K., Zollikofer, C. P., and Pajarola, R. (2010b). Mul-
tiscale tensor approximation for volume data. Technical Report IFI-2010.04,
Department of Informatics, University of Zürich.

[Tapia, 2011] Tapia, E. (2011). A note on the computation of high-dimensional
integral images. Pattern Recognition Letters, 32(2):197–201.

[Tatu et al., 2012] Tatu, A., Maaß, F., Färber, I., Bertini, E., Schreck, T., Seidl, T.,
and Keim, D. A. (2012). Subspace search and visualization to make sense of al-
ternative clusterings in high-dimensional data. In Procedings IEEE Symposium
on Visual Analytics Science and Technology, pages 63–72.

BIBLIOGRAPHY 155

[Ten Berge et al., 1987] Ten Berge, J. M. F., De Leeuw, J., and Kroonenberg,
P. M. (1987). Some additional results on principal components analysis of
three-mode data by means of alternating least squares algorithms. Psychome-
trika, 52:183–191.

[Treib et al., 2012] Treib, M., Bürger, K., Reichl, F., Meneveau, C., Szalay, A.,
and Westermann, R. (2012). Turbulence visualization at the terascale on desk-
top PCs. IEEE Transactions on Visualization and Computer Graphics (Proc.
Scientific Visualization 2012), 18(12):2169–2177.

[Tsai, 2009] Tsai, Y.-T. (2009). Parametric representations and tensor approxi-
mation algorithms for real-time data-driven rendering. PhD thesis, National
Chiao Tung University.

[Tsai, 2015] Tsai, Y.-T. (2015). Multiway K-clustered tensor approximation: To-
ward high-performance photorealistic data-driven rendering. ACM Transac-
tions on Graphics, 34(5):157:1–15.

[Tsai and Shih, 2012] Tsai, Y.-T. and Shih, Z.-C. (2012). K-clustered tensor ap-
proximation: A sparse multilinear model for real-time rendering. ACM Trans-
actions on Graphics, 31(3).

[Tucker, 1966] Tucker, L. R. (1966). Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311.

[Tyrtyshnikov, 2000] Tyrtyshnikov, E. E. (2000). Incomplete cross approxima-
tion in the mosaic–skeleton method. Computing, 64(4):367–380.

[Vasilescu and Terzopoulos, 2007] Vasilescu, M. A. O. and Terzopoulos, D.
(2007). Multilinear projection for appearance-based recognition in the ten-
sor framework. In IEEE International Conference on Computer Vision, pages
1–8.

[Vervliet et al., 2014] Vervliet, N., Debals, O., Sorber, L., and Lathauwer, L. D.
(2014). Breaking the curse of dimensionality using decompositions of incom-
plete tensors: Tensor-based scientific computing in big data analysis. IEEE
Signal Processing Magazine, 31(5):71–79.

[Vlasic et al., 2005] Vlasic, D., Brand, M., Pfister, H., and Popović, J. (2005).
Face transfer with multilinear models. In ACM SIGGRAPH, pages 426–433,
New York, NY, USA. ACM.

[Wang and Ahuja, 2004] Wang, H. and Ahuja, N. (2004). Compact representa-
tion of multidimensional data using tensor rank-one decomposition. In Pro-
ceedings International Conference on Pattern Recognition, pages 44–47.

156 BIBLIOGRAPHY

[Wei and Tao, 2010] Wei, Y. and Tao, L. (2010). Efficient histogram-based slid-
ing window. In Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, pages 3003–3010.

[Weiss, 2006] Weiss, B. (2006). Fast median and bilateral filtering. ACM Trans-
actions on Graphics, 25(3):519–526.

[Wetzstein et al., 2012] Wetzstein, G., Lanman, D., Hirsch, M., and Raskar,
R. (2012). Tensor displays: Compressive light field synthesis using multi-
layer displays with directional backlighting. ACM Transactions on Graphics,
31(4):80:1–11.

[Wu et al., 2008] Wu, Q., Xia, T., Chen, C., Lin, H.-Y. S., Wang, H., and Yu,
Y. (2008). Hierarchical tensor approximation of multidimensional visual data.
IEEE Transactions on Visualization and Computer Graphics, 14(1):186–199.

[Wu et al., 2007] Wu, Q., Xia, T., and Yu, Y. (2007). Hierarchical tensor ap-
proximation of multidimensional images. In Proceedings IEEE International
Conference in Image Processing, volume 4, pages IV–49–IV–52.

[Wu et al., 2000] Wu, Y.-L., Agrawal, D., and El Abbadi, A. (2000). Using
wavelet decomposition to support progressive and approximate range-sum
queries over data cubes. In Proceedings International Conference on Infor-
mation and Knowledge Management, pages 414–421.

[Xu et al., 2010] Xu, L., Lee, T.-Y., and Shen, H.-W. (2010). An information-
theoretic framework for flow visualization. IEEE Transactions on Visualization
and Computer Graphics, 16(6):1216–1224.

[Yeo and Liu, 1995] Yeo, B.-L. and Liu, B. (1995). Volume rendering of DCT-
based compressed 3D scalar data. IEEE Transactions on Visualization and
Computer Graphics, 1(1):29–43.

[Zhang et al., 2015a] Zhang, X., Xu, Z., Jia, N., Yang, W., Feng, Q., Chen, W.,
and Feng, Y. (2015a). Denoising of 3D magnetic resonance images by using
higher-order singular value decomposition. Medical Image Analysis, 19(1):75–
86.

[Zhang et al., 2015b] Zhang, Z., Yang, X., Oseledets, I. V., Karniadakis, G. E.,
and Daniel, L. (2015b). Enabling high-dimensional hierarchical uncertainty
quantification by ANOVA and tensor-train decomposition. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(1):63–76.

157

[Zhao et al., 2016] Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki, A.
(2016). Tensor ring decomposition. CoRR, abs/1606.05535.

CURRICULUM VITAE

Personal Information

Name Rafael Ballester-Ripoll
Date of birth July 31st, 1989
Place of birth Gandia, Spain

Education

2012-2017: Doctoral studies in Informatics at the Department of Informatics
(University of Zurich), Zurich, Switzerland

2006-2012: Dual degree (BSc and MSc Mathematics; BSc and MSc Computer
Science) at Universitat Politècnica de Catalunya, Barcelona, Spain

2002-2006: Secondary education at I. E. S. Antoni Llidó, Xàbia, Spain

Publications

Journal Articles

R. Ballester-Ripoll, E. G. Paredes, R. Pajarola. Sobol Tensor Trains for Global
Sensitivity Analysis [Under review in Reliability Engineering and System Safety].

159

160 CURRICULUM VITAE

R. Ballester-Ripoll, E. G. Paredes, R. Pajarola. Tensor Algorithms for Advanced
Sensitivity Metrics [Accepted in SIAM Journal on Uncertainty Quantification].

R. Ballester-Ripoll, D. Steiner, R. Pajarola. Multiresolution Volume Filtering in
the Tensor Compressed Domain. IEEE Transactions on Visualization and Com-
puter Graphics, 2017.

R. Ballester-Ripoll, R. Pajarola. Tensor Decompositions for Integral Histogram
Compression and Look-Up. IEEE Transactions on Visualization and Computer
Graphics, 2017.

R. Ballester-Ripoll, R. Pajarola. Lossy Volume Compression Using Tucker Trun-
cation and Thresholding. The Visual Computer; 31: 1-14, 2015.

R. Ballester-Ripoll, S. K. Suter, R. Pajarola. Analysis of Tensor Approximation
for Compression-Domain Volume Visualization. Computers & Graphics; 47: 34-
47, 2015.

Conference Publications

R. Ballester-Ripoll, E. G. Paredes, R. Pajarola. A Surrogate Visualization Model
Using the Tensor Train Format. SIGGRAPH Asia Symposium on Visualization
(Macao, China); Dec. 2016.

R. Ballester-Ripoll, R. Pajarola. Compression of BTFs Using the Tensor Train
Decomposition. Pacific Graphics Short Papers (Okinawa, Japan); Oct. 2016.

Miscellaneous

B. Flueckiger, N. Evirgen, E. G. Paredes, R. Ballester-Ripoll, R. Pajarola. Deep
Learning Tools for Foreground-Aware Analysis of Film Colors [abstract]. Work-
shop on Computer Vision in Digital Humanities (Montreal, Canada), Aug. 2017.

R. Ballester-Ripoll, R. Pajarola. Tensor Methods in Visual Computing [tutorial].
IEEE Visualization (Baltimore, USA), Oct. 2016.

R. Ballester-Ripoll, S. K. Suter, R. Pajarola. Analysis of Tensor Approxima-
tion for Compression-Domain Volume Visualization [talk]. Spring Conference
on Computer Graphics (Smolenice, Slovakia), Apr. 2016.

161

R. Ballester-Ripoll. Visual Data Processing in the Tensor Compressed Domain
[talk]. Workshop on Tensor Decompositions and Applications (Leuven, Belgium),
Jan. 2016.

	Abstract
	Kurzfassung
	Acknowledgments
	Notations
	List of Figures
	List of Tables
	I Dense Data: Compression and Processing
	1 Introduction
	1.1 High-dimensional Visualization Challenges
	1.2 Tensor Decompositions
	1.3 Research Questions
	1.4 Proposed Framework
	1.5 Contributions
	1.6 Dissertation Overview

	2 Tensor Models
	2.1 Overview
	2.2 CANDECOMP/PARAFAC
	2.3 Tucker
	2.4 Tensor Train
	2.5 General Tensor Networks
	2.6 Variants and Hybrid Models
	2.7 Operating with Tensors
	2.7.1 Factor Matrix Operations
	2.7.2 TT Format
	2.7.3 Adaptive Cross-Approximation

	3 Tensor Compression
	3.1 Overview
	3.2 Background
	3.3 Compression with Tucker
	3.3.1 Core Reduction
	3.3.2 Further Remarks

	3.4 Proposed Algorithm
	3.4.1 HOSVD Transform
	3.4.2 Adaptive Chunk Partitioning
	3.4.3 Mask Encoding
	3.4.4 Factor Quantization

	3.5 Decompression
	3.6 Results
	3.7 Discussion

	4 Multiresolution Filtering
	4.1 Overview
	4.2 Background
	4.2.1 Multiresolution Filtering

	4.3 Octree Tucker Decomposition
	4.4 Tensor Compressed Domain Filtering
	4.5 Proposed Multiresolution Filtering
	4.5.1 Overview
	4.5.2 Decomposition Stage
	4.5.3 Basis Factor Matrix Filtering
	4.5.4 Reconstruction
	4.5.5 Rendering

	4.6 Results
	4.6.1 Software and Hardware Used
	4.6.2 Datasets and Parameters
	4.6.3 Multiresolution Remarks
	4.6.4 Guided Filter Extension
	4.6.5 Filtering Performance
	4.6.6 Rendering Performance

	4.7 Discussion

	5 Histogram Reconstruction
	5.1 Overview
	5.2 Background
	5.2.1 Efficient Multidimensional Histograms
	5.2.2 Summed Area Tables and Integral Histograms

	5.3 Integral Histogram Tensor Compression
	5.3.1 Slice Compression
	5.3.2 Sum-and-Compress

	5.4 Histogram Reconstruction
	5.4.1 Spatial Tensor Basis Manipulation
	5.4.2 Querying a TT-Compressed IH

	5.5 Non-rectangular ROIs
	5.5.1 Non-rectangular Reconstruction
	5.5.2 Histogram Field Reconstruction

	5.6 Results
	5.6.1 Hardware and Software Used
	5.6.2 Scalar Field Integral Histograms
	5.6.3 Vector Field Entropy
	5.6.4 Cross-Correlation Queries

	5.7 Discussion

	II Sparse Data: Interpolation and Learning
	6 Surrogate Modeling
	6.1 Overview
	6.2 Background
	6.3 Construction of TT Surrogates
	6.3.1 Preliminaries: Variable Range Discretization
	6.3.2 Construction From a Black-Box System
	6.3.3 From Categorical Data
	6.3.4 From an Auxiliary Regressor
	6.3.5 From Another Low-Rank Decomposition

	6.4 Visualization in the TT Format
	6.4.1 Reconstructing Compressed Subspaces
	6.4.2 From Tensor Train to Parallel Coordinates
	6.4.3 Bivariate Projections
	6.4.4 Finding Interesting Subspaces

	6.5 User Interaction
	6.6 Results
	6.6.1 Synthetic Simulation
	6.6.2 Saint-Venant Flood Model
	6.6.3 GEMM Matrix Product in the GPU

	6.7 Discussion

	7 Sensitivity Analysis
	7.1 Overview
	7.2 Background
	7.2.1 Sobol Decomposition
	7.2.2 Variance Components
	7.2.3 Related Indices
	7.2.4 Tensor Surrogates and Sensitivity Analysis

	7.3 The Sobol Tensor Train
	7.4 Computing Aggregated Indices
	7.5 Global Sensitivity Metrics and Queries
	7.5.1 Relevant Subsets of Variables
	7.5.2 Other Constraints

	7.6 Results
	7.6.1 Sobol ``G'' Function
	7.6.2 Piston Simulation
	7.6.3 GEMM Product

	7.7 Discussion

	8 Conclusions
	8.1 Summary
	8.2 Future Work
	8.2.1 High-dimensional Compression
	8.2.2 Categorical Visualization
	8.2.3 Multivalued Data
	8.2.4 Smooth Tensor Completion
	8.2.5 Content-based Surrogate Navigation

	A Decomposition Algorithms
	A.1 From Dense Data
	A.1.1 CP
	A.1.2 Tucker
	A.1.3 TT

	A.2 From a Fixed Sparse Sample Set
	A.3 Adaptive Sampling

	B Tensor Decomposition Software
	Bibliography
	Curriculum Vitae

