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This paper presents a novel Gabor phase based illumination invariant extraction method aiming at eliminating the effect of varying
illumination on face recognition. Firstly, It normalizes varying illumination on face images, which can reduce the effect of varying
illumination to some extent. Secondly, a set of 2D real Gabor wavelet with different directions is used for image transformation, and
multiple Gabor coefficients are combined into one whole in considering spectrum and phase. Lastly, the illumination invariant is
obtained by extracting the phase feature from the combined coefficients. Experimental results on the Yale B and the CMU PIE face
database show that our method obtained a significant improvement over other related methods for face recognition under large

illumination variation condition.

1. Introduction

Face recognition has attracted much interest for its wide
application. Although great progress has been made accord-
ing to related researches [1, 2], many issues still remain unre-
solved, including varying illumination, pose, and expression
problems. The varying illumination problem is intractable yet
crucial and has to be dealt with. The illumination can change
face appearance dramatically and thus will seriously affect the
performance of face recognition system [3]. To address this
problem, researchers have proposed many approaches, and
these methods are mainly classified into three groups.

(1) Illumination Preprocessing. These approaches adopt image
processing to remove lighting effects from face images to
obtain illumination normalized face images [4, 5]. Tan and
Triggs [6] proposed a preprocessing chain which combines
Gamma correction (GC) and difference of Gaussian (DoG)
with contrast equalization. It eliminates most of illumination
effects while still preserving needed essential appearance
details. Fan and Zhang [7] presented a homomorphic filter-
ing (HF) based illumination normalization algorithm and
obtained promising results. Recently, Lee et al. compensated

illumination using orientated local histogram equalization
(OLHE), which encoded rich information on the edge orien-
tations [8]. Illumination preprocessing methods are simple,
effective, and efficient. However, they could not resolve
extreme uneven illumination variations completely [3].

(2) Face Modeling. Illumination variations are mainly gener-
ated from the 3D shape of human faces under various lighting
directions. A generative 3D face model has been constructed
to render face images with different poses and illumination.
Belhumeur etal. [9,10] proposed an illumination cone named
generative model, which uses an illumination convex cone to
represent face images set with changing illumination condi-
tions under fixed pose. They first construct an illumination
convex cone using a great deal of images with varying lighting
and then use a low-dimensional linear subspace to represent
the cone approximated. Basri and Jacobs [11] found that a
9D linear subspace could approximate the set of images of
a convex Lambertian object with varying lighting very well.
These methods need images of the same subject with varying
lighting and 3D shape information for training. However,
these needs could not be met in real world. Therefore, the
application of these methods is limited.
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(3) Hlumination Invariant Extraction. This kind of approach
is the mainstream, which tries to extract illumination-robust
facial features. Many methods are based on the Lambertian
illumination model. In that model, a face image f(x, y) under
illumination conditions is generally regarded as a product
f(x,y) = i(x,y)r(x, y), where r(x, y) is the reflectance
component and i(x, y) is the illumination component at each
point (x, y) [12]. The objective is to extract the reflectance
component r(x, y), which is considered as the intrinsic
information specific to each class. However, it is difficult
to calculate the reflectance and the illuminance component
from real images. A common assumption is that i(x, y) varies
slowly and mainly lies in low frequencies, while r(x, y) can
change abruptly and typically lies in high frequencies. Under
this assumption, Jobson et al. [13] proposed the multiscale
retinex (MSR) method which estimated the reflectance com-
ponent as the ratio of the image and its low-pass version
that served as estimate for the illumination component. Wang
et al. [14] used a similar idea (with a different local filter,
namely, the weighted Gaussian filter) in the Self Quotient
Image (SQI), which was very simple and could be applied to
any single image. However, the used weighted Gaussian filter
can hardly keep sharp edges in low frequency illumination
fields, and it needs experience and time to select proper
parameter. Aiming at solving this problem, Chen et al. [15]
replaced the weighted Gaussian filter by Logarithmic Total
Variation (LTV) to improve SQIL In 2009, Zhang et al. [16]
presented a wavelet-based illumination invariant method
(WD), which extracted denoised high frequency component
in wavelet domain as the reflectance component. Inspired
by this, Cheng et al. [17] and Xie et al. [18] presented two
similar illumination invariant extraction methods in the
nonsubsampled Contourlet transform (NSCT) domain. In
2011, Chen et al. [19] utilized the scale invariant property
of natural images to derive a Wiener filter approach to
best separate the illumination invariant features from an
image. Cao et al. [20] proposed a wavelet-based illumination
invariant extraction approach while taking the correlation
of neighboring wavelet coefficients into account in 2012.
Recently, Song et al. [21] presented a novel illumination
invariant, histogram-based descriptor, and Faraji and Qi [22]
proposed a novel illumination invariant using logarithmic
fractal dimension-based complete eight local directional pat-
terns. Experiments show that these methods have achieved
very good results. Chen et al. [23] revealed that the direction
of the image gradient is insensitive to changes of illumi-
nation. Based on this, Zhang et al. [24] introduced the
Gradientfaces method, which used the arctan of the ratio
between y- and x-gradient of an image as Gradientfaces.
Chen and Zhang [25] improved the Gradientfaces method by
proposing multidirectional orthogonal gradient phase faces
method.

Recent studies confirm that the phase also contains a
lot of effective information for image feature extraction,
comparing with the magnitude [26]. Based on this, Sao and
Yegnanarayana [27] presented a 2D Fourier phase based face
image representation, and Cheng et al. [28] presented a novel
illumination invariant method, namely, multiscale principal
contour direction (MPCD). Inspired by the above mentioned,

Advances in Multimedia

based on Gabor wavelet’s excellent visual physiology back-
ground and its powerful ability as a feature descriptor, we
present a novel illumination invariant extraction method
based on the Gabor wavelet phase (GF) in this paper. We first
preprocess the face image by using a homomorphic filtering
(HF) based illumination normalization algorithm [7]. Then
a set of 2D real Gabor wavelet with different directions
is used for image transformation. Finally, multiple Gabor
coeflicients are combined into one whole in considering
both spectrum and phase information and the illumination
invariant is obtained by extracting the phase feature from the
combined coeflicients. The 2D symmetric real Gabor wavelet
is chosen in our method, which aims not only at avoiding
the complexity of complex calculations, but also at fitting the
symmetry of the face image itself.

The rest of this paper is organized as follows. Section 2
presents the proposed method in detail. The experimental
results and our conclusions are shown in Sections 3 and 4,
respectively.

2. Algorithm Description

Researchers have found that Gabor functions have the
capability of modeling simple cells in the visual cortex of
mammalian brains [29]. Thus, image analysis using Gabor
functions is similar to perception in the human visual system.
Frequency and orientation representations of Gabor filters
are similar to those of the human visual system, and they
are particularly appropriate for texture representation and
discrimination.

In recent years, the Gabor wavelet transform has been
widely used as an effective element in face recognition [26,
30-34]. Gabor wavelet transform is insensitive to external
environment factors such as illumination, facial expressions,
gestures, and occlusion [35]. For this reason, it has been
widely used to extract robust facial feature. Most existing
Gabor feature-based methods usually use the Gabor mag-
nitude features and discard the phase features. However,
studies have shown that the phase information contains a
number of effective image features, and it is insensitive to
illumination variation. Inspired by this, the Gabor phase
features are extracted as illumination invariants in this
paper.

The proposed illumination invariant extraction method
consists of three steps. Firstly, a homomorphic filtering based
illumination normalization method [7] is used to preprocess
the face images. Secondly, a set of 2D real Gabor wavelet with
different directions is used for image transformation. Lastly,
multiple Gabor coefficients are combined into one whole in
considering both spectrum and phase information, and the
illumination invariant is obtained by extracting the phase
feature from the combined coefficients.

2.1. Illumination Normalization. We use the method pre-
sented in the literature [7], which combines homomorphic
filtering and histogram equalization. In our paper, this illu-
mination normalization method is called HF + HQ for short.
This preprocessing greatly corrects the uneven illumination
effects.
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2.2. 2D Gabor Wavelet Transform. Different Gabor wavelets
can be obtained by using different kernel functions. In order
to avoid the complexity of complex calculations, and to fit
the symmetry of the face image itself, the 2D symmetric real
Gabor wavelet is chosen in our method. The kernel function
used in this paper is the following.

G(XJ” 6ksf)

(e,

! .
x = xcosO + ysin6y,

y' = ycos6, — xsinfy,

where f is the frequency of the sinusoidal function, s, and
s, represent the spatial scaling coefficient along x- and y-
axes, respectively, and 0, is the orientation of Gabor filter. 6,
is defined by this formula.

0="(k-1), k=12....n 2
n

Here, n determines the number of the filter’s orientation,
and we set n = 8 in this paper. If s, and s,, are selected, after
the Gabor wavelet transform of an gray face image f(x, y),
we have

C(x 900 f) = f(xy)®G(x, 3,0 f). 3)

Here, ® indicates convolution of the two functions.
C(x, 3,0, f) is denoted as Cq ¢ for short. All the Gabor
wavelet transformed coefficients are denoted as follows.

{Cosl> £=0,2481632 k=1,2,...,8 (4

Figure 1illustrates the spectrograms of a face image under
the same frequency (f = 0) and 8 different orientations (6;).

2.3. Illumination Invariant Extraction. After 2D Gabor
wavelet transforming, the set {Cy, (} includesall the spectrum
information under different orientations. In order to take
the phase information into account, we define the complex
wavelet coefficients as follows.

- i0,
Cek)f = Cgk’fe k. (5)

Then, summing up all the complex coefficients under the
same frequency ( f) aiming at reducing feature dimension, we
have

/8 _
Sy= . Cour (6)
0,=m/8

The phase feature is calculated by this formula.

Im (Sf (x, y))
Re (Sf (x, y))

Here, Re(Sf(x, y)) and Im(Sf(x, y)) are the real and
imaginary part of S;(x, y), respectively. In this paper, the
phase feature A ¢(x, y) is considered as the illumination
invariant. Figure 2 shows the illumination normalized face
images and the obtained illumination invariant.

A ¢ (x, y) = arctan : (7)

3. Experimental Results

In this section, the performance of the proposed method
(GF) is compared with the existing methods including MSR,
WD, LTV, Gradientfaces, and MPCD using Yale B [36]
and CMU PIE [37]. Firstly, we present different illumi-
nation invariants in image form. Then, we compare their
recognition performance by using Eigenfaces under the
same experimental conditions. According to the FERET
testing protocol [38], the Tops 1 and 3 recognition rate are
tested.

3.1. Comparison of the Different Illumination Invariants. To
prove the efficiency of different methods, Figure 3 shows
some original images in the Yale B and their corresponding
illumination invariants. As can be seen from the images, the
GF method has removed most effects of the illumination
variation and greatly reduced the intraclass difference.

3.2. Experimental Results for the Yale B. The face database
of Yale B has 10 different persons, and each person has 9
poses, and each pose is captured by 64 different illumination
conditions. In our experiments, the frontal images are used.
And, based on the angle of light source direction, these
images are classified into five subsets. They are subset 1
(0-12°), subset 2 (13°-25°), subset 3 (26°-50"), subset 4
(51°-77°), and subset 5 (others) [39]. All images are cropped
and rescaled to 192 x 168 pixels with strict alignment. The five
images of each subset (each row) for one person are shown in
Figure 4, and their illumination invariants are extracted by
GF method.

Firstly, we select subset 1 as the training set and others
as the testing set. As can be seen from Figures 5 and 6 the
proposed method (GF) outperforms MSR, WD, and LTV, and
GF obtains outstanding results similar to the Gradientfaces
and the MPCD method. The average Top 1 recognition rate is
nearly 99%.

Secondly, subset 4 is selected as the training set, and
others are used as testing set. Figures 7 and 8 show the
recognition rates. It is clearly seen that the performance of
GF is far greater than others and achieves 100% recognition
rate on each testing subset.

Thirdly, for the training set, we randomly choose 10
images for each person, namely, subset #, and the others are
used for testing. To achieve a credible result, the result is
averaged over 50 random splits. The experiment results are
presented in Figures 9 and 10. It can be observed that the
recognition rate of GF is higher than the other methods, and
the performance is quite similar to that of the Gradientfaces
and the MPCD, and it reaches a 100% recognition rate on
every testing subset except subset 2.

The experiments are implemented using different train-
ing sets. It is clearly seen that the proposed method obtains
excellent results under different conditions, and this demon-
strates its robustness to illumination.

3.3. Experimental Results for the CMU PIE. The CMU PIE
face database [37] contains images of 68 persons with various
poses, illuminations, and expressions. In our experiments,
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Original images 0 =0m/8

FIGURE 1: The Gabor spectrogram of a face image.
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Original

HF + HQ

FIGURE 2: Examples of the HF + HQ processed images and the extracted illumination invariant.

the illumination subset (C27) is used, and C27 has 21
different illuminations for each person. All images used in
our experiments are cropped and rescaled to 64 x 64 pixels.
21 different illumination images of a person on CMU PIE and
their illumination invariants extracted by GF are shown in
Figure 11.

The experiments on CMU PIE are divided into two
sections. In Section 1, the first 3, 4, and 5 images of each
person are selected as the training set and others as the
testing set, respectively. Table 1 shows the recognition results
of Section 1. In Section 2, we randomly choose 3, 4, and 5
images of each person as training set and others as testing
set, respectively. To achieve a credible result, the result is
averaged over 50 random splits. The recognition results of
Section 2 are tabulated in Table 2. From Tables 1 and 2, it
can be seen that the proposed method outperforms all other
methods and consistently achieves a high recognition rate,
which strongly shows its outstanding efficacy in relation to
varying illumination.

Run time is also critical in real application. To evaluate
the computational complexity of each method, the run time
of processing a 168 x 192 pixel face image of each method
is presented in Table 3. The hardware platform is 2.6 GHz P4
with 2G memory. Table 3 shows that the proposed method
only needs 37 ms to process a face image, which shows that
it can process face images in real time and thus it is able to

handle large face databases. MSR, LTV, and MPCD are slower
than our method.

4. Conclusion

In this paper, we propose an efficient Gabor phase based
illumination invariant extraction method. We first normalize
face images using a homomorphic filter-based preprocessing
method to preeliminate effects of the illumination changes.
Then, a set of 2D real Gabor wavelet with different direc-
tions is used for image transformation, and multiple Gabor
coeflicients are combined into one whole in considering
both spectrum and phase. Lastly, the illumination invari-
ant is obtained by extracting the phase feature from the
combined coefficients. The proposed method does not need
3D face shape information or a bootstrap for training. And
the extracted illumination invariant contains more essential
discriminant information while greatly reducing the effect of
illumination changes at the same time. Experimental results
show its effectiveness and robustness to different illumination
variation.
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GF illumination invariants

FIGURE 4: Images of subsets 1-5 and their illumination invariants using GF.
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FIGURE 5: Comparisons on the Top 1 recognition rate (the subset 1 used as the training set).

TaBLE 1: Comparison on the recognition rate of different illumination invariants in Section 1.

Recognition rate (%) Training set Original MSR WD LTV Gradientfaces MPCD GF
3 37.61 51.33 89.36 89.78 91.04 89.99 94.54

Top1 4 39.57 63.24 91.81 93.56 95.87 92.79 96.08
5 43.21 72.90 96.15 96.15 99.16 96.64 97.34
3 47.20 61.20 95.52 94.82 97.13 95.73 99.44

Top 3 4 50.49 71.99 97.48 96.99 99.02 97.55 99.51
5 54.41 79.90 98.81 98.32 99.86 99.30 99.93
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FIGURE 6: Comparisons on the Top 3 recognition rate (the subset 1 used as the training set).
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FIGURE 7: Comparisons on the Top 1 recognition rate (the subset 4 used as the training set).
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FIGURE 9: Comparisons on the Top 1 recognition rate (the subset  used as the training set).
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FIGURE 11: Images of a person in C27 and their illumination invariants using GE.
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TaBLE 2: Comparison on the recognition rate of different illumination invariants in Section 2.

Recognition rate (%) Training set Original MSR WD LTV Gradientfaces MPCD GF
3 40.94 80.23 99.08 98.90 99.22 99.21 99.67

Top1 4 4217 84.50 99.68 99.37 98.46 99.24 99.84
5 42.86 87.26 99.78 99.46 99.95 99.58 99.83
3 53.60 87.85 99.66 99.55 99.93 99.75 99.93

Top 3 4 55.59 91.16 99.89 99.79 99.98 99.87 99.96
5 56.38 92.75 99.93 99.80 99.98 99.93 99.96

TaBLE 3: Comparison on the run time of different illumination
invariants.

Method MSR WD LTV Gradientfaces MPCD GF
Time (ms) 171 36 59 22 97 37
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