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Targeting question:   
 

        2. Convergence of data- and model-driven discovery and part of 4. Applied mathematics for 
future computing directions. 
 
Research Goals and Impact:  
 

1. Data Representation Based on Tensor Decomposition. Tensorization, or the reshaping of a 
huge data set into tensors, is a powerful technique in scientific computing. Once a data set 
has been tensorized, tensor decomposition methods, such as the tensor-train [1] or high-
order singular value decomposition (HOSVD) [2], can be used to form extremely compact 
representations, much smaller than the original data size. By limiting the rank in a tensor 
decomposition, it also is possible to find an accurate approximation of the original data, 
which, again, reduces the size of the representation. In many U.S. Department of Energy 
(DOE) projects, extracting essential information from a huge data set has the potential to 
enhance new scientific discovery or improve physical models. Big data analysis problems 
exist in many DOE projects, including high energy physics, inertial confinement fusion 
implosion, and wind and solar energy system, to name a few. The collected data sets in 
these projects are extremely huge. Therefore, a concise representation of the data has the 
potential to dramatically reduce the storage and computational costs of using learning 
methods (e.g., machine learning or deep learning). New techniques, beyond existing ones, 
can be added to this category to make it much more powerful. For example, dictionary 
learning, which is another approach to compact representation, seeks a set of basis 
functions, and the data are identified with sparse weighted sums of this dictionary basis. By 
combining and scaling all three of these techniques—tensorization, low-rank, and 
sparsity—it will be possible to develop a method for dictionary learning that discovers 
sparse and low-rank decompositions of tensorized data.  
 

2. Scientific Discovery Based on Tensor Decomposition. Similar to the singular value 
decomposition (SVD), principle component analysis (PCA), or proper orthogonal 
decomposition (POD), tensor decomposition methods not only provide a concise 
representation of the data but also help to discover critical properties of the physical systems 
(e.g., POD modes corresponding to large eigenvalues are important “dynamical modes”). 
The first data analysis applications of tensors saw the development of the Tucker and 
canonical decomposition (CANDECOMP) in chemometrics and the parallel factor model 
(PARAFAC) in linguistics [3]. Recently, tensor methods have been applied in signal/image 
processing and machine learning [3]. Dictionary learning is a relatively recent method in 
data analysis related to frame theory [4]. These ideas can be naturally extended to modeling 
of complex dynamical system, for example, to improve scalability of dynamic mode 
decomposition (DMD) through tensor decomposition and low-rank approximation or to find 
new machine learning mechanisms for learning the nonlinear Koopman operator. These 
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useful data-driven methods also can accelerate theoretical development because they 
provide “numerical understanding” of the physics. Moreover, the tensor decomposition 
method (e.g., tensor trains have been used in high-dimensional hierarchical uncertainty 
quantification (UQ) problems for chip design [5] and quantum chemistry [6]) can augment 
studies based on the large size of high-dimensional data (the UQ problem) or ultra-high-
dimensional representation of the system (quantum chemistry). New development of tensor 
decomposition has the distinct potential to enhance different scientific research areas. 
 

3. Tensor for Future Computing. The tensor based techniques have been widely used in data 
sciences and powerful tools based on tensor (e.g., Google’s tensorflow) have become 
mainstream software for data analysis. Recently, Google released a new processing unit – 
Tensor Processing Unit (TPU) – designed specifically for machine learning based on 
tensors. In the past decade, we have witnessed the tremendous enhancement of the 
capability supercomputers with the development of the graphics processing unit (GPU). 
Similarly, it is very promising that integrating the TPU in future supercomputers will 
dramatically improve the efficiency of data-driven or data-based scientific discovery. 
Therefore, the development of efficient tensor-oriented or tensor-based scientific computing 
algorithms are needed for the era of supercomputing beyond the scaling limits of Moore’s 
law. 
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