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Hydraulic turbine governing system (HTGS) is essential equipment which regulates frequency and power of the power grids. In
previous studies, optimal control of HTGS is always aiming at one single operation condition.The variation of operation conditions
of HTGS is seldom considered. In this paper, multiobjective optimal function is proposed for HTGS under multiple operation
conditions. In order to optimize the solution to the multiobjective problems, a novel multiobjective grey wolf optimizer algorithm
with searching factor (sMOGWO) is also proposed with two improvements: adding searching step to search more no-domain
solutions nearby the wolves and adjusting control parameters to keep exploration ability in later period. At first, the searching
ability of the sMOGWO has been verified on several UF test problems by statistical analysis. And then, the sMOGWO is applied
to optimize the solutions of the multiobjective problems of HTGS, while different algorithms are employed for comparison. The
experimental results indicate that the sMOGWO is more effective algorithm and improves the control quality of the HTGS under
multiple operation conditions.

1. Introduction

With the increase of people’s consciousness of environmental
protection, more and more renewable energy has been
applied to replace the traditional energy, such as wind power
[1, 2] and solar power [3]. As wind power and solar power
are connected with the large-scale power grid, people want
to maximally utilize renewable energy on the premise that
power balance is maintained [4–6]. However, the output
of wind power and solar power is not steady due to the
intermittent and fluctuating nature.Therefore the power grid
needs regulating equipment to keep power balance. As the
hydroelectric unit is easier for changing the output power,
it has been widely used as power and frequency regulating
equipment in power grid [7, 8].

Hydraulic turbine governing system (HTGS) which
mostly contains PID controller is important automatic con-
trol equipment of hydroelectric unit [9].TheHTGS can adjust
the output power of hydroelectric unit by changing the open-
ing of guide.Therefore the control quality ofHTGS influences
the regulation quality of hydroelectric unit directly.

Many research works have been done to improve the
control quality; these works can be mainly divided into two
categories: proposed new control models instead of PID con-
troller and optimized control parameters of HTGS. In [10],
a fractional order PID controller, whose order of derivative
portion and integral portion is not integer, is proposed for
HTGS. The fractional order PID controller provides more
flexibility in achieving control objective. In [11], a fuzzy-PID
controller is designed to improve control quality of HTGS. In
[12], the sliding mode variable structure control strategy led
to HTGS which has better robustness and adaptability than
PID controller. In [13], a new adaptive inverse controlmethod
based on the learning characteristic of neural network was
proposed for HTGS to improve the dynamic and stationary
performance. All the above control models are useful, but
they ignore that it is hard to change the control device to reach
the control models for most operating hydroelectric units.
Thus control parameter optimization seems more suitable to
improve control quality for actual situation. To optimize PID
controller, some popular optimization algorithms, including
genetic algorithm (GA) [14], particle swarm optimization
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(PSO) [15], gravitational search algorithm (GSA) [16, 17],
and ant lion optimization (ALO) [18], have been success-
fully applied in parameter optimization of HTGS. All these
algorithms optimize the PID parameters by optimizing one
objective function which means the optimal parameters are
under one single operating condition; few of the researches
have taken multiple operation conditions into consideration.
The optimal results may not be suitable for variation of
operation conditions of HTGS. Therefore, the study on
parameter optimal control ofHTGSundermultiple operation
conditions is meaningful and challengeable.

Parameter optimal control of HTGS under multiple
operation conditions actually refers to the multiobjective
optimization problems. Some multiobjective optimization
algorithms have been proposed and successfully applied in
various applications in decades [19–25], such as nondom-
inated sorting genetic algorithm II (NSGA-II) [19], multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [21], the strength Pareto evolutionary algorithm
(PESA-II) [22], multiobjective particle swarm optimization
(MOPSO) [23], and the multiobjective grey wolf optimizer
(MOGWO) [25]. Among these multiobjective optimization
algorithms, MOGWO algorithm has proved to be effective in
multiobjective optimization problems than other algorithms
[25]. However, as the guidance of lead wolves is much greater
than the random factor, this algorithm is easy to fall into local
optimum and has poor stability. Therefore it is necessary to
enhance the searching ability of MOGWO.

The main contribution of this paper is the design and
optimization of HTGS under multiple operation conditions
by using an improved MOGWO algorithm. Firstly, the
problem in optimal control of HTGS is explained and mul-
tiobjective optimal function is proposed. Secondly, a novel
MOGWO algorithm based on searching factor (sMOGWO)
is proposed to optimize the multiobjective problem. The
sMOGWO is expected to improve the searching ability of
MOGWO from two aspects: adding searching step to search
more no-domain solutions nearby the wolves and adjusting
control parameters to keep exploration ability in later period.

The remaining part of this paper is organized as follows:
the HTGS model and its control problem are discussed in
Section 2. In Section 3, the weakness of MOGWO algo-
rithm is analyzed and an improved MOGWO algorithm is
proposed. In Section 4, simulation verification is present
to demonstrate the advantage of the proposed sMOGWO
algorithm compared with MOGWO, MOPSO, and other
popular multiobjective evolutionary algorithms. Section 5
illustrates the case study and results along with a few
discussions. Finally, conclusions from this research as well as
the advantages and limitations of the proposed algorithm are
discussed in Section 6.

2. HTGS Model and Its Control Problems

2.1. The HTGS Model. The HTGS is essential equipment of
the hydropower station. The HTGS contains PID controller,
electrohydraulic servo system, hydroturbine, and hydrogen-
erator.

The PID controller has been widely used in HTGS. In
this paper, the structure of the PID controller model and
electrohydraulic servo system is set as in Figure 1. Many non-
linear factors have been considered in the electrohydraulic
servo system, such as the dead zone and the relay device
limiting, where xr is the frequency giving; xu is the distur-
bance frequency; x is the frequency of the hydrogenerator
unit; kp, kd, ki are the proportionality coefficient, differential
coefficient, and integration coefficient, respectively; 𝑇1V is
the differential filtering time constant; bp is the permanent
difference coefficient; Ty is the response time constant of
main control valve; and y represents the gate opening.

Thehydroturbine is a complex systemwith strong nonlin-
ear and time-varying character. Generally, the hydroturbine
model can be descripted as follows:

𝑚𝑡 = 𝑚𝑡 (𝑦, ℎ, 𝜔)
𝑞 = 𝑞 (𝑦, ℎ, 𝜔) (1)

wheremt is the hydraulic machinery power, q is discharge of
hydraulic turbine, y represents the gate opening,𝜔 represents
speed of hydraulic turbine, and h represents the water head.

In this paper, the little fluctuation in transient of hydraulic
power station is researched; the model of hydraulic turbine
can be described as liner model, as follows:

𝑚𝑡 = 𝑒𝑥𝜔 + 𝑒𝑦𝑦 + 𝑒ℎℎ
𝑞 = 𝑒𝑞𝑥𝜔 + 𝑒𝑞𝑦𝑦 + 𝑒𝑞ℎℎ (2)

where eh is the transfer coefficient of turbine torque on the
water head, ey is the transfer coefficient of turbine torque on
the guide leaf opening, ex is the transfer coefficient of turbine
torque on the speed, 𝑒𝑞𝑥 is the transfer coefficient of turbine
flow on the speed, 𝑒𝑞𝑦 the transfer coefficient of turbine flow
on guide leaf opening, and 𝑒𝑞ℎ is the transfer coefficient of
turbine flow on the water head.

In water diversion system, the water hammer and pipe
wall can be considered as rigid under small fluctuations.
The transfer function of rigid water diversion system can be
expressed as

𝐺𝑟 (𝑠) = −𝑇𝑤𝑠 (3)

where 𝑇𝑤 is the water inertia time constant.
In this paper, the core problem is the dynamic response

of the HTGS. Hence, the dynamic speed of the generator is
considered. The model of the generator can be described as
the following transfer function:

𝑥𝑚𝑡 = 1𝑇𝑎𝑠 + 𝑒𝑔 (4)

where x represents the frequency of the hydrogenerator unit,
Ta represents the inertia time constant, and 𝑒𝑔 is the adaptive
control coefficient.

As in the above description of the mathematical model,
the hydrogenerator unit model can be described as the block
diagram in Figure 2.
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Figure 1: PID control device and electric-hydraulic servo system.
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Figure 2: Hydroturbine unit model with rigid water hammer.

2.2. Optimal Control of HTGS and Problems Analysis. The
performance indexes of the optimal control of the HTGS
are the most direct measure to evaluate the control quality.
Therefore, the optimal control of the HTGS is the optimal
control of performance indexes. The objective functions of
optimal control are formed by a certain performance index
or several performance indexes in most researches. The
performance indexes inHTGS can bemainly divided into the
following two categories [26]:

(i) Performance indexes for the transition process mainly
include adjusting time, rising time, steady state error, and
overshoot.

(ii) Performance indexes of error functional integral
mainly include integral time absolute error (ITAE), integral
absolute error (IAE), integral square time absolute error
(ISTAE), integral square time square error (ISTSE), integral
time square error (ITSE), and integral square error (ISE).

The performance indexes of error functional integral are
comprehensive indexes which make optimal control easier
to meet the control requirements. The ITAE is one of the
most widely used which has the characteristics of steady
adjustment and small overshoot.

Many researches have been done for optimal control of
HTGS by optimizing ITAE. However most of the researches
are for one single operation condition. As the hydrogenerator
usually plays the roles of generating electricity, peak modula-
tion, frequency modulation, and voltage modulation, there is
a variety of operation conditions and frequent changes. The
optimal control parameters may not be suitable for all the
operation conditions.

Here, we will give an example to explain this problem.
Parameters of two classical operation conditions of the above
HGTS model are given as follows:

No-load: 𝑇𝑦1=0.02s, Ty=0.1s, 𝑇𝑤=0.66s, 𝑇1V=0.28,
Ta=8.51s, bp=0.01, 𝑒𝑔=1, eh=0.508, ey=0.903, ex=-0.242,𝑒𝑞𝑥=0.634, 𝑒𝑞𝑦=-0.396, 𝑒𝑞ℎ=0.261.

On-load: 𝑇𝑦1=0.02s, Ty=0.1s, 𝑇𝑤=0.66s, 𝑇1V=0.28,𝑇𝑎=8.51s, bp=0, 𝑒𝑔=1, eh=1.34, ey=0.926, ex=-1.184, 𝑒𝑞𝑥=0.371,𝑒𝑞𝑦=0.974, 𝑒𝑞ℎ=0.308.
5% step disturbance is set for HGTS.The optimal control

parameters ofHTGSunder no-load condition are acquired by
optimizing ITAE. The parameters are Kp=14.665, Ki=3.026,
and Kd=0.The control transient process is shown in Figure 3.
The control effect is well. However, if the parameters are used
for the on-load condition, it is an ineffective control strategy.

The result indicates that the optimal control parameters
of one single operation condition cannot be suitable for all
the operation conditions. Accordingly, the optimal control
of HTGS is a multiobjective optimization problem in fact.
In this paper, we have proposed a novel control parameters
optimization objective function. Different operation condi-
tions are considered for optimal control. Because the no-load
and on-load are the extreme operating conditions, the ITAE
of both conditions are the objective functions. The objective
function can be described as follows:

min 𝐽1 = 𝐼𝑇𝐴𝐸𝑛𝑜−𝑙𝑜𝑎𝑑 = 𝑓1 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝑦)
𝐽2 = 𝐼𝑇𝐴𝐸𝑜𝑛−𝑙𝑜𝑎𝑑 = 𝑓2 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝑦) (5)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝐾𝑝 ≤ 15
0 ≤ 𝐾𝑖 ≤ 15
0 ≤ 𝐾𝑑 ≤ 5
0 ≤ 𝑦 ≤ 1

(6)

where f 1 and f 2 represent the relationship between the
parameters and the ITAE. Equation (6) represents the range
of parameters.

3. An Improved MOGWO Algorithm

MOGWO algorithm as a new intelligent optimization algo-
rithm has a better convergence rate than other intelligent
optimization algorithms. Therefore, it has received great
attention and wide application since it has been proposed.
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Figure 3: Transient process by different control strategies.

3.1. Grey Wolf Optimizer and MOGWO Algorithm. The grey
wolf optimizer (GWO) algorithm proposed by Mirjalili et al.
in 2014 is a new intelligent optimization algorithmmimicking
the hierarchies and hunting strategies of wolves [27]. In
GWO, each grey wolf is treated as a potential solution. The
grey wolves at the best solution, the second best solution, and
the third best solution are treated as 𝛼, 𝛽, and 𝛿 wolves. The
rest of the grey wolves are treated as 𝜔 wolves. The wolves
are approaching the food position (global optimal solution)
according to the guidance of 𝛼, 𝛽, and 𝛿 wolf. The equations
that simulate the guidance of hunting are as follows:

D = 󵄨󵄨󵄨󵄨󵄨C ⋅ X𝑝 (𝑡) − X (𝑡)󵄨󵄨󵄨󵄨󵄨 (7)

X (𝑡 + 1) = X𝑝 (𝑡) − A ⋅ D (8)

where X represents the position vector of a grey wolf, Xp
represents the position vector of the prey, and t represents the
current iteration.A andC are coefficient vectors subject to the
following equations:

A = 2 ⋅ a ⋅ r1 − a (9)

C = 2 ⋅ r2 (10)

where r1 and r2 are random vectors from 0 to 1. a is control
parameter from 2 to 0 and it will linearly decrease as the
number of iterations increases.

In 2016, Mirjalili proposed a multiobjective GWO algo-
rithm named ‘MOGWO algorithm’ for multiobjective prob-
lems. There are two major changes in MOGWO: using
the external population Archive to store the current non-
dominated solutions and proposing a selection strategy for
multiobjective optimization.

3.2. sMOGWO Algorithm. Although the MOGWO algo-
rithm has a better convergence rate, it is easy to fall into
local optimum and has poor stability. The main reasons are
summarized as follows:

(i) The algorithm has great randomness only when ini-
tializing the position of wolves. Even though there is random

factor in algorithm, when the position of wolves is updated,
the effect of the guidance of lead wolves is much greater than
the random factor.Thus the algorithm is highly dependent on
the initial value, and self-regulation ability is weak.

(ii) The MOGWO algorithms select 𝛼, 𝛽, and 𝛿 wolves
from Archive. However, if Archive set falls into local opti-
mum, the algorithms can hardly skip the local optimum.
Therefore, the exploration ability of the algorithm needs to
be improved at later period of the optimization.

As the guidance of lead wolves has too much influence,
the grey wolves always blindly follow the lead wolves and
the nondominated solutions around the lead wolves. The
greywolves always ignore the nondominated solutions beside
them. Actually, the grey wolves often pass nearby other
nondominant solutions when following the lead wolves. If
the grey wolves have the ability of independent searching,
the global optimization ability of the algorithmwill be greatly
improved.

Consequently, in this paper, we proposed to add the
searching factor in MOGWO named ‘sMOGWO algorithm’.
After the position updating of wolves, the wolves will have
the searching step. Each wolf will search the nearby position
randomly; if the nearby position is better than the current
position, the wolf will move to the new position.The step can
be described as the following mathematical expressions:

Δ (𝑥1, 𝑥2, ⋅ ⋅ ⋅ 𝑥dim)
= {{{

𝑥𝑘 = 𝑟 ⋅ (𝑢𝑏𝑘 − 𝑙𝑏𝑘) , 𝑘 = rand {1, 2, ⋅ ⋅ ⋅ dim}
𝑥𝑖 = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ dim 𝑎𝑛𝑑 𝑖 ̸= 𝑘

(11)

X𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 = X + Δ (12)

X𝑛𝑒𝑤 = X𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔, if𝑓 (X𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔) ≻ 𝑓 (X)
X𝑛𝑒𝑤 = X, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (13)

where Δ is the searching step of the wolf, r is a random
number between -0.5 and 0.5, ubk and lbk are the upper and
lower boundary of xk, dim is the dimension of wolf, X is the
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Figure 4: The flow chart of the sMOGWO algorithm.

position of the wolf, Xnew is the new position after searching,
and ≻ represents the dominance relationship.

In the original algorithm, the control parameter a linearly
decreases as the number of iterations increases to keep high
exploration ability at early period and high exploitation
ability at later period. However, there is higher demands for
exploration ability in multiobjective optimization.Therefore,
in this paper, the control parameter a is also modified. The
adjustment strategy of control parameter a must be subject
to the following:

𝑎 = 2 − 2 ⋅ 𝑓 (𝑥) ,
𝑥 = 𝑖𝑡𝑀𝑎𝑥𝑖𝑡 ∈ [0.1]

𝑓 (0) = 0,
𝑓 (1) = 1

(14)

where Maxit is the maximum number of iterations and f (x)
is a monotone increasing function, in original algorithm
f (x)=x.

The higher the value of a, the stronger the exploration
ability of the algorithm, so the f (x) should be a concave

function among [0, 1]. Here, we proposed to use the following
equation for control parameter a.

𝑎 = 2 − 2 ⋅ ( 𝑖𝑡𝑀𝑎𝑥𝑖𝑡)2 (15)

The flow chart of the sMOGWO algorithm is shown in
Figure 4.

The steps of the sMOGWO algorithm are as follows.

Step 1. Archive size is NA, population size of grey wolves is
N, number of grids per dimension is dim, inflation rate is a,
andmaximumnumber of iterations isMaxit. Leader selection
pressure and deletion selection pressure are also set.The grey
wolves and running parameters are initialized.

Step 2. The objective function values of each individual wolf
are calculated.The Archive set is established, and the Archive
population is grouped into iterative process.

Step 3. The 󳨀→𝐴, 󳨀→𝐶 , and a are calculated according to (9), (10),
and (15); then the lead wolves are selected.

Step 4. Theposition of wolves is updated according to (7) and
(8).
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Step 5. The wolves get into the searching step according to
(11), (12), and (13)

Step 6. The objective function values of each individual in
wolves are calculated. The nondominant solutions of wolves
are compared to the individuals in the Archive population
one by one, and the Archive set is updated.

Step 7. The updated Archive set is regrouped and the number
of individuals in the Archive population is checked. If the
number of individuals exceeds the maximum of population,
the extra solutions will be deleted.

Step 8. The algorithm ends when the maximum number of
iterations is reached. All individuals in the Archive popula-
tion are the optimization results of the algorithm. Otherwise,
the algorithm returns back to Step 3.

3.3. Computational Complexity Analysis. The computational
complexity of MOGWO and sMOGWO is analyzed in this
part.

The computational complexity of each iteration (Step 3 to
Step 7) of the iterative process is analyzed one by one. The
number of individuals in the current Archive set is A, the
number of individuals in the grey wolf population is N, and
the dimension of each individual is dim.

In Step 3, lead wolves are selected by calculating the
roulette probability for each individual in the Archive set.The
computational complexity can be expressed as O(A).

In Step 4, the computational complexity of position
updating can be expressed as O(N∗dim).

In Step 5, the objective function values need be calculated
by searching step, and the computational complexity can be
expressed as O(N∗dim).

In Step 6, the nondominant solutions of wolves are
compared to the individuals in the Archive set one by one
to update the Archive set. The computational complexity is
O(A∗N∗dim).

In Step 7, the Archive sets are grouped and sorted, and the
computational complexity is O(A2).

The computational complexity of sMOGWO in each
iteration is O(A2)+ O(A∗N∗dim). The MOGWO includes
all the above steps expect Step 5, and the computational
complexity of MOGWO is also O(A2)+ O(A∗N∗dim). The
proposed modified method has the same computational
complexity as the original method. In addition, although an
additional Step 5 is added to the sMOGWO algorithm, it
can effectively reduce Archive set with a large number of
similar nondominant solutions, which has great influence on
the computational complexity. In fact, the proposed method
can reduce the optimization time.

4. Simulation Verification

In this section, simulation verification is present to demon-
strate the advantage of the proposed sMOGWO algorithm.
The proposed algorithm is compared to the MOGWO
algorithm [25] and some other popular multiobjective
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Figure 5: The boxplots of GD value of three algorithms.

optimal algorithms [28]: MOPSO, NSGA-III, MOEA/D, and
SPEA2.

4.1. Test Problems. UF series test problems in CEC 2009 are
multimode test functions [29], and there are a lot of locally
optimal solutions, so it is suitable for test of multiobjective
optimal algorithms.Three typical test problems are chosen as
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Table 1: The parameters of different multiobjective optimization algorithms.

Description sMOGWO MOGWO MOPSO NSGA-III MOEA/D SPEA2
Maximum number of iterations 1000 1000 1000 1000 1000 1000
Population size nPop=100 nPop=100 nPop=100 nPop=100 nPop=100 nPop=100
Archive size 100 100 100 100 100 100
Inflation rate 𝛼=0.1 𝛼=0.1 𝛼=0.1 / / /
Number of grids per dimension nGrid=10 nGrid=10 nGrid=10 / / /
Leader selection pressure 𝛽=4 𝛽=4 𝛽=4 / / /
Deletion selection pressure 𝛾=2 𝛾=2 𝛾=2 / / /
Inertia weight / / 𝜔=0.5 / / /
Inertia weight damping rate / / 𝜔𝑑𝑎𝑚𝑝=0.99 / / /
Mutation rate / / mu=0.1 mu=0.1 mu=0.1 mu=0.1
Crossover rate / / / 0.5 0.5 0.5
Number of Neighbors / / / / 10 /

Table 2: Statistical results of GD for different algorithms.

GD sMOGWO MOGWO MOPSO NSGA-III MOEA/D SPEA2

UF3

Mean 0.0210 0.0542 0.0853 0.0268 0.0561 0.0254
Med 0.0211 0.0540 0.0737 0.0255 0.0571 0.0252
Max 0.0253 0.0900 0.2322 0.0716 0.0829 0.0342
Min 0.0180 0.0315 0.0425 0.0166 0.0299 0.0116

UF4

Mean 0.0239 0.0331 0.0361 0.0516 0.0409 0.0485
Med 0.0241 0.0330 0.0363 0.0521 0.0439 0.0475
Max 0.0257 0.0394 0.0406 0.0622 0.0526 0.0618
Min 0.0234 0.0259 0.0324 0.0415 0.0320 0.0340

UF7

Mean 0.0078 0.0267 0.0468 0.0319 0.0802 0.0313
Med 0.0077 0.0278 0.0424 0.0316 0.0584 0.0301
Max 0.0091 0.1012 0.0881 0.0726 0.1751 0.0608
Min 0.0072 0.0148 0.0202 0.0140 0.0182 0.0082

follows: UF3 whose Pareto boundary is concave shape, UF4
whose Pareto boundary is convex shape, UF7 whose Pareto
boundary is line. The three UF problems are as follows:

UF3 problem, n=30, the search space is [0, 1]𝑛:
min 𝑓1 = 𝑥1

+ 2󵄨󵄨󵄨󵄨𝐽1󵄨󵄨󵄨󵄨 (4 ∑
𝑗∈𝐽1

𝑦2𝑗 − 2∏
𝑗∈𝐽1

cos(20𝑦𝑖𝜋√𝑗 )
+ 2)
𝑓2 = 1 − √𝑥1
+ 2󵄨󵄨󵄨󵄨𝐽1󵄨󵄨󵄨󵄨 (4 ∑

𝑗∈𝐽1

𝑦2𝑗 − 2∏
𝑗∈𝐽1

cos(20𝑦𝑖𝜋√𝑗 )
+ 2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 = 𝑥𝑗 − 𝑥0.5(1+3(𝑗−2)/(𝑛−2))1 ,
𝑗 = 2, . . . , 𝑛,

𝐽1 = {𝑗 | 𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛}
𝐽2 = {𝑗 | 𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

(16)

UF4 problem, n=30, the search space is [0, 1] × [−2, 2]𝑛−1:
min 𝑓1 = 𝑥1 + 2󵄨󵄨󵄨󵄨𝐽1󵄨󵄨󵄨󵄨 ∑

𝑗∈𝐽1

ℎ (𝑦𝑖)
𝑓2 = 1 − 𝑥21 + 2󵄨󵄨󵄨󵄨𝐽2󵄨󵄨󵄨󵄨 ∑

𝑗∈𝐽1

ℎ (𝑦𝑖)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 = 𝑥𝑗 − sin(6𝜋𝑥1 + 𝑗𝜋𝑛 ) ,

𝑗 = 2, . . . , 𝑛,
ℎ (𝑡) = |𝑡|1 + 𝑒2|𝑡|
𝐽1 = {𝑗 | 𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛}
𝐽2 = {𝑗 | 𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛}

(17)
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Table 3: Statistical results of SP for different algorithms.

SP sMOGWO MOGWO MOPSO NSGA-III MOEA/D SPEA2

UF3

Mean 0.5719 1.0807 0.9091 1.0130 1.0233 0.9992
Med 0.53456 1.1129 0.9073 1.0000 1.0196 0.9993
Max 0.7215 1.4434 1.0411 1.0850 1.0747 1.0002
Min 0.4490 0.6002 0.7810 0.9991 1.0000 0.9971

UF4

Mean 0.6098 0.8207 0.7923 0.9991 1.2974 1.5026
Med 0.6217 0.8055 0.7707 0.9940 1.2924 1.4754
Max 0.6551 1.0963 0.9160 1.0616 1.4337 1.9870
Min 0.5428 0.6724 0.6908 0.9464 1.1553 1.1513

UF7

Mean 0.6646 0.8731 0.8649 1.0961 1.0697 0.9995
Med 0.6646 0.8592 0.8386 1.0850 1.0015 0.9996
Max 0.7011 1.2232 1.0611 1.2400 1.5393 1.0760
Min 0.6186 0.5954 0.7292 0.9997 1.0000 0.9553

UF7 problem, n=30, the search space is [0, 1] × [−1, 1]𝑛−1:
min 𝑓1 = 5√𝑥1 + 2󵄨󵄨󵄨󵄨𝐽1󵄨󵄨󵄨󵄨 ∑

𝑗∈𝐽1

𝑦2𝑖
𝑓2 = 1 − 5√𝑥1 + 2󵄨󵄨󵄨󵄨𝐽2󵄨󵄨󵄨󵄨 ∑

𝑗∈𝐽1

𝑦2𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 = 𝑥𝑗 − sin(6𝜋𝑥1 + 𝑗𝜋𝑛 ) ,

𝑗 = 2, . . . , 𝑛,
𝐽1 = {𝑗 | 𝑗 is odd and 2 ≤ 𝑗 ≤ 𝑛}
𝐽2 = {𝑗 | 𝑗 is even and 2 ≤ 𝑗 ≤ 𝑛} .

(18)

4.2. Parameters Setting. The principles and the operation
modes of the algorithms are different. In order to make the
algorithm contrast, the samemaximumnumber of iterations,
population size, andArchive size are set up.Theparameters of
different multiobjective optimization algorithms are shown
in Table 1.

4.3. Performance Evaluation Indexes. The Generational Dis-
tance (GD) and the Spacing (SP) [30] have been used to
evaluation the performance of each algorithm.

GD = 1𝑁√ 𝑁∑
𝑖=1

𝐷𝑖2 (19)

where Di is the Euclidean distance between the ith non-
dominant solution in Pareto solution set and the closest
nondominant solution on the real Pareto front. N is the
number of Pareto optimal solutions.The smaller value of GD
indicates that the Pareto optimal solution is closer to the real
Pareto front.

SP = 𝑑𝑓 + 𝑑𝑙 + ∑𝑁−1𝑖=1 󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − 𝑑󵄨󵄨󵄨󵄨󵄨𝑑𝑓 + 𝑑𝑙 + (𝑁 − 1) ⋅ 𝑑 (20)

where di is the Euclidean distance between the adjacent
points of Pareto optimal solution. df and dl are the Euclidean
distances between the endpoint of Pareto optimal solution
and real Pareto front. N is the number of Pareto optimal
solutions. The smaller value of SP indicates that Pareto
optimal solution distribution is more homogenized.

4.4. Result Analysis. In order to eliminate the contingency,
each algorithm is run 30 times independently. The statistical
results of the evaluation indexes are shown in Tables 2 and
3. In order to reflect the advantages and disadvantages of the
optimization results more directly, the boxplots of GD value
and SP value of each algorithm are given as in Figures 5 and 6.

The best optimal results of the algorithms in repeated
experiments are shown in Figures 7, 8, and 9.The comparison
is more intuitive.

For UF3 test problem, the sMOGWO, NSGA-III, and
SPEA2 are the first class in GD value which means the
solutions of these methods are closer to the real Pareto front.
TheGD values ofMOPSO,MOGWO, andMOEA/D are high
and fluctuating.The sMOGWOmethod has a better SP value
which means the solutions are well distributed. Although
the NSGA-III and SPEA2 are closer to the real Pareto front,
the SP values are high, which means the solutions of these
methods tend to fall into local optimum.We can discover that
the NSGA-III and SPEA2 methods fall into local optimum
on UF3 test problem intuitively according to Figure 7. The
solutions of the sMOGWOmethod are the best.

For UF4 test problem, the sMOGWO has the best GD
value. The MOPSO, MOGWO, and MOEA/D are in the
second class in GD value. The sMOGWO, MOGWO, and
MOPSO are in the first class in SP value. From Figure 8, the
best optimal results of sMOGWO, MOPSO, MOGWO, and
MOEA/D are all close to the real Pareto front and are well
distributed.

For UF7 test problem, the GD values of sMOGWO,
MOGWO, NSGA-III, and SPEA2 are in the first class, but
the SP value of sMOGWO is better than those of other
methods. From Figure 9, the best optimal result of all the
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Figure 6: The boxplots of SP value of three algorithms.

methods is close to the real Pareto front, but the solutions of
MOPSO,MOGWO,MOEA/D,NSGA-III, and SPEA2 are not
well distributed. Some methods fall into local optimum. The
solutions of the sMOGWOmethod are the best.

Accordingly, the proposed sMOGWO algorithm has
good stability under all test functions, and the proposed
algorithm performs well in repeated experiments with few
poor results.
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Figure 7: The best optimal results of the different algorithms in repeated experiments on UF3.
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Figure 8: The best optimal results of the different algorithms in repeated experiments on UF4.
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Figure 9: The best optimal results of the different algorithms in repeated experiments on UF7.

Table 4: Some representative control strategies are chosen from the Pareto optimal solution set.

Control strategy Parameters of HGTS Performance indexes
Kp Ki Kd ITAE under no-load ITAE under on-load

1 8.750 5.173 1.921 0.2352 0.0176
2 9.352 4.612 1.602 0.2156 0.0220
3 9.791 3.864 1.216 0.1925 0.0311
4 10.171 3.514 1.028 0.1752 0.0402
5 10.473 3.191 0.759 0.1585 0.0517
6 10.967 2.595 0.271 0.1284 0.0823

5. Case Study

In this section, a case study is presented to show the effect of
the proposed algorithm on optimal control of HTGS under
multiple operation conditions.

The no-load and on-load operation conditions are con-
sidered.The model of HTGS and its parameters are provided
in Section 2.Themultiobjective functions refer to (5) and (6).
The simulation time is 20 seconds.The sMOGWO,MOGWO,
MOPSO, MOEA/D, NSGA-III, and SPEA2 algorithms are
utilized for optimal control. The maximum number of iter-
ations is 100. The other parameters of the three algorithms
are set as in Table 1. Each algorithm is run 30 times
independently.The best optimal results of each algorithms in
repeated experiments are shown in Figure 10.

The solutions of MOPSO method are far away from
Pareto front. The solutions of sMOGWO, MOGWO,
MOPSO, MOEA/D, NSGA-III, and SPEA2 are similar to the
Pareto front, but the solutions of sMOGWO are more evenly
distributed than those of other methods.

In order to analyze the detailed control transient pro-
cess of the optimization results, some representative control
strategies are chosen from the Pareto optimal solution set
as shown in Table 4. It can be seen that the optimization of
ITAE under no-load and ITAE under on-load are opposites.
Transient process of some of the control strategies is shown
in Figure 11 to exhibit control effects more intuitively.

All the three control strategies have good control stability
under multiple operation conditions. Strategy 1 is most stable
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under on-load operation condition, but it has bigger over-
shoot than the other two strategies under no-load operation
condition. Strategy 3 has the smallest overshoot among the
three strategies under no-load operation condition, but its
stability is the worst among the control strategies under on-
load operation condition. Strategy 2 is a compromise control
strategy.

Thus, a Pareto solution set can be got after one optimiza-
tion which can be suitable for multiple operation conditions.
And the solutions have different emphasis on objective
functions. According to the specific requirements of the
HTGS, the decisionmaker can select one or some satisfactory
solutions from this solution set as the final solution, so that
the HTGS can obtain better control quality.

6. Conclusion

The control strategies of hydraulic turbine governing system
need to consider the multiple operation conditions. A multi-
objective optimal function under different operation condi-
tions is proposed in this paper to solve this control problems.

In order to optimize the multiobjective problems more
effectively, a novel MOGWO algorithm based on searching
factor (sMOGWO) is proposed. The sMOGWO method
is verified with several UF test problems compared to
MOGWO, MOPSO, MOEA/D, NSGA-III, and SPEA2. The
sMOGWO provided better solution compared with its com-
petitors. And the proposed algorithm has good stability
under all test functions, and the proposed algorithm per-
forms well in repeated experiments with few poor results.

A case study has been designed to test the control quality
of the control strategies which are got by the proposed
method. The experimental results have confirmed that the
control strategies perform well under multiple operation
conditions.

Data Availability

The simulation data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

We declare that we have no conflicts of interest regarding the
publication of this manuscript.

Acknowledgments

This paper is supported by the National Natural Science
Foundation of China (no. 51709121, no. 51709122) and Six
Talent Peaks Project of Jiangsu Province of China (no. RJFW-
028).

References

[1] F. J. Tapiador, “Assessment of renewable energy potential
through satellite data and numerical models,” Energy & Envi-
ronmental Science, vol. 2, no. 11, pp. 1142–1161, 2009.

[2] W. Fu, K. Wang, C. Li, and J. Tan, “Multi-step short-term
wind speed forecasting approach based on multi-scale domi-
nant ingredient chaotic analysis, improved hybrid GWO-SCA
optimization and ELM,” Energy Conversion and Management,
vol. 187, pp. 356–377, 2019.
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