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Abstract: In recent years, the field of complex, hypercomplex-valued and geometric Support
Vector Machines (SVM) has undergone immense progress due to the compatibility of complex
and hypercomplex number representations with analytic signals, as well as the power of description
that geometric entities provide to object descriptors. Thus, several interesting applications can be
developed using these types of data and algorithms, such as signal processing, pattern recognition,
classification of electromagnetic signals, light, sonic/ultrasonic and quantum waves, chaos in the
complex domain, phase and phase-sensitive signal processing and nonlinear filtering, frequency,
time-frequency and spatiotemporal domain processing, quantum computation, robotics, control,
time series prediction, and visual servoing, among others. This paper presents and discusses
the importance, recent progress, prospective applications, and future directions of complex,
hypercomplex-valued and geometric Support Vector Machines.
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1. Introduction

The base idea of Support Vector Machines is the soft margin classifier that was first introduced
by Cortes and Vapnik in 1995 [1], then in the same year, this algorithm was extended for deal with
regression problems by Vapnik [2]. The first formal statistical analysis about boundaries of the
generalization of hard margin SVMs were given by Barlett [3] and Shawe-Taylor, et al. in 1998 [4].
In 2000, Shawe-Taylor and Cristianini continued with the development of the statistical learning
theory that supports the SVMs and they present the statistical bounds of the generalization of soft
margin algorithms for the regression case [5]. Thus, since its introduction by Vladimir Vapnik and
his team, SVMs have become an important and very used learning algorithm to solve regression
and classification problems. The sheer number of published applications of support vector machines
(SVM) for solving problems involving real data is reflected in the high number of citations that
the top 100 SVM publications [6] have recorded; there are more than 46,000 citations, according to
Google Scholar.

SVMs use an intelligent and elegant technique to solve non-linear problems: the kernel trick,
which has become a seminal idea to develop several machine learning methods called kernel-based
methods. Kernels are symmetric functions that for two vectors of dimension 7, return a real number
# 0. The use of kernels in SVM allows implicitly mapping the original input data into a higher
dimensional Reproducing Kernel Hilbert Space (RKHS) H, in which linear functions that split the
mapped data are computed. This is equivalent to solving the non-linear problem in the original input
data space.

Although the RKHS includes complex and hypercomplex spaces in which the original input
data can be mapped via kernel functions, the majority of extensions and applications of SVM deal
with real data, and therefore use real kernel functions. However, the need for processing complex
and hypercomplex data in modern applications has paved the way for some important proposals to
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process complex and hypercomplex-valued input and output data, and kernels. These approaches will
be reviewed in more detail in the next section.

Therefore, since the first proposals of SVM extensions for processing complex and hypercomplex
data and kernels, their applications have grown in number, including signal processing, pattern
recognition, classification of electromagnetic signals, light, sonic/ultrasonic and quantum waves,
chaos in the complex domain, phase and phase-sensitive signal processing and nonlinear filtering,
frequency, time-frequency and spatiotemporal domain processing, quantum computation, robotics,
control, pattern recognition, time-series prediction, and visual servoing, among others. Due to the
variety and importance of the applications of this type of SVM extension, in this survey we present and
discuss the importance, recent progress, prospective applications, and future directions of complex,
hypercomplex-valued and geometric support vector machines.

This survey is organized as follows: In Section 2, the most important extensions of SVM are
reviewed to deal with complex and hypercomplex-valued input and output data, as well as with
kernels that process this type of data. In Section 3, some of the applications of these extensions of
SVMs with the greatest impact are introduced, as well as some of their promising developments with
future applicability. The last section is devoted to the conclusions.

2. Complex and Hypercomplex Support Vector Machines Extensions

In this section, the most important extensions of SVM are reviewed to deal with complex and
hypercomplex-valued input and output data, as well as with kernels that process this type of data.
Each approach is studied in the chronological order of publication. In addition, Table 1 is summarizes
the information presented in all the subsections of this section, which presents the main features,
advantages and disadvantages of each approach.

Table 1. Part 1-Complex and hypercomplex SVM extensions.
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Section Frameworks Used SVM Extension SVM Extension
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2.1. Geometric or Clifford Support Vector Machines

In 2000, the first attempt to develop an extension of SVM to deal with complex and hypercomplex
input and output data was published [7,8]. The approach was designed using the Geometric Algebra (GA)
framework [16].

GAs are the Clifford special family of associative algebras built over a field, and a quadratic space
of elements called multivectors that is constructed using a special product called the geometric product.
In Clifford and GAs we can find embedded concepts of complex, linear, tensor, quaternion, and
octonion algebras (for a detailed introduction to Clifford and GAs it is recommended to read [16,17].

Hence, in [7,8], a multivector-valued input and output data was used to perform
multiclassification and multi-regression, solving one multivector-valued optimization problem.
Nevertheless, the approach was not completely developed, because it did not consider the
multivector-valued kernel design, or define the Gramm matrix (or kernel matrix) as a multivector
matrix. Therefore, the design can be considered to be an application of the idea of Eiichi Goto presented
in 1954 with the proposal of “Parametron” [18,19] wherein the phase of a high-frequency carrier is
used to represent binary or multivalued information. Similarly, in [7,8], the elements of different
grades of the multivector are used to represent multivalued information in the input and the output
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multivector-valued data. It was not until 2010 that the extension presented in [7,8] was fully developed,
with the introduction of Clifford Support Vector Machines (CSVMs) [9].

The author considers this to be the most complete work that generalizes the real-valued SVM
into a complex and hypercomplex-valued SVM, as the Clifford Algebra theory includes concepts of
the most used and important algebras, such as analytic geometry of Descartes, the complex algebra
of Wessel and Gauss, Hamilton algebra, matrix Cayley algebra, exterior Grassmann algebra, tensor
algebra of Ricci, the algebra of Pauli and Dirac, Lie algebra, etc. Furthermore, all the division algebras
such as real, complex, quaternion and octonion can be viewed as isomorphic Clifford algebra.

CSVM presented the entire design of a multivector-optimization problem, the derivation of the
primal and dual multivector-valued problems and the definition of the Gramm matrix as a matrix with
multivectors as elements, as well as the introduction of a multivector-valued kernel design. The key
teature of CSVM design is the use of the Clifford product involved in the multivector-valued kernels to
keep separated the different grade components of each input multivector and at the end, to represent
those components as the direct sum of linear spaces in multivector-valued outputs. All the above allow
the CSVM to solve optimization problems in complex and hypercomplex vector spaces, so that the
original and the feature (or RKHS) spaces can preserve the topology and geometry of the complex and
hypercomplex input data. It is demonstrated that when this machine learning algorithm is used to
process this type of data, the accuracy and convergence speed can be improved with respect to the
obtained accuracy and convergence speed with real SVMs.

The CSVM was presented to solve multi-classification and multi-regression, and using it in
conjunction with a long short-term memory neural network [20] can deal with dynamic systems
or recurrence.

Two multivector-valued kernels are designed: a complex kernel using the GA Gy and a
quaternion-valued kernel embedded in the GA G, . The design methodology can be extended to
any Clifford algebra (so it can be applied to solve any hypercomplex SVM problem).

This approach was used to solve multi-classification for object recognition, multi-interpolation,
time-series forecasting, and path-planning problems.

In [15] a Quaternion Support Vector Machine (QSVM) was presented as an special case of
the CSVM of [9]. The quaternion algebra framework was used to design a QSVM that processes
multiple multivectors as input and returns multiple multivectors as output data to achieve multi-class
classification. Two quaternion kernels that involve the quaternion product in their definition were
designed: polynomial quaternion-valued kernel and Gaussian quaternion Gabor kernel. In addition
quaternion sign() function is defined to allow the QSVM to classify up to sixteen classes using
one QSVM. Diamond colour classification and object recognition experiments were conducted to
demonstrate the algorithm efficiency.

The article [21] the methodology to implement a parallel CSVM using the Gaussian kernel was
presented. As the Gaussian kernel returns a real number even when it is used with multivectors as
input data, and in addition it has the commutative property (as the Gaussian kernel does not involves
the Clifford product computation) the multivector input data can be separated into its different grade
elements that belong to independent subspaces and therefore a quadratic optimization problem for
each element can be solved using parallelism. Experiments of classification were conducted using
benchmark problems such as the concentric 2D spirals and a five-class problem described with three
overlapped circles.

2.2. Division Algebras

Several efforts using division algebras were made to generalize real SVMs, to deal with complex
and hypercomplex numbers. Division algebras are appealing mathematical frameworks to solve the
complex, hypercomplex-valued SVM optimization problem due to the fact that all non-zero elements
of a vector space have multiplicative inverses. There are four division algebras: real numbers, complex
numbers, quaternions, and octonions.
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2.2.1. SVM Multiregression for Nonlinear Channel Estimation in Multiple-Input Multiple-Output Systems

In 2002, an approach to solve multidimensional function approximation and regression was
presented [10], and was fully developed and published in 2004 [11]. The authors addressed the
problem of multiple-input, multiple-output (MIMO) system for the frequency nonselective channel
estimation. This was an SVM-based approach as it leveraged the multidimensionality of a MIMO
channel by using a regression SVM-based algorithm. This study proposed using an iterative reweighted
least square (IRWLS) to solve the multivariable SVM problem instead of quadratic programming,
and train an SVM multi-regressor to model nonlinearities that affect each transmitter or each receiver
module of the transmission-reception chain. These cases were modeled separately using two different
channel models of the input information signal represented by the quadrature phase shift keying
(QPSK) employed in complex signal processing. On the other hand, the output data are represented as
real vectors and the optimization problem defined uses an e-insensitive cost function that in turn uses
the L, norm to consider all the multiple dimensions in a unique restriction. When € = 0 the problem is
equivalent to solving one independent, regularized real kernel for each dimension, but for € # 0, the
problem becomes an ill-defined one that cannot be solved straightforwardly, and it takes an iterative
procedure to obtain the solution which is why they use an IRWLS algorithm.

Simulations were conducted to address the problem of nonlinear channel estimation, and their
proposal outperforms the applications of one real support vector regression (SVR) and a radial function
network (RBEN) for each dimension. Meanwhile, for linear channel models, results equivalent to those
obtained using minimum mean square error (MMSE) strategy were achieved.

2.2.2. Quaternionic and Complex-Valued Support Vector Regression for Equalization and
Function Approximation

In [12], another SVR strategy was designed by Shilton et al., this time to deal with quaternionic
and complex-valued equalization and function approximation. The outputs of the SVR werebeen
interpreted as complex/quaternion-valued vectors to tackle the interconnectedness of outputs, i.e.,
the fact that these outputs can be coupled and treated independently can lead to a decrease in
regressor accuracy. The author proposed the use of a rotationally invariant cost function in order
to consider the magnitude, but not the angle of the error in the output. When a real regressor is
applied on each dimension of a complex or a quaternionic-valued signal, each one of the regressor
estimates one function in its own axis, and when these functions are summed to construct a complex or
quaternion output, the overall risk function will not be rotationally symmetric because it will contain
the magnitude and the various angles added (even when the angles were computed using different axis
for each regressor). Therefore, considering only the magnitude of the error but not the various angles
between the axes, will affect the accuracy of the estimated function. This is one of the main reasons
why complex and hypercomplex-valued estimators increase the accuracy when dealing with complex
and hypercomplex-valued input data regarding the strategies that cast these problems on to the real
domain by splitting data in each different grade part (two for complex, four for quaternion and so on),
and then work with each dimension independently instead of solving the optimization problem in
complex and hypercomplex input, output, and feature spaces. The authors of [12] derive a well-defined
dual optimization problem using a bilevel definition of the primal convex quadratic problem [22].
In the experimental results section, they consider the problem of equalization of a 4-symbol quadrature
amplitude modulated (4-QAM) signal over a complex linear communication channel added with
Gaussian noise. Again, the comparison results show that their proposal outperforms two independent
SVR with e-insensitive loss function and the decision boundary obtained with their approach is
compared “favorably” with the optimal decision boundary that a Bayesian equalizer gets.

2.2.3. A Division Algebraic Framework for Multidimensional Support Vector Regression

In 2010 Shilton et al. tackled the multidimensional SVR design using the division algebras
framework, to present an e-insensitive loss function independent of the coordinate system or basis
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used [23]. Although the octonions are included in the division algebras, this paper only deals with
real, complex and quaternions extensions of SVR. Indeed, the authors only present the design of
a quaternionic ey-SVR because the real and complex extensions are cases included as restrictions
of the quaternionic SVR. The approach proposes the use of a strictly L2-norm-based loss function
to avoid that the trained machine could be influenced by the axe choices, due to the fact that this
loss function is coordinate independent and less sensitive to outliers than a quadratic cost function.
Additionally, the L2 norm includes an e-insensitive region that ensures sparseness. The authors present
the derivation of a primal quaternionic SVR using this loss function, and then the Lagrange multipliers
optimization method is used to compute the quadradic-valued dual training problem, which at the end,
is analogous to the standard real SVR dual, but considering the use of a quaternionic-valued kernel
function . Their proposal is applied to solve problems of complex-valued function approximation,
chaotic time-series forecasting and channel equalization. Experimental results show that the proposal
outperforms Clifford SVR (C-SVR) presented in 2000 and 2001 [7,8], least-square SVR (LS-SVR) [24]
and multidimensional SVR (M-SVR) [11].

Furthermore, a useful comparative analysis against C-SVR [7,8] , LS-SVR [24], M-SVR [11], extreme
learning machine (ELM) [25,26], and a kernel method [27] is performed in terms of the definition of
primal loss functions, dual optimization problem, independence of coordinates of the loss functions,
sparcity of solution, and outlier sensitivity. It is important to note that the methodologies of the
comparative analysis were proposed in 2000, 2002, 2004, 2006, and 2002 respectively.

2.2.4. A Note on Octonionic Support Vector Regression

Mentioned in the above section, Shilton et al., in their 2010 paper [23], did not include the design
of an octonion-valued SVR. Instead, they include this design in a publication in 2012, [13]. Thus,
in this extension to octonionic-valued SVR, to derive the primal and dual optimization problems
the authors use the same methodology as the one used in [23]. The dual training problem obtained
is similar to that presented for quaternionic-valued SVR; however, in the case of octonions, their
nonassociativity feature had to be considered to this derivation. Therefore, the dual-training problem
considers an antiassociator operator affecting the Kernel matrix term of the dual problem, as well as a
substracting quadratic term involving the Lagrange multipliers and an “associated kernel function”
that computes a pondered e-summation of the kernel results and returns a real number. The same
happens with the training machine form between the quaternion and octonion-valued SVR, for this last
one, a term that it is included as a multiplier of the value of the associated kernel function is involved.
Therefore, although their proposals for derivations of quaternionic and octonionic-valued SVRs are
similar, the important difference in antiassociativity of octonions as regards the quaternions has to be
factored in to compute the dual training problem, as well as the forms of training machine. This differs
from the cases of the CSVM Section 2.1 and from the proposal presented in the next subsection, in
which the generic and invariant methodologies of derivation of the dual optimization problem are
shown independent of the algebra with which one works.

The paper [13] also shows three special cases of octonionic SVR in which the nonassociative
octonion-valued loss-function-related terms can be neglected to obtain a “full-analogy” (not identity)
between their proposals of real, complex, quaternion, and octonion SVR. These special cases were
called pseudoreal, pseudocomplex, and pseudoquaternion regressions. The authors analyzed the
features of a nonlinear function that maps data from the input space to the feature space (feature
map or kernel function), to describe the cases when the associated kernel function terms are equal
to zero, and the full analogy between their octonion-valued and quaternion-valued SVR proposal is
achieved. Nevertheless, in the general octonion-valued SVR case, the curse of dimensionality could
lead to computationally intractable problems depending on the number of input data, and therefore,
this could render it impractical in real applications. However, this was not the case in the experimental
results section.
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Experimental results demonstrate the performance of the octonionic SVR when applied to the
biomechanical study of human locomotion, i.e., gait analysis. In [28] a high correlation between inertial
measurement systems (IMUs: accelerometers and gyroscopes) during human locomotion is suggested.
However, due to the fact that the IMUs suffer from intrinsic drift error, there is a need to correct the
sensor measurements or systems calibration. One way to achieve this is to use an intelligent regression
to estimate the correct measurements of key events of the endpoint foot trajectory during human
treadmill walking. This was performed by octonionic SVR, C-SVR, LS-SVR, and M-SVR. The targets
of regression were expressed as pure octonions and, as the data sets contain a significant number of
outliers, the octonionic SVR and the C-SVR obtained the best overall error, and the first one shows
more consistency in obtaining better results.

2.2.5. Complex Support Vector Machines for Regression and Quaternary Classification

In [14] the derivation and design of a complex SVM for regression and classification are presented.
The authors use two main frameworks to develop their proposal: the widely linear mean square
estimation and Wirtinger’s calculus.

In [29] a mean square estimation (MSE) optimization methodology to deal with complex and
normal data is presented. The MSE for complex data is not linear as in the real case, but wide sense
linear: i.e., the regression of a scalar random variable y to be estimated is linear, both in terms of
a random vector x that is an observation of ¥ and regarding the complex conjugate of x, namely
x*. This optimization method shows advantages regarding the linear procedure when is used with
complex data, and it can yield significant improvements in the estimation performance as it was shown
in the examples presented in [29].

Wirtinger’s calculus was introduced in 1927 [30]. The Wirtigner derivatives (or Wirtinger
operators) are first-order partial differential operators defined by several complex variables.
These derivatives behave analogously to the ordinary derivatives of functions of real variables.

Thus, in the paper [14], the above frameworks were used in order to work with the SVMs in the
complex Reproducing Kernel Hilbert Space (RKHS). Three approaches were presented:

(1) The complexification of the Hilbert space H> = H x H: the objective is to enrich H? with a
complex inner product that is equivalent to the definition of the Clifford (or geometric) product of
two complex numbers in a Clifford algebra isomorphic to the complex space. Hence, this approach is
equivalent to work with this type of hypercomplex number in Clifford or GA algebras of Section 2.1.

(2) The Dual Real Channel (DRC) approach in which the training data are split into two sets (real
and imaginary parts of the input data), and a real regression (or classification) is performed on each
data set using a real kernel. It has been proven before that this approach and the complexification are
equivalent procedures [31]

(3) The pure complex SVM, in this paper is derived using Wirtinger’s calculus and widely linear
estimation in a very elegant and compact manner. This derivation allows the authors to conclude
that the proposed pure complex SVM can be solved by splitting the labels (desired outputs) of
data into their real and imaginary parts, and solving two real SVM tasks employing any one of
the standard algorithms (they employed SMO in their experiments). Hence, the difference between
practical implementations of complexification, DRC and pure complex SVMs is only that the first two
mentioned approaches use real kernels meanwhile the pure complex SVM approach uses an induced
real kernel (.

One of the main contributions of the paper is the validation of complex kernels to classify the
target space into four different categories. This is a very intuitive result, as for real valued kernels
the classification features two classes, and the complex kernel features a real and an imaginary part
K = Kr + jKi, so there are four possible combinations for the signs of Kr and Ki, hence yielding four
categories naturally.

The experiments were conducted using pure complex SVR and a complex-induced Gaussian
kernel (which is not equal to the real Gaussian RBF) for the function estimation of a sinc function,



Appl. Sci. 2019, 9, 3090 9 0f 20

channel identification, and channel equalization. In addition, a multiclass classification application
was demonstrated using the MNIST database of handwritten digits for a 4-classes problem where the
problem was solved significantly faster than the one-versus-three and the one-versus-one real SVM
strategies: the computational time taken by the pure complex SVM was almost half that of the real
SVMs, but the error rate increased.

3. Applications

Now that the main designs of the complex and hypercomplex extensions of SVMs have been
reviewed, some important applications of these extensions will be described briefly. Some of the
application approaches are limited to using the above section proposals in specific problem solving
cases, while others also present contributions (modifications) in the design of the algorithm and/or
the kernel that deals with complex and hypercomplex-valued input and /or output data.

3.1. Signal Processing

In [32] the applications of a multi-class SVM and a complex SVM sere presented [14] to classify
four types of human heartbeat using electrocardiogram signals (ECG) as the input data. The purpose
of this application was to aid in the diagnosis of arrhythmia. The complex kernel function presented
in [14] was used, and a preprocessing of the ECG beat signal employing a discrete Fourier Transform
(DFT) was performed. Accuracies between 86% and 94% were obtained. Additionally, a discussion of
the extension of input and output spaces of arbitrary dimensions using Clifford SVM [9] was presented.

The direction of arrival (DOA) estimation problem is a signal processing problem that deals with
the obtention of the direction from which a propagating wave arrives at a set of sensors (sensor array).
In [33] an approach to solve the DOA problem using a reformulation of one of the most used DOA
algorithms, the Minimum Variance Distortionless Response (MVDR) [34] combined with an SVM
extension that “can be viewed as a particular case of CSVM [9]” is presented to obtain the SVM-MVDR
algorithm. Then, a theoretical relationship (an equivalency) between the sample-based estimation of
the output power spectrum of each filter at a certain frequency (SBE) computed by the MVDR and the
SBE and estimated by the MUItiple Signal Classification (MUSIC) [35,36] is derived by analyzing the
high-resolution nonparametric spectrum estimation procedure MVDR. This equivalency is possible
when matrices corresponding to the signal space of the MVDR are dropped and the noise eigenvalues
are changed by ones. Thus, using the above relationship, an SVM-MUSIC is proposed to solve the
DOA estimation problem.

As the performance of the standard MUSIC and MVDR, and the SVM algorithms to solve DOA,
are reduced when they deal with coherent signals, the authors proposed the application of another
solution for the DOA problem, the spatial smoothing (SS) technique [37] to “provide algorithms with
coherent signal detection abilities”. SS divides the sensor array into subarrays, performs individual
algorithms in the subarrays, and then calculates the average of the estimated spectra. The experimental
results show that the SVM-MUSIC and SVM-MVDR combined with SS obtained the best recognition
results compared to their classic versions. The beamforming problem involves the estimation of
a signal from a given direction. It is usually defined as the most prominent technique to estimate
DOA. In [38], a proposal to solve beamforming by modification of the classic MVDR or Capon
beamformer [39,40] is presented, including a regularization term, the so-called e-insensitive loss
function that penalizes sidelobe levels and allows a certain error in the desired signal array response
direction. The result is a convex optimization problem with linear restrictions, which is equal to
the SVR problem. Although initially the SVR-MVDR problem was defined in the complex domain,
where inputs, outputs, and weights are complex-valued vectors and matrices, this formulation was
later transformed from complex to real domains by splitting the real and imaginary parts of the
desired beamformer output and, the transformed steering vectors, obtaining a split-definition for the
beamformer weights. The proposed method was shown to provide “suitable results” and to outperform
Capon and SpheRCB beamformers [40], especially in environments where the signal-to-noise ratio
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(SNR) is high, the number of available snapshots is limited, and the calculation of the signal covariance
matrix is a difficult task for classic approaches.

Ground penetrating radar (GPR) is a tool that uses radar pulses to image subsurfaces, and it
is a very useful sensor in the fields of defense, civil engineering, environment, agriculture, among
others. “In civil engineering, the information of the vertical structure of the stratified media can be
extracted from radar profiles using echo detection and amplitude estimation. Echo detection provides
the time delay estimation (TDE) associated with each interface (which provides important information
about the probed media structure), whereas amplitude estimation is used to retrieve the wave speed
within each layer [41].” In [41] a combined approach of SVR and forward-backward linear prediction
(FBLP) [42] is presented to solving it. The objective function of SVR as formulated in the complex
domain using Wirtinger’s calculus as it is done in [14]. The experimental results using overlapping
and nonoverlapping signals and limited snapshots show that FBLP-SVR outperforms standard FBLP
and forward linear prediction (FLP) [43]. Furthermore, FBLP-SVR requires only one snapshot to
function. Signals of the geo-positioning system (GPS) and multichannel human heart rate during a
very long cycling episode are analyzed in [44] to determine the specific biomedical features, obtain a
relation between the heart rate and slopes for downhill and uphill cycling, and the mean heart rate
evolution on flat segments. The signals are pre-processed using low-pass finite impulse response
(FIR) noise-filtering. In addition, uniform resampling, GPS, and Google maps region information
data are merged, and segments of signal patterns are selected to fulfill some criteria (altitude gradient
within given limits for uphill, downhill, or flat cycling). Then, the cross-covariance function and the
correlation coefficient between data segments are computed to select the data segments that have 95%
confidence related to the regression lines. Then a three-feature vector is made for each cycling segment
and a two-class classification is performed using NN, complex SVM of Bouboulis et al. [14], and the
k-nearest neighbor method, to distinguish between the mean altitude less than 1500 m and greater
than 1500 m. The experimental results show that a higher classification accuracy was achieved by NN
with sigmoidal transfer functions in the first layer and the probabilistic softmax transfer function in the
second layer. The output layer provides a probability for each class based on Bayes’ theorem. This is
an example of the application of a complex SVM with real-valued data. When the data is not naturally
embedded in complex or hypercomplex spaces, the advantages are usually not as great compared to
real-valued approaches, such as the NN of this case.

In Table 2, the applications mentioned in this subsection to solve signal processing problems are
presented in a compact manner.

Table 2. Applications of complex and hypercomplex SVMs for solving signal processing problems.

Ref./Year Application SVM Extension Used

Modification of MVDR and a
complex-valued SVM.

CSVM-MVDR [9], SVM-MUSIC,
SS-CSVM-MVDR and SS-SVM-MUSIC

[38]/2004 Beamforming problem

[33]/2012 DOA estimation problem

Classification of four types of
[32]/2016 human heartbeat using ECG signals  Multi-class complex-valued SVM [14]
as the input data

Determination of biomedical
features during cycling episodes

[441/2017 from GPS and multichannel human Complex-valued SVM [14]
heart rate signals
[41]/2018 Echo detection and amplitude Combined approach of a complex-valued

estimation of GPR signals SVR and FBLP
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3.2. Pattern Recognition and Classification

In 2016, a survey of advances in image analysis and multi-channel classification for terahertz
(THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was
provided in [45]. The extension of SVM to Clifford SVM [8,9] is analyzed as an image classification
method that uses the high-grade elements of the multivector (elements of grade > 0, i.e., elements
that are not the scalar element of the multivector) to describe the multi-channel image, as well as the
application of extreme learning machine (ELM).

In [46], the authors show the use of geometrical algebra in the most convenient way to deal with
pattern description for higher dimensional spaces. A GA-SVM was applied to classify substances
based on their THz spectra, and the results were compared with those obtained using a real-valued
SVM. Using the GA framework, it was proved that substances with different thicknesses have
coplanar multivectors, which allowed the authors to classify them. The method showed to be
dispersion-independent and improved the accuracy and robustness regarding the real-valued SVM.

A modification of the CSVM of [9] involving a multi-output support vector regression (MSVR)
model with geometric rotation invariance using GA was proposed in [47]. The main difference
between [9] and [47] is that in [9], the primal equation is considered one independent slack variable
for each input data multivector and for each multivector component (i.e., one slack variable for
each different-grade element of the multivector per each input multivector). This could lead to
treating each input sample unfairly, according to the authors of [47], although it is the CSVM key to
solving one optimization problem per different-grade element of each input multivector and using
the hypercomplex kernel to obtain the direct sum of the linear spaces to obtain multi-classification.
Conversely, in the proposal [47], one slack variable is defined for each input multivector data.
The experiments show an application of the MSVR to remove clouds in remote-sensing images.
A multi-output SVM was used to detect ground objects, thin clouds, and thick clouds. After the
detection, the SVM is combined with a support vector value contourlet transform (SVVCT) to
achieve multi-scale, multi-direction, and multi-resolution decomposition of remote sensing images.
The algorithm presented is effective in removing clouds, but very complex and proportional to the
number of decomposed subbands.

Tasks of pattern recognition using iris data and breast cancer data were performed in [48] and
respective recognition rates of 96% and 97.8% were obtained by an extension of a CSVM [9]. Object
recognition problems using synthetic and real-object data were solved in [9]. Each object was described
using a sequence of quaternions, and each quaternion contained the information of 3D key points of the
object surface, in such a way that the object shape is entirely represented by a sequence of quaternions.
A CSVM with a quaternion-valued Gaussian kernel was used to classify the objects. A six-class of
synthetic objects and another six real objects sensed by a stereo camera were recognized, obtaining
a minimum of 87.87% in recognition accuracy and a maximum of 96.15% for the synthetic objects in
test phase. Meanwhile, 60% as minimum recognition accuracy for real objects and 84% as maximum
recognition accuracy were obtained for test phase. In [14] two multiclass classification experiments
were conducted using the MNIST database of handwritten digits. In both experiments, the images
of each digit were preprocessed using a Fourier transform, and the 100 most significant complex
coefficients of each image were used as the input data. In the first experiment, the one-versus-all
real-valued SVM was compared with a quaternary complex SVM. The hypercomplex-valued SVM
approach outperformed the real one by obtaining an error rate of 3.46% vs. 3.79%. In the second
experiment, only the first four digits of the MNIST database were used as it was shown that a complex
pair of hyperplanes separate the space of complex numbers into four parts. Thus, the four-class
problem is naturally solved in a complex space. A quaternary complex SVM was compared with a
one-versus-three real-valued SVM. The error rate for the complex SVM was a little higher (0.866%)
than the one obtained with the real-valued SVM (0.721%). “However, the one-versus-three SVM task
required about double the time for training, compared to the complexified quaternary SVM.” This is
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because the real-valued approach solves four optimization problems, while the complex-valued solves
two distinct SVM tasks. See Section 2.2.5.

In Table 3, the applications mentioned in this subsection to solve pattern recognition problems are
presented in a compact manner.

Table 3. Applications of complex and hypercomplex SVMs for solving pattern recognition problems.

Ref./Year Application SVM Extension Used

Object recognition problems using

[91/2010 synthetic and real-object data

CSVM of [9]

Pattern recognition using iris data

[48]/2013 and breast cancer data

Extension of a CSVM [9]

Modification of the CSVM of [9] involving a
multi-output support vector regression combined
with a support vector value contourlet transform

Object recognition and remotion of

[47]/2014 clouds in remote-sensing images

Multiclass classification experiments
[14]/2015 using the MNIST database of Complex-valued SVM [14]
handwritten digits.

Survey of advances in multi-channel
[45]/2016 classification for THz pulse imaging Clifford SVM [8,9]
and dynamic contrast-enhanced MRI

Classification of substances based on
[461/2016 their THz spectra GA-SVM

3.3. Time-Series Prediction and Function Approximation

In [23] (Section 2.2.3), using complex-valued SVR called e-complex SVR, a function approximation
experiment was conducted in which the Laplacian and Gaussian noises were added to a complex
function. In the presence of the Laplacian noise, the C-SVR of Bayro et al. [7,8] performed better
than the e-SVR, the LS-SVR, and the M-SVR. Meanwhile, a function added with the Gaussian noise
was better-approximated by the e-SVR. In addition, in [23], a chaotic time-series prediction task
was solved. With the Lorenz attractor [49] data, the authors derived an eight-step predictor with a
e-quaternion-valued SVR, and the rotationally invariant loss function defined by their approach allows
the production of better models compared to those obtained using the C-SVR.

It is important to note that the solution to the set of equations that models the Lorenz attractor has
several applications in physical systems that show chaotic behavior; thus predicting and identifying
chaotic systems using complex- and hypercomplex-valued SVRs is a promising application that could
lead to obtaining better accuracies than approaches that use real-valued regressors or predictors.

Two experiments in time-series prediction using a recurrent CSVM was presented in [9].
The authors designed a recurrent prediction system that consisted of a long short-term memory
(LSTM) [20] neural network connected to a CSVM. The LSTM module solves the problem of identifying
temporal dependencies between input and output data; meanwhile, the CSVM provides precision
to the prediction system by optimizing the learning of the data mapping. For this, the water levels
in the Venice Lagoon during the periods from 1980 to 1989 and 1990 to 1995 were used as the input
data. Four-hundred records were used for training and 600 to be predicted by the LSTM-CSVM, the
minimum training error was 0.0019. In the second forecasting experiment, the Mackey-Glass time
series data was used and the LSTM-CSVM achieved the lower error compared to error of Echo-state
networks [50], Evolino [51,52] and LSTM.

In addition, in [9], a case of multiple function approximation was solved using a CSVM. Two
different functions involving sin() and cos() were interpolated at the same time, with a two output
CSVM in which 50 points of each function were used to train the CSVM and experiments interpolating
100 and 400 points were performed, obtaining highly accurate values.
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In [14], a complex-valued function such as sinc() was approximated using a real CSVR and a
DRC-SVR (see Section 2.2.5). The results obtained shows that the DRC-SVR “fails to capture the
complex structure of the function”, and, on the other hand, the CSVR estimates the function with a
mean MSE that is equivalent to —15.75 dB, vs. —10.42 dB of the DRC-SVR.

In Table 4, the applications mentioned in this subsection for solving time-series prediction and
function approximation problems are presented in a compact manner.

Table 4. Applications of complex and hypercomplex SVMs for time-series prediction and function
approximation problems.

Ref./Year  Application SVM Extension Used

Complex function approximation with
[23]/2010 Laplacian and Gaussian noises and chaotic
time-series prediction

€-SVR of [23] and complex valued
SVR of [7,8]

Time-series prediction using Venice Lagoon = Combined recurrent system of

9172010 and Mackey-Glass datasets LSTM-CSVM

Complex function approximation sinc()

[91/2010 and cosc()

CSVM

[14]/2015 Complex function approximation of sinc() ~ Complex-valued SVM [14]

3.4. Frequency Domain Processing, Linear and Nonlinear Filtering

For solving handwritten character recognition using the fast Fourier transform (FFT) coefficients
of data from MNIST, fashion MNIST, extended MNIST and Latin OCR benchmark databases a
complex-valued neural network with kernel activation functions (KAFs) was presented in [53].
Even though this approach is applied to neural networks instead of SVMs, it is included in this
survey to represent one of the proposals to solve one of the main issues of complex or hypercomplex
SVMs. It is the design of kernels that process this type of data, and that could be used with all the
SVM extensions of the Section 2. Thus, in [53] the ideas of [54-56] are combined to design a widely
linear kernel activation function model (WL-KAF). The WL-KAF allows the NN to learn the shape
of a non-parametric kernel activation function defined in the complex domain by modeling each
activation function “with a small number of complex-valued adaptable parameters, representing the
linear coefficients in a kernel-based expansion”, and by using widely linear framework; the model
was extended to widely linear kernels with more expressiveness than the classic KAF [54]. This is
due to the fact that the classic KAF loses two outputs from the complex kernel by forcing the real
and imaginary constraints to be equal, and the cross terms are equal with the scale factor of —1 .
The WL-KAF approach applied for solving the frequency domain representation of the handwritten
characters achieved better accuracy than the real-valued NN.

Nonlinear channel equalization (NCE) applications using the kernel ridge regression (KRR) with
quaternion kernels are shown in [57]. The transmission channel was modeled as a linear filter with a
memory-less nonlinearity stage corrupted by noise. Then, a Gaussian quaternion-valued kernel was
designed and used in KRR to identify one original message among the noisy measurements. The signals
were described as quaternions and, in the comparison analysis performed the quaternion-valued kernel
outperformed the real-valued, obtained better accuracy thanks to its ability to capture data geometric
and topologic relationships.

In [11,14,23] the linear and nonlinear channel equalization, channel identification and filtering
problems were tackled. See Sections 2.2.1, 2.2.2 and 2.2.5.

In [12], the authors consider an application for solving the equalization of a 4-symbol quadrature
amplitude modulated (4-QAM) signal over a complex linear communication channel that was added
with Gaussian noise, Section 2.2.2.

The frequency estimation problem was solved in [58,59], where a complex-valued support vector
autoregressive technique was used. In [59], the autoregressive moving average (ARMA) system
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identification and non-parametric spectral analysis were formulated using a framework that allows
the authors to identify the Hilbert signal space in the model, define a robust cost function, and
minimize a constrained and regularized SVM-like functional with Lagrange multipliers method. Then,
a generalized formulation of SVM for dealing with linear signal processing problems was established.

In Table 5, the applications mentioned in this subsection for solving frequency domain processing,
and linear and nonlinear filtering problems are presented in a compact manner.

Table 5. Applications of complex and hypercomplex SVMs for frequency domain processing, linear
and nonlinear filtering problems.

Ref./Year Application SVM Extension Used
[59]1/2005 and L Complex-valued support vector
[58]/2011 Frequency estimation problem autoregressive technique
[111/2004, Linear and nonlinear channel equalization
[23]/2010 and . e ¢ eq ! Complex valued SVMs of [11,14,23]
[14]/2015 channel identification and filtering problems
Equalization of a 4-symbol qudrature
[12]/2007 amphtude? modulated (4.—QA.M) signal over a Complex valued SVMs
complex linear communication channel that
was added with Gaussian noise
[571/2014 Nonlinear channel equalization Kernel rlldge regression with
quaternion kernels
Handwritten character recognition using the
[53]/2019 fast Fourier transform (FFT) coefficients of Complex-valued neural network

data from MNIST, fashion MNIST, extended with kernel activation functions
MNIST and Latin OCR benchmark databases

3.5. Robotics, Computer Vision

An approach to predict 3D rotation and 3D transformations using computer vision data is
presented in [8]. Using a multivector-valued SVM and the GA framework [16,17] the authors solve
the problem of rigid motion estimation that is necessary for a robot gripper to move along a 3D curve.
With the 3D target position computed from the images of a stereo camera system, the SMVM estimates
the motion of the gripper as a sequence of multivectors of the motor algebra G; 0,1- For the problem of
3D pose estimation, a trinocular camera, a triangulation algorithm, and the Hough transform were
used to obtain relevant 3D points of an image, from which the 3D lines and their intersection points
were computed using a regression to correct the distorted 3D points and to avoid the problem of
occluded objects. Once the points, lines, and planes to describe object shapes as multivectors of the
motor algebra are represented, they are used to train an SMVM that returns the multivector pose of
the described object as two points lying on a 3D line, which were used as reference points on which
the robot gripper has to position itself in order to hold the object.

Another proposal for predicting 3D transformations is presented in [60]; they used a technique
that approximates the error metric for the blending of unit dual quaternions. The authors used the GA
framework to represent the 3D rigid transformation as a unit dual quaternion as in [61]. Then, with
observations that are pairs of joint angles and rigid transformations of the fingertip relative to its root,
regressors were constructed to predict the position and orientation of a fingertip with two rotational
joints without any knowledge of its kinematic model. The authors also proved the effectiveness of
their method in predicting the elastic deformation markers positions on a balloon as it is squashed,
constructing the regressors of 3D rigid transformations of the marker and using those regressors as the
3D shape of the balloon. The regressors used were DQ regression, SVR, and ridge regression.

In [57], KRR was used to simulate 3D inertial body sensor data. This is usually used in robotics
to teach humanoid robots motion and movement. The paper explores “the existence and uniqueness
conditions of quaternion reproducing kernel Hilbert spaces (QRKHS)” to aid in the designing of the
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quaternion-valued kernels that are needed in hypercomplex SVMs and SVRs. Examples of quaternion
valued-kernels were designed: the quaternion cubic kernel and the quaternion-valued Gaussian kernel.
The first kernel mentioned was used in KRR to perform a one-step-ahead prediction of the limb
trajectory in Tai Chi sequences, and a comparison of the results between the KRRs was performed
using real, vector, and quaternion cubic kernels. The quaternion-valued kernels were shown to obtain
lower mean squared errors than their real-valued counterparts. The authors argue that it was done
because the hypercomplex-valued kernels “capture the inherent data relationships in a more accurate
and physically-meaningful way, while being robust to overfitting”.

The real- and quaternion-valued Gaussian kernels were used in KRR to perform channel
equalization. See Section 3.4.

Even when an SVR was not used in the above two applications, quaternion-valued kernels
were designed and proved in real applications and their advantages over real-valued kernels were
demonstrated. The advantages of using quaternion-valued kernels could be extended when SVR is
used instead of KRR.

Another technique that can be used to teach robots human movement and motion is the one
presented in [13] and revised in Section 2.2.4. Here, an octonionic SVR was applied to the biomechanical
study of human locomotion, called the gait analysis. The objective for the regressor was to estimate
correct measurements of key events of the endpoint foot trajectory during human treadmill walking.
The task was achieved with high accuracy.

All the above proposals to predict 3D transformations could be used in robotics, computer
vision and computer graphics to model motion and 3D shapes, simulation of the interaction between
robots and their environment, predictive control, and structure from motion, among others. The robot
path-planning problem was addressed in [9]. This problem was solved using an LSTM-CSVM recurrent
system and training the LSTM module with reinforcement learning (RL). A labyrinth environment
was modeled as an occupation grid. Each observation of the navigator robot was described using a
quaternion, where each element of the quaternion indicates if one robot sensor reads 0, and if the next
cell of the grid was free or 1 if it was occupied by an obstacle. A cross-neighborhood, as regards the
actual position of the robot on the grid, was used; thus, four inputs of one quaternion were used to
describe an observation (forward, backward, left, and right), and two positions of a second quaternion
were used for determining the 2D coordinates of the position of the robot on the plane. The four
outputs were packed in a quaternion, and they represented the action that the robot has to perform
in the actual state to get the maze output (go forward, backward, left, or right). In order for the
path-planning system to be used, firstly, this had to be trained using some mazes, and then proven
with never-before-seen mazes. Therefore, once the path is computed, the robot can follow it in real
time. Here, the hypercomplex inputs and outputs were used to get a MIMO SVM that reads two
quaternions and returns one. See Section 2.1.

In Table 6, the applications mentioned in this subsection for solving robotics and computer vision
problems are presented in a compact manner.

Table 6. Applications of complex and hypercomplex SVMs for robotics and computer vision problems.

Ref./Year Application SVM Extension Used

Prediction of 3D rotation and 3D
[8]/2001  transformations using computer ~ Multivector-valued SVM and the GA framework
vision data

[9]1/2010  Robot path-planning Combined recurrent system of LSTM-CSVM

Study of human locomotion (the

[13]/2012 gait analysis)

Complex valued SVR

Simulation of 3D inertial body

[571/2014 sensor data

KRR using quaternion-valued kernels

DQ regression, SVR and ridge regression to approximate

(60172017 Prediction of 3D transformations the error metric for the blending of unit dual quaternions




Appl. Sci. 2019, 9, 3090 16 of 20

4. Conclusions and Prospective Work

In this survey, several proposals were reviewed to extend the Support Vector Machine algorithm
to deal with complex and hypercomplex-valued inputs, outputs, and kernels. The first attempts to
achieve this consisted of splitting the complex and hypercomplex numbers into real and complex
(hypercomplex) parts, and then solving the optimization problems independently in the real domain.
Then, it was proven that this approach loses the benefits of the complex (hypercomplex) spaces, such as
sparsity and geometric and topologic features that the vectors (multivectors) have when are embedded
in their spaces. All the proposals that exploit these features by solving the SVM optimization problem
in its complex (hypercomplex) space were proven to achieve higher accuracies than those that solve
the problem using splitting procedures.

The most complete and general extensions of SVMs, that deal with complex/hypercomplex-valued
data are those that, besides considering input and output data that is complex/hypercomplex
valued, define the optimization problem (primal and dual problems) and the kernel using
complex and hypercomplex algebras and calculus frameworks, such as Clifford and GA, widely
linear analysis and Wirtinger?s calculus; although it was also proved [14] that the design of a
complex/hypercomplex-valued kernel that maps the input data onto a complex/hypercomplex RKHS
is the key to obtaining the benefits of solving the problem in these spaces, such as the preservation of
the geometric and topological special features of these spaces.

Therefore, for dealing with data that is naturally embedded in complex (hypercomplex) spaces
the approaches that were presented in the Section 2 of this paper are the best choices to obtain higher
accuracies and lower run time in problems of classification and regression.

Another important conclusion is about the compatibility of the complex numbers and their
frameworks with the wave nature due to the waves have intensity and phase, so two numbers are
needed to describe it.

In the applications section, it is shown that the extensions of SVM that were designed using
complex and hypercomplex mathematical tools can solve efficiently and effectively real-world
problems that involve the processing and classification, interpolation, or regression of complex
signals, frequency domain data, ECG signals, MRI data, chaotic time series, complex/hypercomplex
forecasting, approximation of complex/multiple functions, complex beamforming and DOA, GPR and
GPS data, linear and nonlinear complex filtering, pattern recognition, robotics, and computer vision,
among others.

Regarding the prospective of complex/hypercomplex extensions and applications of SVMs, one
promising development is wave informatics because, as it was said before, the natural compatibility
between complex numbers and waves. The applications are important and numerous as they can be
seen in Section 3.

Another area of opportunity for researching is the processing, classification, regression, prediction,
identification, and simulation of chaotic systems. All the deterministic aperiodic system that is sensitive
to the initial conditions is called a chaotic system. Their study is very important as some chaotic
systems examples are the weather, some electrocardiograms, and encephalograms time series, the
stock market time series, and fractals, among others. These systems are also naturally modeled using
complex-valued functions, and therefore, the extensions of complex-valued SVMs are the best-suited
to process them.

As was mentioned, perhaps the most general extension of complex/hypercomplex valued SVMs
is the one presented in [9]. Here, the use of GA framework allowed the authors to define an SVM
problem that processes complex/hypercomplex-valued inputs, outputs, and kernels. Nevertheless, the
design of complex/hypercomplex kernels remains a main open issue to explore the extensions of SVM
to higher-dimensional hypercomplex spaces (more than quaternions, dual quaternions, or octonions).
Thus, exploring the definition of high-dimensional Clifford and/or GA to design hypercomplex
kernels, and to exploit the benefits of the sparsity of these vector spaces and their power of geometric
expressiveness is a promising research area. Even in hypercomplex high-dimensional Clifford and/or
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GA, the design of kernels may not be necessary because the sparsity could make it possible to obtain
linear functions to correctly separate the input data, reducing the complexity of the SVM algorithm in
both training and testing stages.

This exploration of higher-dimensional hypercomplex GA could benefit the application of
hypercomplex SVMs to simulate another main issue of chaos theory: the geometry of fractals and
even the identification, modeling and control of chaotic dynamic systems. The geometry of fractals is
defined as the geometry of nature, chaos, and order. The geometric shape of fractals describes sinuous
curves, spirals, and filaments that twist about themselves, giving elaborate figures whose details are
lost in infinity. Therefore, using very higher-dimensional GA, fractals could be described as nonlinear
combinations of the highly complex geometric entities that can be defined in that higher-dimension
GA as multivectors, and a hypercomplex-valued SVM could approximate those multivectors. Now, the
problem of exploring these GA seems to be a computationally expensive and complex task, but the
emergence of another new area of research could make it possible: quantum computing.

Quantum computing stands as another prospective area of research and application of
complex and hypercomplex-valued SVM and as an opportunity to develop any type of
complex/hypercomplex-valued machine learning techniques [62-67]. Quantum computing is a new
computational paradigm that uses the quantum theory to develop computer technology. In this
computing technology, the quantum system qubit is used instead of the classic computational
paradigm’s bit. Quantum systems are those that exhibit both particle and wave-like behavior. Therefore,
modeling this dual behavior using complex numbers would seem to be natural, wherein the real part
could be used to represent particle behavior and the imaginary part to describe wave phase that gives
rise to the interference patterns. Quantum computing has made it possible to solve some problems
that cannot be solved using classic computing, such as the factoring of integers and discrete logarithm
computation. In this paper, it has been shown that when data of a problem fits well with the wave
nature of complex (hypercomplex) numbers, it is better to use an algorithm that works in the vector
space in which the fitted data is defined in order to take advantage of their geometric relationships
and distributions. Hence, the reviewed extensions of SVMs are suited to deal with the basic unit of
quantum information, the qubit.

In Figure 1 several prospective and promising works to continue developing theory and
applications of complex and hypercomplex SVMs are illustrated.

Complex/hypercomplex

_|_| signal classification

Waveinformatics ——+ DOA

Complex/hypercomplex
signal classification

Prospective
works of
complex and

hype rco m p l ex Linear classification
SVM extensions L o

High-dimensional GA-SVM Designof complex/hypercomplex

kernels
_I'-—-O Appraximationof geometry of

fractals

| Multi Classification ‘
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Figure 1. Prospective works of complex and hypercomplex SVM extensions.

Funding: This research was funded by CONACYT México grants numbers CB256769, CB258068 and PN-4107.

Conflicts of Interest: The author declares no conflict of interest.



Appl. Sci. 2019, 9, 3090 18 of 20

References

1 Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

2. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995.

3.  Barlett, PL. The sample complexity of pattern classification with neural networks: The size of the weights is
more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44, 525-536. [CrossRef]

4. Shawe-Taylor, J.; Bartlett, P.L.; Williamson, R.C.; Anthony, M. Structural Risk Minimization over
Data-dependent Hierarchies. IEEE Trans. Inf. Theor. 1998, 44, 1926-1940, doi:10.1109/18.705570. [CrossRef]

5. Shawe-Taylor, J.; Cristianini, N. Margin distribution and soft margin. In Advances in Large Margin Classifiers;
Smola, AJ., Ed.; The MIT Press: Cambridge, MA, USA, 2000; pp. 349-358.

6.  Top 100 SVM Publications. Available online: http://http://www.svms.org/top100.html (accessed on
30 March 2019).

7. BayroCorrochano, E.; Vallejo, R. Geometric neural networks and support multivector machines. In Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IEEE IJCNN 2000), Como, Italy,
27 July 2000; pp. 389-394.

8.  Bayro-Corrochano, E.; Vallejo, R. SVMs using geometric algebra for 3D computer vision. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN’01), Washington, DC, USA, 15-19 July 2001;
Proceedings (Cat. No.01CH37222); Volume 2, pp. 872-877, doi:10.1109/IJCNN.2001.939474. [CrossRef]

9.  BayroCorrochano, E.J.; AranaDaniel, N. Clifford Support Vector Machines for Classification, Regression,
and Recurrence. IEEE Trans. Neural Netw. 2010, 21, 1731-1746, doi:10.1109/TNN.2010.2060352. [CrossRef]
[PubMed]

10. PérezCruz, F; Camps, G.; Soria, E.; Pérez, |.; FigueirasVidal, A.R.; ArtésRodriguez, A. Multidimensional
function approximation and regression estimation. In International Conference on Artificial Neural Networks;
Springer: Berlin/Heidelberg, Germany, 2002.

11. SanchezFernandez, M.; de PradoCumplido, M.; ArenasGarcia, J.; PerezCruz, F. SVM multiregression for
nonlinear channel estimation in multipleinput multipleoutput systems. IEEE Trans. Signal Process. 2004,
52,2298-2307. [CrossRef]

12.  Shilton, A,; Lai, D. Quaternionic and complexvalued support vector regression for equalization and function
approximation. In Proceedings of the International Joint Conference on Neural Networks [JCNN 2007,
Orlando, FL, USA, 12-17 August 2007; pp. 920-925.

13.  Shilton, A ; Lai, D.; Santhiranayagam, B.; Palaniswami, M. A note on octonionic support vector regression.
IEEE Trans. Syst. Man Cybern. 2012, 42, 950-955. [CrossRef] [PubMed]

14. Bouboulis, P; Theodoridis, S.; Mavroforakis, C.; Evaggelatou-Dalla, L. Complex Support Vector Machines
for Regression and Quaternary Classification. I[EEE Trans. Neural Netw. Learn. Syst. 2015, 26, 12601274,
doi:10.1109/TNNLS.2014.2336679. [CrossRef]

15. Loépez-Gonzélez, G.; Arana-Daniel, N.; Bayro-Corrochano, E. Quaternion support vector classifier. Intell.
Data Anal. 2016, 20, doi:10.3233 /TDA-160849. [CrossRef]

16. Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics;
Springer Science and Business Media: Berlin, Germany, 2012; Volume 5.

17.  Perwass, C. Geometric Algebra with Applications in Engineering; Springer: Berlin/Heidelberg, Germany, 2009.

18.  Goto, E. The Parametron—A New Circuit Element which Uses Non-Linear Reactors; Paper of Technical Group of
Electronic Computers and Nonlinear Theory; IECE, 1954. (In Japanese)

19. Goto, E. On the application of parametrically excited non-linear resonators. J. Inst. Electr. Commun. Eng. Jpn. IECE
1955, 38, 2761. (In Japanese)

20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory.  Neural Comput. 1997, 9, 1735-1780,
d0i:10.1162/nec0.1997.9.8.1735. [CrossRef]

21. Loépez-Gonzalez, G.; Arana-Daniel, N.; Bayro-Corrochano, E. Parallel Clifford Support Vector Machines
Using the Gaussian Kernel. Adv. Appl. Clifford Algebras 2016, doi:10.1007 /s00006-016-0726-2. [CrossRef]

22. Dempe, S. Foundations of Bilevel Programming; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002.

23. Shilton, A.; Lai, D.; Palaniswami, M. A division algebraic framework for multidimensional support vector
regression. IEEE Trans. Syst. Man Cybern. 2010, 40, 517-528. [CrossRef] [PubMed]

24. Suykens, J.A.K,; Gestel, T.V,; Brabanter, ].D.; Moor, B.D.; Vandewalle, J. Least Squares Support Vector Machines;

World Scientific: Singapore, 2002.


http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/18.661502
https://doi.org/10.1109/18.705570
http://dx.doi.org/10.1109/18.705570
http://http://www.svms.org/top100.html
https://doi.org/10.1109/IJCNN.2001.939474
http://dx.doi.org/10.1109/IJCNN.2001.939474
https://doi.org/10.1109/TNN.2010.2060352
http://dx.doi.org/10.1109/TNN.2010.2060352
http://www.ncbi.nlm.nih.gov/pubmed/20876017
http://dx.doi.org/10.1109/TSP.2004.831028
http://dx.doi.org/10.1109/TSMCB.2011.2170564
http://www.ncbi.nlm.nih.gov/pubmed/22106150
https://doi.org/10.1109/TNNLS.2014.2336679
http://dx.doi.org/10.1109/TNNLS.2014.2336679
https://doi.org/DOI:10.3233/IDA-160849
http://dx.doi.org/10.3233/IDA-160849
https://doi.org/http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s00006-016-0726-2
http://dx.doi.org/10.1007/s00006-016-0726-2
http://dx.doi.org/10.1109/TSMCB.2009.2028314
http://www.ncbi.nlm.nih.gov/pubmed/19737676

Appl. Sci. 2019, 9, 3090 19 0f 20

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Huang, G.B.; Zhu, Q.Y,; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489-501. [CrossRef]

Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879-892. [CrossRef] [PubMed]
Weston, J.; Chapelle, O.; Elisseeff, A.; Vapnik, V. Kernel Dependency Estimation; Technical Report 098;
Max Planck Institute for Biological Cybernetics: Tiibingen, Germany, 2002.

Santhiranayagam, B.K.; Lai, D.T.H.; Begg, R.K.; Palaniswami, M. Correlations between end point foot
trajectories and inertial sensor data. In Proceedings of the 2010 Sixth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing, Brisbane, Australia, 7-10 December 2010; pp. 315-320.
Picinbono, B.; Chevalier, P. Widely linear estimation with complex data. IEEE Trans. Signal Process. 1995,
43,2030-2033, doi:10.1109/78.403373. [CrossRef]

Kracht, M.; Kreyszig, E. Methods of Complex Analysis in Partial Differential Equations and Applications; John
Wiley and Sons: New York, NY, USA, 1988.

Bouboulis, P.; Theodoridis, S. Extension of Wirtinger’s calculus to reproducing kernel Hilbert spaces and the
complex kernel LMS. IEEE Trans. Signal Process. 2011, 59, 964-978. [CrossRef]

Jannah, N.; Hadjiloucas, S. Detection of ECG arrhythmia conditions using CSVM and MSVM classifiers.
In Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia,
PA, USA, 12 December 2015; pp. 1-2, d0i:10.1109/SPMB.2015.7405453. [CrossRef]

El Gonnouni, A.; Martinez-Ramon, M.; Rojo-Alvarez, J.L.; Camps-Valls, G.; Figueiras-Vidal, A.R,;
Christodoulou, C.G. A Support Vector Machine MUSIC Algorithm. IEEE Trans. Antennas Propag. 2012,
60, 4901-4910, doi:10.1109/TAP.2012.2209195. [CrossRef]

Bienvenu, G.; Kopp, L. Optimality of high resolution array processing using the eigensystem approach.
IEEE Trans. Acoust. Speech Signal Process. 1983, 31, 1235-1248, d0i:10.1109/TASSP.1983.1164185. [CrossRef]
Schmidt, R.O. Multiple emitter location and signal parameter estimation. In Proceedings of the RADC
Spectral Estimation Workshop, Griffiss AFB, NY, USA, 3-5 October 1979; pp. 243-258.

Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986,
34,276-280, doi:10.1109/TAP.1986.1143830. [CrossRef]

Shan, T.-].; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals.
IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 806811, do0i:10.1109/TASSP.1985.1164649. [CrossRef]
Gaudes, C.C,; Via, J.; Santamaria, I. Robust array beamforming with sidelobe control using support
vector machines. In Proceedings of the IEEE 5th Workshop on Signal Processing Advances in Wireless
Communications, Lisboa, Portugal, 11-14 July 2004; pp. 258-262, do0i:10.1109/SPAWC.2004.1439244.
[CrossRef]

Trees, H.L.V. Detection Estimation and Modulation Theory, Part, Part IV, Optimum Array Processing; John Wiley
and Sons, Inc.: Hoboken, NJ, USA, 2001.

Li, J.; Stoica, P.; Wang, Z. On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Process.
2003, 51, 1702-1715, doi:10.1109/TSP.2003.812831. [CrossRef]

Pan, J.; Le Bastard, C.; Wang, Y.; Sun, M. Time-Delay Estimation Using Ground-Penetrating Radar With
a Support Vector Regression-Based Linear Prediction Method. IEEE Trans. Geosci. Remote Sens. 2018,
56, 2833-2840, doi:10.1109/TGRS.2017.2784567. [CrossRef]

Chen, Y.H.; Chiang, C.-T. Kalman-based spatial domain forward-backward linear predictor for DOA
estimation. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 474-479, d0i:10.1109/7.366330. [CrossRef]

Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002.

Prochazka, A.; Vaseghi, S.; Charvatova, H,; Tupa, O.; Vysata, O. Cycling Segments Multimodal Analysis and
Classification Using Neural Networks. Appl. Sci. 2017, 7, 581, doi:10.3390/app7060581. [CrossRef]

Yin, X.X.; Zhang, Y.; Cao, J.; Wu, ].L.; Hadjiloucas, S. Exploring the complementarity of THz pulse imaging
and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework. Comput.
Methods Programs Biomed. 2016, 137, 87-114, d0i:10.1016/j.cmpb.2016.08.026. [CrossRef] [PubMed]

Zhou, S.; Valchev, D.G.; Dinovitser, A.; Chappell, ].M.; Igbal, A.; Ng, BW.; Kee, T.W.; Abbott, D. Terahertz
Signal Classification Based on Geometric Algebra. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 793-802,
doi:10.1109/TTHZ.2016.2610759. [CrossRef]

Hu, G.; Sun, X,; Liang, D.; Sun, Y. Cloud removal of remote sensing image based on multi-output support
vector regression. J. Syst. Eng. Electron. 2014, 25, 1082-1088, d0i:10.1109/]JSEE.2014.00124. [CrossRef]


http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/TNN.2006.875977
http://www.ncbi.nlm.nih.gov/pubmed/16856652
https://doi.org/10.1109/78.403373
http://dx.doi.org/10.1109/78.403373
http://dx.doi.org/10.1109/TSP.2010.2096420
https://doi.org/10.1109/SPMB.2015.7405453
http://dx.doi.org/10.1109/SPMB.2015.7405453
https://doi.org/10.1109/TAP.2012.2209195
http://dx.doi.org/10.1109/TAP.2012.2209195
https://doi.org/10.1109/TASSP.1983.1164185
http://dx.doi.org/10.1109/TASSP.1983.1164185
https://doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1109/TASSP.1985.1164649
http://dx.doi.org/10.1109/TASSP.1985.1164649
https://doi.org/10.1109/SPAWC.2004.1439244
http://dx.doi.org/10.1109/SPAWC.2004.1439244
https://doi.org/10.1109/TSP.2003.812831
http://dx.doi.org/10.1109/TSP.2003.812831
https://doi.org/10.1109/TGRS.2017.2784567
http://dx.doi.org/10.1109/TGRS.2017.2784567
https://doi.org/10.1109/7.366330
http://dx.doi.org/10.1109/7.366330
https://doi.org/10.3390/app7060581
http://dx.doi.org/10.3390/app7060581
https://doi.org/https://doi.org/10.1016/j.cmpb.2016.08.026
http://dx.doi.org/10.1016/j.cmpb.2016.08.026
http://www.ncbi.nlm.nih.gov/pubmed/28110743
https://doi.org/10.1109/TTHZ.2016.2610759
http://dx.doi.org/10.1109/TTHZ.2016.2610759
https://doi.org/10.1109/JSEE.2014.00124
http://dx.doi.org/10.1109/JSEE.2014.00124

Appl. Sci. 2019, 9, 3090 20 of 20

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

Wang, J.; Zhang, C.; Lu, H.; Hong, W. Geometric algebra support vector machine for pattern recognition.
ICIC Express Lett. 2013, 7, 1031-1035.

Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130-141. [CrossRef]

Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication. Science 2004, 304, 78-80. [CrossRef]

Schmidhuber, J.; Wierstra, D.; Gomez, EJ. Evolino: Hybrid neuroevolution optimal linear search for
sequence prediction. In Proceedings of the 19th International Joint Conference on Artificial Intelligence
IJCAI, Edinburgh, UK, 30 July-5 August 2005.

Schmidhuber, J.; Gagliolo, M.; Wierstra, D.; Gomez, F. Evolino for Recurrent Support Vector Machines. arXiv
2005, arXiv:cs/0512062.

Scardapane, S.; Vaerenbergh, S.V.; Comminiello, D.; Uncini, A. Widely Linear Kernels for Complex-Valued
Kernel Activation Functions. In Procceedings of the 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2019), Brighton, UK, 12-17 May 2019.

Scardapane, S.; Vaerenbergh, S.V,; Hussain, A.; Uncini, A. Complex-valued neural networks with
nonparametric activation functions. IEEE Trans. Emerg. Top. Comput. Intell. 2018. [CrossRef]

Scardapane, S.; Vaerenbergh, S.V.; Totaro, S.; Uncini, A. Kafnets: Kernel-based non-parametric activation
functions for neural networks. Neural Netw. 2019, 110, 19-32, d0i:10.1016/j.neunet.2018.11.002. [CrossRef]
[PubMed]

Boloix-Tortosa, R.; Murillo-Fuentes, ]J.J.; Santos, I.; Pérez-Cruz, F. Widely Linear Complex-Valued Kernel
Methods for Regression. IEEE Trans. Signal Process. 2017, 65, 5240-5248, do0i:10.1109/TSP.2017.2726991.
[CrossRef]

Tobar, FA.; Mandic, D.P. Quaternion Reproducing Kernel Hilbert Spaces: Existence and Uniqueness
Conditions. IEEE Trans. Inf. Theory 2014, 60, 5736-5749, doi:10.1109/TIT.2014.2333734. [CrossRef]

Xu, N. Applications of Support Vector Machines in Electromagnetic Problems. Ph.D. Thesis, The University
of New Mexico, Albuquerque, NM, USA, 2011.

Rojo—Alvarez, J.; Camps-Valls, G.; Martinez-Ramoén, M.; Soria-Olivas, E.; Navia-Vazquez, A.; Figueiras-Vidal,
A. Support vector machines framework for linear signal processing. Signal Process. 2005, 85, 2316-2326,
doi:10.1016/j.sigpro.2004.12.015. [CrossRef]

Funatomi, T.; liyama, M.; Kakusho, K.; Minoh, M. Regression of 3D rigid transformations on real-valued
vectors in closed form. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation
(ICRA), Singapore, 29 May-3 June 2017; pp. 6412-6419, doi:10.1109/ICRA.2017.7989757. [CrossRef]
Kavan, L.; Collins, S.; Zara, J.; O’Sullivan, C. Geometric Skinning with Approximate Dual Quaternion
Blending. ACM Trans. Graph. 2008, 27, 105:1-105:23, d0i:10.1145/1409625.1409627. [CrossRef]

Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed.;
Cambridge University Press: New York, NY, USA, 2011.

Rieffel, E.; Polak, W. Quantum Computing: A Gentle Introduction, 1st ed.; The MIT Press: Cambridge, MA,
USA, 2011.

Yanofsky, N.S. An Introduction to Quantum Computing. arXiv 2007, arXiv:0708.0261.

Gupta, S.; Mohanta, S.; Chakraborty, M.; Ghosh, S. Quantum machine learning-using quantum
computation in artificial intelligence and deep neural networks: Quantum computation and machine
learning in artificial intelligence. In Proceedings of the 2017 8th Annual Industrial Automation and
Electromechanical Engineering Conference (IEMECON), Bangkok, Thailand, 16-18 August 2017; pp. 268-274,
doi:10.1109/IEMECON.2017.8079602. [CrossRef]

Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press:
Cambridge, MA, USA, 2014.

Schuld, M.; Sinayskiy, L.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2014,
56, doi:10.1080/00107514.2014.964942. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1109/TETCI.2018.2872600
https://doi.org/https://doi.org/10.1016/j.neunet.2018.11.002
http://dx.doi.org/10.1016/j.neunet.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30481685
https://doi.org/10.1109/TSP.2017.2726991
http://dx.doi.org/10.1109/TSP.2017.2726991
https://doi.org/10.1109/TIT.2014.2333734
http://dx.doi.org/10.1109/TIT.2014.2333734
https://doi.org/https://doi.org/10.1016/j.sigpro.2004.12.015
http://dx.doi.org/10.1016/j.sigpro.2004.12.015
https://doi.org/10.1109/ICRA.2017.7989757
http://dx.doi.org/10.1109/ICRA.2017.7989757
https://doi.org/10.1145/1409625.1409627
http://dx.doi.org/10.1145/1409625.1409627
https://doi.org/10.1109/IEMECON.2017.8079602
http://dx.doi.org/10.1109/IEMECON.2017.8079602
https://doi.org/10.1080/00107514.2014.964942
http://dx.doi.org/10.1080/00107514.2014.964942
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Complex and Hypercomplex Support Vector Machines Extensions
	Geometric or Clifford Support Vector Machines
	Division Algebras
	SVM Multiregression for Nonlinear Channel Estimation in Multiple-Input Multiple-Output Systems
	Quaternionic and Complex-Valued Support Vector Regression for Equalization and Function Approximation
	A Division Algebraic Framework for Multidimensional Support Vector Regression
	A Note on Octonionic Support Vector Regression
	Complex Support Vector Machines for Regression and Quaternary Classification


	Applications
	Signal Processing
	Pattern Recognition and Classification
	Time-Series Prediction and Function Approximation
	Frequency Domain Processing, Linear and Nonlinear Filtering
	Robotics, Computer Vision

	Conclusions and Prospective Work
	References

