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The problem of optimal fault-tolerant control for a class of descriptor time-varying systems with nonlinear input is considered.
Based on the Lyapunov stability theorem, the sufficient conditions of the stability are obtained when the system is normal and
ineffective. Furthermore, the fault-tolerant control of the systems is carried out in two cases, and the state feedback fault-tolerant
controller is obtained to satisfy the quadratic performance index and reach the minimum value in order to achieve the optimal
fault-tolerant control. Finally, the validity of the proposed approach is illuminated by a numerical example.

1. Introduction

Descriptor systemswere first studied in the 1970s and are now
widely used in control systems, electrical circuits, mechanical
systems, economics, and other areas. Because descriptor
systems can better describe the actual system, there has been
an extensive research in this area, resulting in insubstantial
outcomes during the past 40 years. The theory underlying
descriptor systems has become a critical area of research in
modern control theory. But in the actual control systems,
there are usually a series of unforeseen and unavoidable
problems, such as the actuator failure and sensor failure in the
systems. Therefore, focusing on these problems, the systems
should have certain fault-tolerant performance to continue
to maintain the original operation ability while the actuators
or sensors of the systems are under fault. In addition, in the
actual control system, according to the input of the system
there will be some nonlinear input and the controller design
is more complex; it is necessary to solve the problem of the
fault-tolerant control against descriptor time-varying systems
with nonlinear input.

In recent years, fault-tolerant control has attracted many
scholars’ attention; Zhou and Ding [1] summarized the
main results of the recent research on classical fault-tolerant
control and robust fault-tolerant control. Chen and Patton
[2] and Duan et al. [3] proposed a new parametric approach
for robust fault detection in descriptor linear multivariable

systems with unknown disturbances. Chen and Zhang [4]
studied the design of integrity controller for linear time-
invariant discrete descriptor system and some conditions for
integrity of the system are obtained by Lyapunov method.
Zhu et al. [5] studied the problems of robust fault-tolerant
guaranteed cost control for T-S fuzzy descriptor system with
uncertain parameters and actuator failure. Gao et al. [6]
proposed a novel state and sensor fault observer for systems
with both state and input time delays to estimate system states
and sensor faults simultaneously. Hashimoto and Amemiya
[7] investigated the controllability and observability of linear
time-invariant uncertain systems. Yang et al. [8] and Zheng
and Cui [9] investigated the problems of robust passive
fault-tolerant control for uncertain singular systems with
time delay. Jin et al. [10] were concerned with the robust
fault-tolerant H∞ control problem of linear time-invariant
systems with an adaptive mechanism for the general actuator
fault and perturbation compensations. Wang and Lei [11]
discussed the fault-tolerant control problem for uncertain
singular systems when actuator is normal and ineffective.
Feng et al. [12] considered a class of the time-varying
periodically singular system and put forward the concept of
robust stability and robust stabilization for the time-varying
periodically singular system by using analysis method of
inequalities of linear matrix and Lyapunov inequalities.
Qiu et al. [13] studied fault-tolerant control problem for
uncertain nonlinear singular systems, a new fault-tolerant
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control criteria is proposed in terms of Lyapunov-Krasovskii
functional approach, and the sufficient condition for the
existence of fault-tolerant controller is derived by the form of
the linear matrix inequality (LMI) approach. Liang and Wei-
Guo [14] studied a class of singular systems with uncertain
perturbation and presented the design method of fault-
tolerant control to ensure the system is finite time stable when
the actuator fails. Yao et al. [15] proposed a new optimal fault-
tolerant control algorithm for linear time-varying singular
systems and in order to develop an effective scheme to
make time-varying systemswork normally when faults occur,
Riccati matrix equation is used to get the optimal fault-
tolerant law for the faulty system. Li et al. [16] deal with the
problems of fault diagnosis and fault-tolerant control for sys-
tems with delayed measurements and states. Song et al. [17]
presented the design method for reliable tracking controller
against actuator faults for a class of linear systems which
are subject to both time-varying norm-bounded parameter
uncertainty and exogenous disturbance. Vrabie et al. [18]
proposed a new scheme based on adaptive critics for finding
online the state feedback, infinite horizon, optimal control
solution of linear continuous-time systems using only partial
knowledge regarding the system dynamics. Ji and Qiu [19]
focused on the state and static output feedback stabilization
for fractional-order singular uncertain linear systems with
the fractional commensurate order, and suitable feedback
controllers that guarantee the stability of resulting closed-
loop control systems were designed.

In the past literatures, we have had a lot of work on stabil-
ity analysis and fault-control problems for descriptor systems,
but the related results on descriptor time-varying systems
with nonlinear input remain undiscovered. Considering the
importance of the systems in real world, in this paper, we
investigate the optimal fault-tolerant control against time-
varying descriptor systems with nonlinear input; the suffi-
cient conditions are obtained by Lyapunov stability theorem
when the system is normal and ineffective. Further, based on
the stability condition, the optimal fault-tolerant controller
for the system is obtained through the boundary conditions,
whichmet the given quadratic performance index. Finally, an
example is given to solve the problem by MATLAB.

2. Problem Statements

Consider the following descriptor time-varying system with
nonlinear input:

𝐸 (𝑡) 𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) (𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡)))
+ 𝑓 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) ,
(1)

where𝑥(𝑡) ∈ 𝑅𝑛 is the state vector,𝑓(𝑡) is the boundary failure
of system (1) and ‖𝑓(𝑡)‖ ≤ 𝐹(𝑡)𝑥(𝑡), 𝐹(𝑡) ≥ 0. 𝐸(𝑡), 𝐴(𝑡), 𝐵(𝑡),
and𝐶(𝑡) are the time-varying analytic functionmatrices with
the appropriate dimensions, and rank(𝐸(𝑡)) = 𝑞 ≤ 𝑛. 𝑢1(𝑡) ∈𝑅𝑚 control input, 𝑢2(𝑡, 𝑥(𝑡)), is the nonlinear input of system
(1) and it satisfies Lipschitz condition that there is a scalar 𝛼 >0 such that

󵄩󵄩󵄩󵄩𝑢2 (𝑡, 𝑥1 (𝑡)) − 𝑢2 (𝑡, 𝑥2 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝛼 󵄩󵄩󵄩󵄩𝑈 (𝑥1 (𝑡) − 𝑥2 (𝑡))󵄩󵄩󵄩󵄩 , (2)

where 𝑈 is the continuous constant matrix with the appro-
priate dimension, and according to formula (2), the following
inequality is obtained:

󵄩󵄩󵄩󵄩𝑢2 (𝑡, 𝑥 (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝛼 ‖𝑈𝑥 (𝑡)‖ . (3)

And it can be obtained from the above formula that

𝑢2 (𝑡, 𝑥 (𝑡)) ≤ 𝑈𝑥 (𝑡) . (4)

For convenience, let

𝑢1 (𝑡) + 𝑈𝑥 (𝑡) = 𝑢 (𝑡) . (5)

The fault-tolerant control law for system (1) is that system
(1) can remain asymptotically stable when the fault occurs;
we select the following quadratic performance indicators of
infinite time:

𝐽 = ∫∞
0

(𝑥𝑇 (𝑡) 𝑄𝑥 (𝑡) + 𝑢𝑇 (𝑡) 𝑅𝑢 (𝑡)) 𝑑𝑡, (6)

where 𝑄 ∈ 𝑅𝑛×𝑛 is a semipositive matrix and 𝑅 = 𝑅𝑇 ∈ 𝑅𝑛×𝑛
is a positive matrix.

Definition 1. The descriptor time-varying system (1) is said to
be regular, if there is a constant 𝑠, for any 𝑡 in the time domain;
then det(𝑠𝐸(𝑡) − 𝐴(𝑡)) ̸= 0.
Definition 2. Thedescriptor time-varying system (1) is said to
be impulse-free, if there is a constant 𝑠, for any 𝑡 in the time
domain; then rank(𝑠𝐸(𝑡) − 𝐴(𝑡)) = rank(𝐸(𝑡)).
Definition 3. The descriptor time-varying system (1) is said
to be admissible, if it is uniformly regular, impulse-free, and
stable.

3. Main Results

3.1. Stability Analysis. In order to solve the optimal control
problem of system (1), the stability of the system should be
analyzed, and the stability conditions of system (1) are given
as follows.

Theorem 4. The descriptor time-varying system (1) with non-
linear input is said to be asymptotically stable, when system (1)
is in fault, if there is a positive definite matrix 𝑃(𝑡) ∈ 𝑅𝑞×𝑞 such
that

Ξ + 𝑈𝑇 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐵 (𝑡) 𝑈 (𝑡)
+ 𝐹𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐹 (𝑡) ≤ 0, (7)

where

Ξ = 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝑘𝑇1 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
+ 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑘1 (𝑡) .

(8)
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Proof. Consider the control input𝑢1(𝑡) and design the follow-
ing state feedback:

𝑢1 (𝑡) = 𝑘1 (𝑡) 𝑥 (𝑡) . (9)

Then system (1) is written as follows:

𝐸 (𝑡) 𝑥̇ (𝑡) = (𝐴 (𝑡) + 𝐵 (𝑡) 𝑘1 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢2 (𝑡)
+ 𝑓 (𝑡) ,

𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) .
(10)

Therefore, solving the stability condition of system (1) is
equivalent to the stability condition of system (10); focusing
on system (10), we choose the following Lyapunov function:

𝑉 (𝑥 (𝑡)) = 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) . (11)

It is not difficult to know𝑉(𝑥(𝑡)) ≥ 0; differentiating (11) with
respect to 𝑡 on both sides yields the following formula:

𝑉̇ (𝑥 (𝑡)) = 𝑥̇𝑇 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐸̇𝑇 (𝑡)
⋅ 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥̇ (𝑡)
= ((𝐴 (𝑡) + 𝐵 (𝑡) 𝑘1 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢2 (𝑡) + 𝑓 (𝑡))𝑇
⋅ 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑥𝑇 (𝑡) 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥𝑇 (𝑡) 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡)
⋅ ((𝐴 (𝑡) + 𝐵 (𝑡) 𝑘1 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢2 (𝑡) + 𝑓 (𝑡))
= 𝑥𝑇 (𝑡) Ξ𝑥 (𝑡) + 𝑢𝑇2 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑢2 (𝑡) + 𝑓𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝑓 (𝑡) ,

(12)

where

Ξ = 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝑘𝑇1 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
+ 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑘1 (𝑡) .

(13)

Because of ‖𝑓(𝑡)‖ ≤ 𝐹(𝑡)𝑥(𝑡) and 𝑢2(𝑡, 𝑥(𝑡)) ≤ 𝑈𝑥(𝑡), then
(12) can be written as

𝑉̇ (𝑥 (𝑡)) = 𝑥𝑇 (𝑡) Ξ𝑥 (𝑡) + 𝑢𝑇2 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑢2 (𝑡) + 𝑓𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝑥 (𝑡) 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝑓 (𝑡) ≤ 𝑥𝑇 (𝑡) (Ξ
+ 𝑈𝑇 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐵 (𝑡) 𝑈 (𝑡)
+ 𝐹𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐹 (𝑡)) 𝑥 (𝑡) .

(14)

According to (7), the following formula can be obtained:

Ξ + 𝑈𝑇 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐵 (𝑡) 𝑈 (𝑡)
+ 𝐹𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐹 (𝑡) ≤ 0. (15)

That is, 𝑉̇(𝑥(𝑡)) ≤ 0; according to the Lyapunov stability
theorem, it is shown that system (10) is asymptotically
stable.

Based on Theorem 4, when there is no failure in system
(1), the system is in the following form:

𝐸 (𝑡) 𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) (𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡))) ,
𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) . (16)

And because 𝑓(𝑡) = 0 and according to ‖𝑓(𝑡)‖ ≤ 𝐹(𝑡)𝑥(𝑡), we
can let 𝐹(𝑡) = 0, similar to Theorem 4; by Lyapunov method
it is not difficult to obtain the following conclusions about
the sufficient conditions of asymptotically stability for system
(16).

Corollary 5. The descriptor time-varying system (16) with
nonlinear input is asymptotically stable, if there is a positive
matrix 𝑃(𝑡) ∈ 𝑅𝑞×𝑞 such that

Ξ + 𝑈𝑇 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐵 (𝑡) 𝑈 (𝑡) ≤ 0, (17)

where

Ξ = 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝑘𝑇1 (𝑡) 𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
+ 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑘1 (𝑡) .

(18)

3.2. The Optimal Control without Fault. When there is no
failure in system (1), the system form is (16); in this section,
our aim is to determine an optimal control law for system (16).

Theorem 6. For the descriptor time-varying system with
nonlinear inputs described by (16), there exists a unique optimal
control lawwith respect to the quadratic performance index (6),
and

𝑢 (𝑡) = −𝑅−1𝐵𝑇 (𝑡) 𝜉 (𝑡) , (19)

where

𝜉 (𝑡) = 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) , (20)

and 𝑃(𝑡) ∈ 𝑅𝑞×𝑞 is a positive matrix, which is the solution of
the following Riccati equation:

𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) + 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡) + 𝑄
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) = 0.

(21)
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Proof. When there is no fault in the system function, accord-
ing to the optimal control theory, solving the optimal control
problem of the descriptor time-varying systems with non-
linear input described by (16) about quadratic performance
index (6) is equivalent to solving the boundary value problem
as follows:

𝐸 (𝑡) 𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) (𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡))) ,
𝐸𝑇 (𝑡) 𝜉 (𝑡) + 𝐸𝑇 (𝑡) ̇𝜉 (𝑡) + 𝑄𝑥 (𝑡) + 𝐴𝑇 (𝑡) 𝜉 (𝑡) = 0. (22)

According to formulas (4) and (9), the following is obtained:

𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡)) ≤ 𝑢1 (𝑡) + 𝑈𝑥 (𝑡) = 𝑢 (𝑡)
= (𝑘1 (𝑡) + 𝑈) 𝑥 (𝑡) . (23)

The following optimal control law can be obtained by analyz-
ing the boundary value problem:

𝑢 (𝑡) = 𝑘1 (𝑡) + 𝑈 = −𝑅−1𝐵𝑇 (𝑡) 𝜉 (𝑡) , (24)

where

𝜉 (𝑡) = 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) . (25)

The derivative of 𝜉(𝑡) is
̇𝜉 (𝑡) = 𝑃̇ (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑃 (𝑡) 𝐸̇ (𝑡) 𝑥 (𝑡)

+ 𝑃 (𝑡) 𝐸 (𝑡) 𝑥̇ (𝑡) . (26)

Substitute in (22) the following:

𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) 𝑥 (𝑡)
+ 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) 𝑥 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡) 𝑥 (𝑡) + 𝑄𝑥 (𝑡)
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) = 0.

(27)

Then 𝑃(𝑡) is the solution of the following Riccati equation:

𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡)
+ 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡) + 𝑄
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) = 0.

(28)

3.3. The Optimal Control with Fault

Theorem 7. For the descriptor time-varying fault system with
nonlinear inputs described by (1), there exists a unique optimal
control lawwith respect to the quadratic performance index (6),
and

𝑢∗ (𝑡) = −𝑅−1𝐵𝑇 (𝑡) 𝜉∗ (𝑡) , (29)

where 𝜉∗(𝑡) = 𝑃(𝑡)𝐸(𝑡)𝑥(𝑡) + 𝑃1(𝑡)𝑓(𝑡) and 𝑃(𝑡) and 𝑃1(𝑡) ∈𝑅𝑞×𝑞 are positive matrixes which are the solutions of the
following Riccati equations:

𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐴 (𝑡) + 𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡) + 𝑄 − 𝐸𝑇 (𝑡)
⋅ 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) = 0,

(𝐸𝑇 (𝑡) 𝑃 (𝑡) + 𝐸̇𝑇 (𝑡) 𝑃1 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇1 (𝑡)
+ 𝐴𝑇 (𝑡) 𝑃1 (𝑡) − 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃1 (𝑡))
⋅ 𝑓 (𝑡) + 𝐸𝑇 (𝑡) 𝑃1 (𝑡) ̇𝑓 (𝑡) = 0.

(30)

Proof. Similar to the proof ofTheorem6,when the systemhas
failures, according to the optimal control theory, solving the
optimal control problem of the descriptor time-varying sys-
tems with nonlinear input described by (16) about quadratic
performance index (6) is equivalent to solving the boundary
value problem as follows:

𝐸 (𝑡) 𝑥̇ (𝑡)
= 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) (𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡))) + 𝑓 (𝑡) ,

𝐸𝑇 (𝑡) 𝜉∗ (𝑡) + 𝐸𝑇 (𝑡) ̇𝜉∗ (𝑡) + 𝑄𝑥 (𝑡) + 𝐴𝑇 (𝑡) 𝜉∗ (𝑡)
= 0.

(31)

Similarly, according to (4) and (9), let

𝑢1 (𝑡) + 𝑢2 (𝑡, 𝑥 (𝑡)) ≤ 𝑢1 (𝑡) + 𝑈𝑥 (𝑡) = 𝑢 (𝑡)
= −𝑅−1𝐵𝑇 (𝑡) 𝜉∗ (𝑡) . (32)

Based on the analysis,

𝜉∗ (𝑡) = 𝑃 (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑃1 (𝑡) 𝑓 (𝑡) . (33)

The derivative of 𝜉(𝑡) is
𝜉∗ (𝑡) = 𝑃̇ (𝑡) 𝐸 (𝑡) 𝑥 (𝑡) + 𝑃 (𝑡) 𝐸̇ (𝑡) 𝑥 (𝑡)

+ 𝑃 (𝑡) 𝐸 (𝑡) 𝑥̇ (𝑡) + 𝑃̇1 (𝑡) 𝑓 (𝑡) + 𝑃1 (𝑡) ̇𝑓 (𝑡) . (34)

Substitute in (31) the following:

(𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡)
+ 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡) + 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)) 𝑥 (𝑡)
+ (𝐸̇𝑇 (𝑡) 𝑃1 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇1 (𝑡)
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃1 (𝑡)) 𝑓 (𝑡) + 𝐸𝑇 (𝑡)
⋅ 𝑃1 (𝑡) ̇𝑓 (𝑡) = − (𝑄 + 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡)) 𝑥 (𝑡)
− 𝐴𝑇 (𝑡) 𝑃1 (𝑡) 𝑓 (𝑡) .

(35)
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And then we have

𝐸̇𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇ (𝑡) 𝐸 (𝑡) + 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐸̇ (𝑡)
+ 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) + 𝑄 + 𝐴𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) − 𝐸𝑇 (𝑡)
⋅ 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃 (𝑡) 𝐸 (𝑡) = 0,

(𝐸̇𝑇 (𝑡) 𝑃1 (𝑡) + 𝐸𝑇 (𝑡) 𝑃̇1 (𝑡)
− 𝐸𝑇 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) 𝑅−1𝐵𝑇 (𝑡) 𝑃1 (𝑡)) 𝑓 (𝑡) + 𝐸𝑇 (𝑡)
⋅ 𝑃1 (𝑡) ̇𝑓 (𝑡) = −𝐴𝑇 (𝑡) 𝑃1 (𝑡) 𝑓 (𝑡) .

(36)

Then 𝑃(𝑡) and 𝑃1(𝑡) are positive definite matrices, which are
solutions of the above two equations.

4. Numerical Examples

Considering system (1), the parameters of each part are

𝐸 (𝑡) = [𝑡 0
0 0] ,

𝐴 (𝑡) = [−𝑡 0
0 𝑡] ,

𝐵 (𝑡) = [−𝑡 0
1 𝑡] .

(37)

Let the nonlinear input in system (1) be

𝑢2 (𝑡) = sin (𝑥 (𝑡)) . (38)

Then ‖𝑢2(𝑡)‖ = ‖sin(𝑥(𝑡))‖ ≤ ‖𝑥(𝑡)‖; thus let det(𝑈) ≥
det(𝐼).

Select the following quadratic performance index:

𝐽 = ∫𝑡1
𝑡0

(𝑥𝑇 (𝑡) [1 0
0 0] 𝑥 (𝑡) + 𝑢𝑇 (𝑡) [1 0

0 1] 𝑢 (𝑡)) 𝑑𝑡; (39)

thus 𝑄 = [ 1 00 0 ], 𝑅 = [ 1 00 1 ].
When there is no fault in the system, we choose 𝑥1(0) =0.2, and let 𝑡0 = 0 and 𝑡1 = 20; the control input of the system

is obtained. According to Figure 1, the optimal control can be
achieved when there is no fault in the system.

When there is failure in the system, we still choose the
initial input 𝑥1(0) = 0.2, and let 𝑡0 = 0 and 𝑡1 = 20, and
the fault between 𝑡0 and 𝑡1 is 𝑓(𝑡) = [1 0.5]𝑇; then the
MATLAB simulation can be shown in Figure 2. It can be
seen that the system is unstable at this time.The fault-tolerant
controller is added to the fault system at 𝑡 = 2 s. Figure 3
shows that the system gradually stabilizes after fault tolerance
control. Through the above simulation, we can find out that
the method used in this paper can keep the system stable
when the system fails and realize fault tolerance control of the
system.
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Figure 1: System state under optimal control when the system
without fault.
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Figure 2: System state without fault-tolerant control.
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Figure 3: System state with fault-tolerant control.
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5. Conclusions

This paper considers a class of descriptor time-varying sys-
tems with nonlinear input; sufficient conditions are obtained
by Lyapunov stability theorem; on the basis of stability
conditions, the optimal fault-tolerant controller of the system
is obtained by using the optimal control theory, while fault
occurs in the system; this method can realize fault tolerance
control and reduce the impact of failure; then the example
is carried on by MATLAB simulation. The method used in
this paper is a general generalization of descriptor system
to descriptor time-varying systems, and it has important
theoretical significance for further study of some applications
of descriptor time-varying systems.
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