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Abstract

Outlier removal algorithms aim to detect and remove abnormal or negative data

which sufficiently differ from training samples. Since most object recognition or pose

estimation methods involve a hypothesise-and-test scheme, especially for large-scale

or real-time problem, outlier removal algorithms can be essential for desirable per-

formance. Unlike domain adaptation or transfer learning, outlier removal algorithms

usually do not have prior knowledge of negative samples during training. Rather than

having a universal solution, performing outlier removal algorithm usually depends on

the task and the applied machine learning technique.

In this thesis, we investigate the application of outlier removal algorithm in ob-

ject recognition and pose estimation problems. Specifically, we classify them into

three types and investigate one application from each: a comparative study for object

recognition in video as the distance-based approach; a new grouped outlier removal

method for robust ellipse fitting as the registration-based approach; and a novel real-

time background-aware 3D texture-less pose estimation method as the learning-based

approach.

The comparative study is centred around using awide choice of spatial and tempo-

ral consistencies to remove outlier feature points. State-of-the-art techniques are classi-

fied, implemented under a unified framework, and empirically evaluatedwith a newly

collected museum dataset. For geometric cues, we find that 3D object structure learnt

from a training video dataset improves the average video classification performance

dramatically. By contrast, for temporal cues, tracking visual fixation among video se-

quences has little impact on the accuracy, but significantly removes background fea-



ture points and reduces memory consumption. Furthermore, we propose a method

that integrates these two cues to exploit the advantages of both.

Then, we presents a registration-based outlier removal method which is capable of

fitting ellipse in real-time under high outlier rate, based on the phenomenon that out-

liers generated by ellipse edge point detector are likely to appear as groups due to real-

world nuisances, such as under partial occlusion or illumination change. To confront

the grouped outliers whilemaintaining the fitting efficiency, we introduce a proximity-

based ‘split andmerge’ approach to cluster the edge points, followed by a breadth-first

outlier removal process. The experiment shows that our algorithm achieves high per-

formance under a wide range of outlier ratio and noise level with various types of

realistic nuisances.

An outlier-aware extension of randomised decision forest is proposed and applied

to real-time 3D object pose estimation problem based on typical template matching

methods. A set of templates uniformly covering the pose space is generated during

training and the nearest neighbour to query point is found during testing. Since the

amount of data raised from the background is in the orders of magnitude more than

foreground during testing, it is desirable to reject the background early to save com-

putational power as much as possible. Hence the conventional randomised decision

tree is modified to a ternary tree, where each node, apart from the original children,

contains an additional ‘background rejection’ node. During testing, the query data

far from training samples will be detected and rejected along the propagation down

the trees. Furthermore, we propose the application of ‘fuzzy decision’ instead of bi-

nary when training the decision forest to raise the tolerant to ambiguous data samples

so that the sample near the decision boundary will be assigned to both left and right

child nodes. Our approach is also scalable to large datasets, since the tree structure

naturally provides a logarithm time complexity to the number of objects. Finally, we

further reduce the validation stage with a fast breadth-first scheme. The results show



that our approach outperforms state-of-the-arts on efficiency while maintaining com-

parable accuracy.
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1CHAPTER

Introduction

Contents

1.1 Problem Definition 3

1.2 Thesis Structure and Contributions 7

With the recent breakthroughs in augmented reality (AR) technology, living in a

world that is a blend of the virtual and real seems a tangible future. Super-imposing

virtual objects, such as projecting navigation details onto windscreen becomes a com-

mon practice in many AR applications, where object recognition and pose estimation

algorithms play an fundamental role.

Microsoft Hololens™ as shown in Figure Fig. 1.3 (a), also known under develop-

ment as Project Baraboo, is a pair of mixed reality head-mounted display smartglasses

released in 2016. Through the glasses, the user can place, scale or model a variety of

3D objects around them, which provides great convenience to designers, gamers, busi-

nessmen and more. One of the most important technologies behind it is its ability to

1



Chapter 1. Introduction

capture and recognise the scene and 3D objects around the user. Figure Fig. 1.3 (b),

‘Search by image’, allows user to search for related images by uploading an image.

This is achieved by analysing and comparing the submitted image with other images

in the databases. The common algorithms include many techniques involved in object

recognition tasks. In Figure Fig. 1.3 (c), Google’s self-driving car is a promising fully

self-driving technology that will handle all the driving without taking the wheel; it

will have a big impact on improving road safety and mobility. While navigating, the

sensors in the vehicle accurately detect pedestrians, cyclists, vehicles and more from a

large distance on the fly. In the industry, monotonous tasks are labor-intensive. Fig-

ure Fig. 1.3 (d) shows a robot arm picking the workpieces in an automated factory.

With a good recognition accuracy, a great amount of human efforts and resources will

be saved. Despite the huge potential benefit, the development of most of the above

mentioned applications are still ongoing and have not been reliable enough to reach

commercially acceptance. This motivates us to further improve the performance of

object recognition and pose estimation algorithms.

2



1.1. Problem Definition

(a) Microsoft's HoloLens system (b) Reverse image search

 (c) Google self-driving car (d) Bin-Picking Robot System

Figure 1.1: Applications of object recognition and pose estimation.

1.1 Problem Definition

1.1.1 Object recognition and Pose estimation

Humans can interpret a multitude of objects without almost any efforts, despite the

possibility of image of the objects being varied in innumerable possibilities of identity-

preserving image transformations, including changing position, size, angle of view,

context and even shape deformation to some extend. Although the recognition mech-

anism in our brain remains poorly understood, scientists are doing their best efforts to

mimic the human visual system in modern object recognition algorithms.

3D object recognition and pose estimation remains a difficult problem in the sense

of pose accuracy and scalability despite many algorithms having been proposed in

3



Chapter 1. Introduction

the past few decades. Since there are 6 degrees of freedom (3 in translation and 3

in rotation), it has also dubbed 6DoF pose estimation. Even if we quantise the pose

space, an object still needs to render hundred or thousands of possible poses in order

to have a satisfying accuracy. This naturally costs much more computational power

compared to the object recognition problem, which explains how state-of-the-art 2D

image recognition algorithms can scale to millions of object classes, whilst 6DoF pose

estimation algorithms usually tackle only a few or tens of them.

To retrieve object identity and poses, the first challenge is to accommodate the ex-

traordinary amount of visual nuisances that exhibit real-world scenarios. Even mod-

erate scale, pose or light changes in an object could lead to significant changes of the

pixel array, as illustrated in Figure Fig. 1.2. To compensate for the performance loss

from complex nuisances, a naive solution is to collect a more complete description of

objects during training. However, this is usually impractical, since manually collecting

and labelling object data is labour-intensive, time consuming and error-prone.

In addition to object identity, pose estimation tasks usually require tens of thou-

sands of training data for each object to uniformly cover the pose space. This grows

exponentially with the pose degrees of freedom. For instance, to estimate the 3D pose

of a rigid object, 6 degrees of freedom are needed. This is even more labour-intensive

or simply infeasible for manual annotation.

Apart from labelling, since the search space grows exponentially with degrees of

freedom, it is much more difficult to precisely locate a pose parameter. Also, in many

algorithms, especially non-parametric ones, more training data usually leads to larger

memory consumption, as well as slower runtime. This hinders applications that re-

quire real-time performance.

An economic and effective way of collecting training data for 3D objects is to render

a large quantity of synthetic training images. Annotations can be obtained without ef-

4



1.1. Problem Definition

Off-centre / Partial Views Scale (Far) Scale (Near)

Occlusion Illumination change Extreme Views

Figure 1.2: Examples of visual variations from a single object instance of our proposed
V&A museum video-based object recognition dataset.

fort with this method. However, the lack of background or ‘negative’ training samples

usually leads to a high false positive rate during testing. Hence, one needs to be able to

accurately and efficiently tell normal and negative data apart, whilst keeping in mind

the discrepancy between synthetic positive training data and real positive data. On the

other hand, the object of interest in many realistic scenarios can be very small such that

almost all image regions are background clutters. Rapidly locating the region of inter-

est with high recall rate before an expensive classification algorithm will vastly reduce

5



Chapter 1. Introduction

computation complexity. These highly motivate the improvement of outlier removal

algorithms for overall performance.

1.1.2 Outlier Removal in Computer Vision tasks

Outlier removal is an indispensable component in many domains. In computer vision

tasks, often assuming the available training data are ‘positive’, during testing, positive

matching and negative (or outlier) detection are simultaneously conducted with ma-

chine learning techniques to achieve better recognition performance. The concept is

closely related to ‘one-class learning’, but differs from Domain Adaptation or Transfer

Learning, where partial novel data are available during training. In this thesis, we fo-

cus on using outlier removal techniques in various computer vision tasks to verify the

positive data and/or remove the outlier. Also we study how these techniques can be

significant in general machine learning systems.

Outlier removal methods have been extensively explored in many domains, such

as medical diagnosis [Hauskrecht et al., 2013], spam detection [Idris et al., 2015], sen-

sor network [Branch et al., 2013], astronomy catalogues [Dutta et al., 2007], data min-

ing and so on. In the field of computer vision, they been applied to detect abnormal

behaviours in video surveillance [Bouwmans and Zahzah, 2014], live structure and

motion estimation for 3D reconstruction [Szeliski, 2010], building large face detection

dataset [Ng and Winkler, 2014b] and many more in object recognition, detection and

pose estimation pipelines [Hao et al., 2013a,Beis and Lowe, 1997,Hinterstoisser et al.,

2012b, Gordon and Lowe, 2006a]. A more detailed introduction will be presented in

the next chapter.

6



1.2. Thesis Structure and Contributions

Figure 1.3: A class-generic object detector [Alexe et al., 2010] that discards non-object
sliding windows in the image.

1.2 Thesis Structure and Contributions

This thesis investigates how to adopt outlier removal in object recognition, ellipse fit-

ting and pose estimation problem. We start by a general review of state-of-the-art out-

lier removal methods in Chapter 2. Chapter 3 covers a comparative study of how

spatial and temporal information can be used for detecting outliers under a modern

object recognition framework. Chapter 5 introduces a registration-based outlier re-

moval method for ellipse fitting problem. A distance-based method is proposed in

Chapter 4. Finally, Chapter 6 gives a conclusion and a plan for the future work.

Highlights of the main chapters are listed as below:

Chapter 2. A Review of Outlier Removal Methods

This chapter gives a general and timely review of state-of-the-art outlier removal

methods. Judging through the machine learning techniques, these methods are cate-

gorised by their applications. This categorisation also lays out a structure for the fol-

lowing chapters.

Chapter 3. Outlier removal in Video-based Object Recognition: A Comparative

Study

This chapter conducts a comparative study of how outliers removal methods are

7



Chapter 1. Introduction

applied under different object recognition methods for video-based rigid object in-

stance recognition (VbOR). First, the diverse state-of-the-art VbOR techniques are cat-

egorised, extended and evaluated empirically using a newly collected video dataset

which consists of complex sculptures in clutter scenes. During the experiments, we in-

vestigate how to utilise the geometric and temporal cues provided by egocentric video

sequences to detect the outlier, and hence, improve the performance of object recog-

nition. Based on the experimental results, we analysed the pros and cons of these

methods and reached the following conclusions: for geometric cues, the 3D object

structure learnt from a training video dataset improves the average video classifica-

tion performance dramatically. By contrast, for temporal cues, tracking visual fixation

among video sequences has little impact on the accuracy, but significantly accelerates

the matching process by removing outlier feature points detected in the query frame.

Furthermore, we proposed a method that integrated these two important cues to ex-

ploit the advantages of both.

The contributions for this chapter are summarised as below:

• A dataset named Sculptures in Victoria and Albert (V&A) Museum dataset is col-

lected from an egocentric viewpoint, then processed for evaluating different

types of video-based object recognition methods.

• Diverse state-of-the-art object recognition frameworks and their video-based ex-

tensions are surveyed and evaluated.

• A hybrid solution from object recognition frameworks is further proposed to

combine the advantages of both temporal and spatial cues.

Chapter 4. Real-time Background-Aware 3D Textureless Object Pose Estimation

An outlier removal method is proposed and applied to a 3D object pose estimation

problem. A typical solution for 3D pose estimation is template matching. A set of tem-

plates uniformly covering the pose space is generated during training, and the nearest

8



1.2. Thesis Structure and Contributions

neighbour to query template is found during testing. Using random forest to speed up

this searching process is our baseline. Since the amount of outlier data are in the orders

of magnitude more than normal data during testing, it is desirable not only to perform

outlier removal, but also detect them using as little computational power as possible.

Hence, the conventional random forest is modified to a ternary tree, where each node,

apart from the original children, contains an additional ‘background removal’ node.

During testing, when query data are propagated down the decision trees, outliers will

be detected and rejected when they fall into a ‘background’ node before reaching the

leaf nodes. Furthermore, when under low signal-to-noise ratio, the error accumulation

in random forest is usually the cause of low performance, especially with high dimen-

sional data as in our case. To reduce the amount of error, we propose using a ‘fuzzy

split’ scheme, where, at each split node, ambiguous data near the decision boundary

will be assigned to both left and right child nodes. Hence, the query template is more

likely to hit the true positive leaf node. The results show that our approach outper-

forms the state-of-the-art approaches with regard to efficiency, while maintaining a

comparable accuracy.

The contributions for this chapter are summarised as below:

• Proposed a novel randomised decision ternary tree for real-time 3D object pose

estimation. Each split node in the tree carries an extra ‘rejector’ child for early

outlier termination.

• The ternary tree is trained on LineMOD templates [Hinterstoisser et al., 2012a],

a novel ‘fuzzy rule’ applied to the split function to deal with insufficient training

samples.

• A split function for learning parameters of the ‘rejector’ node is proposed.

• A fast breadth-first leaf validation scheme is adopted for further speed-up.

9



Chapter 1. Introduction

Chapter 5. A Grouped-Outlier-Aware Registration-based method for Robust El-

lipse Fitting

This chapter presents a case study of new outlier removal method which is capa-

ble of fitting ellipse in real-time under high outlier rate in a special case, based on the

phenomenon that outliers generated by ellipse edge point detector are likely to appear

as groups due to real-world nuisances, such as under partial occlusion or illumination

change from shadows. To confront the grouped outliers while maintaining the fitting

efficiency, we introduce a proximity-based ‘split and merge’ approach to cluster the

edge points into subsets, following by a breath-first outlier removal process. The ex-

periment shows that our algorithm achieves realtime performance under a wide range

of inlier ratio and noise level with various types of realistic nuisances.

The contributions for this chapter are summarised as below:

• Proposed a novel outlier removalmethod to dealwith grouped outliers that com-

monly appear in real-world ellipse fitting task.

• Proposed a dataset that consists of real images of elliptic industrial mechanical

parts and synthetic elliptic shapes with noise and outliers.

• Applied the outlier removal method to speed-up and eliminate grouped outliers

in an ellipse fitting method.

10
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A Review of Outlier Removal
Methods

Contents
2.1 Motivation 11

2.2 What is outlier 13

2.3 Challenges 14

2.4 Related works 16

2.5 Aspects of Outlier Removal Method 18

2.1 Motivation

Outlier removal methods are classical techniques that widely applied in pattern recog-

nition and machine learning tasks. In the early time around 1970s, machine learning
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Chapter 2. A Review of Outlier Removal Methods

methods, such as k-means clustering [MacQueen et al., 1967] orGaussian fit, arewidely

applied for their simpleness but not robust enough to outliers. The outlier removal

methods are naturally engaged to solve the problem. As time passed, sophisticated

algorithms like Support Vector Machines (SVM) [Cortes and Vapnik, 1995] or Random

Forest (RF) [Breiman, 2001] are supported to achieve better performance and also able

to confront the noises or outliers in larger-scaled datasets. It seems that the outlier

removal methods were no longer required to train a good classification model.

However, the demand of outlier removal methods are returned to life when the

progress of the ‘Big Data revolution’ started in 2010s. For whatever the industry con-

nected with ultra-fast broadbands, the incoming data are growing exponentially and

everything seems digitalised. The state-of-the-art algorithms like deep neural net-

works (DNN) allow us to train very complex models with million real world data to

build commercial-ready applications. At the same time, it is almost impossible to com-

pletely rely on human effort to clean and label the data, they are instead collected au-

tomatically in an unsupervised manner and filtered by outlier removal methods.

Apart from data mining, data are usually too redundant to be used effectively, es-

pecially in real-time tasks. When computer is asked to query an object of interest from

a video clip, it may scan thousands of image frames. With a complex computer vision

algorithm, this greatly wastes computational power and shall be preprocessed first by

suitable outlier removal methods. Outlier removal can coarsely reduce search space

in many machine learning systems to overcome high computational cost. This step is

especially crucial when the signal-to-noise ratio is extremely low, such as in many real-

world detection tasks. The region-of-interest sometimes occupy only a tiny portion of

thewhole image. In this case, applying the traditional slidingwindow to check all pos-

sible scale and location could be time consuming. While with a proper outlier removal

technique, the ‘outliers’, such as proposals lie on the background, can be removed in a

manner of lower order of complexity.
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2.2 What is outlier

Outliers are considerably different from training data, or observations that deviate so

much from other observations as to arouse suspicion that it was generated by a dif-

ferent mechanism [Hawkins, 1980]. As the toy examples shown in Fig. 2.1, a datum

is considered outlier if it is sufficiently distinct from the majorities. For example in

the figure (b), most data points (xi, yi), i = 1, ..., n roughly follow a line function where

y = α + βx, except an outlier data point that does not fit at all.

>��������������@
Inliers

Outlier

(a)

Outlier

Inliers

(b)
Inliers

Outlier

(c)
A numerical sequence A set of data points A set of images

Figure 2.1: Toy examples of different outlier types.

Outliers occur with various reasons, such as entry errors from human or unusual

behaviours in the target subject, but the term should be distinct from the ‘noise’, as

well as they are dealt with different techniques in general. An outlier can be mean-

ingful and generated from a ‘true’ signal, while noises are mostly void and should be

fixed or discarded. Apart from removing outliers, sometimes outliers are more of in-

terest to the data analyst, these methods are widely applied in anomaly detection, for

surveilling terrorist or malicious activities. Moreover, same techniques are used for

novelty detection to learn new patterns from the data, such as new trends in social

media.

13
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2.3 Challenges

Anatural approach for outlier removal is to definedecision boundaries around ‘normal

observations’ so that the rests are declared as outlier. However, there are many factors

that make it very challenging for real-world tasks.

First, precisely locating such boundaries can be extremely difficult, especially when

there is little prior knowledge of the inlier distribution. Thatmeans an observation that

near to the boundary is likely to be misclassified. Even worse, the decision boundary

may change and evolve dynamically over time.

Second, even within the same pieces of data, there is no universal definition of

what an inlier or ‘normal observation’ is and what is not, since it is always binding to

the task. For example, the region-of-interests in a positive dataset for object recogni-

tion, detection and semantic segmentation tasks can be quite different, as illustrated in

Fig. 2.2). Thismakes the setting of inlier boundaries task specific, hence imply different

outlier removal approach.

Third, despite outlier and noise are generated by different mechanic, they may ap-

pear to be the same. When both related techniques are applied, they might inference

with each other and produce suboptimal results. For example, if we misclassify a part

of noises as outlier and removed first, the estimated noise model would be biased then

the quality of de-noising is decreased, and vice versa.

Fourth, labelled data is often still required to train a model used by outlier removal

methods.

Finally, when deploying real-world applications with outlier removal as prepro-

cessing stage, it should has much less computational cost than validating an inlier.

Also, despite it may save an order of magnitude or more computations, it should avoid
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Outlier (Obj. Recg)

Inlier (Obj. Recg.)

Inlier (Obj. Det.)

Outlier (Obj. Det.)
Inlier (Obj. Segm.)

Figure 2.2: Different pixel-region-of-interest in a positive dataset for object recognition,
detection, semantic segmentation task.

to affect the overall precision of the entire system. A trade-off between precision and

recall needs careful decision.
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2.4 Related works

As illustrated in Fig. 2.3, vast amount of applications can be benefitted from outlier

removal methods, with not less technical approaches.

…

Network Surveillance

Fraud Detection

Computer Vision

Natural Language Processing

…

Image Classification

Object Detection

6-DOF Pose Estimation

Shape-from-X

3D Reconstruction

Semantic Segmentation

Applications Research Areas

…

Machine Learning
(Learning-based)

Rule-Based Systems

Information Theory

Statistics 

Distance-based

Iterative Methods
(Registration-based)

Random Forest
Deep Neural Network

…

Support Vector Machine

…

Preemptive-RANSAC

RANSAC

…
Proximity Graph

K-means Clustering

Approximate Nearest Neighbour

Speech Recognition

Anti-Spam

Knowledge Graph Embedding

Topic Modelling

…

Information Extraction

Figure 2.3: Applications that utilise outlier removal methods and the research areas
behind the techniques.

In this thesis, we focus on computer vision applicationswith aids of outlier removal

methods.

2.4.1 Computer Vision Applications

For computer vision tasks, as illustrated in Fig. 2.4, as long as there exists uninterested

observations or irrelevant data, whether in training or testing stage, it usually worths

the effort to find an appropriate outlier removal method to boost the overall perfor-

mance and speed.

For image classification problem, a popular large-scale face recognition dataset
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FaceScrub [Ng and Winkler, 2014a] drew celebrity public figures from search engine,

then applied outlier detection classification and gender classification to validate visual

similarity for automatic data cleanse. A recent work on face recognition also show that

a refined dataset provide much better classification performance [Deng et al., 2018] (a

claim from the discussion in the author’s Github issue).

Some object recognition methods heavily rely on feature matching, taking the fea-

ture descriptors of interest in a set, then match all other features in another set using

some distance calculation. One straight forward example would be calculating the

fundamental matrix between two camera views in the same scene, by finding match-

ing local features in both images. This step is crucial in many industrial applications,

including 3D reconstruction, motion tracking, object recognition, robot navigation and

more. There are lots of works on finding the interest points and constructing invariant

local descriptors, such as the classical SIFT descriptor [Lowe, 2004a] or a more recent

work KAZE descriptor [Alcantarilla et al., 2012]. Here we assume the images are pro-

cessed into a set of some local feature descriptors.

LineMOD [Hinterstoisser et al., 2012a] applies two simple but effective outlier re-

moval steps based on depth and colour thresholding check. This results a great re-

duction in computational complexity and thus the overall pipeline achieves state-of-

the-art speed at the moment. For recent works with convolutional neural network,

MTCNN [Zhang et al., 2016] proposed a deep cascaded multitask framework to pre-

dict face and landmark location in a coarse-to-fine manner; Faster R-CNN [Ren et al.,

2017] introduced a Region Proposal Network (RPN) for fast generating detection pro-

posals and then fine-tuning for object detection.

For yet another example related to pair-matching between image local descriptors,

such as in a 6-DOF pose estimation, SLAM (simultaneous localisation andmapping) or

SfM (Structure-from-Motion) system, outlier removal methods are applied to quickly

discard most of the mismatched correspondences, or ‘negative’ descriptor candidates
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that do not follow the geometric or spatiotemporal constraints.

In a curve fitting problem, edge curve and points are extracted in order to perform

an industrial shape fitting task. Outliers can arise from the contaminations on the ob-

ject, the sensor or inaccurate edge extraction method. As the generation mechanic of

‘outliers’ can be completely different from the ‘noise’ that we expects, outlier removal

method should be applied as a pre-process stage to ensure the performance of follow-

ing shape fitting algorithm.

(a) Image instance retrieval (b) Image stitching (c) Structure-from-Motion

(d) Ellipse fitting (e) 6-DOF pose estimation

Figure 2.4: Computer vision applications that heavily utilise outlier removal.

2.5 Aspects of Outlier Removal Method

In this subsection, we split outlier removal methods into four factors: data type, data

relation type and label. All factors greatly affect the decision of which approach we

should choose to solve the problem.
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2.5.1 Data

The first important aspect of all outlier removal methods would be the nature of input

data, i.e. the inner-relationship of data. In the book of Introduction to data mining [Tan,

2018], data are a collection of data objects: they can be records, points, cases, samples

or entities. Each data instance can be further described into attributes, also known as

variables, fields, characteristics, dimensions, or features. An attribute can be discrete or

continuous. Discrete attribute has only a finite or countably infinite set of values, such

as a set of word or zip codes, binary value is included as a special case. Continuous

attribute has real numbers as attribute values, such as pixel intensity or location, they

are often represented as floating point variables. Furthermore, a data instance usu-

ally consists of multiple attributes, i.e. multivariate, and can be a mixtures of attribute

types.

The nature of data attributes determine the availability of outlier removal methods.

For methods based on machine learning or statistical models, the data are required

to be continuous or categorical values. While when pairwise distances between data

are more of interest, distance-based methods are suitable, e.g. approximate nearest

neighbour or proximity graph.

In other hand, important information exist in the relations between data, some-

times we treat the set of data as a whole. For example, a video sequence contains

temporal information (timestamp) and spatial information (image pixel location), and

these information are vital in many applications such as behaviour analysis. In 3D re-

construction or 6-dof object pose estimation problems, we also assume the rigid objects

share consistent geometric relationship across different point of views. In such cases,

we might treat the data as a graph or a set of graphs.
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2.5.2 Relation

Collective

Sequential/GraphDiscrete Continuous

Contextual

Individual

Behavioural

(1b) A data point in a 
feature space

(1c) A trajectory in 
feature space

(1a) A letter B in a set 
of A

(2b) A 3D location(2a) A cardinal 
direction

(2c) A trajectory in 3D 
geometric space

(3a) An answer in 
answer sheet

(4b) 3D point clouds (4c) Trajectories of 
location of crowds

(4a) Human language

(3b) A edge point of a 
circle

(3c) A visual trajectory 
from egocentric video

A A A A A
A A A A B
A A A A A
A A A A A

Figure 2.5: Examples of data type versus relation type.
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2.5.2.1 Individual

In this subsection, we further categorise the data by their inter-relationship, which is

also deterministic in choosing an appropriate outlier removal method. There are four

relation categories of data attributes: individual, contextual, behaviour and collective.

In Fig. 2.5, we present a table with examples for each combination of input type and

relation type.

For the simplest relation ‘individual’, data is treated as a set of individual instance,

i.e. we do not have to query other instances to distinguish an outlier data. Most types

of data used for outlier removal method fall into this category.

In the example of Fig. 2.5 1a, without knowing other data, we can safely classify a

letter as outlier as long as it is not an ‘A’. In machine learning problems, as illustrated

in Fig. 2.5 1b, we often represent data as high-dimensional vectors in a feature space,

so that we can easily split or measure the data similarity. Similar techniques can be

applied to remove the outlier data point. In Fig. 2.5 1b, a trajectory, i.e. a data sequence

or graph, in feature space may represent a ‘special move’ of a data point, it has uses in

motion recognition or some surveillance systems.

Learning-basedmethods are often adopted to approach this problem, by training a

classifier (SVM, boosting, decision forest, neural network, etc.) to classify outlier data.

Since only ‘normal’ data are available during training, this is also known as ‘one-class

learning’. The essence of learning-based methods is to find a tight decision boundary

based on the distribution of normal data. A common example is the series work of one-

class SVM [Schölkopf et al., 1999,Tax and Duin, 1999], as illustrated in Figure Fig. 2.6.

Unlike conventional two-class SVMs, one-class SVM [Schölkopf et al., 1999] determines

the novelty boundary in the feature space corresponding to a kernel by separating the

transformed training data near the boundary, i.e. , support vectors, from their origin

in the feature space with maximum margin.
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One-class Classifier

Outlier

Feature 1

Feature 2

Figure 2.6: A one-class classifier applied to a toy example. The solid line represents the
conventional classifier that distinguishes between ‘apple’ and ‘orange’, while dash line
is the one-class classifier that detects the outlier that does not belong to any of classes.

[Tax and Duin, 2004] proposed another support-vector-based method called the

support vector data description (SVDD). Instead of hyperplane, SVDD uses the min-

imum hypersphere that contains most normal data as the outlier boundary. The

method is illustrated in Figure Fig. 2.7. The method is claimed to be robust against

outliers in the training set and is capable of tightening the description by using nega-

tive examples.

Another line of work is to expand one-class learning into ensemble learning. In-

spired by the barrier methods from the theory of constrained optimisation, [Rätsch

et al., 2002] proposed one-class boosting, which uses a convex combination of base hy-

potheses (decision stumps) to decide whether or not a query point is an outlier. [Désir

et al., 2013] designed one-class random forest by synthesising outlier samples in the

places where training data points are sparsely located.
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Figure 2.7: Figure 2 in the paper of [Tax andDuin, 2004]. It shows a tightly trained data
description on a banana shaped data set, a good description should cover all target
data but includes no superfluous space. Outlier removal problem can make good of
this boundary. They also applied a polynomial kernel with varying degrees. Support
vectors are indicated by the solid circles, the dashed line is the description boundary.

2.5.2.2 Contextual

Some data need context to be meaningful, location is one of the typical examples. De-

pending on the starting point, different combination of directions may point to the

same place while same directions may result in different places. So whether a contex-

tual data is an outlier depends on its relationship with other data but not its ‘absolute

value’. Time-series data is also often treated as contextual data.

When the data are contextual, the most straightforward approach is leveraging the

neighbourhood. However, a real world scene usually captures a large number of dis-

tinctive features, thus pairwise matching through exhaustive search is too expensive

to be adopted. The non-parametric nature usually takes more computation than we

can afford To check if m data points are outliers in a dataset containing n data points,

the complexity of determining its k-nearest neighbour distance is O(nm). Hence it is

obviously infeasible to be directly applied to large datasets .

Thewidely usedmethods to accelerate the process are known as approximate near-
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est neighbour (ANN) methods, aiming to measure the distance from the query to a

large set in sublinear complexity, often in a high dimensional feature space. One choice

is the k-nearest neighbour graph (k-NN) approach by [Ismo et al., 2004], where data

points that have large k-nearest-neighbour distance are considered as outliers. A sim-

plified example is illustrated in Figure Fig. 2.8. A large number of literatures has dis-

cussed about improving the accuracy or speeding up NN methods [Muja and Lowe,

2014,Behmo et al., 2010,Boiman et al., 2008,McCann and Lowe, 2012,Tuytelaars et al.,

2011]. However, these methods only care about the matching performance on a single

query feature and every match is assumed to be valid or of interest. In many cases,

most of the queries are completely irrelevant, i.e. outliers, causing waste of computa-

tional power and sometimes this even disturbs the results of later stages.

To deal with irrelevant queries, or the ‘outlier’ queries, distance-based outlier re-

moval methods are adopted. One of the merits of the distance-based outlier removal

approach is its ability to distinguish between inlier with additional ambient noise and

isolated outliers. This is because ambient noise usually causes lower k-nearest neigh-

bour distance but similar point-to-cluster-distance after clustering is applied.

There are various methods to reduce the complexity. The common solution is two-

fold: through index structures or pruning tricks. Index structures improve the speed

of data retrieval operations, but effectiveness degrades if the data is high-dimensional;

pruning trick or ‘early termination trick’ ignores data that have upper-bound estimate

on the k-nearest neighbour distance value below the rth best outlier score found so far.

A more concrete review of both approaches is presented in [Aggarwal, 2015].

In the literature, [Zhang andWang, 2006] propose aHigh-DimensionOutlying Sub-

space Detection (HighDOD) method with a search algorithm dynamically deciding

which subspace to search or prune. The decision is made based on a score that is com-

puted with global and local threshold pruning strategies. Compared to the original

k-NN, this method works efficiently in high-dimensional space. [Angiulli and Fassetti,
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Outlier

Feature 1

Feature 2

Inlier

k = 3

Figure 2.8: A k-nearest neighbour algorithm applied to a toy example, where k = 3. An
outlier is detected when the sum of distance of its nearest neighbours is significantly
larger than other data points.

2007] address detecting outliers in streams of data that have limited memory require-

ments, and returns an approximate answer based on accurate estimations with a sta-

tistical guarantee. [Ghoting et al., 2006] present a method called Recursive Binning and

Re-Projection (RBRP), a two-phase log-linear algorithm, forminingdistance-based out-

liers, particularly targeted at high-dimensional data sets.

In this thesis on Chapter 4, we adopt the idea from learning-based outlier removal

methods to learn the one-class ‘rejector’ split node in the randomised ternary tree. The

basic idea is to extract a representative subset of features, then ‘early reject’ the negative

sliding window proposals by a newly designed split function in randomised decision

ternary tree, so that the computation from fully validation is greatly saved. This para-

metric approach remove the outliers in a coarse-to-fine manner and has logarithmic

computational complexity that can deal with dataset that contains large number of
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object classes. The final validation stage adopts the distance-based method to avoid

overfitting due to insufficient but high-dimensional template features in each object

class. The preview is illustrated in Fig. 2.9. This approach can be potentially adopted

to any system that has large number of negative proposals.

Figure 2.9: Early rejection of background queries in Chapter 4.
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2.5.2.3 Behavioural

Data are behavioural if it tends to record behaviours under different conditions. One

example shown in Fig. 2.5 3a is an answer sheet students use in the exam. The same

answer can be either correct or not, depending on its question index. The points in

Fig. 2.5 3b are inlier given a set of circle parameter, however they are outlier if the circle

parameter changes. In 3c, a visual trajectory formed in egocentric video depends on

the egocentric motion.

For outlier removal problems involving behavioural data, if we have the knowledge

of how conditions and data are related, the whole problem can be deducted into sub-

sets for each of the conditions, so that we can treat behavioural data as individual data

to apply simplier techniques to solve the problem.

However, in most real-world applications, the relationship between conditions and

data aremissing. Or evenworse, the conditions are unknown, the only informationwe

have is that the data are behavioural and there are a known type of inter-relationship

within them. In some cases even the condition is completely latent.

In computer vision, the corresponding problem to this outlier type is geometric

fitting of shapes or visual fixation on objects. There are further problem settings, one

is to find the condition that most fit with the behavioural data. For example, given a

set of points, including outliers, then find the shape parameters that can maximise the

number of pairwisematches. Another problem setting is the opposite: find the subsets

of behavioural data that match with a given condition. For example, given one or a set

of fixed shape parameters, find out if the point sets generated by candidates exist in

the full point set. The first is often seen in geometric fitting problem, the latter is seen

in object image registration or pose estimation problem.

Solutions for both problem setting involve repeatedly estimating the transforma-

tion between point sets, where registration-based outlier removal method plays an im-
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portant role. The challenge is that ambiguous, irrelevant data or false matches are very

common in such problems, mostly much more than the positive matches.

To achieve the goal with limited computation resource, we need to first reduce the

number of pairwise testings between conditions and data, then validate all pairs to

find the inlier data subsets and corresponding conditions. The cost depends on the

complexity of transformation and its technique behind. These techniques are generally

involved in registration-based outlier removal method.

Registration-based methods, also known as model-fitting methods, are done by it-

eratively fitting a model to a set of query data that contains outlier points. When com-

pleted, all data points far from the model are considered outliers. One classic example

is random sample consensus, or RANSAC in short, proposed by [Fischler and Bolles,

1981a], illustrated in Fig. 2.10.

Since outliers are generated from other sources, which are completely irrelevant to

the true source, they should be removed first before calculating the model parameters.

Therefore, registration-based methods, e.g. , RANSAC-like algorithms, usually oper-

ate in a hypothesise-and-verify framework: a minimal subset of the input data points

is randomly selected and model parameters are estimated from this subset [Raguram

et al., 2008]. One advantage of this approach is that it can accurately estimate themodel

parameters under a very lowoutlier ratio as long as the computation time allows. How-

ever, as a non-deterministic algorithm, it takes no upper bound on the iterations to

complete the computation. In other words, more iterations increases the probability

of producing a better result. The number of samples required also exponentially in-

creases with the outlier level.

Registration-based methods for outlier removal have a long history.

RANSAC Fig. 2.10 was proposed in 1981, and became a fundamental tool in

many computer vision applications. Later works were shown to improve the effi-
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Feature 1

Feature 2

Outliers

Outliers
Inliers

Figure 2.10: A simple example of registration-based outlier removal method
(RANSAC). Assuming the point set contains inlier that can be fit to a line, this ap-
proach iteratively finds the best line that fits the most data points. All the data points
that do not fit the given model are considered outliers.

ciency of the algorithms and the accuracy of the estimated parameters, and reduce

the dependency on the setting of problem-specific constants. [Chum and Matas, 2002]

improved efficiency by introducing a pre-evaluation stage to quickly filter out the

bad hypothesis. [Torr and Zisserman, 2000] presented a robust estimator, MLESAC,

which is a generalisation of the RANSAC estimator. It evaluates the quality of the

consensus set, i.e. , the data randomly sampled for parameter estimation, to provide a

good initial estimation. [Nistér, 2005a] proposed a practical breadth-first preemption

scheme to accelerate the RANSAC process when the amount of candidates is fixed.

In this thesis on Chapter 3, we study the use of outlier removal methods from var-
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ious aspect and adopt a registration-based method to reconstruct 3D mesh models

during training, then fit the model to query feature points to decide target location

and pose whilst removing outliers. By combining with another spatial-temporal con-

straint, most of false matched local descriptor pairs are eliminated and thus the best

performance is achieved.

2.5.2.4 Collective

Collective relationship is relatively complicated. It usually needs the whole dataset to

determine if a data instance or a data subset is outlier, i.e. a single outlier or a set of

outliers might appear to be inlier themselves. In the example of Fig. 2.5 4a, human lan-

guage is complex and it is often hard to comprehend the meaning of a sentence until

read the whole paragraph. Fig. 2.5 4b and 4c show other examples when data is con-

tinuous or represented as graphs. In applications relate to anti-cyberattack or security

surveillance, unusual behaviours are also a sequence of events or actions, collective

outlier (also referred as anomaly) has to be explored to solve the problem.

In this thesis on Chapter 5, we propose a small improvement based on the clas-

sic RANSAC to deal with outliers that locationally grouped. Despite this assumption

conflicts the general definition of outliers, which an outlier cannot be modelled or pre-

dicted, we found that our approach can improve the shape fitting performance in real

world industrial tasks. In this approach, we apply a ‘split and merge’ technique to

group the edge points into subsets, i.e. collections of edge points and estimated ellipse

parameters.

2.5.3 Label

A label denotes whether the data instance is an inlier or outlier. In most machine

learning tasks, labels are obtained from a reliable source, i.e. a human or other pre-
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cise measurement tools, they require lots of effort and can be extremely expensive for

large-scale. Different from general classification problem, outlier is a kind of special

class that may have any patterns. In other words, it is usually an ‘A or not A’ problem

instead of ‘A or B’. Moreover, since outlier is defined as ‘a true signal that does not fol-

low the normal pattern’, the occurrence of an outlier is much rarer than an inlier, thus

collecting a set of outliers is also difficult.

That said, despite outliers are generate from different mechanics from inliers, in

reality it is worth trying to learn the mechanics that causes unwanted data. In Chap-

ter 5, a case-study of outlier removal in ellipse fitting with ‘grouped outliers’, we have

found that a great portion of outlier edge points are generated from the edge of other

objects or due to deformation of target objects. The observation is that in industrial

shape fitting problems, outliers appear to be in group in almost all the cases. Elim-

inating particularly the grouped outliers has better performance than general outlier

removal method. This is a case that labelling outliers may also improve the outlier

removal method.

2.5.4 Evaluation Metrics

To solely measure how well an outlier removal method performs, we often consid-

ered it as a two-class classification problem, i.e. classifying the inlier and outlier. Then,

various standard evaluation metrics can be applied, e.g. accuracy, receiver operating

characteristic curve (ROC-curve), precision, recall, and etc.. This approach is mainly

used to evaluate the scalability, ability of handling noise of outlier removal methods.

However, due to the need of ground truth, the evaluations are usually based on syn-

thetic datasets, or data with artificially injected outliers, such as several benchmark

datasets in UCI Knowledge Discovery in Databases Archive (UCI KDD) by [Bay et al.,

2000].
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In most machine learning applications that based on real world data, labelling in-

liers or outliers is infeasible. For example, the number of detected local interest points

on each image is typical a hundred to thousands in average. As the works in this the-

sis are application domain oriented, outlier removal methods are evaluated indirectly

from the application performance. Since in most applications, outlier removal method

is implemented as an extra stage to the original workflow, it is important to show the

overall improvement of either or both efficiency or accuracy.

ScSPM

2D-to-3D Matching + ePnP

Video Google + KPA

Video Google

Local-NBNN + TM w/o averaging

Local-NBNN + RANSAC

SIFT Matching + RANSAC

Local-NBNN + TM

3D-to-3D Matching + 3D RANSAC

NBNN + RANSAC

ScSPM + KPA

Local-NBNN + TM + KPA

SIFT Matching

2D-to-Trajectory Matching + ePnP

NBNN

Bag-of-Words

Local-NBNN

Figure 2.11: Experiment list for methods with/without outlier removal approaches in
Chapter 2.

In this work, the effectiveness of several outlier removal approaches are evaluated

by measuring accuracy or presenting a precision-recall curves with and without the

additional outlier removal process. For instance in evaluation section 3.5 of Chapter

3, several video-based object recognition methods are evaluated, the experiment list is

shown in table Fig. 2.11. For execution time of each method, the time consumption of

processing one video frame of eachworkflow is given. Despite the time is coarsely pre-

sented due to the large diversity in implementation environment, for which methods

are suitable to real-time application is clear. For 6-dof object pose estimation in Chap-
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ter 4 and ellipse fitting in Chapter 5, a more detailed comparison between baselines

and proposed method is presented, including time and average accuracy through all

object classes.
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Chapter 3. Outlier removal in Video-based Object Recognition: A Comparative
Study

3.1 Overview

Asmentioned in Chapter 1, a challenge of the object recognition problem is accommo-

dating numerous nuisances. To achieve this, one needs to collect and annotate enough

image samples to cover different scenarios during training, which is tedious. A more

cost-effective solution is to use videos, which tend to yield a more complete descrip-

tion of their content than individual images, and require only sequence-level labels.

Moreover, all these nuisances also lead to a significant portion of outlier feature points

during testing, which not only confuse the classifier, but also bring down the run-time

speed. Thus, to be able to detect and remove these features motivates the use of outlier

removal methods in this problem.

From videos, one can exploit temporal information and the underlying 3D spatial

structure of the target object (through 3D reconstruction). A recent research [Li and

DiCarlo, 2010] reveals how the human brain can effortlessly interpret a multitude of

objects with different identity-preserving transformations. After exposing a monkey’s

visual system to an artificial visual world without temporal contiguity, neuroscientists

observed that inferior temporal cortex neurons began to lose their capacity for being

transformation invariant. This strongly encourages the exploitation of temporal infor-

mation in object recognition tasks.

On the other hand, the exploitation of spatial cues to identify foreground and back-

ground (outlier) features, either in 2D image layouts [Lazebnik et al., 2006] or 3D ob-

ject structures [Gordon and Lowe, 2006b], is a flourishing branch of object recognition.

The viewpoint-invariant theorem [Peterson and Rhodes, 2003] states that the essen-

tial component of object recognition, regardless of viewing conditions, is structural

information. Encoding object structural information requires only a small amount of

memory, yet it is capable of producing a multitude of object representations via their
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interrelations and mental rotations. In the field of computer vision, stereo vision is of-

ten utilised to obtain precise depth perception, and hence 3D structure. On top of that,

some recent studies have achieved impressive performance by using multi-view im-

ages to reconstruct 3D information to support object recognition [Knopp et al., 2010],

semantic segmentation [Bao et al., 2012] and pose estimation tasks [Savarese and Fei-

Fei, 2007,Gordon and Lowe, 2006b]. Recently, due to the growing use of wearable vi-

sion devices, e.g.,Google Glass, research into egocentric videos has attracted more and

more attention. As one of the useful source of spatial information, egocentric vision

has the advantages of being controllable during capturing informative viewpoints and

being more practical than turntable settings.

Yet, it is undeniable fact that using video as data source is likely to suffer from re-

dundant information, such as near-duplicated frames. Video data also tends to contain

more visual nuisances than still images, such as motion blur or occlusion. We believe

that to be successful in video-based object recognition, it is necessary to compare dif-

ferent ‘object representations’ and their matching/outlier removal strategy to identify

the most promising approach.

In this chapter, our goal is to investigate the use of spatial and temporal informa-

tions in videos in order to perform outlier removal, and hence, better video-based ob-

ject recognition (VbOR) in realistic scenes. In particular, we aim to answer the fol-

lowing questions: are they helpful? If so, are they helpful in terms of accuracy or effi-

ciency? Can they be combined? It is worth noting that there have been recent advances

in object category recognition [Deng et al., 2009,Everingham et al., 2010,Lin et al., 2012],

but only a small number of studies have investigated the problems of instance object

recognition [Rothganger et al., 2006], particularly with video [Ren and Gu, 2010, Liu

et al., 2014]. Therefore we highlight our contributions as below:

• We captured an instant-level object recognition dataset in video called Sculptures
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Figure 3.1: Method categorisation and experimental setup.

in Victoria and Albert (V&A) Museum Dataset from an egocentric viewpoint.

• We categorised and compared diverse state-of-the-art object recognition frame-

works and their video-based extensions.

• We analysed how outlier removal methods improve the existed video-based ob-

ject recognition systems, hence proposed a hybrid solution that combines the

advantages of both temporal and spatial cues.

3.2 Approaches

Given exemplar videos of target objects, our purpose is to identify them in query

videos. Due to the egocentric setting in our study, each video captured multiple views

of only one target object that appeared roughly in the centre. Therefore, the whole
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Figure 3.2: Image-basedmethods selected from three state-of-the-art object recognition
frameworks.

video was assigned and recognised with one label. In this comparative study, we fo-

cused on the methods represented by the taxonomy shown in Figure 3.1. In terms

of utilising spatial information, these methods can be categorised mainly into 2D and

3D approaches. Among the 2D approaches, there are three different ways to represent

videos: image-based, set-based and video-based. In image-basedmethods, each video

is treated as independent images, where a straightforward combination of individual

results is applied to obtain the final output of the video. In set-based methods, each

video is treated as a set of unordered images with underlying mathematical structure,

such as a manifold. In video-based approaches, each video is represented as a set of

ordered images, i.e., with temporal information. By contrast, 3D-based VbOR utilises

reconstructed 3D information from multi-view images. This is a relatively new area

with only a small set of methods. Thus we consider these method as a separate cate-

gory.

In the following subsections, we analyse the pros and cons of each framework.

Comparative evaluation can be found in Section 3.5.

3.2.1 Image-based Methods

To select representative image-based methods, we adopted three baselines from

state-of-the-art object recognition frameworks based on their image classification
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techniques: (a) point-to-point (P2P), (b) image-to-image (I2I) and (c) point-to-class

(P2C), as illustrated in Figure 3.2. The image classification results are combined later

via voting.

Point-to-pointmethodsmeasure the similarity between two images based on their cor-

responding local image appearance, which is usually encoded by a feature descriptor.

In the seminal paper by Lowe [Lowe, 2004a], image classification was performed

by matching a set of keypoints detected in image regions. Using robust fitting

algorithms, e.g., RANSAC [Fischler and Bolles, 1981b], the correspondences can be

constrained further by dominant transformation between the matched pairs. This

technique can improve recognition precision significantly. However, it may fail when

there is no similar viewpoint in the database to a query image. Recent advances

in graph matching [Cho and Lee, 2012, Duchenne et al., 2011] have relaxed the

geometric constraint between point correspondences for articulated or deformable

object recognition. However, these methods are generally computationally expensive

and infeasible for large-scale problems.

Image-to-image methods compute the vector of visual word frequencies in images to

facilitate similarity measurement. In general, I2I methods are efficient and suitable for

large-scale problems because of the compactness of their image representations. The

Euclidean distance in a feature space reflects the similarity between features. Thus we

can also apply learning-based classifiers, e.g., linear support vector machine (SVM)

and Random Forests, to facilitate better generalisability and efficient recognition. I2I

methods have been applied widely to various image classification tasks, e.g., scene

recognition [Lazebnik et al., 2006], image categorisation [Yang et al., 2009, Bucak

et al., 2014], object recognition [Liu et al., 2011] and video image retrieval [Sivic

and Zisserman, 2009]. These methods have achieved state-of-the-art performance
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on most publicly available benchmark datasets of image classification. [Deng et al.,

2009, Everingham et al., 2010]. However, despite the success of these methods, the

vector quantisation process may degrade the discriminatory power of individual

image features, which is crucial for instance recognition problems.

Point-to-class (P2C) methods have also achieved impressive results on several bench-

mark datasets in recent years. The concept was emphasised in [Boiman et al., 2008]

to sidestep the negative effects of vector quantisation in I2I methods, and later im-

proved and extended in [Tuytelaars et al., 2011, Behmo et al., 2010]. The basic idea

is to directly measure the similarity between query features and training features in

every object class without vector quantisation. Compared to P2P methods, P2C has

better generalisability, because images are decomposed into image features that can

be matched simultaneously across all training images. This approach is also suitable

for large-scale problems because the feature-matching procedure can be accelerated to

real-time using approximated nearest neighbour algorithms. The main drawback is

that P2C methods are based on non-parametric classifiers and consequently consume

more memory because all the features are retained.

3.2.2 Set-based Methods

Set-based methods aim to capture the inherent characteristics of a set based on the

assumption that the members of the set follow a particular statistical distribution, as

shown in Figure 3.3. For the VbOR problem, the appearance of an object in each frame

is constrained by identity-preserving image variations, i.e., viewpoint, scale or illumi-

nation changes. If we consider that an image is a data point in a high-dimensional

space, the manifold spanned by the image variations can be learned using subspace

or manifold techniques [Mei et al., 2011,Wolf and Shashua, 2003]. The video-to-video
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similarity can then be estimated based on their manifold intersection, e.g., their largest

principal angle. In previous studies, these techniques have achieved superior perfor-

mance in different tasks, such as face recognition [Wang et al., 2012], head pose esti-

mation [Wu and Trivedi, 2008] and object pose estimation [Mei et al., 2011].

The motivation for applying set-based techniques to object recognition problems

is that the unseen views of an object can be interpolated from existing images, which

leads to significant improvements in generalisability. However, in dynamic real-world

scenarios, estimating the subspace or manifold from an image set is always challeng-

ing, as the distribution of images in a set is often highly non-linear due to the existence

of complex background noises and object variations.

Manifold Similarity

Feature 
Space

Query 
Image Set

Training 
Image Set

Figure 3.3: Toy example of set-based methods.

3.2.3 Video-based Methods

Video-based methods exploit the temporal coherence between adjacent frames in the

video. For the VbOR problem, temporal coherence can be used to learn better rep-

resentations from videos based on feature tracking [Noceti et al., 2009], or to remove
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unstable local features [Sivic and Zisserman, 2009]. In addition, applying video-based

techniques may facilitate learning the variation among object parts, detecting outlier

features, or compressing the representation of video data. An example is shown in Fig-

ure 3.4, where the trajectories can be extracted via tracking and later used formatching.

Features not on these trajectories are considered outlier features, and thus, discarded.

Extracting temporospatial coherence is important in many tasks, such as action

recognition, video surveillance and object tracking. However, it is not trivial to do

so in an egocentric setting, since the camera can move in an arbitrary manner and the

time-ordering does not reflect any characteristics of the object’s identity. Greater com-

putational power is also consumed due to the additional tracking process.

Query Video

t

t+n
Image 

Feature
Trajectories

...

Training Videos

Feature 
Space

Trajectory
Similarity

Figure 3.4: A toy example of trajectory matching methods based on feature tracking.

3.2.4 3D-based Methods

Adifferent approach is to utilise 3D geometric cues. Earlier works such as [Funkhouser

et al., 2003] required hand-crafted 3D CAD models as input, whilst in this study, we

focus on more recent methods that reconstruct models from multi-view images, as

shown in Figure 3.5. 3D-based object recognition is a relatively new yet attractive re-

search field, which has been popularised by the emergence of low-cost depth cameras.

In the case of rigid objects, 3D geometry can be treated as one of the most nuisance-
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invariant cues that can be obtained from video.

In the literature, [Tangelder and Veltkamp, 2008] provide a comprehensive survey

of how 3D CADmodels can be used in content-based retrieval systems. Several recent

studies, including object recognition [Hao et al., 2013b], landmark recognition [Irschara

et al., 2009] and camera pose estimation [Sattler et al., 2012], have exploited 3Dmodels

reconstructed by photogrammetric methods, such as stereo matching [Hirschmuller,

2008] and structure-from-motion [Ummenhofer and Brox, 2012].

However, the use of 3D object models for object recognition has several limitations.

Photogrammetricmethods require camera calibration to retrieve the absolute scale and

location of an object, and the 3Dpoint cloud generated is generally sparse, and requires

more computation. Moreover, the object is often required to be static in the scene.

Figure 3.5: Toy example of 3D-based methods where each video is treated as an un-
ordered image set.

3.3 Implementation

As illustrated in Figure 3.1, we implemented baseline methods and extended them by

adapting geometric and temporal validation techniques. Although there exist frame-

works for invariances of image features and receptive field responses under more gen-
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eral classes of visual transformations [Tuytelaars and Mikolajczyk, 2008, Lindeberg,

2013], in this work we restrict ourselves to scale invariance as implemented in stan-

dard SIFT [Lowe, 2004a] in all experiments.

3.3.1 Overview

This section presents an overview of implemented methods in this chapter.

The detailed and coherent implementation approach are appended in chapter Ap-

pendix at the end of thesis.

3.3.1.1 Image-based Methods

We adopted the framework proposed in [Lowe, 2004a] as the baseline for the P2P

approach, the standard bag-of-words approach [Fei-Fei and Perona, 2005] for I2I,

and NBNN [Boiman et al., 2008] for P2C. In P2P and P2C, geometric validation was

achieved by strictly applying RANSAC [Fischler and Bolles, 1981b] to correspon-

dences based on a perspective transformation. In I2I, we employed Spatial Pyramid

Matching (SPM) with a uniformed grid (as in [Lazebnik et al., 2006]), and spatial

consistency using Video Google [Sivic and Zisserman, 2009]. Additionally, extensions

for each image-based method are implemented. In I2I, we replaced the clustering

method (k-means) by sparse coding with max pooling, as described in [Yang et al.,

2009], to reduce the error from vector quantisation. Apart from that, better distance

functions were employed from [Sivic and Zisserman, 2009]. In P2C, we implemented

Local-NBNN [McCann and Lowe, 2012] as a state-of-the-art version of NBNN.
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3.3.1.2 Set-based Methods

A kernel approach, Kernel Principle Angles (KPA) [Wolf and Shashua, 2003], is im-

plemented to compute the principal angles in the feature space as the basis of the

manifold-based method. We collected bag-of-words representations of video frames

as the feature set based on the assumption that images in a sequence are highly

correlated so that they lie on a low-dimensional manifold, which spans the variations

in the object.

3.3.1.3 Video-based Methods

For video-based methods, we tracked interesting points bidirectionally [Kalal et al.,

2010] with Kanade-Lucas-Tomasi feature tracker (KLT) [Lucas et al., 1981]. Three video-

based methods were evaluated in the Local-NBNN framework: unstable feature

removal (Filtering), averaged-trajectory matching (TM) and trajectory matching by

KPA (TM+KPA).Additionally, we added a recent method [Liu et al., 2014] into the

comparison. In Filtering, only unstable feature points are rejected; in TM, each

trajectory is encoded into a single feature vector by averaging its feature points; and

in TM+KPA and Liu et al.’s method [Liu et al., 2014], KPA is applied to obtain trajectory

similarity measurements.

3.3.1.4 3D-based Methods

According to the general framework of 2D-to-3D image classification systems de-

scribed in the literature [Hao et al., 2013b,Collet et al., 2011,Gordon and Lowe, 2006b],

we first reconstructed 3D object point cloud models from the training videos using
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the VisualSfM toolkit [Wu, 2011], which is a structure-from-motion based photogram-

metric modelling program, where foreground segmentation is used to cleanse the

noisy 3D point clouds. As shown in Figure 3.5, each 3D point corresponds to a set of

image features from video sequences during appearance-based feature matching and

2D-to-3D geometric validation can then be applied to constrain the correspondences

to a rigid transformation. We apply a fast non-iterative method called ePnP (efficient

Perspective-n-Point) proposed by [Lepetit et al., 2009] to solve the Perspective-n-Point

problem for 2D-to-3D transformation estimation; and apply 3D RANSAC for 3D-to-3D

estimation, following the method proposed by [Forsyth and Ponce, 2002].

3.3.1.5 Hybrid Methods

Furthermore, we propose a hybrid method combining a video-based and a 3D-based

method to incorporate benefits from both. To avoid unnecessary experiments, we

chose to combine the best method of each category, i.e., Local-NBNN+TM and

2D-to-3D+ePnP, by empirical results (see Section 3.5). In practice, each object 3D point

cloud and video trajectories corresponds to a set of similar features, which can then

be encoded by simply averaging the set of feature vectors into a single representation

for better Local-NBNN performance. After matching video trajectories to 3D object

points, ePnP validation is performed between the trajectories’ coordinates of each

frame and object 3D point coordinates. Similar to the 3D-based methods, only the

correspondences that pass geometric validation are taken into account for the later

voting procedure.
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3.4 Dataset

Figure 3.6: Illustration of the collected dataset.

Several egocentric datasets have been made publicly available [De la Torre et al.,

2008, Ren and Philipose, 2009]. However, to the best of our knowledge, there is no

suitable benchmark dataset for evaluating complex rigid object recognition methods

on egocentric videos. Thus, we constructed a new video dataset with 33 less textured

sculptures in cluttered museum scenes, as shown in Figure 3.6.
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Figure 3.7: Full evaluation of the video classification results based on the precision-
recall curves (all figures are best viewed in colour), including image-based methods
(with voting), set-basedmethods, video-basedmethods and 3D-model basedmethods.

In total, 363 videos (30 fps, 720× 576 pixels) were captured by amateur users with

a hand-held camcorder in a crowdedmuseum. 33 different sculptures served as object

instances, each of which has a training video and 10 testing videos. The training videos

were captured at 180 or 360 degrees from azimuth around the sculptures, depending

on their positions. For testing videos, we deliberately added different nuisance includ-

ing extreme views, large scale changes, occlusions, light reflection and temporal object

disappearance.

Our proposed dataset is collected to solve real-life object instance recognition prob-

lem and has many unique properties compared to standard image or scene recogni-

tion datasets: (i) instance-level object classes; (ii) high inner-class correlation between

frames within each video sequence; (iii) high inter-class correlation between object

classes; (iv) videos are shot intentionally unprofessional with a set of predefined hand-
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held cameramovements and other additional nuisances. The significance of each prop-

erty will be explained next.

While recent state-of-the-art computer vision systems are leveraging ‘big data’ to

train a very complex model, an instance-level object recognition system is somewhat

different. Most instance-level object recognition tasks are ‘category specific’, where ob-

ject classes share some specific attributes, such as the dataset for automatic bin-picking

usually consists of mechanical components with simple shape but no texture. In other

words, amodel trainedwith category-level datasetwill be under-fitting and redundant

for instance-level object recognition task. Furthermore, collecting and labelling a large

instance-level dataset is not cost-effective since it is often too specific to be generalised

to other tasks, since an object category may have infinite number of instance subsets.

One exception is collecting huge dataset for face recognition system as all faces share

many priorly known attributes and face recognition systems are highly demanded all

over the world. That said, a model trained on a dataset that only contains western

celebrities performs sub-optimally on asian pedestrians.

Next, the high inner-class correlation is naturally exist in video clips since the cam-

era moves smoothly and captures the scene in a fast pace so adjacent frames are most

likely similar. This temporospatial similarity can help us to track and collect more in-

formation from the scene despite the information is also highly redundant. Comparing

with performing object recognition on a single camera shot, a well designed VbOR sys-

tem should exploit temporospatial information while not wasting computation on the

redundancies. Our proposed dataset poses realistic challenges to the VbOR systems.

Each testing video clip consists of hundreds frames of an object under different types of

nuisances, such as large camera movement, extreme view or occlusions that can cause

failure in tracking.

It is obvious that the complexity of an image recognition task depends on the dis-

tinctiveness between each class in the set. A simple heuristic approach can easily
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classify objects with different colour while recognising human faces requires a very

complex convolutional neural networkmodel with a modern advanced GPU. Our pro-

posed dataset has only sculptures, all belong to one single object category.

There are several reasons that we believe the sculpture is a suitable object category

for evaluating outlier removal methods and VbOR systems. First sculptures have sev-

eral interesting attributes. They are large, rigid three-dimensional objects so strong

geometric cues can be exploited for evaluating different approaches of outlier removal

in VbOR systems. Also, sculptures are almost textureless and lack of colour variation.

And this poses challenge on classic local feature descriptors that rely on the colour

gradients. Moreover, some camera views can be even less informative such as the back

of a portrait sculpture. This motivates the use of a video clip over a single image for

object recognition, and evaluating temporospatial cues for accumulating information

along the video.

Another motivation for proposing this dataset is that many public object recogni-

tion datasets for benchmarking or competition are automatically collected using on-

line search engine, such as VOC object dataset [Everingham et al., 2010] and Ima-

geNet [Deng et al., 2009], where a large amount of uploaded pictures on Internet are

shot by professional cameramen. State-of-the-art object recognition methods train and

test with the most advanced processors for a long time on millions of high quality im-

ages. In contrast, a real-life object recognition application is more likely to be deployed

on a handheld device with very limited processing resource, and operated by amateur

users.

Our proposed dataset aims to evaluate VbOR systemswith various outlier removal

methods to solve real-life problems. To serve this purpose, all videos in the dataset

are collected by amateur camera users with additional realistic noises, such as camera

motion blur and occlusions from museum visitors.
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3.5 Evaluation

In Figures 3.7 and 3.8, an overview of all the experiments performed with our dataset

is provided. The category of each experiment was determined by the representation of

query testing videos. A table for coarse time consumption of allmethods are illustrated

in Figure 3.9, this is tested on a single core, 2.8 GHz Intel Core i7, 16 GB 1600 MHz

DDR3.

Traditionally, object recognition evaluations report accuracy in percentage. To

better demonstrate the impact of each method, we measured their performance

in the form of a precision-recall (PR) curve, which was inspired by the ratio test

in [Lowe, 2004a], since it can be easily generalised to evaluate the performance of

image classification. For each query video, the assigned object class was deemed

acceptable only if the ratio between the highest and second-highest class probability

was above a certain threshold, otherwise, it was considered a false negative. If the

highest class was the same as the ground truth, it was considered a true positive. By

testing all possible thresholds, a full PR-curve is obtained. It is worth noting that some

of the results obtained with image-based methods contrast their performance using

public datasets. We consider this to be mainly due to the aforementioned uniqueness

of our dataset.

Image-based Methods Only the final voting accuracy for each video is shown for

image-basedmethods. In general, I2I methods had poor performance due to the quan-

tisation of image descriptors as described in the literature [Boiman et al., 2008]. The

larger (approximately 10k) visual vocabulary with a better distance function (Bhat-

tacharyya distance) in Video Google or SPM based on sparse coding (ScSPM) improved

the results obtained with bag-of-words to some extent, but it was still not as good as
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Figure 3.8: We divided our V&A dataset into 10 subsets by different types of nuisance.
Each column represents one subset which contains 33 videos (one per class), whilst
each row gives the results of a method. The numbers indicate the amount of success-
fully classified videos.

other methods.

The P2P and P2C methods achieved similar accuracy and outperformed I2I

methods owing to the following reasons. Firstly, there was no feature quantisation

in P2P and P2C and thus no loss of discriminatory power. Secondly, the geometric

relationship among features is partially lost in I2I methods, whereas the robust esti-

mation method RANSAC in P2P and P2C methods constrains the spatial distribution

of image features, which is favourable for rigid object recognition.

Set-based Methods Overall, set-based manifold methods did not have significant
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Figure 3.9: This table provides a coarse time consumption of each workflow of meth-
ods. The green colour indicates real-time, i.e. beyond 10 frames per second (FPS), or
fast technique; The yellow colour indicates the method runs between 1 FPS to 10 FPS,
or medium speed technique; The red colour indicates the method runs below 1 FPS,
or slow technique.

impact on the performances of I2I methods. The main difficulty was related to

the complex nuisance effects in scenes such as under extreme view or occlusions,

since manifold-based methods are generally prone to set complexity and outliers.

In addition, KPA [Wolf and Shashua, 2003] improves ScSPM [Yang et al., 2009], but

degrades Video Google [Sivic and Zisserman, 2009]. The results showed that the ad-

vantage of applying KPA was reduced when the vocabulary size increased. The high

heterogeneity of image representations caused the failure of KPA when determining

dependencies within the set, thereby leading to inaccurate estimates of the subspace

from the image set.

Video-basedMethods The results of the comparisons between fourmethods, Filtering,

TM, TM+KPA, Liu et al.’s method [Liu et al., 2014] and their baseline Local-NBNN, have

shown that: (i) the formation of a trajectory did not improve recognition accuracy, (ii)

averaging the trajectory obtained a similar performance, and (iii) KPA was computa-
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tionally expensive and not suitable for application to trajectory matching.

These contradictory results can be explained as follows: (i) To reduce unstable fea-

tures and prevent long-term drifting, a bidirectional validation was applied to the tra-

jectories. As shown in Figure 3.11(c), approximately 90% of the features used in train-

ing and 67% in the testing dataset were filtered. However, the filtering process did not

generate extra inliers and the inherent advantage of Local-NBNN is its robustness to

noisy feature points, which explains their similar accuracy. (ii) Figure 3.11(a) shows

that the trajectories were short due to the strict temporospatial constraint and unsta-

ble features increased due to the use of a hand-held camera. This feature is actually

favourable to averaged trajectory matching, since the features in most of the trajecto-

ries are nearly identical, hence their mean is representative. (iii) However, this also

explains the poor performance of the KPA approach because short trajectories were far

from sufficient to span the variations in the object parts, thus lacking discriminatory

power. In addition, it should be noted that the application of KPA is computationally

intense with massive trajectories due to its high complexity.

However, by using trajectory averaging to detect outlier features, the dataset was

compressed to 1.48% for training and to 5.30% for testing compared with their original

sizes, as shown in Figure 3.11(c). This reduced the computational power and memory

requirements, especially when using non-parametric classifiers.

3D-based Methods Retrieving the 3D mesh model of objects from the training video

as in Figure 3.10, and performing 2D-to-3D geometric validation has increased the

recognition performance dramatically for two reasons: (i) in training videos, the

reconstruction process rejected features that were not consistent with the object

geometry, such as pedestrians or specularities from light reflection, thereby resulting

in a considerable increase in the signal-to-noise ratio of the database. (ii) Figure 3.11(b)

shows the long-tail distribution of a number of features allocated to 3D points, which
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Figure 3.10: 3D object point clouds are reconstructed via structure-from-motion algo-
rithms for 2D-to-3D geometric validation.

indicates that a considerable amount of 3D points contained features that covered a

large range of view. The 3D geometry is viewpoint-invariant according to the assump-

tion of the objects rigidity, thus the 2D-to-3D geometric validation strictly constrained

the correspondences, which resulted in a higher confidence in the final voting of the

object class. This is especially helpful for VbOR because the object class can usually be

determined from a few confident frames within the video. Furthermore, the training

dataset was compressed to 67.23% after 3D reconstruction and to 4.75% after it was

averaged further into a single feature vector, according to Figure 3.11(c). 3D-to-3D also

achieved good recognition accuracy, but the reconstruction process during the testing

stage required too much memory and computational power, which made it inefficient

compared to 2D-to-3D methods.

Proposed Hybrid Methods The combined method exploited the advantages of 3D-

based and video-based methods, and achieved one of the best P-R rates, as shown in

Figure 3.12. It also compressed the training dataset to 4.75% by averaging the features

in each 3D point and compressed the testing dataset to 5.30% by averaging the trajecto-

ries, leading to significant reduction in memory consumption whilst maintaining the
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discriminatory property within the target objects.
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Figure 3.11: Histogram showing (a) the number of frames crossed per trajectory and
(b) the number of SIFT features allocated per 3D point. (c) The remaining percentage
of features after outlier removal via different methods.
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3.6 Summary

This chapter aims to study the use of outlier removal methods to enhance video-based

object recognition systems.

Firstly we proposed a new video dataset that is collected in a crowded museum

for evaluating object instance recognition systems under realistic environment. The

dataset poses difficulties on the classic image-based object recognition systems and

hencemotivates the use of their video-based extension, which outlier removalmethods

play important roles.

We then categorised and compared diverse state-of-the-art object recognition

frameworks and their video-based extensions. To have fair comparison and focus on

the extending outlier removal approaches, all frameworks based on the classic SIFT

interest point detector / feature descriptors despite there are much more up-to-date

techniques.

Based on the empirical evaluation results, we conclude that with video- and 3D-

based extensions, several frameworks outperformed their image-based baseline in both

recognition accuracy and efficiency. These extensions are largely benefit from the out-

lier removal methods based on two important cue from multi-view video sequences:

a temporospatial cue that allows us to apply tracking technique to remove unstable in-

terest point proposals and help to build another important geometric cue, which poses

a strict 3D geometric constraint to further remove false proposals and validate the 3D

object shape.

We have found that themost promisingmethod for achieving the best object recog-

nition performance on egocentric videos is to clean the training set with geometric

constraints and classify the query videos with geometric cue and temporospatial cue.

Thus we proposed a novel hybrid method by combining both cues to achieve the best
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performance.

3.6.1 Generalisation

From thiswork, the result shows that for rigid object recognition task, firstwe can easily

build the object model from a single turn-table video sequence via 3D reconstruction

techniques, such as Structure-from-Motion, or SfM. Then we can leverage 3D object

models with 2D-to-3D geometry validation techniques to greatly boost the recognition

accuracy. This workflow requires little human effort. It is also simple to implement,

easy to swap any technique involved to the state-of-the-art techniques and can be gen-

eralised to most of rigid object recognition systems, such as for bin-picking robot or

cashier-free grocery store.

From the aspect of machine learning, if outlier removal methods are applied prop-

erly, they can efficiently extract information-of-interest from a very redundant source.

The idea presented in this chapter can be generalised to other machine learning sys-

tems as long as the ‘uniquely shared’ attributes can be found, either heuristically or by

machine learning techniques. In the case of video-based object recognition, temporo-

spatial and geometric cues are the distinctive attributes shared in all positive feature

proposals.

However, even the machine learning techniques nowadays are robust to the data

distribution, the cost to auto-learn the latent attributes could be extremely high, some-

times may require much more training data or need intensive data permutation. One

example would be the deep convolutional neural networks (CNN). There are million

of parameters required to cover all varieties of data. Also it usually requires hundreds

of thousand data pieces with extra data permutation to train. From this study, we

find that Space Pyramid Matching (SPM) performs poorly due to the spatial inconsis-

tency between training and testing videos, despite it achieves very good result on scene

61



Chapter 3. Outlier removal in Video-based Object Recognition: A Comparative
Study

recognition dataset.

Thus, we defend the importance of heuristic or human knowledge to guide ma-

chine learning tasks, and to exploit them as an outlier removal preprocessing module

to boost the overall system performance, despite it is generally not favourable in the

academia. Even for the tasks involving CNN, such as commercial-level face recogni-

tion system ( [Deng et al., 2018]), it still heavily involves human designed workflow to

achieve satisfactory result, such as using face detector and face alignment as preproces-

sor to standardised faces. Another example is human attribute recognition ( [Bourdev

et al., 2011]): with a human pose estimator as preprocessor to locate the body key-

points as an extra input, the recognition performance will largely raise. However, this

guidance might be replaced by meta-learning techniques in the future.

3.6.2 Next Chapter

Next chapter presents a learning-based approach to perform outlier removal to assist

3D object pose estimation.
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4.1 Overview

In this chapter we propose a learning-based outlier removal approach for real-time 3D

object pose estimation. We present a modified fuzzy decision ternary forest that trains

on typical template representation. We employ an extra preemptive background rejec-

tor node in the decision forest framework to terminate the examination of background
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locations as early as possible, result in a significantly improvement on efficiency. This

approach is also scalable to a large dataset since the tree structure naturally provides

a logarithm time complexity to the number of objects. Finally, we further reduce the

validation stage with a fast breadth-first scheme. The results show that our approach

outperforms the state-of-the-art approaches on efficiency while maintaining a compa-

rable accuracy.

In this work, we focus on 3D rigid textureless object pose estimation with RGB-D

data. Since rigid object pose has 6 degrees of freedom (x, y, z, pitch, yaw, roll), this

problem is also known as 6-DoF pose estimation. One typical method of 6-DoF pose

estimation is through template matching, which requires a mesh model that is usually

obtained via scanning the target object. A large set of annotated training ‘templates’

can then be generated by rendering to uniformly cover the pose space. During test

time, a sufficiently similar template is found via a distance-based search process, often

via approximate nearest neighbour (ANN) techniques.

There are mainly three different ways of performing nearest neighbour searching

on template matching: exhaustive, hashing-based and tree-based. Although given the

feature descriptor, exhaustive methods (e.g. , LineMOD [Hinterstoisser et al., 2012a])

guarantee finding the most similar match, its linear complexity is definitely not ideal.

Hashing-based methods, on the other hand, have sublinear or even constant complex-

ity during searching. However, the design of an efficient hash function with good

trade-off between memory consumption and matching performance is not trivial. Us-

ing tree-based methods to solve ANN problem, e.g. , k-d tree, can also significantly

lower the complexity. However, the cascade nature of tree structure suffers from strong

outlier rate due to error accumulation. The efficiency suffers as well from the curse of

dimensionality due to backtrack.

Our approach aims at a further speedup in state-of-the-art template-matching

methods for real-time applications, while maintaining a comparable pose estimation
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accuracy. Targeting the bottlenecks of a typical template matching process, we extend

the classic randomised decision forest framework in several perspectives for accelera-

tion. Specifically, we focus on alleviating the computation spent on background noises

and filtering false positives. Instead of simply applying a data-driven objectness de-

tector as a standalone preprocessing stage, we achieve a better outcome by attaching

an additional node as ‘background rejector’ to each split node in the decision tree. An

additional minor contribution is an adaptation of a RANSAC-based algorithm [Nistér,

2005a] into final validation stage to allow a further speed up.

The merit of this approach is to reject false candidates as early as possible and also

pass a good candidate to the validation stage in one go. This approach has the ben-

efits of both the holistic template and the tree structure. As a holistic template, it fo-

cuses more on global information than local descriptors, and tends to capture object

shape rather than texture. Since a specific object pose is defined by a single distinctive

template, it also does not necessarily require a computationally expensive geometric

validation step. Secondly, by constructing a decision forest, similar views are clustered

hierarchically for a faster search time, but also allows us to exploit them for background

rejection. The experiment result shows superior speed and sublinear complexity with

comparable accuracy to the state-of-the-art approaches.

4.2 Related work on 6-DoF pose estimation

Existing 6-DoF pose estimation methods can be categorised into distance-based,

learning-based and registration-based methods.

Distance-based methods approach this problem by defining a distance metric to

measure the similarity between samples. Then a set of samples from different view

points, usually rendered from 3D object models, is generated as the training set. Dur-
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ing testing, the object pose on a query image is retrieved by pairwise comparison be-

tween extracted templates and the training set.

To effectivelymeasure the similarity between object views, a compact and discrimi-

native description vector is required. [Hinterstoisser et al., 2012b] present a novel image

representation, a rigid template using colour gradient and surface normal as feature

descriptors called LineMOD. The templates are synthetically rendered from 3D object

mesh models under different scales and view angles. Similar to other traditional tem-

plate matching approaches, each template matches with all possible locations across

the query image to produce a similarity score map. Despite the exhaustive search, it

achieves real-time speed for single object pose estimation.

Tree-based approaches apply binary search in multidimensional space. Given a

query point and a set of data points, this approach partitions the search space roughly

into halves in each iteration, until there is only one data point left in the search space.

The complexity is therefore O(log n) to the number of data points.K-d trees are gen-

erally considered unsuitable for high-dimensional spaces searching as most of the

points in the tree will be evaluated and the efficiency is no better than exhaustive

search [Goodman et al., 2000]. One improvement by [Beis and Lowe, 1997], called

best-bin first algorithm, uses a backtracking strategy to prioritise the searching queue

based on closeness and achieves two orders of magnitude speed up. Another solution

applies randomness in building multiple trees to improve the search speed at the cost

of the individual k-d tree not always returning the exact nearest neighbours.

Hash table is awell-knowndata structure that allows a symbol lookup inO(1) com-

plexity. In other words, the searching time is constant regardless of the database size.

However, a hash table can only able to find the exact match while in ANN searching

problem, we seek approximate matches. Themost straight forward solution is hashing

the whole quantised feature space into a single hash table so that every possible query

point directly maps to their nearest data points. Unfortunately this naive approach
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is no longer feasible for high-dimensional data. A recent work by [Kehl et al., 2015]

employed hashing techniques to achieve sublinear scalability by exploring different

hashing key learning strategies and achieving sublinear complexity to the number of

templates, outperforming the state-of-the-art methods in terms of runtime.

Learning-basedmethods usually generalise better to variations in viewpoint, trans-

lation and slight shape deformations.

The methods that fall into this category focus on better generalisation to slight

variations in translation, local shape and viewpoint. The explicit background/fore-

ground separation is learnt parametrically to deal with heavy background clutter. The

result shows that these approaches cause less false positives than nearest neighbour ap-

proaches. However, the efficacy is their dependency on the quality of negative training

samplesĲ, and this benefit may not transfer across different domains. Tejani et al. [Te-

jani et al., 2014] propose incorporating a one-class learning scheme into the hough

forest framework for 6-DoF problems. Rios-Cabrera and Tuytelaars [Rios-Cabrera and

Tuytelaars, 2013] extend LineMOD by learning the templates in a discriminative fash-

ion and handle 10-30 3D objects at frame rates above 10fps using a single CPU core.

Registration-based methods attempt to fit a pose hypothesis to the observation, by

iteratively updating and minimising the discrepancy between the query sample and a

sample rendered from the current pose hypothesis. A popular choice is the Iterative

Closest Point (ICP) [Fitzgibbon, 2003].

Johnson and Hebert present an early seminal work [Johnson and Hebert, 1999] for

simultaneous recognition of multiple objects in scenes containing clutter and occlu-

sion, based on matching surfaces by matching points using the spin image representa-

tion. [Gordon and Lowe, 2006a] present a feature-based object pose estimation frame-

work that accurately tracks the camera using learned models and SIFT features [Lowe,

2004b]. The estimation is performed by matching query image features with 3D object
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model features and solving the Perspective-n-Point (PnP) problem for the 2D-to-3D

correspondences. Drost et al. [Drost et al., 2010] propose a novel method that creates a

globalmodel description based on oriented point pair features andmatches thatmodel

locally using a fast voting scheme. Another recent work [Hao et al., 2013a] improves

the framework by introducing a novel matching scheme.

4.2.1 Related Work on Accelerating Template Matching

The first difficulty of accelerating template matching with efficient searching schemes

comes from the high-dimensionality. One single coordinate is not representative

enough to quickly reject candidates, thus leading to suboptimal performance. There

are recent works have shown that with a well-chosen feature descriptor, few coordi-

nates are reliable enough to find the match. LineMOD [Hinterstoisser et al., 2012a]

achieves good performance by extracting only the best one hundred dimensions out

of ten thousand from each individual template to perform an optimised exhaustive

search. However, it is not trivial to apply an efficient searching algorithm based on

this approach. Since the ‘best’ feature dimensions are in different subspaces for dif-

ferent objects, so the distance measurement between them is not meaningful, and ten

thousand dimensions are simply too large for most of ANN algorithms.

One feasible solution is to cluster the templates into few sets, which has been

proposed in a few recent works. Hashmod [Kehl et al., 2015] clusters the templates

with a randomised decision forest and employs hashing techniques; Discriminatively

Trained Templates (DTT) [Rios-Cabrera and Tuytelaars, 2013] cluster the templates

with a bottom-up clustering method and construct strong classifiers using AdaBoost.

The underlying reason is that the clustered subsets share common ‘relevant’ feature

dimensions, that is to say, the templates in a subset can be well-classified using fewer

coordinates.
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Another difficulty is the heavy noises present due to the background clutter, occlu-

sion and other environmental nuisances. Since the features in a template are generally

local to a small region, it is very likely that the noises render some feature dimensions

completely irrelevant to the ground truth. It is necessary to examine multiple feature

dimensions to increase the signal-to-noise-ratio, thus producing reliable matching re-

sults.

With the same reason, a final validation stage is inevitable for achieving a good

precision-recall rate. At this stage, a full similarity measure is calculated between the

testing image region and a small subset of templates. Compared to previous stages,

validation is expensive and is usually the bottleneck of thewholemethod, due tomany

more feature dimensions being involved in the calculation. Therefore, to reduce the

computational cost, a good trade-off needs to be made between the size of validation

subset and matching accuracy.

To sum up, a good approach to accelerate template matching should be able to: (i)

ignore irrelevant feature dimensions; (ii) test on multiple dimensions simultaneously

to be less prone to outliers; (iii) reduce the validation subset as much as possible while

maintaining the matching robustness; and (iv) optimise the validation process to fur-

ther speed up. With these in mind, we propose our tree-based method to address the

problems for efficient template matching.

4.3 Method

Decision forest is one of the most commonly known framework for sublinear nearest

neighbour search. However, training a tree-based classifier using templates directly is

problematic due to insufficient training samples and noisy feature dimensions. In re-

cent works on 3D object pose estimation using tree-based classifier, both [Tejani et al.,
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2014,Brachmann et al., 2014] use local feature-based representations instead of holistic

templates to alleviate the overfitting issue. However, this approach requires an addi-

tional geometric verification stage, Hough voting in [Tejani et al., 2014] and RANSAC-

based optimisation in [Brachmann et al., 2014], that are likely to drag the process out

too long to meet the requirement of real-time applications.

In this work, we propose several extensions of the decision forest framework to

significantly accelerate template matching with marginal loss in accuracy compared to

exhaustive search.

4.3.1 Template Matching with Decision Forest

The templatematching approachdescribes each viewof the object instance into a single

template representation, defined as T = (O,U ), where O is a reference RGB-D image

of an object and U denotes the set of locations u in O. The similarity measurement E

between a template T and an input image I shifted by c can be formalised as:

E(I, T , c) = ∑
u∈U
‖(Ψ(O, u)−Ψ(I, c + u))‖, (4.1)

where Ψ denotes the local feature descriptor, ‖ · ‖ denotes the distance function. Thus,

the overall similarity is the sum of all individual corresponding local features differ-

ences.

Given an input RGB-D image, we use randomised decision forest {P} to classify

sliding windows centred at each pixel location c. The leaf node of each tree P that the

pixel ends up in retrieves a set of template {T } so that a final classification is produced

by a full validation.

Training Similar to most recent approaches on 6-dof textureless object pose estimation

problem, we synthetically generate our template dataset from 3D object CAD models.
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Colour Gradient Surface Normal

HSV Depth

Figure 4.1: We generate synthetic dataset from object models that provided by
LineMODdataset. The left figure shows a sample procedure of rendering templates on
a hemisphere of several radii. Here we use four modalities in this work, from left-top:
colour gradient, surface normal, hue colour and depth.

The templates are computed from rendered object views on upper hemispheres of sev-

eral radii, same as the sampling strategy in [Hinterstoisser et al., 2012b], as shown in

Figure 4.1. Each template T is assigned with a tuple label (obj, rotation), which de-

notes the object class and object rotation (yaw, roll and pitch angles) respectively. Note

that since the method is sliding-window based, object location can be retrieved from

the position of the window, and thus we have 6-DoF pose of the object instance.

We first expand the template T into a |U |-dimensional descriptor: vT = {Ψ(O, u) :

r ∈ U}. In practice, we use LineMOD as our descriptor including an additional object

hue map as described in [Hinterstoisser et al., 2012b]:

Ψ(O, u) = {CG(O, u), SN(O, u),HUE(O, u)}, (4.2)

where CG, SN and HUE represent three modalities used in LineMOD: colour gra-

dient, surface normal and hue channel respectively. Each template is therefore a high

dimensional vector of integers: v = (x(1,1), ..., x(|U |,|M|)), where M is a list of modality
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Figure 4.2: Visualisation of our proposed pipeline. At each candidate sliding window,
we extract LineMOD feature descriptor and pass to the decision tree. At each node, the
extracted features are examined by a preemptive background rejector, the candidate
enters full validation stage only if it passes all the rejectors. This process significantly
save the time cost on background noises. Finally, we further accelerate the validation
stage with a fast breadth-first scheme, inspired by [Nistér, 2005a].

used and x is quantised feature value from 0 to 8. The value 0 appears when the feature

is not significant, i.e. the magnitude of extracted feature is below a certain threshold.

See [Hinterstoisser et al., 2012b] for details of each modality. For the feature outside

object mask, we use uniform noise to model the background. Different background

models are evaluated in [Brachmann et al., 2014].

Split Function A template descriptor set Sn, arriving at nth node, is partitioned into

two subsets SL
n ,SR

n by a split function h(v, θn) ∈ {0, 1}: SL
n (Sn, θ) = {v ∈ Sn|h(v, θ) = 0}

SR
n (Sn, θ) = {v ∈ Sn|h(v, θ) = 1}

(4.3)

where θ denotes split node parameters. The split node parameter can be denoted

as θ = (φ, ψ, τ), where φ selects a small subspace of entire feature space as feature

selector function, ψ defines the geometric primitive used to separate the data, τ denotes

thresholds in the binary test. The parameter is chosen to maximise an energy function,

usually the information gain, to ensure an optimal split. In practice, the design off the
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split function is crucial to achieve good performance. In a later section, we will discuss

the impact of different split functions on template matching performance.

Leaf Validation The training templates are recursively split until it meets stopping

criteria. This involves the control of tree shape, depth and thus, the trade-off between

the generalisation power and efficiency. As briefly explained in the previous section,

full validation on a template set is expensive and almost always the bottleneck of the

whole pipeline, as in many recent related works. Ideally, we want to keep the number

of templates in leaf nodes as few as possible while avoiding overfitting.

In practice, when we apply tree-based search on standard template matching, no

matter how we set the stopping criteria, the lack of training data and high dimen-

sional features is likely to lead to overfitting. One possible workaround is a variant

of k-d tree approach (Best-bin-first) [Beis and Lowe, 1997], which backtracks from the

leaf node according to a priority queue based on the closeness between query and the

bin boundary, until a fixed number of nearest candidates is searched. However, this

method is less efficient when large outliers are present, as the closeness is no longer

reliable. Also, the optimal number of nearest candidates from backtracking varieswith

object class and can only be decided empirically. We will also address this issue later

in our method.

4.3.2 Split Function for Insufficient and Noisy Data

In many applications, feature selector φ(v) ∈ Rd′ , where often d′ = 1 or 2 is sufficient.

However, more dimensions are needed to compensate for the less distinctive, heavily

quantised features and higher outlier ratio.

Figure 4.2 shows an overview of our method. To avoid the superlinear time cost

from randomised node optimisation due to high dimensionality, we randomly draw
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an exemplar ve from the template set S , such that:

h(v, θ) =

 1, if (‖φ(ve)− φ(v)‖ < τ)

0, otherwise
(4.4)

φ(v) = (xφ1 , xφ2 , ..., xφd′ ), φi ∈ [1, d]

which maximises the energy function E:

θn = argmax
(θ∈Θ)

E(Sn, θ), (4.5)

where E denotes the energy function, Θ denotes a randomly generated set from the

entire parameter space. Since the space is greatly reducedwith the exemplar approach,

the size of Θ should be limited to a small number to maintain the efficiency.

For the choice of energy function, wemodify the standard entropy function to cope

with the missing feature values:

E(S , θ) = ∑
v∈S

λ(φ(v)) ∗ I(S , θ) (4.6)

λ(v) = ∑
x∈v

γ(x) ∈ {0, 1}

I(S , θ) = H(S , θ)− |S
L|H(SL, θ) + |SR|H(SR, θ)

|S|

where γ denotes a foreground Boolean indicator such that γ(x) = 1 if x located on

the object mask on the template and vice versa; H denotes an entropy function. In

template matching or NN problem in general, each data point is assigned to a unique

label. Therefore the standard entropy function is not suitable here. Instead we use an

74



4.3. Method

unsupervised variant:

H(S , θ) = −∑
i∈V

D(S , i, θ) log D(S , i, θ) (4.7)

D(S , i, θ) =
1

|S||φ(v)| ∑
v∈S

∑
x∈φ(v)

δ(x, i)

δ(x, i) =

 1, if (x = i)

0, otherwise

where V is the feature space, i.e. V = {1,2,...8} in the case of LINE-MOD descriptor. The

entropy measures the uncertainty associated with the feature values given the feature

dimension, a higher entropy yields better separation.

Next, we adapt a simple fuzzy rule to the thresholding to dealwith insufficient data.

This approach has been proposed in the literature [Olaru and Wehenkel, 2003, Yuan

and Shaw, 1995], but has not drawnmuch attention in the field of computer vision. This

adaptation tends to tolerate imprecise, missing feature values and reduce classification

ambiguity from the split function, achieved by duplicating testing sample to both child

nodes if it is too close to the split subspace.

We modify the binary test in Equation 4.3 and 4.4 such that:

 SL
n (Sn, θ) = {v ∈ Sn|h(v, θ) < ξ}

SR
n (Sn, θ) = {v ∈ Sn|h(v, θ) > −ξ}

(4.8)

h(v, θ) = ‖φ(ve)− φ(v)‖ − τ, (4.9)

Thus, feature vectors that fall into the ‘fuzzy’ interval [−ξ, ξ] will be passed to

both child nodes. This approach allows feature vectors to reach multiple leaves, which

greatly reduces the overfitting due to lack of training data.

75



Chapter 4. Real-time Background-Aware 3D Textureless Object Pose Estimation

4.3.3 Preemptive Background Rejector

A fast coarse estimation of objectness is common in many detection methods, since

the object of interest generally occupies only a small portion of the testing image. We

further propose a preemptive background rejector as an extra split function in each

node that sends the query to a ‘background’ leaf node if it fails a binary test. In contrast

to most of the background removal methods, our approach does not exploit negative

samples. Instead, wemake an assumption that all feature vectors that do not exist in the

dataset are negative samples. Here, we isolate the foreground from the background by

minimising the entropy in the rejector function, so that all foreground feature vectors

share similar values:

ȟ(v, θ̌) =

 1, if ( 1
|φ(v)| ∑x∈φ̌(v) β(Sn, x, θ̌) < τ̌)

0, otherwise
(4.10)

θ̌n = argmin
(θ̌n∈Θ)

∑
v∈S
I(S , θ), (4.11)

where τ̌ denotes a threshold in [0, 1] to control the acceptance of outlier ratio; β denotes

a background feature look-up table, such that:

β(Sn, i, θ̌) =

 1, if D(Sn, i, θ̌) > ρ

0, otherwise
(4.12)

The query v is rejected immediately at a node n if ȟ(v, θ̌n) = 1.

4.3.4 Fast Breadth-First Leaf Validation

The leaf nodes contain only tens, or at most, a hundred templates; however, pairwise

matching all candidates is still computationally expensive. In practice, most bad candi-

dates can be safely removed by examining only a small portion from the whole feature
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descriptor. Therefore we propose a further speedup of the validation process with a

breadth-first preemption scheme inspired by preemptive RANSAC [Nistér, 2005a].

Query Template candidates chunk
validation

below
median
score

discard
candidate

…

Accept

chunk
validation

reorder & discard hypotheses

Figure 4.3: Breath-first preemptive scheme for leaf validation speed up. The templates
are equally split into small chunks to alleviate the time cost from validating bad can-
didates.

As shown in Figure 4.3, during leaf validation, we equally split template feature

descriptors into smaller chunks, and each contains a fixed number of features. In each

stage, we score and compare all chunks and keep only the candidates that satisfy the

pass condition. Scores are accumulated to the next stage and repeat until there is only

one or no candidate left.

In our real-time implementation, we use the pass condition

f (v′) =

 1, if (s(v′) > max(Median(s(v)), α)

0, otherwise,
(4.13)

where s(v) is a scoring function that measures the distance between query and can-

didate, α is a constant threshold. We set the threshold α = 0.5 empirically. With this

approach, the validation time complexity is reduced toO(log n). The chunk sizeworks

as a trade-off between accuracy and speed: larger chunk leads to better robustness but
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less efficiency, and vice-versa. Furthermore, we add depth value as another modality

in the validation stage to measure shape similarity.

Table 4.1: Accuracy and average time per frame for the whole pipeline with 1, 5, 20 and
50 trees. Our approach is several times faster than the state-of-the-art approaches with
comparable accuracy. T_Tree, T_Valid and T_Total are the time cost per frame from
decision tree, leaf validation and overall respectively.

1 Tree 5 Trees
T_Tree T_Valid T_Total Acc. T_Tree T_Valid T_Total Acc.

ape 0.20 ms 6.50 ms 6.70 ms 96.0% 0.99 ms 12.31 ms 13.30 ms 97.1%
bvise 0.43 ms 13.37 ms 13.80 ms 91.1% 2.13 ms 29.50 ms 31.63 ms 93.2%
cam 0.41 ms 11.70 ms 12.11 ms 93.1% 1.93 ms 24.66 ms 26.59 ms 94.8%
can 0.44 ms 13.07 ms 13.51 ms 91.5% 2.22 ms 28.45 ms 30.67 ms 92.0%
cat 0.23 ms 8.34 ms 8.57 ms 94.3% 1.05 ms 15.23 ms 16.28 ms 95.5%
driller 0.39 ms 13.93 ms 14.32 ms 95.4% 1.73 ms 29.01 ms 30.74 ms 96.0%
duck 0.28 ms 9.64 ms 9.92 ms 90.0% 1.20 ms 15.99 ms 17.19 ms 94.5%
eggbox 0.30 ms 10.73 ms 11.03 ms 98.3% 1.18 ms 20.13 ms 21.31 ms 98.9%
glue 0.34 ms 11.46 ms 11.80 ms 92.1% 1.62 ms 29.85 ms 31.47 ms 94.4%
hpunch 0.44 ms 14.76 ms 15.20 ms 90.7% 2.19 ms 33.12 ms 35.31 ms 93.6%
iron 0.39 ms 11.82 ms 12.21 ms 91.9% 1.67 ms 19.38 ms 21.05 ms 92.7%
phone 0.40 ms 13.93 ms 14.33 ms 89.8% 1.97 ms 29.44 ms 31.41 ms 91.0%
Average 0.35 ms 11.60 ms 11.96 ms 92.9% 1.66 ms 23.92 ms 25.58 ms 94.4%

20 Tree 50 Trees
T_Tree T_Valid T_Total Acc. T_Tree T_Valid T_Total Acc.

ape 3.91 ms 16.42 ms 20.33 ms 97.2% 21.63 ms 28.94 ms 50.57 ms 97.2%
bvise 8.51 ms 33.51 ms 42.02 ms 93.1% 43.49 ms 38.66 ms 82.15 ms 93.2%
cam 8.15 ms 31.59 ms 39.74 ms 95.0% 42.03 ms 36.35 ms 78.38 ms 95.1%
can 8.73 ms 34.25 ms 42.98 ms 92.1% 44.73 ms 36.29 ms 81.02 ms 92.0%
cat 4.51 ms 19.33 ms 23.84 ms 95.5% 22.70 ms 29.84 ms 52.54 ms 95.5%
driller 9.73 ms 35.89 ms 45.62 ms 96.0% 49.29 ms 43.13 ms 92.42 ms 96.0%
duck 5.52 ms 21.63 ms 27.15 ms 94.7% 27.21 ms 32.70 ms 59.91 ms 94.7%
eggbox 5.99 ms 25.22 ms 31.21 ms 99.1% 30.89 ms 34.81 ms 65.70 ms 99.1%
glue 6.65 ms 34.89 ms 41.54 ms 93.9% 32.85 ms 44.17 ms 77.02 ms 94.4%
hpunch 8.65 ms 36.58 ms 45.23 ms 94.0% 42.93 ms 45.19 ms 88.12 ms 94.0%
iron 7.70 ms 24.20 ms 31.90 ms 93.6% 38.19 ms 33.63 ms 71.82 ms 93.6%
phone 7.90 ms 33.51 ms 41.41 ms 92.5% 37.06 ms 40.80 ms 77.86 ms 92.5%
Average 7.16 ms 28.92 ms 36.08 ms 94.7% 36.08 ms 37.04 ms 73.12 ms 94.7%
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Table 4.2: Accuracy and average time per frame for multiple object (5 trees) and its
comparison with state-of-the-art approaches.

5 Objects 13 Objects
T_Total Acc. T_Total Acc.

ape 20.01 ms 97.3% 25.53 ms 97.4%
bvise 50.30 ms 94.4% 60.11 ms 93.4%
cam 59.81 ms 94.7% 64.47 ms 94.0%
can 53.54 ms 93.3% 66.98 ms 93.1%
cat 34.09 ms 95.2% 45.22 ms 96.0%
driller 66.40 ms 96.4% 78.94 ms 95.8%
duck 29.19 ms 95.5% 42.23 ms 96.2%
eggbox 34.50 ms 98.8% 47.98 ms 98.6%
glue 52.19 ms 94.7% 65.99 ms 94.6%
hpunch 56.32 ms 95.2% 74.56 ms 95.3%
iron 32.13 ms 93.2% 44.72 ms 93.6%
phone 54.71 ms 93.3% 56.10 ms 93.3%
Average 45.27 ms 95.2% 56.07 ms 95.1%

Hashmod 131 ms 95.5% 184 ms 95.1%
DTT-3D 107 ms 97.2% 239 ms 97.2%
LineMOD 427 ms 96.6% 1197 ms 96.6%

Table 4.3: Accuracy and average time per frame for self-comparison, evaluated on 13
objects. Each listed improvements lead to significant increases in performance. Base-
line: kd-tree with Randomised decision forest (RF) by [Muja and Lowe, 2014]; improv.
1: Fuzzy split function (FZ); improv. 2: randomised ternary tree with extra rejector
nodes (RN); improv 3.: Breath-first search in leaf validation (LV).

Time Avg. acc.
Random Forest (100 trees) 963.43 ms 73.58%

RF + RN 133.12 ms 67.35%
RF + RN + FZ (5 trees) 201.32 ms 95.3%
RF + FZ + RN + LV 45.27 ms 95.1%
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4.3.5 Evaluation

Experiments are conducted onLineMODACCV12dataset [Hinterstoisser et al., 2012b],

which consists of 13 object (we omitted 2 objects since proper 3D models were miss-

ing) CADmodels and 15 testing sequences for object detection and 6D pose estimation.

Each sequence has 1100 images covering different viewpoints, distances in clutter. As

we do not exploit the temporal information in this work, each image is processed in-

dividually. It is hard to measure the error in 6-DoF parameter space. Therefore it is

typical to measure the reconstruction error instead, defined as below,

ε = avgx∈M ‖ (r̂x + ĉ)− (rx + c) ‖, (4.14)

where (r̂, ĉ) is groundtruth pose and (r, c) is the pose annotated with the retrieved

template. Following [Hinterstoisser et al., 2012b], we also use the criterion kmdM > ε

to decide whether an object instance is detected, where dM is the diameter of object

M, and km is a coefficient set to 0.1m, same as in [Hinterstoisser et al., 2012b]. All

experiments are conducted on a single 2.8 GHz Intel Core i7. A pyramid scheme is

applied in a similar way to [Hinterstoisser et al., 2012b].

In general, our pipeline achieves sublinear time complexity and comparable high

accuracy as shown in Table 4.1. Despite the detect rate of our approach being

marginally worse than state-of-the-art approaches, we are at least two times faster

than the fastest DTT-3D [Rios-Cabrera and Tuytelaars, 2013]. Since our approach is

tree-based, it is also scalable to more objects. Table 4.2 shows that we significantly out-

perform state-of-the-art approaches in speed with more objects. Additionally, both ta-

bles show that our approach works favourably on simpler objects, because the training

templates share more similar features so the background is more likely to be rejected

before the expensive validation stage.
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In Figure 4.4, we illustrate the effectiveness of our proposed preemptive back-

ground rejector. Depending on the object complexity and scene, up to 90% to 97%

background locations can be filtered out before the validation stage with a very high

recall rate. Since textureless objects are generally simple in shape and colour, their

rendered templates are likely to share particular features that can easily rule out back-

ground clutters. The parameter analysis for decision tree depth and fuzzy factor is

shown in Figure 4.5. The runtime is inversely proportional to the tree depth and expo-

nentially grows with the fuzzy factor ξ. With regard to tree depth, the accuracy drops

drastically due to error accumulation when leaf nodes contain too few templates. The

bottom right figure also shows the necessity of fuzzy split to reduce the error accumu-

lation in decision forest.

Figure 4.4: In this sample frame, with our proposed preemptive background rejector
up to 97% negative bounding boxes are filtered before reaching the forest leaf nodes.
The green region in left image indicates the locations that enter the validation stage; the
right image shows the tree depth when background locations are rejected, dark blue
indicates the region is either rejected due to out-of-depth-range or pass the validation
stage, light blue to yellow indicates whether the locations are rejected early or late in
the forest. As nearer to the ground truth or ambiguous objects the location is more
likely to not be rejected earlier.

Since majority of negative proposal locations are rejected at the first node in the de-

cision tree, in Table 4.1 we show that the time cost on testing tree itself (T_Tree) is neg-
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(a) (b)

(c) (d)

Figure 4.5: Top: max decision tree depth versus runtime and accuracy. Bottom: fuzzy
factor ξ versus runtime and accuracy.

ligible compare to the validation time (T_Valid). The performance is further boosted

with multiple trees with random permutations. Here, our proposed approach shows

another advantage with random forest framework. The time cost for additional trees

has sublinear growth, as the leaf nodes in each tree are concatenated to remove du-

plications before entering the validation stage. The result shows that the accuracy is

increased by 1.5% with 5 trees but only approximately 2 times slower.

For the adaption of fast breadth-first leaf validation, the time taken is reduced up

to 5 times without loss of accuracy. Note that in the practice, this indexing approach

is less efficient if the template set in each leaf node is too small. In our case, we set our
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maximum tree depth to be 8, and 9 for multiple objects.

Finally, our approach achieves sublinear complexity from the binary tree structure

and significantly outperform the state-of-the-art approaches in terms of processing

speed.

4.3.6 Summary

In this chapter we study the impact of various outlier removal techniques on classical

randomised decision forest framework to solve 3D object detection and pose estimation

problem. Along the method we have made a number of modifications on a classical

randomised decision forest framework.

We first adapt a ’fuzzy‘ split function to deal with noisy, over quantised LineMOD

template features and insufficient samples. A fuzzy factor is proposed to control the

tolerance of ambiguous feature within each split node. During decision forest growth,

training samples that near to the partition subspace are duplicated to both child nodes.

Similarly, during the inferencing, any query sample that is too close to the split sub-

space will be traversed to both child nodes.

Next we augment the split function with a preemptive background rejector to han-

dle background noises and a nearest neighbour pairwise matching at the end. This

extends the original binary test on each split node into a ternary test that aims to early

terminate the inferencing if testing sample falls into any extra background node. While

the parameters of each split node is learnt by maximising information gain, back-

ground rejector is in contract learnt by minimising the information gain. The idea

behind is to find common features shared amongst the training subsets, i.e., feature

dimensions that have the the lowest entropy, and by assuming negative samples dis-

tribute equally in the feature space, we can maximise our possibility to detect and re-

move background samples at the earliest.
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Finally we adopt breadth-first searching technique for leaf validation, inspired

by the preemptive RANSAC [Nistér, 2005a]. Unlike classical decision forest, in our

method, a testing sample can be traversed to multiple leaves due to the fuzzy split

rule, and each leaf contains multiple samples. Instead of expensive pairwise match-

ing, we iteratively select a random feature subspace and pairwise measure the feature

distances only within this subspace, then remove sample candidates that do not satisfy

the pass condition.

The result shows that we significantly outperform the state-of-the-art template

matching methods in terms of speed while maintaining a reasonable precision. For

future work, it is intriguing to further develop the background rejection scheme into

a more up-to-date framework, such as deep neural network for saving intensive GPU

workload.

4.3.7 Generalisation

In the previous chapter, we discuss the benefits of finding and exploiting suitable data

attributes from heuristic or human knowledge, to apply outlier removal techniques as

preprocessor to improve themachine learning systemperformance. It will general lead

to less training data requirement, less complexity of model, hence and a more efficient

system.

In this chapter, we focus on accelerating outlier removal process with a novel early

outlier rejection technique. This approachmerges the merits of cascading architecture,

template representation and classical randomised decision forest framework. To com-

pensate the low detection rate of each split node, we also adopt a fuzzy split function

to ensure the detection rate of each split node, with little sacrifices of algorithm com-

plexity.
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This approach can be generalised to any machine learning task that has very low

positive rate, such as for typical face (or object) detection problem, on average only

0.01% of all sub-windows are positive [Viola et al., 2001]. This assumption is especially

true in most real-world applications.

Moreover, this approach is limited only to random forest framework, it has poten-

tial to be implemented to any directed-acyclic-graph-(DAG)-based classifier, such as

deep convolutional neural network (CNN). It is widely known that typical CNN for-

ward propagation consumes very high computational power and require specialised

hardware (GPUs) with high power consumption, often around 250W per card. This

motivates the implementation of early termination operator to CNN framework.

4.3.8 Next Chapter

Next chapter presents a case study, we discover a phenomenon that in industrial shape

fitting tasks, the extracted edge point outliers are likely to appear in group, thus we

propose a simple heuristic outlier removal method to deal with grouped outliers. We

show that despite outliers are theoretically unpredictable, in real-world industrial ap-

plications they likely to follow a specific pattern, depending on the environment, so

that it can be leveraged to assist outlier removal method.
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Chapter 5. A Grouped-Outlier-Aware Registration-based method for Robust
Ellipse Fitting

5.1 Overview

Ellipse fitting is one of the fundamental problems in computer vision and robotic tasks.

It is required as preprocessing modules in many high level computer vision applica-

tions such as textureless object recognition and shape alignment. In this chapter, we

study the impact of an outlier removal on a classical industrial ellipse fitting task, and

propose a real-time outlier removal solution to deal with a special type of outlier that

commonly exists in real-life tasks, which we call them ‘grouped’ outliers – a set of out-

liers that are contaminated in a similar manner. This work has been done during my

internship in OMRON, Japan. 1.

Comparing to other chapters, this chapter presents a case study of outlier removal

method for assisting real-life industrial shape fitting task, as the proposed method is

simpler and more heuristic compare to previous works. However, in real-life prob-

lem we often have to deal with situations that its classical solution does not perform

optimally as some conditions cannot be satisfied.

For instance, the literature of ellipse fitting methods mostly assume the only error

on the location of shape edge points are Gaussian distributed, thus efforts have been

made to approach the theoretical accuracy bound, or KCR lower bound [Chernov and

Lesort, 2004]. When other types of noise or unknown outliers appear, the noise model

no longer suits thus leading to a suboptimal fitting result.

Therefore in industrial shape fitting applications, outlier removal is applied to deal

with unpredictable noises. In the real-world scenario, image or extracted edges are

usually contaminated heavily when under partial occlusion, specular highlight, defor-

mation, shading or other environmental nuisances. In such cases, robust fitting algo-

rithm like random sample consensus (RANSAC) [Fischler and Bolles, 1981a] is gener-
1For the contribution, Dr. Ijiri had helped the idea discussion, Mr. Hattori had helped the dataset

collection
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ally applied to eliminate outliers. However, when the inlier rate ε is low, RANSAC soon

becomes infeasible due to the possibility of finding at least one correct ellipse model is

p = 1− (1− ε5)K, where K is the number of iterations.

For using outlier removal method in shape fitting task, a recent work by [Yu et al.,

2010] proposed a proximity-based outlier detection algorithm to effectively remove the

isolated outliers and outlier clusters by constructing a proximity graph. However, the

adjacencymatrix is too expensive to compute if the data point set is large andmoreover,

some parameters need to be tuned carefully in order to achieve a good clustering result.

Also, the proximity-based method fails if the outliers are connected smoothly with the

inliers. Another work [Prasad et al., 2013] presents an accurate, non-iterative method

based on the geometric distance between a data point and an ellipse, but the method

is still not efficient enough to be used in a light weight real-time shape fitting method.

From practical observations on sensor images, we realised that in industrial shape

fitting task, outliersmostly do not appear completely in a randommanner. Instead they

appear in group and somewhat follow a particular pattern. One example is shown in

Figure 5.1. How outlier groups under environmental nuisances is hard to be learnt

by machine learning techniques since ‘the pattern’ varies diversely from case to case.

However, from observations we know that the contaminated shape edge points are

mostly clustered on some small area of the image. Thus if we can find a efficient way

to group the edge points into pure inlier and outlier subsets, the computational com-

plexity of classical outlier removal methods can be drastically reduced.

In this work, we demonstrate how edge points can be effectively grouped into short

contours to reduce the computational cost, and further show how to eliminate the out-

lier contours in a breadth-first manner. Our contribution is four-fold. First we intro-

duce a split-and-merge trick to cluster data points into subsets that contain either pure

inliers or outliers. Second we propose a breadth-first strategy for searching the outlier

contours through the combination of subsets. Third, we speed up the searching pro-
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Figure 5.1: A challenging case for proximity-based outlier removal method. Type (a)
outliers cannot be filtered by simple proximity (e.g. k-Nearest Neighbour) check. Type
(b) is even more difficult since they are connected with the inlier contour.

cess by using the smallest generalised eigenvalue (which is a by-product of the chosen

algebraic fitting algorithm) to approximate the point-to-curve projection, and then use

the algebraic fitting solution as an initial guess for geometric fitting algorithm to alle-

viate measurement noises. Finally, we proposed both realistic and synthetic datasets

for evaluation.

5.2 Problem Setting and Preliminaries

Given a point set, the objective of ellipse fitting is to find a geometric parameter set that

minimises the sum of inlier-points-to-ellipse-curve projection distance. In this work,

we assume that the edge points are already extracted and follow a cyclic order. Specif-

ically, given an approximated ellipse center point, the edge points are collected circu-

larly by finding the maximal gradient change along all radii. in consequence, the ar-

range of the point sequence is naturally known. This setting commonly exists in many

industrial applications, such like shape alignment between mechanical components.

In the following subsections, we will briefly introduce tgwo approaches for shape
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fitting: algebraic (Least-Square-based) and geometric (Maximum-Likelihood-based)

method.

5.2.1 Algebraic Fitting

Any ellipse can be represented by a second order polynomial F(u, x) = u · x = ax2 +

bxy + cy2 + dx + ey + f = 0, subject to b2 < 2ac. Our goal here is to estimate the

parameter set u = (a, b, c, d, e, f ) from a given point set xi = (xi, yi) such that the sum

of algebraic distance
N
∑

i=1
|F(u, xi)|2 is minimised.

This problem is generally tackled with linear least square solvers as in several sem-

inal approaches [Taubin, 1991,Fitzgibbon et al., 1999,Kanatani and Rangarajan, 2010].

Since the aim of this chapter is to study how outlier removal techniques improves the

ellipse fittingmethod, we use the classic Taubin’s method [Taubin, 1991] as our off-the-

shelf algebraic ellipse fitting algorithm. Also, according our empirical experiments,

Taubin’s method remains one of the most accurate and robust methods given its ef-

ficiency despite it has been proposed for decades. Since this method is designed for

general conic fitting, itmight return conics other than the ellipse (e.g. hyperbola curve),

causing incorrect fitting result.

In Taubin’s method, the solution is given by solving the generalised eigenvalue

problem:

Mu = λNu

where M =
1
N

N

∑
n=1

ξT
n ξn,

ξ = (x2 xy y2 f0x f0y f 2
0 )

T,
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N =
4
N

N

∑
n=1



x2
n xnyn 0 f0xn 0 0

xnyn x2
n + y2

n xnyn f0yn f0xn 0

0 xnyn y2
n 0 f0yn 0

f0xn f0yn 0 f 2
0 0 0

0 f0xn f0yn 0 f 2
0 0

0 0 0 0 0 0


The solution u is given by the the smallest generalised eigenvalue λ.

5.2.2 Geometric Fitting

Geometric parameters of ellipse consist of 4 elements: center position, length of major

axis, minor axis and angle of tilt. Unlike algebraic methods, the linear condition has no

longer held for solving the least square problem with geometric parameters. Instead,

iterative optimisation methods are used to find the local optimal solution given an

initial guess.

Geometric fitting, i.e. , Maximum-Likelihood-based method is generally regarded

as one of the most precise fitting algorithms. They do not suffer from scale indetermi-

nacy as in the algebraic methods and are likely to achieve the local optimal solution.

A detailed analysis is given in the work of [Kanatani and Rangarajan, 2010].

Themain drawback of geometric fitting algorithms is their high computational cost

due to iterative optimisation process. With the existence of outliers or high measure-

ment noise, they also hard to converge. The initial guess is crucial as well to achieve

the global optimal solution.

In this work, we apply geometric fitting as the final refinement to alleviate the mea-

surement noise while keeping the pipeline fast by using an algebraic solution as initial

guess.
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5.3 Proposed Approach

The proposed full pipeline consists of three stages:

• Clustering data points based on proximity so that each subset is likely to contain

only inliers or outliers edge points.

• Searching through combinations of subsets to minimise algebraic fitting distance

until convergence.

• Refining the algebraic solution by the geometric fitting algorithm.

5.3.1 Proximity-based Point Clustering

Generally, a partial or full adjacent matrix needs to be calculated to determine the con-

nections between edge points. This process roughly has computational complexity

O(N2) with respect to the number of data points, and an adequate connection radius

is also needed to be carefully chosen. The edge point detector we used in this work

naturally provides the connectivity between the points, which simplifies the cluster-

ing process considerably.

The point set is ordered by the edge point detector such that xn and xn+1 are next

to each other. A point set is split at a point that Euclidean distance to its neighbour

points di greater than t ∗median
i
{di}, where t is the distance ratio threshold. If the

measurement noise is too high, t should be set to a larger number to prevent over-

segmentation. In this step, the subset is discarded as isolated outlier if it contains less

than τ points.

To deal with type (b) outliers in Figure 5.1, each subset is uniformly split if they

contain more than a certain number of points. This number is determined by a pre-
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Algorithm 1: Proximity-based Point Clustering
Input: C f ull = {xi}N

i=1
Initialisation: t, τ, D, C1 = {};
for i← 1 to N do

Ck = Ck ∪ xi;
di = |xi − xi+1|2 ; /* i + 1 = 1 if i = N */
if di > t ∗median

i
{di} then

k = k + 1; Ck = {};
end

end
Delete any set Ck that has cardinality |Ck| < τ
for k← 1 to K do

if |Ck| > 2N
D then

Uniformly split Ck into b
|Ck |

r c sets;
Replace Ck by these sets;

end
else if |Ck|+ |Ck+1| < N

D then
Ck = Ck ∪ Ck+1 ; /* Delete set Ck+1 */

end
end
return {Ck}K

k=1

defined expected subset cardinality D. Larger D allows for a finer segmentation of

edge points, but induces higher risk of getting stuck in local optimum after the later

searching stage, and also sacrifices the processing speed.

In the last step, neighbouring subsets are merged if their sum of cardinality is suf-

ficiently small. In the end, the whole point set should be split into similar sizes and

each subset is likely to contain only inliers or outliers. The pseudo code of this section

is shown in Algorithm 1.

5.3.2 Breadth-First Searching

As shown in Figure 5.2, the fitting trials are performed between the combinations of

subsets only. The total number of possible combinations {C}D
n=1 is

D
∑

n=0

D!
n!(D−n)! , could

be still large in number.

For each test, Taubin’s fitting method [Taubin, 1991] is used to sidestep the expen-
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Figure 5.2: This figure shows an example that the value of the smallest generalised
eigenvalue λ decreasing drastically after excluding the outlier subsets. The point set
contains two ‘outlier‘ subsets, (a), (b) and (c) show three cases during the iteration,
while (a) does not exclude any outlier subset, (b) excludes one of them and (c) excludes
all.

sive geometric projection. We further speed up the process by replacing algebraic dis-

tance to the smallest generalised eigenvalue λ when solving the linear least square

system, since they are comonotonic.

Here we propose a searching scheme that efficiently searches and excludes the out-

lier subsets in a breadth-first manner. To minimise the energy while maximising the

number of possible inliers, combinations of sets are tested by excluding one subset in

each iteration. The searching process converges if excluding any subset does not reduce

the energy upto certain rate σ. To prevent local optimal solution, number of S candi-

date sets with lowest energy are stored at each iteration, and each will be appended

with other S candidates in the next iteration. In case there are muchmore outliers than

average subset size so that removing any subset does not reduce the energy, we intro-

duce an error threshold η as another stop condition. The pseudo code of this section

is provided in Algorithm 2.
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Algorithm 2: Preemptive searching
Input: {Ck}K

k=1
Initialisation: S, σ, η, {Os = ∅}S

s=1;
for m← 1 to K do

Ctest =
⋃

k∈K,k 6=m {Ck} ;
[λm,1,um,1] = TaubinFitting(Ctest);

end
Os = {m}, Es = λm for sth least λm;
for l ← K− 2 to 1 do

for s← 1 to |{Os}| do
for m← 1 to K, m 6∈ Os do

Ctest =
⋃

k∈K,k 6=m {Ck} ;
[λm,s,um,s] = TaubinFitting(Ctest);

end
end
if (E1 > σ ∗min {λm,s})&(E1 < η) then

return uargmin
(m,s)

{λm,s}

end
else

S← l if S > l;
for s← 1 to |{Os}| do

replace {Os} by {Os ∪ {m}} for S least λm,s;
end
update Es;

end
end

5.3.3 Refinement

Experimentally we found a refinement step to be crucial to reducing the measurement

noise from the edge point detector. Given the inlier point set, we convert the algebraic

parameters u to geometric parameters H and apply a nonlinear optimiser as below to

furtherminimise the point-to-curve (orthogonal to the ellipse tangent) projection error.

The detail for calculating projection distance can be found in [Eberly, 1998].

H∗ = argmin
H
||proj(H, C)||2

Since the initial geometric parameters were already estimated from the previous

stages, they are close enough to the optimal solution. Thus, the efficiency ismaintained
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despite the algorithm itself being expensive, because it converges within few steps in

most cases.

5.4 Evaluation

Our method is evaluated by both synthetic1 and realistic datasets which consist of el-

lipse edge points with different types of contamination. Both datasets are collected

using the same off-the-shelf edge point detection method introduced in ‘Preliminar-

ies’ section.

For synthetic data, we have rendered 3 scenes (2 with occlusions and 1 with back-

ground clutter) using Blender (an open-sourced 3D computer graphic software) at

960× 540 resolution. The scenes consist of an arbitrary sized ellipse and several dis-

tractors, either colour-filled rectangle or circles. Each scene is animated and contains

100 frames, each frame consists of 100 extracted ellipse edge points. The ground truth

ellipse centers are fixed to the image center. To simulate the measurement noise from

camera, we augmented Gaussian noise (σ = 3 pixels) to the data points. For private

realistic dataset, each image sample contains an industrial object with the shape of el-

lipse. Each object is then manually fit with an ellipse curve so that center location and

edge points can be extracted. We use the following parameter setting for our method

in all experiments: t = 2, τ = 5, D = 12, S = D/2, η = 5 and σ = 1.05. The pa-

rameters are also chosen with a grid search, however, the experiments on realistic and

synthetic dataset suggests that this parameter set adapts a wide range of inlier rate

and outlier type. It is believed that the parameters set can be generalised to other sit-

uation without retuning. The reason for exposing all parameters for tuning is that for

industrial applications, the environment is often consistent, such as a fixed camera on

1http://bit.ly/1Dvs0id
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Figure 5.3: Evaluation result of 3methods on synthetic and realistic datasets (best view
in color). 98
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an assembly line. Therefore users demand an extremely optimal parameter set by a

precise parameter tuning, involving all tuneable parameters.

We compare our method with Taubin’s method with/without RANSAC, and sum-

marise the evaluation result in Figure 5.3. The boxplot reflects the statistic of center

errors (capped at 20 pixel) from 100 runs of each method on every video frames. The

table on the top left corner shows the success rate (center error less than 5 pixels) of the

methods on each video. Note that for synthetic dataset, Gaussian noise is augmented

to all data points in each run to simulate the noise from realistic optical sensors. Over-

all, our approach achieves superior accuracy than the baselines.

For Taubin’s method itself, almost all fitting estimations are distorted by outliers

due to the nature of least square solvers, such as in the dataset ‘Occlusion 2’ shown in

Figure 5.3. However, RANSAC does not boost the accuracy as significantly as expected

either. Themain reason is twofold. Firstly the parameters, e.g. , inlier ratio and distance

threshold, are employed empirically as stop criteria. Such settings are not optimal to

all situations, therefore leading to an overall poor performance. Another is due to the

highmeasurement noise within all data points. Since RANSAC picks hypotheses from

randomminimal samples, the impact from noises is drastically amplified compared to

estimating from all inlier samples, which also explains the motivation of our method.

There are several extended RANSAC-like methods that have been proposed to deal

with such a problem, but they either are expensive (e.g. , pre-emptive RANSAC [Nistér,

2005b]) for ellipse fitting problem, or suffer from poor initial estimations generated

from minimal samples(e.g. locally optimised RANSAC [Chum et al., 2003]).

Our method achieves less than 20ms runtime on single core CPU with up to 360

data points, which meets the time requirement as a pre-processing module for many

higher level real-time applications. With code optimisation and parallel processing,

the whole pipeline will further speed up.
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5.5 Summary

This chapter presented a simple outlier removal technique to solve real-time ellipses

fitting under high outlier rate. We used an off-the-shelf ellipse fitting method in the

experiment, however it can be easily replaced to any shape fitting method. We demon-

strated how shape edge points can be clustered based on their proximity, and how out-

liers can be filtered in a ‘preemptive’ manner. Our method has shown to be effective

on the ‘grouped’ outliers due to common industrial environmental nuisances such as

partial occlusion, partial deformation and specular highlight. If the pattern of outliers

do not follow the assumption, the performance is comparable to the baseline. The run-

time of the overall method is below 20ms in average on amoderate single CPU core, for

up to 360 edge points, which is sufficient light weight to achieve real-time processing

speed for many higher level applications.

5.5.1 Generalisation

The insight of the proposed method is to split the data into subsets that contain pure

inliers or outliers, achieved by either simple proximity check or more complex label

propagation techniques. This approach can simplify a behavioural or collective outlier

removal problem into a contextual or individual outlier removal problem.

Although in this case study we cluster the points using a simple proximity check,

in general the clustering process should subject to the pattern of inlier and outlier sets.

One practical examplewould be removing false detection in an optical character recog-

nition system (OCR) for industrial use. If it is known that the characters are mostly

written horizontally or vertically, clustering the character detection proposals with line

fitting algorithm would remove most of false proposals with a very low cost.
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Moreover, clustering strategies can be learnt throughmachine learning techniques.

There aremany recent works on learningmodels to represent the relationship between

common distinctive parts in the data, such as [Zhang et al., 2015] proposed a hierar-

chical And-Or graph model to represent the object classes into connections between

common unannotated attributions from object images. The widely applied convolu-

tional neural networkmodels also capture these relationships intrinsically. Thesemod-

els can actually be leveraged for removing outlier groups that do not follow any known

pattern from the dataset.

In a more general aspect, this chapter also demonstrates the importance of

analysing and then exploiting the patterns within outlier sets, despite outliers are the-

oretical cannot be learnt. In real-world problems, since an outlier is always true signal

that generated by anomalous causes, in some cases seeking how outliers are generated

cost much less than learning the inlier-outlier boundary. These problems are also often

referred as anomaly detection or novelty detection.

In this study case, which is under an industrial background, we have found that

the outliers of extracted object edge points are mostly generated from the occlusion

or due to incomplete object part. This fact causes the outliers are clustered and con-

textual, so that a method for dealing grouped outliers are proposed to remove this

specific type of outliers. For other real-world machine learning tasks, this approach

can be applied as an extra refine step of generic outlier removal method to deal with

complex outliers. One example would be persistent false positive that cannot be dealt

by the classifier, such as under surveillance camera, a plant is kept being detected as

a person. In such case, we may manually label the plant to train an extra classifier

or apply novelty detection to learn a ‘objects-that-similar-to-human’ outlier filter, over

the surveillance history. There are plenty related works on novelty detection, but not

much on the combination of novelty detector and outlier removal.
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6.1 Conclusions

In this thesis, we investigate the problem of outlier removal in various computer vi-

sion tasks. In this chapter, we summarise the thesis contributions and discuss future

directions.

In Chapter 1, we introduce the problem definition and application examples of ob-

ject recognition and pose estimation, and the importance of outlier removal algorithm

in these tasks. Then, we discuss the challenges within, and hence the motivations for
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further developments. Finally, we list the thesis structure and summarise the contribu-

tions. Chapter 2 provides a general review of literatures of outlier removal methods

from amachine learning point of view. In this chapter, we categorise existing outlier re-

moval techniques into distance-based, learning-based and registration-based. In each

category, we provide a brief explanation and several seminal related works.

Chapter 3 studies how spatial and temporal cues can be exploited for outlier re-

moval under modern rigid object recognition frameworks (Chapter 3). In this chapter

we conduct a comparative study and then propose a newvideo datasetwith 33 less tex-

tured sculptures in cluttered museum scenes. We implement several state-of-the-art

object recognition frameworks and their extensions, including patch-based local de-

scriptor matching with geometric constraint (2D-to-2D, 2D-to-3D and 3D-to-3D), bag-

of-words-like global image descriptor, set-to-set kernel principle angle approach and

so on. From the evaluation result, we draw conclusion that exploiting 3D geometric

cue from the nature of rigid objects can vastly improve image classification accuracy,

and also it removes a large portion of negative local image patches, hence vastly im-

proves the matching speed. Another temporal spatial cue within the adjacent frames

in the video can be leveraged to remove noise and compress the feature set.

In chapter 4we propose a learning-based outlier removal approach for real-time 3D

object pose estimation. We show that it is viable and beneficial to implement various

outlier removal techniques into the randomised decision forest framework. This idea of

‘early termination’ presents another way of using outlier removal methods to improve

state-of-the-art machine learning frameworks.

In chapter 5 we present a simple outlier removal technique to solve real-time el-

lipses fitting under high outlier rate. Our method has shown to be effective on the

‘grouped’ outliers due to common industrial environmental nuisances such as partial

occlusion, partial deformation and specular highlight.
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6.2 Future Works

The future works based on this thesis are summarised as below:

• Chapter 3: apply meta-learning techniques to learn the characteristic of given

datasets (inliers), hence enhance the performance of outlier removal or machine

learning systems in general.

• Chapter 4: extend early-termination of outlier query to other framework for less

computation cost, such as deep convolutional neural network framework (CNN).

• Chapter 5: apply anomaly detection or novelty detection algorithms to learn the

characteristic of outliers.

6.2.1 Learn characteristic of inliers via meta-learning tech-

nique

To recognise an object in the real world, the 3D geometric cue is known to be straight

forward to human being: a single glance of a rigid object is almost enough to recognise

it from any other viewpoints. However, this is in contrast to the success of most mod-

ern general classification/detection frameworks, which relies on the ’Big Data’ and

powerful processors (GPUs). The current up-to-date solution, as known as deep con-

volutional neural network (CNN), constructs a huge parameter space to fit any kind

of data. Usually a well-trained CNN model consists of million float-point numbers

as parameter. There are plenty of works trying to reduce the model complexity, such

as transfer learning and knowledge distillation [Hinton et al., 2015], compressing the

model using quantisation or pruning techniques, to make it possible to deploy heavy

CNNmodels into embedded devices. That said, the CNNmodels still consume a large
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amount of computational resources and work like black boxes that cannot easily lever-

age or capture semantics. On the other hand, achieving state-of-the-art performance

often requires millions of labelled image data.

When solving real-world computer vision problems, these facts encourage us to

not entirely rely on the data stream from sensors or huge models, but also exploit the

attributes within them – the information extracted from human common knowledge

and do not require intensive labelling effort. For instance, sculptures do not deform

so that their 3D geometry can be easily used to validate their 2D images. Despite we

may concatenate these attributes to the data labels, there is unfortunately no machine

learning framework could train from all sort of information. However, we may use

an ensemble of ‘micro-frameworks’ instead of a big universal framework, and how it

composed should be problem specific. In our comparative study in chapter 3, we show

that the best performance is achieved by using a hybrid method that combines local

image descriptors matching, 2D-to-3D geometric validation and other outlier removal

techniques.

The drawback of such approach is obvious, as handcrafting a pipeline of methods

is not desirable in theworld ofmachine learning. So one futurework could be first split

state-of-the-art frameworks into components, then training a machine learning model

that learn the optimal combination given the dataset. Such thinking is proven to be

effective under deep neural network framework, one example is known as NASNet

[Zoph et al., 2018], where it learns the model architectures directly on the dataset of

interest. It would be intriguing to generalise it to other machine learning frameworks.

Outlier removal methods would also largely benefit from this approach as they are

simple, effective but problem specific and sometimes hard to generalise to other tasks.

In a more general aspect, this also can be seen as a ‘meta-learning’ problem, where

we seek the best machine learning approach based on the ‘meta-knowledge’ of a

given dataset, i.e. the characteristics of the data. For video-based rigid object recog-
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nition or pose estimation problem, the ‘meta-knowledge’ would include the 3D ge-

ometry and temporo-spatial information, which leads to a workflow that involves 3D-

reconstruction, 2D-to-3D geometric validation and optical flow.

By now, the meta-knowledge of a given dataset is still mainly extracted manually

with human common sense, it would be intriguing if themeta-knowledge can be learnt

via machine learning methods as human do. In the literature, one approach is via Re-

inforcement Learning (RL), where the algorithm learns to accelerate reward intake by

continually improving its own learning algorithm which is part of the self-referential

policy ( [Schmidhuber et al., 1997]). This is also closely related to few-shot learning,

where a model is learnt while the data amount is very limited.

The challenge is obvious, we still expect a good meta-learning model to be able

to generalise a given set of concepts to the new data sample. Also, how do different

concepts embed to the model remains a difficult problem.

6.2.2 Early termination of outlier query in CNN framework

To meet the processing speed requirement of real-world applications, it is important

to discard the background or uninterested query proposal as quickly as possible. In

case of the most widely used machine learning recently, deep CNN, it should not be

too difficult to implement intermediate outlier removal layers in order to save compu-

tation from background regions. Concretely, such as the zero-valued activations that

arise from the rectified linear unit (ReLU) operator could be exploited to prevent un-

necessary data transfers, or early termination of further processing.

Though, this approach imposes a greater challenge to the hardware architecture

for fast CNN inference. Due to the optimisation of matrix operation in the proces-

sor, typical convolutional dataflows cannot be gated or stopped. One solution is the
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redesign of CNN inference accelerator architecture, one recent work [Parashar et al.,

2017] designed a zero-value-aware accelerator architecture and improves performance

and energy efficiency by a factor of 2.7 and 2.3. Another possible direction would be

send the intermediate data back and forth between CPU and accelerator, so that the

computation on the sparse feature map can be easily implemented.

6.2.3 Learn characteristic of outliers via anomaly detection

technique

Instead of learning characteristics of inlier as in Chapter 3, it is also possible to learn

from outliers. To solve real-world problem, it is sometimes worth to model outliers

under specific environment. The future work may include online learning of anomaly

data for outlier removal, which would be valuable for many surveillance systems.

There are many related works on anomaly detection, but mainly only focus on find-

ing unusual data. To extend, we can expand the methods for better outlier removal.
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7.1 Method implementations

This section presents a detailed and coherent implementation approach for the core

algorithms/techniques used in Chapter 2.

7.1.1 Local descriptor - SIFT

In this work, we implemented Scale-invariant feature transform (SIFT) as local image

descriptor. SIFT is one of the most widely implemented algorithm to detect and de-

scribe local image features. Despite SIFT is not the latest algorithm, it is robust to en-

vironment, widely recognised by computer vision researchers and easy to implement
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due to its open source code. Also, since same image local descriptor is used across

all method categories, the choice would not affect the final comparison result. A brief

implementation walkthrough of SIFT keypoint detector and descriptor is given below.

(a) (b)

Figure 7.1: Figure 1 in the paper of [Lowe, 2004a]. Figure (a) shows how multi-scaled
DoGs are calculated; figure (b) shows the approach for finding local maxima/minima
of DoG.

Local interest points for SIFT description, or keypoints, are detected via scale-space

extrema detection. This step involves three stages:

• Image convolution with Gaussian filter at multiple scales.

The convolution of the original image I(x, y)with the Gaussian kernel G(x, y, kσ)

at scale kσ is given by:

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y)

, where ∗ indicates convolution operator

• Find difference of successive convolved images, as illustrated in Figure 7.1 (a).

Difference of Gaussians (DoG) D(x, y, σ) at each scale is given by:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, k jσ)
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• Find local maxima/minima of the Difference of Gaussians (DoG) that occur at

multiple scales, , as illustrated in Figure 7.1 (b).

This is given by the comparisons between each pixel in every DoG layers with its

8 neighbours on same scale and 9 neighbours in each of the neighbouring scales.

The pixel is selected as local maxima/minima, i.e. a keypoint, if it greater or less

than all of its neighbours.

After first step, there are likely to have lots of keypoints that have low repeatability

or poorly located, i.e. they are no longer keypoints under slight environment variant

such as illumination change or view point change. There are several aspects for im-

proving and discarding keypoints:

• Sub-pixel determination of keypoints.

In the work by [Brown and Lowe, 2002], an approach improve the accuracy of

keypoint localisation uses the Taylor expansion (up to the quadratic terms) of

the scale-space function as below:

D(x) = D +
∂D
∂x

T
x+

1
2
xT ∂2D

∂x2 x

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is

the offset from this point. The keypoint is then determined by taking the deriva-

tive of D(x) with respect to x and setting it to zero.

• Removing keypoints with low-contrast.

The contrast can be approximated by the value of the second-order Taylor ex-

pansion D(x). According to the experiment of [Lowe, 2004a], the keypoints with

value below 0.03 are discarded, assuming image pixel values are in the range of

[0,1].
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• Removing keypoints that have poorly determined locations but high edge re-

sponses.

This is done by calculating the principal curvature, the eigenvalues of a 2x2 Hes-

sian matrix at the location and scale of each keypoint. Since only the ratio of

principal curvatures is of interest, i.e. the ratio between the largest magnitude

eigenvalue and the smaller one, this process is finally simplified to:

(Dxx + Dyy)
2/(DxxDyy − D2

xy) > (r + 1)2/r,

where D is DoG function of keypoint (x, y), r is a threshold of the ratio between

largest and second largest eigenvalue. In the experiment of [Lowe, 2004a], r = 10.

To achieve scale-invariant, dominant orientations are calculated via functions be-

low at given scale σ and Gaussian-blurred image L(x, y, σ). At a location x, y:

m (x, y) =
√
(L (x + 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y− 1))2

θ (x, y) = arctan2 (L (x, y + 1)− L (x, y− 1) , L (x + 1, y)− L (x− 1, y)) ,

where, m(x, y) is the gradientmagnitude, θ(x, y) is the orientation. In the paper, an ori-

entation histogram is formed with 36 bins with 10 degree coverage each bin, weighted

by the gradient magnitude. The histogram peak is selected as the dominant orienta-

tion.

The next stage is local description for all keypoints at particular scales and assigned

orientations. The descriptor is aimed to be highly distinctive and nuisance invariant.

Similar to the calculation of dominant orientations, each SIFT descriptor consists of a

4x4 histogram of orientation with 8 bins each, as illustrated in Figure 7.2. This makes

the feature vector 128-dimensions in total, a unified representation of local image key-

points. Image patches similarity can be simply measured from Euclidean distance

between feature vectors, or via approximate nearest neighbour algorithms for large-

scaled problem.
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Figure 7.2: Example of SIFT descriptor on a sample image of our proposed dataset.

7.1.2 Global descriptor - Bag-of-Words

Unlike image local descriptor, global descriptor aims to encode image as a single rep-

resentation, hence enables the similarity measurement between images. We adopt the

bag-of-words approach for comparison in this work, which the representation is en-

coded based on the set of local image descriptors.

Bag-of-Words model (BoW) is commonly applied for document classification or

other natural language processing problems. It discards the grammar, words order

and other context information, but takes the occurrence of each word as feature to

train a classifier. This process results a histogram of a fixed number of texts, so that the
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similarity between documents can be measured by the distance between histograms.

In computer vision, the text words are replaced by the local descriptor. However,

since local descriptors are scattered in the feature space, we have to take an extra stage

to generate a dictionary, or a ‘codebook’, to map the local descriptor to ‘codewords’.

This step is usually achieved by k-means clustering over all descriptors. A brief work-

flow of BoW approach is illustrated in the Figure 7.3.

At the end, each descriptor is mapped to a codewords, so that a histogram can be

generated from the set of local descriptors, which represents the whole image.

Figure 7.3: A brief workflow of Bag-of-Words approach.

BoW has its limitations from discarding the spatial relationships among the image

patches. This is improved by the work of Spatial Pyramid Matching (SPM) by [Lazeb-

nik et al., 2006]. The key of this approach is to coarsely encode the spatial information
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in the image encoding, so that the spatial relationship is not completely lost during the

BoW process.

The implementation of SPM is quite simple: applying BoW encoding on different

regions (with different scales) and then concatenate all histograms, a toy example from

its original paper is illustrated in the Figure 7.4.

Figure 7.4: A toy example from Figure 1 of the work [Lazebnik et al., 2006]. The image
has three feature types, indicated by circles, diamonds, and crosses. At the top, the
image is subdivided at three different levels of resolution. At each level of resolution,
a histogram is formed and weighted. The final representation takes the concatenation
of all histograms.

We also implemented a better encoding scheme, called Sparse Coding, also known

as ScSPM when combining with SPM, this work is proposed by [Yang et al., 2009].

This work replaces the vector quantisation step in the SPM from k-means clustering to

sparse coding. Instead of ‘hard’ assigning of local descriptor to a single ‘codeword’,

sparse coding learns a set of basis so that each local descriptor can be ‘soft’ assigned to

a combination of basis with various weight. This greatly reduce the information loss

115



Chapter 7. Appendix

from vector quantisation hence improve the representation of images. The details of

training process can be referred to the section 3.1 in the paper [Yang et al., 2009].

7.1.3 Approximate nearest neighbour

Approximate nearest neighbour (ANN) algorithm is implemented to accelerate the

large-scale pairwise matching between local/global image descriptors, it can accel-

erate nearest neighbour matching by hundreds times over exact search, as shown in

Figure 7.5. In this work, we implemented the Fast Library for Approximate Nearest

Neighbours (FLANN) algorithm by [Muja and Lowe, 2014]. FLANN is a recent pop-

ular and open-sourced library for very efficient high dimensional nearest neighbour

matching. It is based on the randomised k-d forest with a novel node partitioning al-

gorithm, called priority search k-means forest.

�D� �E�

Figure 7.5: An experiment conducted in the work [Muja and Lowe, 2014]. Search effi-
ciency for data of varying dimensionality, with data set of size 100K. (a) uses data with
no correlations (random vectors), (b) uses real-world image descriptors.

To present the workflow of the construction of a randomised k-d forest, we start

with a single randomised k-d tree. Basically, the dataset is recursive split into two (or
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Figure 7.6: An example of kd-tree from work [Muja and Lowe, 2014]. The data is split
until each leaf node has one data point.

multiple) subsets, following a splitting rule, each subset will be further split until they

cannot be further split.

Before the construction, we need to set a stopping criteria to stop further partition

of nodes under a pre-defined condition, it can be a maximum number of layers or data

in the leaf nodes. Then we also set a maximum number of iterations we will perform

the random subspace method on each split node.

We start establishing the tree by splitting from the root node with full dataset. For

each node, a hyperplane need to be chosen to split the dataset in a node into two subsets

for child nodes. There are many ways to find out the hyperplane. In the work of [Muja

andLowe, 2014], theyfirst calculate the top 5dimensionswith the highest data variance

and choose one of them randomly. After the hyperplane is learnt, the data can be split

into two subset by simply compare each of data with the plane. A simple example

with 2D data is shown in Figure 7.6. For a query point, it only compares with the

hyperplanes to reach its approximate nearest neighbour.

Since there is likely to exist a nearest neighbour that is across a decision boundary
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from the query point. K-d tree is trained multiple times to form a randomised k-d

forest, each tree is built with different random seeds to improve thematching precision.

7.1.4 RANSAC

Random sample consensus method (RANSAC) is used to estimate the parameters of a

model that fit a set of inliers that mixed with a (often much larger) set of outliers. The

algorithm is implemented according to [Bolles and Fischler, 1981] and briefly sum-

marised as below:

• Randomly select a set of hypothetical inliers, usually is a minimal subset of the

data that can fit the model.

• Estimate model parameters from hypothetical inliers.

• Fit all data through themodel parameter, count the inlier data points that accord-

ing to a model-specific loss function, e.g. a Euclidean distance threshold between

an estimated data point and the corresponding true data point.

• Repeat the procedure until certain condition is met, e.g. reaching a maximum

number of iteration or finding a model parameter that fits enough data points.

• The final model parameters might re-estimated from the full inlier set instead of

the hypothetical inliers.

In this work, RANSAC is applied to estimate the geometric relationship between

two sets of SIFT descriptors for filtering the outliers that do not pass the geometric

validation, and also to find the relative camera pose between two images for 3D recon-

struction.
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7.1.5 Camera calibration

Figure 7.7: A camera calibration board.

Since our work involves 2D-to-3D projection and 3D reconstruction, camera intrin-

sic parameters are required to map pixel coordinates to world coordinates:

zc


u

v

1

 = A
[

R T
]


xw

yw

zw

1


,

where A is the camera intrinsic matrix, [u v 1]T is the 2D points in pixel coordinates,

[xw yw zw 1]T is the 3D points in world coordinates, R, T are the extrinsic parameters
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that denote the transformation between 3D world coordinates and 3D camera coordi-

nates, i.e. the camera pose.

A camera intrinsic matrix A is:

A =


fu γ uc 0

0 fv vc 0

0 0 1 0

,

where fu, fv represent the focal length on both axises, uc, vc represent the principal

point, γ is the skew coefficient between axises.

To compute camera intrinsic parameters, we first acquire a calibration board with

checkerboard pattern, as illustrated in Figure 7.7. The physical size of checkerboard

is known in world units, e.g. millimetres. Then for an image of checkerboard, we can

extract the corner points by corner detector (such as Harris corner detector [Harris and

Stephens, 1988]) and find their correspondences by RANSAC or other method.

The algorithm for computing camera intrinsic parameters is done as below:

• Start with an initial intrinsic parameters.

• Take an image of the calibration board and estimate the reprojection error by

solving the Perspective-n-Point problem. The implementation of this method is

introduced in the next subsection.

• Run a global optimisation algorithm, e.g. Levenberg-Marquardt, with respect to

the camera intrinsic parameters to minimise the reprojection error.

After taking ten or twenty images of checkerboard with various viewpoints, the

error should converge to a small value and return the final values of camera intrinsic

parameters.
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7.1.6 Perspective-n-Point problem

Perspective-n-Point problem (PnP) is to find the camera pose (position and orienta-

tion) given the camera intrinsic parameters and a set of n correspondences between 3D

points and their 2D projections. We implemented a fast method called ePnP by [Lep-

etit et al., 2009] to validate the 2D-to-3D geometry between an object image and its 3D

object model, an example of usage is given in the Figure 7.8.

Figure 7.8: From [Lepetit et al., 2009]. Examples of reprojection of the models on real
images.

Given a 3D object model, i.e. a point cloud that consists of n 3D points in the world

coordinate system, be:

[p1, p2, ..., pn]

And let 4 control points be:

[c1, c2, c3, c4]

Firstly we represent all 3D points by control points, such that:

pi =
4

∑
j=1

αijcj, with
4

∑
j=1

aij = 1,
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where the αij are homogeneous barycentric coordinates.

Next, let A be the camera intrinsic matrix and {(u1, v1), (u2, v2)..., (un, vn)} be the

2D projections of the {p1, p2..., pn}. We have:

Apc
i = wi


ui

vi

1

 , where A =


fu 0 uc

0 fv vc

0 0 1

 , wi are scalar projective parameters

In intrinsic matrix A, fu, fv are focal length coefficients and the uc, vc are principal

points. For 3D coordinates, let control point ci = [xc
j , yc

j , zc
j ]

T, the last equation becomes:

wi


ui

vi

1

 =


fu 0 uc

0 fv vc

0 0 1


4

∑
j=1

aij


xc

j

yc
j

zc
j


From the last row of this equation, we can see that wi = ∑4

j=1 aijzc
j . By substituting

it to the previous equation, we have:

4

∑
j=1

aij fuxc
j + aij(uc − ui)zc

j = 0

4

∑
j=1

aij fvyc
j + aij(vc − vi)zc

j = 0

By concatenating two equations for all reference points, we can generate a linear

system:

Mx = 0,

where x = [cT
1 , cT

2 , cT
3 , cT

4 ]
T, M is a 2n × 12 matrix, generated by the coefficients from

previous two equations.

The solution is expressed as a linear combination of the null eigenvectors of MT M,

a constant matrix of (12 × 12) size. According to the experiments in [Lepetit et al.,
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2009], this step consumes most of the computation power. The solution is expressed

as below:

x =
N

∑
i=1

βivi,

where the set vi are the columns of the right-singular vectors of M corresponding

to the N null singular values of M.

The dimension N of the null-space depends on the camera model, i.e. how many

ambiguities exist in the solution. Given more than 6 correspondent points and a per-

spective camera model, N = 1 because of the scale ambiguity; for an affine camera

model, N = 4 because of the unknown depths of the four control points. Since a per-

spective camera with a large focal length can be approximated to an affine camera, the

value of N is not certain. In the paper of [Lepetit et al., 2009], the authors compute all

values of N and keep the one with smallest reprojection error.

In our implementation, we only consider the case that camera model is perspective

and there are more than 6 correspondent points, i.e. N = 1. This is because our cam-

era positions in our problem setting are generally near to the objects, and the camera

has relatively small focal length. The camera pose estimation is considered failure if

reprojection error is higher than a certain threshold.

7.1.7 Set similarity - Kernel principal angle

We adopt kernel principal angle method to measure the similarity between two sub-

spaces (or manifold), each subspace is formed with a set of local or global image de-

scriptors, the principal angles are invariant to the column ordering of the two sets. This

method is implemented follow the work of [Wolf and Shashua, 2003].
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Let two descriptor sets A = [φ(a1), ..., φ(ak)] and B = [φ(b1), ..., φ(bk)] represent

two linear subspaces UA, UB in the feature space where φ() is mapping from input

space Rn onto a feature space F with a kernel function k(x, x′) = φ(x)Tφ(x′). The

principal angles 0 < θ1 < ... < θk ≤ (π/2) between the two subspaces are defined as:

cos(θk) = max
u∈UA

max
v∈UB

uTv

subject to:

uTu = vTv = 1,uTui = 0,vTvi = 0, i = 1, ..., k− 1

cos(θi) are the canonical correlations of thematrix pair (A, B). The vectors ui,vi are

called variates and the corresponding vectors xi,yi, ui = Axi and vi = Byi are called

the canonical vectors.

To find out cos(θi), we follow the eigen decomposition approach. The eigen de-

composition UA, DA, UB, DB is calculated using SVD formulation AT AUA = UADA

and BTBUB = UBDB. Then let M = ATB, the cosine of the principal angles are the

singular values of the matrix D−1/2
A UT

A MUBD−1/2
B .

We adopt the positive definite kernel according to the recommendation in [Wolf

and Shashua, 2003], as the final value to represent the set similarity:

f (A, B) = Πk
i=1 cos(θi)

2 = det(QT
AQB)

2

7.1.8 Tracking - Optical flow

We adopt sparse optical flow as our tracking method to form local descriptor trajecto-

ries along the video stream. Specifically, we adopt Lucas-Kanademethod (KLT) by [Lu-

cas et al., 1981] with bidirectional validation by [Kalal et al., 2010]. This methods work
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fast and has good performance for small movement, but likely to fail under large dis-

placement or long time tracking. As our target video clips are relatively short but high

frame rate, this method suits our requirement. The local point tracking is illustrated in

the Figure 7.9.

Figure 7.9: An example of local points tracking. The square boxes are the local points
in current frame, the dots are the local points in previous frames.

Given a 2D location in a video p at frame t with image intensity I(p, t), we aim to

find the movement (∆x, ∆y) of each position such that:

I(p, t) = I(p− (∆x, ∆y), t− 1)

By assuming all the neighbouring pixels of a given position will have similar

motion, the problem becomes solving nine equation in total with two unknown

variables:

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)

. . .

Ix(q9)Vx + Iy(q9)Vy = −It(q9),
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where q are all known neighbouring pixels given a local image location p, (Vx, Vy)

are local image velocities that are equivalent to (∆x, ∆y) in this case. Ix(qi), Iy(qi), It(qi)

are the partial derivatives of the image I with respect to position x, y and time t, i.e. the

Ix, Iy can be calculated by subtracting I(p)− I(qi), It is the intensity values difference

of local images between frame t and t− 1.

Hence the movement ∆x, ∆y is computed by solving the 2× 2 system:Vx

Vy

 =

 ∑i Ix(qi)
2 ∑i Ix(qi)Iy(qi)

∑i Iy(qi)Ix(qi) ∑i Iy(qi)
2


−1−∑i Ix(qi)It(qi)

−∑i Iy(qi)It(qi)



7.1.9 3D Reconstruction - Structure from motion (Off-the-

shelf)

Given local correspondences between two images and a camera intrinsic parameter,

one can estimate the relative camera pose hence project the 2D local points on image

(camera coordinates) into 3D world coordinates. The implementation in this work is

based on an off-the-shelf GUI application ‘VisualSFM’ by [Wu, 2011].

To reconstruct a sparse 3D point cloud from a set of object videos, the workflow is

shown below:

• Do camera calibration to find the camera intrinsic parameters.

• Extract SIFT features from every image.

• Perform approximate nearest neighbour algorithm (FLANN) to find correspon-

dence between images. Note that to reduce the complexity of pairwise match-

ing, only the images within 5 seconds are matched to each other. To overcome

loop closure, the features of a set of randomly picked images are also pairwise

matched.
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• Feed the feature information of images and their matches into VisualSfM. Each

match consists of two feature indices; each image is attached with their feature

locations.

• Run the program and export camera 6-dof poses and reconstructed 3D points.

• The 3D points are correspondent to the 2D features so that they can be used for

further 2D-to-3D or 3D-to-3D matching.

Dense point clouds are extracted by replacing sparse SIFT descriptors with dense

optical flow trajectories, the correspondences are filtered with RANSAC. The result is

shown in Figure 7.10.

Figure 7.10: Reconstructed 3D point cloud from our proposed dataset.

7.1.10 Nearest Neighbour-based classifier

Nearest Neighbour-based classifier (or Naive-Bayes Nearest-Neighbour, NBNN) is a

simple, efficient non-parametric classifier proposed by [Boiman et al., 2008]. It does not

need the learning phase and can handle large number of classes. The authors prove
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that under the Naive-Bayes assumption, the optimal distance to use in image classifi-

cation is the Kullback?Leibler (KL) “Image-to-Class” distance, and not the commonly

used “Image-to-Image” distribution distances.

Given a query descriptor Q, and a target class C, the maximum-a-posteriori (MAP)

classifier minimises the average classification error:

Ĉ = arg max
C

p(C|Q),

when the class prior p(C) is uniform, the MAP classifier reduces to the Maximum

Likelihood (ML) classifier:

Ĉ = arg max
C

p(Q|C),

since the descriptors are i.i.d., follow the Naive-Bayer assumption:

p(Q|C) = p(d1, .., dn|C) = Πn
i=1 p(di|C),

take the log probability:

Ĉ = arg max
C

p(Q|C) = arg max
C

1
n

n

∑
i=1

log p(di|C),

then reform to:

Ĉ = arg max
C

( ∑
d∈D

p(d|Q) log
p(d|C)
p(d|Q)

) = arg min
C

(KL(p(d|Q)||p(d|C)))

where KL(p(d|Q)||p(d|C)) is the KL-distance (divergence) between two probability

distributions. This proves that the optimal MAP classifier minimises a “Query-to-

Class” KL-distance between the descriptor distributions of the query Q and the class

C.

The probability density of descriptor d in a classC is required,i.e. p(d|C) to compute

the classification error, however, the number of descriptors is too large. Parzen density

estimation is adopted to approximate the continuous descriptor probability density

p(d|C), follow by [Duda et al., 2012]:

p̂(d|C) = 1
L

L

∑
j=1

K(d− dC
j ),
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where K is the Parzen kernel function, L is the number of descriptors. The approxima-

tion p̂ converges to the p as L approaches infinity.

From the long-tail characteristic of descriptor distributions, as descriptors are

mostly isolated in the feature space, we can further assume that after certain r near-

est neighbour, the K is negligible, i.e. :

pNN(d|C) =
1
L

r

∑
j=1

K(d− dNN
C
j )

From the work of [Boiman et al., 2008], this approximation is accurate enough even

for r = 1. Therefore the implementation of algorithm can be simplified as below:

• Given a set of query descriptors D.

• Compute the nearest neighbours of all descriptors d in D in all C: NNC(d).

• Ĉ = arg minC ∑n
i=1 ||di − NNC(di)||2

In this work, we also implemented an extension of NBNN, called Local-NBNN, by

[McCann and Lowe, 2012]. It has better scalability to the number of class, and achieves

100 times speed-up over the original NBNN on the Caltech-256 dataset.

The implementation is given below:

• Given a set of query descriptors D.

• Compute k + 1 nearest neighbours p of all descriptors d in D in all C: NNC(d, k +

1).

• Find the background distance: distB = ||di − pk + 1||2.

• For all categories C found in the k nearest neighbours:

distC = min
{pj|Class(pj)=C}

||di − pj||2

totals[C]← total[C] + distC − distB
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• Ĉ = arg minC totals[C]
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