
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE Toward a Highly Available Future Internet

PRESENTED BY Hsu-Chun Hsiao

ACCEPTED BY THE DEPARTMENT OF

 Electrical and Computer Engineering

 ________Adrian Perrig______________ __6/5/2014______________
 ADVISOR, MAJOR PROFESSOR DATE

 ___Jelena Kovacevic____________ ___6/5/2014_________________
 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 __Vijayakumar Bhagavatula___________________ ___6/5/14__________________
 DEAN DATE

Toward a Highly Available Future Internet

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Hsu-Chun Hsiao

B.S., Electrical Engineering, National Taiwan University
M.S., Electrical Engineering, National Taiwan University

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

June 2014

Thesis Committee:

Prof. Adrian Perrig, Chair (Carnegie Mellon University)

Prof. Virgil Gligor (Carnegie Mellon University)

Prof. Srinivasan Seshan (Carnegie Mellon University)

Prof. Yih-Chun Hu (University of Illinois at Urbana-Champaign)

This research was supported by CyLab at Carnegie Mellon University (CMU), and by sup-

port from National Science Foundation (NSF) under awards CCF-0424422 and CNS-1040801.

The views and conclusions contained here are those of the authors and should not be inter-

preted as necessarily representing the official policies or endorsements, either expressed or

implied, of CMU, NSF or the U.S. Government or any of its agencies.

c© 2014 Hsu-Chun Hsiao.

All rights reserved.

Abstract

Numerous cyberattack incidents have demonstrated adversaries’ capability to cause Internet outages last-

ing hours or even days, jeopardizing governmental, financial, telecommunication, transportation, and

healthcare services. With the intensity and frequency of cyberattacks constantly growing, it becomes

crucial to find a way to provide availability guarantees despite active adversaries.

As an initial step toward building a highly available Internet, this dissertation explores how to secure

the data plane against off-path adversaries that flood the network (Distributed Denial of Service attacks)

as well as on-path adversaries that discriminate against traffic (selective dropping attacks). These two

types of attacks are increasingly prevalent, and their mitigation will lead to substantial improvement in

Internet availability. However, DDoS and selective dropping attacks have yet to be addressed efficiently

and effectively in the current Internet, primarily due to the fact that many security problems are too

pervasive and fundamental to be fixed using patches constrained by the underlying Internet architecture.

To address this challenge, this dissertation studies complementary defense mechanisms on top of a

recently proposed clean-slate Internet architecture. This new architecture is a key enabler of this dis-

sertation, as it provides several useful architectural primitives to support fine-grained isolation and fair

access to resources—two driving principles behind the design of the defense mechanisms in this work.

Fine-grained isolation protects legitimate traffic from interference with other traffic, including attack traf-

fic. When isolation is not possible, fair access guarantees that legitimate traffic receives a fair share of

resources during resource competition.

Guided by these two principles, the first part of the dissertation describes novel solutions that cover

three aspects of DDoS defense: (1) isolating DDoS traffic via bandwidth reservation, (2) bounding the

waiting time before a successful reservation of flow bandwidth, and (3) ensuring that every flow complies

with its allocated bandwidth limit without keeping per-flow state. The second part of the dissertation

explores the prevention of address-based selective dropping through topological anonymity, and describes

a lightweight anonymous forwarding scheme with near-optimal latency under a relaxed attacker model.

The integration of these mechanisms achieves end-to-end availability guarantees on top of the clean-slate

architecture under the assumptions that the lower layers are available and the routing paths are given.

The resulting guarantees are independent of the strength of remote attackers, a feature that none of the

existing work is able to achieve. Since several of the proposed mechanisms can be deployed incrementally

for incremental protection, they can also improve the availability of the current Internet.

Acknowledgments

I would like to express my deepest appreciation to each and every person who helped me throughout my

Ph.D. journey.

First and foremost, I would like to thank my advisor, Dr. Adrian Perrig, for his continuous guidance,

inspiration, and encouragement. His enthusiasm about research and his confidence in my ability to

overcome challenges motivated me to live up to my full potential whenever I was in doubt. I would also

like to thank my thesis committee, Dr. Virgil Gligor, Dr. Yih-Chun Hu, and Dr. Srinivasan Seshan, for their

insightful comments and suggestions at various stages of this work. Discussions and conversations with

them have been invaluable and have tremendously broadened my views as a researcher.

This dissertation would not have been completed without the extensive assistance from my committee

members as well as many other collaborators, to whom I am deeply indebted: Dr. Hyun Jin Kim, Dr. Soo

Bum Lee, Dr. Xin Zhang, Tae-Ho Lee, Dr. Yue-Hsun Lin, Dr. Marco Gruteser, Hao Wu, Dr. Akira Yamada,

Sangjae Yoo, Wei Meng, and Dr. Samuel Nelson. In my early research projects, I was extremely fortunate to

have worked with many talented researchers and students. In particular, I would like to thank Dr. Ahren

Studer, whose patience and guidance were essential for the completion of many of these early projects.

I am also grateful to the faculty members, staff members, and students at Carnegie Mellon University

for creating an enjoyable working environment. I am particularly thankful to Dr. Limin Jia, Dr. Lujo

Bauer, Dr. Maverick Woo, Yanlin Li, Dr. Edward Schwartz, and Dr. Zongwei Zhou, who always offered

me excellent advice in both life and research.

My journey as a Ph.D. student was made possible thanks to the inspiration and support I received

from Dr. Joseph Hellerstein, Dr. Chin-Laung Lei, and Dr. Doug Tygar. During this journey, I also had

opportunities to interact with many wonderful people at UC Berkeley, iCast, Qualcomm, IBM Zurich, and

ETH. These interactions enriched many aspects of my life, for which I am truly grateful.

The enduring support provided by my caring friends and family allowed me to stay strong in my

search for myself. Thanks to Hyun Jin for being a supportive friend and reliable life mentor. Thanks to Wei

for sharing everything, including ideas, beers, and optimism. To my parents, sisters, and grandparents, I

cannot thank you enough for your belief in me.

Contents

Contents v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Threats against Internet Availability . 2

1.2 Challenges of Building a Highly Available Internet . 4

1.3 Thesis Statement . 7

1.4 Thesis Overview . 7

1.5 Outline . 9

2 Background: Internet Architectures 12

2.1 The Current Internet . 12

2.2 SCION: A Security-Centric Internet Architecture . 13

3 STRIDE 17

3.1 Threat Model . 18

3.1.1 Desired Properties . 19

3.1.2 Assumptions . 19

3.2 STRIDE: Design Overview . 20

3.2.1 Static Half-Path Setup . 22

3.2.2 Static and BE Channel Setup . 23

3.2.3 Dynamic Channel Setup . 24

3.3 STRIDE Protocol Description . 24

3.3.1 Static Half-Path Setup . 25

v

CONTENTS vi

3.3.2 Static and BE Channel Setup . 27

3.3.3 Dynamic Channel Setup . 28

3.4 Bandwidth Guarantee Analysis . 31

3.5 Evaluation . 33

3.5.1 Resilience against DoC Attacks . 34

3.5.2 Flow Bandwidth Guarantees . 36

3.5.3 Throughput . 37

3.6 Extensions . 38

3.6.1 Inter-ISD Guarantees . 38

3.6.2 Partial Dynamic Channels . 39

3.7 Discussion . 40

3.7.1 Malicious ADs Inside an ISD . 40

3.7.2 A Simple Dynamic Allocation Policy . 40

3.7.3 Comparison with Other Bandwidth Reservation Protocols 41

3.7.4 Directional Paths and Asymmetric Bandwidth Requirements 42

3.7.5 Link Capacity Division . 42

3.7.6 Bandwidth Overbooking . 43

3.8 Summary . 43

4 RainCheck Filter 45

4.1 Problem Definition . 47

4.1.1 Waiting Time Model . 47

4.1.2 DDoS Attacks and Flash Crowds . 48

4.1.3 Server and Client Models . 48

4.1.4 Desired Properties . 49

4.2 Raincheck Filter . 49

4.2.1 MWT Guarantees Using an Ideal Buffer . 50

4.2.2 RainCheck Filter Design . 50

4.2.3 Server Description . 52

4.2.4 Client Description . 53

4.2.5 Handling Clients Sharing IP Addresses . 54

4.3 Analysis . 55

4.3.1 Waiting Time Guarantees . 55

CONTENTS vii

4.3.2 Overhead Analysis and Configurations . 56

4.3.3 Security Benefits . 57

4.4 Improvements and Discussion . 58

4.4.1 Strengthening Waiting Time Guarantees . 58

4.4.2 Extension for Better Scalability . 58

4.4.3 Waiting Time Estimation . 60

4.4.4 Bounding and Determining the Request Processing Rate 61

4.5 Evaluation . 62

4.5.1 Flash-Crowd Effect . 63

4.5.2 Flooding Attacks . 64

4.6 Prototype Implementation . 65

4.7 Summary . 67

5 Large Flow Detection 68

5.1 Problem Definition . 70

5.1.1 System Model . 70

5.1.2 Large-Flow Problem . 71

5.1.3 Adversary Model . 72

5.1.4 Design Goals . 73

5.2 Algorithm . 73

5.2.1 Relationships Between Landmark and Arbitrary Windows 74

5.2.2 Algorithm Construction . 76

5.2.3 Data Structure and Optimization . 79

5.2.4 Storage and Computational Complexity . 81

5.3 Analysis . 82

5.3.1 Large Flow False Negative Analysis . 83

5.3.2 Small Flow False Positive Analysis . 83

5.3.3 Relationship between Low-Bandwidth and High-Bandwidth Thresholds 84

5.3.4 Incubation Period of Large Flows . 85

5.3.5 Tradeoff Analysis . 85

5.3.6 How To Engineer The Detector . 86

5.4 Evaluation . 86

5.4.1 Theoretical Comparison . 86

CONTENTS viii

5.4.2 Experiment Settings . 88

5.4.3 Experimental Comparison . 89

5.5 Summary . 92

5.6 Appendix . 93

5.6.1 Lemma 13 and Proof Sketch . 93

5.6.2 Proof Sketch of Lemma 10 . 94

5.6.3 Engineering The Parameters . 95

6 Lightweight Anonymity and Privacy 98

6.1 Problem Definition . 101

6.1.1 Desired Privacy Properties . 101

6.1.2 Desired Performance Properties . 102

6.1.3 Assumptions . 103

6.1.4 Threat Model . 103

6.2 Overview: LAP . 103

6.3 LAP: Lightweight Anonymity and Privacy . 106

6.3.1 LAP Packet Header Format . 106

6.3.2 LAP Protocol Description . 107

6.3.3 Controllable Privacy Levels . 109

6.3.4 Path Publishing for Receiver Anonymity . 109

6.3.5 Padding Against Size-Based Traffic Analysis . 110

6.4 Preliminary Analysis . 110

6.4.1 Anonymity and Privacy in the Current Internet . 111

6.4.2 Anonymity in LAP . 112

6.5 LAP Instantiation . 112

6.5.1 LAP in the Current Internet . 113

6.5.2 Integrating LAP into SCION . 115

6.5.3 Integrating LAP into MobilityFirst . 117

6.6 Security Analysis . 119

6.6.1 Sender/Receiver Anonymity Analysis . 119

6.6.2 Session Unlinkability . 122

6.6.3 General Attack Resilience . 122

6.6.4 Resilience against Known Attacks . 123

CONTENTS ix

6.7 Evaluation . 124

6.7.1 Latency Evaluation . 125

6.7.2 Throughput Evaluation . 126

6.8 Summary . 126

7 Integration and Discussion 128

7.1 Integration . 128

7.1.1 Adversary Model . 128

7.1.2 Building Blocks . 130

7.1.3 Integration on top of SCION Architecture . 134

7.2 Availability Guarantees . 136

7.3 Discussion . 137

8 Related Work 145

8.1 DDoS Countermeasures . 145

8.1.1 Filtering . 146

8.1.2 Resource Allocation . 146

8.1.3 Fair Access . 147

8.2 Countermeasures to Selective Dropping . 149

8.3 Traffic Monitoring . 151

8.4 Topology and Routing for High Availability . 153

8.4.1 Topology . 153

8.4.2 Routing . 153

9 Conclusion and Future Work 155

Bibliography 157

List of Figures

2.1 The SCION architecture . 14

3.1 STRIDE’s bandwidth classes . 21

3.2 Bandwidth announcement in STRIDE . 22

3.3 The admission ratio in STRIDE . 35

3.4 Impact of attack strength . 35

3.5 Impact of attack size . 36

3.6 Impact of attack dispersion . 37

3.7 Throughput vs. packet size . 38

4.1 RainCheck Filter overview . 51

4.2 Client-server interaction . 54

4.3 Rank estimation sketch . 61

4.4 Scatter plots . 64

4.5 Maximum waiting times under flooding attacks . 65

4.6 RainCheck Filter prototype implementation . 66

5.1 Three monitoring window models . 72

5.2 LFD’s decision diagram . 77

5.3 LFD’s counter update . 79

5.4 Detection probability . 90

5.5 FP of small flows with 110 counters . 90

5.6 FP of small flows with 500 counters . 91

5.7 Incubation period . 92

5.8 The lower bound curve . 96

6.1 Design space of anonymous schemes . 99

x

List of Figures xi

6.2 LAP operations within an AD . 104

6.3 LAP operations between ADs . 105

6.4 LAP packet header formats . 107

6.5 Number of encrypted hops vs. location privacy . 111

6.6 Number of encrypted hops vs. anonymity set size . 113

6.7 Incremental deployment of LAP . 114

6.8 An example of privacy leakage . 116

6.9 Average latency with LAP disabled and LAP enabled . 124

6.10 Latency comparison of LAP and Tor . 124

6.11 Average throughput with LAP disabled and LAP enabled . 125

List of Tables

3.1 Guarantees for different types of end-to-end channels . 28

3.2 Traffic priority of dynamic channel setup requests . 29

5.1 Notations . 82

5.2 A numerical example . 87

5.3 Comparison of three schemes . 87

5.4 Dataset information . 88

5.5 Parameters of experiment environment . 88

5.6 Multistage filter parameters . 89

6.1 Anonymity set size of US top ISPs . 112

6.2 Sender and receiver anonymity in LAP . 120

7.1 Forwarding state for different path/channel types . 130

7.2 Waiting time guarantees . 136

7.3 Guarantees and assumptions . 137

xii

Chapter 1

Introduction

As the world continues to become more digitized and interconnected, the availability of the Internet

becomes increasingly valuable. Disruptions to the Internet infrastructure and communications can cause

tremendous harm to us in many aspects of our lives. Indeed, the World Economic Forum ranked “critical

information infrastructure breakdown” as one of the top five global risks in terms of impact in 2014 [166].

The examples below illustrate the impact that these disruptions can have on individuals, societies, and

economies:

• User frustration and low productivity. The number of Internet users grew from 6 million to 2.7

billion within the last decade (from 2003 to 2013). Users spend an average of 6.9 hours per day

on the Internet via desktop, laptop, and mobile devices [5] for email, instant messaging, social

networking, gaming, audio/video streaming, file sharing, web browsing, etc. Being unable to access

Internet-based services not only causes widespread frustration but also hinders productivity.

• Loss of revenue for financial services and online retailers. Amazon found that its sales dropped by

1% for every 100ms increase in page load time [88]. In August 2013, Amazon lost about two million

dollars for a thirty-minute outage [34]. In another instance, trading firms lost approximately 500

million dollars when the Nasdaq stock exchange was down for three hours in 2013 [142].

• Potential loss of life for users relying on critical Internet-based infrastructures. Telemedicine,

smart grids, and connected vehicles are becoming a reality in the “Internet of Things” era. As more

and more critical infrastructures are overlaid on top of the Internet for lower-cost communication,

Internet outages may put human lives at risk. For example, in the face of communication disruption

or delay, real-time alarm systems such as medical monitors and smoke detectors may fail to alert

1

CHAPTER 1. INTRODUCTION 2

emergency responders in time. In telesurgery, similarly, where distant surgeons control surgical

robots over communications networks [98], Internet outages may create life-threatening situations.

Given these risks, ensuring high availability is of paramount concern for governmental, financial,

telecommunication, transportation, and healthcare services. Specifically, there is a need for an Internet

that allows any client to access any service at any time and that provides actionable and meaningful

availability guarantees in terms of waiting time and bandwidth in an efficient manner despite active

adversaries. Unfortunately, end-to-end communication in the current Internet lacks these guarantees, as

communication may be interrupted unpredictably for various reasons, ranging from natural disasters to

unintended failures to malicious attacks.

Section 1.1 examines the major causes behind disruptions and outages in the current Internet. Sec-

tion 1.2 discusses the challenges of building a highly available Internet despite active attacks. We then

state our thesis statement in Section 1.3, followed by the thesis overview in Section 1.4 and the thesis

outline in Section 1.5.

1.1 Threats against Internet Availability

The Internet is a collection of interconnected networks. By connecting to the Internet, endhosts can access

any Internet-based services and communicate with each other. However, even though an endhost can

successfully access the Internet, the Internet itself may fail to reliably deliver packets from one end to

another due to diverse threats against its architecture or infrastructure.

Threat taxonomy. Threats against Internet availability can be broadly classified into three types1:

1. Natural disasters are threats outside human control, such as earthquakes, floods, storms, etc. In

2006, an earthquake in Taiwan and the subsequent submarine landslides severely impaired seven

out of nine geographically co-located cables in the Luzon Strait, resulting in a six-hour outage for

more than two thousand IP prefixes [97, 133]. During Hurricane Sandy in 2012, the Internet outage

rate in the U.S. was doubled, and the impact lasted for about four days [73]. From a technical

perspective, the best protection against this type of threat is ensuring high resilience against natural

disasters through redundancy and replication and supporting rapid recovery after disasters occur.

2. Unintended failures, such as misconfiguration and buggy code, can often be eliminated through

better administration. Incidents of network failures (e.g., damaged cables or misconfigured routers)

1We adopt the root cause categories used by the European Union Agency for Network and Information Security [156] and consider
human errors, system failures, and third party failures to all be forms of unintended failures.

CHAPTER 1. INTRODUCTION 3

can result in hours of connection disruptions before recovery or rerouting. In 2007 and 2011, buggy

routers from large router vendors falsely reconstructed their routing tables causing widespread

network outages in Japan [52] and the U.S. [53]. Sometimes the technical problems cannot be easily

fixed by individual administrative organizations. For example, unstable routes, which may persist

long after a route change due to delayed convergence, severely degrade the performance of end-to-

end communications; measurements show that up to 30% of packets are lost within two minutes of

a BGP route update [94].

3. Malicious attacks are intentional attempts to disrupt network communication. Attacks against avail-

ability can occur in many forms, ranging from the exploitation of application-specific vulnerabilities

to the interference with transmission at lower protocol layers. Generally, these attacks can target any

logical layer/component or any physical device that is required for end-to-end communication. For

example, prefix hijacking attacks target the routing protocol at the network layer; DNS poisoning

attacks target the Domain Name System at the application layer; and Distributed Denial of Service

(DDoS) attacks overwhelm the network infrastructure or servers with a high volume of traffic in an

attempt to crowd out legitimate traffic. Successful end-to-end communication heavily depends on

the availability and security of each of these components and devices.

We acknowledge that a complete solution of Internet availability requires the protection of all layers

against all threats. As malicious attacks are expected to grow in both power and sophistication since

attackers will also benefit from these advances in technology, this dissertation focuses on one challenging

aspect of the problem: the mitigation of emerging data-plane attacks at the network layer.

Major data-plane attacks. The data plane is responsible for forwarding packets along a given path to

the intended destination, assuming the path exists and is discovered by the underlying routing protocol.

Despite substantial research efforts on securing the Internet, two data-plane attacks continue to pose seri-

ous challenges that have not yet been effectively or efficiently resolved. Distributed Denial of Service (DDoS)

attacks are off-path data-plane attacks that disrupt communication by sending excessive traffic exhausting

bottleneck resources, such as network link bandwidth and server CPU cycles. Selective dropping attacks are

on-path data-plane attacks that disrupt communication by directly blocking a certain type of traffic. These

two types of data-plane attacks are easy to launch yet hard to defend against, leading to their increased

prevalence. The severity and prevalence of these two types of attacks is evident from many real-world

incidents, as summarized below:

CHAPTER 1. INTRODUCTION 4

• DDoS attacks. A DDoS attack often involves an attacker controlling a large number of compro-

mised machines that send large traffic volumes to overwhelm the Internet infrastructure or servers.

DDoS attacks have become a common means for various purposes, ranging from political protest

to extortion, and have malevolently paralyzed many critical services. For instance, in 2010, a hack-

tivist group named Anonymous attacked sites including PayPal, Visa, and MasterCard to protest

against these companies as they stopped accepting donations to WikiLeaks. In 2012 and 2013, a

large number of banking sites were down for hours due to DDoS. Both the intensity and frequency

of these attacks have drastically accelerated. A survey in 2012 showed that the number of attacks

increased by 25% compared with the previous year [134], and the largest attack to date reached

300 Gbps [115]. Worse yet, as DDoS attackers get smarter and try to mimic flash crowds, it becomes

extremely difficult to distinguish DDoS traffic from normal traffic based on behavior signatures.

• Selective dropping attacks. In selective dropping, an attacker controlling devices in the Internet se-

lectively blocks critical communication based on certain criteria, such as contents, network addresses,

etc. Government censorship and data discrimination by Internet Service Providers are both in this

category. The recent revelation of large-scale surveillance by the U.S. National Security Agency has

raised serious concerns about government surveillance and censorship. In 2013, Reporters With-

out Borders identified Syria, China, Iran, Bahrain, and Vietnam as countries whose governments

are actively involved in censorship and surveillance [140]. The OpenNet Initiative has documented

government censorship in over forty countries [127]. Besides government-level selective dropping,

ISPs are known to have a history of discriminating against rival services and throttling bandwidth-

demanding services. Evidence was found confirming traffic discrimination in backbone ISPs [182].

In early 2014, Verizon’s customers experienced slowdowns in watching Netflix videos, and there was

suspicion that Verizon was deliberately throttling Netflix’s traffic [25]. Since content-based selective

dropping can be mitigated by encrypting the payload using end-to-end encryption, this work fo-

cuses on address-based selective dropping, where the attacker blocks packets to and/or from some

specific hosts.

1.2 Challenges of Building a Highly Available Internet

A desirable goal is to build a highly available Internet in which the source can send packets to the desti-

nation with a high probability of success, even in the face of DDoS and address-based selective dropping

adversaries. From the user’s perspective, the desire would be the obtainment of non-trivial availability

guarantees for data delivery in an efficient manner.

CHAPTER 1. INTRODUCTION 5

In this thesis, we focus on two primary dimensions of end-to-end availability for the communication

between two entities in the Internet: waiting time and bandwidth. Specifically, our goal is to provide:

1. Waiting time guarantees, which ensure an upper bound on the time for a user to access a service.

Waiting time bounds are important, since various studies suggest that Internet users are impatient

to wait and prefer to know how long they need to wait in advance [3, 113, 124, 24]. Note that waiting

time includes the time to retry due to failed delivery attempts. Waiting time is different from end-

to-end latency that considers the time taken for a packet to be transmitted across a network from

the source to the destination.

2. Bandwidth guarantees, which ensure that (1) the sender can obtain a lower bound on the reservable

bandwidth for a flow, and (2) once reserved, the sender is guaranteed to have the reserved amount

of bandwidth regardless of any other traffic.

A flow contains packets sharing the same source and destination, and there can be multiple flows between

a pair of endhosts. It is up to the source and destination endhosts to divide traffic among flows.

Note that most prior work on bandwidth reservation (e.g., RSVP [177]) does not address security as-

pects, and is thus unable to offer such guarantees in the presence of adversaries. Without any security

countermeasures, reservation requests may be attacked and prevented from reaching the destination (i.e.,

no waiting time guarantees). Even when a request successfully arrives at the destination, the reserv-

able amount of bandwidth along the route may be too low for any real use case (i.e., no guarantees on

reservable bandwidth); finally, without proper monitoring and regulation, the reserved slots may still be

malevolently occupied by malicious senders who use more than their allocated amounts (i.e., no guaran-

tees on the reserved bandwidth).

We seek to provide strong guarantees that are deterministic rather than probabilistic and that have

little or no dependency on the adversary’s power. In addition, such guarantees should be meaningful and

actionable. In the context of improving Internet availability despite attacks, meaningful guarantees help to

mitigate attacks and improve service quality in terms of waiting time and bandwidth, while actionable

guarantees (or enforceable accountability) enable users to take legal or contractual actions when their

providers fail to meet their promises. Guaranteeing that a packet will eventually arrive at the destination

may not be meaningful to users, as it does not improve much from the current Internet. Meaningful

and actionable availability guarantees are important as they can promote new business models such as

availability-as-a-service and in turn incentivize Internet stakeholders to evolve toward a highly available

Internet.

CHAPTER 1. INTRODUCTION 6

However, this goal is challenging and has not yet been accomplished by patching the current Internet for

three main reasons:

1. Current Internet protocols and architecture mainly focus on reliability perspectives, rather than

on security. A reliable system should withstand failures (e.g., hardware/software bugs and config-

uration errors), and a secure system should withstand external attacks. For example, TCP is reliable

but not secure. While TCP is designed to reliably handle packet loss using re-transmission, it cannot

prevent malicious routers from deliberately blocking all packets.

2. Existing security mechanisms are either inefficient or ineffective against strong attacks. Existing

security mechanisms often incur high overhead in peacetime and become ineffective in the face of

strong attacks, such as the Coremelt DDoS attack [149], which cannot be remedied by any DDoS

defense work to date.

3. Security problems are pervasive, fundamental, and hard to fix using patches constrained by the

underlying Internet architecture. As the Internet was not designed with security in mind (and it

was assumed that every entity was trusted), a substantial body of work has focused on securing

the current Internet with patches constrained by the current Internet architecture. However, since

incremental improvements have to meet the constraints imposed by the architecture, they often are

not optimized with respect to performance, management, etc. Moreover, the architecture itself is

the root cause of several security problems. As new applications and concerns are introduced, the

original design principles of the Internet may no longer be adequate for Internet users today, and

many of the security problems may be difficult to resolve without fundamental architectural changes.

For example, the lack of accountability in the current IP layer is to blame for numerous untraceable

attacks involving spoofed IP addresses.

Recognizing the potential limitations to patch the current Internet, clean-slate Internet designs [178,

2, 11, 72, 176] have received a lot of interest in the research community over the past several years.

Instead of patching the current Internet, clean-slate designs are free from the constraints imposed by

the current Internet architecture and aim to re-architect the Internet with intrinsic security properties.

In particular, our previous work, SCION [178], views security as one major consideration. SCION is a

secure and scalable Internet architecture that makes the routing plane more available and resilient against

attacks. SCION provides several distinct features—isolation domains, top-down route discovery, and path

control—which make it desirable for building a highly available data plane. However, SCION itself does

not provide desired availability guarantees.

CHAPTER 1. INTRODUCTION 7

1.3 Thesis Statement

Following this line of thought, we argue that we can design efficient mechanisms for high availability with

a clean-slate approach and make the following thesis statement:

On top of a future Internet architecture that supports isolation domains, top-down route

discovery, and path control, it is possible to design efficient network-layer mechanisms

to mitigate DDoS and address-based selective dropping attacks without keeping per-flow

state. In addition, assuming the lower layers are available and a routing path is discovered,

these mechanisms can provide waiting time and bandwidth guarantees for flows along the

routing path.

To validate this thesis, we propose defense mechanisms that mitigate DDoS and address-based selective

dropping, and show that these mechanisms in concert efficiently provide availability guarantees on top

of SCION [178]. Although SCION itself does not provide any availability guarantees for data forwarding,

we base our design on SCION because several of its architectural primitives offer substantial advantages

for building highly available networks, as Section 2.2 describes. We leave it as future work to formulate

these architectural primitives and prove whether these architectural primitives are necessary or sufficient

conditions for high availability. We discuss how SCION’s primitives help our design in Section 7.3.

1.4 Thesis Overview

Our design is driven by two principles—isolation and fair access to resources. Isolation protects legitimate

traffic from interference by other traffic (including the attack traffic). When isolation is not possible, fair

access guarantees that legitimate traffic can obtain a fair share of resources while competing with other

traffic.

Following the isolation and fair access principles, we develop complementary technical solutions to

four research challenges:

1. One promising approach to isolate DDoS traffic is bandwidth reservation. However, work support-

ing end-to-end bandwidth reservation in the current Internet faces two fundamental problems: (1)

There is no guarantee that a reservation request can reach the destination in the presence of DDoS

attacks. In particular, the request can be crowded out by DDoS traffic. (2) Even when the request can

arrive at the destination, it is difficult to obtain a meaningful lower bound on the amount of reserv-

able bandwidth for the path. Thus, the research question is: Can SCION’s architectural primitives

CHAPTER 1. INTRODUCTION 8

help address these two fundamental problems? If so, what additional mechanisms are needed to

provide meaningful bandwidth guarantees to legitimate traffic despite DDoS attacks?

2. The first part of the work provides a special type of low-capacity channel, on which reservation

requests will encounter at most one bottleneck. To bound the waiting time before a successful

reservation, the bottleneck AD should handle requests fairly in the sense that the waiting time of the

legitimate flows should not be affected by DDoS flows originating from other ADs. More specifically,

the research question is: How can we design an efficient mechanism to bound the waiting time

to get through a bottleneck on the communication path, thus providing maximum waiting time

guarantees?

3. Once bandwidth is allocated and reserved, another important task is to ensure that every flow

complies with its allocation. A flow violating its own allocation may compromise the bandwidth

guarantees of others. In this part of our work, we ask how to design an efficient monitoring al-

gorithm that helps enforce bandwidth allocation without keeping per-flow state. In particular, we

would like to minimize collateral damage due to inaccurate or delayed detection.

4. The waiting time guarantees above are achieved assuming that ADs perform fair dropping of re-

quests in the case of congestion. However, a malicious AD may selectively drop packets (e.g., all

dropped packets are from the same sender) regardless of congestion, thus undermining the avail-

ability guarantees of the victim. An important research question here is: How can we mitigate

address-based selective dropping by malicious ADs?

Scope. The emphasis of this dissertation is on designing novel defense mechanisms to secure packet

forwarding (data plane) at the network layer. That is, given one or more discovered routes, this work

studies how to move packets from the source to the destination with a high probability of success despite

DDoS and address-based selective dropping adversaries. We focus on the network layer for the following

reasons. (1) The network layer is often called the narrow waist of the Internet, which is likely to attract

attacks because of low protocol diversity. (2) Unlike other layers, the network layer has not changed

much since the Internet was first created. (3) The network layer is a critical component that enables global

connectivity on the network of networks. We acknowledge that a complete solution of Internet availability

requires the protection of all layers against all threats and leave it as future work to study the availability

problems in other layers as well as in the control plane.

Although there is an ongoing debate as to whether a clean-slate Internet will ever happen, we believe

that the insights and outcomes from clean-slate research can help answer many other research questions.

CHAPTER 1. INTRODUCTION 9

For instance, clean-slate designs show how much better the Internet could be, which helps researchers and

engineers to set a long-term goal and plan the trajectory to get to the goal. Even if a new Internet is never

created, our work can be applicable to other availability-sensitive networks, such as smart grids, and the

proposed protocols and algorithms can be useful subroutines for many existing applications and systems.

For this reason, we try to be as general as possible when describing each of the proposed mechanisms,

rather than committing to a certain Internet architecture.

This work can be complemented by detection-oriented mechanisms that identify attackers, as the

availability guarantees can be enhanced by blocking, removing, or avoiding the identified attackers. Note

that detection-oriented mechanisms alone may be insufficient to provide meaningful guarantees for at

least two reasons. First, it is challenging to accurately distinguish benign traffic from malicious traffic, as

advanced attacks can mimic the behavior of legitimate traffic. Second, even if every attacker is identified,

the victim may be unable to revoke an attacker that is under a different jurisdiction or to avoid an affected

area when the network lacks path diversity.

This dissertation concentrates on developing technical solutions and leaves the policy aspects, such

as business models and bandwidth distribution policies, to future work. Nevertheless, simple policy

examples are provided as needed for ease of explanation.

1.5 Outline

Here we summarize each chapter of this dissertation.

• Chapter 1 is the introduction. We demonstrate the urgency of solving the problem by showing how

vital the Internet is to our economy and society. We identify the major causes of communication

disruption, discuss the challenges of building a highly available Internet, and present the thesis

statement.

• Chapter 2 reviews the current Internet architecture and discusses a clean-slate future Internet archi-

tecture upon which we build our solutions.

• Chapter 3 presents STRIDE, a new DDoS-resilient Internet architecture that isolates attack traffic

through viable bandwidth allocation, thus preventing a botnet from crowding out legitimate flows.

This new architecture presents several novel concepts including tree-based bandwidth allocation and

long-term static paths with guaranteed bandwidth. In concert, these mechanisms provide domain-

based bandwidth guarantees providing (1) connection establishment with high probability, and (2)

precise bandwidth guarantees for established flows, regardless of the size or distribution of the

CHAPTER 1. INTRODUCTION 10

botnet outside the source and the destination domains. Moreover, STRIDE maintains no per-flow

state on backbone routers and requires no key establishment across administrative domains.

• Chapter 4 presents RainCheck Filter, a primitive that bounds the maximum waiting time to get

through a bottleneck on the communication path. While RainCheck Filter can be applied to var-

ious components at different layers, this chapter considers server flooding as a concrete example.

RainCheck Filter is a lightweight DDoS defense primitive that guarantees bounded waiting time for

clients despite server flooding without per-client state on the server. RainCheck Filter achieves strong

waiting time guarantees by prioritizing clients based on how long the clients have waited—as if the

server maintained a queue in which the clients lined up to wait for service. To avoid queuing every

incoming client request, the server sends to the client a raincheck, a timestamped cryptographic token

that not only instructs the client to try again later but also serves as a proof of the client’s priority

level within a virtual queue.

• Chapter 5 presents LFD, an anomaly detection algorithm that catches all large flows and avoids

false accusation against small flows without keeping per-flow state. That is, this algorithm is exact

outside an ambiguity region—a configurable region of medium-sized flows. Moreover, most existing

algorithms monitor the average throughput over a subset of all possible time windows and thus

can be easily bypassed. By contrast, LFD monitors flows over arbitrary time windows using leaky-

bucket descriptors, thus enabling robust and immediate detection of large flows. These two distinct

features yield new applications, such as efficient bandwidth enforcement with minimal collateral

damage. Despite its strong properties, LFD is surprisingly scalable because it focuses on accurate

classification of large flows and small flows only, and thus can operate at gigabit line rates using a

small amount of memory that fits into on-chip SRAM.

• Chapter 6 presents LAP (Lightweight Anonymity and Privacy), an anonymous forwarding scheme

that can be applied to mitigate address-based selective dropping. The core observation is that

making flows indistinguishable from each other prevents the attacker from reacting selectively in the first

place. Popular anonymous communication systems often require sending packets through a se-

quence of relays on dilated paths for strong anonymity protection. As a result, increased end-to-end

latency renders such systems inadequate for the majority of Internet users who seek an intermedi-

ate level of anonymity protection while using latency-sensitive applications, such as Web applica-

tions. We explore how to achieve near-optimal latency while still achieving an intermediate level

of anonymity with a weaker yet practical adversary model such that users can choose between the

level of anonymity and usability. LAP is an efficient network-based solution featuring lightweight

CHAPTER 1. INTRODUCTION 11

path establishment and stateless communication. It enhances anonymity against remote attackers

by concealing an endhost’s topological location.

• Chapter 7 discusses how to combine the four proposed mechanisms into an integrated solution

that provides bandwidth and waiting time guarantees in the presence of DDoS and address-based

selective dropping attacks under the assumptions that the layers below the network layer are avail-

able and the routing paths are discovered. In a nutshell, STRIDE provides domain-based bandwidth

guarantees despite DDoS attacks. Based on the foundation of STRIDE, RainCheck Filter is applied to

provide domain-based maximum waiting time guarantees to establish a flow during DDoS attacks.

LFD is applied to efficiently catch flows violating their allocation, thus enforcing bandwidth limits

without keeping per-flow state. To maintain the guarantees in the face of address-based selective

dropping, we adopt LAP to hide network identifiers. Because of the weaker notion of anonymity

considered in this work, anonymized packets are still linkable to their respective flows, which makes

flow accounting possible.

• Chapter 8 reviews the related work in DDoS countermeasures, countermeasures to selective drop-

ping, network traffic monitoring, and topology and routing for high availability.

• Chapter 9 concludes this dissertation. We discuss future directions to further improve Internet

availability.

Chapter 2

Background: Internet Architectures

This dissertation aims to improve Internet availability based on a future Internet architecture1. Hence,

in this chapter, we first review the structure and the interdomain routing protocol of the current Internet

and discuss the limited availability guarantees supported by ISPs today. We then review a clean-slate

architecture called SCION [178] that we leverage to improve availability.

2.1 The Current Internet

Structure. The Internet is a dynamic collection of interconnected networks called autonomous domains2

(ADs). Since each AD internally runs a single routing protocol, it can be viewed as a single autonomous

entity. We consider an Internet topology at the AD level. In this topology, nodes represent ADs, each of

which has several gateway routers (or interfaces) connecting it to neighboring ADs. Links are associated

with business relationships, including peering and customer-provider relationships. Two neighboring

ADs can have a peering agreement that allows them to exchange traffic for free, or they can have a

customer-provider relationship in which the customer AD pays the provider AD to access the rest of the

Internet. Endpoint ADs sell Internet access to endhosts.

Interdomain routing. Border Gateway Protocol (BGP) is the de facto interdomain routing protocol (i.e.,

routing between different ADs) in the current Internet. In general, to move packets from one point to

another, a routing architecture implements two primary functions: the control plane and the data plane.

• Control plane: The control plane is responsible for discovering and selecting routes. At the AD level,

each AD has a routing policy that prioritizes and filters routes going through it. For example, in the

1An Internet architecture refers to “any globally agreed upon convention that dictates how packets are handled.” [137]
2An AD is essentially an Autonomous System (AS) in the current Internet running BGP interdomain routing.

12

CHAPTER 2. BACKGROUND: INTERNET ARCHITECTURES 13

current Internet, an AD may refuse to advertise a provider route to another provider because such

transit generates no revenue. An available control plane should derive at least one policy-compliant

path between the source and the destination with certain guarantees (e.g., within a bounded time)

despite attacks.

• Data plane: Given the routes provided by the control plane, the data plane is responsible for the

actual packet forwarding. Thus, a forwarding path is a policy-compliant path discovered by the

underlying routing protocol. Since forwarding is the main purpose of the data plane, we use data

and forwarding planes interchangeably. An available data plane should ensure that the packets

arrive at the destination with certain guarantees despite attacks.

Discussion. The current Internet provides few or no end-to-end availability guarantees. Internet Service

Providers (ISPs) today vouch for a certain level of availability through Service Level Agreements (SLAs),

which state the level of services (e.g., availability, latency, and jitter) that an ISP promises to provide to its

customers during the contract period as well as the compensation (e.g., credits for future billing cycles)

that will be provided should the ISP fail to achieve the stated level of services. Due to the unpredictable

nature of the current Internet, it is common for an SLA to only vouch for the measured performance over

the carrier’s own networks at a coarse time granularity, as demonstrated by this SLA excerpt for AT&T’s

business class customers3: “AT&T Points of Presence (POPs) on the IP/DSL Backbone Network shall

be available 99.9% of the time in delivering traffic to/from other AT&T POP locations on the IP/DSL

Backbone measured over a calendar month.”

2.2 SCION: A Security-Centric Internet Architecture

Among new Internet architecture proposals, we choose SCION as the basis for our design because several

of its architectural primitives offer substantial advantages toward building highly available networks. For

example, SCION’s periodic beaconing, which is used for scalable top-down route discovery, can help

propagate timely availability information by which downstream domains can make informed decisions in

bandwidth allocation. Packet-carried forwarding state separates routing from forwarding, thus enabling

the isolation of data plane failures from control plane failures. Note that despite an elevated default level

of availability, SCION is still vulnerable to DDoS and address-based selective dropping attacks; we seek

to mitigate these two attacks and to provide availability guarantees by utilizing SCION’s architectural

primitives.

3AT&T Broadband - Business Edition Service Level Agreements. http://www.att.com/gen/general?pid=6622

http://www.att.com/gen/general?pid=6622

CHAPTER 2. BACKGROUND: INTERNET ARCHITECTURES 14

ISD Core

Endpoint AD

Intermediate AD

ISD1 ISD2

Figure 2.1: Example of an isolation domain (ISD). Each node represents an AD, and the five black nodes
represent the tier-1 ADs that constitute the ISD Cores. Each square corresponds to the node’s path infor-
mation.

Structure. Based on the same network structure as that of the current Internet, SCION divides ADs on

the Internet into several isolation domains (ISDs), where an ISD is defined as “a set of ADs that agree on

a coherent root of trust and have mutual accountability and enforceability for route computation under

a common regulatory framework” [178]. Each ISD contains an ISD Core consisting of the tier-1 ISPs that

manage the ISD. The primary advantage of such a division is that it avoids having a single root of trust

for the entire Internet, which is difficult to unanimously agree on in practice. For ease of presentation, we

will focus on operations within one ISD unless explicitly mentioned otherwise. Figure 2.1 illustrates these

concepts.

Interdomain routing. At a high level, every SCION AD learns a set of half-paths to reach its ISD Core via

Path Construction Beacons (PCBs, which we will describe in detail later). The destination publishes some

of its half-paths to the Path Server in the ISD Core, such that the source wishing to communicate with

the destination can query the Path Server for the destination’s path information. ISD Core periodically

broadcasts PCBs, which establish half-paths back to the ISD Core as they are disseminated throughout

the network in a top-down manner (i.e., from the ISD Core to endpoint ADs). End-to-end communication

paths are established by combining the source’s and destination’s half-paths.

PCBs are constructed as follows: the ISD Core initiates PCBs, which contain one-hop paths starting from

the core to its adjacent customer ADs with their expiration times. Upon receiving a PCB, an intermediate

AD updates the PCB for each of its downstream ADs (e.g., customers and peers) with the authenticated

local topology: the ith intermediate AD (ADi) appends to the PCB the local path information, ingress

and egress interfaces Ii, for a particular downstream AD (ADi+1) followed by an opaque field Oi, which

CHAPTER 2. BACKGROUND: INTERNET ARCHITECTURES 15

encodes the forwarding decision as ingress/egress points at ADi.

Ii = ingressi‖egressi‖ADi+1,

Oi = MACKi
(Ii‖Oi−1), (2.1)

where ingressi and egressi stand for the ingress and egress interfaces of ADi. Oi is computed using a secret

key Ki known only to ADi to protect the integrity of the routing information. Also, ADi digitally signs

PCBs to prevent fake route injection. Note that PCBs in SCION do not announce bandwidth availability.

ADi propagates the updated PCB to the designated downstream AD (ADi+1). ADi repeats this process

for other downstream ADs on different paths, and upon receiving PCBs, the downstream ADs learn the

path to reach the ISD Core. PCBs travel along a special control channel that has isolated bandwidth from

all data packets and hence is protected from data-plane DDoS attacks.

For each received PCB, an endpoint AD learns a series of interfaces and opaque fields, which represent

the forwarding decisions of the corresponding path. To send packets on the path, the sender embeds in

the packet header the forwarding decisions, which remind every intermediate AD of its own routing

decision for carrying the packet based on its policy. Hence, no forwarding state at routers is needed.

Among all the half-paths that an endpoint AD learns from PCBs, the endpoint AD selects some as

up-paths for reaching the ISD Core and some as down-paths for receiving packets from the ISD Core. To

form end-to-end paths, the destination AD publishes its down-paths (i.e., the forwarding states of these

down-paths) to the Path Server, which is a DNS-like system, in the ISD Core. A source AD wishing

to communicate with the destination can query the Path Server for the destination’s down-paths. An

end-to-end path is then constructed by splicing the half-paths of the source and the destination.

Although not mentioned explicitly, a SCION ISD Core has to be available all the times for initiating

beacons, hosting the Path Server, and forwarding all end-to-end traffic going through the cores. One in-

teresting observation is that by leveraging a small, highly available, trusted network core that is reachable

from all other entities in the Internet, we may be able to achieve high availability of Internet-wide com-

munications. As with many security works, our intuition here is to extend guaranteed availability from

the core to the entire Internet through cryptographic mechanisms.

Architectural primitives. SCION offers several useful primitives that can facilitate the design of a highly

available Internet:

• Isolation domains. In computer security, security by isolation is a well-known concept that helps

simplify the design of security mechanisms. Applying this concept to network research, SCION

CHAPTER 2. BACKGROUND: INTERNET ARCHITECTURES 16

segregates mutually distrustful entities into ISDs. This ISD division allows us to explore efficient

design for securing intra-ISD communication, which is expected to account for a significant fraction

of Internet traffic. Specifically, from a victim’s perspective, if the attacker is in the same ISD, the vic-

tim can hope for detection and punishment of the attacker as they are under a common jurisdiction.

If the attacker is in a different ISD, the victim has to adopt stronger protection that can prevent the

attack or make the victim resilient to the attack.

• Top-down route discovery. In SCION, the ISD Cores periodically send PCBs, which are signed in

an onion fashion for authenticity and non-repudiation. Consequently, PCBs are a secure and reliable

vehicle for delivering timely path-based and topological information (e.g., available bandwidth along

the path) from upstream to downstream.

• Path control. In SCION, both of the source and destination ADs can control the end-to-end path.

Path selection and deterministic paths are promising to allow path-based guarantees. Moreover,

each packet carries its own forwarding state such that ADs can retrieve the next hop from the

packet without keeping local per-flow state. PCFS separates routing from forwarding, allowing

us to address their security problems separately. PCFS is extremely useful in many contexts: it

can facilitate a variety of applications, such as source-controlled paths and lightweight anonymous

forwarding.

Chapter 3

STRIDE

DDoS attacks are a low-cost, high-profile means to interrupt Internet communications. This chapter

explores how to provide domain-based bandwidth guarantees to forwarding paths in the presence of

DDoS attacks flooding Internet links. Such domain-based bandwidth guarantees protect legitimate traffic

from being crowded out by attack traffic.

Motivation: Challenges of mitigating DDoS attacks in the current Internet. The recently proposed

Coremelt attack [149] poses a new threat and has not been effectively addressed by any system to date.

In an Coremelt attack, an adversary uses a large-scale botnet whose bots communicate only with each

other to overload network links. Current DDoS defense mechanisms that attempt to eliminate unde-

sired traffic are rendered ineffective, as all inter-bot traffic is desired by the bot endhosts. Other DDoS

defense mechanisms that perform per-source or per-computation fair sharing at congested links may in

fact give disproportionate advantage to sources with small uplink bandwidth or with high computational

resources, respectively. Moreover, malicious domains can misuse per-source fair sharing by creating mul-

tiple bogus senders, and per-computation fair sharing may be too expensive to protect every data packet.

Furthermore, global fair sharing implies global fate sharing—a source’s share is affected by bots in distant

domains over which the source has no influence.

Current DDoS countermeasures have encountered fundamental limitations to address the challenges

we describe above to be compatible with the current Internet. Thus, an exciting research challenge is

to study if a next-generation network architecture could be more effective against DDoS attacks—what

architectural primitives can effectively defend against DDoS attacks?

Our solution: Domain-based bandwidth guarantees on top of SCION. In this chapter, we formulate

a new network architecture called STRIDE that provides domain-based guarantees for intrinsic DDoS pro-

17

CHAPTER 3. STRIDE 18

tection within an Isolation Domain (ISD), which contains a set of contiguous Autonomous Domains (AD)

with a common root of trust. Specifically, STRIDE provides precise bandwidth guarantees to AD-level

paths, or the “sanctuary trails” that isolate attack traffic from legitimate traffic. Each endpoint AD can

then internally split the guarantee among its endhosts.

Our architecture is based on the following insights: (1) Bandwidth allocation is simple in a tree-

based topology, as the available bandwidth can be split from the root down to each leaf. (2) With network

capabilities encoded in packet-carried state and fixed bandwidth classes, routers can perform enforcement

in a per-flow stateless fashion using probabilistic detection of the largest flows. (3) By combining a static

long-term traffic class guaranteeing low bandwidth with a dynamically-allocated short-term traffic class

guaranteeing high bandwidth, we can provide a variety of guarantees to both privately communicating

endhosts and public servers.

We leverage the SCION next-generation Internet architecture [178] to perform the tree-based band-

width allocation: paths are created and available bandwidth is allocated as paths branch out like trees

from the network core. The packet-carried forwarding state of SCION also provides us with a natural way

to encode network capabilities [12, 168].

Note that prior schemes for bandwidth reservation (e.g., RSVP [23]) or Quality of Service are in-

sufficient to guarantee timely end-to-end data delivery in the presence of DDoS adversaries for several

reasons. First, their reservation requests are unprotected against DDoS attacks. Second, they lack lower-

bound guarantees for reservable bandwidth. In contrast, STRIDE provides domain-based guarantees,

achieving previously unachievable DDoS defense properties for communication within an ISD. Many of

the properties also translate for communication between ISDs.

STRIDE provably guarantees connection setup for private communication, sets a probabilistic bound

on the waiting time for accessing public services, and provides precise bandwidth guarantees for es-

tablished flows, all achieved regardless of the size or distribution of the botnet outside the source and

destination ADs. These guarantees enable STRIDE to mitigate emerging threats such as the Denial-of-

Capability (DoC) and Coremelt attacks. Furthermore, STRIDE does not require backbone routers to keep

per-flow state.

3.1 Threat Model

We consider massive Distributed Denial of Service (DDoS) attacks launched by a botnet, which consists of

a large number of malware-infected bot endhost machines. In particular, we address two types of DDoS

attacks: (1) disabling connection setup in capability-based protocols (DoC attack [15]) and (2) exhausting

CHAPTER 3. STRIDE 19

link bandwidth to crowd out established legitimate connections. In bandwidth exhaustion attacks, we

especially focus on the Coremelt attack [149], which aims to overload a target ISP’s backbone network

using a large number of legitimate-looking flows established among colluding bots (hence, any attempt

to identify the attack based on the flow’s bandwidth would fail).

3.1.1 Desired Properties

We aim to achieve the following properties for a DDoS-resilient network architecture.

Domain-based guarantees within an ISD. Precise bandwidth guarantees should be provided to commu-

nication between endpoint domains residing in the same ISD, and each endpoint domain can internally

split the guarantee among its endhosts based on its local policy. A domain that intends to achieve highly

available communication could identify malicious bots and remove them to provide better guarantees to

legitimate endhosts. Domain-based guarantees ensure that the effect of attacks is confined to infested

domains, such that the endhosts can establish a bandwidth-guaranteed flow with high probability.

Robustness and efficiency. To be resilient to DDoS attacks, network elements require efficient protocols

and network devices. This indicates that the architecture should avoid per-flow or per-host state at back-

bone routers and should avoid expensive operations such as digital signature generation or verification in

the fastpath.1

Flexible route control. Endpoint ADs should be able to control paths. For example, ADs should be able

to hide/disclose paths for private/public communication, decide the amount of allocation, and change

inbound paths to shift traffic.

3.1.2 Assumptions

In designing a new DDoS resilient Internet architecture, we only make two fundamental assumptions that

can be justified using existing security mechanisms.

ISD Cores support congestion-free communication. Since the ISD Core topology is small and relatively

fixed, ADs in the ISD Core can accurately assess and provision the capacity requirement of each link to

ensure no packet loss for traffic below a certain rate. For example, given a topology and its link capacity,

the ISD Core can adopt congestion-free routing [173] to determine how much congestion-free traffic it can

support on each incoming link.

1Fastpath and slowpath refer to different processing elements that handle packet forwarding in a router. The fastpath refers to packet processing by

dedicated hardware, for example, by the linecard in a router. The slowpath refers to packet processing by a general CPU, which often results in a

packet processing latency that is usually about two orders of magnitude slower than the fastpath.

CHAPTER 3. STRIDE 20

ISD Core detects and revokes malicious AD members. Since all ADs of an ISD are within a uniform

legal environment (as described in Section 2.2), the ISD Core can revoke the membership of misbehaving

ADs. In Section 3.7, we discuss technical approaches to detect compromised or poorly-administered ADs

that fail to correctly monitor traffic.

3.2 STRIDE: Design Overview

STRIDE leverages SCION for DDoS resilience. Among new Internet architecture proposals [170, 178], we

base our design on SCION because its notion of Isolation Domain (ISD) and secure top-down route dis-

covery enable tree-based bandwidth allocation within a uniform legal environment, whereby bandwidth

guarantees and attack isolation can be enforced. Note that although SCION enables natural isolation

of attack traffic from untrusted entities, it is still vulnerable to DDoS threats within an ISD. In contrast,

STRIDE seeks to provide domain-based bandwidth guarantees for intra-ISD communication.

We first sketch how our new architecture, STRIDE, provides guaranteed end-to-end data delivery to

legitimate flows even in the presence of DDoS attacks. In a nutshell, STRIDE protects end-to-end data

delivery by establishing communication channels2 that confine the effect of attacks to their originating

domains, leaving other domains unaffected. Such communication channels also form the “sanctuary

trails” that isolate attack traffic from legitimate traffic. Moreover, since bots within a domain will compete

among each other for a fixed amount of bandwidth, bandwidth guarantees can be provided to channels

regardless of the size or distribution of the botnet outside the source and destination domains.

Hence, the primary challenges STRIDE faces are how to secure such channel establishment and adjust

allocations in response to dynamic traffic patterns. STRIDE addresses these challenges by combining (1)

a low bandwidth but long-lived and guaranteed traffic class for channel establishment with (2) a high

bandwidth but short-term dynamically-allocated traffic class. Specifically, a channel is constructed using

any of the three types of bandwidth classes: static, dynamic, and best effort (BE). Hybrid channels are also

possible, as we explain later. For simplicity, we focus on presenting STRIDE using bidirectional links and

elaborate how STRIDE can support directional links in Section 3.7.

Bandwidth classes. As shown in Figure 3.1, link bandwidth is split up into three bandwidth classes:

• Static class is for guaranteed, persistent long-term bandwidth that ADs allocate, for example to pro-

tect initial connection setup request packets between a source and a destination. Each AD allocates

a small portion of its total bandwidth (e.g., 5–15%) to this class.

2The bandwidth of a path is divided into separate channels, and multiple channels dynamically share the bandwidth within a path.

CHAPTER 3. STRIDE 21

Static Dynamic Best E�ort (BE)

A link’s total bandwidth

... ...

64Kbps 128Kbps

... ...

1Mbps 2Mbps

Figure 3.1: Three bandwidth classes of STRIDE.

• Dynamic class is for guaranteed, short-term end-to-end bandwidth allocations and supports high-

capacity channels. The dynamic class may account for the majority of the link capacity (e.g., 60–

65%).

• Best-effort (BE) class is allocated with the remainder of the bandwidth (e.g., 30%). It can take over the

unused bandwidth from the other (uncongested) classes using statistical multiplexing.

Within the static or dynamic bandwidth class, an AD can assign different bandwidth subclasses (e.g.,

500 Kbps, 1 Mbps, etc.) to individual paths/flows based on an empirically measured flow size distribution.

For example, the fraction of dynamic bandwidth allocated to the 1 Mbps subclass can be derived based

on the fraction of flows with 1 Mbps rate in the current Internet. We provide guidelines on how an AD

can divide its total link capacity to the above three classes in Section 3.7.

A half-path announced by a PCB is a path on the BE class, thus offering no guarantees. However,

for each provider AD, an endpoint AD can activate up to k BE half-paths to convert each into a static

half-path, which offers a guaranteed amount of bandwidth from that AD to the ISD Core. The parameter

k is determined by contract and is enforced by provider ADs.

Static and BE channels. A communication channel is a conduit to carry traffic from a source to a des-

tination. A single half-path can be used as a channel to reach the ISD Core, and two half-paths can be

combined to form an end-to-end channel between a source and a destination. In this chapter, we call the

half-path of the source the up-path (as traffic on that channel traverses ADs upwards towards the ISD

Core) and the half-path of the destination the down-path. If two BE half-paths (i.e., half-paths using the

BE bandwidth class) are combined, the resulting channel is a BE channel, and similarly, two static half-

paths create a static channel. Hybrid channels are also possible, and we will make use of a static up-path

that is combined with a BE down-path. Packets flowing through different types of channels have different

properties.

Dynamic channel. An endhost can send a request on static, BE, or hybrid channels to reserve a dy-

namic channel, which provides high bandwidth for a short amount of time (on the order of seconds to

CHAPTER 3. STRIDE 22

Src

Dst

A

B

C

D

E

S

F

100

50

50

25

25

100

80

20
40

40
H

G
I

100

100

 ISD Core

Endpoint AD

Intermediate AD

Path Server

25

25

Figure 3.2: Illustration of STRIDE and how bandwidth is split and announced through PCBs.

enable fast revocation). All ADs, including the destination, need to agree on the amount of bandwidth

offered for the dynamic channel. This channel is similar to network capabilities [12, 168] with bandwidth

guarantees [171].

One surprising aspect of STRIDE is that only the access routers in the endpoint ADs have to keep

per-flow state for flow admission and policing. STRIDE does not require intermediate routers to maintain

any per-flow or per-path state in the fastpath for forwarded traffic; only the initial channel establishment

requests require slowpath operations for admission control. Performing per-flow management at edge

routers is shown to be practical [148], and we can further relax this state requirement using probabilistic

detection of the largest flows. With these ingredients, we construct a series of mechanisms that achieve

the highly available communication we strive for.

3.2.1 Static Half-Path Setup

We now describe how an endpoint AD (ADS) establishes a guaranteed static path (i.e., a path using static

bandwidth class) to its ISD Core.

➀ Bandwidth announcement: The ISD Core assesses its link capacity and adds information regarding

current reservable static bandwidth to periodic PCBs (ISD Core and PCBs are explained in Section 2.2).

The ISD Core ensures no congestion on its internal links even if the announced static bandwidth becomes

fully reserved. As a PCB travels from the ISD Core to endpoint ADs, each AD adds information regarding

its own bandwidth availability. In particular, an intermediate AD splits the reservable bandwidth and

CHAPTER 3. STRIDE 23

announces the split amount for each of its children for the static path. Figure 3.2 depicts the bandwidth

availability announcement (denoted by the numbers) of PCBs for the static path. This particular diagram

shows that ADS has three possible static paths:

➊ ISDCore
100→ ADA

80→ ADF
40→ ADS

➋ ISDCore
100→ ADB

50→ ADF
25→ ADS

➌ ISDCore
100→ ADB

50→ ADE
25→ ADS

➁ Activation: Recall that each endpoint AD learns a set of BE half-paths to the ISD Core through PCB

propagation. The AD can then activate k BE half-paths per provider AD to static class as follows. Upon

receiving a PCB with the bandwidth availability information, ADS sends an activation request to the ISD

Core to reserve the static bandwidth as specified in the PCBs. While forwarding this request, all the

intermediate ADs temporarily reserve the requested static bandwidth for ADS if they can support the

request. For example, ADS may request 40 units of the static-class bandwidth through path ➊, 25 units

through path ➋, etc.

➂ Confirmation: The ISD Core sends a confirmation to ADS for the guaranteed static path that ADS (and

all of its hosts) can use to reach the ISD Core. The new opaque fields constructed along the confirmation

enable ADS to communicate with the ISD Core on the static path. Note that STRIDE allows each endpoint

AD to create up to k static half-paths per provider AD, and each endpoint AD has the freedom to keep

a subset of static half-paths in private for privileged access, as we will explain in step ➃ below, while

registering others at the Path Server for public usage.

3.2.2 Static and BE Channel Setup

After the half-path setup, each endpoint AD obtains a set of static bandwidth-guaranteed half-paths in

addition to a set of BE half-paths provided by the original PCBs. We now describe how two half-paths

(i.e., an up-path and a down-path) can be combined to setup an end-to-end channel. Combining static

and BE half-paths results in four types of channels (i.e., static, BE, static+BE, or BE+static) with different

guarantees, as summarized in Table 3.1.

➃ End-to-end path selection: When source src of ADS wants to communicate with destination dst of

ADD, src queries the Path Server for the down-paths to reach dst. Src reaches the Path Server in the ISD

Core using a BE or static half-path as a communication channel. The Path Server then returns unconcealed

static down-paths and/or BE down-paths to src. Alternatively, dst can inform src of a private static path

over an Out-Of-Band (OOB) channel. By combining one of its up-paths and one of the down-paths

CHAPTER 3. STRIDE 24

provided by the Path Server, src now establishes an end-to-end channel for sending a dynamic channel

setup request.

3.2.3 Dynamic Channel Setup

➄ Dynamic channel setup request: To acquire guaranteed bandwidth along a dynamic channel, src sends

a dynamic channel setup request on this newly established end-to-end (static, BE, or hybrid) channel.

While this request travels toward dst, all ADs on the path specify the bandwidth that they can provide for

the dynamic channel and forward it toward dst.

In the situation that src sends packets beyond the allocated static bandwidth of the static up-path, ADS

sets an overuse bit on each extra packet to utilize unused static or BE bandwidth, thereby indicating that

the extra packets are beyond the permitted allocation for efficient traffic policing.

If src cannot send the request on the static channel, possibly due to congestion on any of the announced

down-paths, STRIDE flexibly allows the endpoint AD to send requests on the BE channel. We discuss

several alternatives for channel composition and their priorities in Section 3.3.3.

➅ Dynamic-class bandwidth allocation: When dst receives src’s dynamic channel setup request, dst can

deduce sustainable dynamic-class bandwidth for src based on the reported dynamic-class bandwidth

availability of all the intermediate ADs (e.g., minimum of the dynamic-class bandwidth allocations of

all the intermediate ADs). Then dst sends this information to src, during which the dynamic capability is

constructed on the return path. STRIDE provides flexible options for sending the reply. For example, dst

may send the reply through the allocated dynamic channel or through the reverse channel that sent the

request.

➆ Guaranteed data transmission: When src receives the reply, it can enjoy sending data traffic using the

dedicated dynamic-class bandwidth by embedding the dynamic capability in the data packets. Since this

bandwidth is short-lived, src may renew this dynamic-class bandwidth using actual data packets. Similar

to step ➄, src can also send more than the permitted dynamic bandwidth allocation, in which case ADS

sets the overuse bit for the extra data traffic.

3.3 STRIDE Protocol Description

In this section, we elaborate on STRIDE’s mechanisms.

CHAPTER 3. STRIDE 25

3.3.1 Static Half-Path Setup

➀ Bandwidth announcement: Upon receiving a PCB, an intermediate AD (ADi) forwards it to the down-

stream AD (ADi+1) after appending the bandwidth information, which includes (1) currently reservable

static-class bandwidth for ADi+1, (2) currently underutilized static-class bandwidth that ADi+1 can use,

(3) currently available dynamic-class bandwidth, and (4) currently available BE-class bandwidth. This

bandwidth information enables downstream ADs and endhosts to deduce congestion status and make

informed decisions in selecting paths. When a PCB reaches an endpoint AD, it contains a path from the

ISD Core to the endpoint AD with reservable bandwidth that can be provided once this path is activated

(details in step ➁).

On each PCB, ADi adds an opaque field Oi, as described in Eq. (2.1). The resulting collection of opaque

fields in the PCB access the BE channel on the route that the PCB traversed. Note that ADi should use

different MAC keys to construct opaque fields for different bandwidth classes and expiration time, so

that an attacker cannot forge an opaque field for another traffic class or extend the expiration time. For

example, the MAC key Ki can be derived from a master secret key K̂i: Ki = FK̂i
(BE, timestamp), where

F(·) is a pseudo-random function.

Path diversity vs. quality. The bandwidth announcement mechanism in STRIDE enables an AD to

divide bandwidth among its customers. However, bandwidth allocation is still challenging because of the

tradeoff between path diversity (i.e., the number of different paths) and path quality (i.e., the bandwidth

allocated to each path). An intermediate AD can offer higher path diversity by propagating a PCB to more

children (i.e., egress routers). Yet, increasing path diversity reduces the bandwidth that can be allocated

to each child AD since the bandwidth contained in a PCB must be split for all children recursively as the

PCB propagates to downstream ADs.

To address this issue, STRIDE uses a bandwidth overbooking technique to enhance path diversity and

quality simultaneously. The observation is that since an endpoint AD can choose up to k paths out of

all announced paths, not all announced paths will be activated. Hence, intermediate ADs can announce

greater reservable bandwidth (i.e., overbook) to their downstream ADs than the actual link capacity and

defer the actual bandwidth reservation later during the activation step (➁). However, if intermediate

ADs overbook their bandwidth aggressively, path activation could be frequently denied. To address this

issue, STRIDE allows each intermediate AD to overbook its bandwidth such that the probability of path-

activation failure along its link is below a certain threshold, which we analyze in Section 3.7.

From the bandwidth announcement in the latest PCB, an endpoint AD learns the amount of static

bandwidth it may reserve on the corresponding route. Note that the actual allocation is not performed

CHAPTER 3. STRIDE 26

until the activation step (➁), and the advertised bandwidth may be greater than what an intermediate AD

can support because of overbooking or stale bandwidth information.

➁ Activation: An endpoint AD requests for a path activation along the reverse path to the ISD Core. Each

request consists of the desired (1) expiration time of the path and (2) amount of static-class bandwidth.

The desired bandwidth should not exceed the announced reservable bandwidth in the latest PCB. STRIDE

considers an activation request as a control message, like PCBs, that is protected from data-plane DDoS

attacks. To avoid congestion on the control plane, each AD can rate-limit the activation requests on a per

customer basis and advertise the limit with the reservable bandwidth during the announcement.

Upon receiving an activation request, an intermediate AD with sufficient unallocated bandwidth (i.e.,

spare capacity ≥ desired bandwidth) temporarily allocates the requested bandwidth for this path. Oth-

erwise, the AD sends back an error message. Also, to minimize bandwidth waste, the AD recycles tem-

porarily allocated bandwidth when the activation fails, which is indicated by the lack of a confirmation

(step ➂) or an error message before the arrival of the next PCB.

For efficient bandwidth management (e.g., allocation and recycling), the expiration time and band-

width is chosen from a pre-defined finite set of values. For example, the expiration time can be 6, 12, 18,

or 24 hours; the subclass bandwidth assigned to each activation request can be 64 Kbps, 128 Kbps, etc.

Each endpoint AD is allowed to activate up to k distinct paths per upstream AD (or provider). This

policy is made in accordance with the observation that in the current Internet, large endpoint ADs often

subscribe to multiple providers for increased capacity and path diversity. This k-path policy can be

enforced either by the providers or the Path Server in the ISD Core.

➂ Confirmation: The ISD Core informs the endpoint AD of a successful static path activation by sending

a confirmation message along the activated path. The confirmation message contains the expiration time

and the allocated bandwidth. The ISD Core also updates the Path Server to include this activated path.

Upon receiving the valid confirmation from the ISD Core, each intermediate AD on the path converts the

temporarily-allocated bandwidth to be long term (until the expiration time).

Before forwarding the confirmation to the next hop, the AD adds a new opaque field using a different

MAC key Ki, derived from the master secret key K̂i similarly as before: Ki = FK̂i
(static, timestamp, BW),

where BW is the amount of bandwidth allocated to the path. After receiving the confirmation, the end-

point AD can forward packets on the static channel of the path by including the new opaque fields in the

header of packets.

CHAPTER 3. STRIDE 27

3.3.2 Static and BE Channel Setup

After the half-path setup, endpoint ADs learn multiple long-term, bandwidth-guaranteed static half-paths

(in addition to multiple BE half-paths) to communicate with the ISD Core.

➃ End-to-end path selection: When an endhost src in ADS attempts to make a connection to another

endhost dst in ADD, src contacts ADS for path resolution. In turn, ADS requests the Path Server in the

ISD Core for a list of static paths to dst, and the server returns down-paths. As a result, the ADS can select

an up-path (from itself to its ISD Core) and a down-path (from the ISD Core to ADD), and splice them to

form an end-to-end path.

Path Server availability. A successful DDoS attack against Path Servers would disable end-to-end path

establishment in STRIDE. Such an attack can be mitigated in several ways: (1) the ISD Core can detect the

origin of attack traffic against Path Servers and throttle their traffic, (2) the bandwidth-guaranteed static

paths can be used to contact a Path Server, and (3) the Path Server functionality can be distributed to

several machines.

Path selection policy. If ADS keeps on selecting paths based on the highest available bandwidth, it may

end up selecting a single best path for all the source endhosts (besides src), eventually congesting this

path. To resolve this issue, endpoint ADs in STRIDE perform probabilistic path selection as follows: the

endpoint AD selects a path with a probability proportional to the path bandwidth guarantees. With this

policy, the endpoint ADs are more likely to select uncongested paths and reduce the average number of

trials. We evaluate a specific instance of this policy in Section 3.5.

Private paths. We introduce the notion of private paths, which endpoint ADs can use to provide guaran-

teed down-paths to preferred endhosts. In a nutshell, an endpoint AD can keep some half-paths as private

and provides them to its endhosts such that they can selectively provide them to preferred sources. We

define private services to be provided by those servers that can predict future customers (e.g., premium

customers on Amazon). A private server providing access to a closed community can provide guaranteed

connection setup to community members with private down-paths as follows: a destination can selectively

disclose its private down-paths to preferred sources. The private paths can be distributed via OOB chan-

nels or by uploading encrypted private paths to a Path Server. As a result, a valued customer of Amazon,

for example, can obtain a bandwidth-guaranteed static down-paths for sending dynamic channel setup

requests to Amazon.

CHAPTER 3. STRIDE 28

Table 3.1: Guarantees of dynamic channel setup delay and bandwidth for different types of end-to-end
channels.

Up-path Down-path Delay Bandwidth guaranteed?
Static Static (private) Constant ✓

Static Static (public) Linear ✓

Static Best-effort Linear ✗

Best-effort any ✗ ✗

3.3.3 Dynamic Channel Setup

Using a (BE, static, or hybrid) channel, src sends dynamic channel setup requests to establish an end-

to-end dynamic channel. With such an end-to-end dynamic channel, STRIDE can provide bandwidth

guarantees to short-term, high-bandwidth dynamic flows. Note that src can send any types of packets on

the end-to-end channel, but we focus on the discussion of sending dynamic channel setup requests, as it

is a part of our DDoS defense mechanism.

➄ Dynamic-channel setup request: After selecting an end-to-end channel in step ➃, a source endhost can

send a dynamic channel setup request for guaranteed dynamic-bandwidth allocation. Table 3.1 describes

guarantees of dynamic channel setup delay and bandwidth for different types of end-to-end channels.

A request header carries two additional indicators that enable congested intermediate ADs to effi-

ciently control link bandwidth:

• Overuse bit: A source AD sets an overuse bit of a packet on a static up-path in case its endhost is

sending packets more than the reserved static-class bandwidth of the up-path.

• Congestion bit: Any AD that experiences link congestion sets a congestion bit in BE packets.

Traffic priority of requests. When an AD receives more packets than what its outgoing links can afford,

the AD has to discard some of them while maintaining the static-class bandwidth guarantee. Based on

where the congestion occurs, we discuss different techniques to prioritize packets.

• Host contention at source ADs: Static bandwidth contention may occur on the source AD’s outgoing

links. Each AD can have a different way to resolve contention. For example, it can adopt a payment-

based scheme in which each client informs its host AD how much it is willing to pay for using a

static up-path, and the endpoint AD can arrange based on some objectives (e.g., maximize the AD’s

revenue) [162]. For ease of analysis, we consider per-host fair sharing within an endpoint AD.

• Link congestion on up-paths: During link congestion, each source domain obtains a weighted fair share

of the available (unallocated, or allocated but unused) static bandwidth. A weighted fair share is

CHAPTER 3. STRIDE 29

Table 3.2: Traffic priority of dynamic channel setup requests on the down-paths that experience link
congestion.

Priority Up-path Bits set How requests arrived
1 Static - Within allocated static BW
2 BE - On uncongested BE link
3 Static Overuse Beyond allocated static BW
4 BE Congest On congested BE link
5 Outside ISD - From outside ISD

proportional to the source domain’s static allocation on the congested link. Hence, static packets

with the overuse bit would be transmitted on the static channel up to the weighted fair share, and

packets beyond the share are converted into BE packets to compete with the standard BE traffic.

• Link congestion on down-paths: STRIDE assigns priority levels to the packets such that low priority

packets are dropped first in the case of congestion. Table 3.2 summarizes the priority levels ordered

from the highest to the lowest. This priority applies to both static and BE classes. If the congestion

persists within the first-priority traffic, the congested link assigns to it a weighted fair share of the

available static-class bandwidth proportional to each destination domain’s static allocation.

Determine reservable dynamic bandwidth. Recall that the dynamic bandwidth class has defined band-

width subclasses, such as 512 Kbps, 1 Mbps, 2 Mbps, etc., and each dynamic channel is associated with

a given subclass. Intuitively, to provide precise bandwidth guarantees for established flows, we have to

ensure that every STRIDE-protected request packet can be offered sufficient dynamic bandwidth (e.g., at

least 512 Kbps). Ideally, we would like to provide guaranteed flow bandwidth to every request packet

traversing static channels, as Table 3.1 shows.

One key challenge here is how to flexibly determine the amount of reservable dynamic bandwidth for

such requests. To address this challenge, STRIDE limits the rate of the dynamic channel setup requests

(thus the dynamic allocation) within the static class to be proportional to the static allocation. For example,

if each dynamic channel is guaranteed 10 units per second and expires in 2 seconds, and the rate limit is

3 requests per second, then the dynamic-class link bandwidth should be greater than 10 · 2 · 3 units per

second to accommodate the worst case where all requests arrive using the static class.

The AD assigns the smallest subclass to the initial request and flexibly upgrades to a higher subclass

for the subsequent requests for the allocation renewal if the link is not congested. In the case of link

congestion on the up-path (down-path), each source (destination) domain obtains a weighted fair share of

the available dynamic-class bandwidth that is proportional to the source’s (destination’s) static allocation

on the congested link.

CHAPTER 3. STRIDE 30

Each AD on the path (including the destination AD) either approves the requested dynamic bandwidth

or reports the maximum available bandwidth (which is at most the available bandwidth indicated by the

previous AD).

➅ Dynamic-class bandwidth allocation: Through a dynamic-channel setup request, a destination end-

host can discover the bottleneck link(s) and the available dynamic-class bandwidth along the path. The

destination constructs a reply packet that carries (1) reserved dynamic-class bandwidth of this flow, (2)

opaque fields, and (3) expiration time which indicates the lifetime of the guaranteed dynamic bandwidth.

The destination also indicates which AD-to-AD link(s) is the bottleneck for determining the bandwidth

reservation.

As the packet travels back to the source, ADs update their dynamic bandwidth allocation and opaque

fields to accurately reflect the available bandwidth and reduce the potential waste of bandwidth. If

the allocated end-to-end dynamic bandwidth does not meet the source’s need (e.g., determined by an

application service), the source may select an alternative path. Furthermore, the source can make an

informed decision to avoid the bottleneck link when selecting an alternative path.

Dynamic channel update. A source can renew the short-term dynamic channel while communicating

with the destination. The sender sets a renewal bit in the header of the dynamic-class packets. If the

destination renews, the source AD invalidates the old channel (e.g., by keeping track of the latest channel

for each flow and rejecting packets using old channels) to prevent misuse.

➆ Guaranteed data transmission: Upon receiving the reply, src can use the end-to-end dynamic channel

for guaranteed data transmission. Src can also flexibly choose other types of end-to-end channels for

different guarantees.

Regulation. For per-flow bandwidth guarantees, endpoint ADs monitor per-flow data usage and regu-

late potential violation. For example, every endpoint AD ensures that the overuse bit is set in every data

packet whose flow rate exceeds the allocated value. ADs are responsible to drop some of the data packets

with the overuse bit to resolve link congestion. For example, similar to the static channel regulation, the

AD can drop packets that are beyond the weighted fair share of the source or the destination. In addition,

intermediate ADs and the ISD Core can perform both real-time probabilistic monitoring and offline traffic

analysis to identify misbehaving endpoint ADs that fail to regulate their clients. ISD Cores and ADs also

monitor per-ISD bandwidth usage of dynamic-class traffic at each interface at the ISD boundary to isolate

attack traffic from other ISDs.

CHAPTER 3. STRIDE 31

3.4 Bandwidth Guarantee Analysis

We first show that STRIDE achieves domain-based guarantees for communication between the source

(ADsrc) and the destination (ADdst) domains within an ISD. Specifically, we analyze what domain-based

guarantees ADsrc can obtain using different types of channels. We then discuss how an endpoint AD can

divide such domain-based guarantees among its endhosts.

In Theorem 1, we show that by leveraging private down-paths, ADsrc and ADdst can establish

bandwidth-guaranteed static channels for congestion-free communication. Let ui and di be ADi’s total

static up-path and down-path bandwidth allocations, respectively, where 1 ≤ i ≤ m and m is the number

of ADs. Since each AD is expected to assess its bandwidth requirement of static half-paths based on its

contractual agreements with human subscribers, ui and di are constant irrespective of the number of ADs

or the power of the botnet. We denote dp(i, j) to be the total bandwidth of ADj’s private down-paths

known only to ADi.

Theorem 1. For private communication (using private static down-paths), ADsrc can successfully send packets to

ADdst at rate rp = min{usrc, dp(src, dst)} without experiencing congestion on any intermediate links.

Proof sketch: The first domain-based guarantee is straightforward. Since ISD Core is congestion-free (as

described in Section 3.1.2), ADsrc can establish end-to-end congestion-free channels by splicing its static

up-paths and ADdst’s private static down-paths. The sending rate of the resulting channels is dominated

by the bottleneck bandwidth, which is the minimum of usrc and dp(src, dst). Both usrc and dp(src, dst) are

independent of the botnet and other ADs’ allocations.

Note that rp is a lower-bound guarantee of the sending rate, and the congestion-free property ensures

that packets, such as connection setup requests, can be delivered at the first trial.

In Theorem 2, we show that ADsrc can obtain a weaker guarantee (which depends on the static allo-

cations of other ADs) when using public static down-paths. Let U = ∑
m
i=1 ui, and U(i) be the total static

up-path bandwidth activated by ADs that desire to communicate with ADi.

Theorem 2. For public communication (using unconcealed static down-paths), ADsrc can successfully send packets

to ADdst at an average rate r = usrc
ddst

U(dst)
.

Proof sketch: Sources that desire to communicate with ADdst compete for the limited bandwidth of

static down-paths, ddst. Sources do not need to compete with packets to other destinations on congested

links because STRIDE performs weighted fair sharing on the static down-paths. To obtain the highest

traffic priority and increase the chance of successful delivery, each source sends packets with no overuse

CHAPTER 3. STRIDE 32

bit on its static up-paths at full speed, resulting in U(dst)-amount of high-priority traffic to ADdst. Hence,

ADsrc with usrc static allocation can send packets through static down-paths at rate usrc ·ddst
U(dst)

(e.g., bit/s) on

average.

Theorem 3 shows that ADsrc can obtain a lower-bound guarantee on the dynamic allocations to ADdst.

Let γ be the ratio of the dynamic-class bandwidth to the static-class bandwidth, and we assume γ is the

same for every link for ease of description. ∆(i, j) is the guaranteed dynamic-class bandwidth that ADi

would like to allocate for communication with ADj.

Theorem 3. For dynamic channels, STRIDE guarantees min{∆(src, dst), ∆(dst, src)} amount of dynamic-class

bandwidth for the flow aggregate between ADsrc and ADdst, where ∑
m
i=1 ∆(src, i) ≤ γ · usrc and ∑

m
i=1 ∆(dst, i) ≤

γ · ddst.

Proof sketch: Because STRIDE performs weighted fair sharing within the dynamic class based on the

static allocation, the flow aggregates from ADsrc and to ADdst are guaranteed to have γ · usrc and γ ·

ddst bandwidth, respectively. Endpoint ADs can then freely divide the guaranteed bandwidth to flow

aggregates going to/from different ADs.

Splitting guaranteed bandwidth. Each endpoint AD decides how to divide its bandwidth guarantees

among its endhosts based on its local policy. For example, a simple policy would be to split the static

allocation based on per-host fair sharing. Suppose the sender and the receiver obtain a fair share u′src

and d′dst, respectively, from their local domains. Similar to Theorems 1–3, we can show guarantees for the

sender and receiver by replacing usrc with u′src and ddst with d′dst in the proofs above. Moreover, because

the number of dynamic channel setup requests within the static class is small and bounded, STRIDE

can provide guaranteed high bandwidth to flows established through static channels. An interesting

observation is that since compromised endhosts send traffic all the time whereas uncompromised endhosts

do not, the available bandwidth is much higher than the fair share if the domain contains fewer bots.

Resilience against DoC, Coremelt, and Crossfire Attacks. A Denial of Capability (DoC) attack aims to

disrupt the delivery of capability requests, or the dynamic channel setup requests. Theorems 1 and 2

imply that a DoC attacker (1) cannot crowd out a capability request if the request is placed along a static

channel with a private down-path and (2) can delay a capability request at most by time linear to the static

allocation of other domains if the request uses a public down-path. These bounds are independent of the

size or distribution of the botnet outside the communicating ADs.

CHAPTER 3. STRIDE 33

In the Coremelt attack, bots send traffic among each other, overloading a backbone link by a quadratic

number of low-intensity flows that are wanted by the destinations. Theorem 3 implies that STRIDE

can defend against Coremelt attacks because the guaranteed flow bandwidth between the source and

destination ADs is unaffected by bots outside those ADs.

In particular, STRIDE linearizes the Coremelt attack through domain-based isolation. Without STRIDE,

a legitimate flow has to compete with attack traffic that grows quadratically with the number of bots. With

STRIDE, a legitimate flow only needs to compete with attack traffic that grows linearly with the number of

bots in the source AD, assuming the source AD limits the rate on a per-sender basis rather than per-flow.

That is, the legitimate flow is isolated from attack traffic between bots outside the source and destination

ADs. Moreover, provided that users can opt to subscribe to a clean AD, the market mechanism incentivizes

ADs to clean up their own domains.

The Crossfire attack cuts off a target area by flooding a few selected links. This attack exploits a

characteristic of the current Internet—a few critical links are responsible for a large portion of traffic to

a target area. The Crossfire attack exhibits several distinct properties. First, bots send traffic to decoys

(e.g., public IP addresses) rather than other bots, increasing the pool of attack flows. Second, the attack

floods links across different ISPs, such that it cannot be mitigated by individual ISPs. Third, to attack

persistently, it is designed to avoid any route change.

It is still an open research question whether the Crossfire attack can succeed on new Internet architec-

tures that support multiple route choices and route control, such as SCION. Such new architectures may

be able to weaken Crossfire attacks by either distributing traffic among a large set of routes or quickly

switching away from congested routes. Hence, we examine whether STRIDE can counter Crossfire as-

suming the attack can succeed on SCION.

If the overloaded links are not in the ISD Cores, STRIDE can similarly isolate attack traffic from bots

outside the source AD or to decoys outside the destination AD and provide guarantees depending on

the bots in the source AD only. The problem is thus reduced to whether the attack can overload the

ISD Cores. While this work assumes the ISD Cores can accurately provision and control the advertise

bandwidth so as to be free from congestion, we leave it as future work to design concrete mechanisms for

congestion-free routing within and between ISD Cores.

3.5 Evaluation

In this section, we evaluate STRIDE with respect to its effectiveness against DDoS attacks. We show the

effectiveness of end-to-end bandwidth guarantees under large-scale attack scenarios. We also test the

CHAPTER 3. STRIDE 34

packet forwarding performance of STRIDE via real-field implementation.

Simulation setup. For realistic simulation, we use a CAIDA AS-relationship dataset to construct an ISD.

A tier-1 AD connecting to 2164 endpoint ADs is chosen as the ISD Core. Although the AS-relationship

dataset does not include all interface-level paths, our analysis of the dataset reveals that AD-level path

diversity is high enough to support STRIDE’s path control and hence to evaluate STRIDE’s path construc-

tion. Specifically, the endpoint ADs in the dataset have more than 40 different paths to the ISD Core on

average. If interface-level paths are constructed, path diversity at endpoint ADs would become much

higher since the number of paths grows exponentially as PCBs propagate downstream.

Bandwidth allocation. During PCB propagation, each AD allocates bandwidth to each child AD pro-

portional to the child size. We assume that the size of an AD is proportional to its degree.

3.5.1 Resilience against DoC Attacks

We evaluate the resilience of STRIDE against DoC attacks under the following simulation scenario. We

randomly label one hundred ADs as clean (i.e., the ADs containing no bots) and configure them to send

traffic to a destination AD using 10 different down-paths (i.e., k=10), with a send rate equal to one tenth

of the down-path capacity. Hence, in the absence of attacks, all down-paths are fully (but not overly)

utilized. Then, we randomly label ADs as contaminated (i.e., the ADs containing bots) and set their send

rates equal to that of a clean AD so as to make individual contaminated ADs indistinguishable from clean

ones. The number of contaminated ADs is increased from 0 to 300.

We evaluate the effectiveness of STRIDE against the above attacks in the following two scenarios.

1. Public Paths: All clean and contaminated ADs use their k activated down-paths to setup capabilities

with the destination AD.

2. Public and Private Paths: Half of the clean ADs use a private down-path that was provided to the

source ADs via a secret out-of-band channel. Meanwhile, the remaining half of the clean ADs and

contaminated ADs use the public paths as before.

We use the admission ratio as an evaluation metric. Admission ratio is defined as the percentage of the le-

gitimate packets (i.e., packets from the clean domains) that successfully traverse the bottleneck link/path.

Figure 3.3 shows that when all source ADs use the public paths (“All”), the admission ratio of the

legitimate packets decreases as more contaminated ADs are added since the per-AD bandwidth decreases.

When half of the clean ADs acquire a private path from the destination (“Private”), their packets are

CHAPTER 3. STRIDE 35

0 40 80 120 160 200 240 280
0

50

100

of contaminated ADs

A
dm

is
si

on
 R

at
io

 (
%

)

All
Public
Private

Figure 3.3: The admission ratio of legitimate packets for the number of contaminated ADs.

unaffected by the attack as the 100% admission ratio shows; the packets of the remaining half of the clean

ADs (“Public”) obtained higher admission ratio along the public paths because the use of the private path

reduced bandwidth contention along the public paths. This result illustrates how destination ADs can

protect their valued customers’ traffic from DDoS attacks in STRIDE.

While STRIDE enables private parties to use private paths to avoid congested static paths, it also

protects clean ADs’ traffic from large-scale DDoS attacks via packet prioritization. That is, capability

requests made through the static up-paths would have a higher priority than others through the best-effort

up-paths. To examine this, we use the following simulation scenario. The attack strength is increased (by

adding more attack sources within contaminated ADs) up to 10 times the bandwidth of the static up-

paths. Source ADs put the high priority marking on their outbound packets such that the bandwidth

of high priority packets would not exceed that of the static up-paths (e.g., if the attack strength grows

10 times, 90% of attack packets would have a low priority marking). Legitimate source endhosts, on

identifying congestion on static down-paths, use the best-effort down-paths, and attack source endhosts

use the same path selection strategy as that of the legitimate sources to maximize their effects. The above

attack scenario is the strongest attack scenario we consider for the given number of legitimate and attack

sources since all packets from the 100 clean and 300 contaminated ADs compete for the bandwidth of

public paths.

1 2 3 4 5 6 7 8 9 10
0

50

100

Attack Strength (x fair share)

A
dm

is
si

on
 R

at
io

 (
%

)

w/ Priority
w/o Priority

Figure 3.4: The impact of attack strength.

CHAPTER 3. STRIDE 36

Figure 3.4 shows that even if the attack strength grows, the effects on legitimate traffic are marginal:

attack sources, regardless of their strength, can only consume bandwidth proportional to their fair share

both on the static and the best-effort channels. Meanwhile, 25% of legitimate packets sent through the

static down-paths reach their destination without loss, and the other legitimate packets (i.e., 75% of them)

sent through the best-effort channel reach the destination with a ratio close to 66.7%. Overall, 75% of the

legitimate requests overcome the massive DDoS attack whose total send rate is 30 times higher than that of

the legitimate sources, even if routers cannot distinguish between legitimate and attack packets. The figure

also shows that without packet prioritization, the admission ratio of legitimate packets decreases as the

attack strength grows. This result shows the effectiveness of using static up-path and packet prioritization

in STRIDE.

3.5.2 Flow Bandwidth Guarantees

STRIDE’s bandwidth guarantees effectively isolate the bandwidth of attack traffic from that of legitimate

traffic. As a consequence, in STRIDE, the effects of attacks are confined within the paths they follow

regardless of whether attack sources flood a single path (or a link) or multiple paths simultaneously. We

show this bandwidth isolation via large-scale simulations. For realistic simulations, we construct simula-

tion topologies using a CAIDA SkitterMap [1], attach 10,000 legitimate sources to 200 ADs proportional

to the AD size, and attach attack sources (hosts) to 100 ADs. Paths are probabilistically sampled from the

SkitterMap to satisfy both the number of sources and the number of ADs. Legitimate sources control their

packet sending rate based on the TCP congestion control mechanism, while attack sources send constant,

high-rate traffic to flood a target link. We increase the attack size from 10K to 100K to compare STRIDE’s

bandwidth guarantees with those of a per-flow fair-sharing based mechanism. We consider a baseline

case, labeled as “No Defense”, where packets are randomly dropped during congestion.

20k 40k 60k 80k 100k
0

50

100

of attack sources

B
an

dw
id

th
 (

%
)

STRIDE
Flow Fairness
No Defense

Figure 3.5: The impact of attack size.

Figure 3.5 shows the bandwidth used by the legitimate flows that originate from clean ADs. Under “No

CHAPTER 3. STRIDE 37

Defense”, the legitimate flows obtain almost no bandwidth. DDoS attacks. When per-flow fair-sharing

bandwidth control is employed, attack flows cannot completely exhaust the target’s link bandwidth, yet

the attack effects grow linearly with the attack size.

STRIDE provides consistent bandwidth guarantees to legitimate traffic under different attack sizes,

which proves the effectiveness of path bandwidth isolation. The bandwidth of legitimate flows decreases

slightly as the attack size grows for two reasons. First, the extra bandwidth that is not fully used by some

paths (due to the TCP congestion control) is shared by other flows. Second, as the number of contaminated

ADs increases, the number of clean ADs decreases (as the total number of ADs is fixed).

120 140 160 180 200
0

50

100

of contaminated ADs

B
a

n
d

w
id

th
 (

%
)

STRIDE

Figure 3.6: The impact of attack dispersion.

Next, we increase the number of contaminated ADs by 10 up to 200 ADs. As one can imagine, the

bandwidth of legitimate flows decreases as Figure 3.6 shows. However, the effects of attack dispersion

are marginal (i.e., proportional to the number of attack ADs) because the dynamic channel bandwidth is

proportional to the static channel bandwidth and the static channel bandwidth that can be used by attack

traffic is limited by the number of attack ADs in STRIDE.

3.5.3 Throughput

STRIDE introduces additional computational work for capability (or opaque field) verification. To gauge

the computational overhead, we measure the throughput of a STRIDE router for various packet sizes

and compare the result with that of the default IPv4 forwarding. We implement a STRIDE router as a

user-space process using the Click Modular Router [89]. The capability generation and verification are

implemented as CBC-MAC with AES-ni. We perform the measurement with a simple topology where

a source and a destination are directly attached to a STRIDE router. Netperf3 is used for throughput

measurement.

3Netperf Benchmark. http://www.netperf.org/netperf/

http://www.netperf.org/netperf/

CHAPTER 3. STRIDE 38

As described earlier, STRIDE forwards packets based on the interface identifier in the packet header.

Hence, unlike in today’s routers, no overhead will be incurred for FIB (forwarding table) lookup. Mean-

while, the IPv4 forwarding in our experiments would produce the highest throughput that it can achieve

since the FIB has only one entry in our network configuration.

400 600 800 1000 1200 1400
0.2

0.4

0.6

0.8

1

Packet Size (B)

T
hr

ou
gh

pu
t (

G
bp

s)

STRIDE
IPv4

Figure 3.7: Throughput vs. packet size.

Figure 3.7 shows that for small packets, both IPv4 and STRIDE routers under-utilize the link bandwidth

while the IPv4 packet forwarding outperforms that of STRIDE. For large packets, they both utilize more

than 90% of the link bandwidth. In practice, the packet overhead becomes negligible because small packets

account for less than 10% of bandwidth and most of remaining packets are full sized [1].

3.6 Extensions

This section presents two extensions to enhance STRIDE’s waiting time guarantees. The first one extends

the guarantees to inter-ISD communication. The second one strengthens the guarantees for requests using

the BE channels on the down-paths.

3.6.1 Inter-ISD Guarantees

While STRIDE focuses on domain-based guarantees for communication within an ISD, many of the prop-

erties also translate for communication between ISDs. For example, static channels on the up-paths still

guarantee low-capacity throughput. Only BE channels are getting lower guarantees, as there is no explicit

indication that the receiver desires the communication. Thus, establishing a connection to a public service

that is under attack will be challenging for an external host. However, as soon as the service receives one

initial packet and desires to serve that client, it can set up a dynamic channel with the same protected

bandwidth guarantees within each ISD assuming no congestion on high-capacity links between ISDs.

STRIDE gives precedence to internal static traffic over external static traffic because external static

traffic may be labeled incorrectly per up-path. For example, a malicious AD or ISD can claim to have more

CHAPTER 3. STRIDE 39

capacity on a static path than the actual allocation, and other ISDs cannot verify the claim. Therefore, ISDs

need to be able to monitor and limit external static traffic by itself (rather than trusting other ISDs) so as

to provide connection setup guarantees to external hosts.

In this extension, ISDs isolates external traffic via explicit allocation. To achieve this goal, we consider

three methods, each of which provides an ISD with different control granularity on external traffic.

1. A common limit on all down-paths via Inter-ISD agreements. Tow ISDs negotiate bandwidth limits in

their contractual agreement. For example, ISD A can agree to allocate 1% bandwidth of each static

path and 1% BE-class bandwidth on each link to ISD B’s traffic that ISD B claims to be from static

up-paths. ISD Cores and ADs at the ISD boundary are responsible for monitoring and regulation.

2. Destination-controllable bandwidth limits via path publishing. When publishing a path to the Path Server,

the destination AD can specify how much bandwidth to allocate for external traffic on a per-path

basis. The ISD Core encodes the destination-specified limit to the path, and performs monitoring

and regulation accordingly.

3. ISD-specific via path activation. The destination AD constructs special BE or static down-paths ded-

icated to forward traffic originating from certain ISDs. Specifically, each AD on the path encodes

the list of allowed ISDs into the opaque fields. Every on-path AD knows the policy and thus can

perform regulation. Compared to the second method, this method is more flexible (i.e., this one

does not depend on the ISD Core for regulation) yet requires more protocol rounds to establish such

special paths.

3.6.2 Partial Dynamic Channels

A request using a static up-path and a BE down-path may be dropped by any congested ADs on the

BE down-path. This leads to at least two disadvantages. First, the probability of reaching the destination

decreases exponentially with the number of bottlenecks (i.e., congested ADs) on the BE down-path because

these congested ADs drop packets randomly without any coordination. Second, it is a waste of work for

the ADs on the previous hops, as they have to recycle allocated dynamic bandwidth due to the incomplete

requests.

To overcome these two disadvantages and strengthen the guarantees when using BE down-paths,

we propose to use extensible dynamic channels by extending the incomplete dynamic channel established

between the sender and the AD that drops the request.

The sender resends requests on an incomplete dynamic channel to extend the incomplete dynamic

channel until either it reaches the destination or the channel expires. In this way, the expected waiting

CHAPTER 3. STRIDE 40

time is reduced from multiplicative to additive with respect to the number of congested ADs. Moreover,

since the incomplete dynamic channel is used only for sending requests, ADs on the path can reduce the

allocated bandwidth for such incomplete channels for improved bandwidth utilization.

By contrast, prior work providing per-flow or per-source fairness at each bottleneck independently

may suffer from low link utilization in the case of multiple bottlenecks. For instance, consider a topology

with links A-B (2 units of bandwidth), B-C (1 unit) and B-D (1 unit). There are 99 one-unit flows from

A to C and a one-unit flow from A to D. While the topology can deliver 2 units of traffic end-to-end, a

per-flow fair share policy would degrade the utility from 2 to 1.02.

3.7 Discussion

3.7.1 Malicious ADs Inside an ISD

ADs within an ISD may get compromised, therefore failing to regulate traffic. Although this is unlikely

in well-administered ADs, attackers can nevertheless exploit software vulnerabilities in routers or admin-

istrative workstations. STRIDE can identify malicious ADs using neighborhood monitoring and existing

fault detection protocols [180]. For example, if any AD sends more traffic than their allocated share, the

AD must be malicious or misconfigured, and the neighboring AD can block the offending traffic. As

a technical defense, once the malicious AD is detected, hosts can avoid the malicious AD by selecting

paths that avoid traversing that AD. Most importantly, since all ADs of an ISD are within a uniform legal

environment, the ISD Core can revoke the membership of misbehaving ADs.

3.7.2 A Simple Dynamic Allocation Policy

As an example, we describe a simple dynamic allocation policy that satisfies two requirements: (1) every

request traversed a static path can obtain at least a certain amount of allocation that is known a priori, and

(2) the sender can always renew an established dynamic channel (i.e., extending the expiration time of the

channel) by sending a renewal request using the current dynamic channel. The capacity of the renewed

channel may be less than the old one but is still lower-bounded by a certain value that is known by the

sender prior to sending the request.

We consider a simple scenario where all dynamic requests are homogeneous, i.e., with the same length

t and the same bandwidth amount b. The static bandwidth of a link is one unit with a request rate limited

to r, and the dynamic bandwidth is D units. To ensure that every request on the static path can successfully

make a reservation, it is required that D ≥ r · b · t.

CHAPTER 3. STRIDE 41

To support fast renewal using the dynamic channel (where the sender sends renewal requests using

the established dynamic channel), the bandwidth estimation for D has to be revised based on the renewal

policy. Here we consider a simple renewal policy: let x be the amount of reserved bandwidth that will be

freed (and may be renewed) during the current time interval. If x ≤ D
2t , then the renewable bandwidth of

a flow is the same as the previous amount. Otherwise, the renewable bandwidth of a flow is a half of the

previous amount. In this case, by setting D ≥ 2r · b · t, we ensure that every request on the static path can

reserve at least b bandwidth for t time, and every renewal request can get at least a half of the previous

amount.

This policy ensures that the total allocation never exceeds D at any point of time because the newly

reserved bandwidth never exceeds D
2t for any time interval and so does the bandwidth renewed during

this interval.

A similar argument can be applied to configure the BE bandwidth. If the BE bandwidth of a link can

forward requests at rate up to rbe, then it is required that D ≥ 2(r + rbe) · b · t.

Note that although the sender could renew more than once and get multiple capabilities at hand, all the

updated capabilities would be associated with the same flow ID. Hence, they can be correctly monitored

and regulated.

3.7.3 Comparison with Other Bandwidth Reservation Protocols

A major difference between STRIDE and other bandwidth reservation protocols (e.g., RSVP [177]) is

that other approaches are not designed with security in mind and thus fail to consider two important

guarantees in the presence of DDoS adversaries:

1. Waiting time guarantees: When will the reservation request be granted? During DDoS attacks

targeting the requests (e.g., Denial of Capability attacks), the sender may never be able to deliver the

request to the receiver, thereby rendering infinite waiting time.

2. Bandwidth guarantees: How much can the sender reserve?

On the other hand, STRIDE aims to secure the reservation requests from DDoS and also provides lower

bounds on reservable bandwidth.

Besides providing diverse guarantees that prior work does not achieve, STRIDE is more scalable com-

pared to prior work. For instance, the bandwidth allocation mechanism in STRIDE is more scalable than

the RSVP protocol used by the QoS Integrated Services (IntServ), as RSVP requires the sender (which

can be a host or an AD, when RSVP aggregation is used as RFC 3175 specifies) to make an end-to-end

CHAPTER 3. STRIDE 42

reservation to the receiver(s) causing a quadratic number of control messages (in the number of entities)

in the network and quadratic state on the intermediate routers. In STRIDE, since control messages are

sent along a tree-like topology, the control messages and state are linear to the number of ADs.

Another advantage of STRIDE is flexibility. End-to-end reservation (e.g., circuit-switch networks) is

typically less flexible than statistical multiplexing (e.g., packet-switch networks). Interestingly, by support-

ing diverse bandwidth classes and path splicing, STRIDE can be viewed as a combination of packet-switch

and circuit-switch and therefore obtain the best of both worlds.

3.7.4 Directional Paths and Asymmetric Bandwidth Requirements

In practice, network links may be directional or asymmetric with different bandwidths in the two direc-

tions. STRIDE can flexibly accommodate asymmetric paths with minimal modifications as follows. To

request a packet on a directional path, the source puts in the header both the forward and backward

paths. For example, dynamic channels can be requested on both the forward and return paths, and sent

back to the other party through sufficient space allocated in the packet header. Bandwidth requests may

be asymmetric, as in downloads the client-to-server bandwidth is one to two orders of magnitude smaller

(acknowledgment packets are smaller than data packets). In this case, STRIDE supports asymmetric

bandwidth allocations.

3.7.5 Link Capacity Division

Using estimations, we provide guidelines that an AD can follow to divide its total link capacity to three

traffic classes—static, dynamic, and BE. First, given that the current real-world link utilization is mostly

below 30% based on the CAIDA dataset [1], allocating 30% of the link capacity to the BE class would

satisfy legacy Internet traffic in most cases. Subsequently, assuming the static and dynamic classes are

allocated s and d fractions of the link capacity, respectively, the following conditions should hold:

s + d = 1− 30% (3.1)

40Gbps× s > 500Kbps× 10000 (3.2)

The first condition ensures a link will not be overloaded when each bandwidth class is being fully utilized.

The second condition assumes an OC-768 link capacity (40 Gbps) to be divided among around 10000 paths,

such that each endpoint in a medium-size ISD (e.g., a US ISD with around 2200 ADs, according to the

CAIDA dataset) can choose up to 10 paths in our experiment. The second condition requires the static

bandwidth allocated to each path be no less than 500 Kbps.

CHAPTER 3. STRIDE 43

Based on these guidelines, a reasonable example allocation is to divide 5 – 15%, 60 – 65%, and 30%

link capacity to the static, dynamic, and BE traffic classes, respectively. In practice, an AD can adjust the

numbers in the conditions based on its own link capacity, number of current paths that the AD supports,

etc. Furthermore, when any bandwidth class is not fully utilized, other congested traffic class can take up

all the bandwidth that is currently available.

3.7.6 Bandwidth Overbooking

Section 3.3.1 introduces bandwidth overbooking for simultaneous enhancement of path quality and di-

versity but with possible denial of path activation. To mitigate this issue, we suggest an appropriate

overbooking ratio by analyzing the relationship between an overbooking ratio and the corresponding

probability of path activation denial as follows.

We consider an intermediate AD ADp wanting to determine its overbooking ratio. Let Ii and Ej

represent the ith ingress interface from the providers (0 ≤ i ≤ l) and the jth egress interface to the

customers (0 ≤ j ≤ m), respectively. Let each ingress interface connect to all m egress interfaces. We

assume that m interfaces connect to n customer ADs (i.e., each customer AD has m
n links to ADp). Then,

each customer AD has at least l·m
n distinct paths to the ISD Core through ADp. In this setting, suppose

each customer AD selects uniformly at random k out of the l·m
n paths to the ISD Core, then the probability

that the customer ADs select Ii more than t times in total would be: PIi
(t) ≈ 1− ∑

t
i=0 e−λ · λi

i! , where

λ = n·k
m . This implies that Ii’s bandwidth needs to be allocated to t egress interfaces (out of m interfaces),

which would increase per-path bandwidth allocation by
t−β

β , where β = n·k
l is the average number of

activated paths through Ii. If t ≫ n·k
l , sufficient path diversity (as much as t·l

n·k) is provided to customer

ADs.

As a result, ADp may determine t such that the probability of the denial of path activation does not

exceed some threshold Pth (i.e., PIi
(t) ≤ Pth). For example, Pth = 0.2 means that 80% of path activation

requests would be accepted on average. Hence, the expected number of trials for successful path activation

becomes 1.25. That is, Pth determines the number of requests that should be made by an endpoint AD

until successful path activation.

3.8 Summary

A core goal of the STRIDE architecture is to achieve intrinsic DDoS defense with relatively simple routers.

In particular, we avoid per-flow state in the fastpath, asymmetric cryptographic operations, reliance on

untrustworthy domains, and key establishment across ADs. Even with our relatively simple operations,

CHAPTER 3. STRIDE 44

we can achieve protection against DDoS from large botnets. Reflecting on the STRIDE architecture, we

observe that measured trust in ADs located within the same legal environment providing viable prosecu-

tion helps to simplify the architecture and results in higher efficiency, meanwhile the untrustworthy ADs

outside the trust domain cannot inflict damage against local within-trust-domain communication. We

anticipate that STRIDE provides a useful point in the design space to study holistic network architectures

with strong DDoS defense properties.

Chapter 4

RainCheck Filter

Chapter 3 presents a DDoS-limiting architecture that provides (1) probabilistic waiting time guarantees

for accessing public services and (2) bandwidth guarantees to established flows. This chapter explores

how to achieve stronger deterministic waiting time guarantees—Maximum Waiting Time guarantees—to

overcome a bottleneck on the communication path. Combined with STRIDE, such a primitive can be used

to provide maximum waiting time guarantees to access public services. We discuss the integration in

detail in Chapter 7.

For ease of presentation, we use server flooding (i.e., the bottleneck is at the server) as a motivating

example throughout this chapter.

Motivation: Challenges of providing waiting time bounds in the face of DDoS attacks. Internet users

are impatient. A recent study found that more than half of online shoppers abandon websites that fail to

load in three seconds [3]. When a wait is unavoidable, users perceive known, finite waits to be shorter

than uncertain waits [113], and are willing to wait much longer periods if given visual feedback, such as

a progress bar [124, 24].

In the presence of Distributed Denial of Service (DDoS) attacks, users would suffer from an uncertain

or even infinite waiting time for accessing an online service, as neither the server nor the user knows when

the attack will cease. Unfortunately, DDoS attacks are easy to launch and can cause severe damage. For

example, buying access to 10,000 compromised hosts costs only $200 [42], whereas one-minute unavail-

ability costs an average of $22,000 [132]. Even worse, DDoS attacks are hard to defend against. Enterprise

solutions for server DDoS mitigation (e.g., adding more servers or using content delivery networks) may

be too costly for small- and medium-sized companies to afford. Also, sophisticated DDoS attacks suc-

cessfully emulate flash crowds; it is therefore difficult, if not impossible, to differentiate attack traffic from

45

CHAPTER 4. RAINCHECK FILTER 46

legitimate traffic for DDoS defense. Resource-based proof-of-work proposals can provide each client with

a fair share of resources, but are impractical since they consume critical computational or bandwidth

resources of clients, while giving an unfair advantage to resourceful hosts [163, 129].

Furthermore, none of the aforementioned defense mechanisms can provide a Maximum Waiting Time

(MWT) guarantee such that a client’s request is accepted for service within a finite time T. Gligor [67]

shows how to achieve MWT using a rate-control service that performs precise request scheduling at line

rate. However, such precise scheduling may be too complex to implement or may result in low server

utilization if the scheduled requests do not appear.

Our solution: Bounded waiting time to get through a bottleneck. In this chapter, we present RainCheck

Filter, a DDoS mitigation primitive that guarantees MWT when a critical resource, such as the compu-

tational power or network bandwidth of a server, is exhausted. The core idea behind RainCheck Filter

is simple yet effective: RainCheck Filter prioritizes clients’ service requests based on how long each one

waited, as if the service owning the critical resource maintains an infinite queue in which the clients’

requests are lined up waiting for the service. To simulate the infinite queue with a small physical buffer,

the service sends the client a raincheck,1 a timestamped cryptographic token which not only tells the client

when to retry but also serves as a proof of the client’s priority level. Namely, we approximate an infinite

queue at the service using rainchecks, network propagation delay, and clients’ buffer—which collectively

constitutes a virtual queue. Rainchecks are only valid for a limited time duration so that the resource can

efficiently rate limit each client and prevent raincheck reuse without keeping per-client state. RainCheck

Filter can be applied in front of a critical resource, for example, as a middlebox for a flooded link or

a server. For the rest of this chapter, we assume that RainCheck Filter is applied to protect the critical

resource at the server.

We prove that in RainCheck Filter a legitimate client can access the server within a finite time T which

is linear with the number of clients. We demonstrate how to strengthen the waiting time guarantees by

exploiting auxiliary information such as distinguishability between bots and legitimate clients and the

non-uniform distribution of bots. To provide users with information on their actual waiting time, we

devise a server-side algorithm that accurately estimates each client’s waiting time. The server refines the

estimates over time by incorporating the current client status.

Besides achieving strong guarantees, RainCheck Filter is also flexible, lightweight, and easy to deploy.

RainCheck Filter can be used at different network protocol layers, at different networking elements, and

in conjunction with other DDoS countermeasures. It neither exhausts scarce bandwidth or CPU resources,

1A raincheck is an idiom that represents a promise that an unaccepted admission will be renewed in the future.

CHAPTER 4. RAINCHECK FILTER 47

nor does it require any special networking infrastructure. Rainchecks can be seen as a type of a cookie (e.g.,

TCP SYN cookies [104]) since they free the server from keeping the client information, thereby avoiding

memory-based resource exhaustion. On the other hand, a raincheck is more than a cookie, as the encoded

timestamp allows the server to bound the client waiting time in the face of any form of server flooding.

Our main contributions are as follows:

• We present RainCheck Filter, a lightweight DDoS mitigation primitive that helps legitimate clients

obtain their fair share of the server’s processing power by utilizing the network as an infinite virtual

queue.

• We prove that RainCheck Filter achieves MWT guarantees without per-client state on the server or

precise request scheduling, which none of the prior work can achieve.

• We propose a rank estimation algorithm that accurately estimates each client’s actual waiting time

based on a probabilistic counting technique.

• We evaluate RainCheck Filter using theoretical analysis, simulations, and an implementation. Our

simulation indicates that RainCheck Filter can also reduce variance in the waiting time. Such a

characteristic empowers servers to provide clients with reliable feedback.

4.1 Problem Definition

Our goal is to provide Maximum Waiting Time (MWT) guarantees for clients to get through a bottleneck

on the communication path. For ease of presentation, we focus on the server flooding scenario, where the

attacker depletes the server’s scarce resource (e.g., processor, disk I/O, or internal bandwidth). Our solu-

tion can also be applied to address link flooding, where the attacker depletes the bandwidth of network

links, such as access links to servers.

4.1.1 Waiting Time Model

Among various waiting time guarantees, we consider a strong notion called maximum waiting time (MWT)

guarantees—a finite time T within which a client’s request is accepted for service [67].

From the server’s perspective, the waiting time of a client request c that is accepted after rc retries

is T(c) = T(c, rc) − T(c, 0), where T(c, i) is the time at which the server sees the ith retry by client c,

and the 0th try represents the original request. Similarly, the waiting time observed by a client, T′(c),

is the time elapsed between when the client first sends the response and when the client receives the

response, and T′(c) = T(c) + RTT(c) + process(c), where RTT(·) and process(·) indicate the round trip time

CHAPTER 4. RAINCHECK FILTER 48

and the server’s request processing time, respectively. Assuming RTT(·) and process(·) are bounded, a

bounded T(c) implies a bounded T′(c). Hence, without loss of generality, we consider only the waiting

time observed by the server.

To support this model, we assume that clients and servers are loosely time synchronized (within a few

milliseconds) using standard protocols such as NTP.

4.1.2 DDoS Attacks and Flash Crowds

In server flooding, the server’s scarce resource is depleted by requests2, thereby increasing the waiting

time for legitimate clients.

In a flash crowd, the server is swamped with requests from legitimate clients alone. In a bot-driven

DDoS attack, the adversary directs compromised endhosts, or bots, to overload the server with an over-

whelming number of requests. Bots can forge their IP addresses to evade IP-based detection. We make

no assumption on the adversary’s power and strategy. For example, a powerful and smart adversary can

compromise the majority of endhosts and target one client to maximize the client’s waiting time.

Since this chapter focuses on guaranteeing MWT in the face of server flooding (e.g., consuming the

server’s computational resources), we assume a congestion-free network with benign routers. RainCheck

Filter can also handle link flooding with a single congested link (e.g., flooding an access link in front of

the server), where the ISPs or routers in front of the congested link issue rainchecks. In the rare situation

in which multiple components in the network are flooded (e.g., multiple links, or a link and a server),

then existing mitigation approaches for link flooding can be applied [111, 102]. For detecting malicious

routers that manipulate traffic (e.g., dropping or delaying packets), existing fault localization techniques

can be applied [16, 69, 49, 179].

4.1.3 Server and Client Models

Server model. When a request arrives, the server first performs some operations at line rate, such as

replay detection. Since the incoming request rate, Rin, is bounded by the network line rate, the server

can process every request before adding it to a queue. The queue is kept in fast memory such that the

enqueue and dequeue operations can be done at line rate as well. The server’s processing rate, Rs, is

limited by bottleneck operations (e.g., slow password derivation or database query). When Rin > Rs, the

queue overflows and drops requests based on a certain policy such as tail drop.

2For example, many servers adopt iterated password hashing (e.g., the PBKDF2 algorithm with 1000 iterations) to slow down
password cracking to the order of milliseconds per password [4]. Due to such slow password derivation, the server can be
flooded by simply hundreds of login requests per second.

CHAPTER 4. RAINCHECK FILTER 49

Client model. We consider a network of N clients, consisting of Z compromised and N − Z legitimate

clients, where Z ≤ N and N are bounded but may be unknown to the server. Typically, compromised

clients are controlled by the adversary via malware, while legitimate clients are controlled by their human

users. Each client is attached to an endhost machine and has a unique identifier. We begin with a

simplified case where each client has a unique IP address and discuss in Section 4.2.5 a generalized case

where clients may share one IP address because they are machines behind a Network Address Translator

(NAT) or are attached to the same machine.

Legitimate clients can be either greedy or non-greedy. A greedy client seeks to minimize its waiting

time without raising any suspicion by exploiting some loophole in the protocol specification. A non-

greedy client strictly complies with the communication protocols.

We consider flooding by initial requests but not handshake messages or data following the requests, as

the server can rate limit the requests and never accept requests at a rate higher than what it can support.

4.1.4 Desired Properties

MWT guarantees. The DDoS-limiting primitive should bound the waiting time of a legitimate client,

and the bound should be independent of other clients’ strategies.

Accurate feedback. The server’s estimate of a client’s waiting time should be within a reasonable error

margin of the actual waiting time in order to increase users’ willingness to wait.

Minimal overhead for both clients and servers. The DDoS-limiting primitive should incur minimal

overhead for both servers and clients, thereby avoiding the increase of the attack surface. In particular,

the primitive should avoid per-request or per-client state on a server.

4.2 Raincheck Filter

Our core observation about RainCheck Filter is that Maximum Waiting Time (MWT) guarantees can be

achieved if the server keeps a large queue of size N, where N is the number of clients. We call this an

ideal buffer because in reality we would like to avoid keeping per-client state. RainCheck Filter simulates

the ideal buffer using a realistic buffer whose size is much smaller than N by leveraging the network as an

infinite virtual queue. This is achieved through the exchange of a special type of message called raincheck

between the client and the server.

We first present a simple approach using an ideal buffer and discuss its fundamental properties that

help achieve MWT guarantees. We then present RainCheck Filter, which satisfies these fundamental

CHAPTER 4. RAINCHECK FILTER 50

properties, but with a realistic buffer. For the sake of simplicity, we assume that each client has a unique

IP address in Section 4.2.1– 4.2.4 and show how RainCheck Filter works when multiple clients share one

IP address in Section 4.2.5. The notation is summarized below.

c Client ID (e.g., IP address)

N Total number of clients

Z Number of compromised clients

L Server queue length (L≪ N)

ρc Client c’s raincheck

Rs Server’s request processing rate

∆ Raincheck expiration period

TS(ρc) Timestamp encoded in ρc

4.2.1 MWT Guarantees Using an Ideal Buffer

Without any DDoS countermeasure, an attacker who sends a large number of requests has an advantage

and a legitimate client has a disadvantage. While rate-limiting schemes can ensure fair resource allocation

among clients, rate limiting itself is insufficient to achieve strong waiting time guarantees.

Using a buffer of size N, we can achieve MWT guarantees as follows: the buffer is modeled as a FIFO

queue that euqueues incoming requests. By limiting each client to have no more than one request in the

queue, we ensure that the buffer never overflows. Since the server can process Rs requests per time unit,

the waiting time is bounded by N
Rs

. While such an ideal case requires no IP spoofing as an assumption,

RainCheck Filter can prevent IP spoofing by interacting with clients, as malicious clients sending DDoS

packets with spoofed addresses will not receive the returned rainchecks, as we describe later.

This approach adopts a simple rate-limiting policy (i.e., one request per client in the queue) as well as

a request-ranking policy that orders requests by their age, or the time during which a request has stayed

in the buffer. The server processes the request with the lowest rank (i.e., the oldest request) first.

We observe that the request-ranking policy presents two properties that lead to MWT guarantees in

this ideal case: (1) the initial rank (in the virtual queue) of each request is bounded, and (2) the rank

decreases over time. In Section 4.3.1, we generalize this observation and present a theorem that we use as

a guideline to design RainCheck Filter and prove its MWT guarantee.

4.2.2 RainCheck Filter Design

With a buffer of size L≪ N, a flooded server has to discard most of the requests, which makes it difficult

to treat each client fairly and bound the waiting time.

CHAPTER 4. RAINCHECK FILTER 51

Requests from

RCF-enabled clients

Raincheck

Validation

Raincheck

Issuance overflow
Issued rainchecks

(Request postponed)

Rejected requests
vaild

invaild

Accepted requests

RainCheck Filter

Priority Queue

w/o raincheck

Figure 4.1: RainCheck Filter overview.

To address this challenge, RainCheck Filter leverages the network as an infinite virtual queue from

which the server can retrieve the knowledge of previously dropped requests. In particular, rather than

silently dropping a request, the flooded server sends to the client a cryptographic token called raincheck,

with which the client can prove how long it has waited to be served. RainCheck Filter effectively simulates

the ideal buffer, thereby resulting in a bounded waiting time without keeping per-client state.

Overview. Figure 4.1 illustrates how RainCheck Filter works on the overloaded server. The server can

(1) accept, (2) reject, or (3) postpone an incoming request, which could be either raincheck-carrying or

raincheck-absent. When postponing a request, the server asks the client to revisit at a later time by issuing

a new raincheck to the client. Note that a raincheck-carrying request can be postponed with a new

raincheck. To manage rainchecks, RainCheck Filter implements two core components on the server side—

raincheck issuance and raincheck validation—both of which operate at line rate.

The raincheck validation component checks the validity of a raincheck using the server’s secret key.

Requests with an invalid (e.g., expired) raincheck are rejected, while requests with a valid raincheck are

added to a priority queue of length L, where a request that waits longer gets higher priority.

For each valid yet dropped request, the raincheck issuing component constructs a raincheck using

a server’s secret key and returns the raincheck to the client. Rainchecks are protected using Message

Authentication Codes (MACs) to prevent forgery, tampering, or raincheck sharing. The client can resend

its request with the associated raincheck as a proof of the waiting time.

Raincheck-absent requests are forwarded to the raincheck issuance component directly (rather than

being assigned the lowest priority) for two reasons: (1) to prevent the server from queuing requests with

spoofed IP addresses, since the client must return with the raincheck in order to use the server’s service,

and (2) to ensure bounded waiting time; otherwise, a raincheck-absent request can be stuck in the queue

forever when raincheck-carrying requests arrive at the same speed as the server’s processing rate.

One major challenge is how to ensure fair use of rainchecks in an efficient manner. Particularly, the

server should prevent double-spending of rainchecks and rate limit the number of rainchecks consumed

CHAPTER 4. RAINCHECK FILTER 52

by each client without keeping per-client state. To address this challenge, we impose on every raincheck

an expiration period ∆, which is shorter than the time it takes to process all client requests. Consequently,

the server only needs to keep requests accepted in [t− ∆, t), where t is the current time. Clients wishing

to remain in the virtual queue have to periodically renew their rainchecks. The server can adjust ∆ to

strike a balance between communication and storage overhead, as discussed in Section 4.3.2.

Raincheck message format. A raincheck contains a Message Authentication Code (MAC) protecting the

client ID c, timestamp ts, and the lifetime [tstart, tend), computed with the server’s secret key k, such that

the adversary cannot tamper with or forge a raincheck:

ρc = m‖MACk(m), where m = c‖ts‖tstart‖tend. (4.1)

A unique client ID c is included to enable rate limiting based on source identities and also to prevent two

clients from sharing their rainchecks. Since each MAC is keyed using the server’s secret key, only the

server can correctly create and validate the raincheck.

4.2.3 Server Description

Raincheck issuance. When a queue overflows, the raincheck-carrying request is dropped and directed to

the raincheck issuance component for renewal. The server renews the raincheck by updating its lifetime:

the timestamp stays the same as the one in the old raincheck (ts = told) but the raincheck is valid from

tstart = cur_time + tpause to tend = cur_time + ∆, where cur_time is the current time and tpause is a small

amount of time indicating how long the client has to wait at least before resending. When a raincheck-

absent request arrives, the server drops the request directly and returns to the client c a raincheck in

which the timestamp is the current time (ts = cur_time) and the lifetime is tstart = cur_time + tpause and

tend = cur_time + ∆.

Note that tpause does not affect our MWT guarantees; the guarantees are independent of clients’ resend

strategy, as proved in Section 4.3. Section 4.4.2 explores a RainCheck Filter variant in which rainchecks

can have different lifetimes for improved scalability.

Since the server issues a raincheck to every dropped request, a client can have multiple valid rainchecks

concurrently. However, having multiple valid rainchecks provides no additional benefits to the client,

because the server (or its raincheck validation component) is designed such that the acceptance of a

client’s request invalidates all but a limited number of rainchecks that the client has.

Raincheck validation. For efficient double-spending prevention and rate limiting, the server keeps a set

Accepted that contains requests that were accepted during time [t−∆, t). We denote by Accepted(c) whether

CHAPTER 4. RAINCHECK FILTER 53

a client c’s request is in the set. Similarly, we denote by Buffered(c) whether c’s request is currently buffered

in the queue. The server can implement the checks Accepted(c) and Buffered(c) efficiently using a Spectral

Bloom Filter [35] or a Sliding Bloom Filter [125].

A raincheck is valid if all of the following conditions hold:

1. Lifetime. tstart ≤ cur_time < tend.

2. No duplicate. The same raincheck cannot be reused more than once.

3. Limited client request rate. Given the limit n determined by the raincheck validation component,

when a client’s raincheck is accepted, at most n− 1 additional unique rainchecks can be renewed or

accepted for the same client during ∆. In the case when n = 1, the server should not have recently

accepted or queued the client’s request within ∆ (i.e., Accepted(c) = False and Buffered(c) = False). In

addition to rate limiting via per-source fairness, RainCheck Filter can also work with other fairness

models to accommodate clients sharing the same IP address (e.g., clients behind a NAT). We address

this issue in Section 4.2.5.

4. Integrity. MAC verifies correctly.

The first three conditions ensure that once a request is accepted, all but n− 1 rainchecks that the client

has at that point become invalid.

Valid requests are added to the priority queue. If there are already L requests in the queue, the lowest

priority request will be dropped. The server ranks requests unambiguously based on their timestamps.3

For the rest of the chapter, we assume that the raincheck validation component allows one raincheck per

client (n = 1).

In practice, requests or rainchecks may be lost without any malicious actions. To limit the impact of

packet loss, the server informs a client of the acceptance of the client’s raincheck before processing the

request, such that the client can retry if it does not hear back from the server after certain time. Since the

acceptance notification may be lost too, the server will notify the client of the acceptance again if the client

has recently been served (i.e., Accepted(c) = True).

4.2.4 Client Description

Figure 4.2 demonstrates the client-server interaction in the RainCheck Filter protocol. The client initiates

the RainCheck Filter protocol by sending a raincheck-absent request. The server returns to the client a

raincheck that expires after ∆ in the future.

3A trade-off exists between the timestamp granularity and the waiting time bound. When at most v requests are allowed with the
same timestamp value, the waiting time bound is increased by v

Rs
.

CHAPTER 4. RAINCHECK FILTER 54

Client c Serverreq

t
0ρ

0

req, ρ
0

t
0
+t

pause
<t< t

0
+Δ

t
1

ρ
1

req, ρ
1

t
2

t
1
+t

pause
<t< t

1
+Δ

request w/o raincheck; issue ρ
0

ts = t
0
, lifetime= [t

0
+t

pause
, t

0
+Δ)

queue overflow; renew ρ
0

ts = t
0
, lifetime= [t

1
+t

pause
, t

1
+Δ)

accept req
req

new

t
3

reject req
new

 since c is in Accepted
req

new
, ρ

0

t
4

reject req
new

 since ρ
0
 is expired

Δ

Figure 4.2: Client-server interaction example.

The client resends the raincheck-carrying request before the raincheck expires. If the retry fails, the

client obtains a renewed raincheck with an extended lifetime. The client keeps resending until the request

is accepted. We prove in Section 4.3 that a client following this resend strategy will be able to access the

server after a bounded time.

While a greedy client may attempt to reduce the waiting time by resending the request as quickly as

possible, it does not help to send at a rate faster than Rs
L because the buffer keeps only one copy of the

request for each client. Moreover, the server explicitly specifies in the raincheck how long the client has to

pause before retrying (i.e., setting tstart in the raincheck’s lifetime) to further restrain greedy clients and to

minimize communication overhead.

4.2.5 Handling Clients Sharing IP Addresses

So far RainCheck Filter assumes that each client has a unique IP address and provides per-source fair-

ness, which effectively limits the sending rate of requests originating from the same source IP address.

In practice, per-source fairness may be unfair for clients sharing the same IP address, such as clients be-

hind a Network Address Translator (NAT). We now relax the assumption by showing how RainCheck

Filter can work with other fairness models that replace the rate-limiting check in the raincheck validation

component.

RainCheck Filter is a general framework, and depending on the service type, the server can make

differential allocations based on history, IP-prefix, IP, domains, etc. In this chapter, we use an IP-based

policy model for illustration. The server can consider a fairness model where the allocation of server

resources is proportional to the number of requests during peacetime (i.e., when the server is not flooded).

Specifically, the server splits IP addresses into blocks and measures the number of requests served per

CHAPTER 4. RAINCHECK FILTER 55

address block during peacetime. During an attack, such information is used for a fair allocation of server

resources based on the IP address space. This requires keeping state for each address block.

4.3 Analysis

We analyze RainCheck Filter’s waiting time guarantees, the computational, communication, and storage

overhead, as well as security benefits.

4.3.1 Waiting Time Guarantees

Properties of a rank function ensuring MWT. Let tini,c be the time at which the server sees client c’s

first trial and tacc,c be the time at which the server accepts c’s request/retry. We denote by rank(c, t) client

c’s priority of service (e.g., the position in the ideal queue) at time t, and rank(c, t) is defined only for

tini,c ≤ t < tacc,c. Client c is served immediately at time t when rank(c, t) = 0.

Theorem 4. There is a bound T such that for all c, tacc,c− tini,c ≤ T, and T is independent of the adversary’s power

or strategy if the rank function satisfies the following two conditions:

1 The initial rank of each client is bounded: rank(c, tini,c) ≤ B for all c, and B is adversary-independent.

2 The rank of each client decreases over time: ∃ δ > 0 and γ > 0 such that rank(c, t− δ)− rank(c, t) ≥ γ > 0

for all c and t, and δ and γ are adversary-independent.

Proof sketch: Since it takes at most δB
γ time to reduce a client’s rank to zero, the waiting time is

bounded: T ≤ δB
γ . That is, the server guarantees MWT for any ranking function that satisfies the above

two conditions.

The rank function. The rank function in RainCheck Filter can be formulated as follows. We say c1 has

a lower rank than c2 at time t, or c1 <t c2, if at time t client c1 has a valid raincheck whose timestamp is

smaller than any of client c2’s valid raincheck. Hence, rank(c, t) , |{c′|c′ <t c}|. When rank(c, t) < L (i.e.,

server queue length), c’s request will always be accepted.

Theorem 5. RainCheck Filter guarantees that a legitimate client will be served in a finite time T, regardless of how

other (both legitimate or compromised) clients behave, and T is linear in the total number of clients.

Proof sketch: In RainCheck Filter, the initial rank is bounded by N, the number of clients in the network.

Second, between c’s i-th and i + 1-th retries that are at least L
Rs

time apart, the server either accepts c’s

CHAPTER 4. RAINCHECK FILTER 56

request or accepts L requests from the more privileged clients. Also, RainCheck Filter ensures that once

a client’s request is accepted, all its rainchecks become invalid. Therefore, rank(c, t) decreases by L for

every retry, which means after at most ⌈N
L ⌉ attempts the server will accept the request. Also, as specified

in Section 4.2, a legitimate client resends its request at a frequency f such that 1
∆
≤ f ≤ min{ Rs

L , 1
tpause
}.

Hence, based on Theorem 4, the waiting time is bounded

T(C) ≤ ⌈ rank(C, tini,c)

L
⌉/ f ≤ ⌈N

L
⌉∆. (4.2)

When a client re-sends at a frequency Rs
L , it is guaranteed that its request will be

accepted by the server in N+L
Rs

time. The waiting time N+L
Rs

(and the number of trials ⌈N
L ⌉) is also a lower

bound in the presence of a strong attacker who knows the client’s request sending schedule and controls

every host except the victim client and server.

If the round trip time is not negligible compared to ∆, the bound should be revised to ⌈N
L ⌉(∆ + RTT)

to compensate the delay.

If the client finds that the DDoS attack is not targeting the client, he can wait longer (e.g., ∆) before

retry, as the bots will keep consuming their high-ranked rainchecks while the legitimate client waits

silently. This demonstrates a strength of RainCheck Filter: the client can increase its priority by simply

waiting, in contrast to prior work where the client has to “work”, such as solving computational puzzles.

4.3.2 Overhead Analysis and Configurations

RainCheck Filter overhead. RainCheck Filter incurs low computational, communication, and storage

overhead for both servers and clients. RainCheck Filter avoids keeping per-client state at the cost of

sending rainchecks; a server can adjust the raincheck expiration period to strike a balance between com-

munication and storage overhead.

Clients are not required to perform any additional computation. A client keeps the most recent

raincheck for each server, and renews the raincheck roughly every ∆ time period. A server has to perform

one MAC generation for each issued raincheck and one MAC verification for each received raincheck.

With an efficient MAC function, rainchecks can be generated and verified at line rate. The server stores

requests that were accepted within ∆, which takes O(∆Rs) space. Since each client renews its raincheck

roughly every ∆ time, the server sends and receives about N
∆

rainchecks per time unit.

Each raincheck is 32 bytes: 32 bits for the client IPv4 address, 64 bits for the timestamp up to microsec-

ond granularity, and another 32 bits for the lifetime represented by the offsets using the timestamp as the

reference time. The MAC is 128-bit CBC-MAC using the AES block cipher. To leverage hardware accel-

CHAPTER 4. RAINCHECK FILTER 57

erated cryptographic feature, our prototype implements AES using AES-NI instruction set4 supported by

Intel processors and computing a MAC on a commodity server equipped with Intel i5-4430S takes only

61 cycles (equals to 22 ns). The server changes its secret key periodically, such that the attacker cannot

recover the key in time. The raincheck is stored in the packet header, such as a custom HTTP header or a

TCP option, as discussed in Section 4.6.

Parameter configurations. Let M be the size of the memory (in terms of the number of requests) available

for RainCheck Filter at the server. Recall that Rin is the incoming request rate, Rs is the server’s request

processing rate, ∆ the expiration period, and N is the number of clients.

According to Section 4.2, clients wishing to stay in the virtual queue must renew their rainchecks

before they expire. Hence, the expiration period should be long enough to accommodate every client in

the worst-case scenario, which leads to a requirement that Rin · ∆ ≥ N. On the other hand, the expiration

period should be short enough to avoid keeping too much state at the server, which means Rs · ∆ ≤ M.

These two constraints can serve as guidelines for RainCheck Filter configuration.

Since the server typically has no control over N and may be unable to immediately increase the down-

link capacity or memory, we can set ∆ to be Ñ
Rin

, where Ñ is the estimate of the number of clients. The

server can obtain Ñ based on the recent history, and adjust ∆ accordingly if the estimation changes. If

the ∆ value does not satisfy the second constraint, the server can either reduce the request processing

rate to Rs = M
∆

or increase its memory size if possible. Note the reducing Rs to M
∆

does not affect the

MWT guarantees since Rs is still higher than L
∆

, which is required for obtaining the MWT bound in the

worst-case scenario in Section 4.3. We show how to bound and determine Rs in Section 4.4.4.

4.3.3 Security Benefits

We design RainCheck Filter such that it does not expand the attack surface: rainchecks are protected

against forgery with Message Authentication Codes that can be generated and validated at line rate.

RainCheck Filter prevents traffic amplification attacks since rainchecks are smaller than typical HTTP

request/response headers, which are 700-800 bytes [6]. Also, RainCheck Filter is secure against IP spoof-

ing and raincheck misuses (e.g., raincheck reuse, accumulation, sharing, and forgery), thus preventing

compromised or greedy clients from gaining an advantage over legitimate clients.

4http://www.intel.com/content/www/us/en/enterprise-security/enterprise-security-aes-ni-white-paper.html

CHAPTER 4. RAINCHECK FILTER 58

4.4 Improvements and Discussion

We demonstrate that RainCheck Filter’s MWT guarantees can be further strengthened (i.e., a reduced T)

given auxiliary information about clients, and we propose a hybrid solution to improve scalability.

In addition to knowing that the waiting time is bounded, knowing the actual waiting time increases

users’ patience [124, 24]. To provide users’ actual waiting time, we devise a server-side algorithm that

accurately estimates each client’s waiting time.

4.4.1 Strengthening Waiting Time Guarantees

Distinguishability between bots and legitimate clients. RainCheck Filter treats all clients alike without

differentiating bots from legitimate clients. By rejecting requests from bots, the server can shorten the

maximum waiting time for legitimate clients.

To identify and block bots, which are automated without human users, the server applies reverse

Turing tests, such as CAPTCHAs [161], to detect human presence. Additionally, the server can identify

bots based on known blacklists5. Although existing bot detection schemes are imperfect [169, 29, 28],

RainCheck Filter bounds the waiting time such that the more accurate the bot detection scheme is, the

lower RainCheck Filter’s waiting time bound.

The non-uniform distribution of bots in the Internet. Recent studies on bot population found a skewed

distribution of bots: 20 ASes host 41% of bots [107] and 538 ASes host over 90% of bots [102]. To exploit this

fact, the server establishes a baseline of the normal request rate per AS during peacetime, and the baseline

is used to allocate resources for each AS, similar to the proportional allocation technique introduced in

Section 4.2.5. By isolating requests from different ASes, RainCheck Filter lowers the waiting time bound

for clients in a less contaminated AS, as bots in the same AS have to compete among themselves before

being able to attack the server. This approach also motivates ISPs to remove bots in their domains, as

users have incentives to switch to less-contaminated ISPs.

4.4.2 Extension for Better Scalability

To avoid a sudden increase in the bandwidth loads in the rare case when all clients retry concurrently, it

is desirable to distribute the bandwidth loads caused by raincheck renewals. We propose a hybrid scheme

that combines RainCheck Filter with a coarse-grained scheduling for balancing load distribution.

5Composite blocking list. http://cbl.abuseat.org/

http://cbl.abuseat.org/

CHAPTER 4. RAINCHECK FILTER 59

Similar to the original RainCheck Filter, this hybrid scheme requires each client to renew its raincheck

periodically. The novel improvement is the assignment of the time intervals such that all the requests

from the same client always fall in the same time interval, thereby reducing the overhead for duplicate

detection and rate limiting.

In particular, the server divides the time into non-overlapping time intervals δi = [i · w, (i + 1) · w) for

some constant w. A raincheck issued during δi is valid only during δj where j ∈ [i + mmin, i + mmax) for

some required cooling period mmin and expiration period mmax = mmin + m∆, where mmin, mmax, and m∆

are positive integers. The integer value j is derived such that

i + mmin ≤ j < i + mmax,

j mod m∆ = PRFk(cid) mod m∆,

where k is a secret key and PRF is a pseudorandom function. These equations have a unique solution.

This construction ensures that every raincheck-carrying request from the same client always comes

back during the same time interval. Also, requests are renewed approximately every m∆ time intervals.

Therefore, the server only needs to keep track of the accepted requests during the current time interval,

δi, for duplicate detection and rate limiting. This hybrid scheme is easier to implement as the server does

not need to maintain a sliding window of ∆ as in the original RainCheck Filter.

The server may want to update the secret key to increase randomness and minimize the risk of key

exposure. Suppose the server would like to completely switch to a new key k′ from the beginning of δv.

To ensure a smooth transition, from the beginning of δv−mmax the server chooses to use the old key or the

new key on a per-request-basis according to the following criterion: if j < v when computing j using the

old key, then use the old key; otherwise use the new key.

This hybrid scheme trades flexibility for scalability. At one extreme where the PRF perfectly distributes

the clients among m∆ intervals, the overhead (e.g., storage or bandwidth consumed by the raincheck

renewal process) is reduced by an order of m∆. In particular, we obtain a MWT guarantee ⌈N
L ⌉w when

w ≥ L
Rs

. We omit this proof since it is similar to that in Section 4.3. At the other extreme where the

PRF maps every client to the same time interval, it is degenerated to the original RainCheck Filter with

∆ = mmax ·w, which renders a MWT bound ⌈N
L ⌉mmaxw. Since any practical implementation of PRF should

generate reasonably randomized outputs given that the key is kept secret, this hybrid scheme is expected

to have much better scalability than the original RainCheck Filter.

The server can adjust mmax dynamically to distribute the load among mmax −mmin intervals such that

the server is slightly overloaded during each interval. The mmin value should be large enough to ensure

that requests can return to the server on time.

CHAPTER 4. RAINCHECK FILTER 60

We now briefly discuss how to set the parameters for the hybrid scheme described in Section 4.4.2.

In the hybrid scheme, the server similarly has to satisfy Rin · m∆ · w ≥ N and Rs · w ≤ M. Given the

introduction of an additional parameter, m∆, we can fulfill the second criterion first by setting w = M
Rs

. We

then set m∆ = Ñ
Rin ·w .

4.4.3 Waiting Time Estimation

Providing human users with feedback of their expected waiting time can help increase their patience [124,

24]. While the waiting time bound T can serve as a loose estimate of the actual waiting time, we desire a

better estimate that incorporates the current client status.

We present a rank estimation algorithm that allows the server to estimate any client c’s rank (i.e., position

in the virtual queue) at time t without keeping per-client state. The algorithm refines the estimate by taking

into account the number of clients that did not renew their rainchecks, and the server informs the client

the estimated rank by piggybacking it on the raincheck.

Efficient and accurate rank estimation is challenging: counting the number of issued rainchecks with

a timestamp value smaller than that of client c is inefficient, as it requires maintaining one counter for

each client. Moreover, since a client can have multiple valid rainchecks at hand, the server should prevent

counting the same client twice.

To provide efficient and accurate estimation, our rank estimation algorithm extends a probabilistic

counting algorithm proposed by Flajolet and Martin [64], which estimates the number of distinct items in a

set using O(log N) memory, where N is the number of distinct items. The probabilistic counting algorithm

keeps a bit vector (referred to as an FM sketch) that is initialized to zeros, and uses a deterministic function

to map an item to the ith bit with probability 1/2i. A bit is set to 1 if an item is mapped to that bit. Given an

FM sketch V the estimated number of distinct items is ñ = 2lsb0(V)/0.77351, where lsb0(V) is the lowest-

order 0-bit position of V (zero-based indexing). One can reduce the estimation error by averaging the

results of multiple FM sketches with different index functions. The FM algorithm guarantees a bounded

error such that Pr[|ñ− n| < ǫN] > 1− δ using O(
log(2/δ)

ǫ2) sketches.

Problem formulation. Let Ut
t−∆(x) contain all clients obtaining at least one raincheck with a timestamp

≤ x during [t− ∆, t). Let nt
t−∆(x) be the size of Ut

t−∆(x). Since a client in front of c at time t must be in

Ut
t−∆(TS(ρc)), rank(c, t) ≤ nt

t−∆(TS(ρc)), where ρc is client c’s raincheck that has the smallest timestamp

value among all valid rainchecks at time t and TS stands for timestamp.

Estimating each client’s rank separately using FM sketches requires O(N log N) memory. To reduce

the overhead, our rank estimation algorithm is designed to answer queries such as “How many distinct

CHAPTER 4. RAINCHECK FILTER 61

a

10
b
9

c

17

a

10
b

30
e
7

2. Update rank estimation sketch

(keep the minimal value per bin)
7910

(e.g., mapping function f(b) = 1)

1. Mapping incoming rainchecks

~2lsb0/0.77351 ~ 5.17

110
“#of clients in front of a?”

00100100 001003. Convert back to FM sketch

~2lsb0/0.77351 ~ 2.59

 “#of clients in front of b?”

d

5

5

Figure 4.3: A rank estimation sketch example.

items have a value lower than x?” for any x, while keeping only O(log N) number of items.

Figure 4.3 illustrates how the rank estimation sketch works and its relationship with FM sketches. The

core idea is as follows. Instead of setting a bit to one, we store the item’s value at the mapped position if

the value is lower than the currently stored value at that position. To estimate the number of items whose

value is lower than x for any x, we convert this rank estimation sketch back to an FM sketch where a 1-bit

is set if the corresponding position has a value < x. The rank estimation sketch ensures that the resulting

FM sketch is the same as the one we can get by running the FM algorithm over items with a value lower

than x. In our setting, items are rainchecks, and each raincheck has a value which is a timestamp. Two

rainchecks are “identical” if they are from the same client. Hence, using this rank estimation algorithm,

we can estimate nt
t−∆(x) for any x given a time interval [t− ∆, t).

To estimate a client’s rank at time tcur in the virtual queue, the server maintains a rank estimation

sketch and resets it periodically every ∆ time, such that the sketch accounts for intervals [(i− 1)∆, i∆) for

all positive integers i. The rank rank(c, tcur) can be approximated by

rank(c, tcur) ≤ rank(c, i∆) ≤ ni∆
(i−1)∆(TS(ρc)),

where i∆ ≤ tcur < (i + 1)∆.

Based on the proof in Section 4.3.1, rank(c, i∆)− rank(c, tcur) ≤ (tcur − i∆)Rs. Also, ni∆
(i−1)∆

(TS(ρc))−

rank(c, i∆) ≤ ∆Rs. Hence, using O(
log(2/δ)

ǫ2) sketches, we ensure that the estimation error is less than

ǫN + (tcur − (i− 1)∆)Rs ≤ ǫN + 2∆Rs with a probability higher than 1− δ.

4.4.4 Bounding and Determining the Request Processing Rate

To provide MWT guarantees, the bottleneck (e.g., the server) is required to process at least Rs requests

per second. We discuss how to ensure a lower bound on Rs under several application scenarios. We also

discuss how to estimate Rs when request processing time varies. While accurate estimation of Rs (client’s

CHAPTER 4. RAINCHECK FILTER 62

waiting time) can improve user experience, RainCheck Filter’s operations and guarantees do not depend

on an accurate modeling of Rs.

When the server’s access link is the bottleneck, RainCheck Filter has to be installed in front of the access

link, such as at a firewall or a load balancer. Since the bandwidth (BW) is the critical resource, raincheck

can determine a lower bound of the request processing rate by Rs ≥ min{downlink_BW
max_req ,

uplink_BW
max_resp },

where max_req and max_resp are the maximum sizes of the request and response packets, respectively.

A similar approach can be applied to the case in which an intermediate network link is the bottleneck.

The attacker can also try to exhaust the CPU resource. Although the server has full knowledge about

the type of service it offers, the time to complete a request may still be unpredictable beforehand. One

possible solution is to consider a raincheck to be an explicit permission for accessing a unit of resources.

Moreover, clients can wait longer to obtain higher level rainchecks that give permissions to access more

resources. For example, one raincheck can represent 10k CPU cycles or 10ms of the server time. To

adopt this modification, either (1) the client divides the task into smaller chunks so that each chunk can

be processed in one unit of resources, or (2) the server terminates the process for the accepted request if

it has run out of one unit of resources, and returns the necessary information such that the server can

resume the process later, if possible. The server being attacked could also decline such computational-

expensive requests, which is similar to a safe mode that only supports limited functionality. We leave it

as future work to explore such resource allocation policies in the RainCheck Filter framework.

When the request completion time is predictable, the server can allocate resources to multiple request

groups, each of which consists of the requests with similar completion time (e.g., based on their service

types). Grouping similar requests not only improves the accuracy of waiting time estimation but also

allows the server to apply RainCheck Filter to resource-consuming requests only.

RainCheck Filter is not designed to address memory exhaustion attacks such as TCP SYN flooding or

slow HTTP attacks. Possible technical defenses to mitigate such attacks include (1) pushing state back to

the client, such as SYN cookies and (2) setting an explicit timeout on each buffered request.

4.5 Evaluation

To validate that RainCheck Filter effectively simulates an infinite buffer and thereby enables bounded

waiting time with low variance in the presence of flash crowds or DDoS attacks, we evaluate RainCheck

Filter using the NS-3 simulator. Our simulation measures the waiting time of legitimate users in two

cases: (1) a flash-crowd case where a large number of legitimate and malicious users simultaneously try

to access a server within a short-time period, and (2) a DDoS attack case where a server is flooded by bots.

CHAPTER 4. RAINCHECK FILTER 63

For both cases, we compare results among (a) RainCheck Filter, (b) a traditional client-server model with

no protection, and (c) a computational puzzle model.

4.5.1 Flash-Crowd Effect

General setting. We consider a scenario where 100,000 legitimate and malicious clients attempt to con-

nect to a server that can buffer max. 200 requests, and server’s request processing time follows an expo-

nential distribution with an average of 5 milliseconds. Every client makes one request where the initial

request time is uniformly distributed across a 100-second interval, and the server experiences on average

1,000 incoming requests per second, flooding the server. Next we briefly describe the server and client

models to simulate the flash-crowd effect. Note that malicious clients behave exactly like legitimate clients.

RainCheck Filter. We model the server and clients that follow the protocol described in Section 4.2.3

and 4.2.4, respectively.

Unprotected. The unprotected server implements a standard FIFO queue, and informs the client when-

ever its request is dropped. The client continues to resubmit a request that the server drops until the

request is accepted by the server.

Computational puzzles. We model a client that solves a computational puzzle before sending a re-

quest [164]. We model the puzzle server with a priority queue which uses the puzzle-level as the priority

metric. For requests with the same priority level, the server processes them based on their arrival order.

To send an initial request, the puzzle client solves a level-1 puzzle. Whenever the request with level-

n is denied, the client solves a level-n + 1 puzzle and resubmits its request. Once the client reaches the

maximum puzzle level m, the client continues to solve different level-m puzzles until its request is accepted

by the server.

Results. As shown in Figure 4.4, scatter plots for the unprotected and puzzle-based models indicate that

clients suffer from high variance for their requests to be accepted. On the other hand, RainCheck Filter

supports low variance such that the waiting time steadily increases as more clients send requests. More

specifically, the ordering of the requests based on the their generation time is well-preserved with respect

to the times that they are served. In fact, the scatter plot for the raincheck server is almost identical to that

for an ideal server that has an infinite buffer.

CHAPTER 4. RAINCHECK FILTER 64

Figure 4.4: Scatter plots of the initial request time vs. served time.

4.5.2 Flooding Attacks

General setting. We consider a scenario where 10,000 legitimate clients attempt to connect to a server

that can buffer 200 requests, and server’s request processing time follows an exponential distribution

with an average of 5 milliseconds. The number of bots varies from 1 to 70,000 to observe the relationship

between the amount of attack traffic and the changes in waiting time. Every client makes one request and

the initial request time is uniformly distributed across a 100-second interval.

To simulate the DDoS attack case, we model bots that adopt optimal strategies to incapacitate the

server. The legitimate client and the server models are as described in Section 4.5.1.

Results. As shown in Figure 4.5, 1,090 bots successfully flood the unprotected server, causing client

requests to be dropped and hence resulting in infinite waiting time. For the puzzle-based model, our

simulation parameters cause 65,536 bots to jointly compute level-16 puzzles at the rate of 200 puzzles per

second, such that the server spends most of its resource in handling the bot’s request without accumu-

lating them in its queue. Thus, any request with lower priority in the buffer would experience a long

queuing delay.

For RainCheck Filter, we observe a linear increase in the waiting time as the number of bots increase.

This is because each client’s request is served after serving the requests with earlier timestamp. Since

the number of bots’ requests that precedes the client’s request increases linearly as the number of bots

increases, client’s waiting time also increases linearly.

CHAPTER 4. RAINCHECK FILTER 65

0

500

1000

1500

2000

W
a

it
in

g
 T

im
e

 (
s
e

c
)

Number of Bots

Waiting Time (sec) v Flooding Bots

1000 1050 1100 6.545 6.55 6.555 6.56 6.565 6.57

x 10
4

Puzzle client with timeout

Unprotected server client

Raincheck client

Figure 4.5: Maximum waiting times under flooding attacks.

4.6 Prototype Implementation

To demonstrate the feasibility of RainCheck Filter’s incremental deployment, we implement a prototype

at the application layer by incorporating RainCheck Filter to HTTP and as a client-side and server-side

proxy, therefore leaving the current network protocol stack intact. This prototype bounds the waiting time

of legacy client browsers when they access webpages that consume the server’s critical resource, e.g., a

PHP embedded HTML supporting database queries. The prototype consists of three components: (1) a

client running a Firefox web browser, (2) an Apache web server, and (3) a raincheck module (e.g., installed

in a load balancer) serving the HTTP protocol. We use tinyproxy6, an open-source proxy, as the browser’s

agent to interpret and generate raincheck messages. On the server side, the raincheck module intercepts

all traffic to/from the server.

As shown in Figure 4.6, the browser sends a GET request to a critical resource page named sql.html.

The proxy encodes the raincheck header by attaching “X-Raincheck-Type:new” to the request’s HTTP

header. Once this request arrives at the raincheck module on the load balancer, the module decodes the

header and checks whether this request attempts to access the critical resources defined by the back-end

server. If so, the raincheck module performs one the following actions:

1. Process the request: If the priority queue is empty, the raincheck module directly forwards the

request to the back-end server, and sends back the query result with additional raincheck header

(“X-Raincheck-Type:Served”).

6https://banu.com/tinyproxy/

sql.html
https://banu.com/tinyproxy/

CHAPTER 4. RAINCHECK FILTER 66

Browser Proxy
RCF module

(e.g., on a Load Balancer)

Web ServerClient

GET /sql.html?query=... GET /sql.html?query=...

Type: new
GET /sql.html?query=... SQL

Comp.

(a) Served

HTTP 200 OK

<result>

HTTP 200 OK

<result>

Type: served

HTTP 200 OK

<result>

GET /sql.html?query=... GET /sql.html?query=...

Type: new
HEAD /sql.html

(b1) Issue Raincheck

HTTP 200 OK

<refresh in x secs>

HTTP 200 OK

Type: issued

Token: CgAAAg7qr0Bi+...

HTTP 200 OK

GET /sql.html?query=...

Type: request

Token: CgAAAg7qr0Bi+...

HEAD /sql.html

HTTP 200 OK

Type: renewed

Token: CgAAAg7qrQQ...

HTTP 200 OK

(b2) Renew Raincheck

GET /sql.html?query=...

Type: request

Token: CCgAAAg7qrQQ...

GET /sql.html?query=...

HTTP 200 OK

<result>

Type: served

HTTP 200 OK

<result>

(c) Served

HTTP 200 OK

<result>

SQL

Comp.

HTTP 200 OK

<refresh in x secs>

Auto refresh

Auto refresh

TCP Handshake

New Request

New Request

Display Result

Display Est. Wait Time

Display Result

Update Est. Wait Time

Figure 4.6: RainCheck Filter prototype implementation.

2. Issue a raincheck: RainCheck Filter mangles the original GET request to HEAD request and delivers

the modified request to the server. Once RainCheck Filter receives a response from the server, it

embeds a raincheck token by adding “X-Raincheck-Token:” string.

The raincheck token is piggybacked to the standard HTTP request/response. For example, we convert

GET request into HEAD request and enforce the server to return the response message with no additional

computational cost and minimum bandwidth overhead, e.g., 76 bytes. Therefore, RainCheck Filter can

utilize the HTTP header space in this response to “carry” either the issued or renewed raincheck token in

a conventional way. This implementation does not require any modifications on the protocol stacks or the

operating system such like Linux Kernel. The only required task is to recompute checksums for IP and

TCP headers after encoding the HTTP messages.

The raincheck token is encoded in the Base64 format. The proxy parses the raincheck and returns to

the browser (1) the estimated waiting time and (2) a webpage containing a meta refresh tag (e.g., <meta

CHAPTER 4. RAINCHECK FILTER 67

http-equiv="refresh" content="2">) such that the browser will recontact the server after the specified

time. By utilizing the HTTP redirection responses, the proxy delivers the renewed raincheck request (see

(b2) in Figure 4.6) and keeps updating the raincheck token until the request is served (see (c) in Figure 4.6).

To evaluate the performance of raincheck implementation, we run an HTTP client written in python

to send 1000 GET requests sequentially for a static web page under two conditions, with or without the

raincheck module. The raincheck module issues one raincheck token and ask the client to use this token

to retry. Without the raincheck module, it takes an average of 1.328 milliseconds to get the reply; with the

raincheck module, it takes an average of 1.531 milliseconds. This indicates that RainCheck Filter incurs

only 0.206 milliseconds additionally per request.

Implementing RainCheck Filter as a TCP option could be a generic defense mechanism that protects all

upper layer protocols and applications using TCP. However, raincheck implementation on TCP requires

the modification of operating system kernels or installation of privileged modules (e.g., kernel modules),

which is intrusive and thus may be less favorable than an incremental deployment that modifies neither

the client nor the server. We consider this option as our future work.

4.7 Summary

The technology advances introduced unfortunate side effects: internet users are more impatient than ever,

and DDoS attackers practice sophisticated and powerful strategies. To help users control their impatience

in the presence of DDoS attacks, we propose RainCheck Filter, a lightweight DDoS mitigation primitive

that bounds the waiting time of a legitimate client using a cryptographic token called a raincheck regard-

less of other clients’ strategy. Unlike existing DDoS mitigation schemes that waste users’ bandwidth or

computational resources to access (possibly flooded) servers, RainCheck Filter requires users to simply

wait and revisit the servers before rainchecks expire.

Chapter 5

Large Flow Detection

Chapter 3 focuses on the design of a DDoS-limiting mechanism that isolates attack traffic by means of

bandwidth allocation. It assumes that every endpoint AD regulates traffic on a per-flow basis, such

that the allocations can be efficiently enforced throughout the network without keeping per-flow state at

intermediate ADs.

However, this assumption may be difficult to meet, as in practice an endpoint AD may lack incentives

to throttle its customers’ traffic. Also, ADs in different ISDs may not trust each other for traffic regulation.

The relaxation of this assumption (i.e., per-flow monitoring) requires an efficient monitoring algorithm

that allows individual ADs to accurately detect flows using more than their allocations. Accuracy is

important here because failing to regulate malicious flows or falsely catching legitimate flows results in

collateral damage in the sense that the bandwidth guarantees of legitimate flows are compromised.

This chapter explores how to enforce bandwidth allocation in an efficient manner while minimizing

collateral damage. Specifically, we present an efficient flow-monitoring algorithm that is exact outside an

ambiguity region—it robustly catches all large flows and protects all small flows from false accusation.

Moreover, unlike prior approaches that characterize flows based on the average rate over a long period of

time, we characterize flows based on both the average rate and burstiness, thus enabling the detection of

bursty flows that violate the allocation.

Motivation: Challenges of developing an accurate and efficient large-flow detector. Flows that violate

their allocations may undermine the guarantees of other legitimate flows. Therefore, it’s important to

catch malicious flows that use more than their allocations. In the ideal case, we want perfect detection of

flows using more than a threshold of bandwidth. However, since keeping per-flow state is too expensive,

prior work often faces one or both of the following limitations: (1) They trade accuracy or timeliness for

68

CHAPTER 5. LARGE FLOW DETECTION 69

scalability, resulting in false positives (i.e., falsely catching small flows), false negatives (i.e., failing to catch

large flows), or delayed detection. (2) They check the average throughput over a long time interval only

and thereby cannot catch bursty flows. Moreover, due to the increasing number of network flows and the

high cost of fast memory (e.g., SRAM), we need scalable designs that maintain as less memory state in

routers as possible (i.e., no per-flow state) and operate at near line-rate.

Our solution: A large-flow detector that monitors over arbitrary windows and is exact outside an

ambiguity region. To address these challenges, we propose LFD, a new online deterministic algorithm

that presents two novel concepts. First, we consider a relaxed notion of exactness: the algorithm outputs a

set of large flow candidates such that every flow whose volume is ever above a high-bandwidth threshold

function during some time window is contained in the set, and no flow whose volume is consistently

lower than a low-bandwidth threshold function over any time window is contained. The gap between

the high-bandwidth threshold and the low-bandwidth threshold, which is referred to as an ambiguity

region in this chapter, allows us to improve scalability while maintaining exactness outside this region.

Second, rather than monitoring the average throughput over a long time, LFD monitors every possible

time window (referred to as the arbitrary time window model) such that both large and bursty flows can

be detected immediately, thus making it harder for the adversary to bypass detection. By contrast, most

prior work considers the landmark or sliding window model, in which only a subset of time windows

are monitored. These two new properties are obtained at the cost of not being able to estimate flow sizes,

which many of the prior works can do. But for our purpose of detecting large flows, a binary detector is

sufficient.

Surprisingly, despite LFD’s strong guarantees, we show in our analysis that LFD requires extremely

small amounts of memory that fit into on-chip SRAM for line-speed packet processing. We discuss im-

plementation details to further demonstrate LFD efficiency. LFD is highly scalable because it focuses on

the accurate classification of large and small flows; it does not aim to estimate flow volumes or iden-

tify medium flows, which several prior approaches achieve. In addition to our theoretical analysis, we

also evaluate LFD using extensive simulations based on real traffic traces. We demonstrate that existing

approaches suffer from high error rates in adversarial environments, whereas LFD can effectively detect

large flows in the face of both flooding and burst DoS attacks [71, 93].

Contributions. Our main contributions are as follows.

• We propose a deterministic streaming algorithm that robustly catches all large flows and protects

all small flows. Two novel settings distinguish LFD from previous work: it monitors flows over

CHAPTER 5. LARGE FLOW DETECTION 70

arbitrary time windows and considers a relaxed definition of exactness.

• We rigorously prove the two guarantees—catching all large flows and protecting all small flows—

without making assumptions about the traffic distribution. In other words, LFD is resilient to a

worst-case attacker who knows the algorithm’s internal state. By contrast, prior work cannot achieve

such guarantees even under a weaker attacker model.

• Our numerical analysis shows that LFD can operate at 40 Gbps high-speed links using only hun-

dreds of bytes of on-chip SRAM, which is substantially smaller than the memory consumption of

many existing schemes. We also provide guidelines on how to configure LFD to satisfy application-

specific requirements.

• We compare LFD with two closely related proposals [58, 57] via comparative analysis and extensive

simulations based on real and synthetic traffic traces. The results confirm that LFD consistently

catches all large flows without misclassifying small flows, whereas prior approaches result in high

false detection rates, especially under flooding attacks.

5.1 Problem Definition

Our goal is to design an efficient arbitrary-window-based algorithm which is exact outside an ambiguity

region. In this section, we present the system model, formulate the large flow problem over arbitrary

windows, and summarize our design goals.

5.1.1 System Model

Flow identifiers. Generally, packets are classified into flows based on the flow identifiers (or flow IDs)

derived from the packet header fields.1 Because our approach to large-flow detection is generic, we make

no assumption on the definition of flow IDs. As in prior traffic monitoring work, we assume flow IDs are

unforgeable, which can be achieved using existing mechanisms such as ingress filtering [62], and source

authentication techniques such as accountable IPs [10], Passport [109], and ICING [126].

Packet streams. Let X be the packet space. We consider a packet stream X = 〈x1, · · · , xk〉 coming

through a link of capacity ρ, where xi ∈ X ∀i = 1 · · · k. Packets in X are processed in sequence by a

detection algorithm for identifying large flows. The algorithm can only make one pass over the packet

stream due to the high link capacity and limited memory.

1While the flow definitions vary depending on the application, in most applications a flow consists of packets that share one or more
header fields, such as the source IP, destination IP, source port, destination port, and the protocol number.

CHAPTER 5. LARGE FLOW DETECTION 71

For a packet x, we denote by time(x) the time when the packet is received, by size(x) the size of the

packet, and by fid(x) the flow ID of the packet. The traffic volume of a flow f during a time window

[t1, t2) is defined as vol(f , t1, t2) , ∑x∈X ,fid(x)= f ,t1≤time(x)<t2
size(x).

Synopses. A traffic synopsis is a data structure that summarizes flows and can be used to answer queries

regarding certain flow statistics. When a new packet x arrives, the algorithm updates its traffic synopsis

based on x’s flow ID, size, and arrival time. Formally, a large-flow detection algorithm supports three

operations over a synopsis S:

• Init(params) → S0. The initialization operation takes as inputs the large-flow definitions, desired

detection accuracy, etc.

• Update(Si−1, xi) → Si. The update operation outputs an updated synopsis Si by incor-

porating the new packet xi into the previous synopsis Si−1. For convenience, we denote

Update(Si, 〈xi+1, · · · , xi+j〉) = Update(Si+1, 〈xi+2, · · · , xi+j〉) = Si+j.

• Detect(Si, xi)→ b ∈ {0, 1}. The detection operation evaluates Si to determine if xi belongs to a large

flow.

Time window models. Prior approaches to large-flow detection can be classified into three main cate-

gories, based on the type of time window they monitor: landmark window [117, 44, 83, 114, 116, 58, 61, 38],

sliding window [68, 13, 99], and arbitrary window [57].

In the landmark window model, each time window starts at the closest landmark in the past (e.g., a

landmark is placed every five seconds) and ends at the current time. In the sliding window model, recent

traffic is considered more important than old traffic, so the time window begins at some recent time in the

past. The window slides as new packets arrive, such that the measurement incorporates the new packets

and excludes the oldest packets. Finally, the arbitrary window model monitors every time window ending

at the current time. It is more difficult to evade detection in this model than in the others, as illustrated

in Figure 5.1. Note that while the arbitrary window model covers every possible window, flows can still

evade detection if the algorithm is inaccurate.

5.1.2 Large-Flow Problem

Small, medium, and large flows. A flow f is a large flow (over arbitrary windows) if there exists a

time window [t1, t2) over which its volume vol(f , t1, t2) exceeds a high-bandwidth threshold function

THh(t2 − t1). A flow is a small flow if its volume vol(f , t1, t2) is lower than a low-bandwidth threshold

CHAPTER 5. LARGE FLOW DETECTION 72

Landmark window model

(Landmark at 0)

0

Sliding window model

(window size=30ns)

Arbitrary window model

A B C D B

Examine flows in [0, t) → flow B evades detection

Examine flows in [t-30, t) → flow B evades detection

Examine flows in [s, t) for all t > s ≥ 0 →

flow B is a large flow over [10, 50) and can be detected

10 20 30 40 t=50 (ns)

40 Gbps link congested

by 50-Byte packets

Figure 5.1: In this example, a flow is large if it sends more than 40Mbps · w + 500kb for any time window
of size w. Although flow B violates the limit over the time window [10, 50), it can only be caught in the
arbitrary window model.

function THℓ(t2 − t1) over all possible time windows [t1, t2). The rest are defined as medium flows, i.e.,

flows in an ambiguity region.

In this chapter, we define the two threshold functions in the form of leaky bucket descriptors:

THh(t) = γht + βh and THℓ(t) = γℓt + βℓ, where γh > γℓ > 0 and βh > βℓ > 0.2 Although selecting

appropriate parameters largely depends on the targeted application, we provide guidelines for selecting

these parameters in Section 5.3.

Exact-outside-ambiguity-region large-flow problem. As exact solutions are inefficient, we consider a

relaxed notion of exactness:

Definition 6. Given a packet stream, the exact-outside-ambiguity-region large-flow problem over arbitrary windows

returns a set of flows F such that (1) F contains every large flow, and (2) F does not contain any small flow.

A positive is when a flow is added to F , and a negative is when a flow is not added to F . Hence, a

False Positive of small flow (FPs) occurs when the detection algorithm wrongly adds a small flow, and a

False Negative of large flow (FNℓ) occurs when it fails to include a large flow.

5.1.3 Adversary Model

We consider a practical setting where the senders can be malicious. Particularly, we consider three types of

typical attacks: evasion attacks, framing attacks, and denial-of-service (DoS) attacks. In an evasion attack,

the attacker attempts to cover the trace of a large flow to prevent it from being detected. In a framing

2Prior work in the landmark window model often defines the high-bandwidth threshold to be a fraction of the link bandwidth,
e.g., γh = 0.01 and βh = 0. However, because every flow will violate the threshold over a sufficiently small time window
(e.g., windows containing only one packet), it is infeasible to adopt this fraction-based definition when it comes to the arbitrary
window model.

CHAPTER 5. LARGE FLOW DETECTION 73

attack, the attacker attempts to incriminate a small flow to make it look as if it is misbehaving. In a DoS

attack, the attacker attempts to take the detector offline by depleting its scarce memory or computational

resources or by exploiting the worst-case behavior of the detection algorithm.

5.1.4 Design Goals

We aim to design an efficient algorithm which is exact outside an ambiguity region to solve the large-flow

problem (defined in Section 5.1.2). Our main goals are as follows:

Exactness outside an ambiguity region. To achieve exactness outside an ambiguity region in traffic

monitoring, we desire a deterministic monitor algorithm which identifies every large flow including bursty

flow (i.e., no FNℓ), and protects every small flow (i.e., no FPs) with no assumption on the input traffic or

attack pattern. Hence, the high-bandwidth and low-bandwidth thresholds are also called the no-FNℓ and

no-FPs thresholds in this chapter, respectively.

Scalability. Although using per-flow leaky buckets enables the exact and instantaneous detection of

large flows, keeping per-flow state is impractical due to the large number of flows in the Internet. Hence,

the algorithm should require few per-packet operations and maintain a small router state that fits in

fast yet scarce storage devices (e.g., on-chip SRAM or even registers) regardless of input traffic or attack

pattern, such that the detection algorithm can operate at line rate.

Fast detection. The algorithm should promptly catch large flows to minimize collateral damage. Partic-

ularly, for a large flow violating the high-bandwidth threshold over [t1, t2), the algorithm should detect

the flow no later than t2 + tprocess, where tprocess is the time it takes to process a packet.

5.2 Algorithm

In this section, we first investigate and prove the no-FPs and no-FNℓ relationships between landmark and

arbitrary window models, These relationships are useful for constructing large-flow algorithms over ar-

bitrary windows. Based on these relationships, we develop LFD, a streaming algorithm that efficiently

solves the large-flow problem over arbitrary windows (as defined in Definition 6) with exactness outside

an ambiguity region. Finally, we discuss the implementation and optimization techniques in detail and

numerically demonstrate that LFD can operate at high-speed links while using only hundreds bytes of

on-chip SRAM.

CHAPTER 5. LARGE FLOW DETECTION 74

It is important to investigate the relationships between landmark and arbitrary window models, as

it enables us to draw on the rich experience of research on the large-flow problem over landmark win-

dows [117, 44, 83, 114, 116, 58, 61, 38] for designing arbitrary-window algorithms. Particularly, we are

interested in knowing whether and to what extent we can leverage existing landmark-window algorithms

to build arbitrary-window ones. The technical contributions of this chapter include proving two theo-

rems that shed light toward a systematic approach applying existing landmark-window algorithms to

arbitrary-window algorithms.

The design of LFD is guided by the no-FNℓ theorem (i.e., Theorem 8). LFD leverages the Misra-Gries

(MG) algorithm [117], which finds all frequent items in a data stream in one pass but may falsely include

non-frequent items. The MG algorithm works over landmark windows in the sense that the landmark

is at the beginning of the data stream. The research challenges here include (1) how to preserve MG’s

no-FNℓ property (over landmark windows) when porting it to the arbitrary window model, and (2) how

to achieve the no-FPs property when processing packets in one pass. LFD modifies the MG algorithm

in several novel ways to effectively address the above challenges. Interestingly, despite these simple

modifications, we prove that LFD achieves both no-FPs and no-FNℓ properties over arbitrary windows,

thereby providing strong guarantees regardless of input traffic.

5.2.1 Relationships Between Landmark and Arbitrary Windows

Here is a straightforward yet inefficient solution to the exact-outside-ambiguity-region large-flow problem

over arbitrary windows: the algorithm divides the problem into multiple sub-problems that each can be

handled by a landmark-window algorithm, L. More concretely, let Li be a copy of L that monitors a

time window starting from packet xi and ending at the current time. For every newly arrived packet xi,

the algorithm initiates Li, and adds xi to the new as well as all previous copies, L1, L2, · · · , Li. Then the

algorithm combines the answers returned by L1, L2, · · · , Li. This naive solution is correct, but requires

space linear in the length of the traffic stream, which is prohibitively expensive.

To make it more efficient, the key idea is to eliminate redundant copies of L. To show why this is

possible, we formally state two relationships between landmark windows and arbitrary windows.

No-FPs relationship. We observe that only one copy of L is needed to achieve the no-FPs property over

arbitrary window. Specifically, Theorem 7 states that if an algorithm ensures (L1) no FPs in the landmark

window model, then it also ensures (A1) no FPs in the arbitrary window model.

Theorem 7. If an algorithm satisfies

CHAPTER 5. LARGE FLOW DETECTION 75

• L1: For all t, it never reports a flow whose volume is below γ′
ℓ
t + β′

ℓ
over time interval [0, t).

then it must also satisfy

• A1: It never reports a flow whose volume is below γℓ(t2 − t1) + βℓ over time interval [t1, t2) for all t2 > t1.

when γ′
ℓ
= γℓ and β′

ℓ
= βℓ.

Proof sketch: L1 implies A1 because if a flow sends less than γℓ(t2 − t1) + βℓ for all intervals [t1, t2), it

must also send less than γ′
ℓ
t + β′

ℓ
for all intervals [0, t) when γ′

ℓ
= γℓ and β′

ℓ
= βℓ.

No-FNℓ relationship. The no-FNℓ relationship is more challenging to prove. We observe that only one

copy of L is needed to achieve the no-FNℓ property as well if L’s traffic synopsis is “similar” to the initial state

throughout the execution of the algorithm, as checking such a synopsis is roughly equivalent to checking

all of L1, L2, · · · , Li. In other words, we can keep only one synopsis which somehow approximates the

synopsis in each sub-problem.

Formally, we define a distance metric dis(S, S′) quantifying the similarity of two synopses:

dis(S, S′) , min
X,S′=Update(S,X)

tspan(X),

where the time span of a packet sequence is defined as tspan(X) = maxx∈X time(x)−minx∈X time(x).

Theorem 8 states if an algorithm ensures (L2) no FNℓ in the landmark window model and (L3) its

synopsis is bounded, it also ensures (A2) no FNℓ in the arbitrary window model.

Theorem 8. If an algorithm satisfies

• L2: For all t, it reports all flows whose volume exceed γ′ht + β′h over time interval [0, t).

• L3: Throughout the execution of L, dis(S0, Si) ≤ ∆, where ∆ is a small constant and Si =

Update(S0, 〈x1, · · · , xi〉).

then it must also satisfy

• A2: It always reports a flow whose volume exceeds γh(t2 − t1) + βh over time interval [t1, t2) for some

t2 > t1.

when γh(t2 − t1) + βh ≥ γ′h(t2 − t1 + ∆) + β′h.

Proof sketch: Let L be an algorithm satisfying L2 and L3. Let f be a flow that sends more than

γh(t2− t1) + βh over some time interval [t1, t2), and t2 is the smallest among all possible values if the flow

f violates the spec multiple times. To prove this No-FNℓ relationship, in the following we show that L

can catch any f when γh = γ′h and βh ≥ β′h + γh∆, thus satisfying A2 as well.

CHAPTER 5. LARGE FLOW DETECTION 76

For convenience, we denote by Xb
a the incoming packet stream between time interval [a, b). Since L

satisfies L3, the synopsis state of L is always bounded, so dis(S0, St1) ≤ ∆ where St1 is its synopsis state at

t1.

Based on the definition of the distance function, there exists a packet sequence X′ with a time span

less than ∆ and Update(S0, X′) = St1 . In other words, from the algorithm’s perspective, Update(S0, Xt2
0) =

Update(S0,X ′‖Xt2
t1
), i.e., the two packet sequences produce identical synopses. As a result, if the algorithm

L can detect f in X′‖Xt2
t1

then it can also detect f in Xt2
0 because the output of the detection function, Detect,

solely depends on the synopsis.

Moreover, by construction, f sends more than γh(t2 − t1) + βh in the new sequence X′‖Xt2
t1

, whose

time span is t2 − t1 + ∆. Therefore, L can detect f in the new sequence because γh(t2 − t1) + βh ≥

γ′h(t2 − t1 + ∆) + β′h holds when γh = γ′h and βh ≥ β′h + γh∆. Hence, L can also detect f in the original

stream, Xt2
0 .

We note that L1 and A2 contradict each other for any parameter selection: For any γ′
ℓ
, β′

ℓ
, γh, and βh,

consider an interval [t1, t2) satisfying t1 = t2 − ǫ and t2 >
βh−β′

ℓ
+γhǫ+1

γ′
ℓ

. Then a flow sending γh(t2 − t1) +

βh + 1 over [t1, t2) will violate the high bandwidth threshold over [t1, t2) but comply with γ′
ℓ
t2 + β′

ℓ
over

[0, t2). That is, no algorithm can satisfy (A2, L2, L3) and (A1, L1) at the same time.

The above two theorems can be viewed as guidelines for designing new arbitrary-window algorithms

based on existing landmark-window algorithms.

5.2.2 Algorithm Construction

Several existing landmark-window approaches [117, 44, 83, 114, 116, 58, 38] satisfy L2 when β′h is set to

zero. Among these approaches, we observe the MG algorithm can be made to satisfy L2 in a general

setting (i.e., β′h can be non-zero) as well as L3 with slight modifications. As a result, we choose to leverage

the MG algorithm for designing LFD.

We prove in the next section that LFD’s design ensures L2 and L3, and therefore achieves the no-FNℓ

property (i.e., catching every large flow) based on Theorem 8. We also prove that LFD achieves the no-FPs

property (i.e., protecting every small flow), whereas the MG algorithm requires a second pass to remove

false positives in the landmark window model.

Background of the MG algorithm. We briefly review the MG algorithm, which inspires our design. The

MG algorithm [117] finds the exact set of frequent items (defined as items that appear in a stream of m

items for more than m
n+1 times) in two passes with only n counters. This algorithm generalizes the Majority

CHAPTER 5. LARGE FLOW DETECTION 77

Is x blacklisted?
Counter update

for virtual !ows

No
packet x

Blacklist

counter >

threshold?
Blacklist

Update

Yes

Counter update

for x

Figure 5.2: LFD’s decision diagram.

algorithm [22, 63], which focuses on the case when n = 2. The same generalization was rediscovered by

Demaine et al. [44] and Karp et al. [83].

The MG algorithm assumes an associative array of counters indexed by items. Counters are initialized

to zeros. We say an item is stored if its counter is above zero. For each incoming item e, the MG algorithm

works as follows. (1) If e is stored (i.e., ctr[e] > 0), then increase ctr[e] by 1. (2) Else if the number of

non-zero counters is less than n, ctr[e] = 1. (3) Otherwise, decrease all non-zero counters by 1.

Since there are at most n non-zero counters kept at any time, the storage overhead is O(n). This can

be easily extended to items with positive weights. After the first pass, the MG algorithm guarantees

that every frequent item has a non-zero count, and a second pass is required to remove falsely included

infrequent items.

The correctness of this algorithm can be shown intuitively: suppose an item e appears more than m
n+1

times, but not remains at the end. The total count would have been reduced by more than m
n+1 · (n+ 1) = m

counts during the execution, which is impossible since it is more than the total number of items.

LFD Overview. Figure 5.2 illustrates LFD’s decision diagram for each incoming packet. At a high level,

LFD works similarly to the MG algorithm except three crucial distinctions:

• Blacklist: LFD keeps a blacklist F that stores identified large flows. Counters are updated only if

the flow ID of the packet is not blacklisted. The main purpose of keeping the blacklist is to avoid

increasing a flow’s counter when the counter value has already exceeded a counter threshold, βTH .

Additionally, we can avoid spending unnecessary resources on accounting blacklisted flows. We

discuss how to limit the blacklist’s size in Section 5.2.3.

• Counter threshold: A flow is added to the blacklist if its associated counter value exceeds a thresh-

old βTH . Setting a counter threshold together with blacklisting ensure counter values are always

confined, i.e., ≤ βTH + α, where α is the maximum packet size.

• Virtual traffic: In contrast to the frequent-item problem, the large-flow problem has to take the idle

time between two consecutive packets into account so as to accurately detect large flows with respect

CHAPTER 5. LARGE FLOW DETECTION 78

to the link capacity. LFD handles this by virtually filling the unused bandwidth with virtual traffic.

Virtual traffic consists of multiple virtual flows, each of which complies with the low-bandwidth

threshold to avoid unnecessary alarms.

Algorithm description. Algorithm 1 describes how LFD works. As the MG algorithm, LFD keeps n

counters, each initialized to zero. Counters are stored in an associative array indexed by flow IDs, and

the number of non-zero counters never exceeds n. Since a packet of size w can be viewed as w uni-sized

items, LFD counters are increased and decreased by the size of the packets. We denote by C the set of

non-zero counters.

Algorithm 1 LFD

1: Initialization (S← Init(n), Line 8-9)
2: for each packet x in the stream do
3: if x’s FID f is not blacklisted (f /∈ F) then
4: Update counters for virtual traffic (Line 18-22)
5: Update counters for x (S← Update(S, x), Line 10-17)
6: if detect violation (Detect(S, x) == 1, Line 21-22) then
7: Add f to blacklist (F ← F ∪ { f })
8: Initialization, Init(n)
9: initialize all counters to zeros, F ← ∅, C ← ∅

10: Update counters for packet x, Update(S, x)
11: if x’s FID f is kept (f ∈ C) then
12: Update f ’s counter by the packet size w (c f ← c f + w)
13: else if less than n counters are kept (|C| < n) then
14: Set f ’s counter to w (c f ← w, C ← C ∪ { f })
15: else
16: Decrease all counters by d = min{w, minj∈C cj}
17: Set c f to w− d, and ∀j remove j from C if cj = 0

18: Update counters for virtual traffic between xi and xi−1

19: Compute the virtual traffic size, v (v = ρtidle − size(xi−1), and tidle = time(xi)time(xi−1))
20: for each unit u in the virtual traffic, update counters as if u belongs to a new flow (e.g., unit is 1 byte)

21: Detect violation, Detect(S, x)
22: Return whether x’s flow counter exceeds threshold (c f > βTH)

Figure 5.3 gives an example showing how to update counters when n = 3, βTH = 10 and α = 3, where

α is the maximum packet size. First, since there is an empty counter, flow g is added and its counter value

becomes 2, the size of the new packet. Then, since flow b is stored already, its counter is increased by 3.

Since the new value exceeds βTH , flow b is blacklisted. The next flow, e, is not stored yet and there is no

empty counter, so all counters are decreased by the packet size. Finally, the virtual traffic is divided into

single-unit packets with new flow IDs, resulting in the final state.3

3Conceptually, the counter values are updated as follows: [3, 9, 0] → [3, 9, 1] → [2, 8, 0] → [2, 8, 1] → [1, 7, 0] → [1, 7, 1] → [0, 6, 0].
Section 5.2.3 discusses techniques to accelerate this process.

CHAPTER 5. LARGE FLOW DETECTION 79

a

5

b

11

Blacklist: b

g
2

a

βTH

5

βTH + α

b

8

g
2

b

3

Blacklist:

a

3

b

9

Blacklist: b

b

Blacklist: b

e

2

virtual

traffic

6

6

a

5

b

8

g

2

Blacklist:

Figure 5.3: Example of LFD’s counter update.

Despite LFD’s simple operations, work remains to prove the no-FPs and no-FNℓ properties and to

devise practical parameters. We answer these in Section 5.3.

5.2.3 Data Structure and Optimization

While LFD requires very little memory state, its processing delay may be high in a naive implementation

where LFD accesses every counter for each decrement operation (i.e., Line 16 in Algorithm 1). We now

present several optimization techniques to reduce the number of memory accesses and the processing

time.

Reducing number of memory accesses. To minimize the number of memory accesses per packet, we

keep counters in a data structure that allows insertion, deletion, and finding the minimum in logarithmic

time. Data structures such as balanced search trees and heaps can satisfy our requirements. Moreover,

counter values are not absolute but relative to a floating ground, cground. Hence, the decrement operation,

which requires decreasing all counters previously, can now be achieved by elevating the floating ground.

The detection function becomes c f − cground > βBF.

The increment operation on Line 12 takes O(1) time using the associative array. Adding a value to

an empty counter as described on Line 14 takes O(log n) time because we have to insert the counter to

the data structure. To prevent counter overflow, LFD periodically resets the floating ground to zero and

deducts all counters accordingly.

Efficient counter update for virtual traffic. Virtual traffic ensures accurate accounting of unused band-

width, but efficient implementation is needed to handle virtual traffic at line speed. To enable efficient

update, LFD’s counters for virtual traffic. We divide virtual traffic into multiple virtual flows in a way

to minimize the time to process such virtual flows. The only constraint is that each virtual flow should

comply with the low-bandwidth threshold to avoid triggering false alarms.

CHAPTER 5. LARGE FLOW DETECTION 80

As Line 20 of Algorithm 1 shows, for each unit u of the virtual traffic, LFD updates its counters (i.e.,

Update(S, u)) as if the traffic unit belongs to a new flow. We can minimize the number of updates by

maximizing the unit size. To avoid false detection, the maximum size per unit is βTH bytes. As βTH

must be larger than the minimum packet size (i.e., 40 bytes) for practical use, the overhead of using βTH-

byte virtual flows is bounded by the worst-case scenario where the link is congested by minimum-sized

packets.

We can further optimize this task based on the following observation: once all counters become empty,

they should stay empty until the next real packet comes. Furthermore, since the maximum counter value

is βBF + α, counters will all be empty if the size of the virtual flow ≥ (βBF + α) · n. (A tighter condition is

if the virtual traffic size ≥ (maxj cj) ∗ n−∑j cj, but this requires keeping track of the sum of all counters.)

In other words, LFD can simply reset all counters to zeros and avoid any update if the virtual traffic size

exceeds a certain threshold.

Counter implementation. For efficiency, counters are implemented as integers (e.g., in bytes) rather than

non-integer numbers. While packet sizes are always multiples of bytes, the size of virtual traffic may be

non-integer, which introduces biases on LFD’s guarantees. For example, given an 800Mbps link and a

nanosecond time precision at the router, the size of a 1-ns virtual traffic is 0.1 Byte.

We bound such biases with a slightly modified algorithm that adjusts virtual traffic. Let us denote by

{v1, v2, · · · } the sizes of a sequence of virtual traffic and by {v′1, v′2, · · · } the adjusted sizes. We maintain

an extra field called “carryover”, co, which keeps the amount of uncounted virtual traffic. co is initialized

to zero and −0.5 ≤ co < 0.5 for all time. Virtual flows are adjusted such that v′i ← [vi + coi] and

coi+1 ← coi + vi − v′i where coi is the value of co before proceeding vi. By construction, v′is are all integers,

and for any a, b, |∑b
a vi −∑

b
a v′i| = |cob+1− coa| ≤ 1. In other words, the adjusted virtual traffic differs from

the original one by at most 1 unit for any time interval. Consequently, the modified algorithm guarantees

to catch flows violating THh(t) = γht + (βh + 1) and guarantees not to catch any flow conforming to

THℓ(t) = γℓt + (βh − 1).

Bounding the blacklist. LFD keeps in memory not only counters but also a blacklist storing detected

large flows. While the number of counters is a constant, the blacklist’s size, |F |, may grow indefinitely

over time.

We propose a simple mechanism to bound |F |, thus preventing algorithmic complexity attacks to

overflow the blacklist as follows. The detector reports the blacklist to an administrator when |F | reaches a

pre-defined limit, e.g., 2n, and then removes currently unmonitored flows (i.e., flows with a zero counter

CHAPTER 5. LARGE FLOW DETECTION 81

value) from the blacklist. The key observation here is that removing currently unmonitored flows will

not affect LFD’s no-FNℓ and no-FPs guarantees, as in LFD whether a flow will be caught or not does not

depend on other flows’ behavior. In other words, the administrator keeps a complete list of detected large

flows, while the detector maintains a small blacklist that helps avoid increasing a flow’s counter when

the counter value has already exceeded βTH . The only tradeoff of this mechanism is that LFD may spend

unnecessary resources on accounting flows that have been identified as large flows.

Parallelizing LFD. A common way to reduce processing time is via parallelization. LFD can be paral-

lelized at both the algorithm and instruction levels. At the algorithm level, we can randomly distribute

the flows (thus the workload) among multiple copies of LFD. At the instruction level, we can access and

update multiple counters in parallel using multi-port SRAM4 when the operations are order insensitive.

5.2.4 Storage and Computational Complexity

Given the above optimization techniques, we analyze LFD’s storage and computational overhead.

To operate at line rates on OC-768 (40 Gbps) high-speed links, a typical 3.2 GHz processor has to

process 40 million medium-sized (1000 bits) packets per second, which means the per-packet processing

time should be at most 32 ns or 76 CPU cycles. In this analysis, we consider the following memory model

for commodity routers: CPU has 32 KB L1 cache, 256 KB L2 cache, 20 MB L3 cache, and gigabytes main

DRAM memory. Accessing L1, L2, and L3 caches takes 4, 12, and 30 CPU cycles, respectively; accessing

the main memory is as slow as 300 cycles.

Storage complexity. LFD keeps an extremely small traffic synopsis and a blacklist of detected flows. The

synopsis consists of n counters and a constant number of additional variables for optimization such as

the floating ground. In most applications the synopsis will be small enough to fit entirely in the router’s

L1 cache. For instance, using 100 32-bit counters requires only 400 bytes, which occupy only a negligible

portion of the L1 cache. Moreover, we can flexibly tune the counter size to further reduce the memory

requirement at the cost of a wider ambiguity region between the no-FPs and no-FNℓ thresholds.

Computational complexity. For each packet, LFD looks up and updates one or more counters, and

adjusts the internal data structure (e.g., heap) of counters. In LFD, locating and updating a counter

requires one memory access in an associative memory. Adjusting the data structure of n counters requires

O(log n) memory accesses.

4Special-purpose SRAMs (e.g., multi-port SRAMs) can support multiple read/write simultaneously [174].

CHAPTER 5. LARGE FLOW DETECTION 82

Since LFD’s state is small enough to fit into the L1 cache as we discussed, the per-packet processing

time can be as low as tens of nanoseconds, which is suitable for processing packets at 40Gbps high-speed

links.

5.3 Analysis

In this section, we prove the no-FPs and no-FNℓ properties. Furthermore, we analyze the incubation period

of large flows, discuss LFD’s tradeoffs, and present practical guidelines for configuring LFD. Finally, we

compare LFD with closely related proposals [58, 57] to demonstrate that it outperforms prior work in

terms of both efficiency and detection accuracy.

We consider a network link with a capacity of ρ, and a LFD detector with n counters. The counter

threshold is βTH . Once the value of a counter exceeds βTH , the associated flow will be judged as a

large flow and cut off immediately. Hence, the maximum value of each counter is βTH + α, where α is

the maximum packet size. Table 5.1 summarizes the notations used in this section. We will discuss the

relationship among parameters and how to set them in the Section 5.3.6.

Table 5.1: Table of Notations.

Network management parameters:

ρ , Rate of link capacity

α , Maximum packet size

tupincb , Upper bound of tincb for any large
flows

THℓ , Low-bandwidth threshold

THh , High-bandwidth threshold

γℓ, βℓ , Rate and burst for low-bandwidth
threshold

γh , Rate for high-bandwidth threshold
Tunable parameters:

n , Number of counters in LFD

βTH , Threshold of counters(> βℓ)
Parameters that depend on tunable parameters:

βh , Burst for high-bandwidth threshold

β∆ , βTH − βℓ

Other notations:

R(t1, t2) , Average flow rate in [t1, t2)

tincb , Incubation period of large flows

RNFN , No-FNℓ rate

RNFP , No-FPs rate

CHAPTER 5. LARGE FLOW DETECTION 83

5.3.1 Large Flow False Negative Analysis

Theorem 9. No-FNℓ property. LFD detects every flow violating the high-bandwidth threshold THh(t) = γht+ βh

over a time window of length t, when γh ≥ RNFN = ρ
n+1 and βh ≥ α + 2βTH .

Proof sketch: Firstly, we prove that LFD satisfies L3 in Theorem 8. According to Algorithm 1, the

maximum value of each counter ci is βTH + α, and there are at most n non-zero counters at any time.

Also, given any valid synopsis S = {ci} we can construct a packet stream X consisting of ci bytes for

flow i and no space between packets, and by construction S = Update(S0, X). Combining the above two

arguments and the definition of the distance function, we conclude that dis(S0, S) ≤ size(X)
ρ ≤ (βTH+α)n

ρ .

That is, setting ∆ = (βTH+α)n
ρ satisfies L3.

Next we prove that LFD satisfies L2 in Theorem 8 as well, when setting γ′h = RNFN = ρ
n+1 and

β′h = βTH . We prove by contradiction and assume there were a flow f violating γ′h + β′h in the landmark

window model at time t but not being detected (i.e., c f < βTH). This assumption implies that more

than γ′ht + β′h − βTH amount of flow f would have been canceled out5 during the decrement step, or

equivalently, more than (γ′ht + β′h − βTH) · (n + 1) = γ′ht · (n + 1) = ρt amount of traffic would have been

canceled out. This statement, however, contradicts the setting where the maximum traffic for t units of

time is ρt. Thus, f cannot escape from LFD, and L2 is satisfied by LFD.

Based on Theorem 8, we conclude that LFD satisfies A2 when γh = γ′h = ρ
n+1 and βh ≥ β′h + γh∆ =

βTH + ρ
n+1

(βTH+α)n
ρ = βTH + n

n+1 (βTH + α). In particular, LFD catches every flow violating the threshold

THh(t) = γht + βh when γh ≥ RNFN and βh ≥ α + 2βTH . That is, LFD catches all large flows in the

arbitrary window model.

5.3.2 Small Flow False Positive Analysis

As discussed in Section 5.2.1, no algorithm can satisfy A2 in Theorem 8 and L1 in Theorem 7 at the same

time. Hence, rather than applying Theorem 7, we have to take a different approach in proving the no-FPs

property.

To analyze LFD’s no-FPs property, we consider how LFD increases and decreases its counter values.

Firstly, let us examine all cases based on the types of incoming flows. We say a flow is old if it is stored in

the counters currently; otherwise the flow is new.

1. When the incoming flows are virtual flows and there are l empty counters, in a time window t, the

decrement is
ρ

l+1 t on all counters, and the increment is 0. (l = 0, 1, 2, 3, ..., n)

5A packet byte is canceled out if it does not contribute to the corresponding counter.

CHAPTER 5. LARGE FLOW DETECTION 84

2. When the incoming flows are new real flows and there is no empty counter, in a time window t,

the decrement is ρt on all counters and the increment is 0 (which is the same as the first case when

l = 0).

3. When the incoming flows are old real flows, or new real flows and there are some empty counters,

in time interval t, the decrement is 0 and the increment is ρ t on one counter.

Thus, in the first and second cases, when there are l empty counters in the detector, the decrement is

always
ρ

l+1 t in the interval of t. In the third case, the increment is always ρ t on one counter in the interval

of t. Finally, the increment and decrement cannot happen at the same time.

Lemma 10. For any small flow f that complies with the low-bandwidth threshold (i.e., THℓ(t) = γℓ t + βℓ), once

the flow f is added to a counter at t1, this counter will be always lower than βTH after time t1 + tβℓ
if the counter

is occupied by the same flow as the flow f , where tβℓ
= (n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
.

Detailed proofs are in Appendices 5.6.1 and 5.6.2.

Theorem 11. No-FPs property. LFD will not catch any flow complying with the low-bandwidth threshold

THℓ(t) = γt + βℓ for all time windows of length t, when 0 < βℓ < βTH , γℓ < RNFP, where RNFP =

β∆

(n−1)α+(n+1)βℓ+(n+1)β∆
· ρ.

Proof sketch: According to Lemma 10, to avoid catching a small flow f , we can make the counter smaller

than βTH before tβℓ
. Hence, we choose a γℓ to achieve γℓ tβℓ

+ βℓ < βTH . Then,
(n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
<

βTH−βℓ

γℓ
,

⇔ γℓ <
β∆

(n− 1)α + (n + 1)βℓ + (n + 1)β∆

· ρ (5.1)

Then, the theorem is proved; LFD guarantees that no small flow will be falsely caught.

Interestingly, Theorem 11 shows that γℓ approaches
ρ

n+1 as β∆ increases, but cannot go beyond
ρ

n+1 .

5.3.3 Relationship between Low-Bandwidth and High-Bandwidth Thresholds

Before the discussion, let us define two concepts:

Rate Gap: The ratio between γh and γℓ (i.e. γh/γℓ);

Burst Gap: The ratio between βh and βℓ (i.e. βh/βℓ).

Based on Theorems 9 and 11, the minimum rate gap is: (γh/γℓ)min = RNFN
RNFP

= (n−1)α+(n+1)(βℓ+β∆)
β∆(n+1)

Given β∆ = βTH − βℓ and n + 1
.
= n

.
= n− 1, we get

(γh/γℓ)min
.
= 1 +

2α/β + 2

βh/βℓ − (α/βℓ + 2)
(5.2)

CHAPTER 5. LARGE FLOW DETECTION 85

Thus, the minimum possible rate gap (γh/γℓ)min is mainly influenced by the burst gap βh/βℓ. Equa-

tion (5.2) tells us (1) βh/βℓ cannot be lower than α/βℓ + 2. (2) LFD only needs a low βh/βℓ to achieve

small enough (γh/γℓ)min. For example, to achieve (γh/γℓ)min = 10, we only need βh/βℓ = 2.53. (3)

(γh/γℓ)min cannot be lower than 1. (γh/γℓ)min approaches to 1 as βh/βℓ grows.

5.3.4 Incubation Period of Large Flows

To define the incubation period, we first consider a large flow that violates the high-bandwidth threshold

over [t1, t2), and the packet at ta triggers the detection. Because of LFD’s no-FNℓ property, ta ≤ t2. The

incubation period is defined as ta− t1, which represents the time duration for which the large flow remains

under the radar. We bound the incubation period as follows.

Theorem 12. For the flow f which violates THh(t) over some time window [t1, t2), if its average rate R(t1, ta) is

larger than Ratk in time interval of [t1, ta) (Ratk is a constant rate larger than RNFN = ρ
n+1), then f ’s incubation

period is bounded by

tincb <
α + 2βTH

Ratk − ρ
n+1

. (5.3)

Proof sketch: Because R(t1, ta) > Ratk, intuitively the tincb of flow with an average rate of R(t1, ta) must

be shorter than the t′incb of flow with rate of Ratk. That is, tincb < t′incb.

Assume a flow f ′ with rate Ratk will violate THh(t) over time window [t′1, t′2), then

Ratk(t
′
2 − t′1) =

ρ

n + 1
(t′2 − t′1) + α + 2βTH

⇒ tincb < t′incb = t′a − t′1 ≤ t′2 − t′1 =
α + 2βTH

Ratk − ρ
n+1

(5.4)

Thus, the theorem is proved.

From Theorem 12, the bound of the incubation period decreases as Ratk increases. In other words,

if Ratk is fixed, the bound of the incubation period decreases with increasing n, which implies we can

reduce the upper bound by adding extra counters. To guarantee detection of flows whose rate is over

Ratk(Ratk >
ρ

n+1), the minimum number of counters is
ρ

Ratk
− 1, and the upper bound on the incubation

period can be lowered significantly by adding a few counters. The details will be discussed in Section 5.3.6.

5.3.5 Tradeoff Analysis

We discuss three tradeoffs in LFD: (1) memory consumption (i.e., the number of counters) vs. the rate

gap, (2) the rate gap and burst gap, and (3) the rate gap and the upper bound on the incubation time.

CHAPTER 5. LARGE FLOW DETECTION 86

First, since the rate gap can be expressed as γh/γℓ > RNFN/γℓ = ρ/γℓ

n+1 , we can see the rate gap

decreases with increasing n. Second, Equation (5.2) shows that the minimum rate gap γh/γℓ is mainly in-

fluenced by βh/βℓ, namely the burst gap, and the minimum rate gap decreases as the burst gap increases.

Finally, Theorem 12 shows that a large burst gap results in a long incubation period. Hence, a small rate

gap results in a big burst gap and a high incubation period.

5.3.6 How To Engineer The Detector

To engineer our detector, we first need to be clear on what parameters are known before starting to design

it. Usually, users want a detector for a specific link capacity ρ, to protect small flows which comply

with the low-bandwidth threshold: THℓ(t) = γℓ t + βℓ, and to detect attack flows that violate the high-

bandwidth threshold: THh(t) = γht + βh. However, as discussed in Section 5.3.5, there is a tradeoff

between the rate gap and burst gap, so their requirements cannot be both fulfilled. Thus, we choose to

satisfy the rate requirement of γh first, and then set βh according to γh, as it is more important to limit

the flow rate than the burst size. Furthermore, since we want to minimize the incubation period of large

flows, there is a requirement on the upper bound of the incubation period, tupincb.

We set βh = α + 2βTH and γh >
ρ

n+1 to guarantee no FNℓ according to Theorem 9. Since βTH =

βℓ + β∆, we only need to decide the number of counters n and β∆. Hence, the problem can be simplified

as follows. Given ρ, γℓ, βℓ, γh, α, and tupincb, we aim to calculate n and β∆ such that the parameters satisfy

the constraints in Theorems 9, 11 and 12.

5.4 Evaluation

In this section, we evaluate LFD using both theoretical and experimental evaluations and compare the

results with two closely related proposals, which we refer to as FMF [58] and AMF [57], to demonstrate

that LFD performs better than prior work in terms of both exactness outside an ambiguity region and

efficiency. The results of experiments using real and synthetic traffic traces are consistent with the analysis

in our theoretical evaluation.

5.4.1 Theoretical Comparison

Multistage filters. Fixed-window-based Multistage Filters (FMF) identify large flows in a fixed measure-

ment interval. A FMF consists of parallel stages, each of which is an array of counters initialized to

zeros at the beginning of a measurement interval. Each stage is assigned a hash function that maps a

packet’s flow identifier to a counter in the stage. For each incoming packet, its flow identifier is hashed

CHAPTER 5. LARGE FLOW DETECTION 87

to one counter in each hash stage, and the counter value increments by the size of the packet. A flow is

considered a large flow if all of its corresponding counters exceed a pre-specified threshold.

Arbitrary-window-based Multistage Filters (AMF) identify large flows over arbitrary windows. To work

in the arbitrary window model, AMF replaces each counter in FMF with a leaky bucket of a bucket size u

and a drain rate r. A flow is considered a large flow if the corresponding leaky buckets are all violated.

Performance Comparison. Table 5.2 presents a numerical example of LFD, FMF and AMF, where the

high-bandwidth rate is 1% of the link capacity, and the low-bandwidth rate is 0.1% of link capacity.

The results of FMF and AMF are derived based on the authors’ original analysis that assumes a specific

number of active flows for the input traffic.

Table 5.2: A numerical example given the requirements in Section 5.3.6. γh is 1% of the link capacity, and
γℓ is 0.1% of link capacity

Scheme # of counters FPs rate FNℓ rate
LFD 101 0 0
FMF 101/1000 no guarantee / ≤ 0.04 0∗

AMF 101/2000 no guarantee / ≤ 0.04 0
∗FMF’s FNℓ rate is above 0 in the arbitrary window model.

Table 5.3: Comparison of three schemes.

Scheme FPs FNℓ Memory Input Traffic
LFD no no low independent
FMF yes yes high dependent
AMF yes no high dependent

LFD outperforms the other two approaches in several aspects: 1) LFD guarantees no false detection of

small flows, whereas they cannot. Even using tens of times of extra storage space, the FMF and AMF still

have error rates as high as 0.04. 2) LFD and AMF can detect all large flows. However, FMF has FNℓ on

bursty flows. 3) LFD requires much less memory compared with multistage filters. 4) LFD’s performance

is independent of input traffic, because the error rate is always zero, while multistage filters require more

stages as the number of active flows increases so as to keep the same false positive. Table 5.3 summarizes

the comparison, which suggest LFD is exact outside the ambiguity region and efficient comparing to prior

works. And we have detailed comparison in the Section 5.4.2 and 5.4.3 , in which concrete examples are

discussed to support our theoretical results above.

Although LFD presents several advantages compared with multistage filters, LFD cannot estimate the

size of a detected flow, which multistage filters achieve.

CHAPTER 5. LARGE FLOW DETECTION 88

5.4.2 Experiment Settings

Datasets. Table 5.4 summarizes the characteristics of the two datasets used in the experiments. The

Federico II dataset contains traces collected at the TCP port 80 of a 200 Mbps link [40, 41, 9]. The CAIDA

dataset contains anonymized passive traffic traces from CAIDA’s equinix-sanjose monitors on 10 Gbps

backbone links [7]. For each dataset, we use the first 30 seconds for experiments. We define flows based

on the source and destination IP addresses.

Table 5.4: Dataset Information.

Dataset Link capacity Avg link rate # of flows Avg flow size
Federico II 200Mbps 1.85MB/s 2911 19.9KB

CAIDA 10Gbps 279.65MB/s 2517099 3.3KB

Table 5.5: Parameters of Experiment Environment.

Dataset γh βh γℓ βℓ ρ α link status βTH n tupincb

Federico II 250KB/s 15.5KB 25KB/s 6072B 25MB/s 1518B congested/non-congested 6991B 107 0.8370sec
CAIDA 12.5MB/s 15.4KB 1.25MB/s 6072B 1.25GB/s 1518B non-congested 6925B 100 0.1242sec

Attack scenarios. In the experiments, we are interested to know LFD’s performance compared with FMF

and AMF in the face of some common attacks.

In particular, we generate attack flows using two simple strategies—flooding attacks and Shrew DoS

attacks [93, 71]—and then mix real traces with artificially generated attack flows to simulate an attack

environment. In a flooding attack, the adversary sends high-rate flows with a specified rate γlarge (e.g. γh).

Each high-rate flow is generated as follows. We randomly choose a 1-second time slot within the 30-second

stream as the first second of the flow. Starting from that second, we randomly generate γlarge/packetSize

packets in each 1-second interval to make the flow size in each interval equal to that specified rate. In

this experiment, we set the packet size to 1518 bytes, the maximum packet size. In a Shrew attack, the

attacker sends periodic bursts in an attempt to cut off TCP traffic by exploiting TCP’s congestion control

mechanism. To generate a bursty flow with a period T, burst duration L, and bursty flow rate γburst, we

randomly choose a time point from [0, 29) second as the start time, and then randomly generate γburst · L

packets in each L-length burst that occurs every T seconds. We then evaluate (1) how many malicious

large flows can evade detection, and (2) how many small benign flows are falsely caught because of these

coexisting attack flows.

We configure LFD based on the guidelines in Section 5.3.6, such that it can detect large flows violating

THh(t) = γh t + βh, where γh = 1%ρ and βh = 2βTH + α are determined based on Equation 5.21. We also

consider small flows that comply with THℓ(t) = γℓ t + βℓ, where βℓ = 6072 bytes and γℓ = 0.1%ρ. Also,

CHAPTER 5. LARGE FLOW DETECTION 89

we require tupincb to be smaller than 1 sec. Table 5.5 summarizes the value of each parameter used in our

experiments. In a “non-congested link” setting, a fixed number of attack flows are mixed with the real

trace. We also consider a “congested link” setting, where we fill the link with attack flows for the small

dataset (i.e., the Federico II dataset) only. We leave it as future work to scale our attack flow generation

tool to work for larger datasets.

To configure the two multistage filters (FMF and AMF), we set FMF’s window size to 1sec, number of

stages d = 2, number of counters in each stage b = 250, threshold of FMF T = γh · 1sec, threshold of AMF

u = βh, and drain rate r = γh. We are also interested in the performance of FMF and AMF when their

memory is as small as LFD’s. Hence, we run additional experiments in which the number of counters in

each stage is 55. The details of these values are shown in the Table 5.6.

Then, for each experiment environment, we design two sets of experiments to test the performance of

these three filters in the presence of flooding attacks and Shrew attacks. We repeat each experiment for 10

times and present the average. In the case of flooding attacks, we randomly generate k1 attack flows for

each attack rate (the k1 and k2 will be explained later). In the case of Shrew attacks, we randomly generate

k2 bursty flows with 1.2 ∗ γh burst rate and 1sec period for each burst duration L. We set k1 = k2 = 50

for the non-congested link setting, and set the k1 and k2 as large as possible to congest the link in the

congested-link setting.

Table 5.6: Multistage Filter Parameters

Dataset b ∗ d T u r
Federico II 55 ∗ 2, 250 ∗ 2 250KB 15.5KB 250KB/s

CAIDA 55 ∗ 2, 250 ∗ 2 12.5MB 15.4KB 12.5MB/s

Evaluation metrics. We consider three evaluation metrics: detection probability, false positive probabil-

ity of small flows, and incubation period. Detection probability is the probability to successfully detect a

generated flow. False positive probability of small flows is the probability to wrongly catch a small flow

when the link is attacked by attack flows of a certain rate. Incubation period represents the time needed

to catch a generated attack flow since it is generated.

5.4.3 Experimental Comparison

Since the results for the two datasets are similar, we omit CAIDA’s results due to the space constraints.

Figure 5.4a and 5.4b shows the detection probability in the face of different types of attack flows. We

focus on the scenario of using 55 ∗ 2 counters in FMF and AMF, as the results of 250 ∗ 2 counters are similar.

CHAPTER 5. LARGE FLOW DETECTION 90

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

LFD in congested link

FMF in congested link

AMF in congested link

LFD in non−congested link

FMF in non−congested link

AMF in non−congested link

γ
atk

γ

(a) Flooding DoS Attack

100 200 300 400 500 600 700 800 900 1000
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

LFD in congested link

FMF in congested link

AMF in congested link

LFD in non−congested link

FMF in non−congested link

AMF in non−congested link

TH
h

(b) Shrew DoS Attack

Figure 5.4: Detection Probability in Experiment with 55 · 2 counters in Multistage Filter.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.01

0.02

0.03

0.04

0.05

0.06

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF
γ
atk

γ

(a) 55*2 counters - Congested Link

200 400 600 800 1000
 0

0.1

0.2
False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF
TH

h

(b) 55*2 counters - Congested Link

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.001

0.002

0.003

0.004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF

γ
atk

γ

(c) 55*2 counters - Non-congested Link

200 400 600 800 1000
 0

0.001

0.002

0.003

0.004

0.005

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF

TH
h

(d) 55*2 counters - Non-congested Link

Figure 5.5: False Positive of Small Flows with 55 · 2 counters.

In Figure 5.4b, the THh line indicates whether a bursty flow exceeds the high-bandwidth threshold. The

results show that LFD detects attack flows that are large with a 100% detection probability, which confirms

CHAPTER 5. LARGE FLOW DETECTION 91

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

 0.001

0.0011

0.0012

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF
γ
atk

γ

(a) 250*2 counters - Congested Link

200 400 600 800 1000
 0

0.001

0.002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF
TH

h

(b) 250*2 counters - Congested Link

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF

γ
atk

γ

(c) 250*2 counters - Non-congested Link

200 400 600 800 1000
 0

0.0001

0.0002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a

b
ili

ty

LFD

FMF

AMF

TH
h

(d) 250*2 counters - Non-congested Link

Figure 5.6: False Positive of Small Flows with 250 · 2 counters.

Theorem 9. Figure 5.4b shows that FMF cannot catch most of the Shrew flows. Moreover, LFD can catch

most of the attack flows in the medium-flow area (between THℓ(t) and THh(t)).

Figure 5.5a to Figure 5.6d show the results of FPs rates. While LFD has zero FPs in any case as expected,

Figure 5.5a to Figure 5.5d shows that both FMF and AMF have high FPs rates in both attack scenarios

when using very limited memory as LFD. That is, the attacker can successfully incriminate benign small

flows. Worst yet, when the link is congested by attack flows, the FPs rate can be as high as 4% for FMF

and 1% for AMF under flooding attacks, and for FMF, the FPs rate is also extremely high under Shrew

attacks. An interesting observation is that, in Figure 5.5a, both FMF and AMF have a higher FPs rate when

the link is congested by malicious small flows. As Figure 5.6a to 5.6d show, using more counters in FMF

and AMF can reduce, but not eliminate, the FPs rates. The results of the CAIDA dataset exhibit similar

trends.

Also, in our experiments, LFD always produces similar results no matter whether the link is congested.

CHAPTER 5. LARGE FLOW DETECTION 92

In contrast, the results of AMF and FMF are much different between the congested-link version and

non-congested-link version. This supports the conclusion in Section 5.4.1 that AMF and FMF rely on

the number of active flows but LFD does not. This advantage makes LFD stable in any networking

environment.

2 2.5 3 3.5 4 4.5

x 10
5

 0

0.2

0.4

0.6

0.8

 1

Incubation Period

Attack Flow Rate (Byte/s)

In
cu

ba
tio

n
P

er
io

d
(s

ec
)

Ave t

incb

Max t
incb

t
upincb

γ
h

Figure 5.7: Incubation Period.

Figure 5.7 describes the maximum and average incubation period of high-rate flows with different rates

in flooding attacks. We can find that the maximum incubation period for flows whose rate is over γh is

always below the theoretical upper bound for the incubation period, tupincb, which supports Theorem 12.

Moreover, the average incubation period is much lower than the theoretical upper bound, which shows

LFD’s incubation period is much shorter in practice.

5.5 Summary

LFD is a deterministic streaming algorithm that robustly catches all large flows and protects all small

flows regardless of the traffic distribution. The core ideas differentiating LFD from prior work are that it

(1) monitors flows over arbitrary windows and (2) provides exactness outside an ambiguity region. One

future direction is to explore the design space of large-flow algorithms in the arbitrary window model

by applying the no-FP and no-FN theorems to existing landmark-window-based algorithms. Another

interesting future work is to formally examine the robustness of LFD and prior algorithms against ma-

licious inputs. We believe that LFD can aid emerging applications such as detecting flooding attacks by

bursty flows [93] and enforcing QoS-based SLA compliance [158], which require robust monitoring for

high assurance.

CHAPTER 5. LARGE FLOW DETECTION 93

5.6 Appendix

5.6.1 Lemma 13 and Proof Sketch

Lemma 13. In any time interval [t1, t2] with k large flows occupying k counters from the beginning time t1 to the

ending time t2, if all the other counters (i.e., counters except the ones occupied by large flows) are empty at beginning

time t1 and ending time t2, then the decrement of all the counters is
(t2−t1)−tlrg

n+1−k ρ, where tlrg is the sum of time for

which these k large flows are sending packets.

Proof sketch: In [t1, t2], when these large flows occupy the link for tlrg time, then the link is occupied

by certain real flows F or virtual flows for t2 − t1 − tlrg time. There is no assumption about the flows in

F, except they should ensure that there are n− k empty counters at beginning time t1 and ending time t2.

During the time of t2 − t1 − tlrg, the counters are either increased by flows in F or decreased by flows in F

or virtual flows.

We divide the total decrement dec into many small decrements deci. deci happens in time interval ti,dec,

and the number of counters occupied by flows in F is xi during ti,dec.

Because the other n− k counters are empty at the beginning and the ending, when there is a decrement

deci for each counter, then there must be xi increment inci on xi non-empty counters. Therefore, all the

decrements deci in these n− k counters have a counterpart of xi increment inci lasting for ti,inc time. deci

and incis may be apart in the time domain, but for a decrement deci there must be xi number of incis,

such that inci = deci.

According to the three ways of counter decreasing and increasing, given the number of empty counters

is l = n− k− xi, the deci and inci in ti,dec are:

deci =
ρ

n + 1− k− xi
· ti,dec (5.5)

inci = ρ · ti,inc (5.6)

Then, according to inci = deci and (5.5,5.6)

⇒

ti,dec =
(n + 1− k− xi) · deci

ρ

ti,inc =
inci

ρ
=

deci

ρ

(5.7)

At any time point in t2 − t1 − tlrg, counters are either increasing or decreasing, which means

t2 − t1 − tlrg = ∑
i

(xi · ti,inc + ti,dec) (5.8)

Then, according to (5.7,5.8), we can get

CHAPTER 5. LARGE FLOW DETECTION 94

t2 − t1 − tlrg = ∑
i

(xi ·
deci

ρ
+

(n + 1− k− xi) · deci

ρ
) (5.9)

=
dec(n + 1− k)

ρ
⇒ dec =

(t2 − t1)− tlrg

n + 1− k
ρ (5.10)

Therefore, during [t1, t2] the decrement of all the counters is
(t2−t1)−tlrg

n+1−k ρ, and this lemma is proved.

5.6.2 Proof Sketch of Lemma 10

Proof sketch: WLOG, we assume flow f is associated with a counter at t1 = 0, and in [0, tocp], flow f

always occupies this counter. Then, intuitively, in [0, tocp], the cases to have minimum decrement decmin on

this counter are: 1) at time 0 all the counters are empty, and 2) at time tocp, except the counter of flow f , all

other counters have the maximum value α + βTH . Because the remaining values in the counter will cost

extra time tinc for increasing these counters, then according to the Lemma 13, the t2 − t1 in Lemma 13 is

smaller and the decrement is smaller. Therefore, in the case mentioned above, the decrement is minimized.

According to Lemma 13, in this case t2 − t1 = tocp − tinc, k = 1, then the minimum decrement is:

decmin =
tocp − tinc − tlrg

n
ρ (5.11)

where tinc =
(n−1)(βTH+α)

ρ .

Since f complies with THℓ(t), tlrg < γℓ/ρ · tocp +
βℓ

ρ .

⇒ decmin >
tocp(1− γℓ/ρ)

n
ρ− (βTH + α)(n− 1) + βℓ

n
(5.12)

⇔ decmin > γℓ tocp +
tocp(1− (n + 1) γℓ

ρ)

n
ρ− (βTH + α)(n− 1) + βℓ

n
(5.13)

When tocp > tβℓ
= (n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
,

⇒ decmin > γℓ tocp +
(n− 1)α + (n + 1)βℓ

n
ρ− (βTH + α)(n− 1) + βℓ

n
(5.14)

⇒ γℓ tocp + βℓ − decmin < βTH (5.15)

Because flow f complies with THℓ(t), its counter value is smaller than tocp + βℓ − decmin. Therefore,

the counter is smaller than βTH after tβℓ
.

CHAPTER 5. LARGE FLOW DETECTION 95

5.6.3 Engineering The Parameters

We give a detailed solution and analysis to the problem defined in Section 5.3.6. The problem can be

expressed by the inequality set (5.16):

α + 2βTH

γh − ρ
n+1

< tupincb

β∆

α(n− 1) + (n + 1)βℓ + (n + 1)β∆

· ρ > γℓ

ρ

n + 1
< γh

(5.16)

⇐

2(α + βTH)

γh − ρ
n+1

≤ tupincb

β∆

α + βℓ + β∆

· ρ

n + 1
≥ γℓ

ρ

n + 1
< γh

(5.17)

⇔

β∆ ≤
tupincb(γh − ρ

n+1)− 2(α + βℓ)

2

β∆ ≥
γℓ(α + βℓ)

ρ
n+1 − γℓ

n >
ρ

γh
− 1

(5.18)

⇒

γℓ(α + βℓ)
ρ

n+1 − γℓ

≤
tupincb(γh − ρ

n+1)− 2(α + βℓ)

2

n >
ρ

γh
− 1

(5.19)

Then we can assert that there must exist a solution pair of (n, β∆) which fulfills inequality set (5.18), if and

only if there is a n satisfying nmin ≤ n ≤ nmax, where

nmin = ⌈ρ/
M +

√

M2 − 4γhγℓ

2
⌉ − 1

nmax = ⌊ρ/
M−

√

M2 − 4γhγℓ

2
⌋ − 1

M = γh + γℓ −
2(α + βℓ)

tupincb
≥ 0

(5.20)

Then, we obtain the solution space, as Figure 5.8 illustrates. In this figure, the (n, β∆) solution pairs

are in the space between the two lines of the lower bound curve and the upper bound curve. Note that

the inequality sets (5.16) and (5.18) are not totally equal, so there may be additional solutions outside this

space.

According to the inequality set (5.18), the lower bound of β∆ is β∆ min = γℓ(α+βℓ)
ρ

n+1−γℓ

. And we can see

β∆ min increases with n, as Figure 5.8 shows. Since we can reduce memory consumption and the burst gap

by using a smaller n and β∆, we choose

CHAPTER 5. LARGE FLOW DETECTION 96

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5 β∆−n Solution Space

β ∆

number of counters (n)

β∆ Lower Bound Curve

β∆ Upper Bound Curve

Figure 5.8: Curve of the lower bound of βℓ. (γℓ = 100, 000 byte/s γh = 1, 000, 000 byte/s, ρ =
100, 000, 000 byte/s, α = 1518 bytes, βℓ = 6072 bytes, tupincb = 1 sec.)

n = nmin = ⌈ρ/
M +

√

M2 − 4γhγℓ

2
⌉ − 1

βTH = βℓ + β∆ min = βℓ +
γℓ(α + βℓ)

ρ
nmin+1 − γℓ

(5.21)

as our final answer to this design problem.

We give a numerical example showing how to configure LFD based on the result above. Suppose

the administrator of the detector chooses γℓ = 100KB/s, γh = 1MB/s, ρ = 100MB/s, α = 1518 bytes,

βℓ = 6072 bytes, and tupincb = 1 sec. Then using equation (5.21), we choose n = 101 and β∆ = 863

Byte. With these two parameters, the incubation period is 0.7848 sec which is smaller than tupincb = 1 sec,

and the no false positive rate is 100450 Byte/s which is larger than γℓ = 100000. The ratio between no

false negative rate
ρ

n+1 and low-bandwidth threshold rate γℓ is
ρ

n+1 /γℓ = 9.80. The results show that to

react quickly to large flows and obtain a small rate gap, the detector only needs a small number of extra

counters comparing with the minimum number of required counters (i.e.
ρ

γh
− 1 = 99) and a low burst

gap.

We obtain this particular solution by choosing the minimum n and minimum β∆. We can also solve

the inequality set (5.16) for different requirements, such as minimizing the rate gap between
ρ

n+1 and

β∆

α(n−1)+(n+1)β+(n+1)β∆
· ρ.

However, there may be no solution to the inequality set (5.18) for any given ρ, γℓ, βℓ, γh, α, tupincb. To

make it solvable, we need to make sure M2 − 8γhγℓ and M are not negative in the inequality set (5.20).

Namely,

CHAPTER 5. LARGE FLOW DETECTION 97

γh + γℓ −
2(α + βℓ)

tupincb
≥

√

4γhγℓ (5.22)

⇐ tupincb ≥
2(α + βℓ)

γh + γℓ − 2
√

γhγℓ

(5.23)

Moreover, according to Section 5.3.3, γh > γℓ is necessary to make the inequality set (5.18) solvable.

Chapter 6

Lightweight Anonymity and Privacy

To improve Internet availability, previous chapters explore how to provide waiting time and bandwidth

guarantees despite DDoS attacks. In this chapter, we turn our focus to study efficient defense against

selective dropping, which is another major threat hindering the availability of the Internet.

In selective dropping, the attacker controls some devices, such as routers or firewalls, on the commu-

nication path, and selectively delays or blocks a subset of traffic. To mitigate selective dropping, our core

observation is that making flows indistinguishable from each other prevents the attacker from reacting selectively in

the first place. Technically, traffic indistinguishability forces a smart, selective-dropping attacker to become

a dumb attacker that can at best block traffic at random.

Encryption and anonymization are common techniques to make traffic indistinguishable based on

content and network identifiers, respectively [16, 17, 144, 56]. Concealing network identifiers is more

challenging than concealing other information in the packets, as routers require network identifiers to

forward packets. As a result, while many lightweight end-to-end encryption schemes exist (e.g., IPsec),

anonymization schemes tend to be inefficient in terms of latency and computational overhead.

In this chapter, we present a lightweight protocol to hide the network identifiers from a remote attacker

on the communication path. Consequently, this protocol prevents the attacker from discriminating traffic

based on the topological information such as source and destination addresses.

Motivation: Existing anonymity systems introduce intolerable latency. Staying anonymous in today’s

Internet requires anonymous overlay systems, such as Tor [47], to conceal the communicating endpoint’s

IP address, as it can reveal the end-user’s identity and location [119]. Such overlay systems attempt

to facilitate anonymous communication using layer-encrypted packets traveling through indirect routes.

However, this results in additional latency due to long end-to-end path length and cryptographic opera-

98

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 99

Latency

Attack class

LAP

Tor [47]

Mix network [32]

Lightweight anonymity

Low-latency anonymity

High-latency anonymity
End-server

Government
class

Global

eavesdropper Optimal solution

No anonymity protection

Figure 6.1: The design space of anonymous schemes.

tions indirectly traveling through three Tor relays would be approximately four times slower than traveling

along a non-dilated path. Moreover, Tor relays are constantly overloaded [48], further worsening the la-

tency and throughput. Measurements show that the average time to fetch an HTTP header using Tor is

4.04s—ten times higher than fetching it without Tor [128]. Although privacy-anxious users may tolerate

seconds of latency for strong privacy, users desiring an intermediate level of privacy for default protection

of daily online activities (e.g., prevent websites from tracking them for behavioral advertising1) may be

impatient to wait.2

Despite existing work that attempts to protect end-users’ anonymity [47, 136, 32], it still remains

a challenge to provide an intermediate level of anonymity and privacy protection without introducing

much latency. In this chapter, our main goal is to bridge the chasm between systems that provide strong

anonymity with high latency and systems that support no anonymity with zero latency, and explore how

to support lightweight anonymity and privacy that is efficient enough to protect all traffic. Note that those

end-users who want an intermediate level of privacy primarily desire to remain anonymous from servers

such that servers cannot track their behavior. This implies that guaranteeing the end-user’s anonymity

and privacy against a single remote entity rather than a strong, global attacker may be a suitable relaxation

of the attacker model to gain higher efficiency.

Our solution: Lightweight anonymity and privacy with near-optimal latency under a relaxed attacker

model. We propose a new setting that we call Lightweight Anonymity and Privacy (LAP-setting for

short) for private and anonymous communication in the Internet with the following properties:

1Users might enable the DO-NOT-TRACK option supported by most mainstream browsers. However, a recent study [105] has
shown that this mechanism is hard to use due to configuration complexity and provides no guarantee as it depends on the
self-regulation of online organizations.

2Studies have shown that online users are sensitive to waiting time: Amazon’s sales dropped by 1% for every 100ms increase in
page load time, and Google’s ad revenue decreased by 20% for a 500ms increase in search result display time [88].

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 100

• Low-stretch anonymity: Packets for anonymous and private communication should travel through

near-optimal routes such that the increase in the number of Autonomous Domains (ADs) normalized

over the original path length is low.

• Relaxed attacker model: An intermediate level of privacy can be achieved with sender and re-

ceiver anonymity and location privacy. Hence, we relax the strong attacker model (e.g., global or

government-class attackers) considered by existing anonymity systems.

As Figure 6.1 shows, our aim is to address a relaxed attacker model (e.g., end-server attack) with near-

optimal latency while existing work addresses stronger attacker models (e.g., government class or global

eavesdropper) with higher latency. Although low-latency designs are shown to be inherently vulnerable

to a global eavesdropper, some users who trust their local ISPs can achieve much higher efficiency under

the LAP-setting.

Our mechanism, Lightweight Anonymity and Privacy (LAP), is an efficient and practical network-based

solution featuring lightweight path establishment and efficient communication. LAP attempts to enhance

anonymity by obscuring an endhost’s topological location, based on two building blocks: packet-carried

forwarding state and forwarding-state encryption.

• Packet-carried forwarding state: Each packet carries its own forwarding state such that ADs can

determine the next hop from the packet without keeping local per-flow state.

• Forwarding-state encryption: Existing anonymity systems require entire packets to be de-

crypted/encrypted as they travel using shared keys between the sender and intermediate relays.

In contrast, LAP allows each AD to use a secret key (known to the AD only) to encrypt/decrypt for-

warding information in packet headers. As a result, an AD’s forwarding information can be hidden

from all other entities while a LAP packet remains the same at each hop.

LAP is extremely lightweight in the sense that (i) it introduces minimal overhead over non-anonymous

packets in terms of latency and computational overhead on routers, (ii) it does not require any per-flow

state to be stored on routers, and (iii) no separate keys are required to be set up with routers. In addition

to its performance advantages, LAP’s unique design provides two additional merits. First, LAP supports

different privacy levels such that an endhost can trade privacy for improved performance. Second, LAP is

a generic design that can work with a wide range of routing protocols, which includes the inter-domain

routing protocol BGP and new proposals such as SCION [178] and MobilityFirst [2]. Furthermore, we

show that LAP fits especially well with proposed routing protocols that support packet-carried forwarding

state, such as SCION and ICING [126].

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 101

In this chapter, we focus on network-based solutions, where users and locations can be identified

through IP addresses. While most current endhost tracking is implemented via cookies [55] and appli-

cations may as well leak identifiable information such as email addresses or browser configurations, IP

addresses have been used as an alternate identifier when such auxiliary information like cookies is unavail-

able.3 Hence, a complete solution for anonymous communication must integrate network-layer techniques

with mechanisms for other layers, as recognized by previous network-based proposals [136, 108].

Contributions.

1. We explore the design space of anonymous protocols in the context of a relaxed adversary model.

2. We propose Lightweight Anonymity and Privacy (LAP), an efficient network-based solution that

enables lightweight path establishment and efficient forwarding.

3. We evaluate LAP’s security and performance advantages. Our systematic analysis and the evaluation

of our software implementation confirm that LAP can improve anonymity with low performance

overhead.

6.1 Problem Definition

We study how to camouflage an endhost’s topological location (i.e., potential origin within a given topo-

logical neighborhood) in a network architecture to enhance anonymity and location privacy in a practical

manner. More specifically, we study how to design an anonymous forwarding protocol that can protect

the identities and locations of endhosts from a weaker yet practical adversary, while demanding minimal

increase in latency. We do not claim to achieve complete anonymity, but rather focus on providing an

intermediate level of anonymity.

In this section, we scope our problem in terms of desired properties, assumptions, and threat model.

6.1.1 Desired Privacy Properties

Sender/receiver anonymity. Anonymity can be viewed as being unidentifiable within a set of subjects

(e.g., users), also known as an anonymity set [131]. This implies that a sender or a receiver can achieve

stronger anonymity if its identity is hidden in a larger anonymity set [19].4 As a result, an attacker

3British Telecom Phorm PageSense External Validation report.
http://www.wikileaks.org/wiki/British_Telecom_Phorm_Page_Sense_External_Validation_report

4As Syverson points out, the anonymity set is insufficient to analyze complete sender/receiver anonymity as a thorough analysis
with realistic attacker strategies is appropriate [152]. However, we believe that the anonymity set is a tangible metric for
evaluating topological anonymity that we aim to achieve in this chapter, and we leave it as future work to address various
attacker strategies.

http://www.wikileaks.org/wiki/British_Telecom_Phorm_Page_Sense_External_Validation_report

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 102

cannot link the sender and receiver if either sender anonymity or receiver anonymity is achieved. Since the

design of a full anonymous communication system that can defend against timing attacks and conceal

unique platform characteristics is beyond the scope of this chapter, we focus on concealing an endhost’s

network identifier and location in the network topology (which we call “topological anonymity”), which

is an important step towards improving sender/receiver anonymity. For simplicity in expression, we also

abbreviate “topological anonymity” simply with “anonymity” in the chapter.

Session unlinkability. Session unlinkability prevents an attacker from linking a user’s activities over

time. We want to ensure that given two packets from two different sessions, an attacker cannot determine

whether these packets are associated with the same sender (or receiver).

Location privacy. Location privacy is achieved when a user conceals her geographical location so that an

attacker cannot track her whereabouts.

Privacy levels. We want to provide different levels of privacy to endhosts under end-server attacks in

case they are willing to trade privacy for improved performance [91].

In this chapter, we consider confidentiality of the packet payload to be orthogonal to the scope of our

work as data confidentiality can be achieved using end-to-end encryption. Also, privacy leakage from

higher layer protocols/payload is outside the scope of this chapter as such an issue can be alleviated by

existing tools such as Privoxy.5

6.1.2 Desired Performance Properties

While providing an intermediate level of anonymity, we want to assure that the anonymity protection

introduces marginal overhead. Following are the desired performance properties:

Low path stretch. We define path stretch as the increase in the number of AD hops normalized over the

original (or non-anonymity) path length. Since the latency increases as the number of intermediate hops

increase on the path, it is desirable to minimize path stretch.

Low performance overhead. We want to minimize cryptographic overhead, especially asymmetric op-

erations and packet decryption and re-encryption at each hop.

Minimal state. To avoid the state explosion problem, we want to keep minimal or no per-flow state to

reduce the attack surface and increase scalability.

5http://www.privoxy.org/

http://www.privoxy.org/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 103

6.1.3 Assumptions

We assume that an end-user trusts her first-hop AD in the sense that the first-hop AD keeps its customers’

information private and correctly performs anonymous forwarding protocols. This is aligned with the

trust relationship in today’s Internet since end-users place more trust on topologically closer ADs and

generally have more control over the choice of their first-hop ADs than over the other ADs on a routing

path. In case end-users do not trust their first-hop ADs and have no options to pick their own ADs, they

may use anonymity systems such as encrypted tunnel IPsec, Tor [47], or anti-censorship systems [27].

We envision that ADs can control the amount of bandwidth allocated for anonymous communication,

thus limiting the misuse of anonymous protocols, e.g., for sending untraceable attack traffic. We also

assume that routers in ADs support packet-carried forwarding states.

6.1.4 Threat Model

An adversary’s goal is to break the desired privacy properties described in Section 6.1.1 to discover the

identity or location of a sender or a receiver of a given packet. More specifically, we focus on topology

attacks where an attacker attempts to de-anonymize the sender (or receiver) using topological location

information in a given AD-level topology, and leave it as future work to defend against timing correlation

attacks [121, 60, 74, 31].

We consider a relaxed threat model with respect to the attacker’s capability: the attacker can compro-

mise any AD except the first-hop AD where the victim endhost resides. Under this model, our primary

attack case is an end-server attack where a malicious server analyzes traffic to it or initiate communication

with others. We also consider an in-network attack where a malicious AD beyond the first-hop of the

victim endhost leverages its cryptographic keys to perform deep packet investigation or actively manipu-

late (e.g., inject, delete, delay, and replay) packets. Malicious servers and ADs can collude to share their

knowledge base.

6.2 Overview: LAP

LAP is a lightweight protocol to facilitate real-time, bidirectional anonymous communication. In this

section we first give a high-level overview of LAP, and explain how endhosts establish an encrypted path

(e-path) and how ADs forward packets along the e-path to achieve an intermediate level of anonymity.

The core observation of this work is that encrypting path information (i.e., concealing forwarding

information in the packet header) improves topological anonymity against an adversary in the LAP-setting

since the adversary cannot retrieve the sender’s (or receiver’s) origin address from the packet. Moreover,

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 104

extending an encrypted path to a benign AD increases the topological anonymity, simply because there

are more potential origins whose paths could route through the AD. Extending an e-path beyond one

hop is desired because one-hop encryption offers insufficient topological anonymity, as we demonstrate

in the preliminary analysis (Section 6.4). We also discuss in Section 6.6 the level of anonymity when the

adversary appears at different places on the e-path.

Background: Network setting. We consider a network consisting of Autonomous Domains (ADs) as

the basic principal of inter-domain routing; each of these ADs has a set of interfaces, each with a unique

ID, that can connect to neighboring ADs. ADs agree on an inter-domain routing protocol Θ, e.g., the

Border Gateway Protocol (BGP). Upon receiving a packet destined to dest, an ADx evaluates Θx(dest) to

determine the next hop of the packet.

Each AD maintains a master secret key, perhaps stored in a secure offline server, and derives short-

term secret keys, each associated with a certain time period, from the master key. The actual encryption

and authentication keys are derived from the short-term key and a nonce specified by the sender. We

assume every gateway router in an AD has a copy of the short-term keys and knows how to process and

route LAP packets within the AD.

LAP overview. At a high level, LAP has two phases, as shown in Figures 6.2 and 6.3. Suppose Alice

wants to communicate anonymously with Bob without revealing her identity and precise location.

❶-➀ request

❶-➁ reply

b

c

a

d

ADi

bd

bd

i

i

i-1

e-path

segment

offset

Figure 6.2: Operations within an AD. Step ❶-➀: Upon receiving a request packet, an AD encodes its
ingress (b) and egress (d) interfaces, extends the e-path in the packet, and forwards the packet (e.g.,
through interface d in this figure). Step ❶-➁: An AD retrieves the interfaces from the e-path in the reply
packet and forwards it (e.g., to interface b).

Phase ❶ Establishing e-paths: This phase enables Alice to obtain an e-path—a bi-directional routing

path consisting of encrypted forwarding decisions by intermediate ADs on the path.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 105

❶-➀ A→ B: Request

❶-➁ B← A: Reply

❷ A↔ B: Data

aa
a

a bb
c

d

A

A

B BBBB

B

AD1 AD2 AD3 AD4

O1 O1 O1 O1O2 O2 O2O3 O3 O4

Aa Aa Aa Aa

Aa Aa Aa Aa

AaAaAaAa

bd bd bd bd

bd bd bd bd

bdbdbd

ab ab ab ab

ab ab ab ab

abab

aB aB aB aB

aB aB aB aB

aB

3

3

2

2

1

1

0

0

e-path segment offsetaddress payload

Figure 6.3: Operations between ADs. Step ❶-➀: A sends a request to B, which is routed by B’s address.
Step ❶-➁: B replies e-path to A along the reverse path. An AD locates its segment by the offset pointer.
Phase ❷: A and B send data to each other along the e-path.

• Step ❶-➀ Request. To set up an e-path as shown in Figure 6.3, Alice creates a request packet to

reach Bob. When her request packet reaches a gateway router inside AD1, it creates a segment

which contains Alice’s address along with the egress interface, encrypts the segment to anonymize

Alice’s origin address, and forwards the encrypted segment (O1) to AD2. Upon receiving the

request, as shown in Figure 6.2, AD2 encrypts its own forwarding decision in O2 (i.e., the request

packet from ingress interface b is forwarded to egress interface d to reach Bob), appends O2 to the

request packet, and forwards it to the next AD. This process continues until the request reaches

AD4, where Bob resides. Note that encryption and authentication of Oi use secret keys that are only

known to ADi so that only ADi can later decrypt and verify Oi.

• Step ❶-➁ Reply. The resulting e-path enables Bob to send packets to Alice without knowing her

origin address, because the e-path encodes the forwarding decisions made by ADs on the routing

path. We leverage packet-carried forwarding state, where the network forwards packets solely based

on the state contained in the header (i.e., e-path). More specifically, Bob retrieves the e-path from

the request and puts the e-path in the header of a reply packet, which is a special type of data

packet without payload. As shown in Figures 6.2 and 6.3, upon receiving the reply, AD3 decrypts

the segment O3 that it encrypted during Step ❶-➀, retrieves the egress interface a, and forwards the

reply to the next hop. This process continues until the reply reaches the intended endhost Alice. If

an AD fails to correctly decrypt or verify the segment, the reply is dropped.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 106

Phase ❷ Forwarding: When Alice obtains the e-path from the reply packet, she can start sending data

packets anonymously along this e-path using packet-carried forwarding state, as described above.

With LAP, Alice achieves sender topological anonymity and location privacy with respect to a LAP-

setting adversary (e.g., Bob), because only her local AD knows her identity and address. In the following

sections, we describe LAP in detail, and validate it using a real Internet topology. We also address the

challenges of instantiating LAP in the current IP network and future Internet architectures.

6.3 LAP: Lightweight Anonymity and Privacy

In this section, we describe in detail how e-paths are constructed, and present additional mechanisms to

achieve receiver anonymity and controllable privacy. We start with the packet header formats.

6.3.1 LAP Packet Header Format

Figure 6.4 illustrates the format of a LAP packet header. The header contains a 8-bit Type field to distin-

guish request, reply, forward data (from Alice to Bob), and backward data (from Bob to Alice) packets

(six bits of the Type field are reserved for future extensions). The header also contains a 32-bit Nonce field

to assist session unlinkability.

Request. A request packet indicates Alice’s intent to anonymously communicate with Bob. To initiate

a request, Alice specifies Bob’s address in a 32-bit destIP field and her desired privacy/performance

tradeoff, expressed in a 8-bit Hop-to-Encrypt (HTE) field (to be discussed in Section 6.3.3). As the

request travels through ADs until it reaches Bob, each intermediate AD appends its own encrypted path

segment to the e-path field (to be described later).

Reply. A reply/data header contains no IP address since reply/data packets can be forwarded using

the bi-directional e-path that is copied from the corresponding request packet. The header also contains

a Length field to indicate the size of the packet, and an Offset field to indicate the appropriate segment

from the e-path field that the receiving AD can decrypt. ADi adjusts the Offset field based on the

direction of the packet (e.g., for reply, Offset is decreased by 1).

Segments in e-path. The e-path field comprises a sequence of segments, each of which is 128 bits by

default. As shown in Figure 6.4, an AD creates each segment consisting of Ingress and Egress interfaces,

size of the segment, Reserved to store additional information (e.g., source AD can store the source IP

address which does not fit in the Ingress field), and MAC to store the Message Authentication Code over

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 107

0 8 24 63

0 8 24 63

96+

0 16 32 63

127

64+

}

Request

Reply/Data

A segment

in e-path

en
cry

p
ted

Type

Type HTE

Length

Length

DestIP

Nonce

Nonce

e-path

e-path

Offset

Size Reserved

MAC

Ingress Egress

Figure 6.4: LAP packet header formats. In a segment, the first 64 bits are encrypted, and the Reserved

field can be used to store additional information of an AD.

all segments in the e-path field (including its own). Note that LAP can support variable-size segments in

multiples of 128 bits (and thus a Size field is needed in a segment) to defend against size-based passive

traffic analysis, as discussed in Section 6.3.5.

6.3.2 LAP Protocol Description

We now describe Phases ❶ and ❷ in detail.

Encrypted path establishment. To construct an e-path, Alice sends a request to Bob (Step ❶-➀), and by

default, LAP requires each AD to append its encrypted routing decision to the received request packet.

Suppose Alice resides in AD1 and Bob resides in ADn, and the request packet moves along a path AD1,

AD2, . . ., ADn. As shown in Figure 6.3, ADi generates a segment Oi, which contains the encrypted ingress

and egress interfaces for bi-directional forwarding, and appends to the packet. As a result, a resulting

e-path OA,B consisting of {O1, . . . , On} is constructed as follows: let O0 = ∅. For i = 1 · · · n,

χi = Encke
i
(Mi),

Oi = χi‖MACks
i
(χi‖Oi−1) (6.1)

where Mi contains an AD’s routing decision (i.e., the ingress and egress interfaces), Enck(m) means

encrypting m using key k, and MACk(m) is the Message Authentication Code of m using k. ke
i and ks

i are

symmetric keys derived from the nonce and the ADi’s current short-term key, known only to ADi.

We include the previous segment in the MAC computation to enforce the routing decision while

preventing attackers from crafting an arbitrary path. Without MACs, an adversary can easily find a

ciphertext decrypted to some meaningful egress/ingress interfaces. Simply adding a regular MAC is

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 108

insufficient because an adversary may be able to craft an invalid path by combining segments obtained

from two separate requests. Hence, in LAP, we use layered MACs to prevent arbitrary combinations of

segments.

ADi appends Oi to the e-path field of the request, and forwards it to ADi+1 (via egress interface)

until the request reaches Bob.

Packet-Carried Forwarding State. For successful packet forwarding using packet-carried state, endhosts

copy the e-path field from the preceding packet. For example, upon receiving the request, Bob copies

the e-path field to the reply packet. Similarly, when Alice receives the reply, she copies the e-path to

the data packet, and Alice and Bob copy the e-path for succeeding data packets.

Using the e-path in a reply packet (Step ❶-➁) and a data packet (Phase ❷), ADs can forward the

reply/data packet along the encrypted path bi-directionally without actually knowing Alice’s or Bob’s

address. Suppose a reply packet enters an ADi from interface d, as shown in Figure 6.2. The AD proceeds

as follows:

1. Retrieve forwarding decision: It first locates its segment Oi based on Offset and Type (which encodes

the direction of forwarding) in the header. It then decrypts χi to recover the ingress interface ig,

egress interface eg.

2. Verification: Oi is valid if the following conditions hold: i) for a forward packet (e.g., data), d = ig;

for a backward packet (e.g., reply, data), d = eg, and ii) MAC verification succeeds (i.e., the AD

re-computes the MAC using its current secret key and the information embedded in the header, and

checks if the resulting MAC matches the one included in Oi.)

3. Forwarding: If this segment is valid, the AD determines the exiting interface and adjusts the offset.

In our example, since this is a backward packet, the exiting interface is ig and the offset should be

decreased by 1. The AD then forwards the packet to the exiting interface.

Since ADs rotate their short-term keys periodically (e.g., every hour) for security, Alice may have to

renew or request a new e-path if any key for decrypting or verifying the e-path expires during her session.

LAP can support efficient renewal by embedding updated e-path in data packets.

Session unlinkability. Alice can request a new e-path (by specifying a different nonce) for every new

session to achieve session unlinkability. Also, the encryption algorithm should be secure against chosen-

plaintext attacks such that encrypting the same plaintext twice would result in two different ciphertexts

with high probability. For example, one can use AES in CTR mode. The initialization vector (IV) in CTR

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 109

mode can be derived from the nonce and the previous Oi to avoid allocating extra space for storing IV in

the packet. Since a different nonce or routing path would result in a new e-path, an attacker has a low

success rate in correlating two separate sessions based on an e-path.

6.3.3 Controllable Privacy Levels

Encrypting every AD hop in LAP increases the packet header size and computational overhead, and may

reduce the flexibility in routing (e.g., in the case of multipaths, the sender cannot make an informed de-

cision in path selection without knowing which ADs are on the path.) Although LAP provides negligible

computational overhead on routers (see Section 6.7) and we anticipate that routers will be improved to

support larger packets, users may still want to trade privacy for improved performance.

LAP provides options for endhosts to control the length of e-paths, which results in differentiated

privacy disclosure. The intuition is that the degree of anonymity and privacy (in terms of the size of

an anonymity set) increases with the length of an e-path (in terms of the number of AD-hops). More

specifically, Alice specifies the desired length of the e-path in a Hop-to-Encrypt (HTE) field in the request

packet. Each AD checks the HTE field before updating the e-path, and if HTE ≥ 1, the AD updates the

request packet as usual and decreases the HTE field by 1. If HTE reaches zero before reaching Bob, the

intermediate AD returns the e-path to Alice on a reply packet. Similarly, if Bob receives the packet with

HTE ≥ 0, Bob returns the e-path to Alice on a reply packet. Note that to use such partially encrypted

paths, packets have to contain an extra field storing the destination’s address (which, however, can be in

plaintext, as receiver anonymity is provided using rendezvous points, as will be explained in Section 6.3.4).

During the forwarding phase, the AD at the end of the e-path converts data packets between the LAP-

and regular-mode. For example, in BGP routing, the AD encapsulates the e-path in a normal IP packet

and sets the source address to be its own address and the destination address to Bob’s.

6.3.4 Path Publishing for Receiver Anonymity

We have shown that Alice can achieve sender anonymity and location privacy by constructing an e-path to

Bob (i.e., only Alice’s first-hop AD knows her identity and location). However, sometimes Bob may want

privacy protection as well. For example, a user running a controversial website (e.g., WikiLeaks) would

prefer to hide his location and permanent identity to prevent tracking or avoid censorship. However, since

a receiver is unaware of who a sender might be in advance, the challenges become (1) how the receiver

constructs an e-path for any potential sender and (2) how a sender looks up the receiver’s e-path without

knowing his permanent identity.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 110

At a high level, to achieve receiver anonymity, Alice and Bob each initiate an e-path to a rendezvous point

so that only the local ADs know the identity of endhosts. Such an indirection technique is commonly used

in anonymity systems [47]. To address the second challenge, Bob publishes his e-path associated with his

pseudonym on a publicly-accessible Path Server. As a result, a sender knowing Bob’s pseudonym (e.g., via

out-of-band communication) can retrieve Bob’s e-path from the Path Server and reach Bob through the

rendezvous AD. In theory, any AD in the Internet could be a rendezvous point or host a Path Server. To

minimize the path stretch and communication overhead, in practice, tier-1 ADs are a reasonable choice of

rendezvous ADs and Path Server administrators, because most of the Internet traffic goes through tier-1

ADs.

6.3.5 Padding Against Size-Based Traffic Analysis

If we use fixed-size segments, an attacker can determine the distance (in terms of AD hops) to a sender

based on the size of the header. Hence, LAP allows ADs to pad segments (variable-size segments) to

enhance topological anonymity. As mentioned in Section 6.3.1, the size of each variable-size segment is

in multiples of 128 bits. For proper decryption and adjustment of the offset, each AD needs to know the

size of its own segment. Hence, to allow proper operations on both forward and backward packets, an

AD using a variable-size segment encodes the size in both the first and last 128-bit blocks in the Size field

as follows: ADi (1) creates the first 128-bit block Oi using symmetric key ki as described in Section 6.3.2;

and (2) copies the same Ingress, Egress, and Size to the last 128-bit block of its segment, and creates the

MAC over the entire segment using another symmetric key k′i. In this manner, the first 128-bit block looks

different from the last 128-bit block. With this process, the AD can recover the length of its own segment

from either the first or the last 128 bits of the segment, and adjust the offset properly. For (1), note that

since an AD does not know the size of the previous segment, it computes a MAC over the last 128 bits of

the previous segment.

With these variable-size segments, an attacker can only obtain an upper bound on the distance to the

sender, which is the size of the e-path in bits divided by 128. The optimal way of padding results in an

e-path of 128 · l bits, where l is the distance of the farthest potential sender in AD hops.

6.4 Preliminary Analysis

In this section, we illustrate that the current Internet provides minimal anonymity, and demonstrate how

LAP can increase the level of anonymity with a real Internet topology.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 111

 1

 10

 100

 1000

 10000

 100000

2^0 2^5 2^10 2^15 2^20 2^25 2^30

N
u

m
b
e
r

o
f

C
it

ie
s

Number of Addresses

Figure 6.5: As the number of possible IP addresses increases, so does the number of potential cities.

6.4.1 Anonymity and Privacy in the Current Internet

Anonymity in the Internet is hindered by long lasting endhost identifiers, namely IP addresses. From a

network layer’s perspective, IP addresses identify both the source and the destination of the traffic. Hence,

by snooping on traffic flows, malicious nodes can easily determine which endhosts are communicating

with each other and link different sessions to the same endhosts. While public servers prefer long-lasting

IP addresses for availability, current Internet protocols and ISP policies generally assign IP addresses that

last on the order of days6 to clients who have no desire to run public servers. Typically, these IP addresses

(from the ISP’s allocated address space) change only when the DHCP lease time expires. While NAT

boxes can provide an anonymity set greater than one, devices behind them are usually both small in

number and in the same geographical area, thus providing extremely limited privacy guarantees. In the

cellular realm, the situation is better since providers’ NATs can mask a wider range of clients [165]. Ideally,

privacy solutions should be available in all domains that easily allow endhosts to retain anonymity at the

network level.

Consequently, while the current Internet intrinsically provides a certain level of anonymity based on

dynamic addressing techniques (e.g., DHCP and NAT), the degree of anonymity is constrained by the

size of the IP prefixes. More specifically, we estimate the anonymity set size by analyzing the announced

prefix sizes and the number of subscribers of six main ISPs in the U.S., as Table 6.1 summarizes. We

group the prefixes (extracted from the RouteViews dataset [8]) into ISPs using AS description from the

CIDR report7. Assuming that subscribers are uniformly distributed in an ISP’s address space, the size of

an anonymity set can be as low as 24.7 ≃ 26.

Similar studies have shown that hiding behind a prefix provides insufficient anonymity [136]. Al-

though aggregating prefixes associated with the same location may increase the size of the anonymity set

6DHCP Best Practices. http://technet.microsoft.com/en-us/library/cc780311(WS.10).aspx
7http://www.cidr-report.org/as2.0/

http://technet.microsoft.com/en-us/library/cc780311(WS.10).aspx
http://www.cidr-report.org/as2.0/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 112

Table 6.1: Anonymity set size of US top ISPs.

ISP Address Space Announcing Subscriber [103] Subscriber Entropy/Prefix
(Entropy) Prefix (Entropy) Ave. Min Max

Comcast 70,374,912 (26.1) 865 17,406,000 (24.1) 19.5 6.0 22.0
Time Warner 27,556,352 (24.7) 2,158 9,992,000 (23.3) 14.4 6.5 17.5

Cox 11,971,584 (23.5) 1,507 4,400,000 (22.1) 18.8 6.6 19.6
ATT 114,544,128 (26.8) 6,127 16,485,000 (24.0) 18.3 5.2 21.2

Verizon 84,403,200 (26.3) 4,376 8,490,000 (23.0) 15.5 4.7 19.7
Quest 84,403,200 (24.0) 899 2,965,000 (21.5) 16.2 5.5 18.5

(but not location privacy), the flexibility of route management within an ISP may diminish. Also, users

have no control over their level of anonymity.

We also investigate location privacy in the current Internet. We use the Maxmind GeoIP locationing

tool to estimate an endhost’s current city8 based on its IP address and quantify the location-privacy level

based on the number of cities the endhost may reside in. Figure 6.5 shows the relationship between the

number of cities and the anonymity set size: the level of location privacy can be increased by increasing

the number of possible IP addresses.

6.4.2 Anonymity in LAP

In LAP, users can improve their anonymity set size by extending the length of their e-paths.

To show the effectiveness of LAP path encryption, we evaluate anonymity in LAP using traceroute

data from iPlane’s measurements and routing data from RouteViews [8]. The iPlane dataset contains

traceroute data between 197 sources and about 13 thousand destinations. We eliminate 28 sources with

incomplete logs and choose 1,000 destinations for each source. For each pair of source and destination,

we calculate the size of the source anonymity set with respect to the destination based on the Internet

topology and the assigned address space extracted from the RouteViews dataset. According to Figure 6.6,

which illustrates the CDF (cumulative distribution function) of the number of addresses, the increase in

the number of encrypted hops increases the anonymity set.

6.5 LAP Instantiation

In this section, we discuss how LAP can be accommodated in the current IP network running BGP. We

then discuss the potential benefits of tailoring LAP to two future Internet architectures: SCION [178] and

MobilityFirst [2].

8Maxmind determines city names based on the Geographic Names Data Base. http://www.maxmind.com/

http://www.maxmind.com/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 113

 0

 0.2

 0.4

 0.6

 0.8

 1

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

C
D

F

Anonymity Set Size

1 Hop
2 Hop
3 Hop
4 Hop

Figure 6.6: Comparison of anonymity set size based on the number of encrypted hops. As the number
of encrypted AD hops increases, the anonymity set size increases. For the case of four encrypted hops,
almost all origins enjoy an anonymity set size of over 228 hosts.

6.5.1 LAP in the Current Internet

In this section, we delineate how LAP can be incrementally deployed in the current IP network. We con-

sider both LAP-enabled ADs and legacy ADs that do not support LAP. In such heterogeneous networks,

one main challenge is to enable a LAP-enabled AD to discover and build virtual channels to nearby LAP-

enabled ADs. For this integration, we assume that the IP header contains a LAP-flag bit that is set if an IP

packet encapsulates a LAP packet.9

A legacy AD is agnostic to the encapsulated LAP packet and routes IP packets based on the destination

IP as specified in the IP packet header. A LAP-enabled AD, on the other hand, installs dedicated LAP

routers where each of them has a publicly-accessible address, and configures every gateway router to

route LAP packets (whose LAP-flag is set) to the nearest LAP router. Figure 6.7 illustrates a scenario

where AD1 and AD3 are legacy ADs, and AD2 and AD4 are LAP-enabled ADs. X and Y represent the

LAP routers in AD2 and AD4, respectively.

When Alice (whose IP address is A) wants to diffuse her topological location for her communication

with Bob (whose IP address is B), she installs a LAP application proxy on her machine. To obtain an e-

path, this proxy prepares a LAP request packet and encapsulates it in an IP packet. Then, this IP packet

is initiated with srcIP = A and destIP = B.

9Several potential approaches exist to add LAP to the current IP header. One approach would be to add a LAP IP options field,
however, this would constrain the length of the LAP header and possibly also slow down packet processing at legacy routers.
Another approach would be to use a bit in the current IP header to indicate presence of a LAP header. We could use bit 0 of the
3-bit Flags field, which is currently unused. Another potential use could be a bit within the Type of Service or Differentiated

Service byte, since the Precedence or the ECN bits are rarely used. Yet another approach would be to set the Protocol field
to indicate that the next header is a LAP protocol header. In the two latter cases, the LAP header could be placed between the
IP and TCP or UDP headers.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 114

❶ A→ B: Request

❷ A← B: Reply

X

X

X

Y

Y

Y

A A

A

A

B B B B

B

BB

B

AD1 AD2 AD3 AD4

A

A A A A

AA X

X X X X

X Y

Y Y Y Y0 1 2

e-path segment offsetaddress

legacy AD LAP-enabled AD

Figure 6.7: Incremental deployment of LAP in the current Internet.

Encrypted path establishment. The request packet sets up an anonymous return path by which Bob

can reach Alice without knowing her IP address. When a gateway in the LAP-enabled AD2 receives a

LAP-flagged request packet, it routes the packet to the dedicated LAP router X. X then encrypts the

srcIP to generate its e-path segment O2 and appends O2 to the encapsulated LAP packet. X also updates

the srcIP = X in the IP header but destIP remains the same. Similarly, AD4 process the packet in the

same way. When Bob, receives a packet whose srcIP = Y and destIP = B, he sends a reply packet with

srcIP = B and destIP = Y. We assume that the LAP-flag and LAP header are preserved in the reply

packet. When router Y receives the reply, it verifies O4, extracts the IP of the previous LAP router (i.e.,

X) from O4, and updates the destination address to be X. Similarly, router X retrieves A from O2 and

updates destIP = A.

Forwarding. Alice obtains an e-path from the reply packet. To send a data packet to Bob, Alice prepares

a LAP data packet that contains the e-path and encapsulates it in an IP packet whose srcIP = ∅ and

destIP = B. Upon receiving a LAP data packet, Bob returns data packets using the embedded e-path, as

described above. Note that ADs can distinguish forward and return data packets based on the Type field

and adjust the Offset correctly.

Asymmetric paths. Another advantage of LAP integrated with the current Internet is that it can sup-

port asymmetric inter-domain paths, which may exist in BGP due to routing policies, because in this

instantiation LAP path is defined by a list of IP addresses instead of interfaces.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 115

6.5.2 Integrating LAP into SCION

In this section, we show that LAP can be seamlessly integrated into SCION [178], which is reviewed

in Section 2.2. LAP only requires an overhead for path establishment and encryption/decryption of

packet-carried forwarding information, because packet-carried forwarding state and encrypted path pub-

lishing/downloading can be embedded into the existing SCION framework.

We begin with a strawman proposal in which the attacker can link two e-paths to each other. Learning

from this strawman proposal, we present an integration that preserves session unlinkability.

Strawman proposal. Since SCION constructs (unencrypted) Packet-Carried Forwarding State (PCFS)

as PCBs travel from the ISD Core to endpoint ADs, a straightforward integration suggests itself: when

constructing PCBs, intermediate ADs could in addition encrypt SCION’s PCFS, and as a result each

endpoint AD could obtain a set of e-paths to reach the ISD Core without explicit requests. However, this

approach violates the session unlinkability property because packets carrying e-paths with a common

prefix must originate from the same topological region.

Path encryption requests. The violation of session unlinkability in the strawman proposal is due to

the dependency between e-paths. Thus, a better approach would be sending separate requests for each

individual e-path, as our LAP protocol specifies. Essentially, given a routing protocol, LAP forwards

request packets using the routing protocol and forwards reply and data packets using the established

e-paths. Despite its simple setup, the actual challenge here is to ensure the routing protocol itself (SCION

in this case) does not leak information that helps identify requestors or link packets.

In the following, we first investigate two privacy attacks that exploit SCION’s routing information

when forwarding LAP requests using SCION. To mitigate these attacks, we then propose minimal mod-

ifications to SCION routing on the premise of not jeopardizing SCION’s guaranteed properties, such as

controllability, isolation, and scalability.

• Privacy Leak 1: Unconcealed path information in the requests. Since SCION routing operates on PCFS,

forwarding a packet in SCION requires putting a full path (i.e., timestamped PCFS by which packets

can be routed from the source AD to the destination AD) in the packet. As a result, an attacker can

easily link two requests (and therefore two different sessions) by inspecting the unencrypted path

information in the request packets.

• Privacy Leak 2: Non-uniform path distribution. The second attack, which is subtler compared to the first

attack, leverages the fact that, given a routing path, the probability space of the senders is likely to

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 116

C

D

E F

O
b

O
a

O
a
O

c1
O

b
O

c2

A B

O
a
O

c1
O

d1
O

b
O

c2
O

d2

Figure 6.8: In this example, AD D selectively propagates OaOc1Od1 to AD E and OaOc2Od2 to AD F. Due
to this non-uniform path propagation, AD C can deduce that requests carrying Oc1 are likely from the
same sender.

be non-uniform. Formally, when an ADi sees a request and the corresponding unencrypted opaque

field Oi, it is unlikely that Pr[sx|Oi] = Pr[sy|Oi] for any sx, sy, Oi, where sx and sy are two senders.

Figure 6.8 illustrates an example in this attack category. Since AD D selectively propagates the PCBs

to different customer ADs, AD C can deduce that requests carrying Oc1 are likely from the same

sender.

Fixing Privacy Leak 1 is easy. Upon receiving a request, every intermediate AD removes the (unen-

crypted) previous hop information to erase the trace. Removing previous hops in the unencrypted path

information does not affect the normal operations in LAP-enhanced SCION, as the following packets (i.e.,

the reply and data packets) in the same session are sent on the newly-established e-path and do not

require knowing the path information in the cleartext.

To fix Privacy Leak 2, one could require ADs to propagate every PCB to every child AD, such that

every possible route is learned. However, this approach is expensive. A more efficient fix called opaque

field swapping is as follows. An intermediate AD always replaces the remaining part of the unencrypted

packet-carried forwarding state in a request packet with a fixed packet-carried forwarding state for the

same route, such that an attacker sitting beyond this hop cannot gain information by inspecting the

remaining part of the path. This requires an AD to store at least one fixed PCFS for each route it has

advertised recently. While this approach seems to overly expand the power of en route ADs, we note that

SCION intentionally uses a lightweight authentication mechanism for high efficiency and thus does not

prevent en route ADs from stealthily diverting packets.

In sum, SCION ADs route packets using (unencrypted) packet-carried forwarding state and verify

the forwarding information using MACs. Hence, running LAP with SCION requires adding symmetric

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 117

encryption/decryption functions to routers. In SCION, a source obtains a set of paths to reach the des-

tination for source-selection routing. Hence, Alice embeds a request packet inside a SCION packet by

specifying one of the (unencrypted) paths for an e-path construction. Upon receiving this packet, an inter-

mediate AD (ADi) appends its Oi, removes the unencrypted counterpart to erase the trace, and replaces

the remaining unencrypted forwarding state with the fix one for the same route.

The reply and data forwarding can be done as described in the LAP protocol section (Section 6.3.2).

Path Server and rendezvous points in ISD Cores. The design of SCION requires a Path Server to store

ADs’ downstream paths, as an end-to-end path is constructed by splicing a source-to-core path with a

core-to-destination (downstream) path. Similarly, LAP also requires a Path Server that stores encrypted

paths to certain rendezvous points. Hence, SCION Path Servers can manage both SCION paths and

LAP’s encrypted paths. In this manner, an ISD Core becomes a default rendezvous point since all paths

can traverse the ISD Core. Note that for the sake of efficiency (shorter paths), SCION may permit shortcuts

that bypass an ISD Core by comparing and finding the intersection of the upstream and downstream paths.

However, in LAP, finding such common intersections (common links or ADs) when the intersections are

encrypted is fundamentally infeasible because an attacker could take the intersection finding algorithm

as an oracle to decipher encrypted paths. Fortunately, the semi-encrypted paths (constructed by setting a

small Hop-To-Encrypt value in the request) in LAP enable part of a path to be encrypted for a sufficient

degree of privacy with the other half remaining unencrypted to enable shortcut construction.

6.5.3 Integrating LAP into MobilityFirst

To further illustrate the flexibility of LAP, we now describe how it can also be integrated into a mobility-

centric future Internet architecture called MobilityFirst [2]. MobilityFirst retains a distributed routing

control plane similar to that of BGP, while providing a clean separation of network “entities" and routable

addresses. Privacy is a major concern for mobility-centric architectures since they allow humans, via

devices they carry or drive, to be continuously connected to the broader Internet. Hence both control-

plane reachability updates as well as content generated by these devices have the potential to breach

privacy. Low-stretch privacy solutions that cleanly integrate with mobility-centric architectures can give

end users privacy with minimal disruption. As with SCION, LAP naturally complements MobilityFirst

and adds little overhead.

Background of MobilityFirst. MobilityFirst is a clean-slate Internet architecture designed to address

challenges brought about by an increase in the number of mobile, wireless devices. At its core, Mo-

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 118

bilityFirst provides a mechanism to abstract network entities important to applications, and bind those

abstractions into routable network addresses. Specifically, entities such as an individual laptop, a vehicle,

a piece of content, or a group of people each obtain a globally unique identifier, or GUID, that the application

uses for communication. When data destined for a GUID is received by a MobilityFirst router, the router

will either attempt to directly route on the GUID or bind the GUID to a routable address via a massively

distributed global name resolution service, or GNRS. All publicly available entities are responsible for en-

suring that their GUID-to-network address mapping is up-to-date in the GNRS. The GNRS is accessible

from all MobilityFirst routers and hence GUIDs can easily be re-bound deeper in the network if the des-

tination’s network address has changed. In addition to separating naming from addressing, MobilityFirst

heavily utilizes in-network storage and hop-by-hop transfer of large data chunks to react to network and

host mobility.

Path encryption requests. MobilityFirst’s low-level routing plane is similar to that of BGP, with the ex-

ception of IP prefix announcements. Since the GNRS handles the “who is in what network” question,

MobilityFirst routing simply needs to exchange AD-level reachability information. A LAP path encryp-

tion request will occur after a MobilityFirst router (e.g., the border router of the source AD) queries the

destination GUID for a destination network address. The destination network address can be used as the

destination of a path encryption request. This process, as described in Section 6.3.2, can then proceed as

it would with BGP.

Path Server and rendezvous points. The GNRS is responsible for binding GUIDs to routable addresses,

and hence is a perfect match for the LAP Path Server. Using LAP, the GNRS will bind a GUID (which may

be a pseudonym) to an e-path leading to a rendezvous point. Therefore, a router wishing to route towards

a destination GUID will make a GNRS query and either get back the destination network address or an

e-path leading to a rendezvous point. MobilityFirst networks, however, do not have a strict hierarchy,

and hence choosing a rendezvous point is less intuitive. However, since the GNRS is capable of handling

multihomed GUIDs, multiple rendezvous points can be uploaded and bound to the same GUID. If the

destination also provides hints, such as “use encrypted path 3 if in North America”, this can alleviate

stretch problems at the expense of some decrease in location privacy.

Handling mobility. In order to dynamically respond to mobility and disconnection deep within the

network, the destination GUID is always available as the authoritative header on a piece of data. Routers

detecting a problem with a destination network address can always query the GNRS and re-bind the

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 119

GUID to a new destination address. LAP integration does not change this, as the destination GUID can

always be re-bound to a new e-path obtained from the GNRS.

6.6 Security Analysis

We analyze how LAP conceals endhosts’ topological locations for an intermediate level of anonymity and

achieves session unlinkability. We also describe how LAP defends against attacks.

6.6.1 Sender/Receiver Anonymity Analysis

In this analysis, we consider a scenario where Alice and Bob communicate with each other along an

AD path AD1, AD2, · · · , ADn and quantitatively analyze the degree of anonymity with respect to an

adversary, adv, at various vantage points on the path.

We compare LAP with three related anonymous systems: Tor [47], Tor Instead of IP [108], and

AHP [136]. We show that LAP provides a competitive degree of anonymity compared to low-latency

anonymity systems in the presence of LAP-setting adversaries. Also, LAP guarantees much stronger

anonymity properties compared to AHP, which provides a limited level of protection due to a small

anonymity set and does not support receiver anonymity.

Notation. We denote A
adv
s (x) as the sender anonymity set of user x with respect to adversary adv. The

receiver anonymity set A
adv
r is defined similarly. Let N be the total number of Internet users. Thus, N is

the maximum size of an anonymity set. Nt is the number of Tor users and Nt ≤ N. In practice, Nt ≪ N

because Nt is between 105 – 10610 while N is on the order of 10911.

Assumptions. As mentioned in Section 6.1.1, a sender can achieve stronger anonymity if its identity is

hidden in a larger anonymity set. For the analysis, we assume equiprobability for subjects in an anonymity

set. That is, an adversary can determine who may have sent or received a packet within a given anonymity

set but cannot tell whether one is more likely to send/receive than the others in the same set. We consider

a LAP-setting adversary, who can leverage topological information but not timing information and cannot

compromise the first-hop AD of a victim. An adversary with the knowledge of the AD-level topology can

narrow down the anonymity set of a packet based, for example, on the length of the packet header and

the packet’s incoming interface. For this analysis, we assume full deployment of LAP, Tor Instead of IP,

and AHP.

10Tor Metrics Portal: Users. https://metrics.torproject.org/users.html
11Internet World Stats. http://www.internetworldstats.com/

https://metrics.torproject.org/users.html
http://www.internetworldstats.com/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 120

Table 6.2: Comparison of sender and receiver anonymity, represented by the pair of (|Aadv
s (Alice)|,

|Aadv
r (Bob)|). Assume full deployment of LAP, Tor instead of IP, and AHP. |ADx| is the number of

clients in ADx.

Adversary adv LAP Tor [47] Tor instead of IP [108] AHP [136]

LAP-setting

adv1 ADn (N, n/a) (Nt, n/a) (N, n/a) (≤ |AD1|, n/a)
adv2 ADi (v < i < n) (N,< N) (Nt, Nt) (N,< N) (≤ |AD1|, 1)
adv3 ADv (or Tier 1) (≈ N,≈ N) (Nt, Nt) (N, N) (≤ |AD1|, 1)
adv4 ADi (1 < i < v) (< N, N) (Nt, Nt) (< N, N) (≤ |AD1|, 1)
adv5 AD1 (n/a , N) (n/a, Nt) (n/a, N) (n/a, 1)

non-LAP-setting
adv6 ADn (N, 1) (Nt, 1) (N, 1) (≤ |AD1|, 1)
adv7 AD1 (1, N) (1, Nt) (1, N) (1, 1)
adv8 adv6+adv7 (1,1) (1, 1) (1,1) (1, 1)

We summarize our analysis in Table 6.2, where the first column describes the adversary’s location

and the following columns present (|Aadv
s (Alice)|, |Aadv

r (Bob)|) for LAP, Tor, Tor instead of IP, and AHP.

Below, we justify the table.

1) LAP: In this analysis, we consider LAP with full path encryption (Alice’s e-path + Bob’s e-path

through a rendezvous AD ADv in Tier 1) and optimal padding. Hence, a malicious AD can conclude

that the sender (or receiver) must reside in an AD that is reachable from the incoming (or outgoing) inter-

face. However, because of optimal padding, an attacker cannot obtain identifiable information from the

size of the header.

In LAP, only the first- or last-hop AD knows the identity of the sender or receiver, respectively. Hence

an adversary cannot link the sender and the receiver in LAP unless he controls both the first and the

last ADs along the path (adv8 in Table 6.2), which is, however, outside our threat model. Moreover, the

degree of anonymity increases with the length of the e-path. In other words, the farther away an attacker

is from the user, the higher the degree of anonymity. For example, if Bob is an attacker (adv1 in Table 6.2),

Alice’s sender anonymity set is N, because Bob has no knowledge of the interface information, and every

Internet user could be the sender from Bob’s point of view. On the other hand, if Alice’s first-hop AD is

the attacker (adv7), her anonymity set is 1.

Generally, the degree of anonymity strictly increases as the attacker’s position moves toward ADv

(adv3), because for each additional AD between Alice and the attacker, users in that AD are added to the

anonymity set:

|AADi
s (A)| ≥ |AADj

s (A)|+ |ADj|

⇒|AADi
s (A)| > |AADj

s (A)| if v + 1 ≥ i > j

If the attacker is beyond ADv (adv4), the anonymity set is |AADv+1
s (A)| because the rendezvous AD is

known. That is, |AADi
s (A)| = |AADv+1

s (A)| if i > v + 1. Therefore, when the attacker is on the path

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 121

between Bob and ADv (including Bob), Alice has the highest degree of anonymity, where any endhost in

the network could be the sender (assuming that ADv is reachable from all endhosts).

Finally, colluding ADs can easily share knowledge and correlate packets since LAP conceals neither

packet content nor packet size. Thus, the resulting anonymity set is the intersection of those perceived by

individual malicious ADs. Also, LAP provides no anonymity if both endpoint ADs collude.

2) Tor [47]: For the purpose of this analysis, we assume that Alice and Bob are Tor clients but do not

serve as Tor relays. An attacker can learn a list of Tor relays from Tor directory servers. Hence Alice’s first-

hop AD (AD1) can observe that she is sending packets. However, the second-hop AD (AD2) cannot learn

the origin of the packet because it cannot distinguish whether the Tor sender resides in AD1, or the packet

is relayed by other Tor servers and routed through AD1. In general, if an attacker is an AD except AD1,

Alice is hidden within all active Tor users (Nt). The same analysis can be applied for receiver anonymity.

Unlike LAP, Tor can prevent colluding ADs from linking Alice with Bob based on topological or packet

information, because layered-encrypted packets look different at each AD. However, Tor is vulnerable to

timing attacks performed by colluding ADs (e.g., adv 8).

3) Tor Instead of IP [108]: Recent proposals identify the importance of improving the default privacy

level at the network layer. Instead of using Tor as an overlay, Liu et al. propose replacing IP with Tor.

They assume that each AD runs a Tor server, and that packets travel from the sender to the Internet core

(Tier 1) and then to the receiver similar to LAP rather than being routed via an indirect path. Tor instead

of IP, however, allows zigzag paths in the core to improve anonymity. Hence, this scheme exhibits the

same level of anonymity as LAP when an attacker is not at the core, but a slightly better anonymity when

the core AD is malicious. However, in terms of performance, this scheme suffers from expensive path

establishment and stateful communication similar to Tor.

4) AHP [136]: Raghavan et al. propose Address Hiding Protocol (AHP), in which an ISP shuffles its own

address space and assigns a random IP to a sender. Trostle et al. present a similar approach to enhance

sender’s location privacy using Cryptographically Protected Prefixes (CPP) [157]. Both AHP and CPP

achieve a level of sender privacy constrained by the available address block and geographical distribution

of the sender’s hosting ISP. For example, the sender anonymity in AHP is bound by the size of the first-hop

AD (or ISP). Also, they do not offer receiver anonymity or location privacy.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 122

6.6.2 Session Unlinkability

Session unlinkability can be achieved by requesting a new e-path for every new session. Furthermore,

a sender can refresh paths more frequently or use more than one path simultaneously, thanks to the

lightweight construction of an e-path. Hence, LAP does not require the same path to be reused for

multiple TCP sessions. We show that LAP achieves session unlinkability by considering the knowledge

of a malicious AD in the LAP-setting as follows. From a request packet, an AD knows an e-path to the

sender, the size of e-path (which provides an upper bound on the AD-level distance to the sender), the

receiver’s ID (say, Bob), and its own segment. A malicious AD can store this information in his own local

database. Upon receiving a reply or data packet, the malicious AD can compare the stored segments

from the e-path in the packet, and learn the missing segments from the sender to the receiver. As a

result, all data packets carrying the same segments would be linked to the same sender-receiver session.

On the other hand, when different segments are used in a new session, the AD cannot tell if Bob is still

communicating with the same sender, thus achieving session unlinkability.

6.6.3 General Attack Resilience

DoS resilience. Prior anonymity systems are often vulnerable to computational-based DoS due to ex-

pensive asymmetric operations for setting up communication paths or storage-based DoS due to stateful

forwarding. As a result, they require additional DoS defense mechanisms, such as introduction points [47]

or mailboxes [108], as an extra layer of indirection to actively block unwanted requests. On the other hand,

LAP is robust against Denial-of-Service (DoS) attacks in many aspects, thanks to its lightweight path es-

tablishment and stateless forwarding mechanism. For example, a receiver can filter incoming traffic by

selectively announcing paths and frequently updating paths.

A common challenge for all anonymity systems is when an attacker sends untraceable traffic. To pre-

vent such misuse of anonymous communications, an AD can allocate only a small amount of bandwidth

for anonymous traffic. To prevent such attacks, we leave it as future work to study the tradeoffs between

anonymity and accountability.

Resilience against traffic analysis. Traffic analysis comprises two parts: observing traffic and correlating

traffic. Compared to Tor, LAP makes correlations much easier but observations much harder. For corre-

lations, an attacker controlling two or more distinct entities in the network can easily correlate observed

packets to estimate their routes, because LAP packets in the same session look the same at each hop. For

observations, a Tor attacker controlling all entry and exit relays has a good chance of de-anonymizing Tor

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 123

traffic. However, the equivalent attack is almost impossible in LAP because the attacker has to compromise

all the first-hop ADs.

6.6.4 Resilience against Known Attacks

DoS-based side-channel attacks. In the category of DoS-based side-channel attacks, the approach pro-

posed by Burch and Cheswick [26] for IP traceback could also be applied to trace back an e-path to its

origin. The basic idea is to send a large amount of traffic over a link that the e-path may be using. If

the link is indeed part of the e-path, one will observe a slowdown of the session using the e-path. By

repeating this process, one could eventually trace back the entire path. The essence of the approach is to

induce a DoS attack and to use other packets as a side channel to determine the packet flow. Numerous

such side channels have been investigated in the literature [121, 21, 60, 31]. Flow watermarking techniques

also fall into this attack category, using slight time-based variations to infer which packets belong to the

same session [75, 118]—however, this requires multiple observation points in the network. These attacks

are possible even on more heavy-weight schemes such as Tor, and naturally our lightweight approach will

not offer protection. These attacks, however, require more significant effort than passive observations of

network traffic.

Time-based identity inference attacks. A related attack class is time-based identity inference attacks.

Specifically, Kohno et al. propose device fingerprinting based on clock skew inferred from TCP times-

tamps [90]. Since in LAP, TCP headers are not encrypted by default, this attack would apply. However,

the standard countermeasures apply as well: end-to-end IPsec tunnel, perturbation of TCP timestamp, etc.

Another potential location leak is round-trip-time (RTT) based location inference, where the observation

is that the lowest observed RTT induces an upper bound on the distance of the other party. Consequently,

ACK packets, for example, may need to be delayed to increase the anonymity set.

TTL-based attacks. Finally, in the case of LAP used on IP-based networks, we need to defend against a

TTL-based attack: by sending a LAP packet with a small TTL, the TTL may expire while a router within

the e-path forwards the packet, which in turn would trigger an ICMP message sent to the source address.

Fortunately, the first router in the e-path sets the IP source address to its own address, thus the attacker

would not receive the ICMP error message.

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 124

6.7 Evaluation

In this section, we evaluate the performance of LAP in terms of latency and throughput. Specifically

we compare three systems: LAP-disabled (no anonymity), LAP-enabled (intermediate anonymity), and

Tor (high anonymity). Our results show that LAP improves anonymity with a negligible overhead (i.e.,

lightweight) and is more efficient compared to high anonymity systems like Tor.

Figure 6.9: Average latency with LAP disabled and LAP enabled.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

latency

Tor
LAP

Figure 6.10: Latency comparison of LAP and Tor using the real Internet topology.

LAP implementation. We implement basic routing and forwarding elements based on Click software

routers12 to support packet-carried forwarding state (LAP-disabled). We extend the prototype to further

support encryption/decryption of LAP (LAP-enabled). The only overhead that LAP introduces for an

e-path construction per AD hop is the extra packet space needed for optimal padding, and the time for

12The Click Modular Router Project. http://read.cs.ucla.edu/click/

http://read.cs.ucla.edu/click/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 125

Figure 6.11: Average throughput with LAP disabled and LAP enabled.

a symmetric encryption. This is because packet-carried forwarding state already requires ADs to verify

their own routing decisions using MACs. Since routing decisions are carried in each packet, the overhead

caused by the forwarding phase for each AD is the time to decrypt its own segment. We show that our

software-based implementation of LAP exhibits competitive performance, with an anticipation that LAP

will perform even better on dedicated hardware.

6.7.1 Latency Evaluation

We first examine the latency introduced by LAP’s cryptographic operations. We then estimate LAP’s

latency in the real Internet and compare with Tor.

We measure the latency of LAP-disabled and LAP-enabled systems in one LAN network. Each AD

is simulated on one machine with 1 Gbps connection to its adjacent ADs. Since our tests are run on

a local LAN, the latency is dominated by the cryptographic operations. We implement LAP’s encryp-

tion/decryption using the AES function in OpenSSL. For the LAP-disabled case, ADs perform forwarding

using packet-carried state, which involves one MAC computation using the same AES function. For the

LAP-enabled case, ADs verify a MAC and decrypt their own state during forwarding. We run each test

10 times and present the average value. As Figure 6.9 shows, LAP adds a small amount of latency to

packet processing. In our software implementation, this is on the order of microseconds, but a hardware

implementation would shrink the extra decryption time to nanoseconds.

We also compare the latency experienced by LAP and Tor users using the real Internet topology

as follows: we estimate LAP’s latency based on the actual Round-Trip-Time of receiving HTTP packet

headers and the estimated latency overhead of LAP cryptographic operations. For Tor, we measure latency

using the actual Tor network. Specifically, we measure the latency with and without Tor between 10

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 126

geographically distributed machines and the top 200 university websites reported by Alexa13, and also

resolve the URLs of these sites in advance to exclude DNS lookup time. We use university sites as they

are less likely to redirect traffic based on source addresses (in contrast to popular commercial sites). As

Figure 6.10 shows, LAP users experience significantly lower latency compared to Tor users: 90% of LAP

requests finish in less than one second, while most (> 99%) of Tor requests take more than one second.

6.7.2 Throughput Evaluation

We evaluate LAP’s impact on throughput using Netperf 2.5.014 with synthetic traffic of different packet

sizes. Figure 6.11 shows the average throughput of LAP-disabled and LAP-enabled systems. We observe

that the throughput grows with packet size for both cases. In particular, the throughput for the LAP-

enabled case is slightly lower than the one for LAP-disabled, since it takes more time for LAP to process

a packet than to simply forward it. However, the difference in these throughput is very small or even

negligible, especially when the packet size is beyond 1 KByte. This result confirms that LAP has a small

impact on router performance.

We also compare the throughput between LAP and Tor using a small testbed that runs LAP as well as

a private Tor network with three Tor relays. For this evaluation, we set four machines in the testbed to be

connected among each other using 1-Gbps links, each machine dedicated to be a source, a destination (file

server), an intermediate machine running three Tor relays, and a Tor directory server. With this testbed, we

measure the average throughput of a client machine that is downloading a 10-GB file from the file server

for LAP and Tor. When downloading a 10-GB file using the Tor network, the client’s average throughput is

µ = 50.79 Mbit/s (σ = 1.41). With LAP, µ = 939.50 Mbit/s (σ = 32.76), showing a significant throughput

increase.

To summarize, the overhead that LAP imposes is minor, which makes LAP suitable for practical

deployment. In particular, at the cost of a small throughput decrease, LAP can improve the anonymity in

current IP networks.

6.8 Summary

Current anonymous communication systems achieve a high level of anonymity against a strong attacker

model, but pay a dear price in terms of overhead: high communication latency with high in-network

computation and storage state. Especially the high latency causes the Internet browsing experience to

endure a significant slowdown.

13http://www.alexa.com/topsites/
14http://www.netperf.org/netperf/

http://www.alexa.com/topsites/
http://www.netperf.org/netperf/

CHAPTER 6. LIGHTWEIGHT ANONYMITY AND PRIVACY 127

Anonymous communication would thus be more usable with reduced overhead. Indeed, we believe

that many users can live with a relaxed attacker model, as they can trust their local ISPs but want pro-

tection from tracking by ISPs that are further away (potentially in other countries with different privacy

laws) and from tracking by websites. Given such a weaker attacker model, we attempt to provide source

and destination anonymous communication, session unlinkability, and location privacy at a very low

overhead, barely more than non-anonymous communication.

In this framework, our approach is simple yet effective: by leveraging encrypted packet-carried for-

warding state, ISPs that support our protocol can efficiently forward packets towards the destination,

where each encrypted ISP-hop further camouflages the source or destination address or its location.

Although encrypted packet-carried forwarding state is currently not supported in IP, we design simple

extensions to IP that could enable this technology. In particular, our approach is even more relevant in

future network architectures, where the design can be readily incorporated.

This new point in the design space of anonymity protocols could also be used in concert with other

techniques, for example, in conjunction with Tor to prevent one Tor node from learning its successor.

Despite weaker security properties than Tor, we suspect that LAP contributes a significant benefit towards

providing topological anonymity, as LAP is practical to use for all communication.

Chapter 7

Integration and Discussion

The goal of this dissertation is to design efficient defense mechanisms that provide meaningful and action-

able availability guarantees for end-to-end packet delivery despite link-flooding DDoS and address-based

selective dropping attacks.

To achieve this goal, we explore three aspects of DDoS defense—bandwidth guarantees, waiting time

guarantees, and flow monitoring—in Chapter 3 through Chapter 5. We present STRIDE, a DDoS-limiting

architecture that provides bandwidth guarantees, and RainCheck Filter, a primitive that bounds the max-

imum waiting time to get through a bottleneck on the communication path. We also present LFD, an

anomaly detection algorithm that efficiently catches large flows without keeping per-flow state. We then

explore mitigation to address-based selective dropping using anonymous communication in Chapter 6

and present LAP, a primitive that hides the network addresses and topological locations.

This chapter describes an integration of the four defense mechanisms on top of SCION (reviewed in

Section 2.2). We first summarize the adversary model and assumptions that are required for achieving

availability guarantees. We then show that the integrated solution offers waiting time and bandwidth

guarantees in the presence of DDoS and address-based selective dropping adversaries. We conclude this

chapter with discussions such as whether anonymity and DDoS defense can be achieved simultaneously.

7.1 Integration

We review the adversary model in the context of SCION.

7.1.1 Adversary Model

Both endhosts and ADs can misbehave. We aim to address the following attacks:

128

CHAPTER 7. INTEGRATION AND DISCUSSION 129

Link flooding by malicious endhosts. Malicious endhost machines can collaboratively send excessive

traffic to overload a network link, thus attempting to crowd out legitimate flows. This is referred to as

link flooding or a DDoS attack against the infrastructure.

Address-based selective dropping by malicious ADs. We consider malicious ADs that drop packets

selectively based on the source, destination, or both addresses. For example, some ISPs are known to

target packets from or to rival entities.

Selective dropping by content, service types, timing, etc. is outside the scope of this work. Techniques

such as end-to-end encryption can prevent selective dropping based on packet contents. Several host-

based tools exist to detect selective dropping by service types and timing, yet there is no efficient solution

to mitigate or prevent such attacks. We leave them as future work.

Unlike selective dropping, random dropping can be mitigated in several ways. For small-scale random

dropping (i.e., when the dropping rate is about the same as the natural loss rate), a common technical

defense is to add redundancy such as multipath, retransmission, or error correcting codes. Large-scale

random dropping is likely to severely impact a wide area of entities both within and outside the attacker’s

ISD, and can be easily detectable using monitoring tools such as traceroute. Once the random dropping is

detected, victims in the same ISD can penalize the malicious AD, for example by switching to a different

provider or reporting the AD for revocation.

Other types of data-plane attacks (e.g., active packet injection, packet corruption, header modification,

and forwarding path alteration) are beyond the scope of this work. Research in fault localization [179] and

path authentication [126] can help mitigate such attacks, but further investigation is needed to explore

their achievable availability guarantees.

Assumptions. We assume that each endhost trusts its provider AD(s) to never leak its customers’ infor-

mation or maliciously drop their packets. If the first-hop is not trusted, the endhost has to either switch

to a different provider or adopt advanced solutions such as censorship-resilient tools.

While ADs may be unable to remove all bots due to politics or technical issues, we assume that benign

ADs are cleaner than malicious ADs in the sense that benign ADs contain fewer bots and are willing to

remove compromised machines once they are detected.

Since we focus on attacks against AD-level data forwarding, we assume that each AD can resolve

congestion and resource contention within its own domain. We discuss technical solutions to address

intra-AD congestion and resource contention in Section 7.3. We also assume that ISD Cores are intercon-

nected as a clique, and ISD Cores are congestion-free.

CHAPTER 7. INTEGRATION AND DISCUSSION 130

Table 7.1: Forwarding state for different path/channel types. Enck(m) means encrypting m using key k,
and MACk(m) is the Message Authentication Code (MAC) of m using k. A PTS derives the MAC key
based the current short-term key, and derives the encryption key based on the current short-term key
and a nonce. Nonces are used to ensure that encrypting the same message twice yields two different
ciphertexts with high probability. AT

i−1 is the MAC generated by the previous hop.

Type Forwarding State Message Authentication

BE OBE
i = {MBE

i , ABE
i } MBE

i = ingressi‖egressi ABE
i = MACkai

(BE‖MBE
i ‖ABE

i−1)
EBE OEBE

i = {χEBE
i , AEBE

i } χEBE
i = Enckei

(MBE
i) AEBE

i = MACkai
(EBE‖χEBE

i ‖AEBE
i−1)

S OS
i = {MS

i , AS
i } MS

i = ingressi‖egressi AS
i = MACkai

(S‖bw‖exp_time‖MS
i ‖AS

i−1)

ES OES
i = {χES

i , AES
i } χES

i = Enckei
(MS

i) AES
i = MACkai

(ES‖bw‖exp_time‖χES
i ‖AES

i−1)

D OD
i = {MD

i , AD
i } MD

i = ingressi‖egressi AS
i = MACkai

(D‖bw‖exp_time‖MS
i ‖AD

i−1)
ED OED

i = {χED
i , AED

i } χED
i = Enckei

(MD
i) AED

i = MACkai
(ED‖bw‖exp_time‖χED

i ‖AED
i−1)

7.1.2 Building Blocks

Path Translation Service (PTS). Each AD provides a new service called Path Translation Service (PTS) to

convert between different types of forwarding state. Different paths/channels provide different properties

and guarantees (which are summarized in Section 7.2).

In this context, a path indicates an authenticated cryptographic representation (i.e., a MAC) of AD-

level forwarding information, while a channel indicates that of host-to-host forwarding information. Path

translation represents the process of recreating the cryptographic representation for adding, updating,

or hiding some information. Note that each PTS handles its corresponding part of a path, and a full

translation requires the collaboration of all PTSes on the path.

Recall that best-effort (BE) and static (S) paths are half-paths. Up-paths and down-paths are half-paths

with an emphasis on the directionality. A dynamic channel (D) is an end-to-end channel, and the dynamic

channel setup request has to traverse an end-to-end path that is a combination of an up-path and a down-

path. Paths/channels can be encrypted, resulting in encrypted BE paths (EBE), encrypted static paths (ES),

and encrypted dynamic channels (ED). Consider a PTS for ADi, and OT
i is ADi’s forwarding information

for path/channel type T, where T ∈ {BE, EBE, S, ES, D, ED}. Table 7.1 summarizes the forwarding states

for different path/channel types.

The PTS in ADi converts between different types of forwarding states and supports the following

conversions:

1. Unencrypted BE to encrypted BE: OBE
i ⇒ OEBE

i

2. Unencrypted BE to unencrypted static: OBE
i ⇒ OS

i

3. Unencrypted BE to encrypted static: OBE
i ⇒ OES

i

4. Unencrypted BE or static to unencrypted dynamic: Ox
i ⇒ OD

i , where x ∈ {BE, S}

CHAPTER 7. INTEGRATION AND DISCUSSION 131

5. Encrypted BE or static to encrypted dynamic: Ox
i ⇒ OED

i , where x ∈ {EBE, ES}

LAP to prevent address-based selective dropping. If an endhost is discriminated against by an AD in

the same ISD, the endhost can report this malicious AD for revocation or punishment once it detects such

an attack. However, if the endhost is discriminated by an AD in a different ISD, the endhost may be unable

to trigger revocation of the malicious AD even when the misbehavior is detected because the AD is under

a different jurisdiction. The endhost instead has to adopt a prevention- or resilience-based defense rather

than a detection-and-then-recovery defense.

We observe that anonymization downgrades an address-based selective dropping attack to a random

dropping attack, which can be easily mitigated. Specifically, encrypted up-paths and down-paths prevent

an intermediate AD from selectively dropping packets based on the source and destination addresses,

respectively.

Address-based selective dropping attacks can be subtle and difficult to detect, such as when a bot-

tleneck AD selectively drops in the case of congestion (since dropping during congestion is a legitimate

behavior). Fortunately, using encrypted paths also prevents the bottleneck AD from dropping selectively,

thereby addressing this challenging attack.

For scalability, the sender usually uses one encrypted path for sending multiple packets (e.g., packets

associated with the same session). This information allows a malicious AD to link packets in the same

session and selectively drop a certain session without knowing the source or destination. To balance

security and scalability, a security-sensitive sender can (1) request a new encrypted path more frequently

or (2) obtain multiple encrypted paths and use them in turn. We discuss in detail how to improve the

level of unlinkability while preserving scalability and DDoS resilience in Section 7.3.

RainCheck Filter to bound the waiting time of requests. Because the ISD Cores are assumed to have

no internal congestion, the combination of a static up-path and a static down-path results in at most

one bottleneck (i.e., at the top of the down-path) on the AD-level path. The bottleneck AD enables a

RainCheck Filter when it experiences congestion. To limit the impact of remote bots, we consider a path-

based fairness model based on the static up-paths. The raincheck message format is updated to include

necessary information for path-based rate limiting:

ρpath,rid = m‖MACk(m‖path‖rid), where m = n‖ts‖tstart‖tend. (7.1)

The message authentication code is computed using the bottleneck AD’s secret key k. Also, path, rid,

n are included to ensure there is no more than n requests in virtual queue for this path. The request id

CHAPTER 7. INTEGRATION AND DISCUSSION 132

(rid) is given by the sender for duplicate detection. Once a request from a path i is accepted, at most ni − 1

additional rainchecks of path i can be renewed or accepted during ∆.

In this scenario, N
∑i Bi
≤ ∆ ≤ M

Rs
, where M is the available memory for RainCheck Filter at the bottleneck

AD, Rs is the request forwarding rate, N = ∑i ni is the maximum number of requests in the virtual queue,

and Bi is the bandwidth of static up-path i. By setting Bi ≥ ni
∆

, we ensure that rainchecks can be renewed

in time. The AD can set ni to be proportional to Bi, and the ratio is a system parameter determined based

on how much bandwidth RainCheck Filter is allowed to consume.

Consider an example with two static up-paths, Path A and Path B, that can send na requests and nb

requests per time, respectively. To bound the maximum waiting time by na+nb
r , where r is the rate of the

congested static down-path, the bottleneck AD ensures that if a request from A is accepted at time t, then

it accepts or renews at most na − 1 more requests during the sliding time window [t, t + ∆). A similar

check is applied to Path B. Note that the waiting time depends on the total capacity of static up-paths, but

is independent of the number of bots in other source ADs.

Let n(A, req) be the number of requests that (1) have a higher priority than request req and (2) are from

Path A. The purpose of this check is to make sure that n(A, req) ≤ na at any time and is non-increasing

over time. This check can be implemented without keeping per-request state. For example, the AD can

keep a table of recently accepted requests (indexed by a path ID) where each entry in the table consists

of a path ID, expiration time, and a counter. Outdated entries (i.e., entries whose expiration times have

passed) are removed. The AD refuses to accept or renew a request from Path A if the corresponding

counter exceeds na. Otherwise, when the AD decides to accept the request at time t, it increases the

corresponding counter value (if the entry already exists) or adds a new entry (Path A, t + ∆, 1).

RainCheck Filter can also be used at bottleneck ADs on the BE down-paths. The same check is applied

to bound the waiting time under the path-based fairness model. Following the above example, we can

bound the maximum waiting time by ∑ADbn∈bottlenecks
na+nb

rbn
on a BE down-path when the request extends

a partial dynamic channel to overcome the bottlenecks one by one, as described in Section 3.6.2.

Returned rainchecks have to be protected from DDoS attacks as well. The sender can use either a

private static path or a partially established dynamic channel for getting the rainchecks. The rainchecks

can also use a public static path that prioritizes rainchecks over the other packets.

Monitoring granularity. We consider four levels of monitoring, from coarse- to fine-grained. With ex-

ception of flow-level monitoring, these levels monitor flow aggregates grouped by ISDs, ADs, or paths.

Flows in the same aggregate share the same fate, such as being punished together. For example, in ISD-

level monitoring, the whole ISD is a fate-sharing group and will be punished as a whole if any of its ADs

CHAPTER 7. INTEGRATION AND DISCUSSION 133

misbehave. To avoid collateral damage due to fate sharing, ISDs and ADs are motivated to better manage

their domains and adopt finer-grained monitoring techniques.

1. ISD level. Each ISD monitors the traffic aggregate to/from another ISD. Two ISDs can negotiate the

bandwidth limits specified in their inter-ISD contractual agreement. For example, ISD A can agree

to allocate 5% of capacity on each static down-path for ISD B’s traffic. Such limits are especially

important when one ISD is unable to verify the claim (e.g., the priority of a packet) made by entities

in another ISD.

2. Neighboring-AD level. Each inter-AD link has a predefined bandwidth division based on the con-

tractual agreement between these two ADs, e.g., 30% static, 50% dynamic, and the unused part goes

to best effort. Each AD monitors the static and dynamic traffic aggregates to ensure their compli-

ance with the respective limits on the link. In addition, ADs can refine the monitoring accuracy by

checking against the reserved amounts (e.g., 70 out of 100 Mbps dynamic bandwidth is currently

reserved as dynamic paths) rather than the predefined limits.

3. Path level. Path-level monitoring identifies static paths consuming more bandwidth than their

reserved amounts. We assume that each path is associated with a unique path ID, which can be

embedded in the header or derived from the forwarding information. The ISD Cores and the ADs

at the joint of two half-paths perform per-path monitoring to enforce the bandwidth allocation for

each static path.

4. Flow level. Flow-level monitoring aims to catch dynamic flows violating their allocations. Similarly,

we assume that each flow is associated with a unique flow ID, which can be embedded in the packet

header or derived from the forwarding information. While keeping per-flow state for monitoring

is feasible at the edge of the network (i.e., first-hop ADs), it incurs high overhead at intermediate

ADs. Per-flow monitoring by the first-hop ADs only may still be insufficient, since some ADs may

not trust the first-hop ADs for correct monitoring (e.g., an AD may not trust the first-hop ADs in a

different ISD). Probabilistic flow monitoring is more scalable than per-flow monitoring, yet suffers

from inaccuracy and detection delay: (1) probabilistic monitoring implies probabilistic bandwidth

guarantees, which are weaker than deterministic bandwidth guarantees, and (2) probabilistic moni-

toring often results in delayed detection, causing collateral damage to benign flows. In Chapter 5, we

propose a new setting that trades the level of exactness for scalability, thus enabling the immediate

detection of every large flow and perfect protection of every small flow. We discuss how this new

setting helps reduce collateral damage and preserve end-to-end availability guarantees below.

CHAPTER 7. INTEGRATION AND DISCUSSION 134

LFD to enforce flow bandwidth allocation. We explain how LFD, a deterministic flow monitoring algo-

rithm supporting immediate and almost-exact large flow detection, can be applied to perform real-time

enforcement without keeping per-flow state. Recall that LFD considers a relaxed exactness model: all

flows violating a high-bandwidth threshold (defined by a leaky bucket) THh will be detected immedi-

ately, while every flow complying with a low-bandwidth threshold THl is protected and never falsely

caught. Medium flows (those flows which are in between the two configurable thresholds) can be iden-

tified probabilistically using existing techniques such that there is a reasonable probability of catching

medium flows. Consequently, a coward attacker who hates taking any risk is trapped and forced to stay

within THl . An aggressive attacker may take some risk to go beyond THl but is still trapped and forced

to stay within THh. This distinct property allows an AD to estimate the minimum capacity for achieving

desired bandwidth guarantees due to DDoS attacks.

Particularly, to avoid undesired dropping despite DDoS flows violating their bandwidth limits, an AD

over-provisions based on a ratio Rop, where Rop ,
THh
THh

. To see why this works, consider an AD with

D ≥ n · THl units of dynamic bandwidth for supporting n flows. Since flows violating THh could be

caught immediately, the total bandwidth consumption of these n flows is bounded by n · THh. In other

words, an AD with an over-provisioned capacity ≥ Rop · D ≥ n · THh can robustly prevent collateral

damage, provided such immediate and almost-exact flow-level monitoring is used.

7.1.3 Integration on top of SCION Architecture

For ease of presentation, we describe each protocol step in this integrated solution.

Half-Path Setup

➀ Path discovery and bandwidth announcement: The bandwidth announcement part is the same as in

STRIDE. In short, Path Construction Beacons (PCBs) are periodically initiated by the ISD Core and are

propagated from the ISD Core to endpoint ADs. Each intermediate AD adds information to the PCBs

regarding the available bandwidth.

To enable LAP for selective dropping defense, the Path Server in each AD also stores one BE path for

each route that the AD has propagated to the downstream ADs.

➁ Path translation: Upon receiving a BE half-path, the endpoint AD can decide whether to translate

the BE path to an encrypted BE path, an unencrypted static path, or an encrypted static path, each of

which supports different properties. If a path translation request is issued, the PTSes on the BE path will

translate the path. For encrypted static paths, the admission control can only be done based on the ingress

CHAPTER 7. INTEGRATION AND DISCUSSION 135

point and the previous-hop AD.

➂ Confirmation: Once successfully translated, ADs send the confirmation using the new path. The

endpoint AD can register the new path at the Path Server for public usage.

Static and BE Channel Setup

➃ End-to-end path selection: We consider two types of end-to-end channels from the sender to the

receiver: (1) combined channels that are built from half-paths, and (2) dynamic channels. Combined

channels are low-capacity or best-effort channels that are mainly used for sending dynamic channel setup

requests. Dynamic channels are high-capacity channels.

Based on the sender’s requirement, the source AD constructs a combined channel consisting of (1)

the sender’s endhost identifier (EID), (2) an AD-level up-path, (3) an AD-level down-path, and (4) the

receiver’s EID. While in principle the source AD selects the AD-level path on behalf of the sender, we

also allow the sender to explicitly specify the AD-level path (e.g., a receiver provides a private down-path

exclusively for this sender).

To support sender anonymity, the source AD encrypts the sender’s endhost identifier (EID) while

forwarding the packets. To support receiver anonymity, the receiver first requests a pseudonym from

the destination AD, where the pseudonym can be an encrypted EID created by the destination AD. The

receiver wishing to run a hidden service publishes an encrypted down-path with its own pseudonym at

the Path Server in the ISD Core.

Specifically, the sender includes in the request packet the following information: (1) the sender’s

endhost identifier (EID), (2) the receiver’s EID, or pseudonym plus encrypted down-path, (3) indicator of

sender anonymization, (4) desired type of waiting time guarantees, and (5) desired amount of dynamic

bandwidth where zero indicates the maximum possible.

Seeing this host-generated request packet, the source AD replaces it with a properly formatted dy-

namic channel setup request packet with the following fields: (1) the sender’s EID or pseudonym, (2) the

receiver’s EID or pseudonym, (3) an AD-level path (which satisfies the specified anonymity and waiting

time requirements), (4) the desired amount of dynamic bandwidth, and (5) the enablement, if necessary,

of RainCheck Filter (it is enabled if the sender requires a maximum waiting time guarantee).

Dynamic Channel Setup

➄ Dynamic channel setup request: Depending on the types of combined channels and the strategy

used at the bottleneck to resolve congestion, the sender achieves various waiting time guarantees for

establishing a dynamic channel, as summarized in Table 7.2.

CHAPTER 7. INTEGRATION AND DISCUSSION 136

Table 7.2: Waiting time guarantees. The destination ISD allocates a certain portion of bandwidth for
each source ISD, as described in Section 3.6.1. For random dropping, we assume the probability of getting
through the bottleneck is inversely proportional to the total incoming static traffic. For BE down-paths, we
assume that partial dynamic channels (viz., Section 3.6.2) are in use and that the request can be delivered
before the partial dynamic channel expires.

Up-path Down-path Congestion handling Guarantees
Static Static (private) N/A MWT guarantees (no wait)
Static Static RainCheck Filter MWT guarantees linear to total BW of static up-

paths in the source ISD
Static Static Random dropping Probabilistic waiting time linear to total BW of

static up-paths in the source ISD
Static BE RainCheck Filter MWT guarantees linear to total BW of static up-

paths in the source ISD times # of bottlenecks
Static BE Random dropping Probabilistic waiting time linear to total BW of

static up-paths in the source ISD times # of bottle-
necks

➅ Dynamic-class bandwidth allocation: As in STRIDE, ADs allocates the dynamic bandwidth so that

every request traversing a static path is guaranteed a lower bound on the reservable dynamic bandwidth.

Section 3.7.2 provides an example of a simple dynamic allocation policy. Note that when paths are

encrypted, an AD can only perform admission control based on the previous and next hops.

An AD encrypts its part of the dynamic channel if the counterpart of the combined channel is en-

crypted.

➆ Guaranteed data transmission: The dynamic channel isolates a flow from the others to protect it from

being crowded out by attack traffic during DDoS attacks. In other words, the network will protect a flow

so long as the flow stays within the specified limit. Such flow-level isolation relies heavily on the real-time

detection of flows violating their allocations during link congestion. We use LFD for this purpose, as

explained in Section 7.1.2.

7.2 Availability Guarantees

We analyze the bandwidth and waiting time guarantees using an incremental approach: we add one

mechanism per time to SCION, and state the guarantees and relevant assumptions at each stage. The

guarantees are strong as they are independent of attackers outside the source and destination ADs. Ta-

ble 7.3 summarizes the results.

Chapter 3 presents the details of STRIDE’s guarantees. Note that to achieve these guarantees, STRIDE

assumes that (1) ADs do not discriminate against traffic, and (2) ADs can monitor and regulate each flow.

Adding RainCheck Filter strengthens the waiting time guarantees, as the bounds change from proba-

bilistic to deterministic.

CHAPTER 7. INTEGRATION AND DISCUSSION 137

Table 7.3: Guarantees and assumptions. We assume that the source and destination ADs are clean, and
discuss how to handle intra-AD DDoS attacks in Section 7.3.

STRIDE STRIDE +
Raincheck

STRIDE +
Raincheck +
LFD

STRIDE +
Raincheck +
LFD + LAP

Waiting time

Static/Private static MWT guarantees (no wait)

Static/Public Static expected ∝
∑ static up-path BW in srcISD

down-path BW
MWT ∝

∑ static up-path BW in srcISD
down-path BW

Static/BE expected ∝ ∑bn
∑ static up-path BW in srcISD

bottleneck (bn) BE BW
MWT ∝ ∑bn

∑ static up-path BW in srcISD
bottleneck (bn) BE BW

Others No guarantees
Reservable bandwidth

Static/Static Reservable BW ∝ minl∈path
l’s dynamic BW

l’s static BW

Static/BE Reservable BW ∝ minl∈path
l’s dynamic BW

l’s BE BW
Others No guarantees

Assumptions Benign ADs, per-flow monitoring Benign ADs N/A

Adding LFD allows us to efficiently identify flows violating the allocated bandwidth, thereby reducing

monitoring overhead. LFD removes the need to perform expensive per-flow monitoring at intermediate

ADs.

Adding LAP prevents selective treatment based on network identifiers. When LAP is enabled, ADs

can only identify misbehaving flows that violate the allocations, but not the actual sender(s). Interestingly,

though the actual sender of a misbehaving flow is unknown, ADs can still notify the source AD (which

is also unknown) of such misbehavior by sending a warning message back to the source AD along the

reversed encrypted channel.

7.3 Discussion

Tradeoffs between anonymity and DDoS defense. Anonymization, or indistinguishability in the sense

that the attacker cannot tell which flow is the real target, can prevent address-based selective dropping,

thereby improving Internet availability in one aspect via indistinguishability between flows. This disser-

tation aims to achieve topological anonymity, which is used to defend against address-based selective

dropping in the presence of a constrained adversary who can leverage topological information only and

cannot compromise the first-hop AD of a victim. In other words, a stronger attacker who exploits addi-

tional information (e.g., timing correlation) or compromises the first-hop AD may be able to de-anonymize

and therefore selectively block the victim. Also, topological anonymity is insufficient to prevent selective

dropping based on other criteria, such as traffic volumes, timing, and packets linked the same anonymized

flow.

Generally speaking, anonymity and DDoS defense seem to in contradiction because the attacker can

CHAPTER 7. INTEGRATION AND DISCUSSION 138

evade DDoS detection through anonymization. However, given the weak notion of anonymity (i.e., topo-

logical anonymity) considered in this dissertation, it is in fact possible to achieve topological anonymity

and DDoS defense at the same time.

To examine whether they are mutually achievable in our design, we first review the high-level opera-

tions of our DDoS defense mechanisms, with an emphasis on the required identification information. To

mitigate DDoS attacks, we divide bandwidth into isolated channels and check whether packets using the

same channel consume more than the allocation. This requires the ability to distinguish legitimate flows

(i.e., flows complying with their allocations) from malicious flows (i.e., flows violating their allocations),

so that we can cut off malicious flows without hurting legitimate flows. In other words, our DDoS defense

mechanisms require knowing the flow identifiers and their corresponding allocations, but do not require

knowing the topological location of the sender or receiver. In particular, bandwidth allocation depends

on the previous and/or the next hop AD. The bandwidth enforcement is behavior-, rather than address-

based. Putting together, we observe that because topological anonymity only hides the addresses in packet

headers, packets belonging to the same flow can still be linked together based on their anonymized flow

identifier, which enables flow-level monitoring based on flow behaviors (i.e., whether a flow violates its

bandwidth limit). In addition, our anonymous forwarding mechanism allows an intermediate AD to

inform the source of a violation without knowing who the sender is.

In a realistic setting where the adversary attempts to de-anonymize the victim by correlating various

sources of information, the level of topological anonymity may be reduced over time as the adversary

gathers more information. One typical solution to this problem is to change the anonymized identifier

from time to time such that the adversary does not have enough time to gather sufficient information for

de-anonymization. To be effective, the new identifier has to be unlinkable from the old one. While the

level of anonymity increases with the frequency of the identifier change, quickly changing the identifier

causes high overhead: static paths have to be updated frequently, which means the signaling mechanism

has to be fast. The tradeoff should be made based on the adversary power and the desired performance.

We discuss possible approaches and limitations for achieving two common forms of unlinkability.

• Between-flow unlinkability: No adversary can determine whether two flows originate from or are

destined to the same topological region with non-negligible probability. One method to achieve

between-flow unlinkability is to send each request using a different encrypted combined channel,

which requires the source and the destination ADs to have a large number of encrypted half-paths.

However, maintaining too many static half-paths increases the complexity of traffic monitoring, and

each static half-path would have an extremely low capacity, which makes it impractical to use.

CHAPTER 7. INTEGRATION AND DISCUSSION 139

Thus, for static half-paths, senders in an AD have to reuse some static half-paths for establishing

flows, trading the level of between-flow unlinkability for scalability. Alternatively, the source and

destination ADs can choose to use encrypted BE half-paths, which are not subject to the same

complexity and practicability concerns; however, the high level of between-flow unlinkability is

obtained at the cost of the waiting time and reservable bandwidth guarantees.

• Within-flow unlinkability: No adversary can determine whether two packets belong to the same

flow with non-negligible probability. One way to achieve within-flow unlinkability would be to have

each packet to take a different encrypted dynamic channel, and none of which can be linked to each

other. Changing the channel for each packet is inefficient and unnecessary, because if there is a

secure method to send a dynamic channel setup request, then the sender can simply use the method

to send the packet. Consequently, providing within-flow unlinkability at a per-packet level may be

an overly strong property. Instead, senders may benefit from a weaker property where some, but

not all packets, are linkable. For example, the sender can divide packets in a flow among multiple

dynamic channels. This approach is similar in spirit to the concept of switching between a set of

anonymous certificates for long-term unlinkability in ad hoc networks [150].

We leave it as future work to explore whether anonymity and DDoS defense can coexist under different

anonymity notions and types of DDoS defense.

Communication via shortcuts. In addition to using paths that go through the ISD Cores, a source in

SCION can also opportunistically use shortcuts (i.e., end-to-end paths that bypass ISD Cores) when they

exist. A shortcut is represented by an up-path, a down-path, and a crossover point that indicates where the

packets should switch from the up-path to the down-path. The crossover point can be either a common

AD on both of these two half-paths or a peering link connecting them.

While this dissertation focuses on designing mechanisms to achieve waiting time and bandwidth guar-

antees for communication going through the ISD Core(s), we would also like to discuss what availability

guarantees can be achieved when the source chooses to use shortcuts.

First, we note that the source can still establish bandwidth-guaranteed dynamic channels once the

initial request gets through the bottlenecks and reaches the destination, which means the bandwidth

guarantees remain the same regardless of the use of shortcuts. However, waiting time guarantees are

affected for two reasons:

• Congestion at the crossover points introduces additional bottlenecks. Unlike the ISD Cores, which

are assumed to be congestion-free by design, traffic may encounter congestion within the crossover

CHAPTER 7. INTEGRATION AND DISCUSSION 140

AD or on the crossover peering link. Congestion at the crossover point introduces additional bottle-

necks on the end-to-end path and thus weakens the waiting time guarantees.

• Enabling shortcuts may result in multiple bottlenecks on the down-paths. Imagine a scenario in

which multiple tributaries flow into a main stem. The main stem may overflow at any of the con-

fluences if it does not have sufficient capacity. In our case, the static down-path from the ISD Core

to the destination is the main stem, and the shortcuts are the tributaries. In the current design, if

static traffic on the shortcuts is allowed to merge into the static down-path, we lose the no-bottleneck

property on the static down-paths, and thus the waiting time guarantees for communication via ISD

Cores are again weaken.

To mitigate these problems while supporting shortcuts, we propose the following modifications. First,

when activating a static half-path, the endpoint AD has to specify which crossover point(s) it would like

to use. Second, for each AD xi (ordered from the edge to the ISD Core), the activated static bandwidth

between xi and the core decreases when xi is or connected to a crossover point. In other words, the half-

path increases its downstream capacity for each crossover point. Third, since there is no static allocation

within the crossover AD or along the crossover peering link, the source gets a fair share based on the static

up-paths. Fourth, when merging crossover traffic into the down-path, the AD ensures that the crossover

traffic uses no more than the extra capacity, such that the traffic flowing in the main stem does not get

affected. This construction ensures (1) fair sharing at a congested crossover point and (2) at most one

bottleneck on the static down-path.

Alternatively, ADs could try to avoid static-class congestion at the crossover point. This is possible

if a peering link is well-provisioned such that its static-class capacity is at least as much as the sum of

all the static up-paths of the previous AD. Similarly, a crossover AD can avoid internal congestion for

static-class traffic if its internal capacity is high enough to directly forward packets from every up-path

to some down-path. However, these assumptions require provisioning for the worst-case scenario and

therefore may result in underutilization for most of the time, which is undesirable for ISPs.

Congestion within ISD Cores. To achieve waiting time guarantees, this work assumes that the ISD

Cores are never overloaded by static-class traffic. To justify this assumption, we describe one possible

approach here.

Since ADs in ISD Cores are bound by contractual agreements, we could have a policy that every newly

joined AD has to establish direct links to each of the current members in the ISD Cores. This requirement is

feasible because the ISD Core topology, which contains the tier-1 ISPs, is likely to be small. There appears

CHAPTER 7. INTEGRATION AND DISCUSSION 141

to be fewer than 15 tier-1 ISPs in the current Internet. Moreover, each of these direct links should be able

to support at least a certain level of static-class bandwidth, say, C. Such requirements on link capacity are

commonly seen in current peering agreements as well. When advertising available bandwidth, ADs in

the ISD Core ensures that the total available static-class bandwidth does not exceed C. ISD Cores should

require direct links to each other. For each pair of ISD Core, an upper bound is set on the static-class

traffic between the two ISD Cores.

What are the architectural primitives that help our design? In retrospect, our design demonstrates that

SCION’s top-down route discovery, isolation domains, and path control are helpful for creating a highly

available network. We argue that our design can be applied to any architecture that provides exactly the

same primitives as these three. It is a challenging problem to determine whether these primitives are still

sufficient when we generalize them and consider generic, rather than SCION-specific, definitions. For

instance, it is unclear whether our design would still work on an architecture that provides path control

to the source AD only (in contrast to SCION, where both the source and destination ADs can control it).

We leave it as future work to formulate these primitives and prove whether these architectural primitives

are necessary or sufficient conditions for high availability.

Top-down route discovery enables scalable beaconing. Our design leverages scalable beaconing such

that provider ADs periodically advertise the available bandwidth to their customer ADs. Endpoint ADs

can then allocate bandwidth along the tree topology. In addition, the tree topology simplifies our band-

width allocation. Specifically, while end-to-end allocation is hard, allocation is simple along a tree that is

rooted at the ISD Core, as the available bandwidth can be split from the root down to each leaf. Without

tree-based allocation, it is difficult to allocate bandwidth in the current Internet due to its complexities,

which include sending out requests for every flow and splitting bandwidth into many small pieces with-

out any meaningful lower bound.

ADs in the same isolation domain share a common root of trust, which enables explicit trust and

accountability for routing within an ISD. Because of this property, misbehaving entities within an ISD can

be efficiently detected and then revoked. For example, a malicious AD on the up-path could manipulate

the packet annotations such that the down-path is tricked to believe that every packet came from static

paths. Within an ISD, such manipulation is easily detectable by the next-hop AD or the ISD Core. On

the other hand, an ISD may be unable to detect such manipulation when traffic originates from another

ISD because the ISD Core in another ISD may also be malicious. Hence, in our design, each ISD has to

set an explicit limit on how much traffic another ISD can send to it, and therefore avoids being fooled by

others. However, since each ISD is treated as a single entity to external ADs, inter-ISD guarantees are not

CHAPTER 7. INTEGRATION AND DISCUSSION 142

as strong as intra-ISD guarantees. In sum, isolation domains allow us to achieve stronger guarantees for

intra-ISD traffic than inter-ISD traffic.

In SCION, both source and destination ADs can control which path to use for the end-to-end com-

munication. This path control property allows us to provide diverse guarantees because the endpoint

ADs can choose to activate and use different types of paths. We support three bandwidth classes (i.e.,

static, dynamic, and best effort) and four anonymity types (i.e., no anonymity, sender anonymity, receiver

anonymity, and sender and receiver anonymity). In addition to path control, packet carried forwarding

state is also useful as it encodes forwarding information in the packet header, such that routers do not

need to keep state.

Bandwidth overbooking. Since only a subset of advertised half-paths will be activated, our design al-

lows an AD to advertise more than its actual capacity for improved utilization and relies on explicit

activation to prevent malicious ADs from selling more than its capacity. Explicit activation ensures that

a static half-path is allocated only if every AD on the path agrees. More concretely, consider an example

where AD A advertises 1 unit of static bandwidth to AD B, which in terms advertise 1 unit to both AD

C and AD D. This step is legitimate because AD B might observe that only 50% of the bandwidth will

be activated based on the past history, but AD B has to reject one of the activation requests when both

AD C and AD D want to activate their 1-unit paths. AD B may be greedy and want to accept both of

the requests, but such misbehavior is detectable by either its provider or its customer: since AD A only

advertised 1 unit, suspicion will be raised when AD B tries to activate 2 units. Moreover, even if AD B

manages to collude with AD A, its customers will be aware when it fails to meet the promises.

Practical waiting time bounds. One of our goals is to limit the waiting time, which may be unbounded

in the current Internet. Although our design bounds the waiting time through isolation and fair access,

the bound may be too high to be practical. To enhance our guarantees, we can adopt techniques that

identify attackers or localize faults, as they can block, remove, or avoid the identified attackers or faults.

In Section 4.4 we discuss techniques that can reduce the bound and thus strengthen our waiting time

guarantees.

Congestion within ADs. This work on improving Internet availability is mainly within the context of

inter-AD packet forwarding, and assumes that packets can be reliably forwarded within an AD. We now

discuss how to address congestion within an AD.

• Congestion by intra-AD DDoS attacks. In an intra-AD DDoS attack, the attack traffic never leaves

CHAPTER 7. INTEGRATION AND DISCUSSION 143

the AD. Customers expect their provider AD to address intra-AD DDoS attacks, as the attack sources

are in the same AD and thus can be efficiently blocked or removed by the AD. As a result, ADs that

fail to address internal congestion and that ignore customer needs will likely be kicked out of the

market.

• Congestion in source ADs. Resource contention among hosts, such as when multiple customers

compete for the outgoing link bandwidth, can cause congestion inside the source AD. As in to-

day’s Internet, an AD is responsible for resolving resource contention among its customers. An AD

can alleviate contention via various technical and policy solutions such as traffic engineering and

bandwidth caps.

• Congestion in destination ADs. While infrastructure DDoS attacks are on the rise, DDoS attacks

targeting servers (also known as server flooding), remain a great threat against Internet-based ser-

vices, as access links are much easier to overload than backbone links. Specifically, server flooding

exhausts the uplink, downlink, or the internal resources of the server.

The mechanisms proposed in this thesis can address server flooding from two complementary per-

spectives. First, because of AD-level bandwidth allocation and ISD isolation (provided by STRIDE),

attack flows originating from the same AD or ISD have to first compete with each other before they

are able to reach the victim. In this architecture, benign flows in a clean AD or ISD have a greater

chance of reaching the victim server than they do in the current Internet. Second, as described in

Chapter 4, placing RainCheck Filter in front of a bottleneck can bound the waiting time to pass the

bottleneck. In the case of server flooding, either the server can run a RainCheck Filter by itself, or

the destination AD can install a RainCheck Filter for the victim service at the ingress routers, thus

minimizing collateral damage inside the AD.

• Congestion within intermediate ADs. By establishing a path or a channel of capacity c from an

ingress A to an egress B, the AD agrees to forward packets from A to B along the path or the channel

at rate c even during congestion. We note that an AD can accurately assess, provision, and engineer

the internal routes because it has full control over the advertised available bandwidth. Each AD can

also have its own solutions to meet this requirement and thus avoid internal congestion,

Collateral damage. A DDoS defense system causes collateral damage if implementing this defense neg-

atively affects the level of availability for legitimate flows. Minimizing collateral damage requires the

ability to distinguish good traffic from bad traffic based on the behaviors, origins, traffic histories, etc.

However, DDoS traffic can mimic legitimate traffic, which makes it extremely difficult to identify attack

CHAPTER 7. INTEGRATION AND DISCUSSION 144

traffic without false positives, false negatives, or delayed detection, all of which result in collateral damage

to legitimate traffic.

One promising approach is to define “legitimate flows” in such a way that legitimate flows will never

hurt the system. With this approach, malicious flows mimicking legitimate flows are trapped in a dilemma

as they will either be caught or have to behave like legitimate flows that cause no harm at all. For

example, in CoDef [102], legitimate flows are defined as flows that respond to requests asking them to

slow down or reroute. CoDef’s reroute mechanism enables the target router to resolve flooding without

dropping packets when paths are sufficiently diverse. When there is a lack of path diversity, its rate

control mechanism ensures that each source AD gets a fair share at the bottleneck link, and thus limits

collateral damage to source ADs. In our work, legitimate flows are those that comply with the bandwidth

allocation.

Chapter 8

Related Work

To ensure packet delivery and improve Internet availability despite active adversaries, this dissertation

explores security mechanisms that mitigate two data-plane attacks: Distributed Denial of Service (DDoS)

and address-based selective dropping. This chapter reviews related work in the following relevant re-

search areas:

• Section 8.1: DDoS countermeasures

• Section 8.2: Countermeasures to selective dropping

• Section 8.3: Network traffic monitoring and measurement

• Section 8.4: Topology and routing for high availability

8.1 DDoS Countermeasures

A typical Denial-of-Service (DoS) attack makes a service unavailable to legitimate users by exhausting

limited resources1, which can be the bandwidth of bottleneck links, the CPU time of servers, etc. A

Distributed Denial-of-Service (DDoS) attack is a type of DoS attack involving more than one attack source.

Depending on the type of messages used for flooding, DDoS attacks can be referred to as ICMP

floods, UDP floods, TCP SYN floods, HTTP floods, and so on. While most DDoS attacks to date aim to

paralyze servers, emerging DDoS attacks such as Coremelt [149] and Crossfire [80] attempt to overwhelm

an intermediate link on the communication path, thus preventing legitimate users from accessing victim

servers through the flooded link.

1A DoS attacker can also exploit software vulnerabilities to crash a system remotely. While vulnerabilities can be fixed via software
updates, exhaustion-based DoS attacks are difficult to mitigate even when all bugs are removed. Hence, we focus on resource
exhaustion attacks in this dissertation.

145

CHAPTER 8. RELATED WORK 146

Traditional DDoS mitigation solutions, such as over-provisioning and anomaly detection (e.g., Intru-

sion Prevention Systems), are expensive or ineffective, as DDoS attacks grow rapidly in volume and

sophistication.

This section reviews the current frontier of research in defending against large-scale and sophisticated

DDoS attacks. DDoS defense mechanisms can be largely classified into three categories: (1) filtering, (2)

resource allocation, and (3) fair access, which will each be reviewed in turn. One can generally combine

approaches in these categories for stronger properties.

8.1.1 Filtering

Filtering approaches [14, 110] install filters against attack sources near their origins (i.e., source ADs) to

prevent collateral damage of attack traffic. This would essentially require trust establishment between

ADs and would rely on source ADs’ cooperation, which would incur substantial overhead for manag-

ing flow state and packet inspection. In contrast, STRIDE facilitates natural trust relationships between

ADs within the same trust domain. Network capabilities [168, 171] enable destination-controllable flow

prioritization and stateless filtering at intermediate routers. To construct a capability, a sender sends a

capability request to the destination, and every router on the forward path adds to the packet header

a cryptographic authenticator that can only be computed and verified by that router. If the destination

grants the request, it returns all the authenticators (representing the capability) to the sender. In gen-

eral, packets with capabilities take precedence over packets without. However, network capabilities are

vulnerable to Denial-of-Capability (DoS) attacks [15]. Portcullis [129] leverages computational puzzles to

address the DoC attack but renders a high computational overhead even on benign endhosts. StopIt [110]

proposes filtering attack traffic at locations near the attack origin. However, since StopIt requires the

receiver to inform the source AD of undesired flows, it cannot mitigate the Coremelt attack where all

flows are “desired” by bots sending traffic among themselves. In addition, Related work often focuses

on router-based approaches for some sort of fairness at bottleneck links rather than on an architectural

approach, and it is unclear how to translate per-link guarantees into end-to-end guarantees.

8.1.2 Resource Allocation

Existing approaches [23, 20] that aim to provide bandwidth guarantees to flows fail in situations where

all available bandwidth is exhausted. FLoc [100] differentiates legitimate flows from attack flows to pro-

vide differential bandwidth guarantees. Low-rate attack flows, however, often cannot be precisely distin-

guished from legitimate flows, and therefore the lower bound of bandwidth may not be observed.

CHAPTER 8. RELATED WORK 147

Queuing systems are heavily researched in a number of disciplines, particularly computer science

and operations research. They are also employed by many DoS defense systems both for efficiently

scheduling clients’ requests and for identifying/penalizing multiple requests from a single client. Some

mechanisms [171, 101] assign queues to aggregated requests by their origin. Among them, Lee et al. [101]

proposed a mechanism that provides differential guarantees to the aggregates based on the observation

that bot distribution is not uniform across domains. However, queuing systems do not intend to offer nor

can they provide precise waiting time guarantees to clients.

Gligor [67] proposed an alternate scheme that provides per-client, maximum waiting time guaran-

tees via precisely time-scheduled service-access tokens. Such scheduling requires conservative workload

prediction for every single service and assumes that all granted tokens would be used on time—which

unavoidably leads to significant resource underutilization.

8.1.3 Fair Access

Another defense philosophy against DDoS attacks aims to offer a fair chance of resource access to users.

This can be viewed as a last resort when it is difficult to differentiate legitimate traffic from malicious

traffic.

Bandwidth control. Many of the bandwidth control mechanisms (especially fair queuing mechanisms)

proposed to date can be used to prevent some (malicious) flows from exhausting the network band-

width [112, 148, 111]. Pushback [112] focuses on rate limiting high bandwidth aggregates to their fair

share of bandwidth, but it causes collateral damage as legitimate traffic in high bandwidth aggregates

will be falsely throttled. CSFQ [148] achieves fair queuing without keeping per-flow state on core routers.

NetFence [111] enables routers to signal congestion and guarantees per-sender fairness at bottleneck links.

In contrast to per-flow or per-sender fair bandwidth sharing, STRIDE enables endpoint domains and

endhosts to negotiate their bandwidth shares, which makes it more practical considering the ISP business

models.

To avoid granting access to nonexistent entities (e.g., via IP address spoofing) and to limit a client’s

attempt to gain advantage over others by masquerading as multiple entities, several DDoS defense mecha-

nisms employ an interactive protocol that requires clients to present evidence proving their identity. Some

of the mechanisms use a proof of work that a client is required to provide; others use a credential that proves

their prior interaction.

Proof-of-work schemes.

CHAPTER 8. RELATED WORK 148

• Computation-based proof-of-work. Many researchers have proposed computational puzzles [78,

43, 164, 129] demanding that clients to show their computational effort to get a service. Due to their

simplicity and statelessness, computational puzzles are engaged in new network-layer as well as

application-layer protocol designs. However, they cause high overhead to legitimate clients while

providing only weak guarantees (i.e., weak probabilistic waiting time guarantee) [67], which has

prevented them from being adopted in the real world.

• Bandwidth-based proof-of-work. Based on the observation that uplink bandwidth is another

limited resource for clients, Walfish et al. [163] proposed to defeat DDoS attacks by encouraging

clients to send a higher volume of traffic. Legitimate clients who have spare uplink bandwidth are

expected to speak up, whereas bad clients (e.g., bots) cannot do so as they have already spoken up

to flood the target. Though interesting, speak-up creates collateral damage by allowing legitimate

clients to hurt each other. In RainCheck Filter, legitimate clients do not hurt each other.

• Proof of human presence. CAPTCHAs [161] use a hard artificial intelligence (AI) problem, which

can be easily solved by most humans but not by machines (e.g., bots), to test for a human presence

behind a service request. CAPTCHAs have been widely adopted by many web-based applications

to test for a human presence and are also used to distinguish a flash crowd from a DDoS attack [79].

However, advances in CAPTCHA breaking techniques [169, 29, 28] weaken the effectiveness of

this tool for DDoS defense. Furthermore, CAPTCHA’s requirement for human interaction limits its

applications.

• Latency-based proof-of-work. We follow a line of thought of latency-based proof-of-work [39, 111],

where a server under a DoS attack prioritizes the requests of those clients who have waited longest

for the service. Crowcroft et al. proposed a mechanism to enforce passive delay on clients, thus

slowing down the request rate. This mechanism comes in two different forms: a centralized version

using delay cookies and a distributed version requiring the client to contact several validators before

being admitted by the server. However, in contrast to RainCheck Filter, this mechanism needs per-

client state at the server and does not provide any service access guarantee.

Credentials. TCP SYN-cookie [18] is designed to allow a server to complete the TCP three-way hand-

shake without keeping any connection state, such as the initial sequence number and the client address,

that was exploited for flooding the server. The state is instead cryptographically encoded in a SYN cookie

and provided to the client along with the server’s SYN-ACK. The SYN cookie is then carried in the client’s

ACK so that the server can determine the legitimacy of the connection request.

CHAPTER 8. RELATED WORK 149

Various proposals aiming for a faster web [135, 33, 46, 143, 141, 130] use a cryptographic credential

(which is similar to a SYN cookie) to reduce the number of round trips for the connection establishment.

TCP Fast Open (TFO) [135, 33] speeds up successive TCP connections using a TFO cookie, a server-

generated Message Authentication Code (MAC) that proves the client’s ownership of a source IP. TFO

allows data to be sent before the completion of the three-way handshake with the help of TFO cookies.

Reusing prior session information would significantly improve the performance of secure protocols

(such as SSL/TLS) by avoiding cryptographic parameter negotiation and expensive cryptographic oper-

ations for authentication and key setup. TLS protocol supports fast session resumption (i.e., abbreviated

handshakes) using session IDs [46] or session tickets [143]. A session ID identifies the corresponding

session state in the server’s local cache, while a session ticket contains encrypted session state and thus

avoids caching on the server. Quick UDP Internet Connection (QUIC) [141] and Minimal Latency Tunnel-

ing (MinimaLT) [130] are also designed to minimize connection setup latency. Both protocols can achieve

one round trip for the very first connection and zero round trips (i.e., sending data packets right after

client hello) for the following connections. In terms of DoS resilience, the current specification of QUIC

eliminates DoS from spoofed IP addresses using ownership credentials. MinimaLT uses client puzzles to

rate limit DoS attacks and avoids traffic amplification by ensuring that response packets are smaller than

request packets.

Technically, RainCheck Filter creates credentials in a similar way to the aforementioned mechanisms.

However, a key distinction is that each raincheck ticket contains a fine-grained timestamp by which the

Raincheck Filter protocol performs admission control, guaranteeing a maximum waiting time for estab-

lishing a connection. Moreover, Raincheck Filter is a generic primitive that can mitigate server DoS,

including SYN flooding.

8.2 Countermeasures to Selective Dropping

This section first reviews prior work on anonymous communication, which is the most common tech-

nique used to mitigate selective dropping based on network identifiers or topological locations. Note that

standard end-to-end encryption techniques (e.g., IPsec) can be used to prevent discrimination based on

content or higher-layer headers.

The most closely related schemes for anonymity protection, namely Tor Instead of IP [108] and

AHP [136], are described and compared in LAP’s security analysis section (Section 6.6).

CHAPTER 8. RELATED WORK 150

Low-stretch anonymity systems. Using a single anonymous proxy such as anonymizer.com2 results in

low path stretch. However, users have to trust a remote proxy in burying the linkage between a sender

and a receiver, and the proxy could easily become a single point of failure. uProxy3 is a decentralized

proxy service designed to circumvent Internet censorship, thereby avoiding the single point of failure

problem. A user can connect to the Internet via a friend who acts as a proxy. However, the user has to

place his or her full trust in this friend.

High-stretch anonymity systems. In Chaum’s mix network [32], layer-encrypted messages are sent

through a list of mixes, each of which can buffer, reorder, decrypt/encrypt these messages to defend

against a global eavesdropper. However, this delaying and reordering renders this system impractical for

real-time communication.

Onion routing systems, such as Tor [47], enable low-latency, bi-directional anonymous communication

by sending layer-encrypted packets through indirect and unpredictable cryptographic circuits [153]. Un-

like mix networks, onion routing systems are designed to defend against a local attacker (or a government-

class attacker, as referred to in Chapter 6) that observes only a fraction of the network. In some realistic at-

tacker scenarios, onion routing systems are shown to be more secure than mix networks [154]. Tarzan [65]

explores onion routing in a peer-to-peer setting, and ANDaNA [45] adopts Tor in content-centric network-

ing. However, onion routing systems still suffer from high latency due to high path stretch. To reduce

Tor’s latency, new relay selection algorithms are suggested to consider relay geolocations or link charac-

teristics in addition to relay bandwidth [128, 145]. However, further studies are required to understand

the impact of these algorithms on existing attacks against Tor.

Researchers have also explored solutions without layered encryption. For example, Information Slic-

ing [84] achieves source and destination anonymity through multipath and secret sharing. However, Infor-

mation Slicing operates on overlays and suffers from noticeable latency. Crowds [138] leverages a crowd

of users to collaboratively remove the trace of the real requester, and Hordes [146] exploits the inherent

crowds within muticast groups for receiver anonymity. However, both Crowds and Hordes significantly

stretch end-to-end paths.

Detecting traffic discrimination. A long line of literature has focused on detecting traffic discrimination

(or net neutrality violations) [155, 181, 49, 81]. These detection techniques in themselves are insufficient to

mitigate traffic discrimination, especially when the sender has no choice of the communication path.

2http://www.anonymizer.com/
3http://uproxy.org/

http://www.anonymizer.com/
http://uproxy.org/

CHAPTER 8. RELATED WORK 151

Censorship resilience. Censorship-resilient systems such as Decoy routing [82], Telex [167], and Cir-

ripede [76] rely on ISPs to redirect traffic to blocked destinations. Although they also require enlisting

ISPs for protection as LAP does, they place trust in remote ISPs to help defend against a much stronger

adversary who eavesdrops the local networks.

Attacks on anonymity systems. Several researchers have studied how to passively and actively attack

anonymity systems. For passive attacks, the adversary attempts to de-anonymize traffic by observing

side-channel information such as packet timing [106], clock skew [90], and unique system state [54, 172].

However, such passive attacks often fail to scale or rely on information leaked from higher layer protocols.

On the other hand, active attacks can accelerate traffic correlation. DoS is one type of active attack that can

be used for additional attack opportunities [21]. For example, by clogging the network and monitoring

the latency change, the attacker can identify Tor entry nodes [121, 60] and locate Tor users [74]. Although

our main objective is to camouflage one’s topological location to enhance anonymity and privacy, LAP

can also mitigate DoS-based attacks by selectively publishing encrypted paths.

Low-latency anonymity systems are shown to be inherently vulnerable to timing and traffic analy-

sis [74, 31, 120] because an adversary can easily correlate the traffic patterns of a sender and a receiver.

Since our goal in this dissertation is to provide topological anonymity, we consider such temporal side-

channel attacks as future work.

8.3 Traffic Monitoring

Section 5.1.1 classifies prior work on detecting large flows and its closely related problem of finding

frequent items based on the types of monitoring windows. Cormode and Hadjieleftheriou present a

thorough survey and comparison of algorithms for finding frequent items [36]. This section reviews prior

approaches based on their techniques. Most prior work does not consider the arbitrary window model.

Counter-based techniques. Counter-based techniques maintain a small number of counters, each of

which is associated with a flow or an item. Manku and Motwani present another well-known counter-

based technique called Lossy Counting [114]. For each stored item, Lossy Counting maintains and updates

the upper bound and lower bound on the count of the item. The algorithm stores every new item and

periodically removes items whose upper bound is less than the threshold. Similar to the MG algorithm

discussed in Section 5.2, the Space Saving algorithm [116] proposed by Metwally et al. maintains k (item,

counter) pairs and increases the corresponding counter of each incoming item. If the new item e is not

CHAPTER 8. RELATED WORK 152

stored currently, the stored item with the lowest count is replaced by the new item, and the counter

increases accordingly.

Sketch-based techniques. Multistage filters identify large flows over fixed time windows [58] and over

arbitrary windows [57]. Fang et al. [61] proposed a similar multistage algorithm but require more than one

pass over the input stream. Cormode and Muthukrishnan present a novel data structure called count-min

sketch, which summarizes an input stream and can answer queries such as finding frequent items [38].

As pointed out in their paper, despite the fact that the construction is similar to that of multistage filters,

count-min sketches can flexibly support negative weights and require only pairwise independence hash

functions rather than fully independent ones. In general, sketches can support a richer set of queries with

a higher memory overhead compared with counter-based techniques.

Sampling-based techniques. Sampled NetFlow4 maintains a generic traffic summary of sampled pack-

ets. With a sampling rate 1/r, the frequency estimate is derived by multiplying the count by r. To improve

the accuracy of the estimates, both Sticky sampling [114] and Sample-and-Hold [58] examine every incom-

ing item and increase the corresponding count if the item is being monitored. If the new item is not being

monitored, it is sampled and added to the monitoring list with a certain probability. Sampling-based tech-

niques in general cannot achieve high accuracy due to the lack of per-packet information. Duffield [51]

studies how to perform fair sampling in traffic flow measurements.

Other traffic summaries. A rich body of the network monitoring literature explores existing data stream-

ing algorithms for other research topics such as flow counting [59], estimating flow distributions [92, 96],

measuring flow matrices [184], identifying hierarchical heavy hitters [37, 183], and superspreader detec-

tion [160]. Muthukrishnan surveys data streaming algorithms and their applications, including network

monitoring [122].

Calders et al. [30] define a new frequency measure as the maximum frequency over all possible win-

dows ending at the current time. Although the idea of considering all possible windows is the same as

the arbitrary window model, their algorithm focuses on accurately estimating the frequency based on the

new frequency measure, whereas we seek to accurately identify large flows.

4Random Sampled NetFlow. http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/nfstatsa.html

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/nfstatsa.html

CHAPTER 8. RELATED WORK 153

8.4 Topology and Routing for High Availability

This dissertation concentrates on securing packet forwarding despite active adversaries. In addition to

forwarding, researchers have also explored availability problems with respect to topology and routing.

8.4.1 Topology

Perfectly Secure Message Transmission (PSMT). The goal of Perfectly Secure Message Transmission

(PSMT) is to achieve perfect secrecy and perfect resiliency in the presence of a computationally unbounded

adversary who can corrupt up to a threshold number of nodes in the network and can behave arbitrarily.

Work on PSMT focuses on deriving the theoretical bounds and topological characteristics for guaranteeing

reliable and secure communication. For example, an early work [50] in this area proves that secure

communication is possible under t corrupted nodes, if and only if the network is at least 2t + 1 connected.

Because of the strong adversary model, PSMT proposals incur significant overhead in terms of compu-

tation, message size, and protocol rounds. Also, PSMT considers the communication between one sender

and receiver pair, and thus cannot handle the case of resource competition between communication flows.

This dissertation, which considers a weaker yet more practical adversary model, explores efficient secu-

rity mechanisms for guaranteeing high availability when severe resource contention is possible. Moreover,

communication can still be available even under low network connectivity.

Topological design. Research on topological resilience considers the problem of identifying critical

links/nodes and adding redundancy to improve topological resilience against attacks [123, 95, 86, 87].

For example, Nagaraja and Anderson [123] consider node degree and betweenness centrality as connec-

tivity metrics and adopt evolutionary game theory to analyze various topological defense mechanisms,

such as replacing critical nodes (i.e., nodes with high degree or high betweenness centrality) with rings

or cliques, or delegating connections of critical nodes to their neighbors. Rather than considering node

degree or betweenness centrality, Kim et al. [86] consider a node to be critical if its removal disconnects the

network. They identify critical nodes in ad hoc networks using the Laplacian matrix, and then improve

topological resilience by adding backup links around the critical nodes.

8.4.2 Routing

Current approaches to enhance BGP stability fall into two categories. In the first category of research,

researchers derive conditions that avoid conflict routing policies, thus guaranteeing BGP convergence [70,

159, 66, 147]. For example, the Gao-Rexford guideline suggests a class of policies based on business

CHAPTER 8. RELATED WORK 154

relationships (e.g., selecting routes from customers over routes from providers). Sobrinho [147] presents

a routing algebra that can be applied to all path-vector routing protocols. Sobrinho shows that strict

monotonicity of policies implies routing protocol convergence. With a monotone algebra, every network

can be made free (e.g., no infinite loop) by breaking ties with the order (length) of the path or by avoiding

domains that are providers (directly or indirectly) of one of its providers. Based on the algebra, FSR [139]

presents an automatic toolkit to validate routing policies. However, such approaches assume that every AS

complies with the suggested policies and thus cannot handle the instability caused by misconfigurations

or adversarial behaviors.

In the second category of research, ASes deal with unstable or failed routes at runtime. For example,

consensus routing [77] proposes adding a stable mode of packet delivery in which all routers on the path

have to agree to use that path. However, there is no guarantee that ASes on a path can ever reach con-

sensus. Additionally, malicious routers can prevent consensus to be reached. LIFEGUARD [85] proposes

a practical repair of persistent route failures in which edge ISPs advertise carefully crafted routes that are

prepended with the failed AS to trigger loop detection, thus avoiding the failed AS. Route Flap Damping,

similarly, can mitigate persistent route flapping by suppressing unstable routes. However, such engi-

neering hacks may introduce unforeseen side effects that exacerbate the stability problem in unexpected

ways [175, 151].

Chapter 9

Conclusion and Future Work

A highly available Internet is critically important individuals, organizations, and nations. This disserta-

tion explores how to provide availability guarantees despite active data-plane attacks on top of a future

Internet architecture that supports top-down route discovery, isolation domains, and path control. As

the number of future Internet projects initiated by both public and private sectors continues to increase,

we expect to see more research endeavors to lower the barriers to deployment in the near future. For

example, Raghavan et al. [137] propose a software-defined Internet architecture that aims to ease the task

of adopting clean-slate Internet architectures.

This dissertation is an initial step toward a highly available Internet, and therefore focuses more on the

conceptual design rather than on the actual implementation. While the overall solution is still in an early

stage, several of the proposed ideas have been separately evaluated for their ability to improve availability

even in the current Internet.

Improving Internet availability is a challenging problem because the current Internet is only available

if all of its layers are available. Therefore, a complete solution for Internet availability must integrate tech-

niques for all layers. This dissertation focuses on one challenging aspect of the problem: the mitigation of

emerging data-plane attacks at the network layer that have not yet been effectively or efficiently resolved.

Looking forward, we would like to explore solutions in multiple complementary dimensions with the

hope of moving a step closer to a highly available Internet. We conclude this dissertation with future

work summarized as follows.

• Topology. Multipath communication within specific topologies can create an asymmetry between

attacker and defender. An interesting future direction is the study of how to construct network

topologies for optimal availability guarantees while preventing attackers’ misuse of multipath.

155

CHAPTER 9. CONCLUSION AND FUTURE WORK 156

• Routing. Given a topology and policies, the route computation should derive at least one policy-

compliant path between the source and the destination in a timely manner. An important line of

future work would be the analysis of existing clean-slate routing architectures for provable guaran-

tees and the formal examination of whether they can promptly converge to a consistent state after

changes in topology or policy.

• Forwarding. Given one or multiple paths, the forwarding plane should ensure that the packets

arrive at the destination with high probability. This dissertation addresses a part of this challenge

and ensures timely packet delivery in the presence of address-based selective dropping and flooding

attacks. In future work, we plan to investigate the impact of route and topology dynamics on

forwarding availability.

Since improving Internet availability is more than just a technical problem, a natural long-term direc-

tion is the consideration of the policy and economic aspects of Internet availability. There is a particular

need for the study of interdomain SLAs and business models and for an exploration into the possibility of

availability-as-a-service model in which Internet users pay to secure their end-to-end communication with

a certain level of availability, and receive compensations from providers that fail to satisfy their promises.

In summary, while high availability is required for many critical services that rely on the Internet, the

current Internet was not designed with security and availability in mind. In this dissertation, we designed

security mechanisms for achieving availability guarantees on top of a clean-slate architecture despite active

data-plane attacks. In particular, we design efficient defense mechanisms that help set an upper bound on

the waiting time and a lower bound on the reservable bandwidth in the presence of link-flooding DDoS

and selective dropping. Prior work cannot achieve these same guarantees. Our results demonstrate how

much better the Internet could be, reveal issues and possibilities, and help plan the trajectory of evolution.

We hope this work can represent a first step toward a highly available Internet where users can access

Internet-based services whenever they want, especially in critical situations.

Bibliography

[1] CAIDA: The Cooperative Association for Internet Data Analysis. http://www.caida.org/. 36, 38,

42

[2] MobilityFirst Future Internet Architecture Project. http://mobilityfirst.winlab.rutgers.edu/.

6, 100, 112, 117

[3] New Study Reveals the Impact of Travel Site Performance on Consumers. http://www.akamai.com/

html/about/press/releases/2010/press_061410.html. 5, 45

[4] SJCL PBKDF2 Benchmark. https://wiki.mozilla.org/SJCL_PBKDF2_Benchmark. 48

[5] Social, Digital & Mobile in 2014. http://wearesocial.sg/blog/2014/01/social-digital-

mobile-2014/. 1

[6] SPDY: An Experimental Protocol for a Faster Web. http://dev.chromium.org/spdy/spdy-

whitepaper. 57

[7] The CAIDA UCSD Anonymized Internet Traces 2012. http://www.caida.org/data/passive/

passive_2012_dataset.xml. 88

[8] The RouteViews Project. http://www.routeviews.org. 111, 112

[9] Traces 1 of TCP Port 80 Traffic Traces from Federico II. http://traffic.comics.unina.it/Traces/

ttraces.php. 88

[10] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and S. Shenker. Accountable

Internet Protocol (AIP). In Proceedings of ACM SIGCOMM, 2008. 70

[11] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freedman, A. Haeberlen,

Z. G. Ives, A. Krishnamurthy, W. Lehr, B. T. Loo, D. Mazieres, A. Nicolosi, J. M. Smith, I. Sto-

ica, R. van Renesse, M. Walfish, H. Weatherspoon, and C. S. Yoo. The NEBULA Future Internet

Architecture. In The Future Internet, pages 16–26. Springer, 2013. 6

157

http://www.caida.org/
http://mobilityfirst.winlab.rutgers.edu/
http://www.akamai.com/html/about/press/releases/2010/press_061410.html
http://www.akamai.com/html/about/press/releases/2010/press_061410.html
https://wiki.mozilla.org/SJCL_PBKDF2_Benchmark
http://wearesocial.sg/blog/2014/01/social-digital-mobile-2014/
http://wearesocial.sg/blog/2014/01/social-digital-mobile-2014/
http://dev.chromium.org/spdy/spdy-whitepaper
http://dev.chromium.org/spdy/spdy-whitepaper
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.routeviews.org
http://traffic.comics.unina.it/Traces/ttraces.php
http://traffic.comics.unina.it/Traces/ttraces.php

BIBLIOGRAPHY 158

[12] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial-of-Service with Capabilities.

ACM SIGCOMM Computer Communication Review, 34(1):39–44, 2004. 18, 22

[13] A. Arasu and G. S. Manku. Approximate Counts and Quantiles over Sliding Windows. In Proceedings

of ACM PODS, 2004. 71

[14] K. Argyraki and D. R. Cheriton. Active Internet Traffic Filtering: Real-Time Response to Denial-of-

Service Attacks. In Proceedings of USENIX ATEC, 2005. 146

[15] K. Argyraki and D. R. Cheriton. Network Capabilities: The Good, the Bad and the Ugly. In

Proceedings of ACM HotNets, 2005. 18, 146

[16] I. Avramopoulos and J. Rexford. Stealth Probing: Efficient Data-Plane Security for IP Routing. In

Proceedings of USENIX ATC, 2006. 48, 98

[17] I. Avramopoulos, J. Rexford, D. Syrivelis, and S. Lalis. Counteracting Discrimination against Net-

work Traffic. Technical report, TR-794-07, Princeton University Computer Science, 2007. 98

[18] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html, 1996. 148

[19] O. Berthold, A. Pfitzmann, and R. Standtke. The Disadvantages of Free MIX Routes and How to

Overcome Them. In Proceedings of PETS, 2001. 101

[20] F. Bonomi and K. Fendick. The Rate-Based Flow Control Framework for the Available Bit Rate ATM

Service. In IEEE Network Magazine, vol. 9, no. 2, pages 25–39, 1995. 146

[21] N. Borisov, G. Danezis, P. Mittal, and T. Parisa. Denial of Service or Denial of Security? How Attacks

on Reliability can Compromise Anonymity. In Proceedings of ACM CCS, 2007. 123, 151

[22] B. Boyer and J. Moore. A Fast Majority Vote Algorithm. Technical report, ICSCA-CMP-32, Institute

for Computer Science, University of Texas, 1981. 77

[23] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP) –

Version 1 Functional Specification. RFC 2205 (Proposed Standard), Sept. 1997. Updated by RFCs

2750, 3936. 18, 146

[24] R. J. Branaghan and C. A. Sanchez. Feedback Preferences and Impressions of Waiting. Journal of the

Human Factors, 51(4):528–538, 2009. 5, 45, 58, 60

http://cr.yp.to/syncookies.html

BIBLIOGRAPHY 159

[25] P. Bright. Verizon could be throttling Netflix and Amazon, but there’s no actual evi-

dence of it. http://arstechnica.com/information-technology/2014/02/verizon-could-be-

throttling-netflix-and-amazon-but-theres-no-actual-evidence-of-it/, 2014. 4

[26] H. Burch and B. Cheswick. Tracing Anonymous Packets to Their Approximate Source. In Proceedings

of LISA, 2000. 123

[27] S. Burnett, N. Feamster, and S. Vempala. Chipping Away at Censorship Firewalls with User-

Generated Content. In Proceedings of USENIX Security, 2010. 103

[28] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and J. Mitchell. The Failure of Noise-Based

Non-continuous Audio Captchas. In Proceedings of IEEE Symposium on Security and Privacy, 2011. 58,

148

[29] E. Bursztein, M. Martin, and J. Mitchell. Text-based CAPTCHA Strengths and Weaknesses. In

Proceedings of ACM CCS, 2011. 58, 148

[30] T. Calders, N. Dexters, and B. Goethals. Mining Frequent Items in a Stream Using Flexible Windows.

Intelligent Data Analysis, 12(3):293–304, 2008. 152

[31] S. Chakravarty, A. Stavrou, and A. D. Keromytis. Traffic Analysis Against Low-Latency Anonymity

Networks Using Available Bandwidth Estimation. In Proceedings of ESORICS, 2010. 103, 123, 151

[32] D. L. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communi-

cations of the ACM, 24(2):84–90, Feb. 1981. 99, 150

[33] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open. http://tools.ietf.org/html/

draft-ietf-tcpm-fastopen-05, Retrieved Oct. 2013. 149

[34] K. Clay. Amazon.com Goes Down, Loses $66,240 Per Minute. http://www.forbes.com/sites/

kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/. 1

[35] S. Cohen and Y. Matias. Spectral Bloom Filters. In Proceedings of ACM SIGMOD, 2003. 53

[36] G. Cormode and M. Hadjieleftheriou. Finding Frequent Items in Data Streams. Proc. VLDB Endow.,

1(2):1530–1541, 2008. 151

[37] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sirvastava. Diamond in the Rough: Finding Hier-

archical Heavy Hitters in Multi-Dimensional Data. In Proceedings of ACM SIGMOD, 2004. 152

http://arstechnica.com/information-technology/2014/02/verizon-could-be-throttling-netflix-and-amazon-but-theres-no-actual-evidence-of-it/
http://arstechnica.com/information-technology/2014/02/verizon-could-be-throttling-netflix-and-amazon-but-theres-no-actual-evidence-of-it/
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-05
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-05
http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/
http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/

BIBLIOGRAPHY 160

[38] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The Count-Min Sketch

and its Applications. Journal of Algorithms, 55(1):58–75, 2005. 71, 74, 76, 152

[39] J. Crowcroft, T. Deegan, C. Kreibich, R. Mortier, and N. Weaver. Lazy Susan: Dumb Waiting as Proof

of Work. Technical Report 703, University of Cambridge, UCAM-CL-TR-703, 2007. 148

[40] A. Dainotti, A. Pescapè, P. Salvo Rossi, F. Palmieri, and G. Ventre. Internet Traffic Modeling by

means of Hidden Markov Models. Computer Networks (Elsevier), 52:2645–2662, 2008. 88

[41] A. Dainotti, A. Pescapè, and G. Ventre. A Cascade Architecture for DoS attacks Detection based on

the Wavelet Transform. Journal of Computer Security, 17(6/2009):945–968, 2009. 88

[42] D. Danchev. How much does it cost to buy 10,000 U.S.-based malware-infected

hosts? http://www.webroot.com/blog/2013/02/28/how-much-does-it-cost-to-buy-10000-u-s-

based-malware-infected-hosts/. 45

[43] D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In Proceedings of USENIX Security,

2001. 148

[44] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency Estimation of Internet Packet Streams

with Limited Space. In Proceedings of ESA, 2002. 71, 74, 76, 77

[45] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. ANDaNA: Anonymous named data networking

application. In Proceedings of NDSS, 2012. 150

[46] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, Aug.

2008. 149

[47] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router. In

Proceedings of conference on USENIX Security Symposium, 2004. 98, 99, 103, 110, 119, 120, 121, 122, 150

[48] R. Dingledine and S. J. Murdoch. Performance improvements on Tor—or, why Tor is slow and

what we’re going to do about it. https://www.torproject.org/press/presskit/2009-03-11-

performance.pdf, 2009. 99

[49] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and S. Saroiu. Glasnost: Enabling

End Users to Detect Traffic Differentiation. In Proceedings of USENIX NSDI, 2010. 48, 150

[50] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure Message Transmission. Journal of the

ACM (JACM), 1993. 153

https://www.torproject.org/press/presskit/2009-03-11-performance.pdf
https://www.torproject.org/press/presskit/2009-03-11-performance.pdf

BIBLIOGRAPHY 161

[51] N. Duffield. Fair Sampling Across Network Flow Measurements. In Proceedings of ACM SIGMET-

RICS, 2012. 152

[52] J. Duffy. Cisco routers caused major outage in Japan: report. http://www.networkworld.com/news/

2007/051607-cisco-routers-major-outage-japan.html, 2007. 3

[53] J. Duffy. Juniper at the root of Internet outage? http://www.networkworld.com/news/2011/

110711-internet-outage-252851.html, 2011. 3

[54] P. Eckersley. How Unique Is Your Web Browser ? In Proceedings of PETS, 2010. 151

[55] A. Efrati. ’Like’ Button Follows Web Users. http://online.wsj.com/article/

SB10001424052748704281504576329441432995616.html, 2011. 101

[56] T. Elahi and I. Goldberg. CORDON–A Taxonomy of Internet Censorship Resistance Strategies.

Technical report, CACR 2012-33, University of Waterloo, 2012. 98

[57] C. Estan. Internet Traffic Measurement: What’s Going on in my Network? PhD thesis, 2003. 70, 71, 82,

86, 152

[58] C. Estan and G. Varghese. New Directions in Traffic Measurement and Accounting: Focusing on the

Elephants, Ignoring the Mice. ACM Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

70, 71, 74, 76, 82, 86, 152

[59] C. Estan, G. Varghese, and M. Fisk. Bitmap Algorithms for Counting Active Flows on High Speed

Links. In Proceedings of ACM IMC, 2003. 152

[60] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion Attack on Tor Using Long

Paths. In Proceedings of USENIX Security, 2009. 103, 123, 151

[61] M. Fang and N. Shivakumar. Computing Iceberg Queries Efficiently. In Proceedings of VLDB, 1999.

71, 74, 152

[62] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service Attacks which

employ IP Source Address Spoofing. RFC 2827 (Best Current Practice), May 2000. Updated by RFC

3704. 70

[63] M. Fischer and S. Salzberg. Finding a Majority Among N Votes: Solution to Problem 81-5. Journal of

Algorithms - JAL, 3(4):362–380, 1982. 77

http://www.networkworld.com/news/2007/051607-cisco-routers-major-outage-japan.html
http://www.networkworld.com/news/2007/051607-cisco-routers-major-outage-japan.html
http://www.networkworld.com/news/2011/110711-internet-outage-252851.html
http://www.networkworld.com/news/2011/110711-internet-outage-252851.html
http://online.wsj.com/article/SB10001424052748704281504576329441432995616.html
http://online.wsj.com/article/SB10001424052748704281504576329441432995616.html

BIBLIOGRAPHY 162

[64] P. Flajolet and G. N. Martin. Probabilistic Counting. In Proceedings of IEEE Symposium on Foundations

of Computer Science, 1983. 60

[65] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer Anonymizing Network Layer Michael. In

Proceedings of ACM CCS, 2002. 150

[66] L. Gao and J. Rexford. Stable Internet Routing Without Global Coordination. IEEE/ACM Transactions

on Networking (TON), 9(6):681–692, 2001. 153

[67] V. D. Gligor. Guaranteeing Access in Spite of Distributed Service-Flooding Attacks. In Proceedings

of Security Protocols Workshop, 2005. 46, 47, 147, 148

[68] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I. Munro. Identifying Frequent Items

in Sliding Windows over On-Line Packet Streams. In Proceedings of ACM IMC, 2003. 71

[69] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path-Quality Monitoring in the Presence

of Adversaries. In Proceedings of ACM SIGMETRICS, 2008. 48

[70] T. G. Griffin and G. Wilfong. An Analysis of BGP Convergence Properties. In Proceedings of ACM

SIGCOMM, 1999. 153

[71] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the Transients of Adaptation for RoQ Attacks

on Internet Resources. In Proceedings of IEEE ICNP, 2004. 69, 88

[72] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu, A. Akella, D. G.

Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. XIA: Efficient support for evolvable internet-

working. In Proceedings of USENIX NSDI, 2013. 6

[73] J. Heidemann, L. Quan, and Y. Pradkin. A Preliminary Analysis of Network Outages During Hur-

ricane Sandy. Technical Report November 2012, USC/ISI ISI-TR-685b, 2012. 2

[74] N. Hopper, E. Y. Vasserman, and E. Chan-TIN. How Much Anonymity does Network Latency Leak?

ACM Transactions on Information and System Security, 13(2):1–28, Feb. 2010. 103, 151

[75] A. Houmansadr and N. Borisov. SWIRL: A Scalable Watermark to Detect Correlated Network Flows.

In Proceedings of NDSS, 2011. 123

[76] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov. Cirripede: Circumvention Infrastruc-

ture using Router Redirection with Plausible Deniability. Proceedings of ACM CCS, 2011. 151

BIBLIOGRAPHY 163

[77] J. P. John, E. Katz-bassett, A. Krishnamurthy, and T. Anderson. Consensus Routing: The Internet as

a Distributed System. In Proceedings of USENIX NSDI, 2008. 154

[78] A. Juels and J. G. Brainard. Client Puzzles: A Cryptographic Countermeasure Against Connection

Depletion Attacks. In Proceedings of NDSS, 1999. 148

[79] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving Organized DDoS Attacks

That Mimic Flash Crowds. In Proceedings of NSDI, 2005. 148

[80] M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire Attack. In Proceedings of IEEE Symposium on

Security and Privacy, 2013. 145

[81] P. Kanuparthy and C. Dovrolis. DiffProbe: Detecting ISP Service Discrimination. In Proceedings IEEE

INFOCOM, 2010. 150

[82] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P. Mankins, and W. T. Strayer. Decoy

Routing: Toward Unblockable Internet Communication. Proceedings of USENIX Workshop on Free and

Open Communications on the Internet, 2011. 151

[83] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A Simple Algorithm for Finding Frequent El-

ements in Streams and Bags. ACM Transactions on Database Systems, 28(1):51–55, 2003. 71, 74, 76,

77

[84] S. Katti, J. Cohen, and D. Katabi. Information Slicing: Anonymity Using Unreliable Overlays. In

Proceedings of USENIX NSDI, 2007. 150

[85] E. Katz-Bassett, C. Scott, D. R. Choffnes, I. Cunha, V. Valancius, N. Feamster, H. V. Madhyastha,

T. Anderson, and A. Krishnamurthy. LIFEGUARD: Practical Repair of Persistent Route Failures. In

Proceedings of ACM SIGCOMM, pages 395–406, 2012. 154

[86] T. Kim, D. Tipper, P. Krishnamurthy, and A. L. Swindlhurst. Improving the Topological Resilience

of Mobile Ad Hoc Networks. In Proceedings of DRCN, 2009. 153

[87] T.-H. Kim, D. Tipper, and P. Krishnamurthy. Improving the Connectivity of Heterogeneous Multi-

Hop Wireless Networks. In Proceedings of IEEE ICC, 2011. 153

[88] R. Kohavi and R. Longbotham. Online Experiments: Lessons Learned. Computer, 40(9):103–105,

2007. 1, 99

[89] E. Kohler, R. Morris, B. Chen, and J. Jannotti. The Click Modular Router. ACM Transactions on

Computer Systems (TOCS), 18(3):263–297, 2000. 37

BIBLIOGRAPHY 164

[90] T. Kohno, A. Broido, and K. Claffy. Remote Physical Device Fingerprinting. IEEE Transactions on

Dependable and Secure Computing, 2(2):93–108, Feb. 2005. 123, 151

[91] J. Krumm. A Survey of Computational Location Privacy. Personal and Ubiquitous Computing,

13(6):391–399, 2009. 102

[92] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data Streaming Algorithms for Efficient and Accurate

Estimation of Flow Size Distribution. In Proceedings of ACM SIGMETRICS, 2004. 152

[93] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of Service Attacks and Counter

Strategies. IEEE/ACM Transactions on Networking, 14(4):683–696, 2006. 69, 88, 92

[94] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet Routing Convergence. In Proceed-

ings of ACM SIGCOMM, 2000. 3

[95] M. Lad, R. Oliveira, B. Zhang, and L. Zhang. Understanding Resiliency of Internet Topology Against

Prefix Hijack Attacks. Proceedings of IEEE/IFIP DSN, 2007. 153

[96] A. Lall, V. Sekar, M. Ogihara, J. J. Xu, and H. Zhang. Data Streaming Algorithms for Estimating

Entropy of Network Traffic. In Proceedings of ACM SIGMETRICS, 2006. 152

[97] S. LaPerrière. Taiwan Earthquake Fiber Cuts: a Service Provider View, 2007. 2

[98] G. S. Lee and B. Thuraisingham. Cyberphysical Systems Security Applied to Telesurgical Robotics.

Computer Standards & Interfaces, 34(1):225–229, Jan. 2012. 2

[99] L. Lee and H. Ting. A Simpler and More Efficient Deterministic Scheme for Finding Frequent Items

over Sliding Windows. In Proceedings of ACM PODS, 2006. 71

[100] S. Lee and V. Gligor. FLoc: Dependable Link Access for Legitimate Traffic in Flooding Attacks.

Proceedings of IEEE ICDCS, 2010. 146

[101] S. B. Lee, V. D. Gligor, and A. Perrig. Dependable Connection Setup for Network Capabilities. In

Proceedings of IEEE DSN, 2010. 147

[102] S. B. Lee, M. S. Kang, and V. D. Gligor. CoDef: Collaborative Defense Against Large-Scale Link-

Flooding Attacks. In Proceedings of ACM CoNEXT, 2013. 48, 58, 144

[103] Leichtman Research Group. Nearly 1.3 Million Add Broadband In The First Quarter of 2011.

http://www.leichtmanresearch.com/press/051711release.pdf, 2011. 112

http://www.leichtmanresearch.com/press/051711release.pdf

BIBLIOGRAPHY 165

[104] J. Lemon. Resisting SYN Flood DoS Attacks with a SYN Cache. In BSDCon, 2002. 47

[105] P. G. Leon, B. Ur, R. Balebako, L. F. Cranor, R. Shay, and Y. Wang. Why Johnny Can’t Opt Out: A

Usability Evaluation of Tools to Limit Online Behavioral Advertising. In Proceedings of CHI, 2012. 99

[106] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright. Timing Attacks in Low-Latency Mix Systems.

In Proceedings of Financial Cryptography, 2004. 151

[107] Z. Li, A. Goyal, and Y. Chen. Honeynet-based Botnet Scan Traffic Analysis. Botnet Detection, 36:25–

44, 2008. 58

[108] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. Tor instead of IP. In Proceedings of ACM HotNets,

2011. 101, 119, 120, 121, 122, 149

[109] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adoptable Source Authentication. In

Proceedings of USENIX/ACM NSDI, 2008. 70

[110] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer DoS Defense Against

Multimillion-node Botnets. In Proceedings of ACM SIGCOMM, number 4, 2008. 146

[111] X. Liu, X. Yang, and Y. Xia. NetFence: Preventing Internet Denial of Service from Inside Out. In

Proceedings of ACM SIGCOMM, 2010. 48, 147, 148

[112] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Controlling High

Bandwidth Aggregates in the Network. ACM SIGCOMM Computer Communication Review, 32(3):62–

73, July 2002. 147

[113] D. H. Maister. The Psychology of Waiting Lines. Harvard Business School, 1984. 5, 45

[114] G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In Proceedings of

VLDB, 2002. 71, 74, 76, 151, 152

[115] J. Markoff and N. Perlroth. Firm Is Accused of Sending Spam, and Fight Jams In-

ternet. http://www.nytimes.com/2013/03/27/technology/internet/online-dispute-becomes-

internet-snarling-attack.html, 2013. 4

[116] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent and Top-k Elements

in Data Streams. In Proceedings of ICDT, 2005. 71, 74, 76, 151

[117] J. Misra and D. Gries. Finding Repeated Elements. Science of Computer Programming, 2(2):143–152,

1982. 71, 74, 76

http://www.nytimes.com/2013/03/27/technology/internet/online-dispute-becomes-internet-snarling-attack.html
http://www.nytimes.com/2013/03/27/technology/internet/online-dispute-becomes-internet-snarling-attack.html

BIBLIOGRAPHY 166

[118] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov. Stealthy Traffic Analysis of Low-Latency

Anonymous Communication Using Throughput Fingerprinting. In Proceedings of ACM CCS, 2011.

123

[119] J. A. Muir and P. C. V. Oorschot. Internet Geolocation: Evasion and Counterevasion. ACM Comput.

Surv., 42:4:1–4:23, December 2009. 98

[120] S. Murdoch. Hot or Not: Revealing Hidden Services by their Clock Skew. In Proceedings of ACM

CCS, 2006. 151

[121] S. J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In Proceedings of IEEE Symposium

on Security and Privacy, 2005. 103, 123, 151

[122] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical

Computer Science, 1(2):117–236, 2005. 152

[123] S. Nagaraja and R. Anderson. The Topology of Covert Conflict. In Proceedings of Workshop on

Economics of Information Security, 2006. 153

[124] F. F.-H. Nah. A Study on Tolerable Waiting Time: How Long are Web Users Willing to Wait?

Behaviour & Information Technology, 23(3):153–163, May 2004. 5, 45, 58, 60

[125] M. Naor and E. Yogev. Tight Bounds for Sliding Bloom Filters. pre-print, pages 1–18, 2013. 53

[126] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller, and A. Seehra. Verifying and Enforcing

Network Paths with ICING. In Proceedings of ACM CoNext, 2011. 70, 100, 129

[127] H. Noman and J. C. York. West Censoring East: The Use of Western Technologies by Mid-

dle East Censors, 2010-2011. https://opennet.net/west-censoring-east-the-use-western-

technologies-middle-east-censors-2010-2011. 4

[128] A. Panchenko, L. Pimenidis, and J. Renner. Performance Analysis of Anonymous Communication

Channels Provided by Tor. In Proceedings of International Conference on Availability, Reliability and

Security, 2008. 99, 150

[129] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu. Portcullis: Protecting Connection

Setup from Denial-of-Capability Attacks. In Proceedings of ACM SIGCOMM, 2007. 46, 146, 148

[130] W. Petullo, X. Zhang, J. Bernstein, and T. Lange. MinimaLT: Minimal-latency Networking Through

Better Security. In Proceedings of ACM CCS, 2013. 149

https://opennet.net/west-censoring-east-the-use-western-technologies-middle-east-censors-2010-2011
https://opennet.net/west-censoring-east-the-use-western-technologies-middle-east-censors-2010-2011

BIBLIOGRAPHY 167

[131] A. Pfitzmann and K. Marit. Anonymity, Unobservability, and Pseudonymity - A Proposal for Ter-

minology. In Proceedings of PETS, 2001. 101

[132] Ponemon Institute. Cyber Security on the Offense: A Study of IT Security Experts, 2012. 45

[133] A. Popescu, T. Underwood, and E. Zmijewski. Quaking Tables: The Taiwan Earthquakes and the

Internet Routing Table, 2007. 2

[134] Prolexic. Prolexic Attack Report Q1 2012, 2012. 4

[135] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. TCP Fast Open. In Proceedings of

ACM CoNEXT, 2011. 149

[136] B. Raghavan, T. Kohno, A. C. Snoeren, and D. Wetherall. Enlisting ISPs to Improve Online Privacy:

IP Address Mixing by Default. In Proceedings of PETS, 2009. 99, 101, 111, 119, 120, 121, 149

[137] B. Raghavan, T. Koponen, A. Ghodsi, M. Casado, S. Ratnasamy, and S. Shenker. Software-Defined

Internet Architecture: Decoupling Architecture from Infrastructure. In Proceedings of ACM HotNets,

2012. 12, 155

[138] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transactions. ACM Transactions on

Information and System Security, 1(1):66–92, 1998. 150

[139] Y. Ren, W. Zhou, A. Wang, L. Jia, A. J. Gurney, B. T. Loo, and J. Rexford. FSR: Formal Analysis and

Implementation Toolkit for Safe Inter-domain Routing. ACM SIGCOMM Computer Communication

Review, 41(4):440–441, 2011. 154

[140] Reporters Without Borders. Enemies of the Internet. Special Edition: Surveillance, 2013. 4

[141] J. Roskind. QUIC: Design Document and Specification Rational. https://docs.google.com/

document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34, Retrieved Oct. 2013. 149

[142] S. Russolillo. After Nasdaq Halt, Watch Apple’s Trading Volume Vanish. http://blogs.wsj.com/

moneybeat/2013/08/22/after-nasdaq-halt-watch-apples-trading-volume-vanish/, 2013. 1

[143] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport Layer Security (TLS) Session Resump-

tion without Server-Side State. RFC 5077, Jan. 2008. 149

[144] W. Scott, R. Cheng, J. Li, A. Krishnamurthy, and T. Anderson. Blocking-Resistant Network Services

using Unblock, 2012. 98

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
http://blogs.wsj.com/moneybeat/2013/08/22/after-nasdaq-halt-watch-apples-trading-volume-vanish/
http://blogs.wsj.com/moneybeat/2013/08/22/after-nasdaq-halt-watch-apples-trading-volume-vanish/

BIBLIOGRAPHY 168

[145] M. Sherr, M. Blaze, and B. T. Loo. Scalable Link-Based Relay Selection for Anonymous Routing. In

Proceedings of PETS, 2009. 150

[146] C. Shields and B. N. Levine. A Protocol for Anonymous Communication Over the Internet. In

Proceedings of ACM CCS, 2000. 150

[147] J. L. Sobrinho. An Algebraic Theory of Dynamic Network Routing. IEEE/ACM Transactions on

Networking (TON), 13(5):1160–1173, 2005. 153, 154

[148] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: A Scalable Architecture to Ap-

proximate Fair Bandwidth Allocations in High-Speed Networks. IEEE/ACM Transactions on Network-

ing, 11(1):33–46, Feb. 2003. 22, 147

[149] A. Studer and A. Perrig. The Coremelt Attack. In Proceedings of ESORICS, 2009. 6, 17, 19, 145

[150] A. Studer, E. Shi, F. Bai, and A. Perrig. TACKing Together Efficient Authentication, Revocation, and

Privacy in VANETs. In In Proceedings of IEEE SCEON, 2009. 139

[151] M. Suchara, A. Fabrikant, and J. Rexford. BGP Safety with Spurious Updates Martin. In Proceedings

of IEEE INFOCOM, 2011. 154

[152] P. Syverson. Why I’m not an Entropist. In International Workshop on Security Protocols. Springer-

Verlag, LNCS, 2009. 101

[153] P. Syverson. A Peel of Onion. In Proceedings of ACSAC, 2011. 150

[154] P. Syverson. Sleeping dogs lie in a bed of onions but wake when mixed. In Proceedings of HotPETs,

2011. 150

[155] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar. Detecting Network Neutrality Violations

with Causal Inference. In Proceedings of ACM CoNext, 2009. 150

[156] The European Union Agency for Network and Information Security (ENISA). Annual Incident

Reports 2012, 2013. 2

[157] J. Trostle, H. Matsuoka, J. Kempf, T. Kawahara, and R. Jain. Cryptographically Protected Prefixes

for Location Privacy in IPv6. In Proceedings of PETS, 2004. 121

[158] D. M. Turner, V. Prevelakis, and A. D. Keromytis. A Market-Based Bandwidth Charging Framework.

ACM Transactions on Internet Technology, 10(1):1–30, 2010. 92

BIBLIOGRAPHY 169

[159] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route Oscillations in Inter-domain Routing.

Computer Networks, 32(1):1–16, Jan. 2000. 153

[160] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New Streaming Algorithms for Fast Detec-

tion of Superspreaders. In Proceedings of NDSS, 2005. 152

[161] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using hard AI problems for

security. In Advances in Cryptology–EUROCRYPT, 2003. 58, 148

[162] A. Vulimiri, G. a. Agha, P. B. Godfrey, and K. Lakshminarayanan. How Well Can Congestion Pricing

Neutralize Denial of Service Attacks? In Proceedings of ACM SIGMETRICS, 2012. 28

[163] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS Defense by Offense. In

Proceedings of ACM SIGCOMM, 2006. 46, 148

[164] X. Wang and M. K. Reiter. Defending Against Denial-of-Service Attacks with Puzzle Auction. In

Proceedings of IEEE Symposium on Security and Privacy. 63, 148

[165] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An Untold Story of Middleboxes in Cellular

Networks. ACM SIGCOMM Computer Communication Review, 41(4):374–385, 2011. 111

[166] World Economic Forum. Global Risks 2014 Ninth Edition, 2014. 1

[167] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex: Anticensorship in the Network

Infrastructure. Proceedings of USENIX Security, 2011. 151

[168] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter to Mitigate DDoS Flooding

Attacks. In Proceedings of IEEE Symposium on Security and Privacy, 2004. 18, 22, 146

[169] J. Yan and A. S. El Ahmad. A Low-cost Attack on a Microsoft Captcha. In Proceedings of ACM CCS,

2008. 58, 148

[170] X. Yang, D. Clark, and A. W. Berger. NIRA: A New Inter-Domain Routing Architecture. IEEE/ACM

Transactions on Networking, 15(4):775–788, Aug. 2007. 20

[171] X. Yang, D. Wetherall, and T. Anderson. TVA: A DoS-Limiting Network Architecture. IEEE/ACM

Transactions on Networking, 16(6):1267–1280, Dec. 2008. 22, 146, 147

[172] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fingerprinting and Tracking on theWeb: Privacy

and Security Implications. In Proceedings of NDSS, 2012. 151

BIBLIOGRAPHY 170

[173] B. Yener, Y. Ofek, and M. Yung. Combinatorial Design of Congestion-Free Networks. IEEE/ACM

Transactions on Networking (TON), 5(6):989–1000, 1997. 19

[174] M. Yu, L. Jose, and R. Miao. Software Defined Traffic Measurement with OpenSketch. In Proceedings

of USENIX NSDI, 2013. 81

[175] B. Zhang, D. Pei, D. Massey, and L. Zhang. Timer Interaction in Route Flap Damping. In Proceedings

of IEEE ICDCS, 2005. 154

[176] L. Zhang, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang. Named Data Networking.

Technical report, NDN-0019, 2014. 6

[177] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource ReSerVartion

Protocol. Network, IEEE, 7(September):8–18, 1993. 5, 41

[178] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. Andersen. SCION: Scalability,

Control, and Isolation on Next-Generation Networks. In Proceedings of IEEE Symposium on Security

and Privacy, 2011. 6, 7, 12, 14, 18, 20, 100, 112, 115

[179] X. Zhang, C. Lan, and A. Perrig. Secure and Scalable Fault Localization under Dynamic Traffic

Patterns. In Proceedings of IEEE Security and Privacy, 2012. 48, 129

[180] X. Zhang, Z. Zhou, H.-C. Hsiao, T. H.-J. Kim, A. Perrig, and P. Tague. ShortMAC: Efficient Data-

Plane Fault Localization. In Proceedings of NDSS, 2012. 40

[181] Y. Zhang, Z. Mao, and M. Zhang. Detecting Traffic Differentiation in Backbone ISPs with NetPolice.

Proceedings of ACM IMC, 2009. 150

[182] Y. Zhang, Z. M. Mao, and M. Zhang. Ascertaining the Reality of Network Neutrality Violation in

Backbone ISPs. Proceedings of ACM HotNets, 2008. 4

[183] Y. Zhang, S. Singh, and S. Sen. Online Identification of Hierarchical Heavy Hitters: Algorithms,

Evaluation, and Applications. In Proceedings of ACM IMC, 2004. 152

[184] Q. G. Zhao, A. Kumar, J. Wang, and J. J. Xu. Data Streaming Algorithms for Accurate and Efficient

Measurement of Traffic and Flow Matrices. In Proceedings of ACM SIGMETRICS, 2005. 152

	Contents
	List of Figures
	List of Tables
	Introduction
	Threats against Internet Availability
	Challenges of Building a Highly Available Internet
	Thesis Statement
	Thesis Overview
	Outline

	Background: Internet Architectures
	The Current Internet
	SCION: A Security-Centric Internet Architecture

	STRIDE
	Threat Model
	Desired Properties
	Assumptions

	STRIDE: Design Overview
	Static Half-Path Setup
	Static and BE Channel Setup
	Dynamic Channel Setup

	STRIDE Protocol Description
	Static Half-Path Setup
	Static and BE Channel Setup
	Dynamic Channel Setup

	Bandwidth Guarantee Analysis
	Evaluation
	Resilience against DoC Attacks
	Flow Bandwidth Guarantees
	Throughput

	Extensions
	Inter-ISD Guarantees
	Partial Dynamic Channels

	Discussion
	Malicious ADs Inside an ISD
	A Simple Dynamic Allocation Policy
	Comparison with Other Bandwidth Reservation Protocols
	Directional Paths and Asymmetric Bandwidth Requirements
	Link Capacity Division
	Bandwidth Overbooking

	Summary

	RainCheck Filter
	Problem Definition
	Waiting Time Model
	DDoS Attacks and Flash Crowds
	Server and Client Models
	Desired Properties

	Raincheck Filter
	MWT Guarantees Using an Ideal Buffer
	RainCheck Filter Design
	Server Description
	Client Description
	Handling Clients Sharing IP Addresses

	Analysis
	Waiting Time Guarantees
	Overhead Analysis and Configurations
	Security Benefits

	Improvements and Discussion
	Strengthening Waiting Time Guarantees
	Extension for Better Scalability
	Waiting Time Estimation
	Bounding and Determining the Request Processing Rate

	Evaluation
	Flash-Crowd Effect
	Flooding Attacks

	Prototype Implementation
	Summary

	Large Flow Detection
	Problem Definition
	System Model
	Large-Flow Problem
	Adversary Model
	Design Goals

	Algorithm
	Relationships Between Landmark and Arbitrary Windows
	Algorithm Construction
	Data Structure and Optimization
	Storage and Computational Complexity

	Analysis
	Large Flow False Negative Analysis
	Small Flow False Positive Analysis
	Relationship between Low-Bandwidth and High-Bandwidth Thresholds
	Incubation Period of Large Flows
	Tradeoff Analysis
	How To Engineer The Detector

	Evaluation
	Theoretical Comparison
	Experiment Settings
	Experimental Comparison

	Summary
	Appendix
	Lemma 13 and Proof Sketch
	Proof Sketch of Lemma 10
	Engineering The Parameters

	Lightweight Anonymity and Privacy
	Problem Definition
	Desired Privacy Properties
	Desired Performance Properties
	Assumptions
	Threat Model

	Overview: LAP
	LAP: Lightweight Anonymity and Privacy
	LAP Packet Header Format
	LAP Protocol Description
	Controllable Privacy Levels
	Path Publishing for Receiver Anonymity
	Padding Against Size-Based Traffic Analysis

	Preliminary Analysis
	Anonymity and Privacy in the Current Internet
	Anonymity in LAP

	LAP Instantiation
	LAP in the Current Internet
	Integrating LAP into SCION
	Integrating LAP into MobilityFirst

	Security Analysis
	Sender/Receiver Anonymity Analysis
	Session Unlinkability
	General Attack Resilience
	Resilience against Known Attacks

	Evaluation
	Latency Evaluation
	Throughput Evaluation

	Summary

	Integration and Discussion
	Integration
	Adversary Model
	Building Blocks
	Integration on top of SCION Architecture

	Availability Guarantees
	Discussion

	Related Work
	DDoS Countermeasures
	Filtering
	Resource Allocation
	Fair Access

	Countermeasures to Selective Dropping
	Traffic Monitoring
	Topology and Routing for High Availability
	Topology
	Routing

	Conclusion and Future Work
	Bibliography
	ADPADAF.tmp
	THESIS

