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Abstract 

Recently, the research of Hybrid ReRAM/MLC NAND SSD is rapidly expanding into the storage areas. Most existing 
researches of Hybrid SSD are based on a single storage, while the management of multiple nodes like HDFS is still 
immature. In this paper a new efficient cold data eviction scheme is proposed which is based on node congestion 
probability. Computer simulation reveals that the proposed scheme significantly reduces replication and recovery 
time in comparison to the existing replication schemes. 

Keywords: HDFS, hybrid SSD, node congestion probability, replication, cold data eviction 

1. Introduction 

The demand on efficient storage for cloud computing has 
been growing drastically year after year. Rather than 
relying on traditional centralized storage arrays, the 
storage system for cloud computing consolidates a large 
number of distributed commodity computers into a single 
storage pool. It provides large capacity and high 
performance storage service even in unreliable and 
dynamic networking environment at low cost. In building 
the cloud storage system, increasing number of industries 

and research institutions rely on the Hadoop Distributed 
File System (HDFS) [1]. HDFS provides reliable storage 
and high throughput access to the data. It is suitable for 
the applications manipulating large data sets, typically 
the ones employing a replication management scheme for 
data-intensive computing. HDFS has been widely used as 
a common storage appliance for cloud computing.  

One of the conspicuous trends in recent storage 
system is the emergency of SSD. SSD-based storage is 
becoming a promising technology for next-generation 
storage due to a number of reasons including low access 
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latency, low power consumption, higher resistance to 
shocks, light weight, and increasing focus on endurance. 
Due to the inherent merits of solid state device, SSD can 
provide better I/O performance compared with the 
traditional HDD. Recently, a large number of Internet 
service providers have started to replace HDD in their 
data centers with SSD [2]. In addition, the falling cost of 
NAND flash-based SSD is driving its expansion into the 
market previously reserved for HDD. Fig. 1 shows the 
architecture of SSD. 

 
 
 
 
 
 
 
 
 
 
 

 
With the momentum leveraged by both personal 

computing and enterprise system, SSD has been 
recognized as a viable choice to build high-performance 
storage. In order to satisfy the strict requirements on the 
future storage system of higher speed, reliability and 
energy-efficiency, SSD is preferred. Various methods 
contributing to the advancement of the SSD technology 
have thus been proposed. 

Recently, a hybrid ReRAM/MLC NAND SSD 
employing the cold data eviction (CDE) algorithm was 
proposed [3]. It dynamically evicts cold pages from 
ReRAM to MLC NAND to store hot data. When the free 
space of ReRAM drops below a threshold (for instance, 
20% of the ReRAM capacity), eviction is triggered. With 
this, the page-level migration is dynamically handled 
which is transparent to the file system. Most existing 
schemes consider the eviction based on only the state of 
each node separately. Note, however, that cold and hot 
data are dispersed in the nodes of Hadoop cluster system. 
As a result, the performance of the storage system cannot 
be maximized with this approach. Furthermore, it causes 
unnecessary waiting time to the users. If several nodes in 
the HDFS trigger the eviction process simultaneously 
while many jobs arrive, the users need to wait for the 
completion of the eviction process. 

In this paper, thus, we propose a new scheme of cold 
data eviction based on the node congestion probability 
for HDFS. The proposed scheme analyzes the node 
congestion probability with which the system can decide 
if the node is available to execute the eviction process or 
not. In addition, a new page search approach is proposed, 
which is important for high performance HDFS service. 
Through comprehensive computer simulation, it is 
confirmed that the proposed scheme significantly 
decreases the execution time and recovery time of 
replication in the HDFS environment in comparison to 
the random eviction approach, the scheme employed in 
HDFS, and the CDE algorithm.  

The rest of the paper is organized as follows. In 
Section 2 brief explanation of data replication with HDFS 
and hybrid SSD are provided. Section 3 presents the 
proposed cold data eviction scheme, and Section 4 
verifies its performance by computer simulation. Finally, 
Section 5 concludes the paper and suggests the future 
course of study. 

2. Related Work 

In this section the previous work relevant to data 
replication with HDFS and Hybrid SSD are discussed. 

2.1. Data Replication with HDFS 

In order to tolerate failure in cloud computing system, 
various data replication techniques have been proposed. 
In the cloud computing environment, data resources are 
geographically scattered, and thus networking delay has 
been a major obstacle in rapid data access. Numerous 
studies have been undertaken to replicate data in several 
data storages that are physically distributed and as a 
result reduce the amount of long-distance data 
transmissions over the network. Fig. 2 describes the 
structure of data replication with HDFS. The data 
replication strategies can be categorized by the types, 
units, and criteria of replication [4]. In terms of 
replication type, there are two types: static and dynamic. 

The former is ineffective for large-scale cloud data 
service because it statically manages data replication. It 
is incapable of quickly responding to various network 
conditions and changes in the data access pattern. For this 
reason, the studies on dynamic data replication have been 
actively conducted [5, 6]. 

[7] suggested replication strategies reducing the 
network bandwidth and access delay. They also 
compared the performance of data access patterns 
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Fig. 1. The block diagram of a traditional SSD architecture. 
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categorized by time and spatial locality. By considering 
the network capacity and file access pattern, [8] proposed 
a file replication algorithm improving the performance of 
basic replication method. Similarly, [6] proposed the 
Latest Access Largest Weight (LALW) method, which 
uses data access history in dynamically determining the 
replication policy by applying greater weight to more 
recent access. [9] proposed a dynamic optimal replication 
strategy (DORS) which evaluates the value of a file based 
on the access history, size, and the network condition in 
deciding the target files of replication. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Some researches proposed the strategies for data 

replication focusing on cost-saving. [10] proposed a 
service that applies the market economy model to 
minimize the replication and data access cost on a data 
grid. [11] suggested a data replication strategy based on 
a cost-estimate model that considers both the cost of data 
access and the performance of replication. In order to 
ensure efficient resource management in an 
unpredictable data grid environment, [12] developed a 
model that dynamically selects a resource management 
strategy that responds to a particular workload type based 
on the performance history. This model demonstrated 
that a real-time workload type is an important factor in 
resource management and the selection of data 
replication strategy. Similarly, [13] proposed the File 
Reunion based on Data Replication Strategy for Data 
Grids (FIRE) scheme, which refers to the file access 
history of nearby storage to determine data replication, 
aiming to supply high quality service in the cloud 
computing environment. A data replication strategy is 
dynamically selected to provide optimal data service, 
while the least Locality based Data Replication Strategy 
(LDRS) scheme turned out to outperform the LRU 

scheme for sequential access pattern having spatial 
locality. 

[14] suggested a novel cost-effective dynamic data 
replication strategy named CIR for cloud data centers 
which applies an incremental replication approach to 
minimize the number of replicas while meeting the 
requirement of reliability and cost-effectiveness. Their 
approach can substantially reduce the data storage cost, 
especially when the data are stored only for a short 
duration or have a lower reliability requirement. 
Nonetheless, their approach is based on only the 
reliability parameters and pricing model of Amazon S3 
which makes it unsuitable for Google cluster of a much 
higher failure rate than Amazon S3 storage units. 
Moreover, they did not consider the issue of the trade-
offs between cost and performance. 

In [15], a dynamic distributed cloud data replication 
algorithm (CDRM) was proposed to capture the 
relationship between availability and the number of 
replica. It maintains the minimum replica for the given 
availability requirement. The replica placement is based 
on the capacity and blocking probability of data nodes. 
Some researches [16] present six different replication 
strategies for three different access patterns: No 
Replication or Caching, Best Client, Cascading 
Replication, Plain Caching, Caching plus Cascading 
Replication, and Fast Spread. The main aim of these 
strategies is reduction in access latency and bandwidth 
consumption. 

[17] proposed a centralized data replication algorithm 
(CDRA) to reduce the total file access time with the 
consideration of limited storage space of Grid sites. Based 
on the centralized algorithm, they also designed a 
distributed caching algorithm wherein the Grid sites react 
close to the Grid status and make intelligent caching 
decisions, which  can be easily adopted in a distributed 
environment such as Data Grids. Their approach can 
reduce the aggregated access delay to data files by at least 
half of that reduced by the optimal replication solution. 
The limitation of the algorithm is the consideration of only 
the access cost. 

[18] studied a replication algorithm based on a cost-
estimation model, driven by the estimation of the data 
access gains and the replica’s creation and maintenance 
cost. It allows the grid nodes to automatically replicate 
data when needed in their Data Grid simulator, GridNet. 
[19] proposed a dynamic hybrid protocol (DHP) which 
effectively combines the grid and tree structure so that 
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Fig. 2. The structure of data replication with HDFS. 
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the overall topology can be flexibly adjusted using three 
configuration parameters; tree height, number of 
descendants and grid depth. It can easily detect read/write 
conflict and write/write collision for consistency 
maintenance. 

Some of the existing strategies optimize the number 
of replicas, while others optimize the placement of 
replicas. Others optimize how often replicas should be 
updated [20]. The shortcoming of them is that they only 
consider a restricted set of parameters affecting the 
replication decision. Furthermore, they only focus on the 
improvement of the system performance without 
addressing the energy efficiency issue in data centers. 

[21] designed an evolutionary way to decide the 
optimal replication strategy. In that work, they optimize 
storage latency and reliability without considering the 
total energy cost of data center and the issue of load 
balancing. 

2.2. Hybrid SSD 

The hybrid SCM/MLC NAND flash SSD (hybrid SSD) 
is a promising solution in boosting the performance of the 
SSD-based storage while maintaining the cost. Fig. 3 
describes the entire structure of the system implemented 
with SSD. SCM operates as both cache and storage, not 
simply as a cache/buffer for the NAND flash memory or 
merely as storage because it is both fast and non-volatile. 
On the host side, the application layer exists above the 
operating system, under which the block device layer 
resides, which in turn is above the interface of the host 
and storage. 

The hybrid SSD includes SSD controller, SCM chip 
array, and NAND flash memory chip array. Here, MLC 
NAND flash is preferred to single-level cell (SLC) 
NAND flash to lower the overall cost of the hybrid SSD. 
As the brain of the storage system, SSD controller runs 
complicated algorithms handling the characteristics of 
erase-before-write and limited endurance of NAND flash. 
Within the controller, the data management module 
determines whether the target data are stored in SCM or 
in NAND flash memory based on the operation on the 
data and the status of memory. The address translation 
module manages the logical-to-physical address mapping 
to provide a logical block interface to the SSD. The wear 
leveling module guarantees even wear among the storage 
cells to maximize the system longevity. Additionally, the 
garbage collection module reclaims free space in the 
NAND flash when the NAND flash blocks are almost full. 

Through the controller functions, both the performance 
and lifetime of SSD can be enhanced. Finally, the error 
code correction (ECC) module detects and corrects the 
errors inside the SSD. The role of ECC is becoming more 
critical as the size scales up, causing degraded reliability. 
With increased number of memory chips, the overhead 
on the chip area of SSD grows due to the increased bus 
area. It is assumed that SCM has much higher reliability 
than NAND flash memory. Therefore, only a pair of 
simple BCH ECC encoder/decoder is required for SCM 
but dozens of low-density parity-check (LDPC) ECC 
encoder/decoders are required for NAND flash. As a 
result, the area overhead for SSD controller due to the 
increasing number of SCM chips is small. In addition, the 
area for control logic of SCM is negligible. The proposed 
replication scheme for ReRAM-based storage is 
proposed next. 
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3. The Proposed Scheme 

This section proposes a scheme evicting cold data for the 
HDFS based on the hybrid SSD. It consists of three parts; 
eviction of cold data, estimation of node congestion 
probability used in the cold data eviction, and page search 
for finding cold/hot pages. 

3.1.  System Model 

The proposed scheme targets the development of a 
replication management approach for HDFS system. The 
HDFS has numerous similarities with the proprietary 
distributed file system, Google file system. It consists of 
a single name node and a set of data nodes. The name 
node and data nodes are deployed within a number of 
racks as shown in Fig. 4, each of which has an associated 
rack number. 

Contrary to the existing HDFS, in the proposed 
scheme the name node mainly manages the namespace of 
the file system and the location of data pages (the 
mapping of data pages to data nodes). A file is split into 
one or more data pages which are dispersed in the data 
nodes. In Hadoop, the applications are executed in data 
nodes. When an application needs a data page, it acts as 
an HDFS client sending a page read (write) request to the 
name node. The name node finds the requested data node 
to process the request. Each data node also periodically 
sends a heartbeat message to the name node to notify its 
soundness. In HDFS, the number of replicas is set to three, 
which is also adopted in this paper. By using NRU (Not 
Recently Used) table, the proposed scheme decides if a 
data page is hot or cold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The overall process of the proposed scheme is given 
in Fig. 5. The proposed replication scheme is triggered if 
the free space of ReRAM of entire nodes drops below a 
threshold (for instance, 20% of the total ReRAM 
capacity), the free space of ReRAM of a single node is 
less than 10%, and the node congestion probability (CP) 
is lower than the threshold, Tcp. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To judge whether a page is hot or cold, the NRU table 

is referred. Because the write performance is critical to 
the NAND-based storage system, the proposed algorithm 
was designed to optimize the operation of SSD write 
request rather than read request. Here the page utilization, 
U, is compared with the utilization threshold, Tu, to 
choose the least used page for replication. If it is 
impossible to select a page in ReRAM when cold data 
eviction is triggered, RRM is reduced to increase the 
number of candidate pages in ReRAM used in the next 
eviction process. 

Fig. 6 compares the proposed scheme with the 
existing schemes. In the MLC NAND-only SSD in Fig. 
6(a), all pages are stored in SSD, regardless hot/cold, 
fragmented/not fragmented. In the conventional hybrid 
SSD (Fig. 6(b)) fragmented pages are sent to ReRAM 
[22]. 

Since fragmented cold data decreases free space of 
ReRAM, fragmented hot data might be stored in MLC 
NAND. As a result, the SSD performance will be greatly 
degraded if this situation gets worse or the ReRAM 
capacity is relatively small. In order to provide high 
performance under intensive fragmented cold data 
workloads, a new cold data eviction scheme is proposed. 
Fig. 6(c) describes that the portions of cold data in 
ReRAM are evicted to MLC NAND flash. By 

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

Name Node Data Node Switch Rack

Fig. 4. The structure of HDFS. 

Algorithm 1 : Process of cold data eviction 

1:  New write data 
2: if Total free space in ReRAM < 20% 
3:       Go to Line 6 
4: if Single node free space in ReRAM < 10% 
5: if the node congestion probability > CPTHRESHOLD 
6:             if Flag_NRU == 1       (Hit NRU table?) 
7: if R<RRM 
8: Add page to cold data eviction list 
9:             else  

10:                   Go to Line 15 
11:             if NRM  == RMEXECUTION 
12:                   Execution of cold data eviction 
13:             else  
14:                   Go to Line 15 
15:       else Search page in ReRAM 

Fig. 5. The overall process of the proposed scheme. 
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dynamically evicting the fragmented cold data pages 
from ReRAM to MLC NAND, ReRAM can effectively 
store hot data. Furthermore, fragmentation in MLC 
NAND is minimized by the eviction of mostly 
fragmented cold data page. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2. Node Congestion 

The key idea of congestion probability based on ECN 
(Explicit Congestion Notification) is to analyze the 
distribution of Congestion Experienced (CE) bits from 
the ECN feedbacks and predict the network state 
according to the correlation between multiple feedbacks. 

One ECN feedback reflects the network state only at 
one earlier time interval, while a sequence of ECN 
feedback can indicate the dynamic change of the network 
state during the past several continuous time intervals. 
Therefore, we propose to combine the information 
contained in the CE bits of a sequence of ACK packets 
together to predict the network state. 

Assume that a sender receivers an ECN feedback 
sequence containing k ECN feedbacks. We calculate 
CP(t), the congestion probability at the current time t, as 

 
1
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where ACK[i].ECN-Echo is the value of the CE bit 

in ACK[i], and wi are normalized such that 
1
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ω
−

=

=∑ . 
The value of CP(t) is calculated using k serial ACKs 

received until time t, denoted by ACK[i], 
ACK[i−1],…,ACK[i−k+1], respectively. For the sake of 
simplicity of presentation, we use ACK[i] instead of 
ACK[i].ECN-Echo. 

The weights of the CE bits in different ACK packets 
are assigned using the exponentially weighted moving 
average method. The ACKs are divided into several 
segments, and all ACKs in the same segment are assigned 
a same weight. This is because a large number of ACKs 
increase the feedback delay, while a single ACK cannot 
correctly reflect the congestion state. To achieve the 
tradeoff between sensitivity and stabilization, the k ACKs 
are divided into n segments, and the ACKs of segment_x 
are assigned with a weight, wx. The value of CP(t) can be 
calculated as 

( 1)

1 ( 1)

[ ] [ ]
k
n

k
n
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x
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nCP i ACK i
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ω
−
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We calculate CP(t) with moving weighted average 
value of n samples. Note that the congestion probability 
based on ECN tracks the change of the CP(t) value to 
estimate the congestion level. Generally, the newer the 
ACK packet, the more accurate it is in predicting the 
current network state. Therefore, a larger weight needs to 
be assigned to newer ACK. The weights of ACKs in each 
segment are assigned as 

1
1 * , (0,1)x xω ω α
α −= ∈  (3) 

While all the weights satisfy 

1
1

n

x
x

ω
=

=∑  (4) 

It is clear that the weight of xth segment, xω , is larger 
than the weight of previous segment, 1xω − , since the 
value of α  is less than 1. 

In highly dynamic network, it is very difficult to get 
accurate traffic state with only a smaller number of 
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Fig. 6. The comparison of the proposed scheme with the existing 
ones. 
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packets. However, using large number of packets will 
increase the feedback latency. Like the way that TCP 
uses three duplicate ACKs to reflect packet loss, we 
choose four ACKs for one segment to track the 
congestion state. After receiving three duplicate ACK 
packets, the sender enters the congestion avoidance mode. 
Similar to this, we choose a period of four ACK packets 
to compose one segment reflecting the congestion state. 
Thus, we have 

4k n=  (5) 

With Eq. (3), Eq. (4) and Eq. (5), we can rewrite Eq. 
(2) as 

4 1

1 4( 1)

1[ ] [ ],  [1,  ]
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Eq. (6) can be expanded to  
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If CP(t+1) > CP(t), the congestion probability 
increases; otherwise, the congestion probability 
decreases. Therefore, the change of CP can properly 
reflect the change of network state. Defining ΔCP 
= CP(t+1) − CP(t) − CP(t), we have 

From Eq. (8), it is clear that ΔCP is related to only 
ACK[4i], that is to say, the last ACK of each segment. 
We can also see that the value of ΔCP lies in a discrete 
set containing 2n+1 elements. If the CE bit of the last ACK 
in the last segment is marked with 0, the value of ΔCP 
will be in [−1, 0]. In this case, it can be concluded that 
the congestion probability is decreasing, which has the 
same effect of a single ECN feedback. On the contrary, 
if the CE bit of the latest arriving ACK is 1, the value of 
ΔCP will be in [−1, 1]. In this case, it cannot be 
determined whether the network is going to be congested 
or not. However, ΔCP ≤ 0 always indicates that the 
network congestion may be relieved regardless of the 
value of the CE bit of the newly arriving ACK. The value 
of CP is calculated by the procedure shown in Fig. 7 
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3.3. Page Search 

In searching cold pages, three approaches are available 
as shown in Fig. 8, (a) From the first page, (b) From 
random position, and (c) From the unsearched page. The 
numbers in the figure denote the search sequence of 
ReRAM pages, and the arrow shows the start point of the 
search. 

For the approach of Fig.8 (c), the start point is the 
cold page in ReRAM found in the previous cold data 
eviction operation. The page number is stored in the 
memory, and updated when the cold data eviction 
process is triggered. 

In the proposed scheme the approach of Fig.8 (c) is 
adopted due to lower search overhead compared with the 
other approaches. With the adopted search approach, the 
unsearched region is scanned first. Statistically, the 
chance of the searched region to contain cold page after 
the execution of cold data eviction will be relatively low. 

Algorithm 2 : Procedure of calculating CP 

1:  CP(t +1)=CP(t) 
2: int ECN-Echo=hdr_flags::access(pkt) 

 → ECN-Echo() 

3: float 1, 2ω ω   

4: for i=1 to m−1 do  
5: ACK[i−1]=ACK[i] 
6: end for 
7: ACK[m−1]= ECN-Echo 
8: u1 = ACK[m−1]+ ···+ACK[m/2] 
9: u2 = ACK[m/2−1]+ ···+ACK[0] 

10: CP(t)= 1 21* 2*u uω ω+  

11: return CP(t) 
Fig. 7. The procedure for calculating the CP. 
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By checking the unsearched region first, the overhead of 
searching can be minimized. We next evaluate the 
performance of the proposed scheme. 

 
 
 
 
 
 
 
 
 
 
 
 

 

4. Performance Evaluation 

In the simulation tree structure is assumed as the network 
topology of the HDFS. To simulate the tree network 
topology, the nodes are distributed in the racks as follows: 
there are 100 racks and each rack is equipped with one 
switch. The 100 racks are randomly distributed over a 
100 × 100 unit square plane, and a rack occupies a 10 × 
10 square plane. For any two racks, there is no 
intersection area between them. Among the 100 racks, 
one is designated as the root rack of all other racks in 
binary tree topology of the height of 7. After forming the 
100 racks in the tree topology, 3,500 nodes are randomly 
deployed within the 100 racks. For any two nodes in the 
same rack, their locations are within the square plane 
occupied by the rack. 

Based on the generated network topology, the 
simulation is performed with the parameter setting 
summarized in Table I. In each node the available 
replication space is represented as the maximum number 
of data block replicas allowed to be stored. It is set by 
randomly selecting a number between 0 and 50 

In a simulation run, some nodes are randomly 
selected which frequently need to write data to their disks. 
Therefore, many nodes can concurrently issue the 
replication requests. The number of requesting nodes are 
changed from 500 to 2,500 to evaluate the effectiveness 
of the proposed scheme with different load conditions. 
For the settings of the read, write and erase latency, the 
NRU table and eviction list are used in addition to the 
parameters shown in Table I. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In addition, dynamic workloads are also considered 

for the disk queue and switch link queue. Whenever one 
or more nodes concurrently issue the replication requests, 
block read-write operations are needed between multiple 
node pairs. The number of concurrent block read-write 
operations is randomly set between 0 and 50. Due to 
concurrent block read-write operations, a number of 
operations need to be handled with the disk queue and 
switch link queue before issuing the replication requests. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 9 shows the total replication cost for different 
numbers of requesting nodes. As seen from Fig. 9, the 
total replication cost of all the schemes increase with the 
number of requesting nodes. Basically, the HDFS 
replication scheme adopts the random scheme to place 
the replicas of a data block, but with additional 
consideration on the possible rack failure. Therefore, the 
total replication cost of the HDFS replication scheme is 
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Fig. 8. The approaches for the search of cold page. 

Table 1. MLC NAND/ReRAM Specification and Used Table 
 

 MLC NAND ReRAM 

Read latency (max.) 85µs/page 100ns/sector 

Write latency(typical) 

Lower page 
400µs 

Upper page 
2800µs 

(Set/Reset) 
100ns/sector 

Erase latency (typical) 8500µs/block - 

Access unit Page(16KiB) Sector(512B) 

NRU 2000 entries 

Eviction list 1500 entries 

 

 
Fig. 9. The comparison of total replication costs. 
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similar to that of the random replication scheme. Notice 
that the proposed scheme consistently reduces the 
replication cost compared to the existing schemes. In 
case of the requesting nodes of 500, the improvement 
with the proposed scheme is not significant. However, as 
the number of requesting nodes increases, the reduction 
becomes quite substantial. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10 shows that the average execution time follows 

almost the same trend as the replication cost of Fig. 9. 
The proposed scheme outperforms the other schemes, 
especially with relatively large number of requesting 
nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The average recovery time is shown in Fig. 11 for 
different congestion probabilities and 1,000 requesting 
nodes. As can be seen from the figure that the proposed 
scheme requires the smallest average recovery time, 
which is about one-fifth of that of the HDFS. And, as the 

congestion probability grows, the improvement gets 
larger. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12 shows the recovery times in the worst case. 

The worst recovery time denotes the largest access time 
to retrieve a failure-free data replica, which is measured 
by accumulating the access time of all replicas of a data 
block. As shown in the figure, the proposed scheme 
decreases about 70% of the worst recovery time of the 
HDFS. Compared to the CDE algorithm, it is about 20%. 

5. Conclusion 

In this paper we have proposed a novel cold data eviction 
scheme which conspicuously considers the congestion 
status of the nodes. The proposed scheme analyzes the 
node congestion probability by which the system can 
decide if the nodes are available to trigger the cold data 
eviction process or not. Also, the proposed scheme 
classifies the data as hot or cold, and decides the storage 
location of them using NRU algorithm. Computer 
simulation reveals that the proposed scheme significantly 
decreases the recovery and execution time in the HDFS 
environment in comparison to the previous schemes. In 
particular, with relatively high congestion probability, 
the proposed scheme substantia excels the existing 
schemes. 

As the future course of study, we plan to extend the 
proposed scheme to effectively decide the number and 
location of the replications of SSD blocks in the HDFS 
environment. Also, the design parameters will be 
determined through comprehensive modeling of the 
proposed scheme on the target performance measures. 
There exist many storage nodes in a cloud computing 
system, and energy efficiency is an important issue. The 

 
Fig. 10. The comparison of average execution times. 
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Fig. 11. Average recovery time with different congestion 
probabilities. 
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Fig. 12. The comparison of worst recovery times. 
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proposed scheme will be investigated further to 
maximize the energy efficiency. 
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