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A Scalable Workflow for a Configurable Neuromorphic Platform

This thesis establishes a scalable multi-user workflow for the operation of a highly configurable,
large-scale neuromorphic hardware platform. The resulting software framework provides unified
low-level as well as parallel high-level access. The latter is realized by an efficient abstract
neural network description library, an automated translation of networks into hardware specific
configurations and an experiment server infrastructure responsible for scheduling and executing
experiments. Scalability, manual guidance and a broad support for handling hardware imper-
fections render the model translation process suitable for large networks as well as large-scale
neuromorphic systems. Networks with local connectivity, random networks and cortical column
models are explored to study the topological aptitude of the neuromorphic platform and to
benchmark the workflow. Depending on the model, performance improvements of more than
two orders of magnitude have been achieved over a previous implementation. Additionally, an
automated defect assessment for hardware synapses is introduced, indicating that most synapses
are available for model emulation.

In a second study, a tempotron-based hardware liquid state machine has been developed
and applied to different tasks, including a memory challenge and digit recognition. The trained
tempotron inherently compensates for fixed pattern variations making the setup suitable for
analog neuromorphic hardware. The achieved performance is comparable to reference software
simulations.

Ein skalierbarer Workflow für eine konfiguierbare neuromorphe Plattform

Die vorliegende Arbeit stellt einen skalierbaren Mehrbenutzer-Workflow für den Betrieb einer
sehr flexiblen, großskaligen neuromorphen Hardwareplattform bereit. Die entwickelte Software
erlaubt einheitlichen, hardwarenahen sowie parallelen, abstrahierten Zugriff. Letzteres ist
realisiert mittels einer effizienten Softwarebibliothek für die Beschreibung neuronaler Netze,
einer automatisierten Übersetzung von Netzen in hardwarespezifische Konfigurationen und
einer verteilten Infrastruktur für die koordinierte Ausführung von Experimenten. Skalierbarkeit,
manuelle Kontrolle und eine umfassende Behandlung von Hardwaredefekten ermöglichen das
Übersetzen großer neuronaler Netze für großskalige neuromorphe Systeme. Netze mit lokaler
Struktur, mit zufälliger Struktur sowie Modelle von kortikalen Säulen wurden verwendet um
die Grenzen des neuromorphen Systems zu untersuchen und die Leistungsfähigkeit der Software
zu vermessen. Im Vergleich zu einer bestehen Implementierung wurden, abhängig von den
Eigenschaften des Netzes, Leistungsverbesserungen von bis zu zwei Größenordnungen erzielt.
Weiterhin wurde mittels einer automatisierten Untersuchung der Synapsenschaltungen gezeigt,
dass die Mehrzahl der Synapsen funktioniert.

Im zweiten Teil wurde eine tempotron-basierte Liquid State Machine in Hardware realisiert.
Unter anderem wurden das Erinnerungsvermögen, sowie die Fähigkeit Zeichen zu erkennen,
getestet. Fertigungsbedingte Variationen werden durch das Training kompensiert. Die erzielten
Ergebnisse sind vergleichbar mit den Resultaten entsprechender Softwaresimulationen.
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Introduction
Everyday we are surrounded by powerful computation devices: notebooks, mobile phones
and the internet are virtually everywhere. At the same time, computer clusters are
used to study our consumer habits and preferences. Despite the different architectures
and physical extents, all these systems require high single instruction throughput for
efficient computation. However, performance limits of this kind of architectures are
approaching. Clock frequencies are limited by power density (Kim et al., 2003) and
modern process technologies have reduced transistor gates to merely a few atom layers
(Schulz, 1999). Over the last few years, the focus has shifted to concurrent architectures,
both with shared and distributed memory. The latter is mostly implemented in terms
of computer clusters, which allows for extensive horizontal scaling. Their extent is only
limited by cost, heat dissipation and sensitivity to single component failure (Hennessy
and Patterson, 2012). Developing efficient algorithms for conventional distributed
systems is challenging and problems that cannot easily be partitioned into individual
subproblems are often solved more efficiently on a single computer.

Nature, on the other hand, came up with its own distributed computational architec-
ture: the brain. The human brain, in particular, contains approximately 1011 neurons,
which are interconnected via 1015 synapses forming complex networks to carry out
massively parallel computation (Azevedo et al., 2009; Drachman, 2005). Information
is exchanged via action potentials or spikes, a sparse spatio-temporal code (Attwell
and Laughlin, 2001). The resulting design, which evolved over millions of years, is
extremely efficient in terms of energy. The human brain consumes only about 20 W of
power (Clarke and Sokoloff, 1999). Moreover, the design is extremely robust. It can
cope with disturbance by directing attention (Corbetta and Shulman, 2002), adapt to
changing environments (Cohen et al., 2007) and in some cases even recover from severe
lesions (Robertson and Murre, 1999).

Tasks that can easily be captured in algorithmic descriptions are typically solved
more efficiently by computers, like arithmetic and numerics. However, the human
brain outperforms state of the art technical solutions in areas like pattern completion,
complex body movement and higher order abstractions. Tasks that become more and
more important, e.g., for robotics.

Understanding the human brain is one of the great challenges of the 21st cen-
tury (White House, 2014). An endeavor that is ambitiously pursued among others
by the BrainScaleS project (2014) and the Human Brain Project (Markram, 2012b).
These projects bring together scientists from different fields, like biology, medicine,
psychology, mathematics and computer science to build comprehensive brain maps
and to develop a comprehensive theory linking models of limited scope across different
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Introduction

spatial and temporal scales. Another long-term goal is the establishment of a novel
brain-inspired computing paradigm and novel computing architectures to tackle the
above mentioned shortcomings of traditional computers.

Detailed biological measurements have built the foundations for the knowledge we
have today about the inner workings of the brain. Unfortunately, these measurements
always provide access to only a limited number of variables in the system (Stevenson and
Kording, 2011) Computational neuroscience has therefore become a second invaluable
approach to study neural networks from the bottom up on a very detailed level,
reproducing high-level functionality and exploring the frontiers of neural circuitry.
However, mapping large neural architectures to conventional computers rapidly becomes
infeasible due to the fundamental computational differences limiting the size and
complexity of studies. Large computer clusters are necessary to conduct detailed,
spike-based simulations for small fractions of the brain over the course of only a few
seconds (Markram, 2006). Simulations on more abstract levels can capture larger
areas, but cannot account for emergent properties on a microscopic single-cell scale.
These limitations are overcome by highly-parallel neuromorphic hardware systems
that physically emulate neural building blocks rather than simulating them. Due to
the inherent parallelism, these systems can be scaled towards large neural network
emulations without slowing down.

The Hybrid Multi-Scale Facility (HMF) developed within the BrainScaleS project is
build upon a highly configurable, large-scale neuromorphic hardware platform. Neural
networks are realized energy efficiently in a mixed-signal fashion, where spike commu-
nication is implemented by a high bandwidth, asynchronous, digital interconnection
fabric, while neurons are implemented as analog circuitry. Due to shorter intrinsic time
constants, these neurons operate around 103 to 105 times faster than biological ones.
Therefore, long-term experiments can be conducted in a short period of time. Notably,
the energy required per synaptic transmission is about 6 to 10 orders of magnitude less
than what is needed for similar simulations on traditional computer clusters (Markram
and Meier, 2012). The HMF will provide access to emulations with up to 106 neurons
until the end of the BrainScaleS project. A second installment to be realized within
the first 18 month of the Human Brain Project is going to provide up to 109 neurons
(HBP SP9, 2014).

State of the art neuromorphic computing shows many similarities to the advent
of both, computers and Field Programmable Gate Arrays (FPGAs). Initially, those
systems have been mere subjects to research. The scope was limited by the availability
of basic tools for their configuration and operation. Over time, operating systems,
compilers and improved user interfaces revolutionized the way people interact with
computers. Similarly, advanced design tools have been essential for FPGAs to become
the de facto standard for low volume hardware and rapid prototype development.

Setting up large networks on the HMF on a low level is a challenging and error prone
task even for hardware experts due to its complexity and size. Following the example of
computers and FPGAs, it is important to establish an automated mapping of abstract
neural network descriptions to hardware specific configurations that enables novices
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and experts alike to efficiently operate the system. Moreover, project partners and
external users who want to exploit the unique properties of the HMF require remote
access. This thesis introduces a novel software infrastructure providing both. After
outlining the software design principles and implementation, several benchmarks are
presented that measure workflow and mapping performance characteristics including
early hardware results. Finally, a spike-based liquid state machine (Maass et al., 2002;
Jaeger, 2001) implementation is demonstrated on a smaller chip-based system.

Structure of the Thesis
This thesis is structured into nine chapters followed by a comprehensive discussion and
outlook. The nine chapters are briefly outlined below.

1. The Neuromorphic Platform: In this chapter, all major HMF components
are introduced, including the HICANN microchip. A special focus is put on
the topology and the large configuration space, which build the foundation for
subsequent chapters.

2. A Scalable Workflow for Neuromorphic Computing: The accelerated,
large-scale HMF can no longer be considered a single-user system due to its
complexity and vast computational resources. To increase utilization, its resources
have to be shared among many users, much like computer clusters. Here, the
design and a prototype implementation of such a multi-user setup are presented.

3. Neural Network Description: Starting with the introduction of PyNN, the
HMF high-level user interface is presented. PyHMF is a PyNN-compatible,
high performance and topology preserving C++ implementation with a thin auto-
generated Python wrapper on top.

4. System-Level Software: This chapter outlines a redesign of the low-level
software, which provides unified access to the HMF.

5. Mapping Neural Networks to Hardware Specific Configurations: This
chapter introduces a modular feedforward mapping strategy, which enables an
efficient translation of abstract neural networks into hardware configurations.

6. A Scalable Implementation of a Feedforward Wafer Mapping: An actual
implementation of the above mentioned feedforward mapping strategy is presented.
Scalability towards large networks is achieved by means of efficient algorithms
and shared-memory parallelization.

7. Handling Hardware Defects: The HMF is explicitly designed to cope with
fabrication defects and analog variations. A dedicated defect framework manages
defects, which can then be used to implement workarounds during the mapping
step. Moreover, the measurement of synapse defects for a HICANN are presented.

3
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8. Workflow and Mapping Benchmarks: This chapter explores the suitability
of the HMF and the new mapping for a wide range of network topologies, which
includes an early attempt of mapping a chain-model to hardware. A comprehensive
study of homogeneous random networks is used to compare the novel workflow
with its predecessor. The chapter closes with a comprehensive discussion on
neural network topologies suitable for the HMF.

9. Spike-Based Classification with Accelerated Neuromorphic Hardware:
A tempotron-based liquid state machine has been implemented on an acceler-
ated neuromorphic hardware system. Therefore, a hardware adaptation of the
tempotron readout is derived, suitable for conductance-based synapse models.
The setup is then trained upon three different tasks including handwritten digit
recognition.

4



1 The Neuromorphic Platform
The Hybrid Multi-Scale Facility (HMF) is a platform for large-scale neural network
simulations that combines the flexibility of conventional cluster computing with
the efficiency of neuromorphic hardware systems. The wafer-scale system is the
accelerated neuromorphic core and consists of uncut wafers of 384 HICANN chips
with 512 neuron circuits each.
This chapter introduces all major components of the HMF on an abstract level.
Initially, a brief overview of the wafer-scale system is given, then the individual
components are explained following a bottom-up approach, starting with the
HICANN microchip and moving towards the inter-chip and host communication
networks. A special focus is put on the functional aspects and configurability of
the system.

1.1 The BrainScaleS Project
The BrainScaleS project (BSP) funded by the European Union started in 2011 and
is running over 4 years (BrainScaleS, 2014). Researchers from 19 groups across ten
different European countries set out to deepen our understanding of the brain at
different spatial and temporal scales. Scales range from in-vivo single-cell measurements
on a sub-millisecond level to large-scale network simulations with millions of neurons
and long-term learning (Kunkel et al., 2012; Nessler et al., 2013; Pozzorini et al., 2013).
The resources necessary to computationally study brain structure are provided by
computer clusters (Kunkel et al., 2012; Djurfeldt et al., 2008), many core systems
(Furber et al., 2012) and mixed-signal neuromorphic hardware (HBP SP9, 2014). The
latter is the central issue of this dissertation.

1.2 The Hybrid Multi-Scale Facility
The HMF combines the flexibility provided by conventional cluster computing with
the efficiency and performance of accelerated, mixed-signal neuromorphic hardware
systems (HBP SP9, 2014). This hybrid approach allows scientists to study networks on
the most suitable substrate. A long-term goal is to connect different aspects of a model
running on different substrates in a closed loop, e.g., an analog emulation controlling a
virtual robot that is simulated on the cluster. A first prototype installation is shown in
Figure 1.1.
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Figure 1.1: The first HMF prototype installation at the Kirchoff-Institute for Physics in
Heidelberg. The rack with the wafer system is in the front (1) and a 16 node commodity
cluster in the back (2). The actual wafer is installed under the aluminum heat sink (3).
Off-wafer communication is established via 12 FPGA communication modules (4). A wafer
consists of 384 interconnected HICANN chips (5).

1.3 The Wafer-Scale System
The wafer-scale system is the neuromorphic core of the HMF: an accelerated, large-scale,
configurable hardware system developed at the Kirchoff-Institute in Heidelberg and
at the TU Dresden. The system is composed of multiple wafer modules. Every wafer
implements 384 HICANN chips with up to 512 neurons and 114 688 synapses each.
After fabrication, wafers are left intact instead of being cut for the production of single
chips. This so-called wafer-scale integration is a unique property of the system, where
wafer-wide connectivity is established by means of post-processing, as explained in see
Section 1.6. This allows high inter-chip communication bandwidth at low cost and with
low power consumption.

1.4 The HICANN Microchip
The mixed-signal High Input Count Analog Neural Network (HICANN) microchip is
the basic building block of the wafer system. It has a die size of 5 × 10 mm2 and is
fabricated in 180 nm CMOS technology. Figure 1.2 shows a micro photograph of the
chip. The most prominent features are the two large synapse arrays, covering most of
the surface area. They are separated by digital communication structures crossing the
chip horizontally in the center and vertically on both sides.

This chapter focuses on the functional aspects of the chip, more detailed technical
descriptions are provided by Schemmel et al. (2008, 2010).
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Figure 1.2: A micro photograph of the 5×10 mm2

HICANN die. Prominently, the synapse arrays
cover most of the area. 512 neuron circuits are
aligned along the edges of the arrays towards the
center of the chip. Layer 1 buses, indicated by
black lines, run horizontally through the center
and vertically along both sides of the chip. They
implement the Layer 1 on-wafer event network for
spike communication described in Section 1.5. Re-
peaters at the chip boundaries restore signal qual-
ity, thus enabling long-range connectivity across
multiple chips. Events can be relayed from ver-
tical buses to neurons via synapse drivers and
synapses, where they finally generate postsynaptic
potentials (PSPs) on the analog membrane of the
neuron.

1.4.1 Analog Neurons
Every HICANN implements 512 analog neuron circuits (Millner, 2012). Half of which
are located on either edge of the synapse arrays towards the center of the chip, as
shown in Figure 1.2.

The dynamics of the analog neuron circuits evolve in continuous time and are faster
than biological real time due to shorter intrinsic time constants. The speedup can be
configured within a range of 103 to 105, i.e., a speedup of 104 means that the emulation
of a 1 s experiment takes only 10−4 s. This speedup renders the system suitable for
learning experiments that would otherwise take long periods of time. The behavior of
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neurons is characterized by the adaptive exponential integrate-and-fire (AdEx) model
(Brette and Gerstner, 2005) with conductance based synapses according to

−Cm
d Vm
dt

= gl(Vm − El) − gl∆t exp

(

Vm − Vt
∆t

)

+ ge(t)(Vm − Ee) + gi(t)(Vm − Ei) + ω

(1.1)

−τw
d w

dt
= w − a(Vm − El) . (1.2)

Where Vm and Cm denote the membrane voltage and capacitance of the neuron,
respectively. The latter can be set to either 2.16 pF or 0.16 pF in hardware. El, Ee and
Ei are reversal potentials for leakage, excitation and inhibition, while gl, ge and gi are
the corresponding conductances. The spike initiation potential Vt and the slope factor
∆t control the non-linear dynamics of the exponential term. The right most term ω
in Equation (1.1) contributes an adaption current. The dynamics of the adaptation
are described by Equation (1.2). Here, a is an adaption variable with the units of a
conductance and τw is the adaption time constant. The spiking behavior of the AdEx
model is described by

Vm → Vreset

ω → ω + b

}

if Vm ≥ Θ . (1.3)

Whenever the membrane voltage Vm crosses the threshold potential Θ a spike is detected,
Vm is set back to Vreset and ω is increased by the constant b. The latter is known as
spike-triggered adaption. Given a stimulation with a constant current and for positive
b, the excitability is reduced each time the neuron spikes. Actual hardware recordings
of characteristic AdEx spike patterns (Naud et al., 2008) are presented in Figure 8.1.

On hardware, neuron dynamics are controlled by 22 parameters, which also include
technical parameters to adjust the operational regime (HBP SP9, 2014). These pa-
rameters are stored in analog floating-gate cells, as described by Srowig et al. (2007),
and can be set individually for each circuit instance, with exception of Vreset. During
experiments, the floating gate controller can be repurposed to stimulate a single neuron
per chip with a configurable current course.

Neighboring neuron circuits within blocks of 64, 32 from the top and the bottom
array, can be combined in order to build neurons with higher input counts. Every
connected neuron circuit adds 224 synapses, allowing to built neurons with up to
64 × 224 = 14 336 individual inputs. Technically, neuron membrane capacitors are
connected in parallel, therefore adding the capacitances. The interconnection topology
is shown in Figure 4.2 item 5. The spike detection mechanism of connected circuits
has to be deactivated for all but one. A configurable routing allows to relay the
corresponding spike signal to the other circuits to trigger their local voltage reset
mechanisms whenever a threshold crossing of the membrane voltage is detected. Setting
up the routing correctly is critical because erroneously routed spike signals can trigger
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a reset cascade, which may damage the chip (Millner, 2011). Future revisions of the
chip are planned to implement configurable conductances between membranes to build
neurons with multi-compartmental dendrites, as explained by Millner et al. (2012).

1.4.2 Plasticity
The HICANN chip provides two types of plasticity to dynamically modulate synaptic
efficacies: short term plasticity (STP) and spike timing dependent plasticity (STDP).

STP models mobility and limited availability of neurotransmitters in biological
synapses according to Tsodyks and Markram (1997). The mechanism and its technical
implementation is inherited from the Spikey predecessor chip and is described in more
detail by Schemmel et al. (2007) and Brüderle (2009).

STDP, on the other hand, enables long-term learning based on spike correlation.
Again, the technical implementation is based on Spikey and is described by Schemmel
et al. (2006) and Pfeil et al. (2012). More information on the current development and
future implementation is provided by Friedmann (2013).

1.5 On-Wafer Event Network
This section introduces the statically switched Layer 1 on-wafer network fabric that
implements asynchronous, high-bandwidth communication between chips and has to
be configured prior to the experiment. On every HICANN, 64 bus segments run
horizontally through the center and 128 vertically on both sides. The bus structure is
clearly visible as a distinct H-shape in Figure 1.2. Operated at a clock frequency of
100 MHz, buses provide a bandwidth of 125 MEvents/s resulting in a total throughput
of 40 GEvents/s per chip.

Before introducing the network components, a short overview of the event routing
is given from source to targets. The individual components and routing options are
explained in more detail in the subsequent sections. Whenever the membrane voltage
Vm of a neuron crosses the threshold Θ, a digital 6 bit address event is generated. The
source address can be set individually for each neuron. Apart from neurons, other spike
sources exist, including external FPGAs and on-chip background generators. These
events can be combined using the so-called merger tree to increase network utilization,
see Figure 1.3. The bottom most mergers relay these events into the Layer 1 network
at special synchronous parallel Layer 1 (SPL1) repeaters operating specific horizontal
bus segments. Configurable sparse crossbar switches connect horizontal and vertical
buses in order to route events across the wafer. Routes always start at a single SPL1
repeater and branch out to target any number of chips. At a target, vertical buses can
be connected to synapse drivers via select switches to relay events into the synapse
array. A two-stage address decoding scheme selectively activates synapses in order to
connect drivers to neurons, where incoming events finally generate PSPs.

Layer 1 events encode spike signals as source addresses (Deiss et al., 1998), thus spike
times are implicitly defined by the instant they arrive at the receiver. This also means,
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Figure 1.3: An illustration of the HICANN merger tree topology. Events flow from the top
to the bottom of the structure. Each merger (1) can be configured to forward either events
from one of its inputs or merge both with static priority. In the top row, events from up to
64 neurons (2) and a background generator (3) can be merged. Events from the external
FPGA enter the tree at the bottom row of DNC mergers (4). The output of the Digital
Network Chip (DNC) mergers interfaces the Layer 1 network via special SPL1 repeaters (5)
connected to every 8th horizontal bus.

there are no programmable on-wafer delays. A short, but fixed one is given by the
physical transmission delay. It takes in the order of a few milliseconds biological time
for a spike to round trip from neuron to neuron on a single HICANN and a speedup of
104 (Kleider, 2014). In the future, configurable delays can be implemented using the
Layer 2 off-wafer network described further below.

1.5.1 Merger Tree
The merger tree, as shown in Figure 1.3, can merge events from different sources
into fewer connections to use the Layer 1 routing resources more efficiently. The 6 bit
address space provided by the Layer 1 fabric allows to transmit events from up to 64
sources in a single shared connection. In order to distinguish them on the receiving
side, sources must have disjoint addresses. The number of spike sources is reduced, for
example, whenever neighboring circuits are combined to build larger neurons, i.e., if
always 4 circuits are combined only 16 sources exist per neuron block, see Section 1.4.1.
Additionally events from the on-chip background generators and external FPGAs can
be merged.

The 512 neuron circuits on HICANN are grouped in 8 blocks of 64 neurons, with
32 from the top and bottom synapse array each. In the top most tier, every merger
receives events from one block of neurons and one background generator. Background
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Figure 1.4: Three cutouts of the HICANN crossbar responsible for connecting horizontal
and vertical Layer 1 buses. Cutouts a) and b) illustrate the topology found on the left side
of chip and c) on the right. The switch layout is mirrored along a vertical axis through
the center of the chip. Horizontal repeaters (1) refresh signals for every odd bus address
on the left and every even address on the right. Similarly, vertical repeaters (2) refresh
signals on every other bus on either the top or bottom of the chip. The sparse matrix can
be characterized by three parameters: sparseness (S), offset (T) and block width (B). The
respective parameters for the HICANN crossbar are S = 32, T = ±2, B = 1, with + and −
for the left and right side, respectively.

generators can be configured to generate either random Poisson spikes at a given rate
or elicit periodic events. They are typically used to lock repeater delay-locked loops
(DLLs) and are not available for model emulation as explained in Section 1.5.5. Then,
23 mergers are connected in five subsequent tiers according to Figure 1.3. Any merger
instance can be configured to forward events from either its left or right input or merge
both. In the latter case, the left input is statically prioritized. At the bottom most tier,
so-called DNC mergers interface external DNCs (Scholze et al., 2011a,b) that are in
turn connected to FPGAs. DNC mergers can therefore combine chip-local events with
events from external FPGA spike sources. Furthermore, events can be routed off-wafer
to DNCs and FPGAs, where they are timestamped and recorded, respectively. Finally,
DNC mergers relay events into the Layer 1 network via special SPL1 repeaters located
on every eighth horizontal bus, which corresponds to the bus indices 6, 14, 22, 30, 38,
46, 54, 62.

1.5.2 Buses, Crossbars and Repeaters
Connectivity between HICANNs is established via an orthogonal grid of 64 horizontal
and 256 vertical buses per chip. This bus topology is clearly visible on the micro
photograph in Figure 1.2. Horizontal buses run along the center of the chip, while
vertical buses run along both sides.
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Figure 1.5: An illustration of the HICANN select switches (1), which connect vertical Layer 1
buses and synapse drivers (2). Synapse drivers can relay events into the synapse array
(3) from both sides. Switches in every other row connect to synapse drivers on adjacent
HICANN chips (4). The select switch topology is characterized by S = 16, T = ∓2 and
B = 4, as defined in Figure 1.4.

Long range communication requires repeaters to refresh events at least once every
chip boundary crossing (Schemmel et al., 2008). Repeaters exist for both, vertical and
horizontal buses. They are located in alternating order at the top or bottom and left
or right edge of the chip, respectively, according to Figure 1.4.

Every 8th horizontal repeater is an SPL1 repeater. These special repeaters can also
relay input from the chip-local merger tree as explained in Section 1.5.1. Moreover,
horizontal and vertical bus indices are shifted by two at the chip boundaries, which is
referred to as bus swap. Thus, SPL1 repeaters on neighboring chips are not directly
connected. Adjacent chips can therefore insert events into the Layer 1 network without
interfering with each other, making the event routing more flexible.

Crossbars on the left and right side of each chip establish connectivity between
horizontal and vertical bus segments. Their switch configuration is sparse to limit
capacitive load on the one hand and use the remaining chip area for the interleaving
of digital logic on the other (Grübl, 2014a). Consequently, not any two orthogonal
buses can be connected. Figure 1.4 depicts the sparse matrix pattern of the HICANN
crossbar, which is characterized by three parameters: sparseness S, offset T and block
width B. A switch exists for vertical bus x and horizontal bus y if

E(x, y) =

(

x + B

⌊

y

T

⌋)

mod S < B (1.4)

evaluates as true.

1.5.3 Select Switches and Synapse Drivers
Whenever a route reaches a chip containing target neurons, events have to be relayed
into the synapse arrays. For this purpose, vertical buses can be connected horizontally
to synapse drivers via select switches as shown in Figure 1.5. The topology allows to
connect each vertical bus to 14 drivers on the same and 14 drivers on the adjacent chip.
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Figure 1.6: The two-stage driver and synapse address decoding scheme. Active signal and
address buses are colored in red and blue, respectively. Layer 1 events (6 bit) enter the
synapse array via synapse drivers (1). They can receive input either directly from a vertical
bus or an adjacent driver. Local 2 bit decoders (2) control strobe lines to selectively activate
synapses according to the A, B, C, D pattern. Additionally, drivers generate a rectangular
voltage pulse (3) that is sent horizontally into the synapse array together with the remaining
4 LSB of the address (4). Active synapses (5) connect horizontal and vertical lines whenever
the address and a local 4 bit decoder value match.

Half of the drivers are located in the top synapse array, the other half in the bottom.
Beyond direct Layer 1 input, adjacent drivers can be connected to share common input.
This feature is explained in more detail in the subsequent section.

1.5.4 Synapse Arrays
On HICANN, 224 drivers, 56 on each side of each synapse array (see Figure 1.2), can
relay events from vertical Layer 1 buses into the synapse arrays. Every driver operates
two rows of 256 synapses each and receives input either directly from a vertical bus or
shares a common input with adjacent drivers. The latter yields less capacitive load
compared to relaying events directly from vertical buses to several individual drivers.
High load deteriorates signal quality, as explained in Section 1.5.5. Thus, sharing
inputs allows to connect more synapse drivers and therefore map a larger address space
according to the address decoding scheme explained in the following.

In order to route the 6 bit events from the up to 64 sources, synapse drivers and
synapses implement a two-stage address decoding scheme, which is illustrated in
Figure 1.6. This scheme provides a trade-off between flexibility and area covered by
the synapse in order to implement a larger number of synapses per chip.

Whenever an event arrives at the synapse driver, the two most significant bits (MSBs)
of the 6 bit address are compared by four local decoders. They control strobe signals
to selectively activate synapses in the top and bottom row as well as odd and even
neuron columns, resulting in the A, B, C, D pattern in Figure 1.6. Only active synapses
are vertically connected to neuron circuits and can therefore relay spike signals. If
any of the decoder values matches, the synapse driver generates a rectangular voltage
pulse and sends it horizontally into the synapse array alongside the remaining four
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address bits. The integral of the voltage pulse determines the synaptic base efficacy.
The pulse amplitude is a fixed parameter controlled per driver, whereas the pulse length
is modulated dynamically to implement STP, see Section 1.4.2.

Active synapses decode the remaining least significant bits (LSBs) of the address
and compare them against a configurable local value. If the address matches, row
and column are connected and a current pulse is generated, which is sent vertically
towards the neuron circuit in the corresponding column via one of two collector lines.
The amplitude of the current pulse is controlled by two factors: the integral of the
incoming voltage pulse and a local 4 bit digital synapse weight. Note that the collector
line connectivity is configured per synapse row and therefore shared by synapses A and
B as well as C and D.

Every neuron has two synaptic input circuits, one per collector line. They trans-
late incoming current pulses from any of the 224 synapses within their column into
exponential conductance courses that connect the neuron to a configurable reversal
potential (HBP SP9, 2014). Depending on the input configuration, the generated PSPs
can either be excitatory or inhibitory.

1.5.5 Transmission Reliability
The Layer 1 network is merely a link layer according to the OSI layer model (ISO/IEC
7498-1:1994, 1994). The unidirectional communication is inherently unreliable because
transmissions cannot be acknowledged by the receiver. Therefore, no transport layer
protects events from being lost. Instead, the network topology and parameters have to
be chosen carefully in order to optimize transmission reliability.

Firstly, repeaters and synapse drivers require periodic address 0 events, in order to
lock local DLLs. Hence, background generators are set up to provide the necessary
activity. These events carry no information and are usually ignored on the receiving
side by setting the decoders accordingly. Empirically, rates around 3 Hz in the biological
time domain (BTD) are sufficient to retain an established lock (Koke, 2014), however,
optimal strategies to acquire the initial lock are under investigation, as of May 2014.

Furthermore, a set of analog parameters (Vccas, VOH and VOL) determines transmission
properties like power consumption, reliability and delay. Optimal values are subject
to calibration. However, within the scope of this thesis it is assumed that the default
values work for most experiments. A listing of all corresponding parameters and their
default values can be found in Appendix A.2.

Finally, the capacitive load acceptable between repeaters is limited. Connecting
components increases the wire capacitance and therefore RC time constants, which
deteriorates the digital signal quality. For every Layer 1 bus segment no more than
one crossbar and select switch per chip must be set. Similarly, only a limited number
of synapse drivers can be connected to vertical buses. This concerns both, primary
drivers, which are connected directly to a vertical bus, and drivers connected via
neighbors. However, the latter produces less load. Early measurements by Kononov
(2011) indicated that for Layer 1 clock frequencies of 100 MHz to 150 MHz up to
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Figure 1.7: Illustration of the post-processing metal layer deposited as part of the wafer-scale
integration. An uncut 20 cm wafer contains 48 reticles with 8 HICANN chips each (1).
Every post-processed chip (2) provides stripe connector pads (3) to implement off-wafer
connections to the main printed circuit board (PCB) and FPGAs. Deposited vertical (4)
and horizontal interconnects realize Layer 1 on-wafer connectivity across reticle boundaries.

4 connected neighboring synapse drivers worked reliably in more than 97 % of the
measurements conducted using the first version of the HICANN chip.

1.6 Wafer-Scale Integration
One of the major challenges for implementing accelerated, large-scale neural networks
is to provide the necessary connectivity. In biology, neurons typically receive input
from 104 to 105 other neurons (Drachman, 2005). Assuming a speedup factor of 104

and an average biological firing rate of 10 Hz this corresponds to an input bandwidth
requirement of 1 to 10 GEvents/s per neuron. The cumulative input bandwidth per
chip is even higher because different neurons likely receive different input. Wafer-scale
integration is the key technique, used for the HMF, to implement the high-bandwidth
Layer 1 as well as the off-wafer Layer 2 network described in Section 1.5 and Section 1.7,
respectively. Photos of the technical realization are shown in Figure 1.7.

After fabrication, the wafer containing the 384 HICANNs is left intact. A subsequent
post-processing deposits metal inter-connectors on the surface, see Figure 1.7 item 4.
Therefore, connectivity can be established beyond reticle boundaries, which denotes the
connected area captured by a single lithography mask. The high integration density
reduces wire impedance leading to more energy efficient systems. Furthermore, off-wafer
communication can be established vertically over the whole wafer area by means of
deposited connector pads, see Figure 1.7 item 3. These pads are connected to the main
PCB of the wafer system via stripe connectors (Zoglauer, 2009).

On the downside, wafer-scale integration causes random defects, resulting from
impurities in the manufacturing process, to remain in the system (Stapper et al., 1983).
In normal production, a wafer is cut into individual chips, their quality assessed and
unsuitable ones dismissed. However, this not an option for wafer-scale systems, instead
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they need to be tolerant against such defects. The HMF allows to workaround most
localized defects via appropriate configurations. For example, Layer 1 connections that
would normally pass through a defect region can be routed differently. As a measure of
last resort, whole reticles can be cut from power to avert e.g., shorts that otherwise
impede the operation of the remaining reticles. Efficiently finding configurations that
workaround defects and handle imperfections is important for experiment reproducibility
and one of the central issues of this thesis.

1.7 Off-Wafer Communication
Beyond recurrent connectivity, neural network experiments require external spike
stimulation, the ability to record spike responses and host communication to operate the
system. The Layer 2 off-wafer network provides all necessary means. The infrastructure
is provided by a hierarchy of host computers connected to FPGAs over ethernet, which
are in turn connected to custom DNCs. Every wafer module hosts 12 FPGAs, with
four DNCs each. A single DNC is responsible for managing the communication for
eight HICANN chips. The Layer 1 and Layer 2 networks interface at the bottom layer
of the merger tree as explained in Section 1.5.1. For clock frequencies of 100 MHz, the
bandwidth between a DNC and a single HICANN is 25 MEvents/s.

1.7.1 Real-Time Spike Handling
External stimulation and spike recording require high-bandwidth communication to
cope with the 103 to 105 speedup factor of the analog neurons. Therefore, spike input
trains are prepared in DRAM on an FPGA board prior to the experiment to achieve
high throughput and avoid timing jitter caused by packet delivery over ethernet or
process scheduling on the host. Each FPGA can store up to 2.5 × 108 events in memory
(Grübl, 2014b). Real-time host communication is possible, but with lower throughput
and no deterministic timing. Similarly, spike output is recorded to DRAM on the
FPGA board and accessed by host computers after the experiment.

Future FPGA firmware versions are going to provide programmable spike delays via
the Layer 2 network. Spikes are therefore routed off wafer, buffered in the FPGA and
reinserted into the Layer 1 network after a configurable delay has been elapsed.

1.7.2 Host Communication
Communication between wafer system and the conventional computer cluster is neces-
sary for the initial hardware setup, the subsequent readout of results and interactive
experiments. Wafers are therefore connected to an top-of-rack ethernet switch via
12 FPGAs with 2×1 Gbit uplinks each. A 10 Gbit ethernet backbone switch aggregates
connections from the host computers and the wafer switches. This simple but efficient
fat tree topology (Leiserson, 1985) allows communication between any host and FPGA
with low latency and high bandwidth.
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An automatic-repeat-request transport layer protocol (Philipp, 2008; Schilling, 2010)
similar to PGM (Speakman et al., 2001) provides reliable communication between
FPGAs, DNCs and HICANNs on top of the link layer. Packets lost in transfer are
resent after a configurable timeout.

Notably, close-loop experiments and system operation have different performance
requirements. Experiment setup and result collection demand high bandwidth, whereas
closed-loop experiments require low-latency communication to deliver spike responses
within short periods of time. For example, 1 ms of biological time corresponds to 0.1 µs
in the hardware time domain (HTD) for a speedup of 104. To realize biologically
relevant delays of 10 ms to 100 ms, the system has to respond in less than 10 µs, which
is challenging in gigabit ethernet terms (Loeser and Haertig, 2004).

1.8 Future Deployments
Within the BSP a system of six wafer modules is built until the end of 2014. Beyond
that, another 20 wafer system is built during the first 18 month of the Human Brain
Project (HBP) (HBP SP9, 2014). This system is going to provide access to almost
4 × 106 accelerated neurons in a system that has an expected power consumption of
30 kW.

An updated 65 nm HICANN successor, ready for production use, is planned for
month 30 of the HBP. The new system is going to further improve power efficiency,
provide higher bandwidths and implement advanced plasticity mechanisms including a
general purpose plasticity processor (Friedmann, 2013).
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2 A Scalable Workflow for Neuromorphic
Computing

The HMF is a powerful but complex computational platform. Development and
operation mandate constant monitoring by hardware experts. In order to make its
resources available for a broader range of users, a scalable, multi-user workflow
is required. Furthermore, batch processing enables the system to work more
economically. This chapter proposes a workflow design for the platform and
presents a prototype implementation thereof.
Firstly, the existing HMF workflow is introduced, followed by the workflow redesign
including brief discussions on all major components. Subsequently, an experiment
broker prototype is presented, which is responsible for accounting, dispatching
jobs and tying together the other workflow components. The chapter closes with a
measurement of experiment throughput for the prototype implementation.

The workflow and prototype implementation presented in this chapter have been
developed by Eric Müller and the author.

2.1 Existing Workflow
The previously existing HMF workflow has been developed as part of the Fast Analog
Computing with Emergent Transient States (FACETS) project. It started as a fork
of the Spikey workflow, which has been the first neuromorphic hardware system to
feature an abstract PyNN interface (see Section 3.1; Davison et al., 2008; Brüderle
et al., 2009). Though, the underlying hardware is different and the translation of neural
networks into hardware configurations had to be redesigned in order to cope with
the different topology and increased complexity of the system. However, the simple
single-user workflow design as sketched in Figure 2.1 remained unchanged. A more
detailed introduction is given by Brüderle et al. (2011).

The existing workflow mainly consists of three steps. Firstly, an abstract represen-
tation of the PyNN neural network is set up. Secondly, a corresponding hardware
configuration is derived from the abstract representation in a process referred to as
mapping throughout this thesis. The mapping has to find configurations that closely
resemble the intended network models within the constraints of the hardware system.
Finally, the hardware is configured, the experiment conducted and the results are
retuned to the user in PyNN format. The workflow runs in a single process on a single
computer and requires privileged, direct access to the wafer system. Although this
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Figure 2.1: The existing HMF single user, single process workflow. PyNN directly controls
the mapping process, which is responsible for both, translation of the abstract neural network
into a corresponding hardware configuration and experiment execution. The workflow
requires immediate and privileged access to the hardware platform.

mode of operation is also supported by the redesign, a more elaborate workflow has to
be established to utilize available resources to full capacity and allow multiple users to
access the HMF in parallel.

2.2 Workflow Redesign
The HMF is a complex platform that requires constant monitoring by hardware experts,
similar to conventional computer clusters. This mandatory overhead suggests the use
of batch processing to provide simple access for many users and increase resource
utilization. In fact, multi-user remote access for project partners is requested by the
HBP. The original workflow has never been designed for this use case. Consequently, a
redesign became necessary to deal with the up-to-date requirements. The redesigned
workflow is presented in Figure 2.2.

Users only need the PyHMF client installed on their local computers to run PyNN
scripts. The client transparently handles model construction, serialization and commu-
nication with an experiment broker at the HMF site. There, the model is translated
into a hardware configuration, which in-turn is scheduled for execution on either the
ESS (see Section 2.2.5) or the wafer-scale system. After completing the run, the
experiment server collects the results from the host computers and translates them
into the biological model domain. Finally, the results are relayed via the experiment
broker back to the user. Note that the new approach is PyNN-compatible and allows
users to easily switch between different simulation backends, the only difference is that
experiments are conducted remotely in the HMF case.

2.2.1 Batch Processing
Non-interactive batch processing is used for conventional computer clusters to in-
crease resource utilization (Kubo, 1999). Analogously, batch processing allows to used
conventional and neuromorphic resources more economically. Figure 2.3 shows how
multiple mapping jobs from different users or from parameter sweeps can be processes
by the HMF cluster in parallel using available batch systems. For example, generating
hardware configurations is typically slow compared to the actual hardware experiment
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Figure 2.2: The redesigned HMF workflow. Users (1) execute PyNN experiments using the
PyHMF client, which serializes the network model and sends it to an experiment broker at the
HMF site (2). A mapping of the network model to a hardware configuration is subsequently
scheduled on the cluster (3). When the broker receives the mapped configuration and the
requested resources are available, the experiment is either simulated on the ESS (4) or
emulated on the wafer system (5). Afterwards, the results are translated into the biological
model domain by the experiment server and sent back to the user. Note that inter process
communication (IPC) between components is indicated by blue arrows.

due to the high analog speedup factor. Thus, scheduling available configurations from
concurrent mappings in a second batch queue increases hardware utilization.

2.2.2 High-Level User Interface
The computational resources of the HMF can be accessed by authorized users via the
PyHMF client. It provides a PyNN-compatible (PyNN, 2014) application programming
interface (API) to construct neural network representations that can be serialized and
sent to the remote experiment broker. Chapter 3 discusses both, PyNN and PyHMF,
in more detail.

The redesign uses native PyNN API to dispatch jobs rather than additional interfaces
or remote shell access. This design may enable future PyHMF versions to capture
parameter sweeps and therefore map this series of experiments more efficiently than
unrelated experiments dispatched as individual jobs. Nonetheless, remote shell access
can be provided because PyHMF is equally well suited for local access.

The client-server architecture in the redesign further simplifies the distribution and
maintenance of software for users and developers alike. Compared to the previous
approach, users need only a small fraction of the software stack, namely the hard-
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Figure 2.3: Experiments on the accelerated neuromorphic system typically take little time
due to the high speedup factor. Preparing configurations for multiple experiments and
users in parallel helps to utilize the system to its capacity. Both, conventional (1) and
neuromorphic (2) resources are scheduled following a batch approach. Parameter sweeps,
single and multi-wafer experiments are shown in light, mid and dark blue, respectively.

ware independent PyHMF client. Server-side software and hardware deployments are
maintained independently by the developers and hardware experts. Moreover, the
same client can be used to transparently access different hardware backends or future
hardware revisions. Currently, the client supports access to the wafer system and the
ESS.

2.2.3 Experiment Broker
The experiment broker is the central communication hub, which is responsible for
connecting all endpoints and progressing experiments.

When the broker receives a PyHMF experiment from an authorized user, it creates a
local job, spawns a mapping process and relays the network description. The broker
keeps track of pending requests. Experiments are expected to take in the order of
minutes to hours depending on the load of the HMF. It is therefore necessary to cope
with repeated client disconnects and reconnects. After the mapping is completed, the
configuration is forwarded to the requested backend i.e., an HMF experiment server
or the Executable System Specification (ESS). The broker finally relays experiment
results back to the user.

Several brokers can operate in parallel to distribute the work, either at different
public addresses or behind load balancers (Bowman-Amuah, 2003). Distributing the
load onto several brokers also improves availability by avoiding single points of failure
(Piedad and Hawkins, 2001).

2.2.4 The Mapping
The mapping is responsible for translating abstract neural network descriptions into
corresponding hardware configurations. The new workflow reassigns many of the tasks
previously part of the mapping in order to modularize the system. Flow control, in
particular, is now a responsibility of the experiment broker and experiment server.
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Still, the mapping task is algorithmically the most complex problem and key for high
hardware utilization. The mapping step is a central topic of this thesis and discussed
in Chapters 5 to 8.

2.2.5 Executable System Specification
The ESS is a high-level simulation of the wafer-system that has been developed
by Vogginger (2010). Mapped configurations can be simulated including bandwidth
limitations caused by the Layer 1 network in order to prepare network models for the
emulation on the HMF or to study the influence of mapping distortions on the network
dynamics (Brüderle et al., 2011). As of May 2014, the ESS has been in the process
of being integrated into to the new workflow (Pape, 2013) via the low-level interfaces
presented in Chapter 4. On completion, the experiment broker can redirect mapped
configurations transparently to either actual hardware or the ESS. The underlying
mechanism and interfaces are explained in Section 4.2.4. Apart from preparing network
models, the ESS is a valuable tool for workflow verification and continuous integration
(Duvall et al., 2007).

2.2.6 Experiment Server
The experiment server is responsible for coordinating the host computers and the
hardware access as well as conducting the transformation of results from hardware into
biological model domain.

Configurations are mapped for particular hardware instances to account for their
individual characteristics, like analog variations. Thus, the broker has to relay con-
figurations and the information necessary for the transformation of results to the
appropriate experiment server. Next, the experiment server schedules the experiment
for execution on the target hardware instance. As soon as a window for execution
opens, the configuration is distributed to the responsible host computers, which are
subsequently instructed to carry out the experiment. Afterwards, spike train and
membrane recordings are collected from the wafer system. In a final step, the results
are translated into the biological model domain. This means, recording times are scaled
according to the hardware speedup factor and voltages are translated according to
calibration data.

At the time of writing, the experiment server has not yet been implemented. Instead,
experiments are triggered either by the broker or mapping process. However, the
necessary software for translating the results is available and has been used, e.g., for
the Hellfire chain experiment presented in Section 8.3.

2.3 Experiment Broker Prototype
A prototype implementation of the experiment broker, as described in Section 2.2.3 has
been developed as part of this thesis. The so-called Ester broker is a multi-threaded
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Figure 2.4: Transition diagram of the simple job state machine in Ester. New jobs are
initialized as null and transition from left to right. After successful initialization the state is
changed to new. Jobs in the running state are currently executed, finished jobs are ready to
be sent back to the user and completed jobs can be deleted. The job is trapped in an error
state whenever a failure occurs. Future Ester versions might also consider additional states
to support the cancellation and suspension of jobs.

server application written in C++. It listens for incoming PyHMF client requests
containing network experiments and dispatches mapping jobs accordingly. As soon
as a job is completed, the experiment results are sent back to the user. The software
presented in this section, has been developed in cooperation with Eric Müller.

2.3.1 Implementation and Design
The client-server communication between PyHMF and the broker is implemented
by means of the RCF framework for remote procedure calls (Delta V, 2013), which
also provides strong SSL-based authentication facilities (Freier et al., 2011). The
necessary IPC infrastructure for spawning the mapping process and forwarding the
network description to the mapping is implemented on top of MPI (Graham et al.,
2006). Payload for the client-broker as well as the broker-mapping communication
is marshalled via boost::serialization (Ramey, 2004; Husmann, 2012). A simple
state machine processes incoming PyHMF jobs following the transition diagram shown
in Figure 2.4. Multiple worker threads process queued jobs, advance their states and
finally collect completed jobs in order to free up memory.

2.3.2 Experiment Throughput
Ester is designed to receive experiments from multiple users in parallel. The following
performance measurement of Ester explores the suitability of RCF in combination with
boost::serialization for the designated use case (Husmann, 2011). Here, the ability
to the experiment broker to handle concurrent PyHMF requests is measured neglecting
both, mapping and hardware interaction. The computational and software setup
described in Appendix A.1 have been used to conduct the measurement.

Experiment throughput is measured as function of the number of concurrent clients
requests and parallel server threads for different experiment sizes. Homogeneous
random networks, as presented in Section 8.4, are used as client reference experiments
that are sent to the broker. The memory consumption, for this kind of network,
depends quadratically on the number of neurons N independent of the connection
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probability because PyHMF stores synapses in connection matrices, see Section 3.2.2.
The connection probability has arbitrarily been set to 5 %. Networks instances with
10, 100, 500, 1000, 2000 and 5000 neurons have been measured, resulting in serialized
experiment descriptions of 0.003, 0.10, 2.0, 7.8, 31 and 191 MB, respectively.

For the measurements presented, the clients and the broker both run on the same
computer, communicating over the Linux loopback network device (Biro et al., 1993).
Thus, the effective network bandwidth is very high, in fact, the throughput is only
limited by the ability of RCF and boost::serialization to serialize, handle and
deserialize experiments. Note that the broker currently deserializes the complete
experiment. Future versions are going to split experiments into an Ester header and
the representation of the actual neuron network. The latter can be forwarded efficiently
to the mapping process without causing any serialization overhead on the broker.

The measured client request performance is presented in Figure 2.5. Up to 50 PyHMF
clients transfer homogeneous random networks of different sizes to the Ester broker,
which provides up to 20 threads. The different network sizes have been color coded.
The average throughput for different numbers of server threads, but a fixed number of
concurrent client connections and vice versa are indicated by solid lines. Note that for
larger network sizes and many clients some measurements could not be conducted due
to memory limitations.

The throughput for small network sizes of 10, 100 and also 500 neurons is significantly
lower compared to the larger networks because they are bound by the serialization and
communication overhead. For networks of 10 and 100 neurons, parallelization overhead
can be observed on the server-side as a further throughput reduction in the bottom
plot in Figure 2.5 towards higher concurrency. The effect saturates for about 4 threads.
For network sizes beyond 500 neurons, a throughput of up to 1.6 GB/s is reached. This
means, the current implementation is efficient enough to fully utilize the 10 Gbit/s
ethernet links used in the HMF cluster.

Moreover, the results show an increased throughput for large network instances when
using multiple server threads compared to the single-threaded version. This effect
already saturates for two server threads because two clients concurrently communicating
with the broker via the fast loopback interface fully utilize the quad-core processor of
the PC used for the experiment. In production use, the gain per thread can expected
to be higher for many users with slow uplinks. In this case, the processor resources are
sufficient to handle these lower-bandwidth connections in parallel. The same argument
holds for concurrent client requests, increased throughput can be observed for two
clients and large networks in the upper plot in Figure 2.5.

Finally, the experiment throughput is reduced for large networks and many concurrent
client connections because the broker has to swap memory to disk. This effect is most
prominent for the largest network instance with 5000 neurons. Therefore, brokers
should monitor their state and reject further incoming jobs whenever they run short of
resources to prevent performance regressions in production use and more importantly
prevent denial of service (Handley et al., 2006).
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2.4 Summary
A novel, scalable multi-user workflow has been presented that provides remote access
to the HMF, increases resource utilization and supports highly available deployments.
The separation into client and server-side does not only improve scalability, but also
simplifies software maintenance for users and developers alike.

Finally, an experiment broker prototype implementation has been presented providing
authentication and experiment transmission over IPC. Although still in development,
it has been shown to handle concurrent client requests and provide high experiment
throughput of up to 1.6 GB/s, which is sufficient to saturate the 10 Gbit/s ethernet links
of HMF cluster nodes. Future Ester versions are planned to increase the throughput
even further by splitting experiments into an Ester header and the actual network
representation, therefore avoiding unnecessary serialization overhead. Missing features
and prospective development are discussed in the thesis outlook.
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Figure 2.5: PyHMF and Ester throughput measurement for homogeneous random networks.
On top, the throughput is shown as a function of clients for different network sizes. Data
points of equal color and within the same column have been measured for different numbers
of server threads. The throughput typically increases with the number of threads. Below, the
same data points are plotted as a function of server threads rather than concurrent clients.
Thus, data points of equal color and within the same column correspond to measurements
with different client counts. Note that each data point represents the average throughput
over many transmissions. Solid lines indicate the average over data points belonging to the
same network size and number of clients (top) or server threads (bottom).

27





3 Neural Network Description
The abstract neural network description language PyNN provides unified access to
different simulation backends, including the HMF. This chapter briefly introduces
PyNN, explains its benefits and its shortcomings that ultimately led to the develop-
ment of PyHMF. PyHMF is an efficient and hierarchy preserving implementation
of PyNN implemented in C++. Code generation provides the necessary means to
create PyNN-compliant Python bindings. The results in Chapter 8 indicate a
performance gain of more than two orders of magnitude compared to standard
PyNN, depending on the network topology.

The work presented in this chapter is a shared development effort by Sebastian Bil-
laudelle, Christoph Koke, Eric Müller and the author. The reduction of the PyNN
hypergraph into a simpler graph problem has been provided by the author.

3.1 The PyNN Description Language
PyNN is a simulator independent abstract description language for spiking neural
networks implemented in Python (PyNN, 2014). It provides transparent unified access
to different simulation backends (Davison et al., 2008). Experiments described in PyNN
can be executed on different supported simulators depending on performance and
precision requirements or for cross-simulator verification. A complete API specification
of the current stable version 0.7 is given by Davison (2011b). In this chapter PyNN API
elements are capitalized to familiarize the reader with their names and to emphasize
their connection to specific software implementations rather than their abstract meaning.
However, subsequent chapters fall back to the correct English spelling.

Spikey has been the first neuromorphic hardware system to adopt PyNN as its
primary high-level interface (Brüderle et al., 2009). Today, PyNN backends also exist
for the HMF (Brüderle et al., 2011) and the SpiNNaker system (Galluppi et al., 2010).

3.1.1 Model Hierarchy
Early versions of PyNN provided mainly two high-level building blocks to set up neural
networks: Populations and Projections. Populations are groups of neurons. They can
have different parameters, but share a common neuron model. Projections connect
Populations with other Populations or themselves. A Connector argument specifies
Projection properties, e.g., stochastic or user-defined connectivity.
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Figure 3.1: The hierarchical interface abstractions provided by PyNN 0.7 and newer. Neurons
(small circles) are organized in Populations (1). Each neuron only belongs to a single
Population. Additionally, neurons can be organized in PopulationViews (2) and Assemblies
(3). PopulationViews contain subsets of Populations, whereas Assemblies contain any
combination of Populations, PopulationViews and Assemblies. Any aggregation of neurons
can be connected via Projections (4), which are internally expanded into connections between
individual neurons.

In PyNN, Populations and Projections are merely API abstractions. The frontend
instantly expands Projections into individual connections between neurons that are
represented by an adjacency list. From a users point of view, this makes little difference.
However, the hierarchical information is no longer available for simulation backends.
This structural information is valuable for e.g., partitioning and distributing the
network to nodes in a computer cluster or chips in a neuromorphic hardware system.
An alternative, coarser approach is to represent the network topology as a graph of
Populations connected by Projections. In this picture, edges carry the Projection
properties and individual connections between neurons can be lazily expanded whenever
necessary (Watt and Findlay, 2004).

PyNN 0.7 introduced two new interface concepts: PopulationViews and Assemblies.
PopulationViews are subsets of Populations. Assemblies on the other hand, are supersets
of Populations, PopulationViews and Assemblies. The new interface provides users
with more flexibility and convenience in terms of network construction. These additions
did not require any changes to the internal structure of PyNN, which is still based on
adjacency lists for individual neurons. All hierarchical API abstractions provided since
version 0.7 are visualized in Figure 3.1.

The introduction of PopulationViews and Assemblies, however, complicates the
picture of a coarse Population graph as described earlier. From a topological point of
view, the graph becomes a hypergraph because edges involving Assemblies may connect
sets of vertices rather than single vertices. Whereas edges involving PopulationViews
may connect only fractions of Populations and therefore fractions of vertices.

Turning a graph problem into a hypergraph problem has several downsides. Firstly,
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Figure 3.2: The PyHMF reduction of the PyNN hypergraph shown in Figure 3.1. Connectivity
between Populations (1) and subsets thereof (2) is provided uniformly by ProjectionViews
(3). They can arbitrarily reference subsets of neurons in the source and target Populations.
Note that the green Projection in Figure 3.1 has been split into two distinct ProjectionViews
(4).

there are only a few hypergraph software libraries available, which are inherently more
complex to use. Secondly, the massive algorithmic toolbox that exists to efficiently
handle graph problems is no longer accessible. The following section thus presents a
PopulationView and Assembly-compatible strategy for PyHMF to reduce the hypergraph
to a simpler graph problem.

3.2 A Hierarchical Network Representation
During the workflow redesign, presented in Chapter 2, the existing PyNN backend
had to be reconsidered. The new workflow requires components to communicate via
IPC, which mandates a neural network representation that can be serialized. Instead
of implementing another backend that translates PyNN connectivity into a native,
serializable format, PyHMF has been developed as a more radical approach.

PyHMF is an efficient hierarchy-preserving C++ library for the description and
representation of abstract neural networks. The library provides the necessary IPC
facilities for workflow integration and the native C++ interfaces can seamlessly be
used by other workflow components. Having unified, native access to connectivity
saves memory by avoiding redundant copies of synapses. This section presents a
reduction of PyNN hypergraphs to plain graphs that enables PyHMF to provide a
PyNN-compatible interface while representing networks internally as simpler, more
efficient graph hierarchies. Code generation is used to automatically wrap these
interfaces to PyNN-compliant Python API.
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3.2.1 Hypergraph Reduction
PopulationViews and Assemblies turn the Population graph into a hypergraph as
discussed in Section 3.1.1. This might be more complex than necessary and is algo-
rithmically less accessible than plain graphs. Here, a reduction of the hypergraph to a
simpler graph problem is presented.

Considering PopulationViews first, an obvious problem is that edges in the earlier
picture may connect subsets of Populations. One approach is to cut the Population into
smaller Populations such that each PopulationView has an corresponding isomorphic
Population. Two different but overlapping views cut a Population in up to three
pieces, one Population for both disjoint sets and one for the intersection of neurons.
Furthermore, Projections from and to these PopulationViews have to be divided into
multiple sub-Projections. Excessive use of PopulationViews ultimately fragments
Populations into individual neurons rendering this approach inefficient.

A second approach is to store the membership of neurons in Projections rather than
PopulationViews, thus introducing the concept of ProjectionViews. Then, connections
between Populations and PopulationViews can be expressed by ProjectionViews alike.

Concerning Assemblies, we reconsider both previous approaches. Here, splitting
Projections between Assemblies into smaller ProjectionViews is simpler because no Pop-
ulations have to be divided. Moving Assembly membership information into connections,
on the other hand, can be expensive for large Assemblies. Consequently, Projections
involving Assemblies are divided into multiple ProjectionViews, each addressing a
subset of connections in the original Projection.

In conclusion, ProjectionViews and the splitting of Projection into multiple Projec-
tionViews for Assemblies reduces the PyNN hypergraph into a simpler Population-based
graph. Figure 3.2 shows the corresponding reduction for the network previously shown
in Figure 3.1.

3.2.2 Implementation and Design
PyHMF is implemented as a modular C++ library with a little over 10.000 lines of code.
This is achieved by means of code generation to create the PyNN-compatible Python
bindings. Furthermore, implementing the network setup natively in C++ avoids dynamic
language overhead (Barany, 2014) and frequent foreign language calls from Python into
C for random number generation (Behnel et al., 2011), which provides a significant
speedup over PyNN. The library itself is split into a frontend and a backend layer. The
backend layer implements all facilities to build the network representations following
the graph hierarchy described earlier. The frontend part has been kept lightweight
using opaque pointers (Sutter, 1998) to minimize header dependencies and make them
more accessible for code generation. This separation enables the backend part to remain
stable, while the frontend evolves alongside future API versions of PyNN. Whenever
the frontend layer changes, the Python bindings are updated automatically. The
native interfaces further allow to directly use the neuron parameters in the hardware
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calibration libraries (see Section 6.7.1) to provide consistent translations from PyNN
parameters into the hardware parameter domain. The parameters have therefore been
moved into a separate small library to reduce the software footprint. Communication
between PyHMF and Ester is established by means of RCF and boost::serialization,
as explained in Section 2.3.

A rigorous set of tests continuously verifies all components of PyHMF. For example,
PyNN and PyHMF Connectors are compared against one another on the individual
synapse level. In consequence, several issues in the connectivity setup of the original
PyNN package have been discovered, which have been reported and consequently been
resolved.

Synapse Representation

PyNN is merely an interface description, it does not specify how connections are
represented internally. In practice, the representation of synapses depends on the
Connector type. This leads to inconsistent behavior, e.g., weight matrices can be
extracted from internal adjacency lists, which causes multiple connections between
pairs of neurons to be silently lost. PyHMF on the other hand, consistently stores
synapses in an individual connection matrix per Projection. This simplifies serialization,
reduces software complexity and provides constant time lookups, however, may cost
extra memory. This extra cost has to be payed whenever sparse connectivity is set
up between large Populations, e.g., a Projection between two Populations with N and
M neurons consumes ∼ N × M memory (Even and Even, 2011). The design decision
has been made under the premise that networks for the HMF should be structured
and emphasize local connectivity to allow faithful hardware representations thereof,
see Chapter 5. Still, worst-case, full-wafer homogeneous random networks with more
than 4.5 × 104 neurons have been mapped, as shown in Section 8.4. In fact, mapping
homogeneous random networks with connection probabilities of p ≥ 10 % requires less
memory using the new workflow compared to the old one due to implementation and
adjacency list overhead. The new workflow is consistently more memory efficient for
more structured neural networks, see Figure 8.17.

The communication overhead introduced by sparse matrices is of lesser concern
because they can be compressed efficiently (Galli et al., 1998). Future versions are
planned to realize synapses lazily to delay the expansion of individual synapses, which
can then be realized as part of the mapping process. This is possible whenever user do
not access individual synapses prior to the experiment submission.

Batch Flow Integration

The HMF workflow uses native PyNN API to dispatch jobs to the experiment broker,
see Section 2.2.2. Handling multiple experiments within a single description may enable
future mappings to handle parameter sweeps more efficiently such that e.g., only analog
parameters are reset instead of rebuilding the whole connectivity. If, on the other hand,
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parameter sweeps are dispatched as independent jobs, the workflow cannot capture
the relationship between these subsequent experiments. However, PyNN does not yet
offer the necessary explicit interfaces to model the required behavior. This section
briefly discusses the pitfalls involved in using the existing interface to implement a
PyNN-compatible job control.

PyNN provides run(), reset() and end() commands as dedicated commands for
flow control, while only run() is actively used by most backends. Thus, commands
between subsequent invocations of run() can be interpreted as incremental changes to
consecutive experiments. Furthermore, reset() can be used to render later commands
unrelated to earlier ones. After a final call to end(), the actual execution is triggered
and the network representation is send to the broker.

However, no means currently exist to access result instances produced by different
experiment instances. This has been reported and future versions of PyNN may
support native parameter sweeps (Davison, 2011a). Alternatively, a non-blocking,
promise-oriented interface may be used to retrieve the results of a specific experiment
instance, which requires to only change the return types of PyNN interface functions.

3.2.3 Wrapper Generation
Multiple components of the redesigned HMF software stack, presented in Chapter 2,
provide auto-generated Python bindings, including PyHMF. Here, the process is exem-
plarily introduced for PyHMF, but applies identically to the other components.

The wrapper generation is built upon pygccxml and py++ (Yakovenko and Baas,
2013). The former is responsible for parsing the C++ header files and constructing a
corresponding abstract syntax tree. Subsequently, py++ translates the syntax tree into
boost::python (Abrahams and Grosse-Kunstleve, 2003) wrapper code, which can be
compiled into a CPython accessible shared library.

The pygccxml parser is based on g++-4.4 and is therefore limited to C++03 language
features. Custom extensions provide limited support for C++11 containers, such as
arrays and hash maps. Moreover, the code generation flow has been tightly integrated
into the WAF (Nagy, 2014) build system by Christoph Koke. This means, the Python
bindings are updated on-the-fly whenever the underlying native interfaces change.

3.2.4 Interfacing Workflow Components
Another challenge that arises in the context of the redesigned workflow is to forward
data to other workflow components because the user’s python interpreter and backend
implementations no longer share the same process space. Therefore, PyHMF needs to
provide a PyNN-compatible mechanism in order to pass payload along the tool chain.
Typical use cases include user authentication, requesting particular hardware instances
or guidance of the mapping process.

PyHMF provides an abstract MetaData base class. Workflow components can
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implement their own MetaData objects, which are registered as arguments to the
PyNN setup() call. An example listing thereof is given in Section 6.8.

Registered instances are then serialized and sent alongside the network description
to the experiment broker. The broker is responsible for forwarding the payload to the
designated target components. Implementations exist for Ester, HALBe and marocco
described in Sections 2.3 and 4.2 and Chapter 6, respectively.

3.3 Summary
PyHMF is a complete and efficient C++ library for the description and representation of
abstract neural networks. It offers a significant performance gain over PyNN by using
connection matrices providing constant time lookups for synapses and implementing the
network setup in native C++. The latter eliminates frequent foreign language calls from
Python into C for random number generation, which is one of the main performance
bottlenecks of standard PyNN. The native interfaces seamlessly integrate into other
workflow components developed in C++. Additionally, a fully PyNN-compliant Python
API is provided by means of code generation, tracking changes to the underlying
implementations and updating bindings automatically.

Furthermore, a method has been derived to reduce the hypergraph expressed by
PyNN API to an algorithmically more accessible plain graph, which enables PyHMF
to preserve hierarchies in the actual network description. This hierarchical information
can subsequently be accessed by backends to e.g., partition the network for efficient
distributed simulations or an optimized placement of neurons to a neuromorphic hard-
ware system. PyHMF might therefore be an interesting frontend for other simulation
backends as well.

Network setup times for PyHMF are reported in Chapter 8. The actual performance
gain depends on the network size and connection topology. For all studied networks,
PyHMF has been more than an order of magnitude faster than the predecessor HMF
and current NEST (Gewaltig and Diesmann, 2007) backends. For many instances a
speedup of more than two orders of magnitude has been achieved.
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In the process of restructuring the workflow, the low-level API has been redesigned
as well to provide unified access to all components of the wafer-scale system. There
are two layers of low-level interfaces. A lower, stateless layer that reflects the
actual hardware access granularity and a stateful layer on top, which captures
the complete configuration space and provides extra convenience. The type-rich
interfaces and coordinate implementations capture many common user errors
during compile time by means of static code analysis. Furthermore, coordinates
implement implicit range checks rendering out-of-bound access obsolete.

Several people in Heidelberg and Dresden contributed to the work presented in this
chapter. The major contributors in alphabetical order are: Christoph Koke, Alexander
Kononov, Eric Müller, Bernhard Vogginger and the author. The author, in particular,
has been responsible for the HALBe interface design and the type-rich coordinate
system.

A preliminary version of Section 4.2.3 has been published by the author in the
neuromorphic platform specification document (HBP SP9, 2014).

4.1 Design Overview
The mixed-signal wafer system implements neural networks by connecting a diverse set
of physical circuitry to set up neurons, establish synaptic wiring and more. Typically,
inter-component connectivity is sparse and realized as either digital communication
or direct analog coupling. To cope with the inherent diversity and complexity of the
system, a lot of effort has been put into building solid software foundations. Two
low-level APIs, HALBe and StHAL, provide access to the system on different levels of
abstraction. Their design is sketched in Figure 4.1.

HALBe closely resembles the access granularity of the hardware system. It is designed
for production use and low-level hardware tests alike. It provides a reentrant, free
function oriented interface and defines a coordinate system that coherently addresses
all components of the wafer system. This coordinate system has become the standard
for referencing hardware entities throughout the workflow.

StHAL builds upon HALBe and provides higher level, stateful API. The lack of state
in HALBe complicates tasks across single component boundaries. Combining individual
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Figure 4.1: Overview of the low-level software hierarchy. Access to different simulation
backends is provided on two different levels. HALBe provides fine-grained low-level access,
whereas StHAL implements more abstract interfaces. The coordinate system plays a central
role and is used throughout the higher software layers (not visible). Each layer provides
code-generated Python bindings to enable scripting and low-level interactive access. The
design further allows higher-level software to access different backends transparently.

neuron circuits, for example, involves multiple HALBe calls. Additionally, the system
has to be configured in a sensible order, e.g., floating gates have to be set early to
supply currents and voltages for other components. StHAL integrates all individual
HALBe configuration objects into a single coherent configuration space describing the
whole experimental setup. Thus, StHAL itself can dispatch all necessary HALBe calls
in the appropriate order.

Both, HALBe and StHAL provide Python bindings for scriptable access at the lowest
level, interactive experiments and system exploration. The bindings are automatically
generated at compile time by pygccxml, py++ and custom extensions, as explained
in Section 3.2.3. Therefore, bindings are always up-to-date and closely follow the
development of the native API.

4.2 Stateless Hardware Abstraction Layer
The lowest-level HALBe interface provides unified, fine-grained access to all features of
HICANNs, DNCs and FPGAs. It replaces development and testing interfaces mostly
implemented by the original hardware designers. The redesign lowers the overall
complexity of the system, makes it more accessible for other developers and hardens
it for production use. The interface is divided into four major components: access
handles, a type-rich coordinate system, configuration containers and a stateless function
backend. Typically, one of each is required for configuring a single functional hardware
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unit. For example, the complete configuration space of the HICANN is captured by
1 handle, 28 configuration containers, 37 functions and 59 different coordinates.

4.2.1 Design Concept
HALBe is designed to provide unified access to all hardware components at the lowest
level. Well parametrized, free functions only access local data in order to minimize
shared state as a common source of data races. Data dependencies are fully defined
by the function signatures and mandatory shared resources, like the communication
channel, which is encapsulated in handle instances and passed by mutable reference.
Within a handle, conventional process synchronization means can be used at a single
well-defined location to avoid data races. Functions are therefore reentrant and can
be called concurrently to parallelize access to the hardware system. Furthermore,
polymorphic handles provide unified access to different backends like the wafer system,
ESS, transistor level simulation or database storage.

The actual configuration space is defined by a set of small containers, which reflect the
hardware read-write atomicity. For example, a row of synaptic weights is represented
by a single container as these weights have to be written to and read from hardware at
once. Containers additionally implement simple domain specific interfaces to set up
configurations more conveniently.

4.2.2 Type-Rich Interfaces
As mentioned earlier, most HALBe functionality is provided by free functions. With
little exception, pairs exist for writing data to the system and reading it back. In a novel
approach, the C++ type system is used to render the interfaces safer, more expressive
and implementations shorter. This builds the foundations for the HALBe coordinate
system presented afterwards. Firstly, the approach is introduced by example, followed
by a short discussion of the advantages and its general applicability.

A typical pair of functions is shown in the listing below. In this case, they configure
a line of crossbar switches and reads back the current configuration.
void set_crossbar_switch_row(

Handle::HICANN& h,
Coordinate::HLineOnHICANN const& y,
Coordinate::SideHorizontal const& s,
CrossbarRow const& switches);

CrossbarRow get_crossbar_switch_row(
Handle::HICANN& h,
Coordinate::HLineOnHICANN const& y,
Coordinate::SideHorizontal const& s);

Here, handle h designates a communication channel to a specific HICANN chip, y
references one of 64 horizontal Layer 1 buses, s references either left or right and
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the actual switch configuration is given by switches. Note that the handle h is the
only captured, mutable state. The novel interface as well as a corresponding more
conventional C-style interface are compared in the following.

// HALBe style
auto row = get_crossbar_switch_row(h, HLineOnHICANN(4), left);

// equivalent C-style snippet
CrossbarRow row;
get_crossbar_switch_row(h, 4, 0, &row);

Both functions read back the switch configuration in row 4 on the left side of HICANN
h. Note that returning the data by value is not a performance issue, since any modern
C++ compiler supports return value optimization (Meyers, 1995).

Clearly, the first listing is simpler to reason about without reading the API docu-
mentation. The type-rich intefface, for example, states that the address value 4 refers
to a horizontal crossbar switch row and 0 addresses the left side of the HICANN chip.
Expressive code is important, but it is even more important that the new interface
enforces safer code. Usually, the function set_crossbar_switch_row is responsible
for sanitizing all its arguments. Generally, every interface function has to sanitize its
arguments because no assumption can be made about the user’s intend. This is a
common source of errors in its own regard. Especially when writing data to hardware,
arguments have to be checked consistently beforehand. Otherwise, failing writes due
to e.g., out-of-bound access may leave the system in an inconsistent or unrecoverable
state. The type-rich interface moves consistency checks out of the function scope into
the arguments, which become responsible for sanitizing themselves. In the previous
example, an out-of-bounds instantiation of HLineOnHICANN would trigger an exception
before set_crossbar_switch_row would even been entered. As a welcome side effect,
function implementations become shorter and more concise by widely skipping input
sanitization. Finally, function calls with unsuitable argument types never go unnoticed.
These errors are subject to static code analysis and detected at compile time.

In general, type-rich interfaces with intrinsic range sanitization have proven themselves
a valuable approach to harden implementations and improve code quality wherever
complex addressing is necessary. They are therefore used in the HALBe coordinate
system for the wafer system, but have also been adopted for other prototype systems.

4.2.3 Coordinate System
Conventional computers access memory and IO devices by mapping them into a single
linear address space. Neuromorphic hardware devices, on the other hand, implement
small special purpose circuits with local memory. Using the immediate address space
of the digital logic is complicated by the fact that the mapping of memory location to
function varies across instances of the same analog circuit. Without shared random
access, memory components have to communicate either via digital buses or physical
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coupling. The necessary connectivity is often defined by their relative orientation
and position to one another. Thus, unlike conventional computers, programming a
neuromorphic hardware device requires explicit knowledge about the topology. In
fact, getting the connectivity right is one of the major obstacles when setting up
experiments manually on a low-level. HALBe consistently arranges components in
a Cartesian coordinate system that reflects the inter-component connectivity more
naturally. Exemplarily, some of the coordinates are outlined in Figure 4.2. Here, the
term coordinate system is used rather than address space because the latter commonly
refers to purely sequential addressing.

All indices are consistently counted from left to right and top to bottom, according
to the HICANN orientation shown in Figures 1.2 and 4.2. Grid coordinates also
provide support for linear addressing by enumerating all instances in a row-first fashion.
Moreover, sparse grids are supported for hardware components that are either sparse or
irregularly assigned to grid points, e.g., synapse drivers only exist every other switch row.
Addressing non-existing components with an invalid x, y coordinate or enumeration
yields a language exception.

Finally, coordinates implement conversions to derive coordinates of connected com-
ponents, for example, the coordinate of a synapse driver can be derived from a corre-
sponding select switch row coordinate.

Implementation

The implementation of coordinates is based on a generic template library for ranged
integers developed by the author. Any ranged integer instance carries its valid value
range as part of the type signature. The range of an instance is sanitized during its
construction and after any compound assignment operation, like +=, &=, etc. All other
integer operations do not mutate the bound instance, but rather return a new one,
which is in turn sanitized during construction. Therefore, no range violation goes
unnoticed. Optionally at compile time, ranged integers can be collapsed into their
corresponding built-in type to diminish any runtime overhead for unsafer, but higher
performance production builds. The following listing exemplifies the use of ranged
integers.

typedef integral_range<unsigned, 64, 4> type; // type in [4,64]
type a = 0; // raises exception
type b = 4;
b =>> 1; // raises exception (a=2)

void magic_fun(integral_range<uint8_t, 7, 0> const& v);

Here, instances of type can represent integer values in [4, 64]. Instantiating a with zero
raises an exception, whereas b=4 is valid. Subsequently, shifting b to the right yields
two, thus raising another exception. Notably, the function declaration of magic_fun
clearly states its expected parameter range, no extra documentation is necessary.
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HALBe coordinates are implemented on top of the ranged integer library as individual
types. C++ inheritance simplifies the implementation of new coordinates. Sparse grids
are implemented efficiently via CRTP (Coplien, 1995) callback functions, which eliminate
virtual function overhead and enable inline code. In the following, the conciseness of
this approach is exemplified for an implementation of a fully sanitized 2 × 2 neuron
coordinate.

struct NeuronOnQuad :
public GridCoordinate<NeuronOnQuad, XRanged<1, 0>, YRanged<1, 0> >

{
NeuronOnQuad() = default;
NeuronOnQuad(x_type const& x, y_type const& y) :

self_type(x, y) {}
};

x_type, y_type and self_type are defined as part of the base class, which also provides
the common grid, enumeration, serialization and C++11 hash map interfaces. The new
coordinate can subsequently be used according to:

NeuronOnQuad a(X(1), Y(1));
NeuronOnQuad b(Enum(3)); // references same neuron via enum
NeuronOnQuad c = NeuronOnHICANN(Enum(0)).quad();

The first two examples, a and b, reference the same neuron in Cartesian and enumeration
coordinates, respectively. The third example briefly outlines a coordinate conversion.

4.2.4 Handles
Every HALBe interface function expects a hardware handle as its first argument.
Handles reference target hardware components and aggregate shared state, including
communication channels and lockfile (van Smoorenburg, 2012) handles for low-level
hardware access control.

Polymorphic handles further allow for transparent switching between different avail-
able backends, like single-HICANN, wafer system, transistor level simulation, ESS or
mongoDB database access (MongoDB Inc., 2013). The latter two are briefly introduced
in the following. Using a single consistent code path to access all backends reduces
the software complexity and simplifies verification. Moreover, arbitrary handles can be
combined to carry out the same experiment on multiple backends.

mongoDB Database handles have been implemented for all hardware devices. Chang-
ing the handle instantiation is sufficient to serialize and persistently store any configu-
ration in a database, rather than writing it to hardware. Likewise, experiments can
be read from the database and conducted on e.g., a hardware instance later on. This
functionality is provided by a generic boost::serialization archive for mongoDB
implemented by the author.

42



4.3 Stateful Hardware Abstraction Layer

A web-based visualizer has been developed by Björn Kindler. It access configurations
stored in the database and therefore visualize configurations of any HALBe-based
workflow including marocco, StHAL and HALBe itself.

ESS The ESS is a high-level simulator of the wafer system, see Section 2.2.5. As of
May 2014, the ESS (Vogginger, 2010) was being integrated into the HALBe workflow
by means of the polymorphic handle mechanism (Pape, 2013). This integration is a
significant improvement making the ESS behave more like actual hardware. The ESS
therefore becomes a valuable tool for workflow verification and continuous integration
(Duvall et al., 2007).

4.2.5 Stateless Function Interface
Access to backends is implemented via stateless functions. They typically expect a
handle, coordinates and a configuration container as their arguments. Writing data to
hardware involves three steps. First, the configuration is converted into a hardware
binary format. Then, coordinates are translated into memory locations. Finally, the
data is written using the communication channel referenced by the handle. To read
any configuration or result back from the hardware, the steps have to be carried out in
reverse order, from binary to HALBe format.

HALBe functions have no shared state and are therefore reentrant. However, handles
are not yet synchronized regarding the access to shared resources. Future versions of
HALBe and StHAL (see below) are planned to speed up experiment setup times by
parallelizing the configuration process across multiple FPGAs.

4.3 Stateful Hardware Abstraction Layer
Hardware access at a very detailed level is important for efficient parallelization and
low-level tests. However, it requires extensive knowledge about component interde-
pendencies. StHAL is a shallow layer on top of HALBe that integrates the different
configuration objects into a coherent experiment representation spanning multiple
wafers. Any configuration can be archived, loaded or programmed to any of the sup-
ported backends in a single step. Furthermore, explicit knowledge about hardware
configuration order is no longer necessary. StHAL dispatches HALBe calls in an efficient
manner. Many tasks requiring multiple configuration steps in HALBe, like recording a
neuron membrane trace, can be accomplished by a single call in StHAL.

The software presented in this chapter has been developed by Christoph Koke, Eric
Müller and the author.

4.3.1 Connection Database
The StHAL connection database helps to keep track of the connectivity between
pluggable components to establish communication with the appropriate devices auto-
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matically. For example, setting up an analog membrane recording requires configuration
and readout of a HICANN, an FPGA and a USB analog digital converter (ADC) (HBP
SP9, 2014), which otherwise would have to be provided by the user. The database is
also used to load calibration data and correct analog recordings automatically.

4.3.2 Python Bindings
StHAL captures the complete configuration space provided by HALBe and adds inter-
faces to conveniently access functionality involving several components. Furthermore,
the underlying containers can consistently be accessed using the type-rich HALBe
coordinate system via C++ array overloads. Notably, this enables Python bindings that
closely resemble the native StHAL interface. Frequently, when one language is wrapped
to another, mandatory interface changes have to be made in order to be syntactically
compliant with the target language. For example, Python functions typically return
values by reference. However, these references require an lvalue assignment before being
accessed, except for array operators. Using array overloads renders the following a valid
C++ and Python expression.

hicann.neurons[NeuronOnHICANN(X(0), Y(42))] = Neuron();

Here, the 42nd neuron in the upper synapse array on hicann is reset to its default
values.

4.4 Summary
In this chapter, two modern low-level interfaces have been presented. They built a solid
foundation for unified access to a complex, inhomogeneous hardware systems. The
separate layers allow fine grained, race free access on the one hand and a convenient,
configuration-order-invariant interface on the other. Future versions of StHAL are
planned to speedup configuration times by parallelizing the access to multiple FPGAs

The novel, type-rich API makes the low-level interfaces more expressive, concise
and robust. Most importantly, they provide more surface for static code analysis.
While coordinates rigorously detect any out-of-bound access during runtime. On these
grounds, the HALBe interface design has been adopted for other prototype systems as
well.
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Figure 4.2: An illustration of HALBe coordinates for HICANN (31,3) (2) on reticle (7,2)
(1). Coordinates address components either as enumerations or grid coordinates, denoted as
plain indices and combinations of x, y, respectively. Item (3) shows the mapping of DNC
mergers to SPL1 repeaters. The cutout at item (3) exemplifies the usefulness of Cartesian
coordinates for the addressing of synapses, synapse drivers and select switches. Lastly, the
neuron inter-connection topology across and within blocks of 2 × 2 neurons is illustrated (5).
This figure has been published by the author in the neuromorphic platform specification
document (HBP SP9, 2014). 45





5 Mapping Neural Networks to Hardware
Specific Configurations

Manually implementing neural networks at chip-scale using the low-level interface is
a challenging task due to the complexity of the wafer system. Implementing larger
networks becomes rapidly infeasible. An automated translation of abstract neural
network descriptions to hardware specific configurations is therefore required for
HMF-scale experiments. Furthermore, it enables users without detailed hardware
knowledge and hardware experts alike to utilize the system.
This chapter outlines the general requirements for such an automated translation.
A strategy is introduced to derive configurations for the wafer-scale system in a
modular feedforward fashion. The subsequent chapter presents implementations
thereof, closely following this strategy.

In the following, the term mapping is used to refer to the translation of abstract neural
networks to hardware specific configurations.

5.1 Motivation
Any neural network experiment supposed to run on the HMF has first to be translated
into a corresponding hardware configuration. However, no canonic way exists to
derive such configurations. In fact, it is not even clear what corresponding refers
to. Generally speaking, corresponding configurations should closely resemblance the
intended network dynamics within the constraints of a particular simulation substrate.
Software simulators, for example, distort the dynamics due to limited machine precision
and numerical artifacts. On analog hardware, the distortions are less subtle, including
noise, fixed pattern variation, as well as limited parameter ranges and communication
bandwidth.

How close a configuration resembles the model has to be quantified by means of a
measure. An appropriate measure helps to preserve certain properties or aspects of
the model during the mapping by quantifying the aberration. However, appropriate
measures are model dependent, i.e., some networks are rather sensitive to analog
variations, while others require the realization of particular synapses.

For simple experiments many configurations may exist that resemble the intended
experiment equally well. For example, neurons can be placed to alternative locations
or connections can be routed differently. The task of finding configurations that closely
resemble the network model becomes increasingly complex with increasing network size.

47



5 Mapping Neural Networks to Hardware Specific Configurations

At some point, solutions might no longer exist without accepting distortions like the
loss of synapses. The acceptable degree is model specific.

Generally, any configuration can be established manually via the interfaces presented
in Chapter 4. However, it requires detailed knowledge of the system, takes a lot of
time and is prone to user errors. Often it is not even clear, what is the most promising
strategy to set up a given network with as little distortions as possible. Additionally,
configurations are hardware instance specific due to individual variations and defects
and cannot easily be swapped between different setups. Moreover, exploiting the
accelerated nature of the system for extensive parameter sweeps demands configuration
updates at high rates.

Ultimately, realizing networks with up to 106 neurons BSP (BrainScaleS, 2014) and
up to 109 neurons in the HBP (Markram, 2012b) on specialized hardware like the HMF
mandates an automated tool chain for model compilation. A first version of such a
tool has been developed in cooperation between Dresden and Heidelberg as part of the
FACETS project (Brüderle et al., 2011). A faster, more modular successor has been
developed as part of this thesis. This so-called marocco framework is explained in more
detail in Chapter 6.

5.2 Requirements
This section discusses the key requirements that need to be addressed by any suitable
HMF mapping flow and briefly outlines how marocco approaches them. These require-
ments are not fixed and may change over time as the system evolves and new use cases
are discovered.

5.2.1 Modularity and Extensibility
The HMF is a complex, highly configurable system for large-scale neural network
emulations. However, it is also an explorative platform for studying novel computing
paradigms and seeking future applications for accelerated neuromorphic hardware
systems. Any mapping has to inevitably reflect the inherent complexity of the hardware
system to provide access to all its features, but at the same time needs to be flexible
enough to support hardware changes as well as evolving requirements.

Marocco therefore uses a feedforward approach, described in Section 5.3, to divide
the mapping task into a sequence of smaller mapping steps. This modularizes the
translation process, reduces the overall complexity and simplifies development. Notably,
feedforward approaches are frequently used to solve similar problems, see Section 5.3.2.
Marocco further provides a suite of unit tests and uses continuous integration to verify
changes to implementations and monitor progress.

Moreover, many former mapping responsibilities, like calibration and the translation
of experiment results into the biological model domain, have been moved into modular
software libraries or independent workflow components. Well-defined IPC interfaces
between workflow components structure the mapping further, as explained in Chapter 2.
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5.2.2 Objectives and Guidance
The mapping has to establish configurations that closely resemble the intended neural
network from a topological as well as a functional point of view. A proximity measure
is required to quantify the model distortion, as discussed earlier. Generally, finding
configurations that minimize the distortions is a multi-objective optimization problem
(Hwang and Masud, 1979). However, finding the most suitable measure is a problem in
its own regard and strongly depends on the network. A reasonable, general optimization
objective that allows to optimize generic networks was found to be the number of
lost synapses because connectivity is frequently the limiting resource. Analog neuron
properties, on the other hand, can be configured individually, see Section 1.4.1. Thus,
maximizing the number of realized synapses is a reasonable first-order approximation
to minimize network distortions.

The mapping task becomes more challenging as the network models grow larger
and resource limits are approached. At some point, it might no longer be possible to
implement the model without accepting e.g., synaptic loss. However, a few synapses
might be functionally more important than many others. Manual guidance is therefore
necessary to handle a wider range of possible network models and applications with
a single tool. Marocco provides users with the ability to add mapping constraints in
order to optimize configurations for their personal intend. For example, neurons can be
placed manually to preserve the neighborhood relationship of model neurons, which
typically reduces synaptic loss, see Section 8.5. Furthermore, synaptic connectivity can
be prioritized to guide potential loss either towards synapses that are functionally less
important or assert particular connections. A list of implemented mechanisms is given
in the final thesis discussion.

5.2.3 Defect Handling
Wafer-scale integration is the key technique that provides energy efficient, high band-
width communication for the wafer system. However, random manufacturing defects
inevitably remain in the system, as explained in Section 1.6. The wafer-system allows
to workaround most localized defects by setting up the configuration appropriately,
e.g., defect neuron circuits can be omitted or Layer 1 connectivity routed differently.
The mapping has to respect defects and find workarounds, wherever possible and
appropriate, to efficiently realize reproducible network experiments at wafer scale.

The implementations presented in Chapter 6 can algorithmically handle defect
neuron circuits, mergers, Layer 1 network components, synapse drivers and synapses.
The management, blacklisting of components and integration of defect maps into the
mapping flow is discussed in Chapter 7.

5.2.4 Performance
Finding suitable configurations as fast as possible is important to exploit the accelerated
system for extensive parameter sweeps on the one hand and to increase hardware
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utilization for multi-user operation on the other, as described in Section 2.2.1. A
very slow network translation, on the other hand, might even render very large neural
networks computationally inaccessible.

Clearly, the algorithmic complexity and therefore the mapping time inevitably
depends on the size of the neural network model. In fact, any implementation has to
scale at least linear with the number of model synapses because every synapse needs to
be handled individually. Notably, the number of synapses in networks of N neurons
and with predominantly local connectivity is N , opposed to N2 for random network
topologies.

A short introduction to algorithmic complexity follows to characterize the perfor-
mance of implementations in Chapter 6. Afterwards, distributed and shared-memory
parallelization are briefly discussed (Shan and Singh, 2001), regarding their suitability
for the mapping task.

Algorithmic Complexity

The BSP and HBP target network sizes of 106 and 109, respectively. This mandates
the use of efficient algorithms and data structures to derive suitable configurations in
reasonable time.

The Big O Notation is used in the following to characterize the algorithmic complexity
as a function of the input size N . Here, f(N) = O(g(N)) denotes that c · g(N) provides
an upper bound for f(n). Thus, a constant c exists such that f(n) ≤ c · g(n) for all
n > n0 and a sufficiently large n0.

The Big O Notation provides machine independent comparability by characterizing
runtime in terms of lower and upper bounds rather than specific time measurements.
For example, a simple linear algorithm might run on a given input for 100 s, but runs
twice as long on a machine only half as fast. This methodology is explained in more
detail by Skiena (2008).

Parallelization

Apart from more efficient algorithms, parallelization can be used to speed up program
execution. In this case, the actual problem in question remains at least as complex
as in the sequential case, but is solved by multiple processors in parallel. Not every
problem can be parallelized efficiently. Two major approaches exist, distributed and
shared-memory parallelization, which mainly differ in terms of data locality and
communication overhead. Their suitability regarding the translation of neural networks
to hardware configurations is discussed in the following.

Distributed parallelization (Graham et al., 2006) is beneficial in situations where
the problem can be divided into smaller subproblems and only little synchronization
is required between the processes solving the individual parts. This approach is
typically employed on computer clusters build around a fast, low-latency network. The
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main advantage of this approach is the scalability beyond single-machine boundaries,
i.e., computers can be added to cope with larger problems. For problems that
require a lot of communication, the network latency ultimately becomes the dominating
bottleneck. In fact, many problems can be solved faster on a single machine due to
lower latency. Furthermore, designing and implementing efficient distributed algorithms
is typically more complex compared to sequential versions.

Shared-Memory parallelization (Robbins and Robbins, 2003) provides cheaper means
of communication and process synchronization, which renders more problems susceptible
to concurrent execution. Multiple threads of execution operate on a shared memory. The
scalability of this approach is limited by the number of processing units in the system
with access to this memory. Nevertheless, the trend in processor technology is towards
many core systems. Off-the-shelf servers with tens of cores are easily available. One step
further, graphics cards provide thousands of shader units. However, suitable problems
need to be massively parallel and consist of simple subproblems. Matrix multiplication
is a popular example, but even then optimizing performance is a challenging and
platform dependent task (Baskaran and Bordawekar, 2008; Yang et al., 2011).

Suitability Mapping networks at the wafer scope frequently involves the assignment
of shared resources like neurons or Layer 1 buses. Any such assignment requires
synchronization in order to avoid data races or resource overallocation and to make
sure all processes work on up-to-date resource maps. These assignments cannot
efficiently be solved by distributed computation. However, marocco uses shared-memory
parallelization to speed up susceptible mapping tasks that predominantly assign local
resources. The respective benefits and shortcomings are individually discussed for each
implementation in Chapter 6.

5.3 A Wafer Mapping
Mapping arbitrary neural network to hardware is generally a complex multi-objective
optimization problem. Firstly, the quality of accessible solutions is discussed. Then, a
partitioning of the mapping task into a sequence of smaller subproblems is presented.
Subdividing the problem complicates finding globally optimal configurations, however it
improves both, scalability as well as modularity, and is therefore the method of choice.

5.3.1 Optimal Solutions
Finding suitable hardware configurations can algorithmically be seen as a subgraph
isomorphism problem, which is known to be NP-complete (Cook, 1971). Thus, no
algorithms are known to yield optimal solutions in polynomial time. Networks of up to
106 neurons are targeted within the BSP, urging algorithms with polynomial complexity
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and small exponents. Consequently, only good but not necessarily optimal solutions
can be found in reasonable time.

Dividing the problem into smaller subproblems reduces the individual complexity
and therefore makes the overall problem more accessible. Solutions to the individual
subproblems are then used to construct the final, coherent solution to the mapping
problem.

5.3.2 Similar Problems
Similar problems have to be solved by FPGA tools and software compilers to translate
abstract descriptions into designs and machine code, respectively. Without going into
detail, these complex problems are typically solved by complex tools that are either
proprietary or developed by large open source communities over years GCC (2014).
Even though problems and tools vary, they mostly use linear, feedforward approached
to divide the overall problem and solve the respective subproblems. For example,
FPGA designs are derived in successive steps such as net partitioning, chip planning,
placement, clock tree synthesis, signal routing and timing closure (Kahng et al., 2011).
The modular flow further allows to use third party tools for individual steps. These tools
may provide access to specific features, not part of the primary tool chain (Krupnova
and Saucier, 2000).

5.3.3 Feedforward Mapping Approach
Originally, the mapping had been coarsely divided into a placement and routing step,
inspired by existing FPGA design tools (Kahng et al., 2011). This approach has
been described by Fieres et al. (2008). Using a finer-grained partitioning helps to
improve the modularity of the workflow. However, partitioning the problem into many
small subproblems, complicates finding globally optimized solutions. Reasonably, the
mapping steps resemble the natural steps involved in manually setting up hardware
configurations using the low-level interfaces described in Chapter 4. Figure 5.1 illustrates
the individual functional wafer components that have to be configured in order to set
up an experiment.

Moreover, the feedforward mapping should establish connectivity consistently from
either source to target or the other way round to simplify the process of combining the
individual solutions. Establishing connectivity following the flow of information from
source to target is the more natural order, as Layer 1 routes start at a single SPL1
repeater and subsequently branch out to reach multiple terminals. Whereas guiding
routes in backward direction from multiple targets towards the source repeater and
merging the bus allocations along the way requires more effort.

The mapping task has ultimately been divided into a sequence of seven individual
steps, which are briefly outlined in the following. Detailed algorithmic descriptions for
implementations of these steps are given in Chapter 6.
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Figure 5.1: An overview of the connection topology of the wafer-scale system. The modular
feedforward mapping derives configurations for all configurable components following the
flow of information. Initially, neurons (1) have to be placed and neuron circuits combined
depending on the input requirements. Next, spikes from multiple neurons and external
sources are merged (2) and inserted via SPL1 repeaters (3) into the Layer 1 network.
Crossbars (4) and repeaters are configured to establish long range connectivity. Whenever a
route reaches a target chip, events are relayed from vertical buses into the synapse array via
synapse drivers (5). Finally, synapses (6) forward events vertically to target neurons.

Neuron Placement

The neuron placement is responsible for assigning model neurons to hardware neurons.
This is necessarily the first step, subsequent steps require the hardware locations of
source and target neurons to establish connectivity and set parameters. The neuron
placement has a significant impact on the final loss of model synapses, e.g., placing
densely connected neurons far apart leads to an increased routing resource utilization.

The neuron placement is also responsible for the size and shape of hardware neurons.
Model neurons that receive many inputs benefit from a larger hardware representation,
since every circuits adds another column of synapses. Whereas neurons receiving only
a few inputs can be placed closer together in order to save neurons and use the routing
resources more efficiently.

Currently, simple heuristics are used to guide the placement process. Future imple-
mentations could, for example, use edge-cut minimizing graph partitioning algorithms
(Karypis et al., 1998).

Analog properties of hardware neurons can mostly be neglected during the placement
because all neuron parameters except Vreset can be set and calibrated individually.
However, blacklisted neuron circuits have to be omitted in the process.
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5 Mapping Neural Networks to Hardware Specific Configurations

Merger Routing

The merger tree, as explained in Section 1.5.1, routes events from neurons, background
generators and external sources to SPL1 repeaters connected to specific horizontal
Layer 1 buses. The merger routing however, is only concerned with neurons and
background generators. External sources can be assigned more freely on the lowest
merger tier and are mapped in the subsequent step.

Theoretically, 6 bit Layer 1 events from 64 sources can be merged in order to save
routing resources. However, some addresses have a special purpose, i.e., address 0 is
used for repeater locking (see Section 1.5.5) and four more addresses are reserved to
implement disabled synapses. The latter is a consequence of the two stage address
decoding scheme explained in Section 1.5.4. Horizontal synapse rows and neuron
collector lines are connected whenever the lower 4 bit of an address match, even if
the digital weight is set to zero. Thus, a 4 bit word is dedicated to avoid leakage
conductance for disabled synapses by setting the decoder to an unused value (Vogginer,
2013; Schemmel, 2014a). In consequence, only 59 of 64 possible spike sources can be
used.

In general, configurations should minimize the local SPL1 requirements in order to
leave more Layer 1 resources for other connections and more repeater for external spike
input. An advanced merger routing might also consider bandwidth requirements of
individual neurons. However, no generic method exists to predict firing rates prior to
experiment execution. A modeler could provide estimates to guide the process in future
implementations.

Finally, blacklisted mergers have to be omitted. Neuron circuits belonging to defect
mergers in the topmost tier should also be blacklisted because no means exist to route
events from these neurons.

Spike Input Placement

The spike input placement assigns external FPGA spike sources to SPL1 repeaters. In
accordance with the previous merger routing, up to 59 spike sources can be mapped
arbitrarily to available SPL1 repeaters. Unlike neurons, the bandwidth requirements
for spike sources can be estimated beforehand. An advanced input placement should
minimize Layer 1 resource requirements on one hand and limit the accumulated
bandwidth to avoid event dropping on the other. Additionally, inputs can be duplicated
and injected at multiple locations to avoid long connections spanning the whole wafer.

Wafer Routing

The wafer routing derives crossbar switch and repeater configurations to connect as
many mapped SPL1 repeaters as possible to vertical buses on chips with efferent
neurons.

The complexity of the task depends heavily on the actual neural network topology and
the ability of the prior neuron and spike input placement to preserve locality. Layer 1
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routes start on a single horizontal bus defined by the SPL1 repeater assignment as part
of the merger tree routing and spike input placement. Afterwards, they branch out to
reach efferent neurons on multiple target chips. Events from different chips cannot be
merged into a single connection. Hence, sources from any chip compete with sources
from other chips for exclusive access to the same shared Layer 1 resources. Each route
should therefore be as short as possible in order to reduce the amount of bus allocations
and leave more resources to other connections. In a first order approximation, the
problem is equivalent to the minimum rectilinear Steiner tree problem, which is known
to be NP-hard (Karp, 1972; Garey and Johnson, 1979). The actual problem is even
more complex because there are e.g., fewer horizontal bus segments than vertical ones
making the former more valuable.

Finally, implementations need to establish routes around blacklisted buses, switches
and repeaters.

Synapse Driver Routing

In this routing step, inbound Layer 1 connections or more specifically vertical Layer 1
buses are assigned to drivers in order to relay events into synapse arrays of chips
hosting efferent neurons. The assignment is mainly constrained by the limited amount
of drivers and the sparse select switch topology. Multiple adjacent drivers can be
combined to map larger source address spaces within the capacitive Layer 1 limits.
The actual number of synapse drivers necessary to realize all synapses depends on the
afferent address space distribution, STP parameter sets, shape of efferent neurons and
availability of synapses.

Typically, more synapse drivers should be assigned to inbound connections imple-
menting more synapses, while connection with any local target should still receive at
least a single driver. Their corresponding Layer 1 resources might otherwise be allocated
in vain. However, this cannot be guaranteed because of up to 16 vertical buses compete
for 14 shared drivers due to select switch sparseness and the relatively low number of
drivers in relation to the number of vertical buses. Again, implementations have to
deal with blacklisted components, in this case select switches and synapse drivers.

Synapse Array Routing

The synapse array routing does two things: firstly assigning 2 MSB values to the synapse
driver decoders and secondly assigning model synapses to hardware instances.

The first step maps the afferent address space to sets of synapses according to
the A, B, C, D pattern illustrated in Figure 1.6. Spike sources with the same 4 LSB
and synapse type can be realized as part of the same set. The address space should
therefore be mapped such that the set sizes represent the relative number of synapses in
order to minimize the amount of synapses that are lost during the subsequent synapse
assignment.

Then, model synapses are assigned to available hardware synapses in the order they
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5 Mapping Neural Networks to Hardware Specific Configurations

appear in the model description. Future implementations could also cluster synapses
with similar efficacies to maximize the dynamic range for weights in the same row,
see Section 6.7.3. All model synapses can be realized if a sufficient number of drivers
has been assigned in the previous synapse driver routing, not too many synapses are
blacklisted and the afferent address space is mapped appropriately. Otherwise synapses
can get lost.

Parameter Transformation

The last mapping step towards a complete hardware configuration is concerned with
technical parameters to establish a operational regime, spike input generation and
analog neuron parameters.

Firstly, the operational regime is established, which is typically a model independent
task. Next, neuron parameters are translated from the biological model domain into
the hardware parameter domain such that the hardware dynamics closely resemble
their model paragon. However, the accessible parameter ranges for time, voltage,
currents and capacities differ between biology and hardware. For example, biological
voltages are typically in the mV range, whereas CMOS transistors operate in the volts
domain. Parameters have therefore to be scaled and subsequently be corrected for
individual circuit variations according to calibration data. Scaling and calibration are
both described in more detail by Schwartz (2012) and in Section 6.7. Finally, input
spike sequences have to be translated into the HTD and stochastic spike sources have
to be expanded.
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Feedforward Wafer Mapping

The previous chapter introduced a decomposition of the mapping task into a series
of simpler mapping steps in order to increase modularity and lower the overall
problem complexity. This chapter presents implementations of these mapping
steps provided by the marocco mapping framework, which has been established as
part of this thesis. During the design and development a special focus was put
on their scalability towards large neural networks and large-scale neuromorphic
hardware systems.
Inside knowledge about the inner workings is neither necessary to map neural
networks nor to run hardware experiments. However, it may help to express PyNN
experiments in a form that is more accessible for automated translation or to
manually guide the mapping process towards less distorted configurations.

The algorithms are introduced following the course of the feedforward mapping approach
introduced in Chapter 5. For each step, first a short description of the input and expected
output is given. These inputs and outputs internally correspond to well-defined C++
data structures, simplifying the development of new or domain-specific implementations.
Hardware defect maps are another input, which is typically provided by a database, see
Chapter 7. They are listed separately to distinguish them from the user input defined by
the neural network description. From an operational point of view, handling user input
and defects is equally important, e.g., model neuron placed to defect neuron circuits
are of little use at best or may even interfere. In addition to the explicit inputs, all
mapping steps have read-only access to the PyHMF network description, see Section 3.2,
and write access to the StHAL configuration container, see Section 4.3. At the end of
each section, the algorithmic complexity of the individual implementations is briefly
discussed. Benchmark results for marocco are given in Chapter 8. The chapter closes
with the RoQt routing visualizer, which provides quick access to Layer 1 and synapse
driver connectivity, helping users to identify resource bottlenecks in their configurations.

Preliminary versions of Sections 6.1 to 6.7 have been published by the author in the
neuromorphic platform specification document (HBP SP9, 2014).
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6.1 Neuron Placement
Input: A list of available HICANN chips in the HMF; Optionally, a partial or

complete user defined population placement.
Output: An assignment of every model neuron to a set of hardware neuron circuits.
Defects: Blacklist of neurons.

The redesigned mapping process provides a simple but fast neuron placement imple-
mentation. In PyNN, network connectivity is typically established between populations.
Thus, populations tend to have common sources and targets. Heuristically placing neu-
rons within a population to the same chip saves routing resources because synapses can
be realized by shared Layer 1 connections. This works particularly well for feedforward
neural network architectures. However, population views and assemblies simplify the
realization of other connection patterns (see Chapter 3), rendering the heuristic less
effective. Users may improve the mapping quality by partitioning their networks such
that populations aggregate neurons that are intended to end up closely together on the
wafer.

Additionally, users can flexibly place populations to individually sized hardware
neurons, providing fine-grained control over input counts. This is a major advantage
over the older predecessor mapping, where all model neurons had to have the same
hardware neuron size. The current implementation only allows block shaped neurons,
which can receive events from both, top and bottom, synapse arrays to simplify synapse
array routing later on. Thus, neurons have to consist of an even number of circuits.
Consequently, events can be relayed to neurons from the top and bottom synapse
arrays. In practice, the restriction to block shapes is only a minor limitation, because
input counts of medium sized networks easily exceed the number of synapses provided
by a single neuron circuit. In fact, a reasonable default size has found to be eight
interconnected circuits, see Chapter 8.

Guidance
The implementation allows users to guide the neuron placement by explicitly specifying
target chips for populations. The modeler can also control the shape of neurons indi-
vidually for each population to tune the input counts, such that neurons in populations
receiving lots of input are realized as larger hardware neurons. Whereas neurons
receiving little input can be realized by smaller hardware neurons to save resources.
The following code listing demonstrates how the neuron placement can be controlled
from a PyNN script.

marocco = Pymarocco()
marocco.placement.setDefaultNeuronSize(4)
setup(marocco=marocco)

# ...
p = Population(113, IF_cond_exp)
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6.1 Neuron Placement

Figure 6.1: The PyHMF population graph (1) is sorted by in-degree in descending order (2).
Populations from the list are placed iteratively to hardware neurons on chips spiraling
outwards from the center of the wafer (3). This simple heuristic keeps neurons within a
population close together on the wafer. Moreover, populations with lots of input are likely
to end up closer to the center, which reduces the routing resource requirements, assuming
that sources are uniformly distributed on the wafer.

targets = [HICANNGlobal(X(14), Y(20)), HICANNGlobal(X(15), Y(20))]
marocco.placement.add(population=p, targets=targets, size=8)

Initially, a PyMarocco instance is generated and the default neuron size set to four. Then,
a population of 113 neurons is placed to the HICANN chips with Cartesian coordinates
(X, Y ) = (14, 20) and (15, 20). Neurons in this population will be represented by
hardware neurons consisting of eight circuits, despite the default. The PyMarocco
object is the PyHMF interface for the mapping framework and is described in Section 6.8.

Algorithm
The algorithm keeps track of available neuron circuits to make sure they are only
assigned once or not at all in case of blacklisted circuits. First, manually placed
populations are placed to their respective hardware locations. Whenever the manual
placement runs out of resources because either not enough chips have been specified
for a population or too many neurons have been blacklisted, the assignment fails and
the user is informed.

In the next step, all remaining populations have to be placed. The process is
illustrated in Figure 6.1. Firstly, populations are sorted in descending order based
on their in-degree in the population graph, i.e., populations receiving more input are
placed earlier. Secondly, all available chips are sorted in ascending order based on
their location (X, Y ). For any two chips at (X0, Y0) and (X1, Y1), chip 0 appears prior
to chip 1 if it is closer to the center of the wafer. In case they are equally far away,
chip 0 appears before chip 1 if α0 is smaller than α1 for αi = atan2 (Xi, Yi). The
resulting ordering lists chips along an imaginary spiral, starting in the wafer center and
growing towards the wafer boundaries. Starting with chips in the center helps to avoid
boundary effects like reduced Layer 1 resource densities for the outermost HICANNs.

59



6 A Scalable Implementation of a Feedforward Wafer Mapping

Furthermore, the resulting placement has a convex shape, which can be beneficial for
some wafer routing implementations, for example, the iterative horizontal growth wafer
routing introduced in Section 6.4.4.

Now, populations and chips are iteratively taken from the beginning of both lists.
Each time, as many as possible model neurons are assigned to available hardware
neurons from left to right. Not yet assigned model neurons are reinserted at the
beginning of the population list in order to be assigned in the next iteration. How many
hardware neurons are required depends on the number of model neurons, the defect
distribution and the hardware neuron size. The latter is given by a configurable default
size. If a chip provides more neurons than necessary, it is reinserted at the beginning of
the chip list and used for the next population. Even though large populations may end
up being fragmented across multiple chips, they are guaranteed to be placed nearby.
This reduces the routing resources necessary for connections targeting this population.

By default, the number of available hardware neuron circuits per chip is artificially
constrained for hardware neuron sizes of 4 and 8 to increase the Layer 1 address
utilization, as explained in Section 5.3.3. Fewer SPL1 repeaters are required in the
subsequent merger routing stage to route events from all neurons off chip, if the number
of placed model neurons is reduced to 118 and 59 for 4 and 8-circuit configuration,
respectively. Experiments have shown that this is generally beneficial to improve the
synaptic loss. However, can be turned off to increase the number of available neuron
circuits.

Runtime
Initially, two lists are sorted. Sorting is done in O(n) = n lg n, where n denotes
the number of elements in the list. Then, model neurons are iteratively assigned to
hardware neurons. In the worst case, only a single neuron is assigned per iteration.
This contributes a worst-case limit of O(N) = N for N neurons. The contributions
sum up to

O(n, m) = m lg m + n lg n + N , (6.1)

where n is the number of populations and m the number of chips. Which of both
sorting terms dominates the runtime ultimately depends on the input size. In any
case, the implementation is efficient enough to place a large number of neurons to large
deployments of the HMF.

6.2 Merger Routing
Input: Neuron placement.
Output: A merger tree configuration and Layer 1 address assignment.
Defects: Blacklist of mergers and SPL1 repeaters.

After the model neurons have been placed, the next step towards connecting neurons
is to map their outputs to SPL1 repeaters. As explained in Section 5.3, only 59 of
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Figure 6.2: The merger routing algorithm connects neuron blocks (1) to SPL1 repeaters (2).
The number of placed neurons is indicated above each block. Moreover, already established
merger configurations are indicated by solid lines within mergers, while currently considered
ones are shown as dashed lines, see text. The neuron blocks greyed out on the right have
been merged via DNC merger 5 in a previous iteration. The remaining blocks from 0 to 3 are
currently considered to be merged via DNC merger 3. However, by adding block 0, the total
number of neurons would exceed 59, thus only blue connections are established. Block 0 will
be routed via SPL1 repeater 7 in a later iteration.

the theoretically 64 available addresses can be used. Address 0 is reserved repeater
locking and all four addresses of format XX0001 are reserved to reduce leakage for
unused hardware synapses, with X ∈ {0, 1}. Thus, events from up to 59 neurons in
different neuron blocks can be merged in order to save Layer 1 resources. To establish
the event routing for the merger tree, every merger is set to either forward its left, its
right or both of its inputs. Figure 6.3 recaptures the merger tree topology introduced
in Section 1.5.1 and illustrates the iterative merger routing implementation.

Unlike its name, the merger tree is actually not a tree. It is an overlay of 8 trees
with the SPL1 repeaters as their respective root nodes. The complete structure can be
modeled more conveniently as a directed acyclic graph. Edges connect mergers from
lower tiers to mergers in higher tiers. Using a graph, rather than implementing the
fixed topology as part of the algorithm, allows to keep the algorithm generic and to
cope with defects efficiently, i.e., blacklisted mergers are simply skipped during graph
construction.

Looking at the merger tree, one of the first things to notice is that mergers are not
equally capable of multiplexing events from different blocks. For example, the bottom
most merger connected to DNC merger 3 is the only merger capable of collecting events
from all neuron blocks. DNC merger 5, on the other hand, can only capture events
from blocks 4 to 7. The algorithm considers mergers in a fixed order from more to less
capable in order to find configurations that use as few as possible SPL1 outputs.

In a first trial, a breadth-first search (Skiena, 2008) is started from DNC merger 3
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to discover reachable neuron blocks. If less than 59 model neurons are placed on the
chip and no defects are present, merging all blocks yields a complete, efficient and
valid configuration. Therefore, DNC merger 3 is set to forward its right input, all
intermediate mergers are set to forward both inputs and all other top mergers except
merger 3 are set to right only. Additionally, the top merger 3 has to merge address 0
events from the background generator to lock repeater DLLs. If all blocks have been
captured, no further trials are necessary, otherwise the current trial is discarded.

In a second trial DNC mergers are considered for merging in the following fixed order
5, 3, 1, 6, 4, 2, 7, 0. Unlike the first trial, assignments are established iteratively and
partial configurations are kept even if not all reachable blocks can be captured because
the total number of neurons would exceed 59.

In each iteration, the accessibility of yet unassigned blocks is determined by means
of a breadth-first search originating from the current DNC merger i. Then, starting
from the top-tier merger i, as many as possible accessible, neighboring blocks to
the left and right of merger i are merged until the total number of neurons exceeds
59. Neurons within these blocks are therefore assigned to the corresponding SPL1
repeater and require no further treatment. The actual merger configuration is found by
following the path established during the graph search to each of the captured blocks.
Moreover, the top-tier merger i is configured to forward both its inputs in order to
insert address 0 background events and the bottom DNC merger i is set right only.
Afterwards, utilized mergers are removed from the graph and are therefore no longer
considered in subsequent iterations. The iteration terminates as soon as there are no
more pending blocks or all DNC mergers have been processed. DNC mergers that
have not yet been assigned are available for spike input placement in the subsequent
mapping step.

The initial trial with merger 3 is important in order to find optimal configurations
when all neurons can be mapped to a single SPL1 repeater. However, starting the
second trial with merger 3 can yield an unresolvable edge case where neurons from
blocks 3 and 4 can be merged but not from block 5.

Finally, 6 bit Layer 1 addresses are assigned to neurons. The assignment is in principle
arbitrary, however, using consecutive addresses to minimize the number of different
MSB decoder values improves the synapse driver assignment later on. Furthermore,
addresses are assigned from the highest to the lowest address because the lowest address
block [0, 15] contains 2 reserved addresses.

On the bottom line, the strategy produces efficient configurations for arbitrary neuron
placements in terms of Layer 1 bus utilization and can also handle merger defects
efficiently.

Runtime
In the worst case, all 8 mergers have to be considered in the second trial, which requires
constant time per chip independent of the actual neural network extent. Thus, a local
merger routing for N chips is established in linear time O(N) = N .
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Figure 6.3: The spike input placement is responsible for assigning spike sources to SPL1
repeaters. Spike inputs (1) are inserted at SPL1 repeaters on chips at or near the geometric
center (2) of their corresponding target chips (3). Sources targeting many chips are assigned
in an earlier iteration and can therefore be assigned more freely.

Furthermore, merger tree configurations for multiple chips are derived efficiently in
parallel. No means of synchronization are necessary because only chip-local resources
are assigned.

6.3 Spike Input Placement
Input: Neuron placement and a list of remaining SPL1 repeaters.
Output: Mapping of spike inputs to SPL1 repeaters and Layer 1 address assignment.
Defects: Blacklist for SPL1 repeaters.

The spike input placement is responsible for mapping external spike sources to SPL1
repeaters as injection points into the Layer 1 network. The actual spike trains are
prepared as part of the parameter transformation, described in Section 5.3.3, because
spike times depend on the speedup of the system, which is subject to analog neuron
parameters. Note that the coordinates of input FPGAs and DNCs are implicitly
defined by the HICANN coordinate and the FPGA interconnection topology. In fact,
the StHAL interface provides HICANN-based access to input spike trains.

The algorithm minimizes the required Layer 1 resources, later required in the wafer
routing, by injecting spike inputs close to the geometric center of their corresponding
target chips, as shown in Figure 6.3. Key to a fast implementation is to find suitable
insertion points efficiently. Therefore, available SPL1 repeaters are organized in a
KD-tree data structure (Bentley, 1975). The nanoflann C++ library (Blanco, 2013)
provides the necessary nearest neighbor algorithms.

Initially, spike input populations are collected in a list and sorted in descending order
by the number of target chips. Afterwards, the ideal insertion point is determined for
each entry as the closest available SPL1 repeater to the geometric center of the target
chips. All SPL1 repeaters which are not blacklisted and have not yet been designated
for relaying events from neurons are available for external inputs.

Iteratively, input populations are taken from the front of the source list. The SPL1
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repeater closest to the ideal insertion point is then queried in the KD-tree. Again, up to
59 sources can be mapped to a single SPL1 repeater. If the number of sources exceeds
the remaining capacity of the SPL1 repeater, as many as possible sources are assigned
and the remaining ones are reinserted at the front of the source list. In case the repeater
has been fully assigned, it is removed from the tree. The algorithm terminates when
either all inputs have been assigned or the system runs out of available SPL1 repeaters.
In the latter case, the user is informed.

Runtime
The worst-case runtime for M inputs and N chips is given by

O(N, M) = N2 + M · N . (6.2)

The first N2 term is contributed by the initial KD-tree construction, while the second
M · N term denotes the repeated queries and deletions from the tree for all M inputs.
In the average case, the KD-tree access complexity is reduced to N lg N , resulting in

O(N, M) = (N + M) · lg N . (6.3)

Thus, the implementation can be used up to large hardware and neural network sizes.

6.4 Wafer Routing
Input: Neuron Placement; Assignment of neurons and spike sources to SPL1 re-

peaters.
Output: A complete configuration of crossbar switches and repeaters; A mapping of

afferent neurons to vertical buses on chips with efferent neurons.
Defects: Blacklists for buses, repeaters and crossbar switches.

The wafer routing configures repeaters and crossbar switches to establish long-range
connectivity via the Layer 1 network. Here, two implementations are presented, a simple
one using Dijkstra’s algorithm to discover shortest paths iteratively and an optimized
Layer 1 graph search that minimizes horizontal bus allocations. Both algorithms
efficiently realize detours to cope with non-rectangular routing grids resulting from
wafer boundaries, defect elements or local congestion. In this context, a detour is simply
an alternative route that leads around an obstacle, like blacklisted Layer 1 buses.

6.4.1 Graph-Based Wafer Network Representation
Graphs provide a natural representation of the Layer 1 network. Topology, defects
and current resource utilization can be represented alike. The major advantage of
this approach is that algorithms can be developed more generically. They recursively
discover possible routes by searching the graph. Whenever a route is established,
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Figure 6.4: The Layer 1 routing topology is implemented as an undirected graph. Hori-
zontal (1) and vertical (2) buses are represented as vertices, while repeaters and switches
connecting buses are realized as edges. Defect hardware components, like the repeater
highlighted in yellow, are left out during graph construction and therefore omitted during
the wafer routing.

participating components are removed from the graph to keep an up-to-date map of
currently available resources. Decoupling the algorithm from the network topology
renders the implementations more flexible to topology changes and can be used to test
future hardware designs, as presented in Section 8.4.4.

The Layer 1 topology is modeled as an undirected graph because buses have no
preferred direction, which means events can be transmitted from left to right and right
to left alike. Buses are modeled as vertices. Crossbar switches as well as repeaters
connect buses, hence they are modeled as edges. Figure 6.4 depicts the mapping
between the Layer 1 fabric and graph components.

The corresponding dual graph, where buses are modeled by edges and vertices
represent switches and repeaters, is unsuitable. This representation splits bus lanes,
such that routes can occupy a fraction of a bus which is physically impossible.

The wafer routing implementations use the boost::graph library (Siek et al., 2001),
a popular and efficient C++ template library that ships with many algorithms.

6.4.2 Common Tasks
Both wafer-routing implementations realize routes iteratively, but use different strategies
to discover candidate routes in the graph. Their commonalities are discussed in the
following to focus on their differences later on.

Route Representation

A Layer 1 route is defined by its starting point at a single source SPL1 repeater, a list
of intermediate buses and the vertical target buses on chips with efferent neurons. Note
that the injection point on the sending side is well-defined down to the single bus. On
the receiving end, any vertical bus running alongside a target chip can in principle be
used to relay events into the synapse array. Pending routes, which have not yet been
routed, are defined as a tuple of the source SPL1 repeater and a list of target chips.

Pending routes can be constructed for every source chip by following all projections

65



6 A Scalable Implementation of a Feedforward Wafer Mapping

originating from local neurons to the efferent populations. Neurons therein are translated
into target chips by looking up their placement.

Importantly, all projections from all neurons mapped to the same SPL1 repeater
have to be routed at once because the necessary resources are removed from the graph
after the route has been established.

Route Priority

Routes are established iteratively. Pending connections that are routed earlier have
access to more resources, making their realization more likely. Thus, routing priorities
are implemented by scheduling the allocation order. By default all pending routes have
the same priority. Pending routes of equal priority are sorted based on the distance of
their source SPL1 repeater from the wafer center. Connections originating closer to
the center are routed first. On the other hand, realizing secluded routes with distant
targets first may congest central areas early. This typically increases synaptic loss,
especially since neurons with high in-degree have been placed towards the center.

Users can guide the wafer routing by specifying custom priorities for PyNN projections.
However, there is no direct correspondence between projections and Layer 1 routes.
Routes can represent multiple projections from multiple populations. The effective
route priority is defined as the maximum priority of any represented projection.

Parallelization

Multiple pending routes compete for the same shared Layer 1 resources. The wafer
routing therefore lacks a natural partitioning into independent subproblems, which
makes it notoriously hard to parallelize. Even if the access to individual buses is
managed such that only a single thread can allocate at any time, competing threads can
still steal buses from other thread, potentially trapping them in unresolvable situations.
Real world approaches exist for parallel routings, however, with limited concurrency
and high synchronization costs (Gort and Anderson, 2010). For reasons of simplicity,
the wafer routing is carried out purely sequential.

Adjacent Synapse Drivers

Events can be relayed from vertical buses to synapse drivers on the corresponding as well
as the adjacent HICANN, see Figure 1.5. In order to simplify the parallelization of the
synapse driver routing in the subsequent wafer routing step, both implementations avoid
configurations where a single vertical bus is used to inject events into both HICANNs.
Otherwise, synchronization is required to ensure that the cumulative capacitive load
on the bus does not exceed the acceptable limit. Dropping this confinement yields
topologically valid configurations, however, capacitive limits are no longer enforced. In
the worst case, twice as many drivers are connected.
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Greedy Iterative versus Global Optimization

Finding globally optimal solutions that minimize the overall synaptic loss are unlikely
to be found with greedy iterative approaches (Black, 2005). Monte Carlo (Motwani and
Raghavan, 1995) multi-objective optimization approaches, on the other hand, strive for
globally optimized solution. Popular examples are simulated annealing (Kirkpatrick
et al., 1983), genetic algorithms (Goldberg, 1989; Mitchell, 1996) or particle swarm
optimization (Parsopoulos and Vrahatis, 2002). The performance of these approaches
generally depends on the efficient generation of candidate solutions and evaluation
thereof. Both conditions cannot easily be met for the wafer routing. For example,
evaluating the synaptic loss as the primary optimization target requires to carry trough
the subsequent two mapping steps for every candidate solution, which is infeasible for
an efficient routing.

The iterative algorithms implement corrections to attenuate their greediness and
leave important resources in foresight to connections routed later in the process,
e.g., horizontal buses with mapped SPL1 repeaters are avoided. Allocating these buses
makes it impossible to route the corresponding sources. Additional corrections are
outlined alongside the individual wafer routing implementations.

6.4.3 Iterative Shortest Path Routing
After modeling the Layer 1 network as a graph, the routing problem can intuitively be
approached using available shortest path algorithms. A good starting point is Dijkstra’s
algorithm (Dijkstra, 1959). Modern implementations find the shortest path between
a single bus and any other bus in O(E, V ) = |E| + |V | log |V | (Fredman and Tarjan,
1987), where E is the set of switches and repeaters and V the set of buses. Here, the
stock implementation provided by the boost::graph library is used. Note that the
problem size decreases over time, as resources are taken out of the graph from iteration
to iteration.

Graph searches are invoked iteratively for all pending routes, see Section 6.4.2. In
each iteration, Dijkstra’s algorithm is invoked to discover the shortest path from the
current source SPL1 repeater to any other bus in the graph. The distance between two
buses is given by the sum over all weighted edges along the path, thus crossbars and
repeaters. This can be used to flexibly model hardware characteristics as explained
further below. Shorter paths are discovered earlier in the process due to the greediness
of the algorithm. Consequently, the first reachable vertical bus on a target chip yields
the shortest possible connection to this chip.

Whenever a connection to one of the pending targets has been found, the actual path
is checked to make sure it meets the Layer 1 capacitive constraints, see Section 1.5.5.
Possible violations are multiple switches set per bus on the same HICANN to establish
chip-local detours, for example, from one horizontal bus to a different horizontal bus
on the same chip. The capacitive limit cannot be modeled by weighted edges. Instead,
backtracking is used to detect and omit these configurations. The candidate path is
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Figure 6.5: A routing problem solved via the iterative shortest path algorithm. The source
chip (1) of the route is highlighted in dark and its targets in light grey, while defect chips (2)
are left out. Dijkstra’s algorithm generically searches the shortest path from the source
SPL1 repeater to any other bus, including vertical buses on target chips. Depending on edge
weights and the current resource allocation nearby chips might be discovered on different
paths first, resulting in non-optimal solutions (3) that occupy more buses than necessary.
However, targets are reached whenever possible, including the chip at (4), which is missed
by the horizontal growth algorithm shown in Figure 6.6.

traced from the target to the source bus. Whenever a crossbar switch is encountered, it
is checked whether other switches in this crossbar have been used by this path already.
If so, the candidate is discarded and the current graph search is continued. When the
source is successfully reached, all utilized crossbar switches and buses are memorized
and allocated, respectively. Furthermore, the target chip is removed from the list of
pending targets and Dijkstra’s algorithm is continued for remaining target chips.

The search ends either if all target chips have been successfully routed, no further
buses can be reached or the current path exceeds a configurable length limit. The
latter avoids routes of last resort whenever detours across the whole wafer are the only
possible option. Realizing these routes takes large amounts of Layer 1 resources, which
might better be left to other connections. The maximum length can be specified as
multiples of the L1 distance between source and the furthest target chip.

The algorithm ultimately terminates when all pending routes have been processed.
The iterative shortest path routing is exemplified for the routing task depicted in

Figure 6.5. Notably, the algorithm can route concave areas and therefore reach the
chip at item (4).
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Modeling Hardware Characteristics

The length of any path established by Dijkstra’s algorithm is measured as the sum over
all weighted edges along the way, thus the distance measure can be controlled to model
hardware characteristics.

These weights can be set by the user to customize the routing. Currently, three
different types of edges are distinguished for connections to vertical buses, to horizontal
buses and to buses with mapped SPL1 repeaters. By default, the former two are equally
set to one. The latter are expensive and therefore set to 104. Dijkstra’s algorithm avoids
these buses as long as other options exist. Using them becomes a matter of last resort,
such routes are skipped completely if the effective length exceeds the maximum route
length. Weights are calculated on-the-fly to emulate directed edges on the undirected
graph, save memory and implement congestion control as explained below.

Congestion Control

Always picking the shortest possible path to construct routes yields a greedy approach.
In fact, Dijkstra’s algorithm itself is greedy, it always continues with the shortest, yet
unvisited, edge and ultimately produces optimal results. This is different for resource
allocations, where instances are exclusive and iteratively taken away. An optimal
routing would have to consider all connections at once, before allocating any resource,
to produce configurations that minimize the global synaptic loss.

Here, greediness is attenuated by scaling edge weights according to the current bus
utilization. Thus, paths through congested areas appear effectively longer. The total
weight wtotal(h, i) for any edge connecting to a horizontal bus (i = 0) or vertical bus
(i = 1) on chip h is given by

wtotal(h, i) = wstatic(i) + α · ν(h, i) . (6.4)

Where wstatic(i) models the static hardware characteristics, introduced above, and
ν(h, i) denotes the number of allocated buses for chip h and orientation i. The constant
α is a scaling factor to control the relative amplitude of the static and dynamic weights
and is α = 1/40 by default.

Shortcomings

The iterative shortest path approach tends to allocate more resources than necessary.
Constructing minimum rectilinear Steiner trees (MRSTs) rather than combining shortest
paths would minimize the number of allocated resources individually for every iteration.
However, MRSTs construction is an NP-complete problem (Karp, 1972; Garey and
Johnson, 1979). Most efficient MRST heuristics require fixed vertex sets (Kahng
and Robins, 1992), however pending routes only specify target chips rather than
specific target buses. Early experimental results have shown that the wafer routing is
mostly limited by horizontal bus occupation. A second algorithm has specifically been
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design to allocate as few as possible horizontal buses in every routing iteration. The
implementation is subsequently presented in Section 6.4.4.

Runtime
In the worst case, the whole graph has to be searched for every source to find all targets.
Similar behavior is expected for random network models, where any two HICANN
chips have to be connected, see Section 8.4. The number of source SPL1 repeaters
is proportional to the number of model neurons N . The algorithmic complexity is
therefore bound by the N invocations of Dijkstra’s algorithm, which has a runtime
complexity of O(E, V ) = |V | log |V | + |E| (Siek, 2001). Where V is the set of buses
and E the set of switches and repeaters. The backtracking is typically fast and uses
internally constant time lookups. It contributes a multiplicative worst-case complexity
of |V |. This leads to the following runtime complexity

O(N, E, V ) = N · |V | · (|V | log |V | + |E|) . (6.5)

At first glance, the complexity scales linearly in the number of neurons N . However, the
hardware extent denoted by E and V has to be chosen sufficiently large to accommodate
all neurons, which can then considered proportional to N . This is only a conservative
worst-case assessment, sparse network models are typically routed much faster and
also full-wafer random networks have successfully been mapped, see Section 8.4.1.
Furthermore, V and E are constantly reduced in size, as resources are allocated and
therefore removed from the graph.

6.4.4 Iterative Horizontal Growth Routing
The iterative horizontal growth algorithm is the second wafer-routing implementation.
It is optimal in terms of horizontal bus utilization. Similar to the backbone algorithm
described by Fieres et al. (2008) only N + 1 horizontal buses are required if the leftmost
and rightmost HICANNs are horizontally N chips apart. However, the following
algorithm does not depend on a single horizontal backbone, which renders the approach
suitable for defects, congested areas and non-rectangular routing grids.

Routes grow horizontally until either the outer most chip has been reached or the
horizontal continuation of the path is blocked. In the latter case, a vertical detour is
established to continue the horizontal growth in another row of HICANNs. Whenever
a chip is reached that is in the same column as any of the target chips, a vertical
connection is established. Figure 6.6 shows a routing problem solved by horizontal
growth. Note that the algorithm does not change directions as the connection grows,
therefore concave neuron placements cannot be routed.

Like the previous shortest path algorithm, the horizontal growth algorithm is invoked
iteratively for all pending routes according to Section 6.4.2. Whereas the actual
horizontal growth for every iteration is implemented recursively. For every pending
route, starting at the horizontal bus of the source SPL1 repeater, the route grows left
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Figure 6.6: The same routing problem as shown in Figure 6.5 solved by the iterative horizontal
growth algorithm. The source chip (1) of the route is depicted in dark, while requested
targets are colored in light grey. Defects (2) are vertically detoured to continue growth in
another HICANN row (3). The target chip at (4) is unreachable because the algorithm
keeps growing in a single direction.

and right until the columns containing the leftmost and rightmost target chips have
been reached or no more suitable detours can be found.

In each recursion, outgoing edges from the current vertex are examined to find the
subsequent horizontal bus on the adjacent chip towards the direction of growth. If
the corresponding horizontal bus is found and it is not required for inserting events
for other connections, the recursion continues, otherwise a vertical detour needs to be
established. Several reasons can lead to the bus not being found, for example, prior
allocations, blacklisting or it simply does not exist because the wafer boundary has
been reached.

In case of a detour, all vertically reachable buses on the current chip are considered.
The best possible option is determined by walking vertically for each option until the
wafer boundaries at the top and bottom are reached or the path is blocked. Then, the
number of horizontally reachable target chips in the direction of growth is individually
counted for every crossbar switch along the way. Consistently, buses with mapped
SPL1 repeaters are skipped. The evaluation does also not consider any further detours.
The option that yields the maximum number of reachable targets, if any, is chosen to
establish the detour accordingly. Subsequently, the growth continues in the HICANN
row accessed by the detour.

Whenever a chip is reached that is in the same column as any of the targets, a vertical
connection is established. Again, all vertical buses reachable via local crossbar switches
are considered. The best option is picked based on a score. For each option, the score
is initially set to zero and a vertical walk is started, both upwards and downwards.
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When a target chip is encountered the score is increment by two, if less than 12 other
routes are already competing for the same set of synapse drivers, otherwise by one. The
scoring is useful to reduce the number of competing routes because up to 16 vertical
buses share 14 synapse drivers, see Section 1.5.3.

The horizontal growth terminates when either all targets have been reached or no
more viable detours can be found. The wafer routing ultimately terminates after all
pending routes have been processed.

Runtime
In the worst case, connections have to be established from any chip to any other and
detours have to be found for every horizontal recursion. The number of iterations
is proportional to the number of SPL1 sources which in turn is proportional to the
number of neurons N in the model. Clearly, the horizontal growth itself is bound
by the number of buses in the system |V |. Detouring considers a limited number of
vertical options and subsequently counts the horizontally accessible targets. During
the evaluation, none of the buses is considered twice, thus limiting its complexity by
another factor of |V |. The total complexity is therefore bound by

O(N, V ) = N · |V |2 . (6.6)

V is a hardware property, whereas N is defined by the network model. However, the
number of chips and therefore V has to be chosen large enough to host all neurons.
This means, V is typically proportional to N resulting in a cubic worst-case bound
on runtime complexity. Nonetheless, this is only a conservative worst-case bound and
networks with local connectivity are typically routed much faster. In any case, the
implementation is sufficiently fast to route worst-case networks in reasonable time
e.g., full-wafer homogeneous random networks have been mapped in approximately
100 s, see Section 8.4.1.

6.4.5 Comparison
Both implementations have been benchmarked in Section 8.4.1. In most cases, the
iterative horizontal growth can establish more long-range connectivity, while also being
faster. It has specifically been designed to cope with the shortcomings of the shortest
path approach by reducing the horizontal bus allocations.

However, the shortest path approach is extremely generic and might be useful for
e.g., inter-wafer routing or situations where discovery towards a single direction is not
enough, like concave routing areas.

72



6.5 Synapse Driver Routing

6.5 Synapse Driver Routing
Input: An assignment of spike sources to vertical Layer 1 buses for each target chip.
Output: An assignment of vertical Layer 1 buses, representing inbound connections,

to synapse drivers.
Defects: Blacklist of synapse drivers.

The synapse driver routing is concerned with the insertion of spike events into the
synapse arrays, individually for each HICANN. The prior wafer routing has established
Layer 1 connectivity such that inbound connections are assigned to vertical buses on
target chips. Next, these vertical buses have to be connected to a primary synapse
drivers to relay events into the synapse arrays. Furthermore, adjacent secondary synapse
drivers can be connected sharing the input in order to map large address spaces or
realize different STP parameters.

For experiments with modest input requirements per HICANN, multiple configura-
tions may exist that equally well insert events from all inbound connections. For larger
networks, however, synapse drivers are a limited resource. Every synapse driver can
receive input from inbound connections either via one of 16 reachable vertical buses
(see Section 1.5.3) or via an adjacent driver to the top or bottom. All these sources
equally compete for exclusive access to the respective driver, making this a complex
optimization problem. Additionally, inbound connections often require more than one
driver in order to map all multiplexed spike sources or realize different STP parameter
sets. At the same time, the maximum capacitive load allowed per Layer 1 bus segment
constrains the number of connectible drivers, see Section 1.5.5.

Finding optimized assignments is important to avoid inhomogeneous synaptic loss
due to locally rejected connections, which cause all synapses from all corresponding
sources to be lost. Furthermore, the respective Layer 1 resources have been occupied in
vain. The optimization is simplified by the fact that drivers on different sides of the
synapse array can be accessed by a non-overlapping set of connections. Both sides can
therefore be optimized independently.

A simpler version of the problem, where vertical buses are connectible to arbitrary
drivers, can algorithmically be considered a Knapsack optimization problem, which is
known to be NP-hard (Garey and Johnson, 1979). However, the problem at hand is
even more complex. For example, vertical buses have access only to a subset of synapse
drivers due to the select switch sparseness (see Figure 1.5). Additionally individual
drivers might be blacklisted.

This chapter presents two synapse driver routing implementations, following two
different approaches. Firstly, an efficient bin-packing heuristic (Dósa, 2007) and,
secondly, a simulated annealing optimization is described.

6.5.1 Requested Synapse Drivers
As a starting point for the synapse driver routing optimization, the theoretical number
of drivers required to realize all synapses is calculated per inbound connection. This
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number depends on the mapping of afferent neurons to the 6 bit address space, model
projection properties and the actual connectivity between pre and postsynaptic neurons.
The address space can be mapped according to the two stage decoding scheme explained
in Section 1.5.4, while different STP parameters are more expensive to realize and
require dedicated synapse drivers.

The access granularity of hardware synapses suggests to initially count the number
of necessary half synapse rows. A half synapse row is defined as all synapses within one
row receiving the same strobe signal, which corresponds to the A, B, C, D pattern in
Figure 1.6. For any inbound Layer 1 connection r, model synapses from spikes sources
within the same bin b = (te/i, 2 MSB) can be implemented by hardware synapses in the
same half synapse row. Where b bins spike sources with the same 2 most significant
address bits and the same synapse type te/i, which can either be excitatory or inhibitory.
The number of necessary half synapse rows L for bin b, connection r, efferent neuron j
and STP parameter set PSTP is given by

Lr(j, b, PSTP) =









1
wj/2

∑

i∈b

nr(i, j, PSTP)









. (6.7)

On the right-hand side, nr(i, j, PSTP) denotes the number of model synapses connecting
afferent neuron i to efferent neuron j using the same set of STP parameters. In other
words, the number of model synapses that can be realized as part of the same half
synapse row is given by the sum over all sources within b. Dividing this number by half
the physical width wj of the target hardware neuron j, which determines the number
of accessible synapse columns, and rounding the result to the ceiling yields the number
of necessary half synapse rows Lr(j, b, PSTP).

The effective number of necessary half synapse rows per bin over all efferent neurons
is determined by the efferent neuron which receives the most input. Thus, to get the
number of necessary synapse drivers, firstly, the maximum Lr of all efferent neurons j
is determined and the results summed up for all bins b. However, every synapse driver
has access to four half synapse rows, which reduces the effective number of necessary
drivers. Furthermore, the result has to be rounded to the ceiling to respect the access
granularity. So far, the STP parameter sets have been ignored. Every parameter set
requires an independent set of drivers, therefore the total number of requested drivers
Dr can be calculated by simply summing over all requested STP parameter sets:

Dr =
∑

PSTP

⌈

1

4

∑

b

max
j

Lr(j, b, PSTP)

⌉

. (6.8)

If Dr drivers are allocated for r, theoretically all model synapses can be realized.
However, the calculation cannot account for blacklisted hardware synapses. The
synapses drivers have not yet been assigned and it is therefore not yet clear which
hardware synapses can be accessed. Therefore, some model synapses can still be lost
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during the subsequent synapse assignment. To circumvent the issue for low input
counts, additional synapse drivers can be requested. When Dr becomes larger than the
capacitive limit allows, model synapses are inevitably lost.

Note that using a wide variety of different STP parameters has a strong influence on
the number of necessary drivers. Thus, merging similar STP parameter sets in PyNN
for projections with shared neuron targets is advisable.

Finally, the total number of synapses, represented by the inbound connection r, is
determined in order to prioritize inbound connections that contribute many synapses.
The synapses are counted according to

Nr =
∑

j,b,PSTP

∑

i∈b

nr(i, j, PSTP) . (6.9)

6.5.2 Iterative Best Fit Driver Assignment
The iterative best fit algorithm is similar to the synapse driver routing presented
by Fieres et al. (2008). The drivers are iteratively assigned to inbound connections
in a first-fit decreasing fashion. This heuristic is known to yield close to optimal
results for bin packing problems (Dósa, 2007). In case the overall amount of requested
drivers per chip exceeds the number of available drivers, the problem can no longer be
approximated by bin packing. Thus, the driver requirements for all inbound connections
need to be normalized to the number of available drivers. Otherwise, allocating drivers
for the first few connections in a first-fit fashion might use up all drivers leaving
none for the remaining connections. Furthermore, assignments can not necessarily be
allocated side by side due to the select switch sparseness, which fragments the synapse
driver assignments and therefore the bins in bin packing. Consequently, some inbound
connections may not be assignable to drivers and therefore all represented synapses are
lost. In a second trial, inbound connections ruled out during the initial normalization
stage are assigned to synapse drivers that are left from the first trial.

Normalization of Required Synapse Drivers

In case the total number of required synapse drivers exceeds the number of available
drivers, the requested drivers have to be normalized to the number of available ones in
order to further approximate the problem by bin packing.

The normalization is carried out independently for synapse drivers on the left and
right side of the chip. Initially, the number of requested drivers Dr is collected for all
inbound connections r on all 256 connectible vertical buses, half of which are on the
neighboring HICANN. If the sum D =

∑

r min (Dr, Dmax), where Dmax is the maximum
number drivers with shared input, does not exceed the number of available drivers, the
drivers can be assigned without prior normalization. The number of available drivers
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A is typically 112 minus the number of blacklisted drivers. Otherwise, the following
normalization is applied.

D′
r =







0 if Dr = 0

max(1, min(Dr, Dmax,
⌊

A·Nr

Ntotal

⌋

)) else ,
(6.10)

with the number of model synapses Nr represented by the inbound connection r and
the total number of model synapses Ntotal targeting neurons on the local chip.

After the normalization, it is possible that K =
∑

r D′
r is larger than A because of

the maximum function in Equation (6.10). In this case, the different D′
r are iteratively

decremented in descending order of ∆r = D′
r − A · Nr/Ntotal, if ∆r > 0, until K = A.

Connections r that contribute only few synapses might end up with D′
r = 0.

It can also happen that K is smaller than A after the normalization, mainly for two
reasons. Either if Dmax times the number of inbound connections is less than A or the
inbound connections represent only few synapses, but require many drivers because of
e.g., different STP parameter sets. In the latter case, the assignments are increased in
ascending order of ∆r, if ∆r < 0, until either K = A or D′

r = min (Dr, Dmax) for all
connections.

Driver Assignment

Initially, all inbound connections are ordered in a list according to their normalized
driver requirements D′

r from many to few. Two vectors with 56 entries each are
initialized, representing the synapse driver banks in the top and bottom synapse arrays.
Where entry j of the first and second vector corresponds to the jth driver in the top
and bottom synapse array, respectively. Entries keep also track of the availability of
their respective driver. Initially, all except blacklisted drivers are available.

Next, the actual iterative assignment begins. In each iteration, the frontmost
connection r is taken from the list. The algorithm considers all possible assignment
options in order to find the best insertion point. For each inbound connection and its
corresponding vertical bus up to 14 reachable drivers exist. Furthermore, an assignment
of n drivers can be shifted around the insertion point p, as long as p is ∈ [x, x + n) the
drivers can be assigned.

First, all 14 options are checked whether they provide D′
r available adjacent synapse

drivers. If more than one candidate exists, the first option in the smallest gap of
available drivers is chosen in order to minimize fragmentation. An assignment for
multiple drivers is then shifted such that the distance between this assignment and the
closest other assignment is minimized to further reduce fragmentation. If no option with
a sufficient amount of drivers exists, the option with the largest number of remaining
drivers is chosen. Assigned drivers are marked as no longer available for subsequent
assignments. If none of the options has any drivers left, the connections cannot be
realized and the corresponding synapses are lost. The iterations terminate after all
inbound connections in the list have been processed.
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In a second assignment step, inbound connections that have been dropped during
the normalization are scheduled for insertion. These connections are sorted by their
original driver requirement Dr in descending order. Then, the same algorithm is used
to assign the connections to the remaining synapse drivers. The algorithm terminates
after the second assignment step finishes.

6.5.3 Simulated Annealing Driver Assignment
The second synapse driver routing implementation uses simulated annealing (Kirkpatrick
et al., 1983) to optimize the local assignment of synapse drivers. Routing constraints are
modeled by a cost function E(s) that measures the quality of synapse driver assignments
s. Constraints can easily be modified by changing the cost function.

The optimization starts with an arbitrary initial assignment s. Then, neighboring
assignments s′ of s are explored in each iteration. These neighbors are derived by a
so-called propagator K(s) = s′. In case K is ergodic and neighboring assignments are
explored indefinitely, the global optimum will eventually be reached.

Successor assignments s′ with costs E(s′) lower than E(s) are instantly accepted,
whereas more expensive assignments are accepted with a reduced probability of

p(s, s′) ∼ exp

(

∆E

T

)

, (6.11)

where ∆E = E(s′) − E(s) denotes the cost difference between the candidate assignment
s′ and the current assignment s. T is the temperature of the system, which decreases
over time, therefore accepting more expensive assignments becomes less likely. At some
point the system freezes in its current local cost minimum. Accepting assignments with
higher costs is generally important to avoid being trapped in local minima when only
considering neighboring assignments.

Representation

Every HICANN has four banks of 56 synapse drivers, one located on each side of the
synapse arrays in the top and bottom half of the chip. The synapse drivers on each side
can be reached from 256 vertical buses, half of which are on the local and the other
half on the adjacent chip. The banks on either side are non-overlapping resources and
can thus be optimized independently.

The algorithm models the synapse driver banks on either side as an interval of
drivers. Synapse drivers in the top and bottom cannot share inputs, they are therefore
represented as two independent intervals [0, 56) and [56, 112) for the top and bottom
bank, respectively. An assignment of an inbound connection r to a set of drivers can
be expressed as an assignment of r to an subinterval of length min(Dr, Dmax) in either
[0, 56) or [56, 112). Dmax is the maximum number of drivers with shared input and Dr

is the number of requested drivers for r according to Equation (6.8).
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Figure 6.7: The simulated annealing synapse driver
routing models the two banks of 56 drivers as intervals.
Vertical buses (1), featuring inbound connections, are
assigned to drivers by assigning them to a subinterval
within [0, 56) or [56, 112) (2). The optimization tries
to minimize the amount of overlapping driver assign-
ments (3). Ideally, every inbound connection r receives
its necessary number of drivers Dr, according to Equa-
tion (6.8), without over-assigning any driver. Primary
drivers directly receiving input from vertical buses are
highlighted in blue. Configurations with overlapping
primary drivers (4) are particularly expensive because
only one of the connections can ultimately be realized,
the others are lost.

To support efficient access to existing synapse driver assignments and modifications
thereof during the optimization, a boost::ICL interval tree data structure is used
(Boost, 2010). Figure 6.7 illustrates the mapping from vertical buses, featuring inbound
connections, to driver intervals. Every interval has an up-to-date count of overlapping
assignments. A count larger than one indicates more than one connections are assigned
to the same driver. The simulated annealing tries to minimize the overlap by reassigning
overlapping assignments. Blacklisted drivers can be handled as fixed assignments with a
high overlap value. During the optimization process, other assignments are moved away
from these drivers to resolve these expensive configurations. In a final post-processing
step, overlapping assignments are resolved and assignments to blacklisted drivers are
dropped in order to produce valid hardware configurations.

Propagation

The optimization performance strongly depends on the quality of candidate assignments.
The propagator therefore guides the exploration of candidates by randomly reassigning
inbound connections for highly overlapping drivers rather than reassigning connections
completely at random.

In each annealing step, the propagator choses randomly either the top or bottom
driver interval and identifies the subinterval with maximum overlap. One of the inbound
connections assigned to this subinterval is chosen at random and is randomly reassigned
to a different accessible subinterval. Subintervals are accessible if a select switch
exists such that the corresponding synapse driver range can be accessed. Successive
assignments are neighbors in the sense that most connection assignments remain
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unaltered. In other words, the propagator tries to improve the current assignment by
iteratively reducing the overlap for the most overlapping drivers.

Optimization

Initially, all inbound connections are randomly assigned to accessible subintervals. The
length of the subinterval for the connection r is given by min (Dr, Dmax). Dr and Dmax
denote the number of necessary synapse drivers for r and the maximum number of
connected synapse drivers, respectively. Iteratively, the connections are reassigned by
the propagator described above, for a configurable number of iterations, set to 5000
by default, or until all overlaps are resolved. For chips with a small number of inputs,
the optimization typically stops after a few iterations. The temperature decreases over
time and the system freezes in a locally optimal assignment of minimal cost. The cost
function is defined as

E(s) = O(s) + c · Oprimary(s) . (6.12)

E(s) denotes the cost of the assignment s and O(s) is the corresponding driver overlap
according to Figure 6.7. The second term on the right-hand side Oprimary(s) accounts
for overlapping primary synapse drivers. Overlapping primary drivers receive input
directly from more than one vertical Layer 1 bus. Such assignments are particularly
expensive because all except one of the corresponding connections have to be dropped
during the post-processing to produce valid hardware configurations. The constant c
allows to scale the relative cost of both contributions and is set to 20 by default.

During the course of optimization, the best assignment so far is always remembered.
Exemplarily, the evolution of cost during an driver assignment optimization is shown in
Figure 6.8. After optimization, the best solution is picked for the final post-processing
to generate a valid synapse driver configuration.

Post-Processing

The final post-processing has to produce a valid synapse driver configuration from
the simulated annealing interval assignment, which may contain over-assigned drivers.
Such assignments are often unavoidable for high input counts, despite the propagator
constantly trying to resolve these assignments. The final post-processing ensures that
synapse drivers are assigned only once.

Firstly, for overlapping primary drivers, all except the inbound connection representing
the largest number of synapses are rejected. Assignments to blacklisted drivers are
rejected as well. Next, the connectivity between primary and secondary drivers has to
be established. Currently, only a simple approach is implemented. Therefore, assigned
inbound connections are sorted in descending order by their respective number of
synapses. Successively, connections are taken from the front of the list. For each
connection, connectivity to still reachable secondary drivers is established according to
their respective annealing intervals. After processing all entries, a valid synapse driver
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Figure 6.8: Synapse driver routing optimization via simulated annealing. The optimization
starts with a random initial assignment, better configurations are iteratively explored. The
cost for the current and best solution are shown in blue and red, respectively. Over time the
temperature decreases and the system freezes, until after about 8800 steps the best solution
is found. After the optimization finishes, the best solution is used to establish the synapse
driver configuration.

routing has been established. This simple, greedy approach currently limits the quality
of configurations because connections towards the end of the list end up with little or no
secondary drivers. A prior normalization, similar to the one described in Section 6.5.2,
is expected to improve the final configuration, however, it is not yet implemented.

Runtime
The runtime for both implementations is bound by a fixed maximum problem size,
since only chip-local resources are assigned. Furthermore, assignments for drivers on
either side of the synapse arrays can be handled independently because they share
no common inputs. In the worst case, assignments for 2 × 128 inbound connections
have to be optimized. Therefore, the runtime complexity of the iterative best-fit is
bound by a constant and depends linearly on the number of annealing steps N for
the simulated annealing. Empirically, both implementations are fast, however, the
simulated annealing over 5000 iterations typically takes 20 % longer Section 8.4.1. .

Moreover, the implementations carry out the optimization for multiple chips is in
parallel to reduce the overall time spent on the synapse driver routing. However,
capacitive bus limits introduce a dependency between adjacent chips. The limits are
currently only enforced if the prior wafer routing has set up exclusive vertical buses for
adjacent chips receiving shared input, which is usually only a minor limitation because
a sufficient number of vertical buses exist.
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6.6 Synapse Array Routing
Input: Synapse driver routing for each chip.
Output: A mapping of the spike source address space to synapse rows and an assign-

ment of model to hardware synapses.
Defects: Blacklist of synapses.

The synapse array routing completes the connectivity setup. Firstly, the Layer 1 address
space of spike sources is mapped to half synapse rows according to the two-stage decoding
scheme (see Section 1.5.4) and, secondly, model synapses are assigned to hardware
synapses.

6.6.1 Synapse Row Assignment
In the first step, 2 bit synapse driver decoder configurations have to be established
in order to assign inbound spike sources to half synapse rows. The half synapse row
address decoding scheme is indicated by the A, B, C, D pattern shown in Figure 1.6.
Synapses within the same bin b = (te/i, 2 MSB), according to Section 6.5, can efficiently
be realized as part of the same half synapse row. Whereas sources in different bins
require different synapse driver decoder configurations.

The implementation assigns half synapse rows to the binned inbound connections
according to the relative number of model synapses they represent, in order to minimize
the synaptic loss during the subsequent synapse assignment. With this method, all
model synapses for inbound connections that received their requested number of drivers
in the prior synapse driver routing can theoretically be realized if no synapses are
blacklisted.

Notably, the number of accessible half synapse rows depends on the size of the target
hardware neuron. For small hardware neurons, without horizontally interconnected
circuits, only every other half synapse row can relay events to it. Furthermore, if the
horizontal neuron extent is odd, the number of hardware synapses connected to strobe
signal A and B as well as C and D differs and depends on the horizontal neuron offset.
It is therefore advisable to use hardware neuron sizes that are multiples of 4, which
results in even horizontal neuron extents. Otherwise, synapses might be lost during the
following assignment.

6.6.2 Synapse Assignment
In the second step, model synapses are assigned to hardware paragons in the order they
appear in the model description. Meaning that synapses to efferent neurons earlier in
the model description have a higher static priority and are more likely to be realized.
The order only influences which model synapses are realized, the absolute amount of
realizable synapses is not influenced.

Initially, all synapse weights and decoders are set to zero and 0001, respectively, as
explained in Section 6.2, to minimize the leakage conductance onto neuron membranes
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for unused synapses. Subsequently, all projections that are part of routed inbound
connections with local targets are iterated in the order they appear in the model
description. For every projection, synapses are mapped in a target-first manner, which
means that synapses to an efferent neuron i are realized before synapses to an efferent
neuron j if i < j. Consequently, all synapses in bin b and to the given target neuron
can efficiently be marked as lost whenever no more hardware synapses are left for this
bin-target combination.

For every model synapse, firstly, its corresponding bin b is determined and used to
lookup the next, yet unassigned, hardware synapse for the corresponding target neuron
in a table. Every table lookup takes only constant time. In case the hardware synapse
has not been blacklisted, the model synapse is assigned and the algorithm continues
with the next model synapse. Whenever a hardware synapse is blacklisted, the next
one is looked up until either a usable one is found or no more accessible synapses are
left. In order to get to the next available hardware synapse, the table entry is updated
after each lookup. Therefore, the column index of the table entry is incremented by
two. Afterwards, if the table entry points to a column that belongs to a neighboring
neuron, the row index is set to the next, yet unassigned, half synapse row for b and the
column index is reset to the leftmost synapse column of the target neuron. If no more
accessible half synapses rows exist, the remaining synapses in b are marked as lost and
the iteration continues with synapses belonging to other bins.

Note that the translation of model conductances into digital weights is described in
Section 6.7.

Runtime
The runtime of the implementation scales linearly with the number of model synapses
because all synapses have to be processed regardless of their realization. The weight
lookup in constant time ensures that each hardware synapse is handled only once and
remaining hardware synapses are accessed efficiently. Moreover, the implementation
conducts the synapse array routing for multiple HICANNs in parallel. On the bottom
line, the synapse array routing is typically fast, the overall mapping time is dominated
by the wafer routing, see Section 8.4.1. This leads to mapping runtimes that are
almost independent from the connection probability of the random network instance,
see Figure 8.8.

6.7 Parameter Transformation
Input: Neuron placement, synapse assignment; Parameter transformations including

scaling, calibration data and limited ranges.
Output: Sets of digital and analog parameters for the chips, neurons and synapses.
Defects: None

The final step towards setting up the hardware is to specify all remaining analog and
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digital parameters. Some are set to defaults to establish an operating regime for the
circuitry. Others have to be chosen to resemble the model as closely as possible. The
actual parameter transformation is not part of the mapping framework, but has been
moved into the Calibtic parameter framework. Thus, other workflow components can
use the model transformations and calibration data alike, e.g., StHAL (see Section 4.3)
uses Calibtic to automatically correct recordings of analog voltage traces.

Parameters are transformed in two steps. Firstly, they are scaled from the biological
model into the hardware domain. Afterwards, a circuit specific correction is applied,
which is referred to as calibration. The scaling from model into hardware domain as
well as the following correction are both implemented within the Calibtic framework.
Here, the basic scalings of voltages, times, conductances and currents are presented
for the sake of completeness. They have mostly been described by Schwartz (2012)
alongside the generation of calibration data, which is outside the scope of this thesis.

6.7.1 Parameter Framework
The Calibtic parameter framework is an extensible C++ library that provides storage
agnostic access to calibration data. Calibtic has been established by the author as part
of this thesis. At the time of writing, it has been used to implement the analog readout
calibration as well as a redesigned calibration for HICANN analog parameters.

Notably, Calibtic stores the transformation type together with the actual data,
describing the complete translation process in a context insensitive manner. Therefore,
transformations can be changed or updated as needed over time, while old data
sets remain consistent and applicable without changing the implementations of the
transformation routines. This is a major improvement over former approaches where
changing e.g., the data acquisition side could invalidate existing transformations or
render application thereof inconsistent.

Moreover, Calibtic can be used for both, the acquisition and application of calibration
data. Data acquired in low-level measurements via HALBe and StHAL can be stored
using the Python interfaces of Calibtic. On the application side, PyHMF is well
integrated into Calibtic such that analog model parameters can directly be translated
into hardware floating-gate values.

A dynamic plug-in system adds flexible storage options. As of May 2014, storage
backends exist for XML, JSON and mongoDB. The latter two are realized by means
of a generic mongoDB boost::serialization (Ramey, 2004) archive written by the
author.

6.7.2 From Biology to Hardware
The first step of the parameter transformation maps biological model parameters to
hardware parameters. For example, typical biological voltages are in the order of a few
millivolts, whereas integrated Complementary Metal–Oxide–Semiconductor (CMOS)
transistors operate in the range of a few volts. Furthermore, due to smaller capacitances
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C and higher conductances g in the hardware system, the intrinsic time constants,
given by τ = C/g, are scaled by a factor of 103 to 105 compared to biological real time.

After the parameters have been scaled to the appropriate hardware range, a calibration
is applied in a second step to account for individual circuit variations. The relative
parameter change is typically small compared to the initial scaling. Detailed descriptions
of the actual calibrations are given by Schwartz (2012).

Time and Time Constants

Times and time constants are linearly scaled by the speedup factor αacc according to

τscaled =
τmodel
αacc

. (6.13)

Note that the effective speedup can be controlled and is subject to calibration. As
mentioned before, the system is designed to allow acceleration factors from 103 to 105.
By default, calibrations target a factor of 104.

Voltage Ranges

Voltages are transformed linearly from millivolts in the model to volts in the hardware
domain, according to

vscaled = αvvmodel + vshift . (6.14)

Here, αv is a linear scaling factor and vshift an offset that can be used to shift voltage
ranges relative to one another. Most model dynamics depend on voltage differences,
thus the common shift takes no direct effect. However, voltage parameters can be
shifted relatively to the shared Vreset parameter. The parameters αv and vshift can be
chosen freely to map a given dynamic range. By default, αv and vshift are set to 10
and 1200 mV, respectively, to map a biological range of (−120, 0) mV to (0, 1.2) V in
hardware.

The voltage transformation applies for all voltages including the reversal potentials
El, Ee, Ei, the reset potential Vreset, the spike initiation potential Vthresh and the spike
detection threshold Θ. The only exception is the AdEx slope factor ∆t, which is scaled
without being shifted.

Membrane Capacitance

To support a wider range of possible speedup factors in hardware, the membrane
capacitance can be configured to either 2.16 pF or 0.16 pF. Typically, the larger
capacitance is chosen except for high speedup factors of around 105. The total membrane
capacitance for interconnected neurons is the sum over all interconnected circuit
capacitances, following

Cm =
N

∑

i

Cm,i , (6.15)
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where N is the number of connected neuron circuits and Cm,i their individual ca-
pacitances. In principle, any combination of capacitances is possible, however, as of
May 2014, no transformations existed for interconnected neurons.

Conductances

The time constant τm is responsible for the leaky dynamics of a neuron and is controlled
by the leakage conductance gleak according to

τm =
Cm
gleak

. (6.16)

The effective membrane capacitance Cm has been introduced above. Using Equa-
tion (6.13), the previous equation can be rephrased as

gleak,scaled =
Cm,scaled
τm,model

αacc

=
Cm,scaled
Cm,model

αacc gleak,model .

(6.17)

Where αacc is the acceleration factor, τm,model is the model membrane time constant
and gleak,model is the model leakage conductance. Further, Cm,scaled and Cm,model are
the total hardware and model membrane capacitance, respectively.

This gleak transformation can identically be applied to other conductances, like
synaptic efficacies and the adaption coupling parameter a, which leaves us with the
generic expression

gscaled =
Cscaled
Cmodel

αacc gmodel . (6.18)

Currents

Currents are transformed according to Ohm’s law using the previous transformations
for voltages in Equation (6.14) and conductances in Equation (6.18)

Im = g · U =
Cscaled
Cmodel

αacc αv . (6.19)

Here, Im denotes a model current, g a conductance and U a voltage. This transformation
is used for the AdEx adaption current b and the external current stimuli.

6.7.3 Shared Parameters
This section briefly outlines the transformations for parameters that are shared by
multiple circuit instances and require therefore special considerations.
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Shared Neuron Parameter Vreset

Multiple neurons share a common Vreset, which is in fact the only shared AdEx model
parameter. All other analog neuron parameters can be set and calibrated individually
for every neuron. Therefore, vshift in Equation (6.14) can be tuned such that all voltage
differences are set correctly relative to Vreset, while the model dynamics remain the
same.

Theoretically, there are 4 different shared floating-gate voltages for Vreset. They are
assigned to neurons with odd and even index in the top and bottom synapse array.
However, only a single value can effectively be used because larger hardware neurons
typically span neuron circuits connected to all four instances of Vreset.

Row-Wise Synaptic Efficacies

The wafer system implements conductance-based synapses, which have to be scaled
according to Equation (6.18), where the ratio of capacitances Cscaled/Cmodel depends on
the hardware neuron size. The effective synaptic conductance gsyn is the product of a
driver-wise base-conductance gmax(j)/gdiv(j) and an individual 4 bit digital weight gdigital,
thus

gsyn(i, j) =
gmax(j)

gdiv(j)
gdigital(i, j) . (6.20)

Where i and j denote the ith synapse in the jth column. The row-wise shared parameter
gmax can be chosen individually from a set of four configurable floating-gate values and
gdiv is a 4 bit divider that can be set to a value in the interval [1, 16].

Transformations should set gmax and gdiv such that the maximum digital weight
corresponds to the strongest model synapse in that row in order to maximize the
dynamic range. Experiments involving STDP might choose a higher gmax in order to
make a digital weight of eight coincide with the maximum scaled model conductance.
Therefore, digital weight can be potentiated upon learning. However, gmax is currently
set to a small default value because no calibration exist yet and the synaptic input
circuits saturates already for relatively small values (see Millner, 2012, Section 3.6.4).

After choosing gmax, the digital weights are set such that the resulting conductance
resembles the scaled model conductance as closely as possible. Weights have a 4 bit
resolution, thus 16 discrete values are accessible. In order to minimize average distortion,
weights are clipped stochastically. This means, for a target conductance gscaled, the
closest two accessible conductances g+ above and g− below are picked from a list of the
16 possible values via branch and bound (Land and Doig, 1960). Finally, g− is picked
with a probability of p = (gscaled−g+)

(g−−g+) and g+ otherwise.

6.7.4 Spike Sources
PyNN SpikeSourceArray and SpikeSourcePoisson spike sources are implemented via
FPGA spike playback over the Layer 2 off-wafer network, see Section 1.7. Layer 1
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source addresses have been established during the spike input placement, as explained in
Section 6.3. Spike trains can therefore be generated by using the respective address and
translating spike times according to Equation (6.13). For spike arrays, the spike times
are simply provided by the model description, whereas spike times for Poisson sources of
rate ν have to be constructed. According to Heeger (2000), time is discretized into small
intervals of δt = 1 ms. For each interval, a uniformly distributed real random number
x ∈ [0, 1] is generated, when x < ν · δt a spike is set to occur in the corresponding
interval.

Furthermore, a small, fixed offset is added to every spike to postpone the actual
experiment onset. This offset is currently set to 20 µs (HTD) to allow repeater DLLs
to lock reliably.

Finally, Layer 1 spike transmissions have to be augmented with address 0 events, as
explained in Section 1.5.5. For recurrent neuron connections, events from the chip-local
background generators can be used. The necessary merger configuration has been
established during the merger routing, described in Section 6.2. It is therefore sufficient
to simply enable all background generators. External spike source on the other hand
require dedicated address 0 events as part of the FPGA playback stream. In both cases,
spikes with a fixed inter spike interval (ISI) of 30 µs in the HTD are used according
to Koke (2014). However, an FPGA timing issue prevents reliable locking for external
spike inputs with the current firmware. This issue is discussed in more detail in
Section 8.3.3.

6.7.5 Current Sources
A periodic step current can be applied to a single neuron per HICANN by using the
floating-gate controller to replay a current course of 129 values. The duration of one
period is T = 129 × δt, where δt = 4/f and typically f = 100 MHz (HTD). PyNN
current sources are translated according to Equation (6.19). In cases where more than
one current source is requested per chip, only the first can be realized.

Runtime
The parameter transformation is straight forward and does not involve any complex
algorithms. Ultimately, the runtime depends on the implementations in Calibtic. Most
HICANN parameters are determined in constant time, rendering the implementation
suitable for large networks. Furthermore, marocco performs the parameter transforma-
tion for multiple chips in parallel.

6.8 High-Level Mapping Interface
The PyMarocco interface provides user-friendly access to the marocco framework to
e.g., guide the mapping or control parameters of the presented algorithms. The C++
interfaces are automatically wrapped to Python using the code-generation flow described
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in Section 3.2.3. PyHMF integration and IPC functionality is implemented using the
MetaData mechanism described in Section 3.2.4.

A PyMarocco object can be passed to the PyNN setup() call to register the MetaData
instance. When the experiment is triggered, the object is automatically forwarded to
the marocco process and after completion an updated PyMarocco instance is sent back
to the user, which provide access to mapping outcome. The following listing briefly
illustrates the use of the PyMarocco interface.

marocco = PyMarocco()
marocco.placement.setDefaultNeuronSize(8)
marocco.defects.chip = [ HICANNGlobal(Enum(42)) ]
# ...
pynn.setup(marocco=marocco)
# ...

Exemplarily, the default hardware neuron size is set to 8 circuits and HICANN 42 is
marked as defect to be omitted during the mapping.

Accessing Mapped Synapses

PyMarocco provides convenient access to the mapped realization of synapses. This
mapping reflects synaptic loss and distorted efficacies imposed by limited parameter
ranges, precision and digital discretization. This feature has been used to set up the
follow up software simulation presented in Section 8.6. The following small code listing
demonstrates the interface.

p = pynn.Projection(src, trg, AllToAllConnector())
# ...
pynn.end()
weights = marocco.stats.getWeights(p) # get synapse mapping

Here, weights is a connection matrix containing the synapse realizations for the PyNN
projection p.

6.9 Routing Visualization
RoQt is an interactive Python QT application (Nokia, 2009) that visualizes the Layer 1
routing as well as the synapse driver assignment. Visualizations can also be exported
as pixel and vector graphics, an example is shown in Figure 6.9.

Layer 1 routes are highlighted in bright colors, such that connections can be traced
from an SPL1 source to the corresponding targets. Used repeaters, crossbar and
select switches are highlighted accordingly. Furthermore, the target-side synapse driver
routing is visualized.

The visualization enables users to quickly access the hardware realization of their
network model. Therefore, mapping bottlenecks causing distortions, like synaptic loss,
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Figure 6.9: RoQt visualization of the layer 2/3 attractor model, introduced in Section 8.5,
with 10 hypercolumns of 10 minicolumns each. The default neuron placement has been used
to distribute the neurons. HICANNs (X, Y ) = (16, 6) and (18, 8) have been blacklisted and
are therefore omitted. Layer 1 connectivity and the synapse driver routing are indicated
by colored buses and drivers, respectively. Enabled crossbar and select switches are shown
as black circles (not visible). The interactive application allows users to zoom in and
manually track individual Layer 1 connections. Here, three cutouts at different zoom levels
are combined for demonstration purposes.

can be identified quickly. Losses are typically caused by either Layer 1 or local driver
congestion. The former might be improved by using a more efficient manual placement
strategy, whereas the latter can be attenuated by using larger hardware neurons for
either all or specific target populations.

6.10 Summary
In this chapter, the marocco framework has been presented. It provides a complete and
working set of implementations following the feedforward mapping flow introduced in
Section 5.3. A special focus during development has been set on efficient and scalable
algorithms. Wherever appropriate, shared-memory parallelization is used to further
speed up the individual mapping steps. In terms of algorithmic complexity, the mapping
flow is dominated by the wafer routing, e.g., the Iterative Horizontal Growth approach
scales cubically in the number of neurons as long as the placement minimizes the active
wafer area. However, this is only a worst-case bound by a smaller amortized complexity.
For example, the time necessary to route networks with preserved local connectivity
grows linearly in the number of neurons because routing individual sources is done in
constant time. Nonetheless, mapping rates beyond 105 synapses per second have been
achieved for worst-case, full-wafer homogeneous random networks, see Chapter 8.

A comprehensive discussion on mapping performance, features and future develop-
ment is given at the end of this thesis.
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Wafer-scale integration is the key technique for realizing the high bandwidth,
on-wafer Layer 1 network necessary for large-scale neural network implementations.
However, random defects caused by manufacturing impurities inevitably remain in
the system. Handling such defects is of utmost importance for the reproducibility of
experiments on the HMF. The mapping implementations, presented in Chapter 6,
have therefore been designed to automatically work around defects for a wide
variety of components on different levels. This also means, large neural networks
can be efficiently implemented on arbitrary wafer instances.
This chapter introduces the ReDMan framework, which handles the creation and
management of defect maps. This provides an interface to integrate the results
of low-level hardware measurements into the mapping framework and therefore
control the mapping of neural networks. As part of the ReDMan framework, an
automated classification for the detection of unreliable synaptic transmissions has
been developed. This implicitly verifies the availability and interoperability of
many HICANN components. However, the classification is currently complicated
by the overly sensitive synaptic input circuits, as described by Millner (2012). The
chapter closes with an conservative estimate of the actual synapse defect rate,
showing that most synapses and most other components are working as intended,
thus available for hardware experiments.

The software presented in this chapter has been developed by Johann Klähn and the
author. The measurements have been conducted and published by Klähn (2013) under
the supervision of the author.

7.1 Defect Management
The ReDMan framework provides the necessary means to persistently store and manage
defect maps for a wide range of hardware imperfections. While, implementing suitable
workarounds for known defects lies within the responsibilities of the mapping. Thus,
ReDMan defines a data-oriented interface to integrate low-level measurements into the
mapping process and therefore control the realization of neural networks for individual
wafer instances.

Resources can be organized either individually or in hierarchies. In the latter case,
high defect rates on a lower level can be represented more efficiently as a single defect
on a higher level. Further, defects can be stored in either whitelists or blacklists.
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Which representation is more suitable depends on the expected defect rate. A plug-in
system, modeled after the Calibtic calibration framework, see Section 6.7.1, provides
dynamically loadable and flexible storage options. Implementations exist for XML and
mongoDB.

7.1.1 Interface
The ReDMan framework is a small, extensible C++ template library. New resources can
be added conveniently by means of inheritance.

Even though calibration and defect management have different use cases and maintain
different kinds of data, it is reasonable to assume that data for both is acquired in
the same process. Calibration routines are mostly developed in Python, raising the
requirement for ReDMan to provide Python bindings as well. Auto-generated bindings
(see Section 3.2.3) are provided to make defects accessible for both, the acquisition of
calibration data as well as low-level interactive experiments. The following code listing
briefly outlines the ReDMan interface.

# load mongoDB storage plug-in
db = redman.loadBackend(redman.loadLibrary('libredman_mongo.so'))
db.init() # connect to DB

wafer = redman.Wafer(db, Coordinate::Wafer(5)) # load wafer 5

hicanns = wafer.hicanns()
hicanns.disable(Coordinate::HICANNOnWafer(X(16), Y(10)))

h = hicanns.find(Coordinate::HICANNOnWafer(X(20), Y(7)))
nrns = h.neurons()
nrns.disable(Coordinate::NeuronOnHICANN(Enum(8)))

wafer.commit() # update DB entry

Here, the mongoDB database plug-in is loaded and a connection is established to the
default database instance. Then, HICANN (X, Y ) = (16, 10) and neuron 8 on HICANN
(20, 7) are marked as defect and, finally, the updated defect map is written back to the
database.

7.1.2 Defect Granularity
In order to handle defects efficiently, logical components have to be identified that
can be worked around by an appropriate configuration. Looking at spatial scales, the
transistor level is too detailed for handling defects efficiently. The wafer level on the
other end is too coarse, e.g., a limited number of defect Layer 1 buses can be tolerated
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and simply avoided during the routing process. A list of logical components that can
algorithmically be handled by the mapping process is given in Section 5.2.3.

Organizing defects in hierarchies helps to establish workarounds more efficiently
during the mapping, e.g., a defect chip can either be handled as a lengthy list of
individual components or as single defect chip. Moreover, omitting working components
located in areas of high defect rates can yield better overall configurations. For example,
a chip where only few synapse drivers are available might still have many working
neurons. However, placing model neurons to this chip inevitably results in high synaptic
loss.

7.1.3 Defect Description
Building a defect map for all logical components in the HMF raises the question of
how to characterize and represent defects. In some cases, a component might work
reliably 90 % of the time. Depending on the actual experiment it might be acceptable
to tolerate rare glitches. Using these extra resources might even benefit the model
performance. However, a general-purpose mapping should avoid such components by
default and focus on experiment reproducibility.

The handling of defects is complicated by the fact that the reliability of many
components depends on their respective configuration. Therefore, measuring component
reliability for a single set of parameters and skipping components below a certain
threshold during the mapping is insufficient. Even if for every component an operational
range can be found, the mapping might still not be able to establish configurations using
all components because many hardware components share parameters. Whenever the
intersection of operational range show parameters is empty. For the sake of simplicity,
defects are captured as binary maps alongside the parameters that have been used
during the data acquisition. This simple but efficient representation allows a coherent
interpretation of the availability of components. The mapping then uses the defect
map that is most suitable for the intended target set of parameters.

7.2 Synapse Measurement
This section introduces an automated classification of spike transmission reliability in
order to efficiently generate comprehensive defect maps for a large number of hardware
synapses. Synapses have been chosen as the starting point for the automatic integration
of defect data into ReDMan framework because synapses are fundamental for any
neural network implementation. Furthermore, demonstrating the correct operation
of synapses implicitly verifies the functionality of many other components. In fact,
most components are involved in the process of spike transmission, including neurons
as analog spike detectors. As a matter of fact, the results are mainly limited by the
oversensitivity of the synaptic input circuits regarding the synaptic time constant Vsyntc.
The results presented in this chapter should therefore be considered a lower bound on
the actual availability of hardware synapses.
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7.2.1 Signal Pathways
The HICANN chip provides several options to connect chip-local background generators
to neurons and therefore to implement synaptic signal pathways. Firstly, neurons can
receive input via two independent synaptic input circuits from any synapse driver in
the corresponding synapse array. Secondly, background generator events can be routed
to every synapse driver on the local chip via four different vertical buses, resulting
in a total of eight possible signal pathways. The synapse measurement uses all eight
possible pathways in order be more robust against single component failure and to help
identifying failing components. For example, if only one or two of the pathways fail to
transmit spike signals, the problem is likely caused by one of the Layer 1 buses rather
than the synapse itself.

Moreover, using only chip-local resources allows to conduct the measurement for
several chips in parallel to speed up the synapse evaluation for a full wafer setup.
However, the presented implementation has not yet been parallelized.

7.2.2 Analog Parameters
The synapse measurement identifies successful spike transmissions as PSPs in analog
neuron recordings. Therefore, the evaluation depends on the analog properties of the
neurons. However, no neuron calibration existed that accounts for synaptic input
circuits. Consequently, the default HALBe (see Section 4.2) parameters have been used
for all neurons. A complete list of parameters is provided in Appendix A.2. Most of the
default parameters are sensible, however, the synaptic input circuits are overly sensitive
regarding the synaptic time constant Vsyntc, which severely limits the spike detection
capabilities. This issue has previously been reported by Millner (2012). The influence
of Vsyntc on the classification performance has been studied in a follow up measurement
presented in Section 7.2.6.

7.2.3 Automatic Classification
The classification is carried out on membrane recordings from neurons that are used
as analog spike detectors. Measuring membrane traces for all 1.15 × 105 synapses per
HICANN for all eight synaptic pathways results in over 9 × 105 individual membrane
recordings per chip. An automated classification is therefore necessary in order to deal
with the amount of recordings and in particular to generate comprehensive defect maps
for the HMF

The implemented classification had to overcome two issues. Firstly, it needed to be
robust against varying PSP shapes, which are caused by the uncalibrated synaptic
input circuits. Secondly, no reliable trigger mechanism has been available causing any
membrane recording to be arbitrarily shifted in time.

Using periodic spike signals both issues can be resolved by a classification in the
frequency rather than the time domain. Furthermore, the spectrum can be reduced
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to a narrow range, which corresponds to the expected background generator rate, to
simplify the classification.

Background Generators

The background generators are set to elicit periodic spikes every 500 clock cycles. Given
a hardware clock frequency of f = 100 MHz a rate of fPSP = 0.2 MHz is expected. The
resulting ISI of 5 µs and 50 ms biologically is sufficient to clearly distinguish consecutive
spikes because the membrane time constant is typically shorter such that the neuron
can fully recover in between spikes.

Membrane Recordings

A preparatory study has shown that a recording of 5 PSPs is a reasonable compromise
between a clear frequency contribution to the spectrum on the one hand and fast analog
voltage recordings on the other. The recording time is therefore set to 25 µs, which
corresponds to 2400 samples of the used ADC (HBP SP9, 2014). A single Fourier
transformation for this number of samples takes on average 135 µs on an Intel Core i3
running at 3.07 GHz and is thus sufficiently fast to be performed on a large number of
recordings.

Classification Criteria

Within a frequency range of 0.1 MHz to 1.25 MHz amplitudes above the 0.85 quantile
are used for classification. Whenever these frequencies meet the following criteria, the
recording is classified as a successful spike signal transmission.

1. The lowest amplitude matches (±40 kHz) the frequency of the background gener-
ator.

2. All amplitudes are harmonics of the background generator frequency.

3. The mean of the difference between successive amplitudes is negative.

Figure 7.1 exemplifies the classification process for a failing and a working signal
transmission.

Error Estimate

A test set of 1200 reference membrane recordings has been manually classified to
evaluate the classification error of the automated procedure. The algorithm produced
2 false-positives and 26 false-negatives on the test set. This is a total error rate of
2.3 %. False-negatives lead to more synapses being blacklisted and are of lesser concern.
Whereas, false-positives threaten experiment reliability. They have found to be below
0.17 % for the test data. Finally, all membrane recordings are archived for future
reevaluation using e.g., updated classification criteria.
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Figure 7.1: Membrane recordings of two neurons stimulated with a periodic spike input
over a working (a) and a defect (b) synaptic pathway. The corresponding spectra for the
working (c) and defect (d) synaptic pathways are shown in the bottom plot. The frequency
range is reduced to the expected stimulus frequency and harmonics thereof. Amplitudes
above the 0.85 quantile (red line) are highlighted. These dominant frequencies are used for
the presented classification of defects. The criteria are explained in the text. Figure is based
on data from Klähn (2013).

7.2.4 Measurement Protocol
The order in which synapses are measured and the relative configuration frequency
of components has a significant impact on the total measurement time. In particular,
reconfiguring floating gates is expensive. Depending on the actual values, it can take
tens of seconds to reset analog parameters. Given the approximately 1.15 × 105 synapses
per chip, it is important to reset analog parameters as rarely as possible. The following
protocol has been specifically developed to minimize the measurement time.

Subsequent headings describe iterations over nested loops. The nesting depth is
indicated by the number of prefixed >. For example, there are eight iterations over all
possible Layer 1 pathways for each of the 224 synapse drivers. Within each section, the
necessary HALBe interface calls are listed together with a short description.

> For each Synapse Driver (224x)

The outer most iterations run over all synapse drivers on the chip. Consequently,
synapses are measured in a row-first fashion.
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7.2 Synapse Measurement

reset, init Resets on the wafer are shared by all chips. To avoid interference
between different experiments running on the same wafer a cooperative lockfile-based
synchronization scheme has been introduced. The reset call blocks until all active
users have called the function, then the reset is triggered and all invocations return.
Without a regular reset, other users on the system are blocked for long periods of time.
Furthermore, resetting and reinitializing the hardware can help in case of sporadic
transmission errors that have been present at the time of measurement.

set_fg_values Floating gate parameters have to be reprogrammed occasionally,
the values otherwise drift over time. This effect has been quantified by Kononov
(2011). However, configuring floating gates in the outer most loop is sufficient to ensure
reliable parameter values on the one hand, while keeping the performance penalty at
an acceptable level on the other.

set_dnc_merger, set_background_generator, set_repeater,set_neuron_config,
set_merger_tree After each reset, the mergers, background generators, repeaters
and neuron configurations have to be reprogrammed. Background generators are
configured first to allow all repeaters and synapse drivers to lock their internal DLLs
onto the address 0 events.

>> For each Layer 1 Bus and Synaptic Input (8x per driver)

This nested loop runs over all 8 synaptic pathways, see Section 7.2.1. Accordingly, the
four vertical bus options and the two synaptic input options are iterated.

set_crossbar_switch_row, set_syndriver_switch_row One crossbar and one se-
lect switch have to be set to connect the corresponding SPL1 repeater with the current
synapse driver.

set_synapse_driver The synapse driver configuration is responsible for selecting
the synaptic input. Furthermore, the local driver reset is triggered to make sure that
the synapse driver DLL is locked.

>>> For each Synapse (265x per Synapse Row)

An analog membrane trace has to be recorded for every synapse.

set_decoder_double_row, set_weights_row In principle, all decoders and weights
in the current row can be set to forward events to neurons. However, to avoid cross
talk only a single column is connected at a time. Columns are disconnected from the
driver row by setting synapse decoders to unused Layer 1 addresses.
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set_denmem_quad, set_analog The analog readout lines of odd and even neurons
are shared. Therefore, neurons from previous iterations have to be disconnected. Then,
the neuron in the active column has to be configured to output its analog membrane
voltage to the readout line. Finally, the multiplexer of the analog readout is set to
output the corresponding readout line.

ADC::config, ADC::trigger_now, ADC::get_trace The actual membrane recording
is set up, triggered and read back from an attached ADC after each measurement run
(HBP SP9, 2014).

The measurement for a single chip takes in total approximately 26 h using a single
analog readout. Normalized to the number of synapses, 0.8 s are spent per synapse
including the four possible Layer 1 connections and both synaptic inputs. The total
time spent on reconfiguring the floating gates is around 1.5 h. The measurement time
can be cut by about half if both chip-local analog readouts are used to measure two
synapse columns in parallel (HBP SP9, 2014).

7.2.5 Distribution of Defects
The defect distribution has been measured for HICANN (X, Y ) = (16, 10) on the first
prototype wafer system. The lack of a neuron calibration for Vsyntc, as explained in
Section 7.2.2, causes many synapses to be classified as defect. The results presented in
this section should only be considered a lower bound on the number of actual defects.
Subsequently, the influence of Vsyntc on the classification performance is studied in
Section 7.2.6.

The measured defect map is shown in Figure 7.2. Every pixel represents a single
synapse measured over the four possible Layer 1 connections per synaptic input. The
color codes for the number of defect classifications. Dark blue synapses have passed all
tests. The maps are presented independently for both synaptic input circuits of the
neurons. They have been found to be responsible for most defect classifications because
of their individual Vsyntc mismatch. Therefore, some of the red columns in one plot
correspond to a blue column in the other. Note that synapse row indices smaller than
224 refer to synapses located in the upper synapse array and to the lower otherwise.
They therefore connected to different synaptic inputs, which belong to neuron circuits
in either the top or bottom half. The characteristic line patterns are discussed in the
following.

Horizontal Lines in the result indicate defects spanning a complete synapse row.
They can be caused by defects of one of the following components: SPL1 repeaters,
background generators, Layer 1 buses or synapse drivers. The first three would cause
periodic defects in multiple rows.

In Figure 7.2 horizontal lines can be observed for the synapse row indices: (48, 49),
(142, 143), (160, 161). The adjacent synapse rows are operated by the same synapse
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Figure 7.2: Synapse defect maps for a HICANN, visualized individually for each synaptic
input circuit (a) and (b). Synapse rows from 0 to 223 are located in the top synapse array
and in the bottom synapse array otherwise. Each pixel corresponds to a synapse. The color
encodes the number signal pathways that have been classified as defect. Every synapse can
be reached via four Layer 1 connections per synaptic input. The column-wise synapse defects
(red) are likely caused by an uncalibrated Vsyntc and are studied in Section 7.2.6. Plot taken
from Klähn (2013).
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drivers, however, share no other common component. Thus, the pattern is most
certainly produced by individual synapse driver glitches. Additionally, these rows are
colorized irregularly, indicating sporadic failure. Possibly, the synapse drivers could
not properly lock their internal DLLs, causing the unreliable behavior. Furthermore,
the horizontal lines for synapse row 48 and 49 are only visible for one of the synaptic
inputs. Synapse drivers need to relock their internal DLLs, when their configuration
is changed to operate the second synaptic input after all 256 synapses per row have
been measured. Again, unreliable locking could cause the observed behavior, thus
supporting the previous DLL locking hypothesis. This does not necessarily mean that
the corresponding drivers are inherently unreliable or even defect. This behavior could
be the result of non-optimal parameter settings and calibrations might therefore be
able to improve reliability. However, this has to be investigated by future studies.

Vertical Lines are the most dominant pattern in Figure 7.2. All synapses in the
same synapse array and within the same column share a common neuron and the two
synaptic input circuits. Defects of other components in the signal pathway cannot cause
this kind of pattern because the synapses in different row receive input via different
synapse drivers and different Layer 1 connections. Notably, red vertical columns in
the upper plot in Figure 7.2 do not necessarily correspond to red columns in the lower
plot. The respective measurements have been conducted for different synaptic input
circuits. It is therefore reasonable to assume that the pattern is caused by the input
circuits rather than the neuron itself. The following section identifies the lack of a
Vsyntc calibration as the likeliest cause for the high column-wise defect rate.

7.2.6 Synaptic Time Constant
The results presented in Figure 7.2 show that frequently all synapses within the
same column are classified as defect. This particular pattern suggests that either the
synaptic input circuit or the neuron itself causes the issue. In both cases, it can be
considered a measurement artifact because an uncalibrated neuron does not influence
the functionality of a synapse itself. Unfortunately, any synapse measurement requires
neurons as intermediate PSPs detectors.

Millner (2012) found that the synaptic input circuits work only within a narrow
range of Vsyntc, varying independently for every input. Normally, these inputs translate
incoming spikes that are represented by current pulses into an exponentially decaying
conductance course, which in turn generates the PSP on the neuron membrane. The
influence of Vsyntc on the PSP shape is exemplified for one synapse in Figure 7.3.

If it is possible to show that the classification of the synapses fails due to the
lack of neuron calibration rather than actual defects, it is reasonable to mask these
measurements to derive an estimate on the actual number of defect synapses. Therefore,
the classification result has been studied as a function of Vsyntc for a few synapses. The
result for 40 synapses of neuron circuit 300 is shown in Figure 7.4.
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Figure 7.3: Membrane recordings of a single neuron periodically stimulated over a single
synapse for different values for Vsyntc. The corresponding Vsyntc values are indicated on
the right side of each panel and are given in digital analog converter (DAC) units. Their
impact on the PSP shape is clearly visible. The respective DACs have a 10 bit resolution and
can therefore be set to values between 0 and 1024. However, synaptic signal transmission
provides clear PSP contributions only within a narrow range from approximately 700 to 820.
Figure based on data from Klähn (2013).

Again, the color encodes the number of pathways classified as defect. Clearly, Vsyntc
influences the outcome. As expected, the area where most classifications are positive is
independent for both synaptic inputs. Consequently, the parameter overlap is smaller
compared to a single input. Fortunately, this is only an issue if fixed default values are
used. A calibration can compensate for the variations of both inputs individually.

Note that even some of the classifications within the acceptable range yield defects.
This can either be a hardware effect or false-negative classifications by the algorithm,
which have previously been estimated to be around 2.2 %. The sharp transition between
blue and red over multiple synapses indicates that the usable parameter range for Vsyntc
is mostly independent of the synapse driver, which simplifies a calibration of Vsyntc.
The results narrow down reasonable DAC values for Vsyntc to range from 700 to 820.
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Figure 7.4: A sweep over the synaptic time constant Vsyntc for the topmost 40 synapses of
neuron 300 (bottom half). The color codes for the number of error classifications via the
4 possible signal pathways. The results for the first and second synaptic input are shown
in (a) and (b), respectively. The effective classification result is given by the intersection
of both inputs by means of a logical or, as shown in (c), where white means non of the
trials has been classified as defect. Clearly, the working range is narrower for the intersection
than for the individual inputs. Consequently, successful classifications are less likely for
shared parameter values, even though they can, in principle, be set individually for each
input. Here, a DAC setting of 800 has been used for Vsyntc, indicated by the blue line. The
synapse 239, circled in white, has been used to record the membrane traces illustrated in
Figure 7.3. Figure taken from Klähn (2013).

A thorough calibration, however, should also evaluate the actual PSP shapes and not
only rely on signal periodicity.

7.3 Estimation of Synapse Availability
The results presented in Section 7.2.6 showed that most defect classifications visible
in Figure 7.2 are resolvable by means of calibration. This means, measurements of
failing transmissions due to an unsuitable value of Vsyntc should be masked to derive a
representative estimate on the actual number of defect synapses.

Neurons in columns with high synapse defect rates above 40 % are considered un-
suitably configured and therefore masked. This results in 285 out of the 512 masked
neurons, slightly more in the lower synapse array with 152 versus 133 in the upper.
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Masking synapses connected to masked neurons as well as unreliable synapse drivers
results in 50 110 unmasked synapses whereof only 2924 synapses have been classified as
defect. This yields a lower bound on the number of working synapses of 94 %. Notably,
the cut-off threshold of 40 % has been chosen conservatively.

The resulting masked map of synapse defects is shown in Figure 7.5. Most defect
classifications are still clustered within columns, suggesting that the corresponding
synaptic input worked unreliably. Such behavior is expected for Vsyntc values in the range
of transition from working to non-working parameter values, as shown in Figure 7.4.
Thus, most of the remaining defect classification are expected to be either false-negatives
(2 %) or still caused by the synaptic inputs.

On the bottom line, most synapses on the tested HICANN work as intended and are
therefore available for network experiments. The results are expected to further improve
for calibrated synaptic inputs and future HICANN revisions, where the dynamic range
of Vsyntc will be extended to fix the issue.
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Figure 7.5: The final defect map for synapses. The results from both synaptic inputs in
Figure 7.2 have been combined. Synapses are marked as defect (black) if any of the eight
different signal pathways has been tested negative. Synapses colored red have been masked.
They belong either to unreliable synapse drivers or neurons with unsuitable synaptic time
constants. The masking threshold for column-wise defects has conservatively chosen to
be 40 %. However, the remaining defects are still clustered in columns. These defects are
expected to be resolved by a future calibration of synaptic time constants. Figure is taken
from Klähn (2013).
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8 Workflow and Mapping Benchmarks
This chapter benchmarks the workflow redesign and explores the suitability of
the HMF for a variety of neural network topologies from artificially planar to
complex cortical column models. Firstly, single neuron experiments are mapped
to actual hardware to verify simple configurations. Then, a simulation of a
multi-HICANN Hellfire chain is conducted using a preliminary version of the ESS
workflow integration to demonstrate the correctness of more complex configurations.
An early Hellfire chain implementation on the wafer system could not achieve
the intended model dynamics. However, provided vital information to guide the
development of calibrations and helped to identify an DLL locking issue for external
spike inputs. Afterwards, a comprehensive study of homogeneous random networks
outlines the characteristics of individual mapping steps and identifies Layer 1
bottlenecks for network implementations requiring dense long-range connectivity.
Moreover, the predecessor workflow and the new workflow are compared in terms
of synaptic loss, runtime performance and memory footprint. Subsequently, three
different cortical column architectures, an AI state model and large planar networks
are mapped. The chapter closes with a summary of all previous mapping results
and discusses topology implications regarding suitable neural network models for
the HMF.

8.1 Benchmark Environment
Wherever possible, the mapping results of the redesigned (marocco) and older prede-
cessor (MappingTool) workflow are put into perspective. The old workflow is briefly
introduced in Section 2.1. To keep the results as comparable as possible, all runs have
been carried out on the same computational setup and both applications have been
compiled using the same software optimizations listed in Appendix A.1. Furthermore,
both implementations map configurations for a full, defect-free wafer instance.

The synaptic loss is expected to be similar for both workflows due to the algorithmic
similarities in many approaches and the common hardware constraints, in particular.
Note that the force-based cluster algorithm for neuron placement, which is described
by Brüderle et al. (2011), is no longer supported by the MappingTool (Vogginer, 2014b).
Therefore, the default approach has been used, which places neurons in the order they
appear in the model description from the top left corner of the wafer to the bottom
right in a row-first fashion.

From a runtime point of view, the new workflow turns out to be significantly
faster than the old one for any studied network instance in this chapter. The effective
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Figure 8.1: Voltage recordings (blue) of a 4-circuit hardware neuron stimulated by a
rectangular current pulse (red). The complete experiment has been set up, executed and
recorded via PyNN, using the new workflow. Note that the current pulse is only outlined
by its principal shape because it cannot be measured. The neuron shows spike frequency
adaption behavior on the left and phasic bursting behavior on the right. Both, the exponential
and adaption term of the AdEx model are clearly visible. The former causes the steep rise
of voltages above 0.7 V, whereas the latter is responsible for the frequency reduction and
voltage under-shoot after the stimulation is turned off. Voltages and times are given in the
hardware voltage domain (HVD) and hardware time domain (HTD), respectively.

performance gain depends on the topology. For most experiments, the runtime for setting
up the abstract network representation and the subsequent mapping are benchmarked
separately. Networks are set up via PyNN and PyHMF for the old and new workflow,
respectively, while the MappingTool and marocco are responsible for mapping.

Statistical errors in all runtime measurements and distortion studies are typically
small, including networks with random connectivity according to the law of large
numbers and have therefore been omitted wherever appropriate.

8.2 Current Stimulus for Multi-Circuit Neurons
In a first simple experiment, a multi-circuit neuron is stimulated with a rectangular
current pulse. Similar experiments for single-circuit neurons have been presented
by Schwartz (2012) and Tran (2013). In this study, however, the PyNN interface is
used, rather than the low-level HALBe interface, to combine multiple-circuits into larger
hardware neurons, set up the current stimulation via the floating-gate controller and
record the experiment. Verifying the multi-circuit configuration is particularly important
because erroneously routed spike signals can damage the chip, see Section 1.4.1. The
dynamics of the AdEx neuron model and its characteristic spike patterns are explained
in more detail by Naud et al. (2008).
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At the time of writing, no calibrations for multi-circuit neurons configurations existed.
Therefore, parameters had to be manually tuned to reproduce some of the patterns
presented by Tran (2013). The final parameters are listed in Appendix A.2.

Exemplarily, two spike patterns for a 4-circuit neuron configuration are presented
in Figure 8.1, including frequency adaptation and phasic bursting (Naud et al., 2008).
The sketched current pulse indicates its principal shape, however, cannot be directly
measured on hardware.

Clearly, for membrane voltages Vm around the spike initiation potential Vthresh = 0.7 V
the exponential term of the AdEx neuron model starts to pull up Vm until the spike
detection threshold Θ is reached. There, the membrane is set back to Vreset. In
the right-hand plot, Vreset is slightly below El. Furthermore, spike triggered neuron
adaptation increases the ISIs until no spike is elicited anymore. The adaption is stronger
in the phasic bursting case, such that spiking stops after a short initial burst. After
the stimulus is turned off, the adaption causes a hyperpolarization of the membrane
potential, which then recovers to El. The adaption current decays exponentially
according to Equation (1.2).

This brief study demonstrates the correct configuration of multi-circuit neurons, the
correct set up of the critical spike routing and the accessibility of current stimuli via
PyNN. Notably, this simple experiment also exemplifies the operation and interoperation
of all the novel software components from the most abstract PyNN to the lowest HALBe
level.

8.3 Hellfire Chain Network
The Hellfire model is a chain-like network topology developed by Daniel Brüderle and
Tom Clayton in 2010 for the neuromorphic Spikey chip (Brüderle et al., 2010). The
network consists of two parallel chains, a primary carrier chain for signal propagation
and a secondary control chain to preserve the signal shape. A simplified illustration
of the topology is given in Figure 8.2. Whenever a chain link X in the carrier chain
is active, the corresponding control link becomes active, which in turn inhibits the
carrier links X − 1 and X + 2 to limit the activity to a narrow window of two links only.
As the activity moves forward to the next link via the excitatory connections in the
carrier chain, the activity window shifts to the right and the current link is inhibited by
the next control link. This safe-guarding mechanism renders the Hellfire chain robust
against effects like signal dispersion (Brüderle et al., 2010). In the following, the chain
is typically closed to form a ring by connecting the last and first links. Therefore,
activity in the ring sustains itself and the signal can theoretically propagate for an
indefinite period of time.

8.3.1 Guided Placement
Chain-like topologies predominantly implement local connectivity, which is limited to
a few neighboring chain links. Such networks can be routed efficiently, as long as the
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Figure 8.2: A schematic of the Hellfire chain model, which consists of two parallel chains.
Each chain link consists of an excitatory and an inhibitory population, which are shown in
red and blue, respectively. Information is conveyed via the carrier chain (1) from left to
right. Activity in the secondary control chain (2) is synchronized to the carrier chain and
safe-guards the extent of activity by inhibiting carrier links right before and the one after
the next. A detailed listing of connectivity can be found in Appendix A.2.

Figure 8.3: Two strategies for a resource efficient neuron placement of chain-like topologies to
wafers. Note that the arrows only indicate the placement order and not the physical Layer 1
connections. Laying out the chain in the zigzag fashion, shown left, results in long-range
connections when closing the chain to a ring-like topology. Zigzag from top to bottom is
worse, requiring more scarce horizontal buses. The meander strategy, shown right, maps
ring topologies efficiently without imposing any long-distance horizontal connections. This
strategy has therefore been used to place the Hellfire and Synfire chain networks presented
in this chapter.
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Figure 8.4: Routing visualization of a 4-link Hellfire chain mapped to 4 adjacent HICANNs,
each implementing one carrier and one control chain link. Every chip hosts 28 neurons built
from 4 circuits each. A single outgoing Layer 1 connection per HICANN relays events to the
other links. The connections are shown in 4 different colors running horizontally near the
center. The initial spike stimulus is injected via the red horizontal bus on the left chip. This
configuration has also been mapped to hardware, the results are presented in Section 8.3.3.

neighborhood relationship between links is preserved during the placement. This means
that any connected pair of neurons is placed closely together. In fact, wafer-size Hellfire
chain instances can be realized without running short of routing resources.

The guided placement provides control over the layout of the ring topology on the
wafer. An intuitive approach is to e.g., start with a chip in a corner and then fill up the
wafer in either a row-first or column-first zigzag fashion as shown in Figure 8.3. Both
options lead to long-range connectivity when closing the chain, which may become
an issue depending on the actual model topology and the number of neurons per
chip. The second meander-like strategy in Figure 8.3 solves the problem elegantly
and is therefore used to realize both, the Hellfire and Synfire chain, see Section 8.9.1.
Generally, long-range Layer 1 connections should be avoided because they can block
other connections from their targets. Horizontal buses are particularly expensive due
to the fact that only one fifth of all buses are horizontal.

In this study, variably sized Hellfire chain instances are mapped such that the largest
network instances utilize the wafer to its full extent. Up to four chain links of 4 × 7
neurons each are placed per HICANN and four circuits are used per neuron. The
number of model synapses S linearly grows in the number of links L due to the purely
local connection structure and has found to be S = 616 × E. For four links per chip,
112 of 118 available Layer 1 source addresses and 87.5 % of all neuron circuits are used,
which means that neuron as well as Layer 1 resources are used efficiently. Up to two
chain links per chip can be routed using a single SPL1 output. In cases where two SPL1
outputs per chip have to be routed, the importance of efficient placement strategies is
stressed, e.g., up to 4 × 4 × 2 = 32 cross-wafer connections have to be routed for the
already efficient zigzag strategy shown in Figure 8.3.
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Figure 8.5: Network setup and mapping times for the Hellfire chain model indicated by
dashed and solid lines, respectively, for the old (red) and new (blue) workflow. The maximum
instance size is bound by the wafer extent. Marocco is typically more than an order of
magnitude faster, while the network setup via PyHMF is even more than two orders of
magnitude faster. The average speedup for both components combined has found to be 112
and increases towards larger network instances.

Exemplarily, a mapped Hellfire chain of length 4 with one link per chip is visualized
in Figure 8.4. The connectivity matches the topology shown in Figure 8.2. Each
chip connects to any other chip to excite the subsequent link to the right and inhibit
the others. The left most chip also receives external spike inputs to initiate signal
propagation at the start of the experiment.

8.3.2 Workflow Performance Comparison
The Hellfire chain model is the first setup to compare the runtime performance of
both workflows. Network setup times and mapping performance have been studied
separately and are shown in Figure 8.5.

Clearly, the new workflow is faster. The mapping step is typically more than one order
of magnitude faster, except for very small network instances. Setup times are even more
than two orders of magnitude shorter for all studied chain lengths. Remarkably, the
performance gain of the new workflow increases towards larger network instances and
therefore pays off even more. The average speedup over all mapped network instances
is 112. While mapping the largest full-wafer network instance with marocco has found
to be even 137 times faster. It only takes 2.5 s versus 343 s for the MappingTool.

Note that for technical reasons the MappingTool uses its default linear placement,
which produces results similar to the first zigzag strategy in Figure 8.3, whereas marocco
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uses the meander strategy. Using the default placement for the MappingTool causes
lost synapses for some of the network instances depending on where the first and last
chain links are located on the wafer. However, the occurrence of synaptic loss does not
affect the runtime measurements as shown by the smooth curve progression.

The performance improvements have been achieved by more efficient implementations
and parallelization alike. Nonetheless, parallelization only applies to the mapping and
can only account for a factor of approximately 3 to 4 on the computational setup, which
is described in Appendix A.1.

For the old workflow, the network setup takes longer than the actual mapping, which
is surprising regarding the relative complexities of the tasks. This can be explained by
the fact that most functionality of the old PyNN backend is implemented in Python on
the one hand and that mapping chain topologies is particularly simple and therefore
fast on the other. For the new workflow, network setup via PyHMF is typically faster
than the subsequent mapping via marocco, as one would expect. Towards large network
instances the setup and mapping times of the new workflow approach each other because
the relative mapping overhead per synapse becomes smaller. Furthermore, marocco
carries out the synapse assignment of multiple HICANNs in parallel, whereas PyHMF
creates model synapses purely sequential.

8.3.3 Towards a Hardware Implementation
The Hellfire chain model has been chosen as the first model to be implemented on
hardware due to its prior realization on the neuromorphic Spikey chip (Brüderle et al.,
2010). However, an early implementation of the model on the wafer system failed to
achieve a propagation of spiking activity along the Hellfire chain links. The implementa-
tion is currently limited by the lack of comprehensive multi-circuit neuron calibrations.
Furthermore, a DLL locking issue for external spike inputs has been identified. Marocco
has been updated to automatically work around this problem. Future FPGA firmware
or hardware revisions are expected to provide a more comprehensive solution.

In this section, firstly, the analog regime and excitability of neurons is studied.
Next, the correctness of mapped configurations is verified by an ESS simulation using
a preliminary version of the HALBe integration. Finally, observations and current
limitations are discussed regarding the early Hellfire chain implementation on hardware.

Preliminary Study of Neuron Excitability

In this preparatory study, the default neuron parameter transformations for single-circuit
neurons and preliminary calibrations are used to configure a multi-circuit hardware
neuron using the model parameters of the Hellfire chain network. A corresponding
configuration is applied to the wafer setup and a neuron tested regarding its excitability
and therefore its ability The resulting configuration is applied to the wafer setup
and the neuron tested regarding its excitability. Suitable neurons for a Hellfire chain
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Figure 8.6: Neurons built from 1, 2 and 4 circuits in (a), (b) and (c), respectively, are
stimulated with 10 Hz Poisson spike input. In (d), the two circuit neuron is stimulated using
a higher input rate of 40 Hz, which is sufficient to elicit a single spike. The bottom plot (e)
shows the same setup with reduced membrane capacitance from 2 × 2.16 pF to 2 × 0.16 pF.
Consequently, the neuron is more sensitive to input and spikes several times. Times are given
in the biological time domain (BTD), while voltages are in the hardware voltage domain
(HVD). Note that the recording trigger has been working unreliably causing random time
offset.

implementation have to be sensitive enough to pick up spiking activity to propagate
the signal further.

Simple voltage and membrane time constant calibrations exist for single circuit
neurons. However, multiple neuron circuits have to be connected by the mapping
for the implemented synapse driver routing and to achieve high input counts, while
keeping the number of connected synapse drivers small to ensure reliable Layer 1
communication, see Section 1.5.5. Ideally, the membrane capacitance of a neuron is
the sum over the individual circuit capacitances. Achieving PSPs of equal amplitude
on a larger membrane requires stronger synaptic currents. The goal is therefore to
establish a suitable analog regime for 4-circuit neurons that could in principle allow
signal propagation. A thorough calibration would go beyond the scope of this thesis.

Voltage traces for differently sized hardware neurons stimulated with Poisson spike
input are shown in Figure 8.6. The corresponding hardware parameters, which have
been produced by the default parameter transformations at that time using the Hellfire
parameters, are listed in Appendix A.2. These transformations are currently being
reworked, thus, results are expected to change in the future.

From (a) to (c) in Figure 8.6 the neuron is built from 1, 2 and 4 circuits, respec-
tively, and receives Poisson input with a biological rate of 10 Hz via a single synapse.
This synapse is set to the maximum digital weight, uses the default synapse driver
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base-efficacy gmax and minimal conductance divider gdiv, see Section 6.7.3. The latter
maximizes the synaptic efficacy for fixed values of gmax. The input spikes should in
principle coincide for the first three recordings because the same spike trains have been
used. However, one can see that the experiment trigger for the analog recorder has not
been working reliably at the time of measurement resulting in arbitrary time offsets.

Clearly, the circuit capacitances add up. Every time the neuron size is doubled, the
PSP amplitude is approximately halved. As explained earlier, getting larger neurons to
fire requires stronger stimulation. In this case, the provided input is not strong enough
to trigger any spike, even for the single-circuit neuron. Thus, the biological input rate
is increased from 10 Hz to 40 Hz in order to get the neuron to fire using the 2-circuit
neuron configuration for (d) and (e). In (d) a single spike has been triggered at around
t = 1160 ms (BTD). Note that the synaptic efficacy is already at the hardware limit
and can therefore not be strengthened any further. The excitability of the neuron could
have been increased by lowering the threshold voltage. However, without a suitable
neuron voltage calibration this can be done only to a certain extent without risking
that some of the neurons start spiking randomly by themselves. In consequence, the
circuits are switched to the alternative, smaller capacitance of 0.16 pF rather than the
default of 2.16 pF. This also reduces the membrane time constant and has originally
been designed to support higher analog speedup factors. Here, the small capacitance
is used to make the neuron more sensitive to spike input, hence strengthening the
synaptic efficacy. The respective response is shown in (e). Significantly more spikes
have been triggered for the same stimulus in comparison to (d). It is therefore possible
to elicit spikes with a single strong synapse.

Other parameters, like gl, could have been studied to correct the membrane time
constant with respect to the reduced capacitances according to τm = C/gl. However,
calibrating the system is beyond the scope of the thesis.

Hardware Simulation and Mapping Verification

To verify the configurations generated by marocco a preliminary HALBe integration
of the ESS (Pape, 2013) is used to conduct a simulation of the Hellfire chain. The
most significant difference between prior ESS studies using the MappingTool and the
new workflow is that everything is set up using only HALBe interfaces. This means
that unlike before, the ESS has no access to the original network model, which is
an important improvement making the ESS behave more like the actual hardware
system. Thus, neuron parameters have to be reconstructed from the hardware DAC
values supplied via the HALBe interfaces. However, the parameter transformation and
especially the reverse transformation of the ESS are currently under active development.
Yet, the ESS captures the topological properties of hardware correctly, including the
merger tree, the Layer 1 network and synapse array connectivity. For this study, the
reverse transformation of neuron parameters has been tuned such that the results
reproduce the output of an ideal NEST-based (Diesmann and Gewaltig, 2002; Eppler
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Figure 8.7: Hellfire chain of 10-links set up by marocco and simulated on the ESS. A
preliminary version of the HALBe integration has been used to configure the simulator,
see Section 2.2.5. Activity is conveyed by the excitatory carrier chain populations Ecarrier.
The narrow excitatory activity is safe-guarded by broader inhibitory activity in Icarrier that
inhibits activity in prior and subsequent links, Thus preventing signal dispersion. The
successful simulation and behavior in accordance with a reference simulation demonstrates
that all topological aspects of the Hellfire chain have been mapped correctly. Data provided
by Paul Müller, who is responsible for the ESS workflow integration.

et al., 2008) reference simulation. In fact, the reference simulation has been omitted
because the raster plots of both simulations look alike.

The spike responses produced by the ESS are presented in Figure 8.7. The activity
is separately shown for excitatory and inhibitory populations as well as the carrier
and control chain in accordance with Figure 8.2. The signal is conveyed by excitatory
carrier chain populations Ecarrier. Note that the activity of the inhibitory populations
in the carrier chain Icarrier lasts about 4 times as long. It starts to receive stimulation
as soon as the chain link two in advance becomes active and keeps receiving stimulation
until the activity has passed on to the link after the next. The activity in the control
chain populations Econtrol and Icontrol is simply driven by the activity of the excitatory
carrier population and is therefore synchronized. Their activity lasts a little longer
because they are not actively inhibited by other populations, unlike the excitatory
carrier populations.
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8.3 Hellfire Chain Network

The successful signal propagation and network dynamics in close match with the
reference simulation demonstrate that the wafer routing and all topological aspects of
the hardware configuration are mapped correctly.

Hardware Implementation

Finally, a 4-link 4-HICANN Hellfire chain configuration has been mapped and set up
on the wafer system. The mapping is visualized in Figure 8.4. Every chain link consists
of 4 × 7 neurons, each built from 4 neuron circuits. The neuron parameters have been
set according to the single neuron excitability study, described earlier. A listing of
these parameters and more informations about the actual hardware instance is given
in Appendix A.2. Furthermore, the initial excitatory input, which starts the signal
propagation, has been increased by setting all weights to maximum and doubling the
rate. On hardware, spiking activity has been observed in the first chain link. However,
only few neurons did fire and the ones that did, erratically fired in short bursts.

The first issue that only a few neurons received sufficient input to fire, is likely caused
by the lack of a Vsyntc calibration, which is explained in Section 7.2.6. Therefore, many
of the used synaptic input circuits either worked unreliably or distorted incoming PSPs.
Furthermore, comprehensive multi-circuit neuron calibrations are required to reduce
neuron to neuron variability and make the setup more robust.

The observed bursting behavior of active neurons might be caused by adaptation
of the AdEx neurons on the one hand or a locking issue for external spike inputs on
the other. Firstly, the adaptation and exponential dynamics of the hardware AdEx
neuron are currently examined in more detail via transistor level simulations, improved
control thereof will then be provided by updated calibrations. Secondly, a repeater
locking issue for external input has been discovered as part of this study and is currently
under investigation. According to Section 1.5.5, repeaters and synapse drivers require
periodic address 0 events in order to lock internal DLLs. The on-chip background
generators provide these events for recurrent on-wafer connections. Once activated,
the background generators provide constant stimulation even if no experiment is in
progress, thus locking the internal DLLs of repeaters and synapse drivers at any time.
The background generators have also been used in all low-level measurements so far
to augment external spike inputs to ensure DLL locking. However, using background
generators for external input locking in more complex network setups complicates
the event routing for neurons via the merger tree and reduces Layer 1 utilization.
Therefore, reduces the amount of implementable long-range connectivity. Instead, a
simpler workaround has been integrated into marocco, which dedicates merger 7 in
the top merger tier for background events. This reduces the number of accessible
neuron circuits per HICANN by 64, however is only a minor limitation in a full-wafer
setup for small to medium size networks. This workaround has also been used in
the prior excitability study. Note that address 0 events could in principle also be
supplied by the FPGAs. In fact, this has been the intended approach, however, the
time between repeater configuration and event onset is too long for the DLLs to lock
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reliably. Worst-case timings and optimal strategies to provide events earlier in the
programming process are currently investigated. The issue is expected to be fixed
by an FPGA firmware update providing explicit control over configuration and spike
onset times. In the long run, changing the merger tree topology to insert background
generator events on the lowest merger tier could also resolve the issue and render the
use of background generators more flexible.

Apart from activity on the first chip, PSPs have been recorded on the second HICANN
containing the second Hellfire chain link. This might indicate successful event routing
of events from the first to the second chip. However, spike and voltage recording are
not yet synchronized. Thus, verifying that the PSPs are actually caused by activity
on the first chip has not been possible. Moreover, the stimulation was neither strong
nor frequent enough to cause spiking behavior on the second HICANN and therefore
propagate the Hellfire signal.

Even though no signal propagation has yet been achieved for the Hellfire chain
model, this study helped to identify an DLL locking issue for external spike input,
which is now under thorough investigation on a lower level. Meanwhile, marocco has
been updated to automatically work around this issue by dedicating a part of the
merger tree for external spike input. Therefore, the necessary address 0 events can be
supplied by on-chip background generators. Ultimately, comprehensive calibrations for
multi-circuit neurons will resolve the synaptic input issue and provide a suitable analog
regime for neurons. It is expected that this will ultimately enable working Hellfire
chain implementations on the HMF.

8.4 Homogeneous Random Networks
Homogeneous random networks are simple models where any neuron is connected to
any other neuron with a fixed probability of p. The number of model synapses Nsyn in
a network of N neurons grows therefore with p × N2. This model has previously been
studied by Fieres et al. (2008) using a prototype mapping and a preliminary hardware
topology. In accordance with the publication, networks with connection probabilities of
p = {1 %, 5 %, 10 %} are studied. This provides a reference frame for the interpretation
of the results in this section. However, they only mapped network instances with up
to 16 383 neurons, whereas full-wafer instances with more than 4.5 × 104 neurons are
mapped in the thesis at hand.

The structural isotropy of homogeneous random networks makes them particularly
suitable for routing benchmarks. In fact, the neuron placement has little impact on the
final configuration. To understand this property, we first look at the probability of a
single neuron not to receive input from another neuron located on HICANN x

px = (1 − p)n , (8.1)

where n is the number of neurons placed per chip which can either be n8 = 59 or
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n4 = 118 for 8 and 4 circuits per neuron, respectively. The probability for a whole
HICANN not to receive input from HICANN x is then

Px = pn
x = (1 − p)n2

. (8.2)

Px approaches zero for only a few neurons per chip even for low connection probabilities
p, e.g., Px = 6.4 × 10−16 for the lowest connection probability p = 1 % and n = n8 = 59.
This means, every HICANN likely receives input from every other HICANN, leading to
a worst-case all-to-all inter-chip connectivity. At the same time, it is very unlikely that
a neuron placements exists that simplifies the wafer routing. Another consequence is
that the wafer routing task becomes independent from the connection probability and
only depends on the number of neurons. This also means, inter-chip connectivity is
independent from the actual random processes.

Different network instances have been studied regarding their utilization of hardware
synapses, network setup time, mapping time and most importantly their model fidelity
after mapping. The fidelity νfidelity has been defined by Fieres et al. (2008) as the
fraction of synapses that are successfully realized on hardware, according to

νfidelity =
Nrealized

Nsyn
= 1 − νloss , (8.3)

with the number of realized synapses Nrealized, the number of model synapses Nsyn and
the relative number of lost synapses νloss.

The results are presented in Figure 8.8. Different colors and line styles denote
different quantities and connection probabilities p ∈ {1 %, 5 %, 10 %}, respectively. Note
that marocco provides two implementations for both, wafer routing and synapse driver
routing. Here, only the results for the iterative horizontal growth wafer routing (see Sec-
tion 6.4.4) and the iterative best fit synapse driver routing (see Section 6.5.2) algorithms
are presented because this combination produced the best results on average. The
iterative shortest path wafer routing (see Section 6.4.3) produced 6.5 % higher synaptic
loss on average due to higher Layer 1 bus utilization. The simulated annealing synapse
driver routing (see Section 6.5.3) produced the best results for some homogeneous
random network instances. However, it requires parameter tuning, is typically 20 %
slower and leads on average to 4 % less synapses using the default parameters compared
to the iterative best fit synapse driver routing.

Homogeneous random network instances ranging from 5000 to 45 312 neurons have
been mapped, which is the practical limit for 4-circuit neurons in combination with
efficient Layer 1 network utilization, as explained in Section 6.1. The largest network
instances use 92 % of all available neuron circuits on the wafer. For every network
instance, configurations of 4 and 8 circuits per neuron have been chosen such that all
neurons still fit on the wafer and at the same time the synaptic loss is minimized. In
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Figure 8.8: Mapping results for marocco and the MappingTool on homogeneous random
networks in the upper and lower plots, respectively. The final fidelity (red), an intermediate
fidelity after the Layer 1 wafer routing (green) and the synapse usage (blue) are shown. The
latter two are only available for marocco. Network instances with connection probabilities
p of 1 %, 5 % and 10 % are denoted by different line styles. Notably, the fidelity after the
wafer routing does not depend on p and the synapse usage saturates for larger networks, see
text. The vertical grid lines at 24 576 neurons indicate the transition from 8 to 4 circuits per
neuron. At this point, the model fidelity regresses because fewer inputs are available per
neuron, whereas the synapse usage increases, see text.
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practice, the 8 circuit configuration is used for network instances as large possible, since
neurons receive input from approximately

Ninp = p · N (8.4)

other neurons. This number easily exceed the 4 × 224 synapses of smaller 4-circuit
configurations. The transition from 8 to 4 circuits is indicated by vertical grid lines
at N = 24 576 in all Figures from Figures 8.8 to 8.12. Using 12 or more circuits per
neuron increased the synaptic loss because the Layer 1 resources are exhausted earlier
due to the larger number of active chips. Such configurations can still be beneficial for
higher connection probabilities requiring more inputs per neuron.

Figure 8.8 shows the model fidelity and the usage of hardware synapses, which
is defined as the fraction of mapped hardware synapses on chips that have neurons
placed to them. The usage is given for marocco only, since the MappingTool produced
unreasonably small values. Furthermore, the green line in the upper plot outlines the
fidelity of the model after the Layer 1 wafer routing, before the actual synapses have
been assigned. This intermediate fidelity accounts for all model synapses that have not
yet been explicitly lost as a consequence of unreachable chips. Moreover, only a single
green line is visible. The wafer routing is independent of the connection probability
because all probabilities alike lead to chip-wise all-to-all connectivity, as explained
earlier.

The distance between the green line and the upper edge of the plot denotes the
fraction of synapses that are lost during the wafer routing due Layer 1 connections that
could not be established. Similarly, the area between the final synaptic loss, shown
in red, and the green line denote synapses that are lost locally either during synapse
driver or synapse array routing.

Both mapping implementations produced similar results in terms of model fidelity.
Generally, marocco produced slightly less distorted representations. This is most
apparent for smaller networks, e.g., the N = 104 and p = 1 % network instance is
mapped almost loss-free by marocco, whereas the MappingTool produces ∼ 10 % loss.

Reducing the number of circuits per neuron from 8 to 4 at N = 24 576 leads to
a sharp decline in model fidelity, as the number of inputs per neurons is suddenly
halved. The penalty is emphasized towards higher connection probabilities because of
an increased input requirement per neuron according to Equation (8.4). Since this is an
immediate result of topological constraints, the effect is comparable for both mapping
implementations. The Layer 1 fidelity is barely influenced by the circuit reduction and
declines steadily.

The usage of hardware synapses is expected to increase linearly with the number of
neurons N and fixed connection probabilities p according to Equation (8.4). In fact,
this behavior can be observed up to N = 16 128 neurons, where the utilization saturates,
which coincides with a steeper decline in fidelity. This effect is caused by Layer 1 bus and
synapse driver exhaustion, rendering the number of inbound connections per HICANN
constant. Therefore, any neuron can receive input from only a fixed effective number of
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afferent neurons Neff limiting the number of realizable synapses per neuron to Neff · p.
When the number of circuits per neuron is reduced from 8 to 4, twice as many neurons
are placed per chip, thus increasing Neff. Gaps of unused hardware synapses can now be
used for additional connections, which in turn increases the synapse utilization. After
the circuit reduction, Layer 1 resources are still exhausted rendering the number of
inbound connections constant. However, the number of realizable synapses per neuron
is increases because Neff has been increased. For network instances with p = 9 % and
24 576 neurons or more, the synapse usage settles at around 73 %. Theoretical, up to
92 % of the synapses could be used in accordance with the 92 % of mapped neuron
circuits (8 × 59 and 4 × 118). The discrepancy of 19 %, between 92 % and 73 %, is
caused by routing granularity, e.g., multiple synapses have to be assigned even though
only a single one is needed due to the two-stage decoding scheme.

Fieres et al. (2008) observed a similar convergence at around 80 %, though the results
are difficult to compare because the hardware topology has significantly changed since
then. For example, the number of synapse drivers has been reduced by approximately
14 %. A dedicated mapping run with marocco for N = 24 576 and p = 100 % showed a
synapse usage of 91.9 % (∼ 92 %) verifying that the implementation can successfully
assign all available hardware synapses. The remaining 0.1 % can be explained by
unassigned synapse drivers due to select switch sparseness.

The isotropy of homogeneous random networks allows to model the network fidelity
νfidelity as a function of neurons, the synapse usage u and the connection probability p
as follows

νfidelity(N, u, p) =
Nrealized

Nsyn

=
u · Nchip · Nsyn/chip

N2 · p

=
u

N

Nsyn/chip
n · p

.

(8.5)

Where Nchip = N/n denotes the number of actively used chips to place N neurons
and the number of neurons per chip n as in Equation (8.1). The number of hardware
synapses per chip Nsyn/chip is fixed, therefore u ·Nsyn/chip is the number of used synapses
per chip. When u saturates, the fidelity for a given connection probability p and fixed
number of neurons per chip n decreases according to

νfidelity(N) =
C

N
, (8.6)

with the constant factor C =
u·Nsyn/chip

n·p
. This ∼ 1/N decline can be observed in the

upper plot in Figure 8.8 for N > 16 128, where u becomes constant. For example,
C ≈ 7.1 × 103 for p = 10 % and the measured synapse usage of u = 73 %, which leads
to νfidelity(4.5 × 104) ≈ 0.16 in accordance with the independently measured results.
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8.4.1 Workflow Performance Comparison
In this section, the performance of the network setup and mapping implementations
is discusses and compared for both workflows. The measured runtime is shown in
Figure 8.9.

The setup times of PyHMF and the old PyNN backend both scale proportional with
the number of model synapses, which is indicated by the green lines following p · N2.
This is expected behavior, at least N2 random numbers have to be generated in order
to set up the random connectivity, which dominates the instantiation of N neurons.

In contrast, the mapping runtime is more complex. For marocco, the time is
almost independent from p, whereas higher connection probabilities slow down the
MappingTool. This is a consequence of the underlying data structures that are used
to represent synapses. PyHMF instantiates connection matrices, thus marocco can
look up connections fast in constant time. In fact, the relative amount of time spent
on the local synapse routing is small such that the overall runtime is dominated by
the wafer routing, which is independent from p for homogeneous random networks.
Instead, the runtime scales cubically with the active wafer area explaining the super
linear dependency of marocco on the number of model synapses.

The old PyNN backend on the other hand uses adjacency lists to store synapses.
The MappingTool translates this representation into an equivalent incidence list graph
(Even and Even, 2011), leading to redundant copies of connectivity. Nonetheless,
looking up specific connections in either representation takes longer for higher p, more
specifically, the necessary time increases according to Equation (8.4). For larger network
instances, the runtime of the MappingTool follows the course of model synapses more
closely because significantly more time is spent on the actual routing of synapses. This
explanation is supported by the observation that the course deviates stronger for the
smallest connection probability of p = 1 %.

At approximately N = 2.4 × 104 neurons, the number of circuits per neuron jumps
from 8 to 4 and the number of used chips therefore decreases, which in turn simplifies
the wafer routing. The resulting speedup is more accentuated for marocco because a
larger fraction of its total runtime is spent on the routing of Layer 1 connections.

Runtime Synapse Normalization

Normalizing the runtime to the number of model synapses allows for a simple perfor-
mance comparison of both workflows and enables runtime estimates for other random
network models given their number of synapses. The results are presented in Figure 8.10.

Firstly, the network setup times scale directly proportional with the number of model
synapses, as mentioned earlier. This results in the constant ratio for both, PyHMF and
the old PyNN backend. Overhead causes a minor aberration, which can only be seen
for the old workflow, small network instances and a connection probability of p = 1 %.

The non-constant ratio for the mapping implementations indicates a more complex
scaling behavior. For both implementations, the assignment of hardware synapses is
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Figure 8.9: Runtime measurement for homogeneous random networks conducted individually
for the network setup (blue) and mapping (red). The new and old workflows are shown in
the lower and upper plots, respectively. Line styles and grid lines are explained in Figure 8.8.
The number of model synapses is shown in green and grows according to p · N2. The setup
times for both workflows follow the number of synapses. Furthermore, the runtime of the
new workflow is mostly independent of the connection probability p, which is a consequence
of the underlying data structures, see text. The reduction in neuron size at N = 24 576 (grid
line) reduces the active wafer area and therefore speeds up the wafer routing.
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Figure 8.10: The setup (blue) and mapping (red) times from Figure 8.9 normalized to the
number of synapses. Results for the new and old workflow are shown in the upper and
lower plot, respectively. Notably, marocco maps single synapses faster for higher connection
probabilities, which is an immediate consequence of the different synapse data structures, see
text. Mapping synapses via the MappingTool takes only twice as long as setting up model
synapses via PyNN, which is surprising given the higher complexity of the mapping task.
Note that the ordinate ranges differ, the new workflow is consistently faster.

assumed to scale linearly with the number of synapses. Thus, the functional dependency
is imposed by other mapping steps, mainly the Layer 1 wafer routing. The overhead is
attenuated for high connection probabilities, as relatively more time is spent on the
assignment of hardware synapses. Similarly, the influence of the wafer routing is weaker
for large network instances. Where Layer 1 network congestions causes wafer routing
iterations to terminate earlier, resulting in a more gradual slope of the mapping time.
The contribution of the wafer routing is suddenly reduced as the number of circuits per
neuron decreases from 8 to 4 at N = 24 576. There, the active wafer area is reduced in
size, which simplifies the wafer routing and effectively reduces the mapping time per
synapse.

Notably, the mapping time per synapse is shorter for higher connection probabilities
using marocco. This indicates that the synapse array routing is carried out efficiently.
The slightly increased runtimes are divided by a larger number of model synapses. For
the MappingTool it is the other way round, the time per synapse is longer for high
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connection probabilities, as a result of the incidence list representation of synapses.
Thus, marocco is more scalable towards networks with high connection densities.

Moreover, a plateau is reached at ≈ 1.6 × 104 neurons that coincides with the
hardware usage plateau observed earlier for marocco. As no further synapses can be
realized per HICANN, the time spent on the synapse routing per chip becomes constant.
This shows that the MappingTool spends a larger fraction of the mapping time for
the synapse array routing compared to marocco, where no regression can be observed.
Instead the runtime is dominated by the wafer routing.

In a first order approximation, the runtime per synapse for the network setup and the
mapping is considered constant for large network instances and p = 10 %. Averaging
all measurements with N ≥ 24 576 for the old workflow leads to

TPyNN/Nsyn = (1.09 ± 0.02) × 10−4 s
TMappingTool/Nsyn = (1.90 ± 0.01) × 10−4 s .

The error is given by the standard deviation and is small for both components, ratifying
the normalization. Note that the relative amount of time spent on setting up a model
synapse compared to mapping one is approximately 1/2. Given the relative complexity of
both tasks, this indicates that the PyNN backend sets up the network rather inefficiently.

Accordingly, the normalization is applied to the new workflow resulting in

TPyHMF/Nsyn = (7.23 ± 0.01) × 10−7 s
Tmarocco/Nsyn = (3.84 ± 0.88) × 10−6 s .

Again, the error on the normalized network setup times is small, as expected for linear
scaling with the number of synapses. Whereas runtimes of marocco deviates stronger
due to the more complex runtime dependency. Still, the error is sufficiently small to
justify the normalization. In case of the new workflow, the ratio of the time needed to
set up a synapse versus mapping one is about 1/5. Given the higher complexity of the
mapping task, this is more reasonable compared to the old workflow.

In conclusion, PyHMF is about 150 times faster than the old PyNN backend and
marocco can map homogeneous random networks with p = 10 % approximately 50
times faster than the MappingTool.

Memory Performance

The different synapse data structures do not only affect the runtime, but also have
a significant impact on the memory consumption, which is shown in Figure 8.11. A
graph in matrix representation with |V | vertices requires ∼ |V |2 memory, independent
of the actual number of connection (Even and Even, 2011). The memory consumption
for marocco is therefore independent of p and scales with N2. Thus, pathological
networks with many neurons but sparse connectivity can be constructed such that
the N2 memory dependency becomes a scalability bottleneck. However, this is only
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Figure 8.11: Memory consumption for the mapping of homogeneous random networks as a
function of the number of neurons N . Results for the MappingTool and marocco are shown
in red and blue, respectively. The size of a correspondingly sized connection matrix is shown
in green (∼ N2). For larger networks and low connection probabilities p, the MappingTool
consumes less memory because connections can be stored more economically in lists than
matrices, as used by marocco. However, the MappingTool outruns marocco, regarding
memory consumption, towards higher connection probabilities due to a higher overhead per
synapse. Random networks are the worst-case scenario. The penalty for connection matrices
is significantly less for structured models. For the scenario presented in Figure 8.17, marocco
is consistently more efficient.

relevant for unstructured, fully connected networks, which are also pathologic regarding
an HMF implementation. Alternatively, such networks can be represented in PyHMF
more economically using population views, effectively rendering the representation
an incident list, see Section 3.2.1. A memory comparison for both workflows and
structured networks is given in Figure 8.17, showing a clear memory advantage for the
new workflow.

Despite the N2 memory dependency, full-wafer worst-case random networks with
more than 4.5 × 104 neurons have been mapped, which required approximately 21 GB
of memory. A reasonable amount, given that the connection matrix itself consumes
7.6 GB of RAM and has to be stored twice for the model synapses and the tracking of
realized synapses. Theoretically, list representations store sparse graphs more memory
efficiently. However, the memory footprint of the old workflow for p = 5 % is already
similar to the new workflow and exceeds it for p = 10 %. The largest corresponding
network instance, for example, results in a 45 % higher memory consumption for the
old workflow.

On the bottom line, storing synapses in a list representation gives no clear memory
advantage, but generally slows down access times. Ultimately, using connection matrices
in PyHMF has been an advantageous decision.
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8.4.2 Persistent Storage of Wafer Configurations
The ability to store wafer configurations persistently on disk is required to reevaluate
or reproduce HMF experiments at a later time. The StHAL configuration containers
described in Section 4.3 provide the necessary serialization functionality by means of
boost::serialization (Ramey, 2004).

Storing any full-wafer configuration in binary format requires 205 MB, which is more
than the 44 MB stated by Brüderle et al. (2011). At that time, StHAL and HALBe did
not exist, their estimate was based purely on the hardware configuration space, rather
than a corresponding software representation. For software, word access granularity,
memory alignment and implementation overhead increase the representation size.
However, during serialization StHAL omits HICANNs that have not been configured.
Thus, efficiently producing smaller configurations for experiments using only part of
the system.

Moreover, wafer configurations typically have a low entropy due to similarly configured
components and can therefore be efficiently compressed using e.g., bzip2 (Seward, 2014).
For example, a full-wafer default configuration can be reduced in size from 205 MB
to 31 kB. To acquire a representative estimate on the necessary storage space for
configurations of higher entropy, full-wafer homogeneous random networks have been
mapped and serialized. The resulting configurations could be compressed from initially
205 MB to approximately 12 MB, a 17 fold reduction in size. Thus, around 8.7 × 104

full-wafer configurations of real network experiments can be stored on a single 1 TB disk.
Note that this assessment only captures the topological configuration space, whereas
spike inputs require additional memory depending on the spike count.

8.4.3 Mapping Parallelization
The improved performance for marocco has been achieved by shared-memory paral-
lelization in addition to the utilization of more efficient algorithms. The fraction of time
spent in concurrent code regions has been measured to study the effectiveness of the
current parallelization. Measurements and the ideal speedup are shown in Figure 8.12.
The latter is defined by Amdahl’s law (Amdahl, 1967), which parametrizes the speedup
S as a function of the parallel threads of execution n according to

S(n) =

(

B +
1

n
(1 − B)

)−1

. (8.7)

Where B ∈ [0, 1] is the relative amount of time spent in serial execution. The ideal
speedup is the maximum speedup that can be achieved for an infinite number of threads
and is given by limn→∞ S(n) = 1/B.

The time spent in parallel regions declines towards larger network sizes, since more
time is spent on the wafer routing. Speedup factors of 3 and more can be achieved
for random networks of up to 1.2 × 104 neurons. Similarly, higher speedups can be
expected for structured networks, where less long-range connections have to be routed.

126



8.4 Homogeneous Random Networks

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Neurons ×104

0.3

0.4

0.5

0.6

0.7
Pa

ra
lle

lF
ra

ct
io

n

1.0

1.5

2.0

2.5

3.0

3.5

Id
ea

lS
pe

ed
up

Figure 8.12: The relative amount of time spent by marocco in concurrent code regions and
the corresponding ideal speedup, according to Amdahl’s law, are shown in red and blue,
respectively. For larger network instances the sequential wafer routing takes more time,
which results in a speedup regression. Generally, the efficiency of parallelization depends on
the network topology, with random networks being the worst-case. The mapping of networks
with simpler inter-chip connectivity can be parallelized more efficiently.

According to Equation (8.7), the effective speedup also depends on the number of
parallel threads n. The mapping parallelizes on an individual HICANN level, thus
the number of parallel threads is bound by the number HICANNs that are used for a
given neural network instance. However, even for the smallest random network instance
with 5000 neurons, 85 HICANNs are used, leaving enough room for parallelization on
modern multi-core machines.

Starting from N = 16 128, the ideal speedup declines more rapidly. This coincides
with the saturation of synapse usage shown in Figure 8.8, which causes the time spent
on the synapse driver and synapse array routing per chip to become constant, whereas
the time for wafer routing further increases. Consequently, the relative amount of time
spent in concurrent code regions is reduced, therefore reducing the effectiveness of the
parallelization. Notably, this is only worst-case behavior and characteristic for the
all-to-all inter-chip connectivity required for random networks.

8.4.4 Layer 1 Network Optimization
Finally, homogeneous random networks are used to explore topology improvements for
future versions of the HMF. In an initial study, the swap of Layer 1 buses between
adjacent HICANNs is optimized. Afterwards, alternative crossbar layouts are tested
regarding their ability to implement random networks.

Inter-HICANN Bus Swap

Horizontal and vertical Layer 1 buses are swapped by two across HICANN boundaries,
as explained in Section 1.5.2. This enables adjacent chips to output events on the same
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Figure 8.13: Synaptic loss as a function of the horizontal and vertical Layer 1 bus swaps. The
results have been measured for homogeneous random networks with a connection probability
of p = 5 % and 5000 (left), 10 000 (center), and 16 128 (right) neurons. The topologies of the
first and second HICANN version are marked by the green and blue boxes, respectively. The
second version performs significantly better. Furthermore, the minimal losses are indicated
by red boxes, however, no clear winner exists and several combinations produce similar
results. Note that synaptic loss is cut at 35 % to increase contrast, only configurations with
low synaptic loss are of interest.

local bus segments without interfering with one another. Furthermore, vertical bus
swaps make the routing more flexible with respect to the sparse crossbar and select
switch matrices. Historically, the bus swap has already been changed. The first version
of HICANN implemented a bus swap of one versus two for the second HICANN version.
The single-bus swap had been tested via routing simulations carried out by Fieres et al.
(2008). However, a different crossbar and select switch layout ultimately had to be
implemented due to chip design constraints (Grübl, 2014a). However, changing the
switch layout without changing the bus swap caused a routing regression for the first
HICANN version. This study verifies the improved routing capabilities of the second
version of HICANN and provides guidance for future hardware topologies. Notably,
marocco can easily be adapted to arbitrary bus swaps by changing the Layer 1 graph
representation introduced in Section 6.4.1.

The synaptic loss for different bus swaps and homogeneous random networks with
5000, 10 000 as well as 16 128 neurons, a fixed connection probability of p = 5 % and
8-circuits per neuron is shown in Figure 8.13. Bus swaps for horizontal and vertical
buses have been studied separately, they are denoted along the abscissa and ordinate.
The bus swaps for HICANN version 1, version 2 and the local optimum are marked
by the green, blue and red boxes, respectively. Clearly, the topology change improved
the routing performance. Even slightly better configurations exist, though there is no
clear overall winner. The optimum depends on the particular network instance and
multiple configurations lead to similar results. The best average result over all network
instances has been produced by a horizontal bus swap of 7 and a vertical bus swap of 4.
However, implementing wider bus swaps might not be desirable as more chip design
resources are required (Grübl, 2014a).
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Figure 8.14: Cutouts of the current crossbar layout D and alternative layouts A1 to A4
alongside their respective sparse switch parameters according to Figure 1.4. The + and
− refer to the left and right half of the crossbar, respectively. These layouts have been
studied regarding their ability to improve the realization of dense, long-range connectivity in
homogeneous random networks.

Layer 1 Crossbar Switch Layout

In a second study, alternative crossbar layouts are explored regarding their suitability
for future chip revisions. The next revision is planned to be fabricated in a 65 nm
technology, which is expected to at least double the number of switches per crossbar
that can be implemented (Schemmel, 2014a).

The four alternative crossbar layouts AX illustrated in Figure 8.14 have been used.
Each layout implements 1024 switches, twice as many as the current crossbar layout
D. The alternatives are chosen such that the arrangement of switches on the grid of
64 horizontal and 256 vertical buses shows a high degree of symmetry in accordance
with the current layout.

The synaptic loss for the inhomogeneous random network instance with 16 128
neurons, a connection probability of p = 5 % and the different crossbar layouts is shown
in Figure 8.15. The routing performance is measured as a function of the defect rate f
for random Layer 1 bus defects, i.e., f = 20 % means that stochastically every fifth bus
is unavailable. The bus swap of the second HICANN version is used.

The results are similar for all layouts, indicating that bus swaps and crossbar layout
are well tuned and the detouring mechanism of the wafer routing works efficiently. For
the current crossbar switch layout, sparseness is only a minor routing limitation. Even
a fully occupied crossbar layout did not significantly improve the synaptic loss (results
not shown). However, slowed down the mapping because more detours and vertical
bus options had to be considered during the wafer routing. The measurement has
been repeated for other bus swap configurations. There, changing the crossbar layout
helped in some cases to improve the routing performance. For example, for a horizontal
and vertical bus swap of 3 the alternative layouts could reduce the synaptic loss by
approximately 8 %. On the bottom line, sparseness of crossbar switches is a minor
limitation as long as the topology is well tuned. Any future topological changes should
be accompanied by appropriate routing studies. The Layer 1 representation within
marocco can easily be updated and therefore provides the necessary means to conduct
these studies.
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Figure 8.15: Model fidelity for homogeneous random networks with 16 128 neurons and a
connection probability of p = 5 % for alternative crossbar layouts as a function of the Layer 1
bus defect rate. The next chip revision is expected to support more switches, therefore,
layouts with twice as many switches as the current layout D have been studied. These
layouts A1 to A4 are illustrated in Figure 8.14. The current layout is well tuned. The
alternative layouts with twice as many switches provide only minor improvements for defect
rates below 20 %, however, routing around defects is simplified for high defect rates.

An analysis of the individual causes for lost Layer 1 connections revealed that
horizontal bus bandwidth is currently the dominating resource bottleneck. Nonetheless,
extra switches can provide additional detouring options, which result in slightly improved
results for defect rates of f = 20 % and higher. The current wafer system supports
random network implementations with synaptic loss below 20 % of up to 8 × 104 to
1.5 × 104 neurons depending on the connection densities, see Sections 8.4, 8.6 and 8.7.
In case larger random networks or more long-range connectivity are requested for future
hardware revisions, the horizontal Layer 1 network bandwidth needs to be increased.

8.5 Layer 2/3 Attractor Model
The layer 2/3 network is a cortically inspired attractor model developed by project
partners at the KTH in Stockholm (Lundqvist et al., 2006, 2010). The hypercolumn
and minicolumn structure of the network is explained in Figure 8.16. The two different
winner-take-all (WTA) topologies ensure that whenever a minicolumn is active, it locally
inhibits its competitors by exciting corresponding and inhibiting orthogonal minicolumns
in other hypercolumns. The dense local connectivity within hypercolumns and the
sparse long-range connectivity in between makes the network particularly susceptible
for a mapping to the wafer system. Its structure enables hardware realizations with
significantly fewer distortions than e.g., homogeneous random networks. Furthermore,
the network is part of the FACETS demonstrator benchmark library and has previously
been studied by Brüderle et al. (2011).

130



8.5 Layer 2/3 Attractor Model

1

2

3

1

2

3
2

3

4

1 L4
5

Figure 8.16: Schematic of the layer 2/3 attractor network model. Excitatory and inhibitory
populations are shown in red and blue, respectively. Note that every kind of connection is
outlined once only. The model consists of hypercolumns (1), which are internally composed
of multiple minicolumns consisting of pyramidal neurons (2). Minicolumns are recurrently
connected and to a corresponding minicolumn in every other hypercolumn. Furthermore,
minicolumns are connected to a local pool of inhibitory basket cells (3) in a soft WTA
fashion. Activity in one minicolumn therefore suppresses activity in the other minicolumns.
Additionally, minicolumns inhibit activity of orthogonal minicolumns in other hypercolumns
via intermediate remote RSNP cells (4) realizing a second, strong WTA topology. Lastly,
the attractor network dynamics are driven by external cortex layer 4 spike input (5).

8.5.1 Workflow Performance Comparison
In a first scaling experiment, configurations generated by the MappingTool and marocco
are compared for different instances of the layer 2/3 attractor model. The network
instances range from 891 neurons with 1.6 × 105 synapses to 10 692 neurons with
approximately 2.4 × 106 synapses. The corresponding hyper and minicolumn dimensions
are listed in Appendix A.2. The results for neuron configurations of 8, 12 and 16
circuits are shown in Figure 8.17. Note that the MappingTool only supports neuron
configurations that are powers of 2, therefore the 12 circuit trial has been skipped.

The measured synaptic loss varies across the range and does not monotonously
increase towards larger networks because the topology changes for different hyper and
minicolumn proportions.

For small network instances, marocco generates less synaptic loss and configurations
with 12 circuits per neuron perform best. From around 1.5 × 106 synapses onwards,
marocco produces higher synaptic loss than the MappingTool for 16-circuit configura-
tions. Still, the 8 circuit configurations remain slightly more efficient until approximately
2.3 × 106 synapses. Interestingly, the synaptic loss generated by the MappingTool re-
mains almost constant between 1.5 × 106 and 2.5 × 106 synapses, whereas the loss for
marocco keeps going up. Understanding this effect requires detailed knowledge about
the implementation and has therefore been discussed with one of the MappingTool
authors: Vogginer (2014a). Still, the nature of the effect remains unclear, but might
possibly be an artefact caused by the different placement strategies. For example,
placing populations side by side rather than circular around the wafer center might
benefit the inter-chip connectivity in this particular case.

The runtime in Figure 8.17 (b) is given as the combined runtime spent on both, the
network setup and the mapping. The new workflow is about an oder of magnitude
faster, even though the performance gain is smaller compared to the Hellfire chain
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Figure 8.17: A scaling study for the old workflow (red) and new workflow (blue) on the
layer 2/3 attractor model. The different line styles refer to neurons built from 8, 12 (marocco
only) and 16 circuits. The synaptic loss for marocco and the MappingTool is compared in
(a). The minimal loss has been produced by marocco for 70 % of the network instances.
Setting up and mapping the networks is generally faster with the new workflow (b). The new
workflow is also more memory efficient (c), despite using connection matrices to represent
synapses.

and homogeneous random networks in Sections 8.3.2 and 8.4. On close inspection, one
can see that the speedup slightly regresses at the point where the synaptic loss of the
MappingTool stagnates, while the loss for marocco keeps going up.

The results for the memory consumption of both workflows show a behavior com-
parable to the runtime results. Initially, the new workflow consumes about an order
of magnitude less memory than the old one. This advantage becomes smaller as
the network instances grow larger and slightly regresses at around 1.5 × 106 synapses
similar to what has been observed for the mapping runtimes. Even though the new
workflow stores synapses in matrices rather than in lists, it consumes on average 4
times less memory. The advantages and shortcomings of both synapse representations
are discussed in more detail for the homogeneous random networks in Section 8.4.

8.5.2 Guided Placement
The layer 2/3 attractor network implements dense local and sparse long-range connectiv-
ity, as mentioned earlier. Here, the possibility is explored to guide the mapping towards
a hardware representation that exploits the local structure to minimize distortions.

Different placement strategies have been tested to lay out the 3D column structure
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Figure 8.18: Visualization for a wafer mapping of the layer 2/3 attractor model with 24
minicolumns per hypercolumn and 24 hypercolumns. Every hypercolumn (1) consists of
regular spiking non-pyramidal (RSNP) (2), pyramidal (3) and basket (4) cells placed to
individual chips. Active Layer 1 buses are colorized. The Layer 1 connection densities are
emphasized towards the center where the RSNP cells have been placed. They receive input
from any other hypercolumn. Moreover, the wafer size is outlined in blue (5). The figure
has been published by the author internally in UHEI and TUD (2014).

on the 2D wafer substrate, but only the most successful one is presented in Figure 8.18.
Individual hypercolumns are laid out horizontally to 9 adjacent chips. Two hypercolumns
facing each other in the center are realized per horizontal line of HICANNs. Vertically,
12 of these double columns can be stacked on top of each other, resulting in a total
of 24 hypercolumns. Every hypercolumn contains 24 minicolumns, each consisting of
29 pyramidal, 2 RSNP and 1 basket cell, thus, 18 432 neurons in total. The resulting
network implements approximately 4.5 × 106 synapses. The number of circuits per
neuron is set individually for each cell type to 4 per pyramidal, 8 per basket and 16 per
RSNP cell according to their relative input requirements. Furthermore, pyramidal and
RSNP cells, in particular, have been placed towards the center of the wafer. Basket
cells on the other hand have local connections only and are placed to the outer most
HICANNs. This placement strategy helps to reduce the average Layer 1 route length,
as long-range connectivity, implemented by these cells, is limited to the wafer center.
The increased connectivity can be observed in Figure 8.18, Layer 1 bus allocation rates
are higher in the area where RSNP cells have been paced to. The results for the guided
mapping and a default mapping are given in Table 8.1, demonstrating the effectiveness
of this placement strategy. The synaptic loss is cut by approximately half, from initially
34.8 % to 17.1 %.

So far, possibilities to optimize the mapping of an existing network model have
been discussed. However, network models may also be tuned to enable less distorted
implementations on the HMF. Therefore, the layer 4 spike input provided by a global
pool of 5000 sources has been replaced by 24 smaller local input pools with 500 sources
each, which result in 1.2 × 104 independent sources. Note that this only changes the
total number of spike source, while the total number of synapses in the network remains
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Placement default guided
Input global local global local
Loss Layer 1 (%) 29.4 19.5 4.3 4.2
Loss (%) 34.8 25.8 17.1 8.8
tPyHMF (s) 28.1 ± 0.1 21.9 ± 0.1 28.1 ± 0.1 21.9 ± 0.1
tmarocco (s) 257.0 ± 0.5 143.4 ± 0.5 79.5 ± 0.1 24.1 ± 0.2

Table 8.1: Mapping results for a large layer 2/3 attractor model instance with 18 432 neurons,
4.5 × 106 synapses and either global or local spike input pools, see text. The network has
been mapped with the default placement as well as the guided custom placement illustrated
in Figure 8.18. The errors are small and given by the standard deviation. The error on
synaptic loss for different random seeds and varying stochastic connectivity is negligible and
has therefore been omitted.

unaltered. In case of the global pool, the spike input placement algorithm inserts all
sources close to the wafer center, where congestion is already high due to the long-range
RSNP connectivity. From a model point of view, the global pool has already been a
compromise introduced as part of the FACETS demonstrator adaptation. Ideally, each
neuron receives non-overlapping, uncorrelated Poisson input. Therefore, implementing
more independent Poisson sources in local pools is closer to the original model. Using
the local input pools reduces the synaptic loss from 17.1 % to 8.8 %, see Table 8.1.

It has not been possible to compare the results for both mappings because the large
24 × 24 network instance resulted in a memory error for the MappingTool. Nevertheless,
the network setup times have been measured. Setting up the network with the old
PyNN backend takes 1291 s and 2500 s for the global and local input pools, respectively.
The corresponding setup and mapping times for marocco are given in Table 8.1. Thus,
PyHMF constructs the network representation approximately 46 times faster for the
global pool and 114 times faster for the local ones.

8.6 June Cortical Column
The June cortical column is a model provided by project partners at the Forschungszen-
trum Jülich (Potjans and Diesmann, 2011). It models cortex layers 2/3, 4, 5 and 6
(Shipp, 2007) and is designed to mimic the respective firing behaviors observed in vivo.
The original model has been downscaled and translated into a corresponding PyNN
model description by Sacha van Albada. This lead to the here studied model, which
comprises 7713 neurons and approximately 5.4 × 106 synapses.

The connection structure across individual layers is visualized in Figure 8.19. Most
layers are connected, leading to Layer 1 all-to-all connectivity similar to the worst-case
connectivity for homogeneous random networks, see Section 8.4. However, in this case,
connection densities are higher towards the main diagonal. This means that recurrent
connectivity within layers is emphasized, thus weak locality exposed. Still, the global
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Figure 8.19: Cortex layer 2/3, 4, 5, 6 connectivity for the 7713 neuron June cortical column
network. Each pixel represents a synapse. The model has been mapped with 12 circuits per
neuron. Synapses colored blue have been realized, whereas red ones are lost. Connections
that are lost during the Layer 1 routing lead to small blocks of lost synapses (1). Local
resource exhaustion, on the other hand, generates sparse loss (2), which is typical for densely
connected areas leading to high input requirements.

connection structure impedes efficient guided placement strategies to maximize model
fidelity. The default strategy is used to place neurons in the order they appear in the
model description spiraling outwards from the center of the wafer, as explained in
Section 6.1. Nonetheless, different population orderings have been explored to minimize
the loss. Ultimately, the ordering indicated in Figure 8.19 has been used, starting with
layer 6 in the center and placing layer 4 last.

The network has been mapped for hardware neurons consisting of 4, 8, 12 and 16
circuits, yielding network fidelities of 71 %, 92 %, 96 % and 94 %, respectively. For small
hardware neuron configurations, more synapses are lost locally because of reduced input
counts, whereas larger configurations render the Layer 1 routing more challenging by
increasing the active area on the wafer. The corresponding network setup and mapping
times for the 12-circuit neuron configuration have found to be 12 s and 19 s, respectively.
This corresponds to a mapping time of 3.5 × 10−6 s per synapse, which is approximately
10 % less compare to homogeneous random networks, see Section 8.4.1.

Influence of Synaptic Loss on the Network Dynamics

In this section, the influence of mapping induced inhomogeneous synaptic loss on the
June network dynamics is briefly studied by means of software simulations. Software
studies have shown to be a valuable tool to prepare networks for the HMF (Brüderle
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et al., 2011). In principle, the ESS is designed to simulate configurations of models that
have been mapped, however, the HALBe integration does not yet correctly account
for analog neuron parameters (see Sections 2.2.5 and 8.3.3). Consequently, the model
synapses that have been mapped successfully are used in NEST-based (Diesmann and
Gewaltig, 2002; Eppler et al., 2008) follow-up simulations. The mapping of synapses is
automatically tracked by marocco and can conveniently be accessed by means of the
PyMarocco interface, see Section 6.8.

Notably, setting up the network via PyHMF takes only (22.4 ± 0.1) s compared
to (311 ± 2) s in PyNN using the original NEST backend. This means, PyHMF is
approximately 14 times faster, although the fast fixed probability connector provided
by the NEST backend is used, which has specifically been designed to speed up the
creation of synapses.

The simulations have been conducted using the synapses that have been mapped for
the least distorted 12-circuit trial. This means, only 4 % of the synapses are missing.
However, the loss is not homogeneous, e.g., sets of synapses are lost during the wafer
routing whenever Layer 1 connections cannot be established. Such inhomogeneities can
be a problem and affect the network dynamics. Thus, reference simulations have been
carried out for homogeneous loss to compare the results and study the impact.

The combined average firing across all layers has found to be (5.55 ± 0.16) Hz,
(5.54 ± 0.21) Hz and (5.83 ± 0.26) Hz for the original network, with mapping distortions
and 5 % homogeneous loss, respectively. This means, all average firing rates are
compatible within uncertainties. Neither the loss nor the inhomogeneities changed
the response significantly, which is a promising result regarding a future hardware
implementation.

Further results for individual cortical layers and simulations for a wider spectrum of
homogeneous synaptic loss are presented in Appendix A.3. However, a comprehensive
analysis of the model dynamics is beyond the scope of this thesis.

8.7 EPFL Cortical Column
The 104 neuron EPFL cortical column (Markram, 2006) models cortex layers similar
to the June network in the previous section. The network is implemented as a fully
expanded net list derived from biological findings. This net list also contains multiple
connections between pairs of neurons, e.g., to realize complex stimulation patterns
using multiple synapses with different delays. However, neither does the HMF currently
support programmable delays nor can a single projection in PyHMF represent multiple
synapses between a pair of neurons natively due to the underlying connection matrices.
Both shortcomings can be handled in the future by FPGA firmware and PyHMF
revisions. Even with PyHMF support in place, the network would require compensation
because realizing all synapses with an equal, fixed transmission delay may result in
overly strong stimulation. In a first order approximation, multiple synapses have been
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Figure 8.20: Connectivity of the 104 neuron EPFL cortical column model. Multiple synapses
between pairs of neurons have been collapsed, resulting in approximately 3.6 × 106 synapses.
Realized and lost synapses are shown in blue and red, respectively. Synapses that are lost
during the local routing are typically sparse (1), whereas rejected Layer 1 connections lead
to small blocks of lost synapses (2). More synapses are lost towards the bottom (3) because
neurons with lower indices have been placed further away from the wafer center. They are
therefore routed in later wafer routing iterations when Layer 1 congestion is already high.

collapsed into one by picking only the strongest efficacy. This approach significantly
reduces the number of synapses from 8 × 106 to 3.6 × 106.

The collapsed network has been mapped for different hardware neuron sizes. The
corresponding connectivity and the final mapping outcome is visualized in Figure 8.20.
Using 12 circuits per neuron yielded the highest network fidelity of 84 %, whereby 5.5 %
of the synapses are lost during the Layer 1 wafer routing. Figure 8.20 reveals that many
of the synapses lost during the wafer routing originate from neurons that are placed
farther away from the wafer center. These connections are routed in later iterations
when the Layer 1 congestion is already high such that their realization is less likely.
Setting up the network with PyHMF and the subsequent mapping take (19.7 ± 0.5) s
and (170.1 ± 0.5) s, respectively. Thus, the average time for mapping a single synapse
is approximately 4.7 × 10−5 s.

8.8 Asynchronous Irregular States
Asynchronous irregular (AI) activity states are a phenomenon observed in the cerebral
cortex of awake animals (Destexhe et al., 2003a). It has been shown that networks of
randomly connected AdEx neurons can produce similar activity self-sustained over long
periods of time, even down to small network sizes (Destexhe, 2009).

An AI state network implementation by Muller and Davison (2009) has been mapped
for different network sizes with up to 4.5 × 105 neurons utilizing the whole wafer.
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Figure 8.21: Mapping results for the AI state model. The vertical grid lines indicate the
number of circuits per neuron going down from 16 over 12 and 8 to finally 4. Each time,
the active area on the wafer is reduced, thus simplifying the Layer 1 wafer routing. This
can be seen in the Layer 1 fidelity as well as in the mapping times. The final fidelity, on the
other hand, regresses because more synapses are lost locally. This is seen most prominently
for the final transition from 8 to 4 circuits. Notably, the mapping time (red) is dominated
by the time required for setting up the network representations (blue). The slow distance
dependent probability connector has to call into Python for every synapse to evaluate the
distance expression. The dashed blue line shows the performance improvement for native
expression evaluation in C++, providing a 21 fold speedup. However, the network setup is
still slower than the mapping.
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Neurons in this model are aligned in a 3D torus-like grid, where pairs of neurons
are randomly connected with a probability of p(d) ∼ exp(−d2), where d denotes the
distance between the neurons. For reasons of simplicity, the default neuron placement
has been used.

The results are presented in Figure 8.21. For each network instance, the number of
circuits per neuron has been chosen such that the fidelity is maximized. Vertical grid
lines indicate where the number of circuits has been reduced from initially 16 over 12
and 8 to ultimately 4. For every jump in neuron size, the active wafer area is reduced,
which in turn speeds up the wafer routing and the mapping accordingly. The jump
from 8 to 4 circuits per neuron significantly reduces the fidelity. At this point, the
number of assignable synapses per incoming Layer 1 connection becomes insufficient.
For small network instances, on the other hand, the reduction improves Layer 1 fidelity
because the Layer 1 bus congestion is reduced, thus more neurons can be routed via
shared connections. The synapse usage is comparable to the homogeneous random
network instances with a connection probability of p = 1 %, see Figure 8.8.

In this study, only the default placement has been used for reasons of simplicity.
However, an optimized placement of the 3D neuron grid can likely improve the mapping
by exploiting the locality of connections. Even then, the torus-like connectivity is
expected to cause high inhomogeneous distortions due to the long-range Layer 1
connections wrapping from one end of the wafer to the other.

Notably, the setup times are more than two orders of magnitude longer compared
to homogeneous random networks. This is due to the slow distance dependent prob-
ability connector (DDPC), which repeatedly has to call into Python to evaluate the
distance dependency. The network setup can be accelerated by evaluating the distance
expression natively in C or C++. A first version has been implemented using libmatheval
(Free Software Foundation, 2014). The results are shown by the dashed blue line in
Figure 8.21. Native evaluation reduces the setup times by a factor of 21.1 ± 0.3, but
the DDPC remains more than an order of magnitude slower than the simpler fixed
probability connector. To speed up the repeated evaluation further, other options like
muparser (Berg, 2014) or mathpresso (Kobalicek, 2010) can be explored. They use
just in time compilation to translate math expressions on-the-fly into native machine
instructions.

Expression evaluation in Python captures scoped variables and symbols, which is
an issue for any kind of native version. Not capturing the local scope may break
compatibility for some PyNN scripts, but might still be desirable given the ability to
lazily evaluate DDPCs on the server, see Section 3.2.2. Alternatively, implementations
could fall back to Python evaluation on the user side, if the compilation of the expression
string fails.
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8.9 Planar Network Topologies
Before all prior mappings are summarized in the subsequent section, two simple planar
topologies are briefly introduced and their key characteristics pointed out. Their
respective mapping results are subsequently discussed in Section 8.10.

8.9.1 Synfire Chain Network
The Synfire chain model has originally been proposed by Baker et al. (2001) and Prut
et al. (1998) to explain high precision firing patterns as observed in biological networks.
The implementation at hand is based on the network described by Kremkow et al.
(2010), which has been shown to have increased selectivity on the initial stimulus.
The Synfire chain is a feedforward network, similar to the Hellfire chain described in
Section 8.3. Groups of neurons are connected in a chain-like topology, where neurons in
one chain link excite neurons in the succeeding link. Each link consists of 16 excitatory
neurons and a small local pool of 4 inhibitory neurons. Neurons in the inhibitory pool
are randomly connected to 15 excitatory neurons within the same link. Every excitatory
neuron projects onto 9 excitatory and 3 inhibitory neurons in the subsequent link.

For this study, the network size is scaled from 1 link to full wafer size with 384 × 4 =
1536 links in steps of 50. The largest network instance consists of 30 720 neurons with
3.9 × 105 synapses. Similar to the Hellfire chain, neurons have been placed such that
up to 4 chain links are realized per chip. The mapping results are presented as part of
the summary in Section 8.10.

8.9.2 Grid Network Topology
The grid network model is a planer 2D network. One can think of it as small groups
of neurons laid out in a rectangular grid with connections only between neighboring
groups. Similar to the previous linear chain models (see Sections 8.3 and 8.9.1), the
grid can be mapped efficiently to the 2D surface of the wafer such that connections
retain their local scope. After the placement, neurons on every HICANN only connect
to neurons on adjacent chips in all four cardinal directions. Neurons placed to chips at
the wafer boundary have less neighbors and therefore realize less connections.

Moreover, the network geometry and connection probabilities have specifically been
outfitted for the wafer system. Thus, large numbers of neurons and connections can
be realized, which neither exhaust Layer 1 nor local synapse resources. Two instances
of the network have been mapped to the full wafer extent with N8 = 384 × 59 and
N4 = 384 × 118 neurons for configurations of 8 and 4 circuits per hardware neuron,
respectively. For connection probabilities of p = 15 % between adjacent chips, no
synapses are lost. This results in approximately S8 = 7.6 × 105 and S4 = 3.1 × 106

synapses overall. The mapping results are discussed in the following summary.
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8.10 Topology Exploration
The loss of synapses for all previously mapped network instances has been summarized
as function of the instance size in terms of neurons as well as synapses to study the
suitability of the HMF for different topologies. Generally, networks with fewer loss
are considered to be more faithful representations. Still, this is not the only possible
measure to judge distortions. It is considered particularly useful as it allows us to
compare the vastly different networks. Other, more complex measures might include
e.g., delays or analog parameters. Ultimately, the best approach depends on the model.
The section closes with a brief overview of mapping runtimes normalized to the number
of model synapses.

Synaptic Loss

The results for synaptic loss are illustrated in Figure 8.22. Vertical grid lines in the
top neuron plot at around 2.5 × 104 and 4.5 × 104 outline the maximum number of
model neurons that can be realized efficiently for 8 and 4 circuits per hardware neuron,
respectively. The losses increase significantly for both, homogeneous random networks
and the AI state model, as the neurons are reduced in size from 8 to 4 circuits and
the number of possible inputs per neuron is therefore halved. Accordingly, network
instances with higher connection probabilities are affected stronger. For example,
homogeneous random network instances are displayed as blue squares in light, mid and
dark blue for connection probabilities of 1 %, 5 % and 10 %, respectively. Their increase
in synaptic loss is emphasized towards higher connection probabilities.

The single vertical grid line in the bottom synapse plot at around 4.4 × 107 synapses
indicates the total number of hardware synapses on the wafer. Any model that requires
more synapses encounters inevitable loss.

Apparently, there are network topologies like the grid network, the Synfire chain
and the Hellfire chain that are particular suitable for the system. No synapses are lost
during the mapping process, even for large network instances. The former two models
are both planar topologies, which means their network graphs can be embedded in a
2D plane such that no edges intersect. Planar networks can therefore be placed to the
2D wafer substrate particularly easy. However, planarity is not a necessary property for
loss-free realizations, as shown by the Hellfire chain model, which is sufficiently local
but not planar.

Random networks, on the other hand, cause worst-case all-to-all connectivity between
chips leading to bus congestion already for small network instances. The synaptic losses
for random and local networks, at both ends of the spectrum, stake out an effective
reference frame wherein the synaptic loss of other topologies is embedded.

Regarding this reference frame, the layer 2/3 attractor network is particularly
interesting. Note that for each network instance up to 10 692 neurons, triplets of data
points exist, which correspond to hardware neuron sizes of 8, 12 and 16 circuits. These
instances have all been placed using the default placement approach (see Section 6.1)
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Figure 8.22: Exploration of synaptic loss for a wide range of different network topologies
as a function of model neurons and synapses in the top and bottom plot, respectively. The
vertical grid lines in the top plot represent the maximum number of neurons per wafer for
configurations of 8 and 4 circuits per hardware neuron. The bottom grid line indicates
the total number of synapses on a wafer. Models requiring more synapses than available
suffer inevitable loss. Clearly, models with sufficiently local connectivity, like the Synfire and
Hellfire chain as well as the grid network, are particularly suited for the HMF. Notably, the
cortically inspired layer 2/3 model can be mapped with only little distortions up to large
network sizes using manual guidance (red triangle). A preliminary version of this figure has
been published by the author in the internal UHEI and TUD (2014) report.
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leading to distortions similar to those for homogeneous random networks or even higher
due to dense local connectivity within hypercolumns. Nevertheless, the prominent red
triangle at around 1.9 × 104 neurons clearly shows that the model can be implemented
more efficiently than homogeneous random networks due to its local structure. Manual
guidance is used to place neurons such that the neighborhood relation of neurons within
hypercolumns is preserved and scale the size of the different neuron types according
to their relative input requirements. The resulting synaptic loss is significantly below
the loss found for e.g., the second largest sibling, despite having almost twice as many
neurons. Notably, this sample point lies right within the frame staked out by random
networks and the local topologies.

The June network is another interesting example that outlines the importance of
locality for models mapped to the HMF. It is basically a random network in the sense
that any two HICANNs have to be connected, however, it can be realized more efficiently
than e.g., the EFPL cortical column or homogeneous random networks. Firstly, the
June model has about 20 % less neurons than the EPFL model, which is just enough
to avoid the Layer 1 resource exhaustion that can be observed in Figure 8.20 for the
outermost neurons. Secondly, comparing both connection structures (see Figures 8.19
and 8.20) the June network has a greater emphasis on local connectivity than the
EPFL network. Thus, the penalty is less for the June network, even though long range
connections are lost in both cases.

So far, mostly long range connectivity has been discussed with regard to Layer 1
constraints. For larger network instances the number of inputs per neuron is another
limited resource, which depends on the hardware neuron size. As mentioned earlier,
more synapses are lost for homogeneous random networks and the AI state model
when the number of circuits per neuron is reduced from 8 to 4 at N = 2.5 × 104. The
gain is emphasized towards higher connection probabilities because more synapses are
required for the given network size. Another example is the layer 2/3 attractor model
where increasing the hardware neuron size for RSNP cells to 16 has been an important
optimization to realize the high input counts.

Looking at the ratio of lost synapses over synapses in the bottom plot of Figure 8.22
for homogeneous random networks indicates that the loss is emphasized towards lower
connection probabilities shown in light blue. For lower connection probabilities, a larger
fraction of the synapses is lost during the wafer routing, while many hardware synapses
on each chip remain unused. The latter is shown by the low synapse usage in Figure 8.8.
Moreover, as the number model synapses for networks with a connection probability of
p = 5 % and p = 10 % approaches the total number of hardware synapses in the system,
the losses rapidly increase. Soon, these extra losses dominate any prior loss such that
the relative synaptic loss over the number of synapses becomes almost independent of p.
On close inspection of network instances with similar synapse counts, the loss is slightly
less for p = 10 % compared to p = 5 % because more hardware synapses are used per
chip for roughly the same number of model synapses. Whereas the synaptic loss in
the upper neuron plot simply follows 1 − C(p)/N according to Equation (8.6), where N
denotes the number of neurons and C(p) is a constant depending on p. In Section 8.4.4,
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the tuning of the Layer 1 network has been studied in order to lower C(p) and therefore
improve the ability of the HMF to implement dense long-range connectivity. The results
have shown that the bus swap as well as the crossbar layout are already well tuned in
the second version of HICANN. For the current system, the network fidelity of large
random networks is mainly limited by the bandwidth of horizontal buses.

Neuron Sizes

Throughout the studied networks it has been found that for larger, non-local topologies
the model fidelity is typically maximized for neuron sizes of 8 circuits or more. There
are mainly two reasons for the improved fidelity. Firstly, less SPL1 outputs have to be
routed, thus reducing the horizontal Layer 1 congestion, secondly, the number of inputs
per neuron is increased. Additionally, fewer synapse drivers have to be connected to
realize the same number of synapses per Layer 1 connection, therefore increasing the
effective number of inputs per chip, while reducing the capacitive load on the Layer 1
connection, see Section 1.5.5. However, using larger hardware neurons reduces the
number of individually available neurons. For example, placing 118 or 59 neurons per
HICANN yields a high utilization of the Layer 1 address space, but only 23 % and 12 %
of the theoretically available neurons are individually used. Combining neurons is an
important feature that allows to scale the input count dynamically, thus rendering the
HMF suitable for a wide range of different network topologies, as shown by this study.
Using more individual neurons without reducing the model fidelity is only possible
if the ratio of synaptic inputs or synapse drivers per neuron is increased. The next
hardware revision is further going to implement configurable conductances between
neuron circuits to support compartmental dendrite models (Millner, 2012) making this
feature even more valuable beyond input scaling.

Runtime Performance

Finally, an overview of the mapping runtime normalized to the number of model
synapses is shown in Figure 8.23. For any network, at least 104 synapses and up to
106 synapses per second could be mapped. The determining factor is the complexity
of inter-chip connectivity and therefore the runtime imposed by the wafer routing.
Sparse random networks can be considered the worst case, since relatively few synapses
are implemented per Layer 1 connection, while at the same time every chip requires
connections to any other chip, thus saturating the network. Networks with preserved
local connectivity, on the other hand, have simpler inter-chip connectivity and can
therefore be mapped more efficiently. Prominent examples are the Synfire and the
Hellfire chain as well as the grid network. Note that for small instances of the Synfire
chain network performance regresses due to a fixed mapping overhead, which is divided
by a small number of model synapses. The impact of the wafer routing on the runtime
can further be observed for the triplets of red data points of the layer 2/3 scaling
study, where instances of equal network size are mapped faster for smaller hardware
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Figure 8.23: A normalization of the mapping runtime on the number of model synapses for
all previous network models. The performance differences mostly depend on the necessary
inter-chip connectivity, dense long-range connectivity imposes longer runtimes on the wafer
routing. Furthermore, small model instances are stronger influenced by a fixed mapping
runtime overhead, which can be observed for e.g., chain models requiring less time per
synapse towards larger networks. Thus, large models with local inter-chip connectivity can
be mapped most efficiently. The vertical grid line indicates the total number of synapses on
a wafer in accordance with Figure 8.22.

neurons because of the smaller active wafer area. Similarly, for homogeneous random
networks and the AI state model a speedup towards larger network sizes is observed
whenever the number of circuits per neuron is reduced, simplifying the wafer routing in
accordance with Figures 8.9 and 8.21. Despite them being worst-case networks, up to
2.6 × 105 synapses can be mapped per second in accordance with Section 8.4.1, which
is approximately 50 times faster than the MappingTool.
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9 Spike-Based Classification with
Accelerated Neuromorphic Hardware

Liquid state machines (LSMs) as proposed by Maass et al. (2002) and Jaeger (2001)
provide a theoretical framework for generic computation on time continuous input.
They consist of a recurrent network, the so-called liquid, that projects inputs into
a higher-dimensional space. A subsequent readout continuously classifies the liquid
state. The idea is that only the classifier has to be trained for classification, while
the liquid remains untouched and helps the readout to accomplish its task. In this
chapter, a complete implementation suitable for accelerated neuromorphic hardware
is presented. The liquid is based on the self-balancing network architecture by Bill
et al. (2010b) and connected to a tempotron-like binary classifier (Gütig and
Sompolinsky, 2006). Both parts of the LSM are realized the neuromorphic Spikey
chip, allowing to efficiently discriminate inputs at high rates based on the bandwidth
friendly, sparse tempotron response.

The setup has first been introduced by Jeltsch (2010) and the integrated setup, realizing
liquid and readout together, has been published by the author in Pfeil et al. (2013).
Limitations of the setup have been further explored by Probst (2011) and Holford
(2011). Specifically, the results for the demanding task in Section 9.4.2 and the digit
recognition in Section 9.4.3 have been produced in cooperation with Dimitri Probst.
The traceless learning introduced in Section 9.3.3 has been studied by Nathan Holford
under the supervision of the author.

9.1 Hardware Platform
The following experiments have been conducted on Spikey version 4, a neuromorphic
mixed-signal chip that has been developed prior to HICANN. The chips have a lot in
common, for example, both operate about 104 times faster than biological real time,
implement analog neurons with conductance-based synapses and 4 bit digital weights.
Most notably, Spikey provides 192 simpler leaky-integrate and fire (LIF) neurons,
compared to the AdEx neurons on HICANN. Further differences are explained in the
text wherever appropriate. Figure 9.1 shows the new USB Spikey system, however,
most experiments have been conducted on an ethernet-based predecessor platform
due to unreliable host communication of the new system. First experiments on the
new USB system are promising, indicating a 17 times speedup for the LSM over the
predecessor, which reduces the time per learning iteration to approximately 0.2 s.
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Figure 9.1: A photo of the USB Spikey system (1). The PCB is approximately the size of a
credit card. Spikey (2) itself is hidden underneath the black cap. The neuron connectivity
is similar to the one found on HICANN, including row-wise synapse drivers and 4 bit digital
weights.

Schemmel et al. (2006) and Pfeil et al. (2013) provide further details on the hardware
platform.

9.2 Liquid State Machine
LSMs as proposed by Maass et al. (2002) and Jaeger (2001) consist of a liquid substrate,
which projects input into a higher dimensional space, and a subsequent readout that
continuously classifies the liquid state. This kind of input preprocessing is similar to
the kernel tick in machine learning (Aizerman et al., 1964) and conceptually simplifies
the task of the readout.

Any recurrent network that maps different inputs to different responses meets the
sufficient separation property and can therefore be used as a liquid. Here, a network
topology similar to the one described by Bill et al. (2010a) has been used. Bootstrapping
this network on hardware is simplified by its self-stabilizing property, which causes
rich dynamics over a wide range of inputs. The network consists of two populations,
an excitatory and an inhibitory one, with a neuron ratio of 80:20. The network size
is scaled to utilize all remaining neurons after the readouts have been placed, which
typically results in 147 to 191 neurons. The connection probabilities of recurrent and
feedforward connections are illustrated in Figure 9.4. Each neuron in the liquid receives
4 inputs from a pool of 32 excitatory and 32 inhibitory sources. Note that synapses
within the liquid have fixed efficacies. Only the feedforward connections from the liquid
to the readout are trained upon learning. A full list of analog neuron parameters is
given in Appendix A.2.

9.2.1 Tempotron
A tempotron (Gütig and Sompolinsky, 2006) single neuron binary classifier is used as
LSM readout, thus leaving most of the available hardware neurons to the liquid. The
original weight update rule implements learning with gradient descent dynamics for LIF
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9.2 Liquid State Machine

neurons with current-based synapses but without spike triggered voltage reset. Upon
training, the tempotron learns to distinguish between two input classes and responds by
either emitting a single or no spike within a given classification time window. Whenever
the tempotron spikes, all subsequent inputs are shunted artificially to ensure that the
tempotron elicits no further spikes.

This section firstly introduces the original learning rule. Subsequently, a model
adaptation is presented that copes with voltage resets, conductance-based synapses
and hardware limitations.

The PSP kernel K of a LIF neuron with current-based exponential synapses is given
by

K(t − tk) = V0

[

exp

(

−
t − tk

τm

)

− exp

(

−
t − tk

τs

)]

· Θ(t − tk) . (9.1)

Where τm and τs are the membrane and synaptic time constants, V0 is a constant
PSP scaling factor, tk is the time of the kth afferent spike and Θ(t) the Heaviside step
function. The membrane voltage Vm(t) of a neuron without spiking can then be written
as

Vm(t) =
∑

j

ωj

∑

k

K(t − tk) + El , (9.2)

with the leakage potential El and synaptic weights ωj .
A gradient descent update rule guides the learning of afferent weights for erroneous

classifications. It can be derived from the following cost function

E± = ±(Vthresh − Vm(tmax)) · Θ (±(Vthresh − Vm(tmax))) . (9.3)

Here, E± denotes the involved cost and tmax is the time that maximizes Vm(tmax) within
the classification window. The Heaviside step function ensures that only erroneous
classifications contribute a cost. The (+) case applies for erroneous spikes and the (−)
case for missing spikes.

The cost function measures to what extent the correct response has been missed
as the distance between the membrane voltage Vm(tmax) and the threshold potential
Vthresh. The negative derivative of the cost function with respect to the afferent weights
(− d E±/dωj) leads to the gradient descent update rule

∆wn
j =

{

0 correct
∓α(n)

∑

tj,k<tmax K(tmax − tj,k) erroneous .
(9.4)

Where ∆ωn
j denotes the weight update of the jth afferent neuron after n learning

iterations. The update depends on the PSP amplitude caused by a spikes at tj,k,
which is given by K(tmax − tj,k) at time tmaxt. α(n) is an optional learning rate,
which may decrease over time to modulate the amplitude and ensure that the weights
eventually converge. All experiments in this chapter use a learning rate of the form
α(n) = α0 exp (n/τα).
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In other words, the excitatory afferents that contributed causally to an erroneous
spike are weakened, while inhibitory ones are strengthened by ∆wn

j in (+) trials. In
(−) trials, the weights are updated in the opposite manner.

Typically, all synapses are initialized weak. Upon learning, a few synapses are
strengthened quickly until a correct input-output mapping has been established such
that no more weight updates are necessary according to Equation (9.4). This means
that the other synapses remain weak, which leads to a bimodal-like weight distribution.

9.3 Hardware Adaptation
Implementing the readout on hardware requires a few considerations in order to achieve
decent classification performance, as Spikey is a close but not perfect match for the
original tempotron.

The original tempotron weight update rule implements analytically precise gradient
descent dynamics. However, some of the constraints necessary to derive the rule in
the first place cannot be met by Spikey and therefore have to be compensated for.
Consequently, the weight update rule is merely an approximated gradient descent.
Firstly, shunting inputs after the first tempotron spike is neither possible on Spikey
nor biological. This constraint has simply been dropped as already proposed by
Gütig and Sompolinsky (2006). Consequently, the tempotron signals its decision by
either emitting none or any number of spikes. Secondly, the spike-triggered membrane
voltage reset is imposed by the hardware implementation. This means, in the (+) case,
tmax is approximated by the spike time rather than the time where the voltage of a
corresponding free membrane had been maximized.

9.3.1 Conductance-Based Synapses
The most significant model deviation imposed by hardware are the conductance-based
synapses. Early experiments have shown poor chance-level classification performance
without any compensation. The original update rule requires that changes to the
afferent efficacies ωj affect the PSP strength proportionally. This requirement holds for
current-based synapses according to Equation (9.2). However, for conductance-based
synapses the current contribution Ij,k per spike k via synapse j depends not only on
the synaptic weight ωj , but also on the momentary membrane voltage Vm(t), according
to

Cm
d Vm
dt

= −gl(Vm − El) + ωjIj,k (9.5)

with
Ij,k(t) = gj (Vm(t) − Ej) exp

(

−
t − tk

τs

)

Θ(t − tk) . (9.6)

Where, El and gl denote the leakage potential and conductance, Cm the membrane
capacitance, ωj the synaptic weight, gj the synaptic base conductance as well as τm and
τs the membrane and synaptic time constants, respectively. On Spikey, two reversal
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potentials Ee and Ei for excitatory and inhibitory synapses exist that are shared by all
neurons.

In a first order approximation, the voltage difference (Vm(t) − Ej) in Equation (9.6)
is considered constant over the course of a PSP. For weak synapses and short time
constants or a neuron in the high-conductance state (Destexhe et al., 2003b) this is a
reasonable approximation. For a single spike and a resting neuron, the PSP kernel K ′

for synapse j can be written as

K ′(t − tk) ∼ (Vm(tk) − Ej) · K(t − tk) , (9.7)

with the PSP kernel K(t) for a LIF neuron with current-based synapses according to
Equation (9.1). In order for this to work, the hardware time constants τm and τs used
by K(t) have to be calibrated, which has been done by Brüderle (2009).

Furthermore, the dynamic range of Vm, which is typically bound by Vrest) and Vthresh
except for strong inhibition, can be set such that (Vthresh − Vrest) is small compared to
(Vm(t) − Ej) for both reversal potentials Ej ∈ {Ee, Ei}. The strength of a PSP can then
assumed to be independent of Vm(t) = Vm, which means that the synapses effectively
behave like current-based synapses. The PSP strength depends on the constant scaling
factor (Vm − Ej) that is different for both synapse types.

Consequently, as long as the PSPs are small and the dynamic range of Vm is far
from both reversal potentials, the original tempotron weight update rule can be used.
Notably, the iterative training adapts the tempotron to the inputs as well as the
underlying substrate, hence inherently compensating for fixed-pattern variations of
the system. However, the updates have to be scaled for different synapses types to
compensate for asymmetry according to

∆ωexc =
Vm − Ei
Vm − Ee

· ∆ωinh . (9.8)

A scaling is unnecessary if Ee and Ei are set symmetrically around Vm, but this is
outside the accessible hardware ranges. For hardware the scaling factor is always smaller
than one. The analog neuron parameters used in the following experiments are listed
in Appendix A.2.

The original tempotron allows synapses to change arbitrarily from excitatory to
inhibitory and vice versa. For experiments realizing liquid and readout on a single
chip the synapse type is predetermined by the liquid topology because synapses for
both, liquid and readout are operated by the same synapse driver, which determines
their type. Changing synapse types upon learning would also change the synapse
types for neurons in the liquid and thus violate the concept of a static liquid for LSMs.
Hence, whenever synapse j develops a negative weight ωj , it is clipped to zero. For
tempotron only experiments, where e.g., recorded liquid responses are played back,
the synapse type could in principle change. However, the remaining discontinuity for
efficacies due to different reversal potentials and limited weight resolution complicate
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Figure 9.2: Weight development for the
last three classification windows of the
memory task, see Section 9.4.1. The
normally distributed initial weights are
plotted against the final weights after a
software-based training. Synapse types
could change freely from inhibitory to ex-
citatory and vice versa. Weights within
the top left and bottom right quadrant did
change their type and would otherwise be
locked to zero. These additional synapses
increase the classification performance for
Frame 1 compared to fixed synapse types
in Figure 9.6. Figure taken from Probst
(2011).
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learning. Therefore, changing synapse types is not allowed in the following experiments.
This restriction limits the dynamic range of the tempotron because synapses that
would normally change from excitatory to inhibitory or vice versa are locked to zero
and cannot contribute to the classification as shown in Figure 9.2. The following two
strategies for training have been explored by Probst (2011) to study this effect.

Preserved Synapse Type (PST)

This strategy simply preserves synapse types, thus keeping them either excitatory or
inhibitory during the training. Their type is determined by the liquid topology or
randomly at start. The synaptic weights are initially set to 0.1 nS. Iteratively, the
weights evolve according to Equations (9.4) and (9.8). Whenever a synaptic weight is
turned negative to indicate a type change, the weight is clipped to zero.

Prior Evaluation in Software (PEiS)

Using the approximation from Equation (9.7), conductance-based synapses behave
similarly under certain conditions. Thus, synapses of an ideal tempotron that actively
contribute to a classification are likely to do so for a hardware readout with conductance-
based synapses. Specifically, their preferred type is expected to be the same. Hence, a
preparatory software study with current-based synapses can determine the preferred
type for each synapse and initialize them afterwards on hardware accordingly. This
strategy can help to maximize the classification capabilities of the tempotron. By
comparing both strategies, the influence of fixed types on the classification performance
can be evaluated. However, this strategy can only employed for experiments where the
synapse types can be chosen freely, e.g., a sole tempotron that classifies recorded liquid
responses. In cases where the synapse type is predetermined by the liquid this strategy
cannot be used.
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After the initial software evaluation the weights are further trained on hardware
following the previous strategy to optimize the classification for conductance-based
synapses as well as compensate for fixed-pattern variations on hardware.

9.3.2 Limited Weight Resolution
Synaptic efficacies on Spikey have both, a limited parameter range and a 4 bit resolution.
Firstly, the limited efficacies can be compensated by scaling the distance of El and Vthresh
such that for a given input a few strong synapses suffice to elicit a spike. Secondly, the
weight discretization is tolerable, as tempotron readouts themselves typically establish
a discrete, bimodal weight distribution upon training. However, the learning rate α(n)
may impede further training if it becomes smaller than the weight resolution provided
by a single LSB.

The tempotron implementation in software limits all weights to a maximum of 3 nS in
order to keep them within hardware mappable range and, hence, simplify the transition
to hardware for the learning strategy with prior synapse type evaluation.

9.3.3 Traceless Learning
Learning requires access to the membrane recordings of the tempotron to derive tmax
in the (−) cases, which slows down execution because significantly more data has to be
transfered. This thwarts the benefits of accelerated systems on the one hand and limits
the number of readouts that can be trained in parallel on the other, since only four
traces can be accessed at a time. Here, a spike-based approach is presented that can be
used to train a tempotron for suitable tasks without membrane recordings.

As mentioned earlier, tmax is set to the spike time in the (+) case rather than the
time of maximum membrane voltage of a corresponding neuron with free membrane
dynamics. Experiments have shown that the tempotron is even more robust regarding
imprecise measures of tmax. For example, tmax can be chosen from a normal distribution
centered around the classification window at random in the (−) case, which means
no voltage course is required anymore and the learning is purely spike-based. The
consequent learning progress is shown in Figure 9.3 over 2000 training iterations for
the memory task presented later in Section 9.4.1. Interestingly, the tempotron still
achieves close to perfect classification performance. Even though the readout is no
longer learning correctly in the (−) case, it can be sufficient to learn in the (+) case
only. Therefore, some kind of normalization has to prevent excitatory efficacies from
converging to zero and limit inhibitory ones because the (+)-update only weakens
excitatory weights and strengthens inhibitory ones. The (−)-update can be employed
as such normalization, by arbitrarily strengthening and weakening excitatory and
inhibitory weights, respectively.

The argument is supported by the right plot in Figure 9.3, which shows the clas-
sification performance after 600 training iterations for different fixed values of tmax.
The normalization works more efficiently towards the end of the classification window
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9 Spike-Based Classification with Accelerated Neuromorphic Hardware

because more afferents can contribute to the membrane state until tmax and are thus
subject to learning. This also means that the performance of the spike-based learning
approach depends on the spatio-temporal structure of the input and may not work
for arbitrary tasks. Nevertheless, this approach allows to train multiple hardware
tempotron readouts efficiently in parallel.
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Figure 9.3: Traceless learning results for random tmax in the (−) case. In the left-hand plot,
the learning is studied for normally distributed tmax centered around µ = 25 ms for different
σ in the (−) case. All classifiers reach a correctness beyond 90 %, though performance
regresses for σ = 10−6. The plot on the right shows the final classification performance after
600 training iterations for fixed values of tmax in the (−) case. The tempotron performs
significantly better for values of tmax in the second half of the window (tmax > 25 ms) because
more synapses actively contribute to the membrane state until tmax and are therefore subject
to normalization. Figures based on data from Holford (2011).

9.3.4 Short Term Plasticity
The liquid network uses STP (Brüderle, 2009) to stabilize its dynamics and meet the
separation property for a wider range of inputs. However, STP on Spikey is configured
at the synapse driver for a complete row of synapses, including both, recurrent as well as
feedforward connections to the readout. Therefore, either synapses for both, liquid and
tempotron, are modulated by STP or none. Preliminary hardware experiments have
shown that strong STP severely affects the classification performance of the tempotron
because the learning rule cannot account for short-term changes in synaptic efficacies.

Consequently, STP is either turned off completely or kept weak, even though disabling
plasticity makes the network more sensitive to varying spike input. This means, for
strong recurrent excitation the network may no longer suffice the necessary separation
property, rendering the network an unsuitable liquid substrate. In experiments without
STP, Vthresh has therefore been tuned for the specific task and hardware instance.
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Figure 9.4: Schematic of the LSM and the memory task, see Section 9.4.1. Input spike trains
are composed from 50 ms segments that are randomly picked from either of the two template
spike trains X and Y (1). These spike trains are subsequently streamed into the liquid (2)
using 64 inputs. Each neuron receives spikes from four of the inputs. For the memory task,
the network consists of 191 neurons, leaving one neuron to the tempotron. Connectivity
is illustrated as connection probabilities next to the arrows. The tempotron (3) is trained
iteratively to distinguish segments from X and Y by looking only at the last 50 ms of the
liquid response. A similar figure has been published by the author in Pfeil et al. (2013).

9.4 Applications
The LSM presented above has been applied to three different tasks. The first memory
task setup has been introduced by Jeltsch (2010). The second demanding task is
designed to challenge the tempotron and therefore support the general usefulness of
a liquid for pre-processing the input. In the final task, handwritten digits from the
MNIST database (LeCun and Cortes, 1998) have to be recognized. The latter two
tasks have first been presented by Probst (2011).

9.4.1 Memory Task
The binary memory task has originally been proposed by Maass et al. (2002) for a
different LSM setup. A history of spike train segments has to be reconstructed from a
continuous input stream. The input is generated by cutting two template spike trains,
denoted as X and Y , into small segments for time windows of 50 ms each. Then, input
spike sequences are composed by randomly picking a segment from either X or Y for
every time window. Afterwards, normally distributed jitter with a standard deviation
of σ = 1 ms is added to every spike time in order to make the task more challenging.
Figure 9.4 illustrates the protocol.

Then, the spike trains are iteratively fed into the liquid and subsequently read out
by the classifier. In individual experiments, a tempotron is trained to distinguish the
templates for one of the 50 ms time windows by always looking at the last 50 ms of the
liquid response only. Therefore, the readout has to base its decision on the echo stored
in the liquid. Earlier time windows are more challenging due to the fading memory of
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Figure 9.5: Accuracy of the LSM solving the memory
task for the different classification windows Frame 1
and Frame 2. The setups have been trained over 1000
training iterations and their final responses averaged
over 200 samples. The software results are shown in red,
while results for ethernet and USB Spikey are shown
in light and dark blue, respectively. Hardware and
software perform similar, indicating the suitability of
the substrate for the LSM setup. A similar figure has
been published in Pfeil et al. (2013).
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the liquid. A readout that classifies a segment n, which is n windows in the past, is
denoted as Frame n.

This experiment has been carried out with software and hardware tempotron imple-
mentations. In the former case, the response of the hardware liquid is recorded but
classified in software. The hardware implementation, on the other hand, realizes both,
liquid and readout together on the Spikey chip. The firing threshold of the liquid has
been tuned independently to optimize memory capacity for software and hardware
implementations independently. Note that tuning Vthresh for the hardware tempotron
also changes the liquid behavior because the parameter is shared by every other neuron.
Finally, individual learning curves α(n) have been applied to optimize performance on
the one hand and account for the limited weight resolution on hardware on the other.

The results are presented in Figure 9.5. Both, the hardware and the software LSM
correctly classify about 90 % of the spike train segments between 50 ms to 100 ms in
the past. For earlier inputs, all implementations drop to chance level, which is 50 % for
binary tasks. Furthermore, the two different learning strategies have been explored.
Figure 9.6 presents the learning curves for hardware in the time windows from 0 ms to
50 ms and 50 ms to 100 ms as well as both training strategies (see Section 9.3.1). Most
notably, the strategy with prior software evaluation shows a steeper learning progress.
There are more weights with preferred synapse type that can be tuned towards the
correct response. Though, for the final outcome the strategy makes little difference
because the tempotron typically bases its decisions on a few strong synapses, while
the others remain weak. This means, as long as the readout is trained long enough
and there are sufficient weights of suitable type to trigger the correct response for both
input classes the strategy has little impact on the final performance.
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Figure 9.6: Progress over 5000 learning iterations for the Frame 0 (top) and Frame 1 (bottom)
hardware tempotron. The performances for the PST and PEiS training strategies are shown
in red and blue, respectively. Interestingly, for Frame 0 the tempotron learns faster with the
simple PST strategy. For the PEiS strategy, on the other hand, unsuitably strong weights
from the prior software training need to be weakened. Ultimately, both reach almost perfect
accuracy. However, classifying Frame 1 is more challenging, rendering the PEiS strategy
slightly more effective.
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Figure 9.7: Classification performance
for the demanding task described in Sec-
tion 9.4.2. The different training strate-
gies and substrates have been explored
as function of ∆t. For small ∆t the per-
formance is almost perfect for all setups.
Performance drops to chance level when
∆t becomes larger. Clearly, the liquid
extends the accessible range. The limit
depends on both, the liquid implementa-
tion as well as the readout training strat-
egy. The software liquid with prior weight
evaluation performs best and classifies be-
yond chance level event up to ∆t = 30 ms.
Figure based on data from Probst (2011). 100 101 102
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9.4.2 Demanding Task
The tempotron by itself is a powerful, nonlinear classifier. A special task has been
designed to specifically challenge the tempotron and demonstrate that a liquid can
improve readout performance.

For this task, two similar 100 ms spike patterns A and B have to be discriminated.
Both patterns consist of 12 excitatory and 12 inhibitory inputs. All inputs fire once
at tA = 10 ms for pattern A and tB = 100 ms − ∆t for pattern B. Where, ∆t is a free
parameter defined by the task instance. Thus, pattern A and B are spatially identical,
but shifted relative to one another in the classification window. Additionally, a narrow,
normal distributed jitter of σ = 0.7 ms is applied. The liquid has been tuned to the
relatively low input rate by lowering Vthresh to −56 mV.

Then, the tempotron is trained to fire for input A and remain silent for input B.
The classifier cannot simply develop a few strong weights to elicit the correct behavior
because the spatial structure of both input patterns is identical. In fact, the only option
is to delay the response for a sufficiently long time, such that a spike for input B misses
the classification window. A liquid can provide additional delay and therefore enable
the LSM to work for larger ∆t than the sole tempotron.

The results for different setups and values of ∆t are shown in Figure 9.7. Note that
only the tempotron is implemented in software. The actual classification is conducted
on hardware spike recordings of the liquid response. Until about ∆t = 3 ms the task
is simple enough for all setups to delay the spike for pattern B. For larger ∆t, the
liquid becomes necessary to achieve good classification performance. The hardware
LSM drops to chance level at around ∆t = 6 ms, closely followed by the PST software
LSM at ∆t = 10 ms. Interestingly, the software implementation with optimized synapse
types classifies beyond chance level until ∆t = 30 ms. Figure 9.8 presents the learning
curve and final weight distribution for tempotron readouts with and without liquid
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Figure 9.8: On top, development of classification performance for the demanding task with
∆t = 5 ms. The PEiS learning strategy with preceding software evaluation has been used in
order to increase the effective number of synapses that contribute to the decision. Clearly, the
LSM outperforms the sole tempotron. Below, the corresponding weight distribution is shown
after the complete 104 training iterations. The tempotron without liquid cannot distinguish
between the patterns, which causes weak weights around zero and leads to chance-level
performance. However with liquid the input is sufficiently delayed, such that a few strong
weights can evolve to prime classification. Figures based on data from Probst (2011).
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Figure 9.9: Handwriting examples from the MNIST database(LeCun and Cortes, 1998) for
the digits from 0 to 3. The images have been down sampled from 28 × 28 pixels to 7 × 7
pixels. Each of the 49 pixels is mapped to a Poisson input with its pixel brightness linearly
mapped to the input rate. Inputs are excitatory and inhibitory in alternating order. Note,
the shape of the digit 1 is clearly distinct from all others, simplifying its pairwise separation.

pre-processing at ∆t = 5 ms. Clearly, the liquid improves the performance of the
isolated tempotron.

Notably, the learned weight distribution is rather unusual for a tempotron. Typically,
tempotron readouts evolve a bimodal weight distribution with some strong synapses, as
explained earlier. However, for this task it is beneficial to evolve a broad distribution
of rather weak synapses to delay the spike response as long as possible beyond the
classification window for pattern B.

9.4.3 Handwritten Digit Recognition
The last task uses a hardware LSM to recognize handwritten digits from the MNIST
database (LeCun and Cortes, 1998). Both the liquid and classifiers are realized on-chip.
This task does not specifically challenge any property of the LSM, however, demonstrates
its universality. Moreover, the extensibility of multiple binary tempotron readouts
towards multi-class decisions is tested.

The multi digit task has been mapped to a set of binary classifications by conducting
pairwise separation between all combinations of the n digits, therefore n(n−1)

2 readouts
are required to cover all possibilities. Thus, implementing readouts for the pairwise
discrimination of 10 digits results in 45 tempotron neurons. The liquid populations
are scaled accordingly to occupy the remaining 147 neurons on Spikey (see Table 9.1)
leaving synapse drivers for 64 external spike inputs. Early experiments for 10 digits
showed that the setup cannot reliably classify the digits. The task has therefore been
simplified to only discriminate between the digits from 0 to 3.

Inputs are constructed from the images by assigning pixels to excitatory and inhibitory
inputs in alternating oder. However, the MNIST images measure 28 × 28 pixels, which
exceeds the available 64 inputs. Hence, the images are down-sampled by collapsing
four pixels into one, resulting in 7 × 7 images. The pixel brightness is then translated
linearly into Poisson spike trains with up to 80 Hz and a duration of 100 ms. Example
digits are illustrated in Figure 9.9. The overall input rate is given by the average image
brightness and varies depending on the actual digit, e.g., threes typically cover more

160



9.4 Applications

Ne 107
Ni 40
pee/pei/pie/pii 0.05/0.1/0.1/0.2
gee/gei/gie/gii (nS) 2/3/1.5/2
STP weak

Table 9.1: Parameters of the self-stabilizing LSM used for the handwritten digit recognition
task. With the number of excitatory and inhibitory neurons Ne and Ni, the connection
probabilities pxy and synaptic weights gxy between populations x and y. Weak STP is
enabled to make the liquid more robust against the varying input for different digits.

pixels than ones and therefore translate into higher input rates. Consequently, weak
STP is enabled to stabilize the liquid against these input variations.

The results of the pairwise discriminations for the software and hardware readout
are illustrated in Table 9.2 and Figure 9.10. Again, only the readout is implemented
in software, the classification is carried out based on spike recordings of the hardware
liquid.

For most digits, the software outperforms the hardware realization. On possible
reason is the lack of STP for the software tempotron, which renders the weight update
rule more effective as explained in Section 9.3.4. Furthermore, some digits are easier to
distinguish than others, e.g., 1 has a distinct shape simplifying its pairwise discrimination
against other digits.

Classifying the actual input digits requires to combine answers from the quorum of
pairwise classifiers into a coherent answer. For an input digit x the y/z classifier still
contributes to the overall decision. Moreover, the similarities of some digits lead to
correlated decisions. For example, a classifier that separates between 1 and 8, but sees
a 3 is more likely to answer 8 than 1. However a simple majority vote is used as first
order approximation. The digit that receives the most votes is considered the original
input. If two or more digits are elected with an equal number of votes, the input is
chosen randomly from the rivals. In a first trial over 4000 samples, the hardware LSM
achieved a correctness of (50.3 ± 0.8) % for the four digit task, which is clearly above the
chance level of 25 %. Currently, the performance is bound by the poor discrimination
accuracies for classifications between 0/2, 0/3 and 2/3. Presumably, STP, low resolution
input images and the small liquid size mainly limit the low performance for this more
challenging digits.

The results show that the LSM setup can yet be used to discriminate real world inputs,
like handwritten digits, but at the same time point out current limitations. Future
experiments are expected to further improve upon multi-class decision capabilities,
however, other approaches beyond sets of independent binary classifiers exist, like
neural sampling (Buesing et al., 2011; Petrovici et al., 2013).

161



9 Spike-Based Classification with Accelerated Neuromorphic Hardware

101 102 103

Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr

ec
tn

es
s

0/1
1/2
1/3

101 102 103

Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr

ec
tn

es
s

0/2
0/3
2/3

Figure 9.10: Learning progress over 7000 training iterations for the software tempotron using
the simple training strategy. The easier pairwise discriminations 0/1, 1/3 and 1/3 are shown
in the upper plot and the more challenging ones 0/2, 0/3 and 2/3 in the bottom. In both
cases the time until the learning converges is similar. However, a higher final accuracy is
achieved for the simpler discriminations. Figures based on data from Probst (2011).
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9.5 Summary

Digit 0/1 0/2 0/3 1/2 1/3 2/3
SW (%) 96.2 ± 0.6 81.5 ± 1.2 87.2 ± 1.1 90.1 ± 1.0 88.7 ± 1.0 75.6 ± 1.4
HW (%) 94.0 ± 0.8 68.0 ± 0.5 85.8 ± 1.1 83.3 ± 1.2 74.7 ± 1.4 69.4 ± 1.5

Table 9.2: Pairwise digit classification rates for the software and hardware LSM. Certain pairs
are easier to classify than others, depending on how similar the low-resolution representations
of the digits are. Results taken from Probst (2011).

9.5 Summary
The early experimental setup presented by Jeltsch (2010) has been further developed
to an on-chip LSM and has been published as part of Pfeil et al. (2013). Two different
learning strategies have been explored and a method devised to train a tempotron
purely based on its spike response. This allows to train more tempotron readouts in
parallel on hardware, where the access to membrane traces is limited. The universality
of the LSM setup has been demonstrated for three different tasks. The demanding task
even showed that a liquid can improve classification performance beyond the scope of
the single readout. Lastly, the setup and a future implementation on HICANN are
discussed in the final discussion at the end of this thesis.

163





Discussion and Outlook
As part of this thesis, a fast, scalable multi-user workflow for the HMF has been
designed and implemented. The resulting software framework provides access to the
system from the lowest hardware to the most abstract PyNN level. The latter is
achieved via a redesigned mapping of neural network descriptions into hardware specific
configurations. This mapping is algorithmically more scalable than its predecessor
and speeds up the process by making use of shared-memory parallelization allowing
to map larger networks than before. Modular libraries have been developed to handle
hardware imperfections and defects. A new high performance PyNN-compatible user
interface seamlessly integrates with native C++ backends and preserves the hierarchy
of the network descriptions as such. The new workflow, the mapping framework and
the new PyNN interface have been comprehensively benchmarked and verified. The
findings for all major workflow components as well as the hardware liquid state machine
setup are discussed below.

Embedded Classification with Liquid State Machines
An implementation of a liquid state machine, that is suitable for accelerated neuromor-
phic hardware systems, has been presented. The results have been published as part
of Pfeil et al. (2013). The universality of the setup has been exemplified for different
tasks, including a memory challenge and handwritten digit recognition. Furthermore, a
method has been devised for a purely spike-based training of tempotron readouts that
works without voltage recordings. It can be used to train many instances in parallel as
access to voltage traces is limited on hardware.

First experiments on the new USB platform promise a 17 fold speedup and the
next Spikey revision, which has recently arrived, provides extra neurons. It will also
support implementations using strong STP and no STP for the self-stabilizing liquid
and tempotron, respectively.

The next step is to port the LSM setup to HICANN. As a starting point, the more
complex AdEx neurons can be simplified to LIF ones, closely mimicking the Spikey
neurons. Subsequently, more advanced learning strategies may be able to exploit their
richer neuron dynamics. Moreover, the spike mechanism on HICANN can be disabled,
thus resembling the original weight update rule in the (−) case more faithfully. However,
a prior calibration of synaptic inputs is mandatory because they have found to saturate
early and a roughly linear dependency between digital weight and PSP amplitude is
necessary.
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The tempotron has shown to be a suitable neuromorphic classifier for accelerated
neuromorphic hardware systems and can easily be embedded into other networks due
to its modest single-neuron requirement. Therefore, network responses can be collapsed
into bandwidth friendly single spikes to speed up result aggregation and to evaluate
experiments efficiently in the accelerated hardware domain. The LSM and tempotron,
in particular, can be considered a valuable first contribution to a future neuromorphic
toolbox that enables users to perform on-system network analysis.

A Hierarchical Neural Network Representation
PyHMF, a PyNN-compatible high performance library for the description and repre-
sentation of spike-based abstract neural networks, has been developed. It has shown
to be typically more than two orders of magnitude faster than other PyNN backends.
This performance leap has been achieved by storing synapses in matrices rather than
adjacency lists on the one hand and a more efficient native C++ implementation on the
other. The latter avoids the overhead of frequent foreign language calls from Python
into C for random number generation. The compliant PyNN API is automatically
wrapped from C++, thus updated on-the-fly whenever the underlying interface changes.

An important advantage of PyHMF over PyNN is its ability to preserve hierarchical
information that is expressed in the actual model description. PyNN on the other
hand, expands populations, assemblies and population views instantly into flat lists
of neurons. A reduction of the PyNN hypergraph to a plain graph has been derived
to capture the hierarchy and keep the topology algorithmically more tractable. The
hierarchy can be used by backends e.g., to partition the network on an abstract level
for bandwidth optimized simulations on a computer cluster or neuromorphic hardware
systems alike.

Notably, all available networks in the group’s model repositories have successfully been
set up using PyHMF. However, PyHMF does not yet handle multiple synapses between
a pair of neurons as part of a single projection. This is an immediate consequence of
using connection matrices rather than adjacency lists. This shortcoming can currently
be worked around by expressing an isomorphic network using multiple projections.
Future versions may also detect congruent synapses and automatically split them into
multiple projections. Nevertheless, the EPFL cortical column model in Section 8.7
is the only studied model that implements such connectivity. Furthermore, native
evaluation of math expression has been presented in Section 8.8, which significantly
speeds up the distance dependent probability connector.

In conclusion, PyHMF is a stand-alone PyNN-compatible, high-level and high per-
formance interface. Other simulator backends could also benefit from its performance
advantage, seamless native code integration and preserved model hierarchy. In fact,
PyHMF might be an interesting candidate for a shared development effort within the
HBP (Markram, 2012b). For example, the lazy evaluation of synapses could provide
efficient model set up for simulations on large-scale computer clusters.
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Mapping of Neural Networks to Hardware

System-Level Software and Workflow Redesign
As part of this thesis, the low-level hardware interfaces and the workflow have been
redesigned completely. The former provides unified access to all hardware components,
while the latter has been split into a broker-based design to make the workflow more
scalable and to support multi-user remote operation.

Firstly, the new low-level software foundation unifies the access to the HMF and
therefore reduces the overall software complexity hardening the setup for production
use. The comprehensive coordinate system and type-rich interfaces render code more
expressive, capture misuse at compile time and out-of-bounds errors rigorously at
runtime. The type-rich design has proven itself very useful and is now used for other
prototype systems as well. Future versions of StHAL are planned to speed up wafer
configuration by parallelizing the access across multiple FPGAs.

For the new multi-user workflow, all necessary components have been established
for setting up the network representation, transferring it to the experiment broker,
managing the experiment execution and submitting the results back. PyHMF hides
the more complex workflow from the user, everything happens in a PyNN-compatible
fashion transparently in the background.

A first version of the Ester experiment broker is benchmarked in Section 2.3.2. It
achieves experiment transmission rates of up to 1.6 GB/s, which is sufficient to handle
many user requests in parallel and to saturate the 10 Gbit ethernet links of the HMF
cluster nodes. The throughput can further be increased by separating experiments into
a header and payload section to avoid unnecessary experiment deserialization on the
Ester broker. Deployments can additionally be scaled beyond single broker boundaries
by means of load balancers. Future Ester versions should, firstly, allow client reconnects
to render access more user friendly and, secondly, support self-monitoring to reject
incoming requests if running short of resources to avoid denial of service.

The workflow redesign is a major step towards opening up the HMF as a novel com-
putational platform for the neuroscience community in accordance with the open-access
policy of the HBP.

Mapping of Neural Networks to Hardware
The marocco mapping framework has been established as part of this thesis. Scalable
algorithms and the use of shared-memory parallelization allow to map networks more
efficiently than with the previous implementation. The new implementation is robust
and able to map all networks part of the work group’s model repositories. The
correctness of mapped configurations has been demonstrated by means of simple
hardware experiments and an ESS Hellfire chain simulation using the prototype HALBe
integration. During the design, a special focus has been put on extensibility and
modularity to facilitate future development. Therefore, the mapping task has been
decomposed into a well-defined feedforward flow. Furthermore, defect handling as well
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as calibrations have been split into independent libraries that are valuable for other
workflow components alike. The new mapping extends upon the features of the prior
implementation, is generally faster and the code base is only about one fifth the size of
the MappingTool.

New means of manual guidance provide flexible control over the mapping, which is
necessary to cope with the wide range of possible neural network topologies and to
optimize their realization on the HMF:

• No more configuration files are necessary, the mapping is interfaced seamlessly
from within the PyNN script by means of PyMarocco.

• A visualizer provides immediate access to the routing.

• The size of hardware neurons can be chosen individually for each population.

• Projections can be prioritized to render their realization more likely or to assert
functionally important connections during the wafer routing.

• The most important improvement over the MappingTool is that now excitatory
and inhibitory neurons can be placed to the same HICANN and neurons no longer
need to obey Dale’s principle (Strata and Harvey, 1999). This enables arbitrary
single HICANN experiments as well as more flexible inter-neuron connectivity.

Defect Handling and Synapse Measurement
Wafer-scale integration is the key technique for energy efficiency and for the high
connection densities of the HMF. However, defect chips that would otherwise be
dismissed remain in the system. The wafer system has therefore been designed from
the ground up to allow a wide range of workarounds that have to be implemented
dynamically by the mapping. The ReDMan library has been introduced to manage
defect maps for arbitrary components and to interface marocco.

Moreover, an automated classification of available synapses has been developed. The
results presented in Section 7.2 currently suffer from uncalibrated, overly sensitive
synaptic time constants that lead to many false defect classifications. Nonetheless,
the rate of defect synapses has conservatively been estimated to be below 6 %, which
is already an upper bound. Calibrations are expected to further improve the results.
This exemplifies that most hardware synapses will be available for actual network
experiments.

Performance Comparison
The performance of the old and new mapping flows as well as the two PyNN implemen-
tations have been benchmarked and compared against one another whenever possible
including synaptic loss, runtime and memory footprint.
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The synaptic loss is mostly similar for both workflows due to partly similar algo-
rithmic approaches and common hardware constraints. Still, marocco produced better
configurations for all instances of the worst-case homogeneous random networks.

With respect to runtime, PyHMF and marocco are consistently faster, the mapping
e.g., uses more efficient algorithms and shared-memory parallelization. The actual
speedup, however, depends on the size and topology of the model. For example, a 50
fold speedup has been achieved for wafer-scale homogeneous random networks with
a connection probability of p = 10 %. The speedup is expected to be even higher for
larger networks or higher connection probabilities due to the more efficient scaling. In
conclusion, the goal of developing a significantly faster mapping has been achieved.

For large network models memory is the most expensive computational resource,
ultimately limiting the maximum network extent. The memory footprint for worst-case
and structured networks has been studied for homogeneous random networks and the
layer 2/3 attractor model, respectively. Mapping homogeneous random networks at
wafer-scale with marocco for any connection probability p requires approximately 21 GB
of memory. Whereas the memory footprint of the MappingTool depends on p and has
found to be roughly on par for p = 5 % and to even be 45 % higher for p = 10 % at full
wafer-scale, despite using sparse network friendly adjacency lists. For marocco, most of
the memory is actually consumed by the synapse matrices themselves, which shows that
little overhead is imposed and memory is handled efficiently. For structured networks,
like the layer 2/3 attractor model, marocco required on average 4 times less memory
than the MappingTool. Overall, consistently using matrix representations for synapses
offers clear performance benefits without any significant memory disadvantage.

HMF Topology Study
The suitability of the HMF for different networks has been studied. Random networks
that require worst-case all-to-all connectivity between HICANNs can only be imple-
mented with low distortions for up to about 104 neurons, before the Layer 1 network
starts to congest. Planar networks and networks with an emphasis on local connectivity
can be implemented up to much larger sizes with only few or no synaptic loss. Moreover,
it has been found that most networks are ideally mapped using large hardware neurons
consisting of 8 or 12 circuits to reduce local synaptic loss by increasing the synaptic input
count per neuron. Note that this, however, reduces the effective number of mappable
neurons. The next HICANN revision is planned to provide configurable conductances
between circuits allowing to build complex compartmental dendrite models, making
this feature compelling beyond dynamic input scaling.

The flexibility provided by marocco has been used to explore different Layer 1
network topologies. This study has shown that changing the bus swap from the
first to the second HICANN version clearly improved the ability to route long-range
connectivity. Moreover, the current layout of crossbar switches and bus swaps is
well tuned, e.g., adding more switches or changing the bus swap can not significantly
improve the routing performance. In order to realize more long-range connectivity, the
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Figure 9.11: Measurement of the recovery time for the STP depression mechanism. A short
initial burst saturates the inactive partition, a spike probe is then used to test the recovery of
the PSP amplitude in consecutive experiments. Every trace is averaged over 50 repetitions.
Interestingly, the course of recovery is linear rather than exponential as one would expect for
the Tsodyks and Markram (1997) model. The storage capacitors are discharged by a current
mirror rather than a resistive element according to Schemmel et al. (2007 Figure 4). The
data has been provided by Sebastian Billaudelle.

bandwidth of horizontal buses has to be increased. The routing of local connectivity,
on the other hand, can be improved by increasing the sustainable capacitive load
of Layer 1 buses. This allows for larger numbers of interconnected synapse drivers
(Kononov, 2011), which is necessary to map larger afferent address spaces, different
STP parameters or share connections efficiently between adjacent chips.

Hardware Experiments and Future Mapping Development
All necessary tools to map and deploy networks for the HMF are in place. The Hellfire
chain network has been mapped to hardware as a first more complex model spanning
multiple HICANNs. An ESS simulation has verified that the network is mapped
correctly. However, signal propagation along the chain has not yet been achieved on
hardware. Nonetheless, this early attempt provided vital information to guide the
development of calibrations and to identify a heretofore unknown repeater locking
issue. As an interim solution for the latter, a workaround has been added to marocco,
which dedicates a part of the merger tree to provide address 0 events to lock repeaters.
However, this reduces the number of accessible neuron circuits per chip. The simplest
thorough solution for future versions of the hardware is to connect the background
generators on the lowest merger tier. In fact, the next revision is planned to substitute
the merger tree with a more flexible merger crossbar (Schemmel, 2014b). Ultimately,
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comprehensive calibrations for multi-circuit neurons are expected to increase analog
precision and therefore enable working Hellfire chain implementations.

The future software development has to address three major topics. Firstly, the
integration of the ESS into the HALBe workflow, which is an important step towards
testing the complete workflow with remote users. The ESS also simplifies continuous
integration necessary to control the complexity of the growing software stack and to
guide software quality (Duvall et al., 2007). Secondly, providing access to the hardware
STP and STDP plasticity features. Support for STP is currently in development, an
early measurement is shown in Figure 9.11. Interestingly, the recovery is linear rather
than exponential, as expected for the Tsodyks and Markram (1997) model, because
STP storage capacitors are discharged by a current mirror rather than a resistive
element. Note that future ESS versions should account for this model deviation.
Finally, a multi-wafer routing needs to be implemented in order to map models to
future multi-wafer HMF deployments, however, the necessary Layer 2 event network
and software interfaces are not yet available. The basic design of such a routing is
discussed in the following.

Towards a 10
4 Columns Cortical Model

A large 104 wafer system is planned as part of the HBP. This system will provide
the necessary resources to conduct accelerated spike-based emulations of at least 104

cortical columns, which roughly corresponds to 10 % of rat cortex (Markram, 2012a).
Mapping a single EPFL cortical column currently takes about 3.2 minutes with the
new workflow, which means 104 individual columns can be mapped in about 22 days
on a single off-the-shelf computer.

Scaling the mapping towards thousands of cortical columns and wafers requires a
hierarchical approach in order to distribute neurons efficiently such that connectivity
between wafers is minimized, to conduct the mapping with limited memory resources
and to distribute the computation. This has in fact been one of the main rationals
behind the development of the hierarchy preserving PyHMF. The lazy evaluation of
synapses will allow to easily build a coarse 104 column representation on a single
machine to perform an initial partitioning. Multiple wafers can then be placed and
routed mostly independent and thus in parallel. Connections between the individual
wafers have to be routed afterwards e.g., by modeling the Layer 2 network as a graph and
using an iterative search algorithm like the Iterative Shortest Path Routing described in
Section 6.4.3. Given the assumption that columns are mostly connected to neighboring
columns, such a routing is expected to be even faster than routing the dense on-wafer
connectivity. A complete 104 column network can then be set up in just a few minutes
to hours depending on how efficiently and to how many cluster nodes the mapping
of the individual columns is distributed. In cases where mapping time is critical and
computational resources are limited it might also be an option to replicate a single
column onto multiple wafer instances. However, these configurations cannot account
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for individual wafer variations and defects. Similarly, the inter-wafer routing can be set
up symmetrically, if the connectivity between columns is reasonable generic and nicely
matches a 2D toroidal wafer grid network.

In the near future, the HMF will open up exciting opportunities to conduct detailed
long-term learning experiments of large cortex areas. While detailed simulations of a
single column on the BlueBrain cluster are about 300 times slower than biological real
time (Markram, 2012a), emulating one year of development of the 104 columns network
takes less than an hour on the HMF with a speedup of 104.
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A.1 Test Setup
Computer Setup
All measurements have been carried out on one of the HMF cluster nodes, which is
running Debian Wheezy with the 3.10.111 bpo70+1 (2013-09-24) kernel. The node is
equipped as follows:

• Intel® Core™ i7-2600 CPU @ 3.40GHz

• 32GB memory

• OCZ Vertex 2 SSD 128GB

Software Setup
The software has been compiled using g++-4.7.2 (GCC, 2014) with -Os optimizations.
No special link time optimization have been applied. The Python interpreter is CPython
2.7.3 (Python, 2014).

A.2 Parameter Sets
The following sections summarize the default HALBe parameters used in experiments.

Default Hardware Parameters
Four floating-gate arrays per HICANN store analog parameters in 129 × 24 cells each.
Both, current and voltage cells exist, which cover parameter ranges of 0 µA to 2.5 µA
and 0 V to 1.8 V respectively. These cells are programmed via an ADC, which linearly
maps 10 bit digital values to the corresponding parameter ranges.

Shared Floating Gate Parameters One column of 24 cells per array is devoted to
shared parameters, which are used by multiple functional circuit instances. Note
that the assignment of parameters to functional elements may vary depending on the
parameter and the actual floating-gate array.
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Parameter Value Component Description
Iop_bias 1023 - Internal OP bias
Vdllres 200 - DLL control voltage of receivers is pulled to this

voltage during reset of PLL
Vccas 800 Layer 1 Biasing of Layer 1 input amplifier and Vcbias
Vreset 300 Neuron Voltage, membrane is pulled to during reset pulse

(left:even, right:odd neuron circuits)
Vbout 1023 Neuron Global biasing of neuron readout
Vbexp 1023 Neuron Lower exp voltage driver bias
Ibreset 1023 Neuron Current used to pull down membrane to reset poten-

tial(left:even, right:odd neuron circuits)
Ibstim 1023 Neuron Bias for neuron stimulation circuit
Vgmax0 1000 Synapse Driver Synaptic base-conductance
Vgmax1 1000 Synapse Driver Synaptic base-conductance
Vgmax2 1000 Synapse Driver Synaptic base-conductance
Vgmax3 1000 Synapse Driver Synaptic base-conductance
Vfac 0 STP STP voltage Vfac used for facilitation mode
Vdep 0 STP STP voltage Vdep used for depression mode
Vstdf 0 STP STP reset voltage for facilitation
Vbstdf 0 STP STP bias
Vdtc 0 STP STP dtc bias
Vthigh 0 STDP STDP readout compare voltageB
Vtlow 0 STDP STDP readout compare voltage
Vclra 0 STDP STDP clr voltage (acausal)
Vclrc 0 STDP STDP clr voltage (causal)
Vm 0 STDP Start load voltage of causal STDP capacitor (ground

for acausal)
Vbr 0 STDP Bias for STDP readout circuit

Neuron Floating Gate Parameters Individual parameters for 128 neurons are stored
per array in 128 columns of 24 rows. The parameters are intuitively mapped to neuron
circuits, e.g., the top-right array provides voltages and currents for the 128 top-right
neuron instances.

Parameter Value Description
El 300 Leakage reversal potential
Esyni 100 Synapse inhibitory reversal potential
Esynx 570 Synapse excitatory reversal potential
Ibexp 1023 Biasing for operational amplifier of exponential circuit (technical)
Iconvi 1023 Controls maximum inhibitory synaptic conductance/current
Iconvx 1023 Controls maximum excitatory synaptic conductance/current
Ifire 511 Current flow onto the adaptation capacitance per spike; Integrated for

spike pulse length
Igl 200 Proportional to leakage conductance for small signals and maximum

leakage current
Igladapt 100 Adaptation conductance modeling parameter a in AdEx equation
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Iintbbi 511 Bias for operational amplifier in inhibitory synapse input circuits
(technical)

Iintbbx 511 Bias for operational amplifier in excitatory synapse input circuits
(technical)

Ipl 511 Current for adjustment of refractory period (integrated)
Iradapt 511 Conductance for adjustment of adaptation time constant
Irexp 511 Exponential slope current; controls ∆T
Ispikeamp 1023 Bias current of spike threshold comparator (technical)
Vexp 400 Exponential reference potential
Vsyni 511 Synapse excitatory reversal potential
Vsyntci 800 Control voltage for the time constant of inhibitory synaptic pulses
Vsyntcx 800 Control voltage for the time constant of excitatory synaptic pulses
Vsynx 511 Zero voltage of collecting line from synapse array (technical)
Vt 500 Membrane Voltage needed to detect a spike

External Voltages Apart from the floating gate voltage and current parameters the
repeater voltages VOL and VOH are provided externally. They control the baseline power
consumption of the pre-amplifiers and therefore the Layer 1 transmission reliability.
By default hey are set to VOL = 0.7 V and VOH = 0.9 V.

Layer 2/3 Attractor Model Parameter
The studied network instances part of the performance comparison in Section 8.5 had
the following hyper and minicolumn geometries:

(HC, MC) (9, 3) (18, 2) (9, 6) (27, 3) (18, 6)
Neurons 891 1188 1782 2673 3564
Synapses 157934 205929 336860 473627 673231

(HC, MC) (36,4) (9,18) (18,12) (27,9) (17,18)
Neurons 4752 5346 7128 8019 10692
Synapses 860702 1209031 1479046 1588852 2418186

Liquid Parameter
The measurements on the backplane and the new USB platform have been carried
out on Spikey no. 436 and 603, respectively. For the USB platform, mainly the
Vthresh needed to be increased. However, both platforms use different calibrations, thus
parameters are not immediately comparable.
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Parameter Value
Vthresh −53 mV
Vreset −63 mV
El −58 mV
Ei −80 mV
gl 20 nS
τs 2.5 ms

Table A.5: Backplane Spikey

Parameter Value
Vthresh −43 mV
Vreset −63 mV
El −59 mV
Ei −80 mV
gl 20 nS
τs 2.5 ms

Table A.6: USB Spikey

Current Input
Membrane recordings for different behaviors of the AdEx neuron model are presented
in Section 8.2. Neurons have been built from 4 individual circuits. In the following,
only the non-default parameters are outlined in 10 bit DAC units.

Parameter Phasic
Spiking

Spike Frequency
Adaptation

Ifire 20 20
Igladapt 1000 100
Iradapt 500 300
Vexp 250 250
Vt 550 550
Vreset 290 300

Hellfire Hardware Study
The following parameters have been used to implement the Hellfire chain model on
hardware. The parameters are the result of translating the ideal model parameters
using the available default neuron transformation. Note that the model parameter have
been chosen such that the threshold and leakage potential Vt and El end up close. They
are less than 40 DAC apart. Putting them even closer to increase the excitability of
neurons, however, can lead to spontaneous spiking due to individual circuit variations
and noise. Furthermore, the small neuron capacitances of 0.16 pF have been used.

The measurement has been carried out on the HICANNs from (X, Y ) = (16, 10) to
(19, 10) on the first prototype system.
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Parameter Value
El 281
Esyni 227
Esynx 691
Ibexp 1023
Iconvi 1023
Iconvx 1023
Ifire 22
Igl 133
Igladapt 34
Iintbbi 1023
Iintbbx 1023

Parameter Value
Ipl 511
Iradapt 128
Irexp 1023
Ispikeamp 1023
Vexp 204
Vsyni 511
Vsyntci 795
Vsyntcx 795
Vsynx 511
Vt 320

Recurrent Hellfire connectivity from the Nth chain link to itself, N-1th, N+1th and
N+2th chain links. Projections are set up using an AllToAllConnector as follows:

Pre Post Weight (nS)
EN

carrier EN

carrier 3.3
EN

carrier IN

carrier 1.0
IN

carrier EN

carrier 1.0
EN

control EN

control 2.0
IN

control EN

control 15.3
EN

control IN

control 10.0
EN

carrier EN

control 1.0
EN

carrier IN

control 1.0

Pre Post Weight (nS)

EN

carrier EN+1

carrier 3.3

IN

control EN+2

carrier 15.0
EN

control IN+2

carrier 5.0

IN

control EN−1

carrier 15.0
EN

control IN−1

carrier 5.0

LSM Setup
The following list of parameters has been used for the hardware and software LSM
implementations in Chapter 9. Note that, the parameters are implicitly used by
both, liquid and tempotron because odd and even neurons on Spikey share common
parameters. Vthresh has individually been tuned for different Spikey chips and different
task.

Parameter Value
Vreset −63.0 mV
Vrest −58.0 mV
Ei −80.0 mV
gl 20.0 nS
τs 2.5 ms
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A.3 Further Measurements
June Simulation
The simulation results for the June network with different kinds of synaptic loss are
shown in Figure A.12. They have been included on request of Mihai Petrovici and
reasons of completeness. However, a comprehensive discussion of the June network
dynamics is beyond the scope of this thesis.
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Figure A.12: Average firing rates for the individual cortical layers of the June network
simulated with different kinds of synaptic loss. The left-hand bar in each plot corresponds
to undistorted reference simulations. The following bars denote the results for the 4 %
inhomogeneous loss generated by marocco as well as 5 %, 15 %, 25 %, 35 % and 45 % of
homogeneous loss. Two bars are shown for simulations including loss, where the left and right
bar refer to simulations without and with compensation, respectively. The compensation
simply scales synaptic weights according to 1−νloss and has been proposed by Mihai Petrovici.
However in this case, the method can not compensate for the increase in firing rates towards
higher synaptic loss.
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Acronyms
ADC Analog Digital Converter 44, 95, 98, 173

AdEx Adaptive Exponential Integrate-and-Fire 8, 84–86, 106, 107, 115, 137, 147, 165,
174, 176

AI Asynchronous Irregular 105, 137, 138, 141, 143, 145

API Application Programming Interface 21, 29–33, 35, 37, 38, 40, 44, 166

BSP BrainScaleS Project 2, 5, 17, 48, 50, 51

BTD Biological Time Domain 14, 112, 113

CMOS Complementary Metal–Oxide–Semiconductor 56, 83

DAC Digital Analog Converter 101, 102, 113, 176

DDPC DistanceDependentProbabilityConnector 138, 139, 166

DLL Delay-Locked Loop 11, 14, 62, 87, 97, 100, 105, 111, 115, 116

DNC Digital Network Chip 10, 11, 16, 17, 38, 45, 61–63

ESS Executable System Specification 20–23, 39, 42, 43, 105, 111, 113, 114, 136, 167,
170, 171

FACETS Fast Analog Computing with Emergent Transient States 19, 48, 130, 134

FPGA Field Programmable Gate Array 2, 6, 9–11, 15–17, 38, 43, 44, 52, 54, 63, 86, 87,
111, 115, 116, 136, 167

HAL Hardware Abstraction Layer 35, 37–45, 57, 63, 83, 94, 96, 106, 107, 111, 113, 114,
126, 136, 167, 171, 173

HBP Human Brain Project 1, 2, 17, 20, 48, 50, 166, 167, 171

HICANN High Input Count Analog Neural Network 3, 5–7, 9–13, 15–17, 38–42, 44,
45, 58, 59, 63, 66, 67, 70, 71, 73, 75, 77, 82, 83, 87–89, 91, 92, 94, 98, 99, 103,
105, 109, 111, 115–117, 119, 124, 126–129, 133, 140, 143, 144, 147, 148, 163, 165,
168–170, 173, 176
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Acronyms

HMF Hybrid Multi-Scale Facility 2–6, 15, 16, 19–23, 25, 26, 29, 33–35, 47, 48, 58, 60,
91, 93, 94, 105, 116, 125–127, 133, 135, 136, 141–144, 165, 167–173

HTD Hardware Time Domain 17, 56, 87, 106, 170

HVD Hardware Voltage Domain 96, 101, 106, 112, 170

IPC Inter Process Communication 21, 24, 26, 31, 48, 88

ISI Inter Spike Interval 87, 95, 107

LIF Leaky-Integrate and Fire 147–149, 151, 165

LSB Least Significant Bit 13, 14, 55, 153

LSM Liquid State Machine 3, 4, 147, 148, 151, 155, 156, 158–161, 163, 165, 166, 177, I

MRST Minimum Rectilinear Steiner Tree 55, 69

MSB Most Significant Bit 13, 55, 62, 74, 81

NP Nondeterministic Polynomial time 51, 55, 69, 73

PCB Printed Circuit Board 15, 148

PEiS Prior Evaluation in Software 157, 159

PSP Post-Synaptic Potential 7, 9, 14, 94, 95, 100–102, 112, 113, 115, 116, 149–151,
165, 170

PST Preserved Synapse Type 157, 158

PyNN Python Neural Networks 3, 19–21, 29–35, 57, 58, 66, 75, 86–88, 106, 107, 111,
121, 123, 124, 134, 136, 139, 165–168

RSNP Regular Spiking Non-Pyramidal 131, 133, 134, 143

SPL1 Synchronous Parallel Layer 1 9–12, 45, 52–55, 60–72, 88, 97, 98, 109, 144

STDP Spike Timing Dependent Plasticity 9, 86, 171, 174

STP Short Term Plasticity 9, 14, 55, 73–76, 154, 161, 165, 170, 171, 174

WTA Winner-Take-All 130, 131
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