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Abstract: Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered
environments, which makes them a suitable platform as a data collection and parcel delivering system.
In this work, the attitude and position control challenges for a drone with a package connected by a
wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable
disturbances. A robust neural network-based backstepping sliding mode control method is designed,
which is capable of monitoring the drone’s flight path and desired attitude with a suspended cable
attached. The convergence of the position and attitude errors together with the Lyapunov function
are employed to attest to the robustness of the nonlinear transportation platform. The proposed
control system is tested with a simulation and in an outdoor environment. The simulation and open
field test results for the UAV transportation platform verify the controllers’ reliability.

Keywords: quadrotor helicopters; transportation system; neural network

1. Introduction

Drones have aroused great interest in environment monitoring, data collection and device
transport [1–3]. Because of their capabilities of rapid manoeuvring, great mobility, and precise
hovering, unmanned quadrotor helicopters have been deployed for missions in environments
unreachable by humans [4,5]. New applications have continuously appeared in recent publications,
magazines and newspapers [6–8]. Multiple linear and nonlinear control systems have been devised to
achieve trajectory planning, obstacle avoidance, UAVs’ cooperation, lifting and landing control [9–11].
One of these applications is the UAVs’ aerial transportation systems [12]. They can deliver different
equipment and other urgently-needed devices to remote areas. However, in real complex situations,
the quadrotor UAVs face many control problems with respect to external disturbances. As shown
in [13–15], various research works have been conducted on the quadrotor transportation system
in the past few years. The typical solution is holding a payload by the actuators with which it is
equipped [16,17]. However, this will bring about the slow reaction problem due the inertia added
to the UAV. In order to retain the good manoeuvrability of UAVs, another solution is proposed by
attaching the payload to the transportation platform via a cable [18,19]. This approach has been widely
used in the transfer of radioactive substances or large cargoes [13]. Therefore, the study of quadrotor
transportation systems is of theoretical and practical importance. In particular, the robust control of
the quadrotor with uncertainties and delays is a critical problem both for the platform and humans on
the ground.
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Due to the aforementioned reasons, numerous robust control schemes have been developed
to address the control challenges of the quadrotor UAVs associated with external uncertainties and
disturbances. In [1], a dynamic model of a transportation drone was established, and a nonlinear
controller without considering parametric uncertainty was also presented. Seyedtabaii proposed a
modified version of Fractional-Order PID (FOPID) in order to reduce the calculations for the uncertainty
scenario by replacing the samples’ analytical equation with system frequency response [20]. In [21],
a switching model predictive controller was designed to deal with the external disturbances. In [22],
the author presented a feedback linearization control approach by considering disturbance from the
payload. The phase margin band can be forced to the desired flatness by this proposed method.
To maintain the posture-tracking performance against external uncertainties, an H∞ theory-based
approach was proposed in [23]. In [24], Michailidiset et al. used µ-synthesis to control UAVs with
uncertainties due to its straightforward design. Consideration of the non-linearity of UAVs’ parameters,
Mystkowski also proposed to implement the µ-synthesis method for the UAVs’ dynamics control [25].
In both cases, the lowest output response variance was gained from the µ-synthesis method. As an
alternative method, the sliding model control technique was used in [26] to reduce the parameter
variation effect on the control system. Moreover, the quadrotor transportation platform involved
time-varying delays. In [27], constant state delays were analysed within the quadrotor helicopter
system. The input delays to the system were further discussed in [28]. However, the multiple
uncertainties and delays were not considered in the design approach, which will result in an adverse
impact on the performance of the transportation system.

In this paper, a Radial Basis Function Neural Network (RBFNN)-based nonlinear backstepping
sliding mode flight controller is demonstrated. First, an RBFNN-based approach is employed to deal
with the multiple uncertainties and delays. Second, the disturbances in the position and pose control
input can be restrained with the modified neural network-based methodology. Third, the stability of
the sliding control approach is proven through Lyapunov stability analysis. Finally, the RBFNN-based
nonlinear controller is verified via real-time outdoor experiments. The results attest that the
performance of the control methodology is able to reject the negative effects of uncertainties and delays.

The main contributions of this paper consist of:

• A 3D dynamic model of a quadrotor transportation system is built.
• The multiple time-varying uncertainties and disturbances are compensated with a novel

RBFNN-based backstepping sliding mode control design approach. The stability of the proposed
methodology is attested to via analysis of the Lyapunov function.

• The proposed system is tested in a real flight scenario, which validates the robustness of the
proposed UAV transportation platform.

The rest of the paper is organized as follows: Section 2 demonstrates the dynamic model of
the transportation quadrotor helicopters. In Section 3, we present the RBFNN-based backstepping
sliding mode control algorithm and also discuss the stability analysis of the transportation platform.
The prototype of the UAV and experimental setup used to evaluate the reliability of the proposed
architecture is demonstrated in Section 4. Finally, the conclusion is given in Section 5.

2. Quadrotor Model and Suspended Payload Architecture

The quadrotor UAV with a suspended payload used in this paper is demonstrated in Figure 1.
The structure of this UAV is the “X” type.
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The dynamics of the quadrotor without a suspended payload can be expressed with the rotation
angle and position data as:

ẍ = (sin ψ sin φ + cos ψ sin θ cos φ)
UT
mQ

ÿ = (− cos ψ sin φ + sin ψ sin θ cos φ)
UT
mQ

z̈ = −g + (cos θ cos φ)
UT
mQ

(1)

where the Euler angles of the quadrotor are represented as ψ, θ and φ. UT denotes the total thrust
as follows:

UT =
4

∑
i=1

kω2
i (2)

where k denotes a positive constant and ωi denotes the angular speed, while the attitude inputs
(yaw, roll and pitch) are presented by:

UY = k(−ω2
1 + ω2

2 −ω2
3 + ω2

4)

UR = k(−ω2
1 + ω2

3)

UP = k(ω2
2 −ω2

4)

(3)

where UY denotes the yaw rotation thrust and UR and UP denote the roll and pitch rotation
thrust, respectively.

Figure 1. The “X” type of quadrotor helicopters.
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The quadrotor dynamics can be expressed with the rotation angle and position data as [29,30]:

φ̈ = θ̇ψ̇
Iy + Iz

Ix
− Jr

Ix
θ̇Ω +

Rarm

Ix
UY

θ̈ = φ̇ψ̇
−Ix − Iz

Iy
+

Jr

Iy
φ̇Ω +

Rarm

Iy
UR

ψ̈ = φ̇θ̇
Ix − Iy

−Iz
− UP

Iz

(4)

where Rarm is the radius of the quadrotor’s arm lever and Ix,y,z and Jr represent the body and rotor
inertia, respectively.

When adding the payload, the dynamical model can be deduced as [31]:

ẍ = (sin ψ sin φ + cos ψ sin θ cos φ)
UT
mQ

− (sin θL cos φL)
T

mQ

ÿ = (− cos ψ sin φ + sin ψ sin θ cos φ)
UT
mQ

+ (sin θL sin φL)
T

mQ

z̈ = −g + (cos θ cos φ)
UT
mQ
− (cos θL)

T
mQ

φ̈ =
Iy − Iz

Ix
θ̇ψ̇− Ir

Ix
θ̇Ω +

Mφ

Ix

θ̈ =
Iz − Ix

Iy
φ̇ψ̇− Ir

Iy
φ̇Ω +

Mθ

Iy

ψ̈ =
Ix − Iy

Iz
φ̇θ̇ +

Mψ

Iz

φ̈L = − (L sin θL cos φL)
T

mL
+

Mφ

mL

θ̈L = − (L sin θL sin φL)
T

mL
+

Mθ

mL

(5)

The dynamic model of quadrotor helicopter in Equation (5) with an external disturbance can be
denoted as:

Ẍ = f (X) + g(X)u + δ (6)

where:
u =

[
u1 u2 u3 u4

]T
, u = input

X =
[

x y z φ θ ψ
]T

, X = state

δ =
[

δ1 δ2 δ3 δ4 δ5 δ6

]T
, δ = disturbance,

(7)

and:

f (S) =



0
0
−g

φ̇ψ̇a1 + θ̇a2Ωd
φ̇ψ̇a3 + φ̇a4Ωd

θ̇φ̇a5


(8)
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and:

g(S) =



ux
1
m 0 0 0

uy
1
m 0 0 0

uz
1
m 0 0 0

0 b1 0 0
0 0 b2 0
0 0 0 b3


(9)

where a1 =
(

Iy − Iz
)

/Ix; a2 = Jr/Ix; a3 = (Iz − Ix) /Iy; a4 = Jr/Iy; a5 =
(

Ix − Iy
)

/Iz; b1 = l/Ix;
b2 = l/Iy; b3 = 1/Iz; ux =

(
cφsθcψ + sφsψ

)
; uv =

(
cφsθsψ − sφcψ

)
; uz =

(
cφcθ

)
.

3. Neural Network-Based Backstepping Control

The chosen neural network is the RBFNN, which is a three-layer feed-forward network [32,33].
Suppose f (x) is an unknown smooth nonlinear function:

f (x) = ω∗TΨ(x) + ε (10)

where ω∗ is the optimal weight vector, Ψ(x) denotes the radial basis function vector and ε is the
approximation error.

In order to gain the minimum reconstructed error, the ω∗ can be denoted as:

ω∗ = arg min
ω̂

{
sup
x∈Ω

∣∣∣ f (x)− ω̂TΨ(x)
∣∣∣} (11)

where ω̂ represents the estimation of ω∗. Ψ(x) = [ψ1(x), · · · , ψn(x)]T with nelements in the
hidden layer.

Letting D̂x be the lumped uncertainty, the output is obtained using the RBFNN weighted sum
method as follows:

D̂x =
N

∑
i=1

Wiψi(x), i = 1, · · · , n (12)

where Wi denotes the connective weight.
The element of the radial basis function vector is expressed as:

ψi(x) = exp

(
−‖

x− µi‖
2

ε2
i

)
, i = 1, · · · , n (13)

where µi ∈ Rm and εi ∈ R are the centre and spread.
The speed and posture control of device transportation is achieved by using backstepping

approach [34,35]. Introducing si = (s1, s2, . . . , s6)
T denotes the state vector of the quadrotor helicopter,

and si is represented in Table 1:

Table 1. State vector of the quadrotor helicopter platform.

Notation s1 s2 s3 s4 s5 s6

State φ θ ψ z y x

The quadrotor UAV is a highly nonlinear system [36]. The stability of the backstepping controller
is attested to via the Lyapunov function [37]. Therefore, an RBFNN-based backstepping control
is proposed (as can be seen in Figure 2) to stabilize the quadrotor helicopter during the device
transportation missions [38].
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The RBFNN-based method is used to overcome the problem of unknown uncertainty. The output
in the roll channel is defined as s1, and the desired output signal of the roll channel is assumed as s1re f .
Then, the tracking error z1 in the roll channel is denoted as:

z1 = s1re f − s1 (14)

The stabilizing function c1 is denoted as:

c1 = αz1 (15)

where α represents a positive constant. Denoting the velocity tracking error in the roll channel as
z2 = s1 − ṡ1re f , then the first step of the Lyapunov function V1 and its time derivative following
Lyapunov theory can be represented as:

V1 =
1
2

c2
1

V̇1 = c1 ċ1 = −z1z2 − αz2
1.

(16)

Figure 2. Blockdiagram of the neural network-based backstepping control.

The second step of the Lyapunov function is defined as follows [39]:

V2 = V1 +
1
2

s2, (17)

The sliding mode switching function is denoted as:

s = kz1 + z2 (18)

where k is a constant and meets the Hurwitz condition, i.e., k > 0.
The derivation of V2 can be expressed as:

V̇2 = V̇1 + sṡ = −z1z2 − αz2
1 + s (kz1 + z2) =

− z1z2 − α1z2
1 + s

[
(k− α1)ż1 +

Mx

Ix
+ Dx − ẍ1d

] (19)

Following the adaptation approach of the RBFNN observer [40], the error σx in the roll channel is
defined as:

σx = Dx − D̂x (W∗) . (20)

In the actual control, the parameter perturbation and external disturbance are usually unknown,
so that the total uncertainty of the upper bound Dx is difficult to determine. Therefore, it is an effective
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method to estimate the upper bound of the uncertain Dx by using the backstepping control system.
The third step Lyapunov function V3 is defined as:

V3 = V2 +
1

2η1
(W∗ −W)T (W∗ −W) +

1
2η2

(
δx − δ̂x

)2
(21)

where η1 and η2 denote positive constants. δx is chosen to compensate the RBFNN observed error, and
δ̂x represents the estimated value of the minimum reconstructed error.

The derivative of V3 is deduced as:

V̇3 = V̇2 −
1
η1

(W∗ −W)T Ẇ − 1
η2

(
δx − δ̂x

) ˙̂δx =

− z1z2 − α1z2
1 + s

[
(k− α)ż1 +

Mx

Ix
+ Dx − ẍ1d

]
− 1

η1
(W∗ −W)T W − 1

η2

(
δx − δ̂x

)
δ̇x

(22)

and:
Ẇ = sη1ψ(t)
δ̇x = sη2

(23)

Consequently, the sliding-mode roll control input UR that is equal to Mx of the transportation
platform is designed as:

UR = Mx = Ix(−(k− α1)ż1 + ẍ1d − γs− h sgn(s)−UH −UR) (24)

where γ and h are positive constants, the robust height control input UH and a compensated controller
UC are designed as follows:

UH = D̂x(W)

UC = δ̂x
(25)

Accordingly, V̇3 in Equation (22) can be re-denoted as:

V̇3 = −z1z2 − α1z2
1 − γs2 − h|s|+ s

[
Dx − D̂x (W∗)− δ̂x

]
−

1
η2

(
δx − δ̂x

)
δ̇x + s

[
D̂x (W∗)− D̂x(W)

]
− 1

η1
(W∗ −W)T Ẇ

(26)

Then, the derivative of V3 can be rewritten as [38]:

V̇3 = −z1z2 − α1z2
1 − γs2 − h|s| = −zTΛz− h|s| (27)

where Λ is a symmetric matrix represented as:

Λ =

[
α1 + γk2 γk + 1

2
γk + 1

2 γ

]
(28)

According to Barbalat’s lemma, V̇3 ≤ 0 is secured when |Λ| is tuned to be positive as:

|Λ| = γ(α1 − k)− 1
4
> 0 (29)

Therefore, the transportation platform in the roll control input channel is stable despite the
presence of time-varying uncertainties.
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4. Simulations and Experimental Tests

To assess the performance of the backstepping sliding mode controller, a Hardware-In-The-Loop
(HITL) simulation environment was developed for the transportation drone with external disturbance.
The structure of the HITL environment is demonstrated in Figure 3. The simulation platform is made
up of two main parts: the hardware part and the software part. The hardware part is the Pixhawk
autopilot unit that is used in the field tests. The software part is the Gazebo simulation environment
running the Ubuntu 18.04 operation system and the Robot Operating System (ROS) Melodic Morenia
distribution. The hardware part and software part are connected via USB/UART to send and receive
flight data. The RBFNN-based controller was implemented in MATLAB 2018b and PX4 Autopilots
Support from Embedded Coder by Simulink.

Figure 3. Block diagram of the hardware-in-the-loop simulation environment.

4.1. Simulation Setup and Results

The reference values for the parameters in the simulation model of the quadrotor are listed in
Table 2.

Table 2. State vector of the quadrotor helicopter platform.

Parameter Value

Mass (kg) 0.23
Arm length (m) 0.45

k 0.0000326
b 0.000021
J diag (0.0001612, 0.0001288, 0.0002225)

Two simulation tests were carried out to investigate the accuracy and repeatability of the proposed
method. The UAV followed the pre-planned trajectory under time-varying wind disturbance. Figure 4
displays the attitude data, roll/pitch/yaw angles and vertical height in the tests.

To achieve the desired control performance, the simulation parameters of RBFNN-based sliding
mode control were tuned by trial and error. In addition, the time-varying disturbance, which acts on
the attitude control channel, was added by τt = 0.3cos(0.4t). The other parameters in Equations (27)
and (28) were tuned as shown in Table 3.
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Table 3. Simulation parameters in Equations (27) and (28).

Attitude Channel α k γ h

Roll 10 0.5 15 1
Pitch 15 0.5 25 4
Yaw 12 0.5 20 1

The structure of the neural network was set to 2-5-1. The centre and width in the hidden node
were tuned as µ = 2 and ε = 5, respectively. The coefficients η1 and η2 were chosen as nine and
two, respectively.

Based on the parameter tuning results, the response speed of the control system, as well as the
system stability would be influenced by α. In addition, the excessive reduction of k would cause
steady-state error to increase. γ influences the speed of the approach to the sliding surface.

Figure 4. Altitude and attitude variation of the quadrotor during the simulation of the
transportation platform.

4.2. Field Tests and Results

The performance of the RBFNN-based controller was evaluated via outdoor tests and showed
reliable and robust control of the UAV in a cluttered environment.

The characteristics of the UAV are listed as follows:
Autopilot devices: The on-board flight assistant device was a Pixhack-V5 flight autopilot board.

The board was based on the Pixhawk open hardware design.
Airframe: The structure of the quadrotor X-shape frame was built using Polyvinyl Chloride (PVC).

The main body included motors, Electronics Speed Controller (ESCs)and connection wires.
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Attitude and altitude control: The vertical and horizontal position were obtained by using the
Auto Control Unit (ACU)and GPS together.

Communication protocol: The communication link used on-board was the Mavlink protocol.
The ACU and Operation Unit (OU)used this protocol to send quadrotor helicopter attitude data and
control instructions. The drone and GCS were connected via a digital data transmission unit.

Experiment 1: Hovering with external disturbance. In these 20 experiments, we validated the
performance of the proposed controller with external disturbance during the hovering, as shown in
Figure 5. The Root Mean Squared Error (RMSE) of the distance between the recovery position after the
disturbance injection and the quadrotor’s original position is shown in Table 4.

Table 4. Hovering performance error.

RMSE Horizontal X,Y (m) 0.021

RMSE Vertical Z (m) 0.082

Figure 5. UAV transportation system used in the field tests.

Forty real tests using the quadrotor transportation platform were carried out in an open field. The
transportation system was tested on days with wind speeds below 15 m/s.

In these experiments, as shown in Figures 6 and 7, the attitude angles recovered to their desired
values within 2 s. The experimental results directly proved that the proposed control scheme would be
safe during the payload changing and sample taking process.



Electronics 2019, 8, 931 11 of 16

Figure 6. Altitude and attitude variation of the quadrotor during the hovering field tests.
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Figure 7. Uncertain disturbances were injected during the hovering tests.

Experiment 2: Path following with wind disturbance. We set up 20 sample transport tests in an
outdoor flight field, as can be seen in Figure 8. The wind speed was between 2 m/s and 15 m/s during
the tests. The path setting is shown in Figure 9.

Figure 8. The UAV transportation system following the pre-planned path in the outdoor experiments.
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Figure 9. The pre-planned path for the transportation tests.

Videos of the aforementioned experiments are available at the following websites:

• Hovering with external disturbance: https://youtu.be/MZfE9BsYLqY.
• Path following with wind disturbance: https://youtu.be/ENtDYhLWR5Y.

In these 20 transporting experiments, the UAV was capable of following the desired path during
uncertain wind disturbance. Figure 10 displays the altitude estimation, yaw angle, pitch angle,
roll angle and velocity over time in the transporting process. As demonstrated, the proposed controller
was fully capable of maintaining the altitude and attitude of the quadrotor when encountering
uncertain disturbances.

Figure 10. Cont.

https://youtu.be/MZfE9BsYLqY
https://youtu.be/ENtDYhLWR5Y
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Figure 10. Altitude and attitude variation of the quadrotor during the hovering field tests.

5. Conclusions

An RBFNN-based backstepping sliding mode control scheme was proposed for a UAV
transportation system, which could effectively suppress the uncertain external disturbances and
secure accurate quadrotor positioning. The lumped external disturbances could be estimated with the
support of the adaptive RBFNN observer. In particular, Lyapunov-based analysis was employed to
theoretically ensure the performance of the neural network control scheme.

The proposed RBFNN-based backstepping sliding mode control method was verified through
numerous simulations, where constant external disturbance and time-varying disturbance were taken
into account. Experimental results were also included to show the proposed method’s superior control
performance.
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