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Abstract: Land change is a key topic in research on global environmental change, and the restoration
of degraded land is the core component of the global Land Degradation Neutrality target under the
UN 2030 Agenda for Sustainable Development. In this study, remote-sensing-derived land-use data
were used to characterize the land-change processes in China’s Loess Plateau, which is experiencing
large-scale ecological restoration. Geographically Weighted Regression was applied to capture the
spatiotemporal variations in land change and driving-force relationships. First, we explored land-use
change in the Loess Plateau for the period 1990–2015. Grassland, cropland and forestland were
dominant land cover in the region, with a total percentage area of 88%. The region experienced
dramatic land-use transitions during the study period: degraded grassland and wetland, expansion
of cropland and built-up land and weak restoration of forestland during 1990–2000; and increases
in grassland, built-up land, forestland and wetland, concurrent with shrinking cropland during
2000–2015. A Geographically Weighted Regression (GWR) analysis revealed altitude to be the common
dominant factor associated with the four major land-use types (forestland, grassland, cropland and
built-up land). Altitude and slope were found to be positively associated with forestland, while
being negatively associated with cropland in the high, steep central region. For both forestland and
grassland, temperature and precipitation behaved in a similar manner, with a positive hotspot in the
northwest. Altitude, slope and distance to road were all negatively associated with built-up land
across the region. The GWR captured the spatial non-stationarity on different socioeconomic driving
forces. Spatial heterogeneity and temporal variation of the impact of socioeconomic drivers indicate
that the ecological restoration projects positively affected the region’s greening trend with hotspots
in the center and west, and also improved farmer well-being. Notably, urban population showed
undesired effects, expressed in accelerating grassland degradation in central and western regions
for 1990–2000, hindering forestland and grassland restoration in the south during 2000–2015, and
highlighting the long-term sustainability of the vegetation restoration progress. Such local results
have the potential to provide a methodological contribution (e.g., nesting local-level approaches, i.e.,
GWR, within land system research) and spatially explicit evidence for context-related and proactive
land management (e.g., balancing urbanization and ecological restoration processes and advancing
agricultural development and rural welfare improvement).
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1. Introduction

Land use/land cover is a key link for the different spheres of the earth’s system, which is also the
most direct signal to characterize the impact of human activity on the environment. Land change is an
ideal entry point to disentangle the complex human-environment systems and has become a hotspot
in global environmental–change research [1]. A series of global projects targeted at land system change
have been implemented, including the Land Use and Land Cover Change project (LUCC), Global
Land Project (GLP) and Future Earth [2,3]. These programs have led to advances in assessing historical
land-use change and its ecological impact, recognizing the influence factors and driving mechanism,
projecting future evolution trends and synthesizing current research across different scales. China has
long experienced intense land-use/land-cover change as a result of the comprehensive interactions
of the climate, geography and anthropogenic pressures. Undesirable land change has resulted in
widespread land degradation, one of the most serious environmental issues faced by China and the
world [4]. Assessments indicate that up to 25% of the earth’s land area may be severely degraded,
affecting about 1.5 billion people [5,6]. To slow down and prevent land degradation, a global Land
Degradation Neutrality (LDN) target has been formulated which has increasingly gained acceptance
and engagement [7,8]. China has also made significant efforts to restore degraded ecosystems and
counteract the negative impact of undesirable land change, achieving considerable progress, e.g.,
taking a lead in global greening [9]. As the most critical area for soil and water loss globally, the Loess
Plateau is recognized as a key zone in China’s large-scale ecological restoration projects (Figure S1)
and one of the most successful cases since the launch of the Grain-for-Green Program in 1999 [10].
Spatially explicit assessments of the land change processes are important to provide scientific evidence
to support further land-management activities and to achieve sustainable socioecological systems in
the Loess Plateau and similar dryland regions susceptible to land degradation.

The previous land change research mostly concentrates on the spatiotemporal variations of
historical land change, the explanatory factors and their driving mechanism, the environmental effects
of land change, and the projection of future land-use change for effective management [11–13]. Land
change is the result of human interactions with the natural environment [1]. The combination of
distinctive environmental conditions and long-term intensive human activities has shaped complex
land patterns in the Loess Plateau [14]. Exploring the causes and drivers of land change underpins
land-change research and is critical for predicting future land-use patterns and estimating potential
impacts of the changing environment. Verburg et al. (2004) synthesized the determinants of land-use
change from a range of disciplinary theories as five broad aspects: biophysical constraints and potentials;
economic factors; social factors, irreversibility and uncertainty; spatial interaction and neighborhood
characteristics; and spatial policies [15]. There have been a large number of studies exploring the
driving forces of land change from these aspects, specifically regarding to the geographical conditions,
meteorological factors, economic growth, demographic characteristics, road traffic, technological
evolution and governmental policies [16–18]. These can be simply classified according to natural
and socioeconomic factors [19]. Over short timescales (decades), internal natural geographical and
climate conditions are relatively stable, as are several accessibility factors, and can be used to determine
the preliminary distribution of different land-cover types [16,20]. However, social and economic
development can result in multiple land conversions due to, for example, increases in population and
associated food and residential demands on the land, as well as policy changes [21]. Therefore, it is
critical to consider the spatial and temporal impacts of socioeconomic factors and their variations, in
order to support targeted land management.
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Even though numerous studies have examined the relationships between land-use/land-cover
change and multiple factors [22,23], most were limited to two modes of analysis: either they considered
only natural factors based on grid-scale data or examined only the socioeconomic factors at the
administrative units. Typically, only global-level statistical approaches were applied, under the
assumption that relationships between explanatory factors and dependent variables are constant
(homogenous) over space [24]. However, many socioeconomic drivers are known to exhibit spatial
non-stationarity and to have distinct temporal signatures [25,26]. Brunsdon et al. (1996) proposed
Geographically Weighted Regression (GWR) as a method to explore spatial heterogeneity [27]. The
GWR captures variations in the relationships between predictors and target variables by undertaking a
series of local regressions over multiple observation points. It has been extensively used in several
fields, e.g., epidemics, hybrid data construction, wildfire drivers and environmental heterogeneity, as
well as landscape and land-cover change mostly in urban contexts [28–30].

Dryland ecosystems cover more than 40% of the earth’s land surface and are recognized as a
key component in realizing the LDN target, since they are vulnerable to both natural environmental
degradation and anthropogenic disturbances [8,31]. The Loess Plateau is a typical dryland region
that is ecologically vulnerable due to its limited precipitation, erosion-prone soil and intensive human
activity (e.g., historically agricultural reclamation and latterly large-scale restoration projects, as well
as continuous urban expansion). It provides an ideal case study with which to explore land-change
processes and thereby effective management strategies for sustainable ecological rehabilitation. In
this study, we explore the processes and multiple driving forces of land change in the Loess Plateau
over the past twenty-five years by integrating remote-sensing-derived land-use data with data
describing underlying environmental and socioeconomic gradients. The main goals are to (1) explore
the spatiotemporal variations in land-use change before and after large-scale ecological restoration
initiatives; (2) identify the determinants of the geographical distribution of major land-use types; and
(3) investigate the spatiotemporal variations in the socioeconomic driving forces of land change. It is a
novel attempt to explore the variations of the relationships between land-use change and the driving
factors in a spatially explicit way.

2. Materials and Methods

2.1. Study Area

The Loess Plateau (33◦43′–41◦16′ N, 100◦54′–114◦33′ E) is located in the middle reaches of the
Yellow River basin in Northwestern China (Figure 1) and covers approximately 640,000 km2. The
region is both the largest and deepest loess deposit in the world and is characterized by a temperate
continental monsoon climate, with distinctly seasonal temperature and precipitation [32]. The annual
average temperature is 4.3 ◦C in the northwestern region and 14.3 ◦C in the southeast. Most of the
loess lies in a semiarid zone, with an average annual rainfall commonly less than 500 mm and chiefly
concentrated in summer months, ranging from 250 mm in the northwest to 600 mm in the southeast [33].
Socioeconomically, Loess Plateau is a critical part of China’s great western development strategy and
stands as a bridge linking western and eastern regional economies. It is distributed across 334 counties
of 44 municipalities, belonging to seven provinces (i.e., Shanxi and most of Shaanxi and Gansu, as well
as parts of Henan, Qinghai, Ningxia and Inner Mongolia) (Figure 1).

The Loess Plateau has become one of the most severely eroded areas in the world, with high
soil-erosion rates and heavy river-sediment loads [10,33]. This is the result of human activity (e.g.,
agricultural development and urban sprawl) that has intensified over the past several decades,
the erosion-prone soil, steep landscape, sparse vegetation cover and the high-intensity summer
rainstorms. To address this environmental degradation, several ecological restoration projects have
been implemented, including terracing, check-dam construction, reforestation and afforestation
represented by the Grain-for-Green Program. Under this program, large areas of sloping farmland
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have been converted to forestland and grassland, leading to dramatic change of the land surface across
the region (e.g., vegetation cover in Figure 1).Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 26 
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Figure 1. The location of the Loess Plateau, China, and a trend analysis (significant at p < 0.05 level)
of vegetation coverage change from 2000 to 2015, using the Normalized Difference Vegetation Index
(NDVI).

2.2. Data

2.2.1. Land-Cover Data

Land-cover maps of the Loess Plateau in 1990, 2000 and 2015 were derived from 30 m Landsat
remote-sensing images. An object-oriented classification based on decision trees, combined with
manual checks, was used for land-cover mapping. Field-measured land-cover types with GPS
coordinates were collected to validate the land-cover maps, and the classification accuracy was about
94% [34–36]. The land covers were classified into six broad types: forestland, grassland, cropland,
wetland, built-up land and other land (bare rock and desert) [37,38].

Land-use change analysis was carried out for the six types in two phases: 1990–2000 and 2000–2015,
indicating the periods before and after the implementation of large-scale ecological restoration projects.
Analysis of natural and socioeconomic driving factors included only four major land-use categories
(forestland, grassland, cropland and built-up land), since the percentages of wetland and other land in
the region were small and changes of these two types were negligible during the period.

A series of topographic, climatic, accessible and socioeconomic variables were selected according
to the previous studies and data availability [16,19,39].

2.2.2. Topography, Climate and Accessibility Data

Altitude and slope were extracted from a 30 m resolution digital elevation model (DEM). Climate
factors included mean annual temperature (MAT) and mean annual precipitation (MAP), which were
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calculated from the annual data from 1990 to 2015. Accessibility was calculated as distances to the
nearest river, road and residential areas, with the features extracted from the 1:1M Geological Map
Database of China. Table 1 summarizes the detailed information on the spatial datasets included
in the analysis. Except for the NDVI, which was used for the trend analysis of vegetation coverage
change in Figure 1, all the other data (i.e., land-use, altitude, slope, MAT, MAP, distance to the nearest
river, distance to the nearest residential areas and distance to the nearest road) were resampled as a
common regular 5 km grid, to facilitate the Geographically Weighted Logistic Regression (GWLR) for
the limited calculation ability [40]. Binary logistic regression (IBM SPSS version 20) was used to create
a parsimonious model by selecting variables with a significant contribution (p < 0.05) (Table S1) [19].

Table 1. Spatial datasets used in the analysis.

Data Description Source Preprocessing

NDVI
250 m resolution Normalized Difference
Vegetation Index product; yearly from

2000 to 2015

Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences Least-squares regression for trend detection

Land cover/
land use

30 m resolution land-cover product;
1990, 2000 and 2015

Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences Spatial analysis

DEM 30 m resolution Digital Elevation Model Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences Resample

MAT Mean Annual Temperature National Meteorological Information
Center, http://data.cma.cn/

Calculated from the monthly temperature of
the meteorological stations within and around

the study region; yearly from 1990 to 2015;
spatial interpolation to 1 km resolution

MAP Mean Annual Precipitation National Meteorological Information
Center, http://data.cma.cn/

Calculated from the monthly precipitation of
the meteorological stations within and around

the study region; yearly from 1990 to 2015;
spatial interpolation to 1 km resolution

Accessibility
distance to the nearest river; 1:1M Geological Map Database of China,

http://www.ngac.cn/125cms/c/qggnew/
index.htm

Euclidean Distance calculation; 1 km resolutiondistance to the nearest road;
distance to the nearest residential areas

2.2.3. Socioeconomic Data

Socioeconomic data were obtained from statistical yearbooks and gathered at the county level.
The area of afforestation was extracted from the China Forestry Database (http://www.forestry.gov.cn/),
which provides a proxy reflecting the investment and contribution derived from ecological restoration
projects. This was used because financial input data at the county scale may be incomplete or difficult
to access. The dependent variables were calculated as the amount of change for the two periods (e.g.,
the percentage of forestland against county area in 2000 minus that in 1990). The same calculation
was used for independent variables, except for the afforestation area, which was calculated as a
cumulative value that the total area of afforestation during 2002–2014 divided by the county area.
Thirteen driving factors were collected for the period 1990–2000 and seventeen for 2000–2015 (Table 2).
A stepwise regression procedure (IBM SPSS version 20) was conducted to select the variables which
add a significant contribution to the explanation of land-use change (Tables S2 and S3) [40].

2.3. Geographically Weighted Regression Method

GWR is an extension of ordinary least squares (OLS) global regression and generates local
coefficient estimates to explore spatially varying relationships [27]. It constructs a series of local
regressions by using data under a moving kernel that are weighted by their distance to the kernel
center. The conventional GWR can be expressed formally as follows:

yi = β0(ui, vi) +
∑

k

βk(ui, vi)xik + εi (1)

where (ui, vi) is the coordinate of the ith location; yi, xik and εi represent, respectively, the dependent
variable, the kth independent variable and the random error term at location i; and βk(ui, vi) denotes the
local parameter estimate for kth independent variable at location i [41].

http://data.cma.cn/
http://data.cma.cn/
http://www.ngac.cn/125cms/c/qggnew/index.htm
http://www.ngac.cn/125cms/c/qggnew/index.htm
http://www.forestry.gov.cn/
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Table 2. Indicators of dependent and independent variables.

Indicators Units
Period

1990–2000 1 2000–2015 1

Dependent variables
• percentage of forestland against county area % � �
• percentage of grassland against county area % � �
• percentage of cropland against county area % � �
• percentage of built-up land against county area % � �

Independent variables
• total amount of population 10,000 person � �
• population density person/km2 � �

• percentage of urban population % � �
• amount of urban population 10,000 person � �
• amount of rural population 10,000 person � �
• Gross Domestic Product (GDP) 10,000 yuan � �

• GDP per capita yuan � �
• percentage of primary industry % � �
• percentage of secondary industry % � �
• percentage of tertiary industry % � �

• fiscal revenue 10,000 yuan � �
• fiscal expenditure 10,000 yuan ×

2 �
• gross output value of agriculture, forestry, animal

husbandry and fishery (AFAHF) 10,000 yuan � �

• farmer income (per capita) yuan � �
• sown area of crops 1000 ha × �

• total power of agricultural machinery 10,000 kw × �
• cumulative percentage of afforestation area % × �2002–2014
1 For the period 1990–2000, the dependent and independent variables (except for the afforestation area) were
calculated as the value of the indicator in 2000 minus that in 1990. The same holds for the period 2000–2015. 2 The
symbol ×means no data.

GW logistic regression (GWLR) combines the conventional GWR and the standard global-level
logistic regression model. The standard global-level logistic regression suits situations where the
dependent variables are binary and the goal is to determine the probability that a cell belongs to one
class—in this case, a specific land-use type. GW logistic regression (GWLR) extends the standard
logistic regression by allowing the coefficient of each independent variable to vary over space, stemming
from the conventional GWR framework. It is described as follows:

Ln
(

Pi
1− Pi

)
= β0(ui, vi) +

∑
k

βk(ui, vi)xik + εi (2)

where Ln
( Pi

1−Pi

)
is the predicted odds for the ith observation, and Pi is the probability of forestland (or

grassland, cropland and built-up land) covers at location i [42,43].
In this study, GW logistic regression was undertaken to analyze the influences of natural and

distance factors on land-use spatial distribution at the grid-scale based on 2015 land-cover data. The
dependent variables were binary; grids were assigned a value of 1 if they were occupied by forestland
and value of 0 otherwise (the same was done for grassland, cropland and built-up land). Next,
conventional GWR was conducted at the county scale for two periods (1990–2000 and 2000–2015), to
explore the temporal and spatial effects of socioeconomic factors on land-use change. The dependent
variable was the amount of change for one specific land-use type during the study period. This model
was evaluated at the county scale, the most realistic level in light of data availability and administrative
management activities.

Data processing and model-fitting were developed by using the following R software packages:
GWmodel for GWR and GWLR modeling; sp, raster and rgdal for spatial-data manipulation (http:

http://www.r-project.org
http://www.r-project.org
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//www.r-project.org). A critical parameter in any GWR is the bandwidth, which describes the size
of the moving window by using a fixed distance or an adaptive distance based on the number of
nearest-neighbor points considered for each local regression. Fixed bandwidths are typically used for
regular gridded data, and adaptive bandwidths are used for irregularly distributed data. Two functions
in the package GWmodel, bw.ggwr and bw.gwr, were used to automatically select the appropriate fixed
and adaptive bandwidths for GWLR and GWR models, respectively [44]. Because all the data used
in the GWLR and GWR models were standardized before the regression process, the coefficients of
explanatory variables can be used to compare their relative contribution to the model fit [45,46]. Thus,
for each model, we calculated the sum of the absolute value of each explanatory factor’s coefficients
and identified the top four as the dominant factors to display spatially (the rest included in the
Supplementary Materials: Figures S2 and S3). Figure 2 summarizes the analysis procedures.
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3. Results

3.1. Land-Use and Land-Cover Change

Overall, the land-use structure in the Loess Plateau was relatively stable during 1990–2015 with
grassland, cropland and forestland playing dominant roles, having a total area percent of about 88%
(37%, 30% and 21%, respectively) (Figure 3). Nevertheless, this area also witnessed dramatic land-use
transformations over the past several decades.

http://www.r-project.org
http://www.r-project.org
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Figure 3. Land-use/land-cover patterns of Loess Plateau in 1990, 2000 and 2015.

The land-use change displayed phased properties, with 2000 as a point of inflection. During
1990–2000, an area of 11671 km2 was subject to land change (Table S4) characterized by degraded
grassland and wetland, expansion of cropland and built-up land, and weak restoration of forestland.
In the period 2000–2015, greater land-use change was found (28,412 km2), with shrinking cropland and
increasing grassland, built-up land, forestland and wetland. Land-use transformations also showed
temporal variations (Figure 4). Grassland decreased by 0.17%, from 232,817 km2 in 1990 to 232,414
km2 in 2000, as a result of cropland expansion. Built-up land increased by 11.65% during 1990–2000,
chiefly derived from cropland and grassland conversions. From 2000 to 2015, forestland, grassland and
built-up land increased by 1.97%, 2.87% and 37.23%, respectively, with cropland as the main source
(decreased by 7.9%).

Land-use changes not only show strong coupling and symmetry in change direction but also vary
substantially over space (left panel in Figure 4). During 1990–2000, the increases in cropland occurred
in the western region, the southern region and the borders of the northern region, co-located with
decreasing grassland, bare land and wetland. Hotspots of built-up land gain included the east and
north of the study area. During 2000–2015, the increases of forestland and grassland were notable in
southwestern and central regions, concurrently with shrinking cropland. Built-up land also exhibited
significant increases in this period though it accounts for a small fraction of the study area (less than
4%). Different land-use conversions were responsible for the expansion of built-up land across different
areas. In the northern region, the increased built-up land was converted from grassland, whereas
in the east and south, it came from cropland transformation. In summary, the region experienced
pronounced land-use conversions from 1990 to 2015, characterized by forestland and grassland gain
(ecological land restoration) in the central region, co-located with cropland loss and built-up land
expansion in the eastern and northern areas.
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3.2. Internal Determinants of Land-Use Patterns Based on GWLR

The Loess Plateau is a diverse territory, with complex topography, climate and unevenly distributed
artificial infrastructures (Figure 5). The region is dominated by hills and gullies, with the altitude
and slope increasing from the northwest to southeast. The climate of the region displays significant
spatial variations, expressed by the increases in mean annual temperature (MAT) and mean annual
precipitation (MAP) from northwest to the southeast. The highest MAT occurs in the southern tip,
and this part, as well as the Southern Shanxi province, has the highest MAP. Except for the Erdos,
which is dominated by desert and the desert–steppe transition zone, the rest of the area has convenient
transportation and is near rivers.

Four GWLR models corresponding to forestland, grassland, cropland and built-up land were
constructed, and four dominant factors for each model were displayed spatially (Figure 6) (Table S5).
The relationships between land-use distribution and the determinant factors exhibited spatially
non-stationarity, indicated by varying spatial patterns of the GWLR parameter estimates. Altitude
was the common dominant factor influencing the spatial patterns of the four land-use types, with
varying intensities, represented by the different local coefficient ranges. Hotspots of the association of
altitude with forestland, grassland and cropland were similarly distributed in flat northwestern regions
(circle 1). Altitude exhibited a strong positive association with forestland, but a negative association
with cropland in the central region, the key zone of soil erosion control projects (circle 2). The hotspots
of effects of slope on forestland and cropland were also located in the northwest corner, displaying
contrary signs across a large area in the central region (circle3). The associations of MAT and MAP
with forestland varied in a similar manner across the whole study area, which may be related to the
seasonal climate with concurrent rainfall and heat factors. Both MAT and MAP displayed positive
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associations with grassland in the northwest and negative associations in the southeast (circle 4). The
hotspots of impacts of distance to river on grassland and cropland were concentrated in the border
areas. In the cropland model, MAT showed a strong negative impact in the northwest (circle 5) and
a weak (0–2.82) positive impact in the southeast. Except for MAP, which has a mix of positive and
negative associations with built-up land, the other three dominant factors, i.e., altitude, slope and
distance to road, all showed notably negative influences in large parts of the region, indicating that
built-up land occurs in flat areas and near transportation infrastructures. The spatial variations of
altitude and slope effects acted differently from that of the other three land-use types, and this may be
due to the strong intrinsic dependence of built-up land to artificial shaping.
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3.3. External Socioeconomic Drivers of Land Change Based on GWR

3.3.1. Driving Factors of Land Change during 1990–2000

During 1990–2000, the percentage of forestland area (against county area) in 69% of counties (196
out of 284 counties) increased, with a spatial concentration in the southern parts, and 49% of counties
experienced grassland loss across the northwest (Figure 7a). The percentage of built-up land increased
in 95% of counties, especially in the east, and 36% of counties experienced cropland gain, with hotspots
in the northwest.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 26 
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Figure 7. Changes of the four major land-use types (a) and multiple socioeconomic factors (b) from 1990
to 2000. C_Forest = changes of forestland percent from 1990 to 2000, the same holds for C_Grassland,
C_Cropland and C_Built-up land; AFAHF = agriculture, forestry, animal husbandry and fishery.

Figure 7b depicts the changes of multiple socioeconomic factors that were included in the four
GWR models (Table S6). From 1990 to 2000, population density and percentage of urban population
increased in most counties (93% and 88%, respectively), and 56% of counties experienced decreases in
rural population, indicating the population urbanization trends, with concentrations in the northern
and eastern areas. Industry structure has changed during this period, characterized by noticeable
decreasing primary industry percent in the north, center and southeast, concurrently with increasing
secondary industry percent. GDP (Gross Domestic Product) and Gross Output Value of AFAHF (i.e.,
agriculture, forestry, animal husbandry and fishery) increased across the region, most notably in the
northern and southern extremities. A pronounced increasing trend of farmer income was found in the
northern and eastern parts of the region.

Detailed summaries of the GWR models are in Table S6, and the impacts of the four dominant
explanatory factors for each model were mapped spatially (Figure 8). The relationships between these
factors and land change were spatially non-stationary, with clear spatial patterns in the distribution of
the GWR model parameter estimates. First, in the forestland model, changes in population density
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and the percentage of primary industry were strongly associated with changes in the percentage of
forestland, with a noticeable mix of positive and negative impacts. The strongest negative impact of
increased population density can be found in a group of counties in the north (circle 1), co-located
with forestland gain. The percentage of primary industry inflected from a positive association in
the southwest to a negative one in the northeast. A hotspot was found in the northwest (circle 2),
indicating that decreased primary industry percent had a notable negative impact on the forestland
gain. Secondly, in the grassland model, population density and percentage of the urban population
were the only two explanatory factors that remained after the initial selection process. In the central
and western regions (circle 3), weak increases in population density (0–7.1) were strongly negatively
associated with grassland loss, while increases in urban population percent showed a hotspot of
positive impact.
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Figure 8. GW regression coefficient estimates for changes of four land-use types from 1990 to 2000.

In the cropland model, increases in population density were strongly negatively associated with
the cropland loss in the eastern region (circle 4). In the northern part, increases in urban population
percent showed negative associations with cropland gain (circle 5). In the southwest region, increases
in the rural population were positively associated with cropland gain (circle 6). Increases in GDP were
associated positively with cropland gain in the northwest and negatively with cropland loss in the
southeast, indicating a consistent accelerating effect of GDP on cropland. The pronounced increases in
built-up land were correlated with changes in population density, percentage of urban population,
rural population and farmer income. Increases in population density across the region were positively
associated with built-up land gain, with hotspots in the southeastern part (circle 7). Urban population
percent and rural population had similar spatial patterns of associations with built-up land gain, with
a positive impact hotspot in the southeast corner, surrounding the large cities (circle 8). This indicates
that increases in urban population percent and decreases in rural population accelerated the built-up
land expansion in these areas. This part also shared a hotspot of the positive impact of the increased
farmer income (circle 9).
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3.3.2. Driving Factors of Land Change during 2000–2015

During 2000–2015, most counties experienced forestland and grassland gains, with 76% and 69%
(218 and 198 out of 288 counties), respectively, spatially clustered in the central and western parts of
the region (Figure 9a). The percentage of cropland decreased in almost all counties (97%), co-located
with gains in forestland and grassland. Built-up land expansion occurred in all counties, especially in
the northeastern regions.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 26 
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Figure 9. Changes of four dominant land-use types (a) and the socioeconomic factors (b) from 2000
to 2015.

Compared with the earlier period (1990–2000), the increasing trend of population in this period is
weaker with 82% (235 out of 288) of counties experiencing increased population density (Figure 9b).
The magnitude and percentage of urban population in most counties (92% and 87%, respectively)
increased, with hotspots in the northern and southeastern regions. A range of economic indicators,
including the GDP, gross output of AFAHF, fiscal revenue, fiscal expenditure and farmer income,
were found to increase in all the counties (above 99%), especially in the northern region and southern
extremities. The percentage of primary industry decreased across a large area of the region, including
93% of counties mostly located in the north and west. Some 92% of counties experienced overall
increases in the total power of agricultural machinery. Peak values for the cumulative percentage of
afforestation area were found in the central and western regions, which is the key zone of multiple
ecological restoration programs.
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Detailed results of GWR model outputs are summarized in Table S7, and the spatial variation
in coefficient estimates of the dominant factors are shown in Figure 10. First, population density
experienced the transition from a positive association with forestland gain in the west to a negative
one with forestland loss in the east (circle 1). Moreover, population density appeared to have a strong
negative impact in a small part of the south which has experienced notable forestland gain (circle 2),
potentially originating from the mixed signs of population density change in this part. Increases
in urban population were negatively associated with forestland change, with intensity decreasing
from west to east. Second, grassland change was correlated with the urban population, GDP, fiscal
expenditure and cumulative percentage of afforestation area. The urban population showed a strong
negative association with grassland gain in the central region but positively associated with grassland
loss in the east (circle 3). The impacts of GDP acted in a similar manner as the urban population and
showed negative influences across a larger area in the western region. Both hotspots of the positive
impacts of fiscal expenditure and afforestation area percent were located in the center and southwest
(circle 4), where grassland increased; meanwhile, in the eastern parts that experienced grassland loss,
the two factors showed a negative impact, with hotspots in the northeastern and southeastern corners,
respectively (circle 5).
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The four dominant factors for cropland included population density, percentage of primary
industry, farmer income and total power of agricultural machinery. Population density displayed a
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negative association with cropland loss, especially in the southeast (circle 6). In the central and western
regions, decreases in primary industry percent showed a strong negative association with cropland
loss. The influence of increased farmer income on decreasing cropland shifted from positive in the west
to negative in the east. Increases in the total power of agricultural machinery showed a consistently
positive association with the cropland loss, with hotspots in the central region. Population density,
GDP, fiscal revenue and fiscal expenditure dominantly influenced built-up land expansion from 2000
to 2015. Population density and GDP both showed strong positive associations with the built-up land
gain across a large area of the region, with hotspots in the central and eastern regions, respectively. The
impacts of increased fiscal revenue and expenditure showed complex and contrary spatial patterns.

4. Discussion

4.1. Land Degradation and Restoration in the Semiarid Loess Plateau

As a result of the policy “Take Grain as the Key Link,” which was started in the 1950s, the
population of the Loess Plateau rose sharply, stimulating a large increase in the area of sloping farmland
and the reduction in forestland and permanent grassland, leading to severe soil erosion and degraded
ecosystems [10,47]. To control soil erosion and restore the environment, the government has undertaken
a series of engineering works since the late 1960s, including the construction of check dams, terraces
and reservoirs [48]. However, vegetation cover did not systematically increase until 1999, and this
can be attributed to the region’s drying climate [49]. A comprehensive analysis conducted in the arid
and semiarid zones of China showed that forestland and grassland had net losses, while farmland
and built-up land had net increases in the area during 1990–2010 [50]. This study also qualitatively
indicated the agricultural encroachment to be the primary driver of the loss of natural ecosystems,
with the continuous impact of built-up land expansion. In the present study, we used the most direct
land-cover change to reflect the land transition processes in the semiarid Loess Plateau, and the results
show that grassland degraded by 0.17%; forestland and cropland increased by 0.38% and 0.22%,
respectively, during 1990–2000. This indicated that cropland continued to expand and grassland to
degrade, despite the restoration of forestland in this period under the restoration initiatives. The
analysis of driving factors revealed that demographic factors, especially population density and urban
population percent, were the common dominant factors associated with the changes of four major
land-use types, including forestland, grassland, cropland and built-up land. In 1999, the largest global
re-vegetation program, Grain-for-Green, was initiated nationally and the Loess Plateau was included
as a key zone. Numerous studies have reported the significant increasing trend of vegetation coverage
in the Loess Plateau benefiting from the program [51]. In our study, forestland and grassland were
found to increase by 1.97% and 2.87%, respectively, from 2000 to 2015, concurrently with cropland
decreasing by 7.9%, as a result of the policy-motivated land restoration.

Post hoc assessment is a core component in the cycle of program implementation. A variety of
assessments on the effectiveness of ecological restoration projects have been carried out across the
world at a range of scales [52,53]. Lü et al. (2015) compared the effects of three large-scale ecological
programs (National Nature Reserves, Three North Shelter Forest Program and the Natural Forest
Protection Program) on Chinese vegetation change and revealed that the effectiveness of ecological
restoration projects can vary geographically, even under the same incentive policy context [54]. Various
local socioeconomic conditions may be responsible for this. The present regional-scale study confirmed
this finding and further characterized the spatial variations of the impact of ecological restoration
efforts across the Loess Plateau, with the positive (amplifying) hotspots located in the central and
southwestern areas. Varying from previous studies which merely focus the restoration progress on the
projects themselves, our results identified the positive associations of farmer income and total power of
agricultural machinery on cropland loss (fewer disturbances and more potential for natural ecosystems)
in the western parts and across the whole region, respectively. This indirectly reflects the positive roles
of agricultural improvements and higher rural economic welfare in the vegetation restoration.
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4.2. Better Performance of GW Method Compared with Global-Level Models

Most previous studies have neglected the regional variability of economic and policy influences
on the land system, which are difficult to quantify [19]. Additionally, several studies lack information
on socioeconomic drivers over time [55]. These have become an obstacle for constructing quantitative
models of impacts of different drivers, consequently hindering further land-change research. This
study focused on the land-change processes in a typical dryland region from both spatial and temporal
perspectives and has suggested how causal associations with multiple biophysical and socioeconomic
forces and their variations could be quantified. In this study, even though the R2 of both the GW
methods and the global-level non-spatial regression were not too high, the GW methods yielded
better model fits, as is indicated by lower AICc values and higher R2 (Pseudo R2 of logistic regression
and adjusted R2 of conventional regression) (Table 3). This is in line with the findings of An et al.
(2016) and Rodrigues et al. (2014) [25,56]. Our analysis confirms that GW methods support further
investigation and a deeper understanding of the complex relationships between land change and the
underlying driving forces. GW methods can reveal the detailed site information on the different roles
of the driving forces in different regional parts [57]. In addition to spatial variation, this research also
provided evidence that the effect and magnitude of these driving forces change over time.

Table 3. Comparison of global and GW regression models.

Models
Global Logistic Regression GW Logistic Regression
AICc Pseudo R2 AICc Pseudo R2

Forestland 21,214.05 0.19 18,136.72 0.38
Grassland 31,268.75 0.06 27,424.16 0.23
Cropland 27,294.64 0.09 22,913.48 0.31

Built-up land 7110.92 0.13 6816.27 0.22

Models
(1990–2000)

Global Regression GW Regression
AICc Adjusted R2 AICc Adjusted R2

Forestland 790.39 0.07 751.62 0.20
Grassland 788.30 0.08 767.73 0.16
Cropland 766.80 0.16 659.42 0.47

Built-up land 641.04 0.45 395.42 0.83

Models
(2000–2015)

Global Regression GW Regression
AICc Adjusted R2 AICc Adjusted R2

Forestland 803.76 0.06 770.05 0.19
Grassland 792.17 0.11 702.16 0.45
Cropland 777.71 0.15 725.88 0.43

Built-up land 680.35 0.40 552.42 0.72

The results from the GWLR and GWR models revealed detailed local information on the different
roles of factors in relation to the land change across the study area. In the GWLR models, natural and
accessibility factors act as foundations, providing the possibility for the presence of different land-cover
types. Each location has specific topography and climatic conditions that determine the potential of
natural and agricultural vegetation. Our results showed that altitude was the common dominant
factor for the four major land-use types. In the high, steep central region, both altitude and slope
were positively associated with forestland, while negative associations were found with cropland,
which reflects the theoretical basis of the Grain-for-Green program that converts sloping farmland to
forestland and grassland, in order to control the serious soil erosion. MAT and MAP were found to
behave in a similar manner in relation to forestland and grassland distributions, with positive hotspots
in the ecologically fragile and rain-heat limited northwest. Biophysical conditions are also important
for the suitability of a location for residential construction. Altitude and slope showed a negative
impact on built-up land across most parts of the region. It needs considerable investment to reclaim
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high, steep land for residential demands, and thus preferences will exist to direct the developments
to better-suited locations with lower construction costs [15]. The pronounced negative associations
of distance to road with built-up land across almost the whole region emphasized the increasing
importance of traffic connections for urban development [58].

Changing economic conditions and shifting societal needs drive and shape landscapes and
attendant land-cover changes. In the GWR models, for the period 1990–2000, in the central and western
regions, increased population density accelerated forestland, cropland and built-up land gain and
hindered grassland deterioration, indicating that a higher population accompanied higher demands for
land, crops and natural resources. In this area, increased urban population percent displayed a positive
association with grassland degradation and a negative association with cropland gain which may
be related to sharp decreases in labor dedicated to agricultural activities. GDP showed consistently
accelerating impacts on cropland, locally expressed by a positive association with cropland gain in the
northwest and a negative one with cropland loss in the southeast. Notably, in the southeast corner,
increased farmer income showed strong positive associations with built-up land gain, resulting from
higher affordable ability and residential demands. In the later period (2000–2015), in the southern
region, increased population density showed negative associations with forestland gain and cropland
loss, while being positively associated with built-up land expansion. Increased urban population
hindered the forestland and grassland gains, indicating a threat to the vegetation restoration. In many
studies, policies are not given explicit attention because they are difficult to include in a quantitative
manner [15]. In this study, fiscal expenditure and afforestation area percent, as proxies for national
policies and investments, both showed strong positive associations with grassland gain across a large
area in the center and west, the key zone of ecological construction projects. This, in some sense,
reflected the initial success of the ecological restoration measures in these areas. However, GDP
showed negative influences in the same area. Increased farmer income and total power of agricultural
machinery implied a positive impact on cropland decreasing in this part. Increases in farmer income
mostly come from off-farm activities, e.g., rural labor emigration, simultaneously decreasing the
farmer’s willingness to engage with traditional cultivation. Moreover, less labor was needed for the
same cultivation activities, as a result of technological evolution and intensive management of cropland.

Overall, ecological restoration projects effectively contributed to the greening trend of the region
(especially grassland in this study), with hotspots spatially clustered in the center and west. This is
consistent with the previous studies [59–61]. Our results also identified restoration progress in the
target of improving farmer well-being, expressed in the strong positive impacts of increased farmer
income on built-up land expansion in large cities of the southeast, and the accelerating effects on
cropland decrease accompanied with improved agricultural machinery. However, in the areas where
forestland and grassland had changed significantly (central and western regions for 1990–2000, and the
southern region for 2000–2015), urban population characteristics showed undesired effects, expressed
in accelerating grassland degradation in the first period and hindering forestland and grassland
restoration in the later period. This deserves special attention in future restoration strategies, in order
to realize effective and sustainable land management.

4.3. Implications for Land-Change Modeling and Land Management

Quantifying the relationships between land change and the hidden possible causes is a key step in
land-change research [17,18]. By exploring the spatiotemporal characteristics of land-change processes
and the driving-force mechanism, land-use-change models can be formulated to simulate future
changes [16]. Traditional land-change modeling has been almost completely based on the global-level
logistic regression [62], which does not effectively capture the non-stationary processes and factors
associated with the land in reality. In this regard, the location-dependent statistical relationships we
proposed can be used to improve the performance of regional land-use change models and to evaluate
the consequent impacts on the ecological environment, e.g., the projected ecosystem services [13]. For
example, incorporating GWLR-derived spatially varying relationships within cellular automata (CA)
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models to simulate rapid urban growth can fully address local relations in the land-change processes
and improve the overall modeling accuracy [63]. Other applications include the introduction of GWR
concepts in the transformation rules of CA to project future developments in urban ecological security,
and modifying the traditional CLUE-S model with GW approaches to simulate the regional land-use
change [64,65]. The local statistical relationships identified by the GW models, as well as future
projections, can contribute to context-related land management and proactive policy-making [66].

Balancing urbanization and ecological restoration is critical for land management.
Huang et al. (2020) used the GWR methods to systematically analyze the spatiotemporal characteristics
and driving forces of land-development intensity in Western China during 2000–2015, and they
found that investment intensity significantly promoted land development intensity, while the natural
and ecological environment distinctly constrained the development [67]. As for the Loess Plateau,
Wang et al. (2018) have quantified the magnitude of the impacts of climate change, urban expansion
and the Grain-for-Green Program on land-use change during 1980–2015, and the results showed that
the three factors accounted for 93.65%, 5.46% and 0.64% of the total, respectively [68]. The present
study focused on the spatiotemporal variations of the impacts of driving factors on land-use change in
the Loess Plateau. The findings make it clear that policy-makers need to be aware of the spatiotemporal
processes of land change. The shifts in land-change drivers during the two periods imply that effective
land management requires shifts in policy over time and adapted strategies to fit new temporal and
regional demands. By quantifying the local statistical relationships, we hope to provide land managers
with a blueprint to start disentangling the role of major land-system drivers. For example, our results
indicated the continual stress of urban population characteristics on the Loess Plateau’s vegetation
retention, expressed in promoting grassland degradation in the center–west during 1990–2000 and
hindering forestland and grassland restoration in the south during 2000–2015. The identified stress of
urban population on regional vegetation, combined with the previously reported conflicting water
demands between ecosystems and humans [69], makes it essential to pay special attention to the
post-maintenance and protection of restored vegetation, especially in the key center–west and south
parts of the region. Numerous studies have argued that vegetation in the Loess Plateau should
be maintained but not expanded further, due to the limited water capacity and mitigating food
deficit [47]. The inherent water-limited physical characteristics, mismanagement of planted vegetation
(e.g., introducing exotic plant species and high-density planting), greater water demand induced
by the increased urban population and the expansion of industrial activities generated substantial
new challenges for protecting the ecologically sensitive regional environment. Alleviating human
pressures on ecosystems is inevitably a critical task for ecological restoration initiatives [54]. For
example, infrastructure construction, e.g., railways and expressways and other urbanization industrial
activities, should minimize their influences on the environment (e.g., biodiversity and the water
footprint). Large-scale phased assessments of land-change processes and long-term monitoring efforts
are continually needed in order to realize long-term sustainable ecological restoration progress.

More importance should be attached to agricultural improvements and higher rural economic
welfare. Our results show the improvements in farmer well-being, expressed in the strong positive
associations of increased farmer income, with built-up land expansion in the southeast, and its
accelerating effects on cropland conversion to natural ecosystems, accompanied by improved
agricultural machinery. In the future restoration, more research on vegetation management and
increases in agricultural efficiency, while avoiding farmland expansion through deforestation, are
needed to reduce water uptake by vegetation, to ameliorate water shortages on land used for food
production, and therefore mitigate the abovementioned conflicting water demands. In addition, rural
human welfare should be further enhanced. Currently, farmers receive greater economic incentives to
participate in the Grain-for-Green program than to grow food on their land [47]. More government
incentives should be invested to improve the level of rural economic development and residential
welfare (e.g., more technological support for agricultural production and the diversification of farmer
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income), which can play positive roles in ecological restoration and synchronously decrease the risk of
undesired land degradation resulting from rural poverty and land reclamation [70].

4.4. Caveats and Ways Ahead

Even though detailed insights into the land-change process are provided, there are additional
aspects that the present analysis did not address. The specific land-change drivers are diverse and
location-dependent [15,62,71,72], which can be preliminarily characterized by the GW methods and
visualized spatially according to a series of local parameters. Nonetheless, it is difficult to interpret
the model outputs thoroughly, an issue which is also encountered in our study, considering that the
demand of decision makers to get appropriate and intuitionistic understanding of the results is high. A
potential solution is to cluster or zone the parameter surfaces with the help of extensive regionalization
algorithms, and thus reducing the complexity of the model outputs [19,73]. This is also a way for future
additional investigations of geographical relations in order to reach full potential of the GW methods.

Human societies constantly interact with the environment through mutual feedbacks and
adaptations [74]. The land-change drivers are interactive, and the links between land change
and several driving forces may be bidirectional. For example, socioeconomic conditions and policy
shift may influence stakeholders’ choices and allocation of the land resources [75], and thus lead to
changes of the land surface. Subsequently, the changed land structure can contribute to regional
economic development in the next stage in various aspects, e.g., industry structure and household
income [76]. However, the two-way interconnections were not included in the scope of this study. Our
focus here was to quantify the spatiotemporal variations of the impacts of physical and socioeconomic
factors on the regional land change. To date, a few attempts have been made to explore the complex
connections and feedback among the human–environment system, mostly based on the coupled
land-change models and limited to non-spatial analysis [77–79]. Further research to nest local statistical
relationships in the studies of human–environment interactions is still ongoing.

In the present study, analyses of natural and accessibility factors were conducted in the grid-scale,
and influences of socioeconomic forces were based on the administrative county-level, conditioned by
the data availability. By using several innovative geographical analyses (e.g., interpolation), several
studies have tried to convert the administrative-unit-based socioeconomic data to regular grid-cell
maps [24]. This conversion provides the potential to combine natural (especially the annual temperature
and precipitation) and socioeconomic influences in land-change research. Moreover, this can result in
higher goodness-of-fit for its concerns of the heterogeneity within a single administrative unit. The
conversion is based on the premise of enough statistics underpinning the interpolation or rasterization.
Continuing land-use change and the critical role of socioeconomic factors in modifying land cover
warrants extensive monitoring and compilation of the socioeconomic statistics, a notable limitation of
the present socioecological-system research [40,80].

5. Conclusions

In this work, we explored the driving forces behind land change in the Loess Plateau, China, one
ecologically fragile and typical dryland region in the world. We made new attempts to at least partially
fill in the knowledge gaps in land-change science by comprehensively investigating land-change
processes (i.e., land degradation and restoration) and the spatiotemporal variations in underlying
natural and socioeconomic driving forces, by utilizing local GWLR and GWR models. Overall,
this study comes to three main conclusions: The Loess Plateau has experienced dramatic land-use
transitions over the past twenty-five years, with 2000 as a turning point displaying phased changes
in features; the influences of the natural and accessibility factors on land-use distribution exhibited
spatially non-stationarity, implying the variable potential and suitability of different land-use types;
the relationships between land-use changes and different socioeconomic factors were found to vary
over space and time, highlighting the adaptive land management and timely policy responses.
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Quantifying process spatial heterogeneity through a GWR framework provided a higher level
of explanation of the relationships between land change and related factors, which can inform
improvements in land-change-model performance through the inclusion of more representative
measures of causality. Results of the study also indicate the importance of striking balances between
urbanization and ecological restoration, and the enhancement of agricultural development and rural
welfare. This is a suitable starting point to disentangle the complex relations in the land-change
processes and to provide scientific evidence in support of context-aware land management in dryland
areas, with the aim to harmonize human–environment relationships and to achieve the target of a
land-degradation-neutral world.
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