
Effective Management of ReRAM-based Hybrid SSD for
Multiple Node HDFS

Nayoung Park
College of Information and Communication Engineering Sungkyunkwan University

Suwon, Korea
E-mail : parkny42@skku.edu

Byungjun Lee
College of Information and Communication Engineering Sungkyunkwan University

Suwon, Korea
E-mail : byungjun@skku.edu

Kyung Tae Kim
College of Information and Communication Engineering Sungkyunkwan University

Suwon, Korea
E-mail : kyungtaekim76@gmail.com

Hee Yong Youn
College of Information and Communication Engineering Sungkyunkwan University

Suwon, Korea
E-mail : youn7147@skku.edu

Abstract

Recently, the research of Hybrid ReRAM/MLC NAND SSD is rapidly expanding into the storage areas. Most existing
researches of Hybrid SSD are based on a single storage, while the management of multiple nodes like HDFS is still
immature. In this paper a new efficient cold data eviction scheme is proposed which is based on node congestion
probability. Computer simulation reveals that the proposed scheme significantly reduces replication and recovery
time in comparison to the existing replication schemes.

Keywords: HDFS, hybrid SSD, node congestion probability, replication, cold data eviction

1. Introduction

The demand on efficient storage for cloud computing has
been growing drastically year after year. Rather than
relying on traditional centralized storage arrays, the
storage system for cloud computing consolidates a large
number of distributed commodity computers into a single
storage pool. It provides large capacity and high
performance storage service even in unreliable and
dynamic networking environment at low cost. In building
the cloud storage system, increasing number of industries

and research institutions rely on the Hadoop Distributed
File System (HDFS) [1]. HDFS provides reliable storage
and high throughput access to the data. It is suitable for
the applications manipulating large data sets, typically
the ones employing a replication management scheme for
data-intensive computing. HDFS has been widely used as
a common storage appliance for cloud computing.

One of the conspicuous trends in recent storage
system is the emergency of SSD. SSD-based storage is
becoming a promising technology for next-generation
storage due to a number of reasons including low access

International Journal of Networked and Distributed Computing, Vol. 3, No. 3 (August 2015), 167-176

Published by Atlantis Press
Copyright: the authors

167

latency, low power consumption, higher resistance to
shocks, light weight, and increasing focus on endurance.
Due to the inherent merits of solid state device, SSD can
provide better I/O performance compared with the
traditional HDD. Recently, a large number of Internet
service providers have started to replace HDD in their
data centers with SSD [2]. In addition, the falling cost of
NAND flash-based SSD is driving its expansion into the
market previously reserved for HDD. Fig. 1 shows the
architecture of SSD.

With the momentum leveraged by both personal

computing and enterprise system, SSD has been
recognized as a viable choice to build high-performance
storage. In order to satisfy the strict requirements on the
future storage system of higher speed, reliability and
energy-efficiency, SSD is preferred. Various methods
contributing to the advancement of the SSD technology
have thus been proposed.

Recently, a hybrid ReRAM/MLC NAND SSD
employing the cold data eviction (CDE) algorithm was
proposed [3]. It dynamically evicts cold pages from
ReRAM to MLC NAND to store hot data. When the free
space of ReRAM drops below a threshold (for instance,
20% of the ReRAM capacity), eviction is triggered. With
this, the page-level migration is dynamically handled
which is transparent to the file system. Most existing
schemes consider the eviction based on only the state of
each node separately. Note, however, that cold and hot
data are dispersed in the nodes of Hadoop cluster system.
As a result, the performance of the storage system cannot
be maximized with this approach. Furthermore, it causes
unnecessary waiting time to the users. If several nodes in
the HDFS trigger the eviction process simultaneously
while many jobs arrive, the users need to wait for the
completion of the eviction process.

In this paper, thus, we propose a new scheme of cold
data eviction based on the node congestion probability
for HDFS. The proposed scheme analyzes the node
congestion probability with which the system can decide
if the node is available to execute the eviction process or
not. In addition, a new page search approach is proposed,
which is important for high performance HDFS service.
Through comprehensive computer simulation, it is
confirmed that the proposed scheme significantly
decreases the execution time and recovery time of
replication in the HDFS environment in comparison to
the random eviction approach, the scheme employed in
HDFS, and the CDE algorithm.

The rest of the paper is organized as follows. In
Section 2 brief explanation of data replication with HDFS
and hybrid SSD are provided. Section 3 presents the
proposed cold data eviction scheme, and Section 4
verifies its performance by computer simulation. Finally,
Section 5 concludes the paper and suggests the future
course of study.

2. Related Work

In this section the previous work relevant to data
replication with HDFS and Hybrid SSD are discussed.

2.1. Data Replication with HDFS

In order to tolerate failure in cloud computing system,
various data replication techniques have been proposed.
In the cloud computing environment, data resources are
geographically scattered, and thus networking delay has
been a major obstacle in rapid data access. Numerous
studies have been undertaken to replicate data in several
data storages that are physically distributed and as a
result reduce the amount of long-distance data
transmissions over the network. Fig. 2 describes the
structure of data replication with HDFS. The data
replication strategies can be categorized by the types,
units, and criteria of replication [4]. In terms of
replication type, there are two types: static and dynamic.

The former is ineffective for large-scale cloud data
service because it statically manages data replication. It
is incapable of quickly responding to various network
conditions and changes in the data access pattern. For this
reason, the studies on dynamic data replication have been
actively conducted [5, 6].

[7] suggested replication strategies reducing the
network bandwidth and access delay. They also
compared the performance of data access patterns

HostInterface

SSD Controller

Flash Translation
Layer

Wear Leveling
Garbage Collection

DRAM

Nand
Flash

Nand
Flash

Nand
Flash

Nand
Flash

Fig. 1. The block diagram of a traditional SSD architecture.

Published by Atlantis Press
Copyright: the authors

168

categorized by time and spatial locality. By considering
the network capacity and file access pattern, [8] proposed
a file replication algorithm improving the performance of
basic replication method. Similarly, [6] proposed the
Latest Access Largest Weight (LALW) method, which
uses data access history in dynamically determining the
replication policy by applying greater weight to more
recent access. [9] proposed a dynamic optimal replication
strategy (DORS) which evaluates the value of a file based
on the access history, size, and the network condition in
deciding the target files of replication.

Some researches proposed the strategies for data

replication focusing on cost-saving. [10] proposed a
service that applies the market economy model to
minimize the replication and data access cost on a data
grid. [11] suggested a data replication strategy based on
a cost-estimate model that considers both the cost of data
access and the performance of replication. In order to
ensure efficient resource management in an
unpredictable data grid environment, [12] developed a
model that dynamically selects a resource management
strategy that responds to a particular workload type based
on the performance history. This model demonstrated
that a real-time workload type is an important factor in
resource management and the selection of data
replication strategy. Similarly, [13] proposed the File
Reunion based on Data Replication Strategy for Data
Grids (FIRE) scheme, which refers to the file access
history of nearby storage to determine data replication,
aiming to supply high quality service in the cloud
computing environment. A data replication strategy is
dynamically selected to provide optimal data service,
while the least Locality based Data Replication Strategy
(LDRS) scheme turned out to outperform the LRU

scheme for sequential access pattern having spatial
locality.

[14] suggested a novel cost-effective dynamic data
replication strategy named CIR for cloud data centers
which applies an incremental replication approach to
minimize the number of replicas while meeting the
requirement of reliability and cost-effectiveness. Their
approach can substantially reduce the data storage cost,
especially when the data are stored only for a short
duration or have a lower reliability requirement.
Nonetheless, their approach is based on only the
reliability parameters and pricing model of Amazon S3
which makes it unsuitable for Google cluster of a much
higher failure rate than Amazon S3 storage units.
Moreover, they did not consider the issue of the trade-
offs between cost and performance.

In [15], a dynamic distributed cloud data replication
algorithm (CDRM) was proposed to capture the
relationship between availability and the number of
replica. It maintains the minimum replica for the given
availability requirement. The replica placement is based
on the capacity and blocking probability of data nodes.
Some researches [16] present six different replication
strategies for three different access patterns: No
Replication or Caching, Best Client, Cascading
Replication, Plain Caching, Caching plus Cascading
Replication, and Fast Spread. The main aim of these
strategies is reduction in access latency and bandwidth
consumption.

[17] proposed a centralized data replication algorithm
(CDRA) to reduce the total file access time with the
consideration of limited storage space of Grid sites. Based
on the centralized algorithm, they also designed a
distributed caching algorithm wherein the Grid sites react
close to the Grid status and make intelligent caching
decisions, which can be easily adopted in a distributed
environment such as Data Grids. Their approach can
reduce the aggregated access delay to data files by at least
half of that reduced by the optimal replication solution.
The limitation of the algorithm is the consideration of only
the access cost.

[18] studied a replication algorithm based on a cost-
estimation model, driven by the estimation of the data
access gains and the replica’s creation and maintenance
cost. It allows the grid nodes to automatically replicate
data when needed in their Data Grid simulator, GridNet.
[19] proposed a dynamic hybrid protocol (DHP) which
effectively combines the grid and tree structure so that

Network

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Clients

Control

Meta Data

Name
Node

Data Blocks

Data Nodes
Fig. 2. The structure of data replication with HDFS.

Published by Atlantis Press
Copyright: the authors

169

the overall topology can be flexibly adjusted using three
configuration parameters; tree height, number of
descendants and grid depth. It can easily detect read/write
conflict and write/write collision for consistency
maintenance.

Some of the existing strategies optimize the number
of replicas, while others optimize the placement of
replicas. Others optimize how often replicas should be
updated [20]. The shortcoming of them is that they only
consider a restricted set of parameters affecting the
replication decision. Furthermore, they only focus on the
improvement of the system performance without
addressing the energy efficiency issue in data centers.

[21] designed an evolutionary way to decide the
optimal replication strategy. In that work, they optimize
storage latency and reliability without considering the
total energy cost of data center and the issue of load
balancing.

2.2. Hybrid SSD

The hybrid SCM/MLC NAND flash SSD (hybrid SSD)
is a promising solution in boosting the performance of the
SSD-based storage while maintaining the cost. Fig. 3
describes the entire structure of the system implemented
with SSD. SCM operates as both cache and storage, not
simply as a cache/buffer for the NAND flash memory or
merely as storage because it is both fast and non-volatile.
On the host side, the application layer exists above the
operating system, under which the block device layer
resides, which in turn is above the interface of the host
and storage.

The hybrid SSD includes SSD controller, SCM chip
array, and NAND flash memory chip array. Here, MLC
NAND flash is preferred to single-level cell (SLC)
NAND flash to lower the overall cost of the hybrid SSD.
As the brain of the storage system, SSD controller runs
complicated algorithms handling the characteristics of
erase-before-write and limited endurance of NAND flash.
Within the controller, the data management module
determines whether the target data are stored in SCM or
in NAND flash memory based on the operation on the
data and the status of memory. The address translation
module manages the logical-to-physical address mapping
to provide a logical block interface to the SSD. The wear
leveling module guarantees even wear among the storage
cells to maximize the system longevity. Additionally, the
garbage collection module reclaims free space in the
NAND flash when the NAND flash blocks are almost full.

Through the controller functions, both the performance
and lifetime of SSD can be enhanced. Finally, the error
code correction (ECC) module detects and corrects the
errors inside the SSD. The role of ECC is becoming more
critical as the size scales up, causing degraded reliability.
With increased number of memory chips, the overhead
on the chip area of SSD grows due to the increased bus
area. It is assumed that SCM has much higher reliability
than NAND flash memory. Therefore, only a pair of
simple BCH ECC encoder/decoder is required for SCM
but dozens of low-density parity-check (LDPC) ECC
encoder/decoders are required for NAND flash. As a
result, the area overhead for SSD controller due to the
increasing number of SCM chips is small. In addition, the
area for control logic of SCM is negligible. The proposed
replication scheme for ReRAM-based storage is
proposed next.

Application layer

Operating system

Block device layer

File system

Hybrid SSD

Data management

SATA,SAS,PCI_e...

SSD controller

Address translation

ECC

NAND flash I/F

Wear
leveling

Address translation

ECC

NAND flash I/F

Garbage
collection

Wear
leveling

SCM control NAND control

SCM
chips NAND

flash
NAND
flash

Channel 1 Channel N

Fig. 3. The overall structure of the whole computer system with
SSD.

Published by Atlantis Press
Copyright: the authors

170

3. The Proposed Scheme

This section proposes a scheme evicting cold data for the
HDFS based on the hybrid SSD. It consists of three parts;
eviction of cold data, estimation of node congestion
probability used in the cold data eviction, and page search
for finding cold/hot pages.

3.1. System Model

The proposed scheme targets the development of a
replication management approach for HDFS system. The
HDFS has numerous similarities with the proprietary
distributed file system, Google file system. It consists of
a single name node and a set of data nodes. The name
node and data nodes are deployed within a number of
racks as shown in Fig. 4, each of which has an associated
rack number.

Contrary to the existing HDFS, in the proposed
scheme the name node mainly manages the namespace of
the file system and the location of data pages (the
mapping of data pages to data nodes). A file is split into
one or more data pages which are dispersed in the data
nodes. In Hadoop, the applications are executed in data
nodes. When an application needs a data page, it acts as
an HDFS client sending a page read (write) request to the
name node. The name node finds the requested data node
to process the request. Each data node also periodically
sends a heartbeat message to the name node to notify its
soundness. In HDFS, the number of replicas is set to three,
which is also adopted in this paper. By using NRU (Not
Recently Used) table, the proposed scheme decides if a
data page is hot or cold.

The overall process of the proposed scheme is given
in Fig. 5. The proposed replication scheme is triggered if
the free space of ReRAM of entire nodes drops below a
threshold (for instance, 20% of the total ReRAM
capacity), the free space of ReRAM of a single node is
less than 10%, and the node congestion probability (CP)
is lower than the threshold, Tcp.

To judge whether a page is hot or cold, the NRU table

is referred. Because the write performance is critical to
the NAND-based storage system, the proposed algorithm
was designed to optimize the operation of SSD write
request rather than read request. Here the page utilization,
U, is compared with the utilization threshold, Tu, to
choose the least used page for replication. If it is
impossible to select a page in ReRAM when cold data
eviction is triggered, RRM is reduced to increase the
number of candidate pages in ReRAM used in the next
eviction process.

Fig. 6 compares the proposed scheme with the
existing schemes. In the MLC NAND-only SSD in Fig.
6(a), all pages are stored in SSD, regardless hot/cold,
fragmented/not fragmented. In the conventional hybrid
SSD (Fig. 6(b)) fragmented pages are sent to ReRAM
[22].

Since fragmented cold data decreases free space of
ReRAM, fragmented hot data might be stored in MLC
NAND. As a result, the SSD performance will be greatly
degraded if this situation gets worse or the ReRAM
capacity is relatively small. In order to provide high
performance under intensive fragmented cold data
workloads, a new cold data eviction scheme is proposed.
Fig. 6(c) describes that the portions of cold data in
ReRAM are evicted to MLC NAND flash. By

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

Name Node Data Node Switch Rack

Fig. 4. The structure of HDFS.

Algorithm 1 : Process of cold data eviction

1: New write data
2: if Total free space in ReRAM < 20%
3: Go to Line 6
4: if Single node free space in ReRAM < 10%
5: if the node congestion probability > CPTHRESHOLD
6: if Flag_NRU == 1 (Hit NRU table?)
7: if R<RRM
8: Add page to cold data eviction list
9: else

10: Go to Line 15
11: if NRM == RMEXECUTION
12: Execution of cold data eviction
13: else
14: Go to Line 15
15: else Search page in ReRAM

Fig. 5. The overall process of the proposed scheme.

Published by Atlantis Press
Copyright: the authors

171

dynamically evicting the fragmented cold data pages
from ReRAM to MLC NAND, ReRAM can effectively
store hot data. Furthermore, fragmentation in MLC
NAND is minimized by the eviction of mostly
fragmented cold data page.

3.2. Node Congestion

The key idea of congestion probability based on ECN
(Explicit Congestion Notification) is to analyze the
distribution of Congestion Experienced (CE) bits from
the ECN feedbacks and predict the network state
according to the correlation between multiple feedbacks.

One ECN feedback reflects the network state only at
one earlier time interval, while a sequence of ECN
feedback can indicate the dynamic change of the network
state during the past several continuous time intervals.
Therefore, we propose to combine the information
contained in the CE bits of a sequence of ACK packets
together to predict the network state.

Assume that a sender receivers an ECN feedback
sequence containing k ECN feedbacks. We calculate
CP(t), the congestion probability at the current time t, as

1

0

1[] []. -
k

i
i

CP i ACK i ECN Echo
k

ω
−

=

= ∗ ∗∑ (1)

where ACK[i].ECN-Echo is the value of the CE bit

in ACK[i], and wi are normalized such that
1

0
1

k

i
i

ω
−

=

=∑ .
The value of CP(t) is calculated using k serial ACKs

received until time t, denoted by ACK[i],
ACK[i−1],…,ACK[i−k+1], respectively. For the sake of
simplicity of presentation, we use ACK[i] instead of
ACK[i].ECN-Echo.

The weights of the CE bits in different ACK packets
are assigned using the exponentially weighted moving
average method. The ACKs are divided into several
segments, and all ACKs in the same segment are assigned
a same weight. This is because a large number of ACKs
increase the feedback delay, while a single ACK cannot
correctly reflect the congestion state. To achieve the
tradeoff between sensitivity and stabilization, the k ACKs
are divided into n segments, and the ACKs of segment_x
are assigned with a weight, wx. The value of CP(t) can be
calculated as

(1)

1 (1)

[] []
k
n

k
n

xn

x
x i x

nCP i ACK i
k

ω
−

= = −

= ∗ ∗∑ ∑ (2)

We calculate CP(t) with moving weighted average
value of n samples. Note that the congestion probability
based on ECN tracks the change of the CP(t) value to
estimate the congestion level. Generally, the newer the
ACK packet, the more accurate it is in predicting the
current network state. Therefore, a larger weight needs to
be assigned to newer ACK. The weights of ACKs in each
segment are assigned as

1
1 * , (0,1)x xω ω α
α −= ∈ (3)

While all the weights satisfy

1
1

n

x
x

ω
=

=∑ (4)

It is clear that the weight of xth segment, xω , is larger
than the weight of previous segment, 1xω − , since the
value of α is less than 1.

In highly dynamic network, it is very difficult to get
accurate traffic state with only a smaller number of

Host

SSD controller

MLC NAND

Host

SSD controller

MLC NANDReRAM

Host

SSD controller

MLC NANDReRAM

Data Hot Cold

Frag

Not frag

MLC NAND only

Conventional Hybrid SSD Proposed Hybrid SSD

Written to NAND for
ReRAM space shortage

Cold data eviction frees
ReRAM space for hot data

Fig. 6. The comparison of the proposed scheme with the existing
ones.

Published by Atlantis Press
Copyright: the authors

172

packets. However, using large number of packets will
increase the feedback latency. Like the way that TCP
uses three duplicate ACKs to reflect packet loss, we
choose four ACKs for one segment to track the
congestion state. After receiving three duplicate ACK
packets, the sender enters the congestion avoidance mode.
Similar to this, we choose a period of four ACK packets
to compose one segment reflecting the congestion state.
Thus, we have

4k n= (5)

With Eq. (3), Eq. (4) and Eq. (5), we can rewrite Eq.
(2) as

4 1

1 4(1)

1[] [], [1,]
4

n x

t
x i x

CP i ACK i i kω
−

= = −

= ∗ ∗ ∈∑ ∑ (6)

Eq. (6) can be expanded to

3

1
0

7
1

4

4 1
1

4(1)1

1[] []
4

1 []
4

1 []
4

i

i

n

i nn

CP i ACK i

ACK i

ACK i

ω

ω
α

ω
α

=

=

−

= −−

 = ∗ ∗ 
 

 
+ ∗ ∗ 

 
 

+ + ∗ ∗ 
 

∑

∑

∑

 (7)

If CP(t+1) > CP(t), the congestion probability
increases; otherwise, the congestion probability
decreases. Therefore, the change of CP can properly
reflect the change of network state. Defining ΔCP
= CP(t+1) − CP(t) − CP(t), we have

From Eq. (8), it is clear that ΔCP is related to only
ACK[4i], that is to say, the last ACK of each segment.
We can also see that the value of ΔCP lies in a discrete
set containing 2n+1 elements. If the CE bit of the last ACK
in the last segment is marked with 0, the value of ΔCP
will be in [−1, 0]. In this case, it can be concluded that
the congestion probability is decreasing, which has the
same effect of a single ECN feedback. On the contrary,
if the CE bit of the latest arriving ACK is 1, the value of
ΔCP will be in [−1, 1]. In this case, it cannot be
determined whether the network is going to be congested
or not. However, ΔCP ≤ 0 always indicates that the
network congestion may be relieved regardless of the
value of the CE bit of the newly arriving ACK. The value
of CP is calculated by the procedure shown in Fig. 7

()

1

2

1

[4] [0]
1 ([8] [4])

4
1... ([4] [4 4])

1[0] 1 [4]

1 1 [8]
4

1 1... [4]

i

n

i

n n

ACK ACK

CP ACK ACK

ACK n ACK n

ACK ACK

ACK

ACK n

ω
α

α

α
ω

α α

α α

−

−

 
 −
 
 ∆ = ∗ + ∗ − 
 
 + + ∗ − − 
 
  − + −  

  
  = ∗ + −  

  
  + + − ∗  

  

 (8)

3.3. Page Search

In searching cold pages, three approaches are available
as shown in Fig. 8, (a) From the first page, (b) From
random position, and (c) From the unsearched page. The
numbers in the figure denote the search sequence of
ReRAM pages, and the arrow shows the start point of the
search.

For the approach of Fig.8 (c), the start point is the
cold page in ReRAM found in the previous cold data
eviction operation. The page number is stored in the
memory, and updated when the cold data eviction
process is triggered.

In the proposed scheme the approach of Fig.8 (c) is
adopted due to lower search overhead compared with the
other approaches. With the adopted search approach, the
unsearched region is scanned first. Statistically, the
chance of the searched region to contain cold page after
the execution of cold data eviction will be relatively low.

Algorithm 2 : Procedure of calculating CP

1: CP(t +1)=CP(t)
2: int ECN-Echo=hdr_flags::access(pkt)

 → ECN-Echo()

3: float 1, 2ω ω

4: for i=1 to m−1 do
5: ACK[i−1]=ACK[i]
6: end for
7: ACK[m−1]= ECN-Echo
8: u1 = ACK[m−1]+ ···+ACK[m/2]
9: u2 = ACK[m/2−1]+ ···+ACK[0]

10: CP(t)= 1 21* 2*u uω ω+

11: return CP(t)
Fig. 7. The procedure for calculating the CP.

Published by Atlantis Press
Copyright: the authors

173

By checking the unsearched region first, the overhead of
searching can be minimized. We next evaluate the
performance of the proposed scheme.

4. Performance Evaluation

In the simulation tree structure is assumed as the network
topology of the HDFS. To simulate the tree network
topology, the nodes are distributed in the racks as follows:
there are 100 racks and each rack is equipped with one
switch. The 100 racks are randomly distributed over a
100 × 100 unit square plane, and a rack occupies a 10 ×
10 square plane. For any two racks, there is no
intersection area between them. Among the 100 racks,
one is designated as the root rack of all other racks in
binary tree topology of the height of 7. After forming the
100 racks in the tree topology, 3,500 nodes are randomly
deployed within the 100 racks. For any two nodes in the
same rack, their locations are within the square plane
occupied by the rack.

Based on the generated network topology, the
simulation is performed with the parameter setting
summarized in Table I. In each node the available
replication space is represented as the maximum number
of data block replicas allowed to be stored. It is set by
randomly selecting a number between 0 and 50

In a simulation run, some nodes are randomly
selected which frequently need to write data to their disks.
Therefore, many nodes can concurrently issue the
replication requests. The number of requesting nodes are
changed from 500 to 2,500 to evaluate the effectiveness
of the proposed scheme with different load conditions.
For the settings of the read, write and erase latency, the
NRU table and eviction list are used in addition to the
parameters shown in Table I.

In addition, dynamic workloads are also considered

for the disk queue and switch link queue. Whenever one
or more nodes concurrently issue the replication requests,
block read-write operations are needed between multiple
node pairs. The number of concurrent block read-write
operations is randomly set between 0 and 50. Due to
concurrent block read-write operations, a number of
operations need to be handled with the disk queue and
switch link queue before issuing the replication requests.

Fig. 9 shows the total replication cost for different
numbers of requesting nodes. As seen from Fig. 9, the
total replication cost of all the schemes increase with the
number of requesting nodes. Basically, the HDFS
replication scheme adopts the random scheme to place
the replicas of a data block, but with additional
consideration on the possible rack failure. Therefore, the
total replication cost of the HDFS replication scheme is

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

8 9 10 11

12 13 14 15

16 1 2 3

4 5 6 7

10 11 12 13

14 15 16 1

2 3 4 5

6 7 8 9

Previously searched pages Unsearched pages

(a) From the first
ReRAM page

(b) From a random
position

(c) From the
unsearched page

Fig. 8. The approaches for the search of cold page.

Table 1. MLC NAND/ReRAM Specification and Used Table

 MLC NAND ReRAM

Read latency (max.) 85µs/page 100ns/sector

Write latency(typical)

Lower page
400µs

Upper page
2800µs

(Set/Reset)
100ns/sector

Erase latency (typical) 8500µs/block -

Access unit Page(16KiB) Sector(512B)

NRU 2000 entries

Eviction list 1500 entries

Fig. 9. The comparison of total replication costs.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

500 1000 1500 2000 2500

To
ta

l r
ep

lic
at

io
n

co
st

 (s
ec

on
ds

)

Number of requesting nodes

Random HDFS CDE Proposed scheme

Published by Atlantis Press
Copyright: the authors

174

similar to that of the random replication scheme. Notice
that the proposed scheme consistently reduces the
replication cost compared to the existing schemes. In
case of the requesting nodes of 500, the improvement
with the proposed scheme is not significant. However, as
the number of requesting nodes increases, the reduction
becomes quite substantial.

Fig. 10 shows that the average execution time follows

almost the same trend as the replication cost of Fig. 9.
The proposed scheme outperforms the other schemes,
especially with relatively large number of requesting
nodes.

The average recovery time is shown in Fig. 11 for
different congestion probabilities and 1,000 requesting
nodes. As can be seen from the figure that the proposed
scheme requires the smallest average recovery time,
which is about one-fifth of that of the HDFS. And, as the

congestion probability grows, the improvement gets
larger.

Fig. 12 shows the recovery times in the worst case.

The worst recovery time denotes the largest access time
to retrieve a failure-free data replica, which is measured
by accumulating the access time of all replicas of a data
block. As shown in the figure, the proposed scheme
decreases about 70% of the worst recovery time of the
HDFS. Compared to the CDE algorithm, it is about 20%.

5. Conclusion

In this paper we have proposed a novel cold data eviction
scheme which conspicuously considers the congestion
status of the nodes. The proposed scheme analyzes the
node congestion probability by which the system can
decide if the nodes are available to trigger the cold data
eviction process or not. Also, the proposed scheme
classifies the data as hot or cold, and decides the storage
location of them using NRU algorithm. Computer
simulation reveals that the proposed scheme significantly
decreases the recovery and execution time in the HDFS
environment in comparison to the previous schemes. In
particular, with relatively high congestion probability,
the proposed scheme substantia excels the existing
schemes.

As the future course of study, we plan to extend the
proposed scheme to effectively decide the number and
location of the replications of SSD blocks in the HDFS
environment. Also, the design parameters will be
determined through comprehensive modeling of the
proposed scheme on the target performance measures.
There exist many storage nodes in a cloud computing
system, and energy efficiency is an important issue. The

Fig. 10. The comparison of average execution times.

0

5

10

15

20

25

30

500 1000 1500 2000 2500A
ve

ra
ge

 e
xc

ut
io

n
tim

e
(s

ec
on

ds
)

Number of requesting nodes

Random HDFS CDE Proposed scheme

Fig. 11. Average recovery time with different congestion
probabilities.

0

10

20

30

40

50

1 3 5 7 1 0 1 5 A
ve

ra
ge

 re
co

ve
ry

 ti
m

e
(s

ec
on

ds
)

Average Congestion Probabilities (%)

Random HDFS
CDE Proposed scheme

Fig. 12. The comparison of worst recovery times.

0
5

10
15
20
25
30
35
40

500 1000 1500 2000 2500

W
or

st
 re

co
ve

ry
 ti

m
e

(s
ec

on
ds

)

Number of requesting nodes

Random HDFS CDE Proposed scheme

Published by Atlantis Press
Copyright: the authors

175

proposed scheme will be investigated further to
maximize the energy efficiency.

Acknowledgements

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education,
Science and Technology (2012R1A1A2040257 and
2013R1A1A2060398), the second Brain Korea 21 PLUS
project, ICT R&D program of MSIP/IITP (1391105003),
and Samsung Electronics (S-2014-0700-000).
Corresponding author: Hee Yong Youn.

References

1. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in Proceedings of the
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST 10), pp.1-10, May 2010.

2. C. Metz. Flash drives replace disks at Amazon, Facebook,
Dropbox.
http://www.wired.com/wiredenterprise/2012/06/flash-
data-centers/all/, June 2012

3. C. Sun, K. Miyaji, K. Johguchi, K. Takeuchi, “A high
performance and energy-efficient cold data eviction
algorithm for 3D-TSV hybrid ReRAM/MLC NAND SSD,”
IEEE Transactions on Circuits and Systems−Ι:Regular
papers, vol. 61, no. 2, Feb. 2014.

4. S. Venugopal, R. Buyya, R. Kotagiri, "A Taxonomy of
Data Grids for Distributed Data Sharing, Management and
Processing," ACM Computing Surveys, Vol. 38, pp. 1-53,
2006.

5. K. Sashi, A.S. Thanamani, “Dynamic Replication in a
Data Grid Using a Modified BHR Region Based
Algorithm”, Future Generation Computer Systems, Vol.
27, No. 2, pp. 202-210, 2011

6. R.S. Chang, H.P. Chang, "A Dynamic Data Replication
Strategy Using Access-Weights in Data Grids,"
Supercomputing, Vol. 45, No. 3, pp. 277-295, 2008.

7. K. Ranganathan, I. Foster, "Design and Evaluation of
Dynamic Replication Strategies for a High-Performance
Data Grid," International Conference on Computing in
High Energy and Nuclear Physics, 2001.

8. H. Sato, et al., "Access-Pattern and Bandwidth Aware File
Replication Algorithm in a Grid Environment,"
International Conference on Grid Computing, pp. 250-257,
2008.

9. W. Zhao, et al., “A Dynamic Optimal Replication Strategy
in Data Grid Environment”, International Conference on
Internet Technology and Applications, pp. 1-4, 2010.

10. M. Carman, K. Stockinger, "Toward an Economy-based
Optimization of File Access and Replication on a Data
Grid," International Symposium on Cluster Computing
and the Grid, pp. 340-345, 2002.

11. H. Lamehamedi, et al., "Data Replication Strategies in
Grid Environments", International Conference on
Algorithms and Architectures for Parallel Processing, pp.
378-383, 2002.

12. B.D. Lee, J.B. Weissman, Y.K. Nam, "Adaptive
Middleware Supporting Scalable Performance for High-
End Network Service," Network and Computer
Applications, Vol. 32, pp. 510-524, 2009.

13. A.R. Abdurrab, T. Xie, "FIRE: A File Reunion Based Data
Replication Strategy for Data Grids," International
Conference on Clustering Computing and the Grid, pp.
215-223, 2010.

14. W.H. Li, Y. Yang, D. Yuan, A novel cost-effective
dynamic data replication strategy for reliability in cloud
data centres, in: IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing, 2011.

15. Q. Wei, B. Veeravalli, B. Gong, L. Zeng, D. Feng, CDRM:
a cost-effective dynamic replication management scheme
for cloud storage cluster, in: Proc. 2010 IEEE International
Conference on Cluster Computing, Heraklion, Crete,
Greece,September 20–24, 2010, pp. 188–196.

16. K. Ranganathan, I.T. Foster, Identifying dynamic
replication strategies for a high-performance data grid, in:
Proc. Second Int’l Workshop Grid Computing (GRID),
2001.

17. D.T. Nukarapu, B. Tang, L.Q. Wang, S.Y. Lu, Data
replication in data intensive scientific applications with
performance guarantee, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1299–1306.

18. H. Lamehamedi, Z. Shentu, B. Szymanski, Simulation of
dynamic data replication strategies in data grids, in: Proc.
12th Heterogeneous Computing Workshop (HCW2003)
Nice, France, April 2003, IEEE Computer Science Press,
Los Alamitos, CA, 2003.

19. S.C. Choi, H.Y. Youn, Dynamic hybrid replication
effectively combining tree and grid topology, J.
Supercomput. 59 (2012) 289–1311.

20. M. Tu, T. Tadayon, Z. Xia, E. Lu, A secure and scalable
update protocol for P2P data grids, in: 10th IEEE High
Assurance Systems Engineering Symposium, Texas, 2007,
pp. 423–424.

21. O.A.-H. Hassan, L. Ramaswamy, J. Miller, K. Rasheed,
E.R. Canfield, Replication in overlay networks: a multi-
objective optimization approach, in: Collaborative
Computing: Networking, Applications and Worksharing,
Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering,
vol. 10, 2009, pp. 512–528.

22. H. Fujii, K. Miyaji, K. Johguchi, K. Higuchi, C. Sun, and
K. Takeuchi, “11 performance increase, 6.9 endurance
enhancement, 93% energy reduction of 3D TSV-
integrated hybrid ReRAM/MLC NAND SSDs by data
fragmentation suppression,” in Symp. VLSI Circuits
Dig.Tech. Papers, Jun. 2012, pp. 134–135.

Published by Atlantis Press
Copyright: the authors

176

	1. Introduction
	2. Related Work
	2.1. Data Replication with HDFS
	2.2. Hybrid SSD

	3. The Proposed Scheme
	3.1. System Model
	3.2. Node Congestion
	3.3. Page Search

	4. Performance Evaluation
	5. Conclusion
	Acknowledgements
	References

