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Abstract: As one of the most diversified cyber-physical systems, the smart grid has become more
decumbent to cyber vulnerabilities. An intelligently crafted, covert, data-integrity assault can insert
biased values into the measurements collected by a sensor network, to elude the bad data detector in
the state estimator, resulting in fallacious control decisions. Thus, such an attack can compromise the
secure and reliable operations of smart grids, leading to power network disruptions, economic loss,
or a combination of both. To this end, in this paper, we propose a novel idea for the reconstruction
of sensor-collected measurement data from power networks, by removing the impacts of the
covert data-integrity attack. The proposed reconstruction scheme is based on a latterly developed,
unsupervised learning algorithm called a denoising autoencoder, which learns about the robust
nonlinear representations from the data to root out the bias added into the sensor measurements by a
smart attacker. For a robust, multivariate reconstruction of the attacked measurements from multiple
sensors, the denoising autoencoder is used. The proposed scheme was evaluated utilizing standard
IEEE 14-bus, 39-bus, 57-bus, and 118-bus systems. Simulation results confirm that the proposed
scheme can handle labeled and non-labeled historical measurement data and results in a reasonably
good reconstruction of the measurements affected by attacks.

Keywords: autoencoder; cyber-security; cyber-assaults; deep learning; self-healing smart grids;
state estimation

1. Introduction

Integration of state-of-the-art computing and bi-directional communications technologies with
the existing power infrastructure realizes the concept of the smart grid (SG) [1,2]. However, increased
dependence on communications technologies is intensifying the SG’s vulnerability to cyber-attacks.
Typically, a supervisory control and data acquisition (SCADA) system is employed to periodically
collect data from electric power grids. The SCADA system consists of communications networks and
remote terminal units (RTUs) that include sensors and actuators. At the power control center (PCC),
the collected data are applied to initiate command and control decisions by the energy management
system (EMS). The fitness and health of the collected data are inordinately significant when making
precise and correct control decisions. Therefore, conventionally, the consistency of the sensor-collected
measurement data is checked by a data detector (BDD) before being utilized in the EMS. However,
a recently discovered covert cyber-deception attack (CCDA) [3] is considered competent at deceiving
the conventional BDD. Smartly designing the attack vector, a malicious user can compromise the
integrity of the SG by injecting biased values into the sensor measurement data to dodge the BDD
with a false, yet feasible system state [3]. Thus, initiating the CCDA through biased data may end in
financial loss, partial disruption in power system operations, or a compound of economic loss and
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disruptions [4,5]. Owing to the harmful impacts of such attacks on the reliable and secure operations
of SGs, there is a need to investigate counter attack measures.

Generally, the defense measures reported in the literature can be organized into three layers:
protection, detection, and mitigation [6].

Extensive investigations have been reported in the literature on the detection layer of the defense
mechanism. Table 1 shows a summary of the research works carried out on the detection and
mitigation tiers. In Table 1, it can be seen that less attention has been paid by researchers to the
mitigation tier. Particularly, in the context of CCDA attack mitigation through the reconstruction of
sensor collected measurement data, there is no existing work to the best of our knowledge. In the
context of self-healing [7], which is a significant characteristic of an SG, there is a need to focus on
mitigation layer and neutralize or minimize the impacts of a CCDA.

Table 1. A summary of research works on the detection and mitigation tier of defense mechanism
in SGs.

Defense Tier Application Area

Detection Tier
(Intrusion detection system (IDS) without utilizing machine learning)

Model-based techniques and game-theoretic methods for security [8,9] EMS

Physical watermarking of control inputs [10] PCC

Integration of run-time semantic analysis with efficient look-ahead PF analysis [11] SCADA

Model-based IDS system to tackle attacks on auto generation control [12] EMS

Integration of host-, and network-based IDS substations [13] SCADA

Generic use of phasor measurement units (PMU) data considering white-list behavior
and network topology [14]

PMU

IDS to detect PMU data assaulted by the GPS spoofing [15] PMU

Detection of CP assaults on advanced metering network (AMI) systems based on
behavior rules [16]

AMI

Distributed multi-layered IDS and early warning system [17,18] AMI

Stealth attack identification with cumulative sum and quickest detection [19] EMS and PCC

Abnormal energy consumption detection in smart meters using heuristic methods and
contextual analysis of data [20–22]

Smart meters

Detection Tier
(Intrusion detection system (IDS) utilizing machine learning)

Utilizing machine learning methods for CCDA detection [23,24] PCC/ EMS

Feature selection and supervised learning-based CCDA detection [25,26] PCC

feature extraction and unsupervised learning-based CCDA detection [6] PCC

Identification of CCDA utilizing joint transformation and Kullback–Leibler distance [27] PCC

Deep learning-based recognition of the behavior features for CCDA [28] PCC

Mitigation Tier
(Restoration mechanism to eliminate impacts of attack)

Game theroy-based mitigation (attacker-defender, zero-sum) game [29,30] and zero-sum
Markov game-based mitigation [31]

Substation

Physical watermarking of control inputs [10] Substation

Integration of run-time semantic analysis with efficient look-ahead PF analysis [11] Substation

Figure 1 explains the prevailing circumstances and conceivable mitigations for CCDAs. We can
see in Figure 1 that the sensor-collected data samples are scrutinized by the intrusion detection system
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(IDS). The data identified as normal by the IDS are considered reliable enough to employ in the EMS
to make control decisions. On the other hand, the data sample detected by IDS as attacked cannot
be applied to the decision process. Due to the lack of any convincing solution, the attacked data
sample is currently dropped, and the next sample is awaited, as depicted by Scheme-I in Figure 1.
The same procedure is repeated, delaying control decisions until attack-free samples are received.
However, due to the introduction of distributed generation and dynamically varying load conditions,
taking immediate control decisions is desired for reliable and economic operations of power grids.
Therefore, removing the impacts of a CCDA from corrupted measurement data is a more valuable
solution than discarding samples. In this context, there is a need to establish a mechanism to induce a
self-healing capability [7,32,33] in the PCC, which removes bias added by an intruder. As shown by
Scheme-II in Figure 1, one possible option is to reconstruct the corrupted sample after its detection,
which involves both detection and reconstruction time. An alternative is to reconstruct the data sample
directly, omitting the detection stage, as shown by Scheme-III in Figure 1. Thus, the time consumed in
detection can be saved; however, all measurement samples are reconstructed in this scheme, whether
they were attacked or not. Table 2 shows a comparison of the above-mentioned mitigation schemes.

Intrusion 

Detection System

Discard the attacked 

sample and wait for new 

measurement sample

?

Reconstruct the sensor-

measured data sample 

after detection

Attack Detected

No Attack

Detected

Reconstruct the 

sensor-measured data 

sample without 

detection

Decision-making 

at EMS

Scheme-II 

(Detect and Reconstruct)

Input 

(Sensor-collected data sample)

Scheme-III (Proposed) 

(Reconstruct)

Scheme-I 

(Existing practice)

Figure 1. SG data reconstruction options against CCDA attacks.

Table 2. Possible options for mitigating attacks.

Detect and Discard (Scheme-I) Detect and Reconstruct (Scheme-II) Reconstruct (Scheme-III)

- Attacked samples are dropped - Attacked samples are reconstructed - Reconstruct without detection
- Wait for normal samples to be received - Requires detection and reconstruction time - Requires reconstruction time

To extend our previous work from detection [6,25,26] to mitigation, in this paper, we propose a
deep neural network (DNN)-based data reconstruction scheme (Scheme-III) to mitigate the impacts of
a CCDA on the SG’s measurement dataset.
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1.1. Motivation

Due to the vast geographical spans of power transmission networks, many sensors are deployed
to collect the state data. Machine learning (ML)-based approaches may directly utilize the sensor
measurements to mitigate the effects of CCDAs without requiring precise mathematical modeling.
Additionally, ML-based mitigation through the reconstruction of the data does not need antecedent
information of the power network. Furthermore, the state estimation (SE) measurement features (MF)
data from power transmission networks via multiple sensors are multivariate and extremely correlated
due to synergy and interaction between interconnected buses. Legacy multivariate-procedure
monitoring techniques, such as principal component analysis (PCA) and an autoencoder (AE) with
linear activation, assume linear process behavior that may not be suitable for SE-MF data. Moreover,
PCA and AE are more sensitive to corruption in the data, and they have not adapted to learning
robust representation from data corrupted due to attacks. In this paper, we present an SE-MF data
reconstruction scheme based on a recently developed denoising autoencoder (DAE) to address the
aforesaid challenges. Recent studies [34–36] have shown that a DAE can reconstruct the original
signal by learning more robust representations from the attacked data. A comparison between
the DAE and PCA is presented in Table 3. Inspired by its efficient application and magnificent
characteristics for dealing with corrupted multivariate SE-MF data, we utilize the DAE for the robust
reconstruction of attacked measurement samples while learning the nonlinear correlations embedded
in an SE-MF dataset.

Table 3. Advantages of the denoising autoencoder over principal component analysis.

Denoising Autoencoder Principal Component Analysis

The DAE can learn nonlinear and linear correlations in the
multivariate sensor-collected data from the power grid [34,35,37,38]

PCA requires linear and Gaussian
assumption about the data [34].

The DAE does not need dictionary elements to be orthogonal,
making it adaptable to fluctuations in the representation of data.
Thus signal reconstruction capability is improved [34,36,39].

PCA reduces the data frame by
orthogonally transforming the data
into a set of principal components.
This limits the performance of PCA in
reconstruction of data [34].

By restricting removed variables to be rebuilt from the remaining
data, the DAE learns to convolute variables that tend to be
correlated. This enhances robustness against noise and local
fluctuations in the primary multivariate measurement data [36,39].

Reconstruction of noisy or corrupted
nonlinear data is much too lossy as
compared to PCA [34,35].

1.2. Contributions

In this paper, we consider multivariate SE-MF data affected by a CCDA. To reconstruct data by
removing bias added by an attacker, we employ a state-of-the-art anomaly reconstruction method:
the denoising autoencoder. The major technical contributions of this paper are summarized as follows.

• We investigate the impacts of smartly crafted CCDA on SG measurements, and study how such
an attack can sidestep a BDD in typical power systems.

• We introduce the DAE algorithm to capture in a more robust way nonlinear correlations in
multivariate SE-MF data corrupted by CCDA attacks while setting out robust signal reconstruction.
To the best of our knowledge, this is the first paper to employ a DAE for reconstruction of corrupted
sensor measurements in SE-MF data from SGs.

• To train the DAE model, commonly used choices for the addition of corruption are the
zero-masking DAE (ZDAE) and the additive Gaussian DAE (GDAE) [27]. In addition to these
schemes, we have introduced another corruption-addition scheme termed estimated DAE (EDAE).
A comparison of these schemes shows that the newly introduced EDAE trains the denoising
autoencoder model to obtain robust and powerful representations from the raw attacked data
and results in a low reconstruction error.
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• We employ IEEE standard 14-bus, 39-bus, 57-bus, and 118-bus test systems to gauge the
performance of the proposed approach. Performance evaluations show that the proposed EDAE
scheme results in reasonably good reconstruction with little loss of accuracy.

1.3. Paper Organization

The rest of this paper is organized as follows. In Section 2, state estimation, conventional bad data
detection, and the nature of a CCD attack on an SG network are presented. In Section 3, we explain
the fundamentals of the DAE, followed in Section 4 by an explanation of the proposed scheme to
reconstruct the sensor measurements corrupted by a CCDA. Simulation results are presented in
Section 5. We conclude the paper in Section 6.

2. System Model

2.1. Electric Power Network

The power transmission system connects various electrical generators across a vast geographic
region with a host of customers. Multiple routes and lines contribute to securing the routing of the
power from any generating source to any consumer, considering the economy of the transmission
route. For effective monitoring and control of the power infrastructure, a communications network
linking the power system components to the PCC is employed.

2.2. State Estimation

For the purpose of efficient monitoring, bi-directional RTUs, consisting of sensors and actuators,
are employed in the power network. The readings of the sensors are collected at the PCC,
which estimates the states (bus voltage angles and magnitudes) of the power system variables by
utilizing the sensor measurements. The problem is to estimate the state variables, θ=[x1, x2, ..., xn]

T,
considering the sensor-collected measurements, Z=[m1, m2, ..., mm]

T, of the power system, where n
and m are positive integers, and xi, mj ∈ IR for i = 1, 2, ..., n and j = 1, 2, ..., m. More specifically,
the state variables are connected with the measurements in a nonlinear or alternating current (AC)
model as follows:

Z = h(θ)+e (1)

where h is a nonlinear relationship between measurement vector Z and state vector, and e = [e1, e2, ..., em]T

is a Gaussian measurement noise vector with standard deviation σ. On the assumption that the voltage
magnitude at each bus remains close to its rated value, the model in Equation (1) can be described
utilizing direct current (DC) model as follows:

Z = Hθ+e (2)

where H is the Jacobian matrix in DC power flow problems and is approximated as follows [40,41]:

H=
∂h(θ)

∂θ

∣∣∣∣
θ=0

. (3)

H is composed of topology and impedance data only. To find the estimate, θ̂, of the θ that is
the best fit of the measurements, three statistical criteria are utilized in state estimation: maximum
likelihood, minimum variance and weighted least squares (WLS) [42]. On the assumption that sensor
error is normally distributed with a zero mean, the above-mentioned criteria result in an identical
voltage phase estimation, as follows:

x̂ = (HTΩH)−1HTΩZ = GZ, (4)
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where G = (HTΩH)−1HTΩ, and Ω is a diagonal matrix where the elements are reciprocals of the
variances in meter errors.

Ω =


σ−2

1
.

.
.

σ−2
m

 , (5)

2.3. Conventional Bad Data Detection

The sensor-collected measurement data may become corrupted for many reasons, such as sensor
faults, communication medium noise, and cyber attacks. Sensor-collected measurements result in
an estimate of the state variables that is close to their true values under normal conditions, whereas
a CCDA attack may result in shifted state variables, introducing a contrariety between the normal
and attacked measurements. Typical power systems employ a residual-based detector to identify
corruptions in the sensor measurements [3]. The residual, R, is the difference between sensor collected
measurements, Z, and the estimated measurements, Ẑ, at the PCC, and is described as follows:

R = Z− Ẑ = Z− Hθ̂. (6)

Then, L2− norm
∥∥Z− Hθ̂

∥∥ is compared with a deliberately selected threshold, τ [11], to detect the
presence of bad measurements. Therefore, the hypothesis of not being attacked is accepted if we have

max
i
|Ri| < τ, (7)

where Ri is the element of residual vector R. Otherwise, an alarm indicating existence of bad
measurements is raised.

2.4. Covert Cyber Deception Attack: Basic Principle

From a complete (or even partial) familiarity with the power network topology, a smart attacker
can add biased data to meter or sensor-collected measurements Z by forming an attack vector,
a = [a1, a2, ..., am]T , to deceive the bad data detector [27]. Let Za = Z + a be the measurements
containing the attacked data. In attack vector a, the attacker enjoys the liberty of selecting any non-zero
arbitrary element. Thus, the ith non-zero element, ai, of attack vector a, allows that the attacker to alter
the ith sensor measurement, Zi, with a forged measurement: Zi + ai.

As discussed above, the conventional bad data detector computes the L2−norm of measurement
residual R, to determine the presence of attacked or bad measurements. However, if the attacker
designs attack vector a, such that a = Hc, where c is a non-zero vector of length n, the measurement
vector containing the attacks (Za) can circumvent the traditional detection as long as the measurement
vector containing the normal measurements can pass.

Let θ̂a denote an estimate of state variables using attacked sensor measurements Za such that
we have

θ̂a = GZ + Ga = θ̂ + GHc = θ̂ + c. (8)

Now, the L2 norm of attacked measurements residual Ra is

‖Ra‖2 =
∥∥Za − Hθ̂a

∥∥
2

=
∥∥(Z + a)− H(θ̂a + c)

∥∥
=
∥∥(Z− Hθ̂

)
+ (a− Hc)

∥∥
2 =

∥∥(Z− Hθ̂
)∥∥

2
= ‖R‖2 < τ.

(9)
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2.5. Covert Cyber Deception Attack Model

Broadly speaking, there are two kinds of CCD attack: (1) the load redistribution attack; and
(2) the load change attack [43–45]. With the ultimate objective being to dodge the conventional BDD
and pass the operator at the PCC, the attacker may craft the attack aiming at altering one or more
measurements. In this paper, our main objective is real-time reconstruction of corrupted sensor
measurements. Therefore, our approach is to formulate the most generalized attack, and thereby to
come up with robust reconstruction of the attacked measurements. For the construction of the attack,
we assumed that the assailant has enough knowledge about the power network topology.

During the CCD attack, the malicious user embeds a forged value in the sensor measurements,
altering the real power injection and real power flows to project the desired changed state variables
for the system operator. For instance, to change state variable x2 by adding a corruption of −12%,
a (1× (n− 1)) attack vector c can be formulated by considering the following equation:

c = [−0.12x2, 0, ..., 0]. (10)

Utilizing the power flow equations and state vector xa = x̂ + c, the corrupted measurements are
calculated as follows:

Za = Hθa + e. (11)

3. Reference Model Learning

In this section, we first briefly describe the AE and denoising autoencoder (DAE) algorithm,
and then, we explain the proposed data reconstruction scheme.

3.1. Autoencoder: Basic Principle

Autoencoders (AEs) are a specific type of fully connected feed-forward neural networks where
the inputs are equal to the output, and therefore, the AE is trained in an unsupervised way without
any label information. Fundamentally, an AE consists of three elements: an encoder, the code,
and a decoder. The encoder compresses the input into a lower-dimensional code or latent-space
representation, and then, the decoder reconstructs the output from this representation. Analogous to
PCA, the AE aims to encode the input data into an intermediate representation that preserves most
of the information in the input data to allow reconstructing it. In this paper, to capture the hidden
nonlinear correlations more robustly, and to tackle a CCDA in complex multivariate data, we employ a
recently developed algorithm in the field of deep learning, the DAE [39]. The DAE is an expansion of
the AE and has multiple advantages over the conventional PCA-based dimension-reduction method,
as explained in Table 2.

3.2. Denoising Autoencoder: Basic Principle

The fundamental concept of the DAE is to reconstruct the primary input from corrupted or
attacked input [39]. Thus, it can stop an AE from just learning identity mapping between the input
and the reconstructed output, can apprehend more informational latent-space patterns, and can gather
a strong and robust representation from raw, attacked data. Two primary choices for addition of
corruption are additive Gaussian noise (the GDAE) and zero-masking noise (the ZDAE) [34].

Similar to AE, a DAE is composed of three parts: the encoder, code or latent space, and the
decoder. Given an input, x, the encoder typically transforms its corrupted or attacked input data, x̃,
instead of original input data x, into a hidden or latent-space representation, h, employing nonlinear
mapping as follows:

h = f (W1x + b) , (12)

where f (.) is a nonlinear activation function, such as the sigmoid function. W1 ∈ IRm×n is the
weight matrix, and b ∈ IRm is optimized in the encoding with m nodes in latent space. Then,
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the decoder unfolds the latent space into a reconstructed vector, x̂, at the output layer, utilizing
nonlinear transformation as follows:

x̂ = g (W1x + c) , (13)

where g(.) is a nonlinear activation function, such as the sigmoid function. For better learning efficiency,
we employed the tied weights as W1 = WT

2 [39]. The reconstruction error can be computed for a given
input training set, {xi}m

i=1, as follows: ∑m
i=1 ‖xi − x̂i‖2. The objective training of the DAE is to find

optimal parameters, ψ = {W1, b, c} that minimize the reconstruction error, as given below:

min
ψ

m

∑
i=1
‖xi − x̂i‖2. (14)

It is obvious from Equation (13) that the reconstruction error is the difference between the
reconstructed output and the actual meter measurements instead of the attacked measurements.
In other words, the DAE is trained to produce output closer to the original input x, even when
employing the attacked input, x̃.

4. Proposed CCDA Mitigation–Data Reconstruction Scheme

Recovering the original sensor measurements from the attacked signals is required for a
self-healing SG. In this section, we propose a scheme utilizing a DAE for the reconstruction of
measurements corrupted due to a CCDA in an SG communications network. Figure 2 illustrates
the reference model’s learning process. The bulk power-generated at the power producing plants is
transported to consumers via the power transmission and distribution networks. The RTUs collect
measurement data X0 from the power network and transmit the collected data over wireless media.
A smart attacker can compromise the integrity of the data by adding biased values to the collected data.
At the power control center, the proposed DAE-based reconstruction scheme attempts to reconstruct
the attacked data, X̃0, by removing any bias added by the attacker. A healthy DAE model reconstructs
the data well enough to be employed in the EMS for initiating command and control decisions.
The proposed reconstruction scheme is explained in the following subsection. Figure 3 shows the
flowchart of the proposed scheme.
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Figure 2. SG Data reconstruction options against CCDA attacks.
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Figure 3. A flowchart of the proposed scheme for reconstruction of data affected by CCDA.

4.1. Proposed Corruption Addition Scheme: EDAE

As mentioned above, there are two common choices of adding corruption to the DAE model
for training: the ZDAE and GDAE [34]. In the ZDAE scheme, some features of each sample are
set to zero randomly with probability v. Practically speaking, zero-masking can be viewed as the
nonexistence of sensor measurements (due to attack or noise). In addition to the above-mentioned
choices, in this paper, we introduce another corruption addition scheme EDAE, in which the noise
is generated based on Gaussian distribution with mean and variance obtained from analysis of the
SE-MF data. The corruption addition procedure following the EDAE is explained as follows.

To train the DAE model, we insert noise or corruption to the SE-MF training data
X = {x1, x2, ..., xm}, where m is the number of measurement samples, and xi ∈ X, where i ∈ {1, 2, ..., m}.
The xi is a sample consisting of n features, xi = { fi1, fi2, ..., fin}. The corruption or noise data δ follows
a normal distribution N (µ, ν), where µ is a vector of mean values µ = {µ1, µ2, ..., µn}, which is

calculated as µj =
1
m

m
∑

i=1
fij. The ν is a variance vector ν = {ν1, ν2, ..., νn} where νj =

1
m

m
∑

i=1

(
µj − fij

)2.

Finally, the training data are obtained as X0 = X + δ, and used for training the DAE model.

4.2. DAE Model Training

Let x0 ∈ X0 be the historical SE-MF input data, where X0 ∈ IRm×n. To train the DAE model to
minimize any loss in the reconstruction process, we insert normal (attack-free) data, y0 ∈ Y0, as labels,
where Y0 ∈ IRm×n, in which m is the number of measurement samples, and n is the number of
measurement features in a sample.

Before employing the input data to train the learning model (i.e., the DAE), data normalization
is required as a pre-processing step; otherwise, the data are not reconstructed well enough.
Data normalization means converting all variables in the data within a particular range. Normalization
is essential for steady convergence of weights and biases. There are several types of normalization,
such as min-max normalization, decimal scaling, and the standard deviation method [46,47]. Choosing
a suitable normalization method depends on the application and the algorithm in which the normalized
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data will be used. The min-max normalization approach is a simple normalization technique and is
usually more efficient. To linearly scale each feature to the range 0 ∼ 1, in this paper, we employ a
min-max normalization function as follows [46]:

f̃i =
( fi − fmin)

( fmax − fmin)
, (15)

where f̃i is the normalized, or scaled, value of feature i, and fmin and fmax are the minimum and
maximum values, respectively, of feature i in the dataset. Normalization of training and testing data
according to the same scale helps in a good reconstruction. After normalization, the data are inserted
to train the DAE model. Equations (1)–(3) are applied to the input data to find the optimal parameters
defined by ψ, and to acquire the hidden representation h and the rebuilt output by minimizing the
reconstruction error as follows: min ‖x̂0 − y0‖ f or X0, Y0.

4.3. DAE Model Testing

During the testing phase, online data are inserted to the trained DAE model. The test samples
are also rescaled according to the minimum and maximum values of the training data, ensuring
both datasets are in a similar range. A trained DAE model attempts to reconstruct the test data
identical to the normal data. Each feature in the reconstructed data is denormalized using the inverse
transformation, as follows:

fi = f̃i ( fmax − fmin) + fmin. (16)

A well-trained, healthy DAE will generate the reconstructed data as close to the original input as
possible and the reconstructed data can be employed in the EMS with high enough level of confidence
to initiate control decisions.

5. Experimental Results

In this section, we gauge the performance of the proposed reconstruction scheme for
CCDA-corrupted data.

5.1. Power System Data and Attack Data Generation

We utilized various power system test cases, from standard IEEE 14-, 39-, 57-, and 118-bus
systems, to endorse the performance of the proposed mitigation scheme. To set up the configuration
of these standard IEEE test systems, and explicitly the Jacobian matrix, we applied the Matpower
6.0 toolbox [48]. To generate the measurements, Z, operating points of the test systems provided in
Matpower case files were employed. We used the DC power flow analysis to approximate the state
vectors employed in the AC power flow model. The state variable vector θ, for a B-bus system, consists
of (B− 1) bus voltage phase angles, and measurement vector Z comprises of active power flows in
the lines and active power injections into the buses. To carry out a fair comparison with a real-world
power system, we adopted stochastic loads with uniform load distributions identical to those in [24],
i.e., ranging from 0.9× Q0 to 1.1× Q0, where Q0 is the base load. The features employed in these
simulations were the active power flows in the branches and active power injections into the buses.

As mentioned above, the CCDA can be modeled to deceive the BDD with the ultimate objective
being to falsify single or multiple system states. We assumed that the attacker has complete knowledge
of the topology of the power network, and the attack is initiated following the model described in [6].
The attack formulation is explained in Section 2. In the simulations, we considered various attack
scenarios, described as follows.

Scenario 1: The attacker is stationary and has access to specific RTUs or meters only. Thus, the attacker
can initiate a fixed attack, i.e., fixed or the same features in the measurement samples are corrupted with
the attack.
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Scenario 2: The attacker is moving and can randomly access different RTUs or meters. Initiating
such an attack, the attacker randomly adds biased values into the features or meter measurements.
This sort of attack is stronger than a fixed attack, and arduous for the recovery of the original
data through reconstruction. For the above-mentioned fixed- and random-attack scenarios, the
measurement data attacks were on 40% of the features and 20% of the features.

5.2. Parameter Tuning for the DAE Structure

We employed multiple power system test cases to validate the performance of the proposed
SG data-reconstruction scheme. Power variable states and measurement features for standard IEEE
systems increase as the size of the power system increases. Therefore, for each power system test case,
the DAE structure has a different number of input nodes. The DAE reconstructs the output so it is
identical to original input; therefore, the number of input and output nodes in a DAE structure is the
same. We used 50% of the historical SE-MF data for training the DAE model and 50% for testing it.
For each standard IEEE test bus system employed in this work, tuning parameters were chosen based
on optimal reconstructed data. The simulation parameters for the DAE structure in various test bus
cases are shown in Table 5. If familiar with the topology of the power system network, an attacker can
adopt various strategies to dilute SG measurements. Keeping in mind an expanded attack choice for of
the attacker, we employed different corruption addition schemes: the GDAE, ZDAE, and EDAE. In the
following subsection, we present the simulation results for various standard IEEE test bus systems.

5.3. Simulation Results

The accuracy of the reconstructed measurements is significantly important for making correct
decisions at the PCC. Therefore, the reconstruction error and error average sum (EAS) were considered
performance measuring metrics for the proposed data reconstruction schemes. We simulated the
system for standard IEEE 14-, 39-, 57-, and 118-bus systems, as mentioned above. However, we present
simulation results only from the standard IEEE 14- and 39-bus systems due to space limitations.

5.3.1. Reconstruction Errors for Fixed- and Random-Attack Dataset

As mentioned in Tables 4 and 5, the IEEE 14-bus system has 53 measurement features, and it
is challenging to present reconstruction of all the features in the dataset due to space limitations.
Therefore, to show the performance of the proposed cyber-attack-mitigation scheme, the seven best
and the seven worst reconstructed features are presented for the proposed EDAE and the existing
ZDAE and GDAE schemes. The fixed and random attacks targeted either 20% or 40% features in the
dataset. Furthermore, fixed- and random-attack scenarios were also considered in the simulations. The
seven best-reconstructed features for the measurement data, in which a fixed attack was initiated on
20% of the features, are shown in Table 6 for the EDAE model. Actual values of the features and the
reconstructed values (along with the reconstruction error) are shown. The error ratio is also presented
in the table. A reduced error ratio is essential for attack mitigation in the SG measurement data. We see
that features have been reconstructed well, because the reconstruction error and the error ratio are very
small. The seven worst-reconstructed features are depicted in Table 7 for the EDAE scheme when 20%
of the features were targeted in a fixed attack. We see that the reconstruction error and the error ratio
are low for the reconstructed features, except for features with values closer to zero. Tables 8 and 9,
respectively, show the seven best- and worst-reconstructed features with the EDAE scheme for the
data in which 40% of the features were subjected to a fixed attack. Similarly, Tables 10–13 show the
reconstruction of the data affected from a fixed attack on 20% of the features and 40% of the features,
for the ZDAE schemes. In addition, Tables 14–17 show GDAE scheme’s reconstructed data that were
subjected to fixed attack. Similarly, from random attacks, the seven best-, and worst-reconstructed
features are shown in Tables 18–29 for the earlier-mentioned DAE schemes. We see that features have
been reconstructed well, because the reconstruction error and the error ratio are small for the EDAE
scheme, compared to the other schemes.
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Table 4. Dimension growth with increasing sizes of power systems.

System States DAE Nodes
(Input and Output)

IEEE 14-bus 13 53
IEEE 39-bus 38 130
IEEE 57-bus 56 216
IEEE 118-bus 117 489

Table 5. Simulation parameters for DAE model.

System IEEE IEEE IEEE IEEE
14-Bus 39-Bus 57-Bus 118-Bus

Input and Output Nodes 53 130 13 53
DAE Layers 3 2 2 2

Code Layer size 34 75 140 318
Total Data 200,000 200,000 200,000 200,000

Training Data 100,000 100,000 100,000 100,000
Test Data 100,000 100,000 100,000 100,000
Optimizer MSE MSE MSE MSE

Normalization Min-Max Min-Max Min-Max Min-Max
Batch Size 1 1 1 1

Epochs 30 30 30 30

Discussion: In Tables 6–29, it is observed that all features have been reconstructed well with the
EDAE scheme, compared to other schemes. However, the error ratio is high for the features with values
closer to zero. These results were obtained by using the mean squared error (MSE) objective function.
It would be interesting future work to reduce the error ratio by investigating more objective functions.

Table 6. Seven best-reconstructed features (20% fixed-attack on 20% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 19 47 38 46 49 24 18
Feature Value −24.31 −0.10896 −42 −17.574 −6.8649 8.09 50.4

Reconstructed Value −2.43 × 101 −1.09 × 10−1 −4.20 × 101 −1.76 × 101 −6.86 × 100 8.09 × 100 5.04 × 101

Error 5.88 × 10−6 1.39 × 10−5 5.18 × 10−5 6.14 × 10−5 6.47 × 10−5 8.01 × 10−5 0.00010462
Error Ratio 8.50 × 10−8 3.84 × 10−6 6.75 × 10−7 7.19 × 10−6 1.12 × 10−6 4.24 × 10−6 6.09 × 10−6

Table 7. Seven worst-reconstructed features( fixed attack on 20% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 33 8 1 9 13 44 50
Feature Value 5.2503 −35.862 16.015 −10.707 −15.029 −6.7417 −11.735

Reconstructed Value 5.25731468 −35.85805672 16.01861077 −10.70396887 −15.02630777 −6.739086843 −11.73276872
Error 5.25731468 −35.85805672 16.01861077 −10.70396887 −15.02630777 −6.739086843 −11.73276872

Error Ratio 0.001336053 0.000109957 0.000225462 0.000283098 0.000179135 0.000387611 0.000190139

Table 8. Seven best-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 16 24 18 44 36 43 38
Feature Value 71.248 6.7785 50.363 −8.1342 −71.248 −52.386 −41.969

Reconstructed Value 7.12 × 101 6.78 × 100 5.04 × 101 −8.13 × 100 −7.12 × 101 −5.24 × 101 −4.20 × 101

Error 6.05 × 10−6 2.60 × 10−5 3.40 × 10−5 5.84 × 10−5 7.95 × 10−5 0.000221883 0.000255396
Error Ratio 8.50 × 10−8 3.84 × 10−6 6.75 × 10−7 7.19 × 10−6 1.12 × 10−6 4.24 × 10−6 6.09 × 10−6
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Table 9. Seven worst-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 4 28 7 13 2 33 5
Feature Value −9.3102 28.447 −0.21257 −15.038 −114.81 5.2384 −11.576

Reconstructed Value −9.305423719 28.45157074 −0.208140482 −15.03418581 −114.806619 5.241757108 −11.57308739
Error 0.004776281 0.004570744 0.004429518 0.003814195 0.003381042 0.003357108 0.002912608

Error Ratio 0.000513016 0.000160676 0.020837926 0.000253637 2.9449 × 10−5 0.000640865 0.000251607

Table 10. Seven best-reconstructed features (fixed attack on 20% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 21 49 29 41 9 35 15
Feature Value 29.115 −5.7354 −5.7354 −29.115 −10.608 −73.443 73.443

Reconstructed Value 29.11551588 −5.73057252 −5.729508174 −29.10641015 −10.59362174 −73.42701639 73.46094698
Error 0.00051588 0.00482748 0.005891826 0.008589851 0.01437826 0.015983606 0.017946978

Error Ratio 1.77187 × 10−5 0.000841699 0.001027274 0.000295032 0.001355417 0.000217633 0.000244366

Table 11. Seven worst-reconstructed features (fixed attack on 20% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 22 42 4 1 5 12 17
Feature Value 16.856 −20.227 −9.3102 16.01 −11.576 −13.834 56.302

Reconstructed Value 17.3320005 −19.75872138 −9.015861877 16.29326843 −11.40118695 −13.66738703 56.46786937
Error 0.476000501 0.468278621 0.294338123 0.283268428 0.174813047 0.166612974 0.165869371

Error Ratio 0.028239232 0.023151165 0.031614587 0.017693218 0.015101334 0.012043731 0.002946065

Table 12. Seven best-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 39 9 35 15 32 52 19
Feature Value 24.31 −10.707 −73.47 88.164 1.7611 −1.4676 −24.31

Reconstructed Value 2.43 × 101 −1.07 × 101 −7.35 × 101 8.82 × 101 1.77 × 100 −1.45 × 100 −2.43 × 101

Error 9.29 × 10−5 0.003913956 0.009265381 0.009673824 0.010849409 0.013501805 0.021025564
Error Ratio 3.82 × 10−6 3.66 × 10−4 1.26 × 10−4 1.10 × 10−4 6.16 × 10−3 9.20 × 10−3 8.65 × 10−4

Table 13. Seven worst-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 22 42 11 17 1 14 8
Feature Value 16.855 −20.226 −6.335 56.346 16.015 153.52 −35.862

Reconstructed Value 17.2521351 −19.8600899 −5.976216655 56.6757069 16.30432973 153.773394 −35.6177516
Error 0.397135099 0.365910095 0.358783345 0.329706898 0.289329731 0.253393963 0.244248405

Error Ratio 3.82 × 10−6 3.66 × 10−4 1.26 × 10−4 1.10 × 10−4 6.16 × 10−3 9.20 × 10−3 8.65 × 10−4

Table 14. Seven best-reconstructed features (fixed attack on 20% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 23 38 47 12 27 18 25
Feature Value 6.7785 24.427 −28.447 −15.038 28.447 −24.427 17.551

Reconstructed Value 6.78 × 100 2.44 × 101 −2.84 × 101 −1.50 × 101 2.84 × 101 −2.44 × 101 1.76 × 101

Error 2.40 × 10−5 0.000135149 0.000241691 0.000330428 0.000685705 0.000773076 0.001103067
Error Ratio 3.55 × 10−6 5.53 × 10−6 8.50 × 10−6 2.20 × 10−5 2.41 × 10−5 3.16 × 10−5 6.28 × 10−5

Table 15. Seven worst-reconstructed features (fixed attack on 20% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 3 10 7 28 48 31 51
Feature Value −9.3102 −6.2287 −29.767 5.7354 −5.7354 1.5209 −1.5209

Reconstructed Value −9.271860897 −6.190712099 −29.73700456 5.75936093 −5.711731496 1.543764792 −1.498413224
Error 0.038339103 0.037987901 0.02999544 0.02396093 0.023668504 0.022864792 0.022486776

Error Ratio 0.004117968 0.006098849 0.001007674 0.004177726 0.00412674 0.015033725 0.014785177
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Table 16. Seven best-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 48 22 37 28 17 1 6
Feature Value −5.7354 43.655 −41.969 5.7354 41.969 −95.675 −0.21257

Reconstructed Value −5.734781558 43.6563242 −41.966989 5.738713765 41.97239975 −95.67142491 −0.207780056
Error 0.159876943 0.145020078 0.13172484 0.131127364 0.10495939 0.086672587 0.083504682

Error Ratio −0.000107829 3.03333 × 10−5 −4.79163 × 10−5 0.000577774 8.10061 × 10−5 −3.73671 × 10−5 −0.022533488

Table 17. Seven worst-reconstructed features (fixed attack on 40% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 4 1 13 33 3 7 11
Feature Value −5.7354 43.655 −41.969 5.7354 41.969 −95.675 −0.21257

Reconstructed Value −5.734781558 43.6563242 −41.966989 5.738713765 41.97239975 −95.67142491 −0.207780056
Error 0.000618442 0.001324201 0.002010998 0.003313765 0.003399746 0.003575093 0.004789944

Error Ratio 0.000107829 3.03333 × 10−5 4.79163 × 10−5 0.000577774 8.10061 × 10−5 3.73671 × 10−5 0.022533488

Table 18. Seven best-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 25 41 24 50 21 52 15
Feature Value 1.76 × 101 −1.69 × 101 7.73 × 100 2.99 × 100 1.69 × 101 −5.27 × 100 7.36 × 101

Reconstructed Value 1.76 × 101 −1.69 × 101 7.73 × 100 2.99 × 100 1.69 × 101 −5.27 × 100 7.36 × 101

Error 2.42 × 10−5 3.72 × 10−5 0.000121965 0.000145602 0.000226226 0.000232532 0.000244578
Error Ratio 1.38 × 10−6 2.20 × 10−6 1.58 × 10−5 4.88 × 10−5 1.34 × 10−5 4.41 × 10−5 3.33 × 10−6

Table 19. Seven worst-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 49 8 1 4 38 18 45
Feature Value −9.9661 −8.6655 −95.556 −11.794 −42.103 −24.313 −7.734

Reconstructed Value −9.960711568 −8.660489164 −95.55141419 −11.78952318 −42.09859985 −24.3087889 −7.730274573
Error 0.005388432 0.005010836 0.00458581 0.004476824 0.004400152 0.004211097 0.003725427

Error Ratio 0.000540676 0.000578251 4.79908 × 10−5 0.000379585 0.000104509 0.000173203 0.000481695

Table 20. Seven best-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 20 35 29 32 43 40 14
Feature Value 29.111 −73.554 5.6798 5.2682 −6.7198 −29.111 73.554

Reconstructed Value 2.91 × 101 −7.36 × 101 5.68 × 100 5.27 × 100 −6.72 × 100 −2.91 × 101 7.36 × 101

Error 4.64 × 10−5 5.41 × 10−5 6.26 × 10−5 0.000224246 0.000406535 0.000490851 0.000534421
Error Ratio 1.59 × 10−6 7.36 × 10−7 1.10 × 10−5 4.26 × 10−5 6.05 × 10−5 1.69 × 10−5 7.27 × 10−6

Table 21. Seven worst-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the EDAE scheme.

Feature Number 7 11 47 4 49 9 1
Feature Value 0.046326 −13.885 −28.613 −11.794 −9.9661 −3.734 −95.556

Reconstructed Value 0.05920957 −13.87618859 −28.60460809 −11.78692803 −9.959870581 −3.728092846 −95.55035503
Error 0.01288357 0.008811412 0.008391909 0.007071968 0.006229419 0.005907154 0.005644974

Error Ratio 0.27810667 0.000634599 0.00029329 0.000599624 0.000625061 0.001581991 5.9075 × 10−5

Table 22. Seven best-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 41 14 21 44 42 24 49
Feature Value −16.888 73.554 16.888 −7.734 −43.836 7.734 −9.9661

Reconstructed Value −16.88659536 73.55574957 16.88984495 −7.732058335 −43.83405151 7.736052894 −9.963812929
Error 0.001404636 0.001749567 0.001844953 0.001941665 0.00194849 0.002052894 0.002287071

Error Ratio 8.31736 × 10−5 2.37862 × 10−5 0.000109246 0.000251056 4.44496 × 10−5 0.000265438 0.000229485
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Table 23. Seven worst-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 5 27 47 7 2 11 40
Feature Value −0.5438 −0.046326 −29.855 −48.433 −6.169 −29.111 29.111

Reconstructed Value −0.402496385 0.062047902 −29.74962789 −48.35341728 −6.09788107 −29.04398602 29.17169563
Error 0.141303615 0.108373902 0.105372107 0.079582725 0.07111893 0.067013983 0.06069563

Error Ratio 0.259844824 2.339375345 0.003529463 0.001643151 0.011528437 0.002302016 0.002084972

Table 24. Seven best-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 42 22 18 14 38 44 24
Feature Value −43.836 16.888 −24.313 73.554 24.313 −7.734 7.734

Reconstructed Value −43.83578598 16.88835338 −24.31091173 73.5561661 24.31673587 −7.729402089 7.739212442
Error 0.000214025 0.000353378 0.002088271 0.002166096 0.003735869 0.004597911 0.005212442

Error Ratio 4.88239 × 10−6 2.09248 × 10−5 8.58911 × 10−5 2.94491 × 10−5 0.000153657 0.000594506 0.000673965

Table 25. Seven worst-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the ZDAE scheme.

Feature Number 12 1 9 7 47 33 52
Feature Value −15.234 16.22 −3.734 −29.855 6.7198 5.2682 −1.565

Reconstructed Value −15.14360235 16.30842128 −3.673237667 −29.80570794 6.764957918 5.312002445 −1.523176287
Error 0.090397648 0.088421284 0.060762333 0.049292057 0.045157918 0.043802445 0.041823713

Error Ratio 0.00593394 0.005451374 0.016272719 0.001651049 0.006720128 0.008314499 0.026724418

Table 26. Seven best-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 12 41 21 20 24 30 4
Feature Value −13.885 −29.111 16.888 29.111 6.7198 9.9661 −11.794

Reconstructed Value −13.88377492 −29.10957017 16.88965969 29.11274824 6.721632953 9.967963504 −11.79191121
Error 0.001225077 0.001429832 0.001659687 0.001748239 0.001832953 0.001863504 0.002088788

Error Ratio 8.82302 × 10−5 4.91165 × 10−5 9.82761 × 10−5 6.00542 × 10−5 0.000272769 0.000186984 0.000177106

Table 27. Seven worst-reconstructed features (random attack on 20% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 1 7 33 13 0 2 18
Feature Value −95.556 −95.556 −153.53 153.53 16.22 −95.556 −24.313

Reconstructed Value −95.48854845 −95.49835622 −153.4731469 153.5859801 16.27401379 −95.50443633 −24.27054722
Error 0.067451553 0.057643775 0.056853103 0.055980148 0.054013795 0.051563669 0.042452777

Error Ratio 0.000705885 0.000603246 0.000370306 0.00036462 0.003330074 0.000539617 0.001746094

Table 28. Seven best-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 14 42 22 13 33 19 38
Feature Value 73.554 -43.836 43.836 153.53 −153.53 42.103 −42.103

Reconstructed Value 73.55511276 −43.83366463 43.83835556 153.5325412 −153.5258551 42.10726753 −42.09863462
Error 0.001112764 0.002335371 0.002355563 0.00254121 0.004144926 0.004267531 0.004365384

Error Ratio 1.51285 × 10−5 5.32752 × 10−5 5.37358 × 10−5 1.65519 × 10−5 2.69975 × 10−5 0.000101359 0.000103683

Table 29. Seven worst-reconstructed features (random attack on 40% of the features in a standard IEEE
14-bus system) with the GDAE scheme.

Feature Number 2 11 7 12 8 0 19
Feature Value −48.433 −13.885 −95.556 −13.885 −8.6655 16.22 −62.336

Reconstructed Value −48.30994115 −13.79823827 −95.47778432 −13.80909392 −8.591674696 16.2896147 −62.26993855
Error 0.123058854 0.086761732 0.078215681 0.075906078 0.073825304 0.069614699 0.066061451

Error Ratio 0.002540806 0.006248594 0.000818532 0.005466768 0.008519451 0.004291905 0.001059764
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5.3.2. Error Average Sum (EAS)

Next, to show the reconstruction performance in the overall dataset, we present average error

sum (EAS) as another performance gauge. The average error sum is given as follows: 1
m

m
∑

i=1
ei, where m

is the number of features and ei is the reconstruction error for the ith feature. The EAS is measured
in megawatts (MW). Figures 4–11 show the EAS for the various DAE schemes for the 20% and 40%
fixed-attacked features from the standard IEEE 14-, and 39-bus systems.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Total- Samples
Error Average

Sum

No-Attack
Samples Error
Average Sum

Attack-Samples
Error Average

Sum

Per-Attack
Feature Error
Average Sum

Per-Non Attack
Feature Error
Average Sum

R
e

c
o

n
s
tr

u
c
ti

o
n

 E
rr

o
r 

(M
W

)

EDAE ZDAE GDAE

Figure 4. Error average sum for various DAE schemes in a standard IEEE 14-bus system from a 20%
fixed-attack dataset.
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Figure 5. Error average sum for various DAE schemes in a standard IEEE 14-bus system from a 40%
fixed-attack dataset.
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Figure 6. Error average sum for various DAE schemes in a standard IEEE 39-bus system from a 20%
fixed-attack dataset.
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Figure 7. Error average sum for various DAE schemes in a standard IEEE 39-bus system from a 40%
fixed-attack dataset.
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Figure 8. Error average sum for various DAE schemes in a standard IEEE 14-bus system from a 20%
random-attack dataset.
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Figure 9. Error average sum for various DAE schemes in a standard IEEE 14-bus system from a 40%
random-attack dataset.
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Figure 10. Error average sum for various DAE schemes in a standard IEEE 39-bus system from a 20%
random-attack dataset.
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Figure 11. Error average sum for various DAE schemes in a standard IEEE 39-bus system from a 40%
random-attack dataset.
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Discussion: It is observed that the proposed EDAE scheme has the lowest reconstruction
error, compared to the other schemes. The ZDAE outperforms the GDAE, which has the highest
reconstruction error.

5.3.3. Training and Validation Costs

Figures 12–19 show the reconstruction error on the training data as a function of the number of
epochs for 20% and 40% fixed- and random-attack datasets. These results are shown for standard
IEEE 14- and 39-bus systems. The training and validation cost is measured in megawatts (MW).

Discussion: The results of the training and validation cost show that the proposed EDAE scheme
results in much less reconstruction error, compared to the ZDAE and GDAE schemes for all test
bus cases. It is also observed in the figures that the reconstruction performance of ZDAE is better as
compared to the one achieved by the GDAE scheme.

From the overall results, we also observe that, during the reconstruction process, the EDAE
scheme performs better than other schemes. The reconstruction error, EAS, and training and validation
costs are the lowest in the case of the proposed EDAE-based reconstruction scheme.
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Figure 12. Training and validation costs for various DAE corruption-addition schemes (20% of the
features in a fixed attack) in a standard IEEE 14-bus system.
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Figure 13. Training and validation costs for various DAE corruption-addition schemes (40% of the
features in a fixed attack) in a standard IEEE 14-bus system.
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Figure 14. Training and validation costs for various DAE corruption-addition schemes (20% of the
features in a fixed attack) in a standard IEEE 39-bus system.
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Figure 15. Training and validation costs for various DAE corruption-addition schemes (40% of the
features in a fixed attack) in a standard IEEE 39-bus system.
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Figure 16. Training and validation costs for various DAE corruption-addition schemes (20% of the
features in a random attack) in a standard IEEE 14-bus system.
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Figure 17. Training and validation costs for various DAE corruption-addition schemes (40% of the
features in a random attack) in a standard IEEE 14-bus system.
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Figure 18. Training and validation costs for various DAE corruption-addition schemes (20% of the
features in a random attack) in a standard IEEE 39-bus system.
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Figure 19. Training and validation costs for various DAE corruption-addition schemes (40% of the
features in a random attack) in a standard IEEE 39-bus system.
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6. Conclusions

In this paper, we propose a DAE-based scheme to reconstruct the measurements affected
by a covert cyber-deception attack while removing the added biased values. We considered
different corruption-addition schemes, such as zero-masking (the ZDAE), additive Gaussian noise
(the GDAE), and an estimated corruption-addition (termed the EDEA), under diverse attack scenarios.
The performance of the proposed scheme was evaluated by employing standard IEEE 14-bus,
39-bus, 57-bus, and 118-bus systems. Active power injections into the buses and active power flow
measurements in the branches are the main features of the dataset. The test results show that the
proposed EDAE-based reconstruction scheme results in a reasonably low reconstruction error from
CCDAs on SG measurement features. Furthermore, the proposed EDAE-based reconstruction scheme
results in a low error ratio, compared to the other schemes. However, the features with values closer
to zero are reconstructed with a high error ratio. The results were obtained using an MSE objective
function. In the future, to further reduce the error ratio for features with small values, we intend to
investigate more objective functions in order to increase the reconstruction accuracy.
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