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Abstract 
Motivation: Effectively representing the MeSH headings (terms) such as disease and drug as discriminative vectors 

could greatly improve the performance of downstream computational prediction models. However, these terms are often 

abstract and difficult to quantify. 

Results: In this paper, we converted the MeSH tree structure into a relationship network and applied several graph 

embedding algorithms on it to represent these terms. Specifically, the relationship network consisting of nodes (MeSH 

headings) and edges (relationships) which can be constructed by the rule of tree num. Then, five graph embedding algo-

rithms including DeepWalk (DW), LINE, SDNE, LAP and HOPE were implemented on the relationship network to repre-

sent MeSH headings as vectors. In order to evaluate the performance of the proposed method, we carried out the node 

classification and relationship prediction tasks. The experimental results show that the MeSH headings characterized by 

graph embedding algorithms can not only be treated as an independent carrier for representation, but also can be utilized 

as additional information to enhance the distinguishable ability of vectors. Thus, it can act as input and continue to play a 

significant role in any disease-, drug-, microbe- and etc.-related computational models. Besides, our method holds great 

hope to inspire relevant researchers to study the representation of terms in this network perspective. 

Contact: zhuhongyou@ms.xjb.ac.cn  

   

 

 

1 Introduction  

Technological advances over the past few decades, from high-throughput 

sequencing technologies to omics, have dramatically changed the para-

digm of medicine and biology (Reuter, et al., 2015; Tyanova, et al., 2016). 

In particular, since the official launch of the Human Genome Project in 

the 1990s, the large-scale genomic, chemical and pathological data has 

brought novel insights for humans to re-recognize life processes (Collins, 

et al., 2003). However, the information overload caused by tremendous 

growth of data makes it difficult to take full use of existing knowledge and 

literature. For instance, a premier database called MEDLINE contains 

about 26 million records from more than 5,600 selected publications 

covering biomedical and life sciences to the present. So how to efficiently 

organize and manage the literature and explore the implicit value becomes 

a formidable challenge.  

In response to this situation, the literature-based discovery (LBD) 

method was firstly proposed by Don R. Swanson which logically com-

bines independent pieces of information to infer new interesting discover-

ies (Swanson, 1986). Many models were continuously developed to pro-

vide efficient and stable support for researchers such as co-occurrence-

based approaches (Swanson and Smalheiser, 1997), semantic relation-

based approaches (Hu, et al., 2010), Graph-based approaches (Cameron, 

et al., 2015) and Hybrid approaches (Torvik and Smalheiser, 2007).  

For traditional LBD method, such as Medical Subject Headings 

(MeSH), Unified Medical Language System (UMLS) and etc. are often 
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treated as auxiliary knowledge sources to improve the performance of the 

model. Despite significant progress has been made in this domain, most 

of them ignored the potential value behind the MeSH headings that itself 

is carefully designed. In addition, terms such as disease, drug and microbe 

are abstract entities that are difficult to be represented as concrete vectors 

as input for machine learning models. In this paper, we focus on analyzing 

MeSH to mine the hidden information. It is believed that this expert 

knowledge can be utilized to precisely quantify these terms. 

MeSH is a kind of controlled and comprehensive vocabulary for subject 

indexing and searching books or journals in life sciences (Lipscomb, 

2000). It was produced by National Library of Medicine (NLM) since 

1960 and widely used around the world. More than half a century of heavy 

application has made MeSH increasingly perfect and made significant 

contributions to various fields. The MeSH consists of 3 parts including 

Main headings, Qualifiers and Supplementary Concepts. Main headings 

as the trunk of MeSH are used to describe the content or theme of the 

article. Qualifiers is the refinement of MeSH headings, i.e. how to be pro-

cessed when it is in a specific area. Supplementary Concept is a comple-

mentary addition that is mostly related to drugs and chemistry. Some new 

substances have not yet become the main subject and will be included in 

Supplementary Concept to promote the integrity of MeSH. Here, we focus 

on discussing Main headings which consists of MeSH headings (de-

scriptors), corresponding entry term and tree num.  

MeSH Headings can be divided into 16 categories such as category A 

for anatomy, category B for organisms, category C for diseases, category 

D for Chemicals and Drugs, and etc. In MeSH tree structure, MeSH head-

ings are organized as a “tree” with 16 top categories in which the higher 

hierarchy has the broader meaning and the lower hierarchy has the specific 

meaning. Compared with the tree structure, network (graph) is an more 

important data type which widely spreads in the real world and has been 

deeply researched (Cai, et al., 2018). Effective analysis of the Network not 

only can deeply understand the original graph, but also facilitate down-

stream tasks such as node classification and relationship prediction. Hence, 

we construct the MeSH heading relationship network from tree structure 

through hierarchical tree num rules. 

Graph embedding (network representation) is a kind of method to pro-

cess the network problem which aims at transforming the node into low-

dimensional vectors. In this process, it maximumly preserve both the local 

and global structure of the network. The mainstream Graph embedding 

algorithms can be roughly divided into 3 categories: factorization-based 

methods, random walk-based and deep learning-based methods (Goyal 

and Ferrara, 2018). The random walk-based graph embedding method is 

to use the random walk on the network to obtain a series of node paths to 

mimic the sentences or text. Then the Word2vec model can be applied to 

transform the node into vectors. The method of factorization takes the ad-

jacency matrix as the structure of the graph, and obtains the node repre-

sentation vectors by the method of matrix decomposition. Explosive re-

search on deep learning has rapidly expanded its field to the network. The 

deep learning-based method is to carry out the feature capture and dimen-

sional reduction tasks on node original representation to get the new low-

dimensional vectors. 

In this paper, the mainstream idea of using MeSH as a dictionary for 

indexing is abandoned, we transform the MeSH tree structure into a rela-

tionship network and implement 5 common graph embedding algorithms 

on it to represent the MeSH headings as vectors. In general, the whole 

process can be divided into 3 steps. Firstly, MeSH headings, tree num and 

entry terms were downloaded from National Library of Medicine (NLM) 

in September 22, 2019. Then we connected different Mesh headings 

through the rules of tree num to convert the tree structure to the relation-

ship network. The label (category) of each node (Mesh heading) in the 

relationship network can be defined by the mode of its corresponding tree 

num. Secondly, the network has been briefly analyzed, including the num-

ber of nodes and edges, the distribution of node degrees and labels. Thirdly, 

we applied 5 network representation (graph embedding) algorithms in-

cluding DeepWalk (Perozzi, et al., 2014), LINE (Tang, et al., 2015), 

SDNE (Wang, et al., 2016), LAP (Belkin and Niyogi, 2003) and HOPE 

(Ou, et al., 2016) to map the nodes into low-dimensional dense vectors 

which maximumly preserves the original network structure and the node 

relationship information. Then, we performed 2 types of tasks including 

node classification and relationship prediction. The node classification 

and relationship prediction tasks are used to assess the distinguishability 

of vectors between and within categories. In relationship prediction task, 

we performed drug-target interaction and miRNA-disease association pre-

diction tasks to display that the term representation vectors can be as input 

for machine learning model. All results achieved by our method implied 

that the representation vectors generated by MeSH relationship network is 

efficient and reliable. High quality MeSH heading representation will def-

initely improve the prediction performance of existing computational 

models. At the same time, we hope that this work can provide novel in-

sight to inspire relevant medical and life science researchers to mine the 

semantic information in MeSH through the network method. The 

flowchart is shown in the Fig. 1. 

 
Fig. 1. The flowchart of the proposed method includes three steps: con-

struction, analysis and applications. 

2 Materials & Methods 

2.1   MeSH headings, tree numbers and entry terms 

The Medical Subject Headings (MeSH) is a controlled and hierarchically-

organized vocabulary directed by the National Library of Medicine (NLM) 

which is utilized for indexing, searching, and etc. in medical and life sci-

ences. We downloaded MeSH headings, tree num and entry terms from 

NLM in September 22, 2019, and arranged them by routine standardized 

pretreatments including identifier unification and redundancy removal. 

After above operations, 29,349 Mesh Headings including their corre-

sponding tree num and entry terms are congregated together for network 

construction.  

Each MeSH heading can be descripted by one or more tree num to re-

flect its hierarchy in the tree structure and relationships with other MeSH 

headings. Tree num consists of letters and numbers, the first of which is 

uppercase letters represent category and the rest are made up of numbers. 

Each 3 digits represent a hierarchy in the tree structure. There are some 

MeSH headings such as lung cancer (C04.588.894.797.520, C08.381.540 

and C08.785.520) are described by a single type of tree num, while others 

such as Reflex (E01.370.376.550.650, E01.370.600.550.650, F02.830.702 
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and G11.561.731) can be represented by different kinds of tree num. The 

labels can be labelled by the mode of the node’s tree num, Reflex will be 

given a label E. 

Whenever the last hierarchy of tree num is removed, a new tree num 

and corresponding MeSH heading can be generated and contacted. The 

details can be seen the figure 2. Through the formation of this kind of 

relationship, a MeSH heading network consisting of 29,349 nodes and 

39,784 edges can be constructed. For the sake of simplicity, we treat the 

mode of the tree num category of MeSH heading as its label.  

 
Fig. 2. The construction of the MeSH relationship network. Reflex has 4 

tree num including E01.370.376.550.650, E01.370.600.550.650, 

F02.830.702 and G11.561.731. The Neurologic Examination 

(E01.370.376.550, E01.370.600.550) can be obtained when the last 3 dig-

its (.650 and .650) of Reflex (E01.370.376.550.650, E01.370.600.550.650) 

are removed. The category (label) of each MeSH heading is the mode of 

its corresponding tree num. 

Entry term is a kind of synonym or similar vocabulary for MeSH head-

ings. In order to unify identifiers and eliminate ambiguity, we create a 

MeSH Heading Term Correspondence Table to convert the entry terms to 

standard MeSH headings.  

2.2   Benchmark datasets 

2 benchmark datasets were collected as the benchmark datasets to be uti-

lized to verify the performance of the proposed method.  

2.2.1  known drug-target interactions 

28,211 known drug-target interactions were downloaded from DrugBank 

in May 8, 2019 (Wishart, et al., 2017). After standardizing the identifiers 

via the Correspondence Table and STRING database, we got of 7,739 dif-

ferent drugs and 4,975 different proteins. In order to avoid sparsity of as-

sociations, we selected drugs and proteins that are associated with more 

than 5 corresponding objects similar to the article described by Zhang et 

al. (Zhang, et al., 2018). Finally, we obtained 7,318 experimental valid 

drug-target interactions containing 641 different drugs and 317 different 

proteins. 

2.2.2  known miRNA-disease associations 

35,547 known human miRNA-disease associations which consist of 1206 

different miRNAs and 894 different diseases were downloaded from 

HMDD in May 8, 2019 (Huang, et al., 2018). Considering that the name 

of disease and miRNA in the original database are nonstandard such as 

“breast neoplasms” and “carcinoma, breast” are the same type of disease. 

After standardizing the identifiers via miRBase and the Correspondence 

Table described above, we obtained 11,109 experimental valid miRNA-

disease associations containing 843 different miRNAs and 531 different 

diseases. 

2.2.3  Positive and negative samples 

The experimental-validated interaction or association pairs are regarded 

as the positive samples and the randomly selected equal unlabeled pairs 

are treated as negative samples. This is a typical strategy that equalizes 

training samples and is widely used in bioinformatics (Ben-Hur and Noble, 

2005). Each positive and negative sample is given a label 1 and 0, respec-

tively. 

2.3   Baseline methods 

3 baseline methods including Morgan molecular fingerprint, k-mer and 

disease similarity are chosen to represent drug, protein and disease as vec-

tors, respectively. 

2.3.1  Molecular Fingerprint 

Molecular Fingerprint is one of the most popular methods to represent 

drugs by describing the structure of compounds. The basic idea is to seg-

ment the drug molecule and obtain structure fragments one after another. 

Then, these substructures are encoded into numbers according to certain 

rules, which can correspond to each of the binary strings. The whole bi-

nary string is used as the characterization of drug molecular structure. In 

this paper, fingerprint method is chosen as the baseline to represent the 

drug. The SMILES of each drug were downloaded from DrugBank and 

transformed into fingerprints by python package called RDKit (Landrum, 

2013).  

2.3.2  K-mer method 

For a long time, how to transform sequences efficiently and reliably into 

numerical representations is a formidable challenge. In this article, a 

widely used bassline method called k-mer is applied and the details of the 

algorithm are shown as follows.  

For protein and miRNA, the sequences of them were downloaded from 

STRING (Szklarczyk, et al., 2018) and miRBase (Kozomara, et al., 2018), 

respectively. Inspired by Shen et al. (Shen, et al., 2007), we represent pro-

teins and miRNAs as vectors by analyzing and normalizing their compo-

nents. For proteins, we classified 20 amino acids into 4 groups according 

to the polarity of the side chain, including (Ala, Val, Leu, Ile, Met, Phe, 

Trp, Pro), (Gly, Ser, Thr, Cys, Asn, Gln, Tyr), (Arg, Lys, His) and (Asp, 

Glu). For miRNA, there naturally exist 4 types of nucleotides including 

Adenine (A), Cytosine (C), Guanine (G) and Uracil (U) in the sequence. 

Then, each miRNA or protein can be abstracted into a vector by the 

method k-mer, in which all dimensions represent the full permutation of k 

nucleotide combinations and the value of each dimension is the normal-

ized frequency of the corresponding k-mer appearing in the sequence. 

Here, we set k to 3 and the dimension of the representation vector is 64 

(43). 

2.3.3  Disease similarity 

Disease is an abnormal life activity process that occurs when a living or-

ganism is destructively affected by a certain cause. The semantic similar-

ity of disease is a common method of abstracting disease into vectors (Guo, 

et al., 2019). For each disease, a Directed Acyclic Graph (DAG) can be 
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constructed by the MeSH heading relationship in Section 2.1. Specifically, 

disease D’s ancestor nodes can be obtained by continuously removing the 

last hierarchy of its tree num. D and its ancestor nodes together constitute 

a DAG. Then the similarity between 2 diseases can be calculated accord-

ing to the generalized Jaccard formula, i.e., the larger the intersection, the 

more similar it is. According to the previous literature (Wang, et al., 2010), 

the specific calculation process is as follows:  

For disease D, DAG(D) = (D, N(D), E(D)), N(D) is the point set that 

includes all DAG(D)’s diseases. E(D) is the edge set that includes all 

DAG(D)’s relationships. The semantic value contribution of disease d in 

the set N(D) to disease D can be defined as: 

{
𝐷𝐷(𝑑) = 1                                                                         𝑖𝑓 𝑑 = 𝐷

𝐷𝐷(𝑑) = max{∆ ∗ 𝐷𝐷(𝑑′)|𝑑′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑑}     𝑖𝑓 𝑑 ≠ 𝐷
   (1) 

where ∆ denotes a decline factor. In the DAG(D), D can be seen as the 

disease that contributes the most to its own semantic value and equals to 

1, and the remaining diseases will contribute less and less to disease D as 

the distance increases. Then, the sum of the contributions of diseases 

which are in the set N(D) to D can be calculated as follows: 

𝐷𝑉(𝐷) = 𝛴𝑑∈𝑁(𝐷)𝐷𝐷(𝑑)                                  (2) 
Finally, the similarity between diseases m and n can be calculated by 

the following formula： 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑚, 𝑛) =
∑ (𝐷𝑚(𝑑)+𝐷𝑛(𝑑))𝑑∈𝑁(𝑚)∩𝑁(𝑛)

𝐷𝑉(𝑚)+𝐷𝑉(𝑛)
                 (3)  

The disease similarity matrix of k rows and k columns containing k dif-

ferent diseases can be constructed, and the i-th row can be regarded as a 

representation vector of the i-th disease. 

2.3.4  Autoencoder 

In order to unify the dimensions of the vector and obtain a higher quality 

representation, autoencoder is applied to map the drug fingerprint and dis-

ease similarity from original space to the low-dimensional space. Hidden 

layer representation h and output layer representation y can be calculated 

by the following formula: 

ℎ = 𝑓(𝑊𝑥 + 𝑏)                                      (4) 

𝑦 = 𝑔(𝑊′ℎ + 𝑏′)                                     (5) 

Where x is input, W and b are weights and thresholds, respectively, f and 

g are the activation functions. Loss function can be obtained by minimiz-

ing the error between input and output: 

𝐿 = 𝛴‖𝑦 − 𝑥‖2                                     (6) 

Finally, all drug fingerprint and disease similarity can be normalized to 

64-dimensional vectors. 

2.4   Graph embedding methods 

Mesh heading relationship network is a complex heterogeneous network. 

Analysis of network can better help us understand this kind of unstruc-

tured data and benefit the exploration of the underlying knowledge. Graph 

embedding is an effective method to provide new insights on how to make 

good use the hidden information behind the graph. In this chapter we first 

give a graph embedding formal definition, and then briefly introduce sev-

eral algorithms used in this paper. 

A graph 𝐺(𝑉, 𝐸) is a collection of vertices (node) set 𝑉 = {𝑣1, … , 𝑣𝑛} 

and edge set 𝐸 = {𝑒𝑖,𝑗}
𝑖,𝑗=1

𝑛
. The aim of graph embedding is to find a map-

ping function 𝑓: 𝑣𝑖 → 𝑥𝑖 ∈ 𝑅𝑑 , where 𝑑 ≪ |𝑉|, and 𝑋𝑖 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑑} 

is the embedded vector that captures the structural of vertex 𝑣𝑖.  

In this paper, we apply 5 kinds of graph embedded methods on the net-

work to perform downstream tasks including node classification and rela-

tionship prediction. 

DeepWalk (DW) obtains a series of node sequences through random 

walks of vertexes in the network and inspired by the Skip-Gram model to 

analogize these paths to sentences for representation learning. The goal is 

to learn a latent representation and the mapping function is: 

𝛷: 𝑣 ∈ 𝑉 ↦ 𝑅|𝑉|×𝑑                                   (7) 

The problem then, is to estimate the likelihood: 

𝑃𝑟(𝑣𝑖|(𝛷(𝑣1), 𝛷(𝑣2), … , 𝛷(𝑣𝑖−1)))                      (8) 

The recent relaxation in language modeling turns the prediction prob-

lem and this yields the optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝛷

= −𝑙𝑜𝑔𝑃𝑟({𝑣𝑖−𝑤 , … , 𝑣𝑖+𝑤}\𝑣𝑖|𝛷(𝑣𝑖))            (9) 

Large-scale Information Network Embedding (LINE) is an efficient 

network representation learning algorithm that is quite different from ran-

dom walk-based method. Low-dimensional dense vectors can be obtained 

by LINE by preserving first-order and second-order proximity. For first-

order, the objective function can be defined as follows:  

𝑂1 = 𝑑(�̂�1(⋅,⋅), 𝑝1(⋅,⋅))                                (10) 

For the edge 𝑒𝑖,𝑗  which from vertex 𝑣𝑖  to vertex 𝑣𝑗 , �̂�1(⋅,⋅) and 𝑝1(⋅,⋅) 

are the empirical and joint distribution respectively between the latent em-

beddings 𝑟𝑣𝑖
 and 𝑟𝑣𝑗

. 𝑑(⋅,⋅) is the distance between above 2 distributions.  

For second-order, the objective function can be defined as follows: 

𝑂2 = ∑ 𝜆𝑖𝑣𝑖∈𝑉 𝑑(�̂�2(⋅ |𝑣𝑖), 𝑝1(⋅ |𝑣𝑖))                  (11) 

where �̂�2(⋅ |𝑣𝑖) and 𝑝1(⋅ |𝑣𝑖) are empirical and context conditional distri-

bution for each 𝑣𝑖 ∈ 𝑉 under the model by vertex embeddings. For the 

sake of simplicity, 𝜆𝑖 is set to the degree of the vertex i. 

Structural Deep Network Embedding (SDNE) is a semi-supervised 

deep autoencoder consisting of supervised and unsupervised component 

that can capture the nonlinear structure from the network. For the super-

vised part, the objective function can be defined as follows: 

𝐿1 = ∑ 𝑆𝑖𝑗 ‖𝑟𝑣𝑖

(𝐾)
− 𝑟𝑣𝑗

(𝐾)
‖

2

2|𝑉|

𝑖,𝑗=1
                       (12) 

Where 𝑟𝑣𝑖

(𝐾)
 is the K-th layer representation of 𝑣𝑖.  

For the unsupervised part, the objective function can be defined as fol-

lows: 

𝐿2 = ∑ 𝑆𝑖𝑗‖𝑟𝑣𝑖

(0)
− 𝑟𝑣𝑖

(0)
⊙ 𝑏𝑖‖

2

2|𝑉|

𝑖=1
                        (13) 

where 𝑟𝑣𝑖

(0)
 is the representation of 𝑣𝑖 and 𝑏𝑖 is a weight vector.  

Finally, the joint objective function can be defined as follows: 

𝐿 = 𝐿1 + 𝐿2 + 𝐿𝑟𝑒𝑔                               (14) 

where 𝐿𝑟𝑒𝑔 is a regularization term to prevent overfitting. 

High-order Proximity Preserved Embedding (HOPE) captures high or-

der proximity of asymmetric transitivity in direct graph and symmetric 

transitivity in undirect graph. To achieve this goal, HOPE can obtain 2 

vertex representation vectors 𝑈𝑠, 𝑈𝑡 ∈ 𝑅|𝑉|×𝑑, where 𝑈𝑠 and 𝑈𝑡 are called 

source and target vectors. The objective function can be defined as follows: 

min
𝑈𝑠,𝑈𝑡

‖𝑆 − 𝑈𝑠 ∙ 𝑈𝑡‖𝐹
2                                 (15) 

The structure of the reserved graph can be considered as the similarity 

of the reserved nodes. Laplacian Eigenmaps is an embedding algorithm 

which obtain the representation vector when the similarity parameter 𝑊𝑖𝑗 

is high. The objective function can be defined as follows: 

𝜙(𝑌) =
1

2
∑ (𝑌𝑖 − 𝑌𝑗)𝑊𝑖𝑗𝑖,𝑗

= 𝑌𝑇𝐿𝑌                     (16) 

3 Results 

3.1   Evaluation criteria 

The MeSH relationship network consisting of nodes and the edges con-

tains a wealth of medical and biological knowledge. After mining the con-

tent by embedding algorithms, low-dimensional dense representation vec-

tors can be used for downstream tasks such as visualization, node classi-

fication and relationship prediction. How to evaluate the merits and 
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demerits of the proposed method in a fair and comprehensive way be-

comes a formidable challenge.  

Firstly, we briefly analyzed the MeSH relationship network. Secondly, 

we not only perform the node classification in the whole network, but also 

extract drug and disease representation vectors to carry out the relationship 

prediction tasks. Both of them aim at evaluating the distinguishability of 

vectors. High-quality representation vectors make it easier to construct the 

classifier to make prediction results more accurate. The details of the re-

sults can be seen in the following section.  

Meanwhile, we applied a wide range of evaluation criteria to effectively 

assess the performance of our method (Wang, et al., 2019). Cross valida-

tion is a widely used method to measure model ability (Guo, et al., 2019; 

You, et al., 2017). For 5-fold cross-validation, the whole dataset is divided 

into 5 mutually exclusive subsets of roughly size, each subset is treated as 

the test set for evaluation in turn, the others are treated as the training sets 

for the model construction. At the same time, we draw ROC (receiver op-

erating characteristic curve) and PR (Precision - Recall) to calculate AUC 

(area under ROC) and AUPR (area under PR) respectively in order to vis-

ualize experimental results and facilitate comparison with other methods. 

In addition, a wide range of evaluation criteria including accuracy (Acc.), 

sensitivity (Sen.), specificity (Spec.), precision (Prec.) and MCC have 

been adopted to evaluate our approach more generally. 

3.2   Network analysis 

The MeSH heading relationship network is a heterogeneous network con-

sisting of 29,349 nodes and 39,784 edges, where the nodes are included 

by 16 different kinds of descriptors. Node degree refers to the number of 

edges associated with the node, also known as correlation degree. The oc-

currence number of the node and degree can be statistics and visualized as 

the fig. 3. In short, it fits the long tail distribution.  

 
Fig. 3. Distribution of node type and node degree in the relation-

ship network. 

3.2   Application 1: MeSH headings classification 

As mentioned above, each node (MeSH heading) can be represented as a 

low-dimensional dense vector by graph embedding algorithm and can be 

labelled by the mode of its tree num. We want to verify the pros and cons 

of different graph embedding algorithms through the node classification 

experiment. 

Specifically, 5 graph embedding algorithms including DeepWalk, 

LINE, SDAE, LAP and HOPE are applied on the relationship network to 

represent the nodes as 64-dimensonal vectors. Then, 80% of the nodes and 

the corresponding labels are utilized to construct the multi-classifier, and 

the remaining 20% of the nodes and the corresponding labels are used for 

testing. Although there exist some noises and errors in labels, the accuracy 

of the classifier can reflect the quality of the representation vectors to some 

extent. The results including ACC and LOSS are shown in the following 

figure 4. 

The node classification task reflects the distinguishability between dif-

ferent type of term representation, such as anatomy and organisms. 

Compared with other method, DeepWalk obviously achieved the most 

competitive performance which demonstrate that DeepWalk can indeed 

capture global structure and differences between various labels in the 

whole network.  

The keras library was applied to construct this multi-classifier. An arti-

ficial neural network with 2 layers was built where each layer consists 512 

neurons. The parameters including loss, optimizer, batch size and epochs 

are set to categorical crossentropy, RMSprop, 1024 and 100, respectively. 

Table 1. The test performance of different graph embedding methods on 

the node classification task. 

Test Performance SDNE HOPE LINE LAP DW 

ACC 0.5056 0.7003 0.9068 0.9284 0.9824 

Loss 1.7108 0.9164 0.4130 0.2105 0.0722 

 
Fig. 4. The training and valid performance of node classification 

task achieved by different graph embedding methods. 

3.3   Application 2: representation for relationship prediction 

3.3.1  Drug representation for drug-target interaction prediction 

In this section, we choose drug-target interaction prediction as a specific 

research subject to evaluate the quality of the drug representation vector. 

Specifically, each drug and protein can be represented as a 64-dimenonal 

vector by graph embedding and k-mer method. We also treated drug Mor-

gan molecular fingerprint (FP) method as a baseline for comparison. Then, 

each drug-target interaction pair is a 128-dimensional vector by concate-

nating drug and target. 5-fold cross validation was applied to evaluate the 

performance of each method. Random Forest is chosen as the classifier to 

carry out the interaction prediction task. The details of the results can be 

seen in the following table 2 and fig. 5. 

Table 2. The performance of different graph embedding methods 

under 5-fold cross validation on the drug-target interaction predic-

tion. 

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) 

FP 77.490.32 72.450.85 82.530.59 80.580.43 55.270.60 

HOPE 76.330.84 72.631.29 80.041.02 78.440.94 52.821.69 

LAP 77.781.00 73.071.18 82.481.10 80.661.13 55.802.00 

LINE  76.080.46 69.881.05 82.290.80 79.790.63 52.590.90 

SDNE 75.630.41 70.370.57 80.880.84 78.640.70 51.540.86 

DW 78.610.55 73.240.87 83.971.02 82.060.89 57.551.13 
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Fig. 5. ROCs, AUCs, PRs and AUPRs of drug-target interaction pre-

diction achieved by different graph embedding and drug Morgan 

molecular fingerprint methods.  

Compared with the node classification, the relationship prediction task 
reflects the distinguishability between the same type of term representa-

tion. In general, DeepWalk and LAP achieved more competitive predic-

tion effects. Considering the traditional method of analyzing the chemical 
structure of drugs, the satisfactory results proves that the proposed repre-

sentation is novel and can adequate characterize the drug by semantic. We 

believe it will open up a new paradigm for semantic representation of 
drugs. 

3.3.2  Disease representation for miRNA-disease association predic-

tion 

In this section, we choose miRNA-disease association prediction as a spe-

cific research subject to evaluate the quality of the disease representation 

vector. Specifically, each miRNA and disease can be represented as a 64-

dimenonal vector by k-mer and graph embedding method. We also per-

formed disease similarity (DS) method as a baseline for comparison. Then, 

each miRNA-disease association pair is a 128-dimensional vector by con-

catenating miRNA and disease. 5-fold cross validation was chosen to eval-

uate the performance. Random Forest is applied as the classifier to carry 

out the association prediction task. The detail results of all methods can be 

seen in the following table 3 and fig. 6.  

Table 3. The performance of different graph embedding methods 

under 5-fold cross validation on the miRNA-disease association 

prediction. 

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) 

DS 82.420.28 79.010.75 85.840.92 84.810.74 65.010.59 

HOPE 78.120.82 76.130.96 80.111.34 79.291.13 56.281.66 

LAP 81.530.46 78.070.49 84.990.61 83.880.59 63.220.93 

LINE  81.890.46 78.690.99 85.070.96 84.070.78 63.910.93 

SDNE 82.680.62 79.171.61 86.181.42 85.161.16 65.531.22 

DW 83.020.53 79.950.24 86.090.97 85.190.88 66.171.09 

 
Fig. 6. ROCs, AUCs, PRs and AUPRs of miRNA-disease associa-

tions prediction achieved by different graph embedding and DAG 

methods. 

Briefly, the LINE method achieved the most remarkable with average 

Acc., Sen., Spec., Prec. and MCC of 83.02, 79.95, 86.09, 85.19, 66.17 and 

90.28. The corresponding standard deviations of above evaluation criteria 

are 0.53, 0.24, 0.97, 0.88 and 1.09. The brilliant performance of the pro-

posed method indicate that the representation vector generated by MeSH 

relationship network can be used as an independent carrier to characterize 

disease. Meanwhile, the lower standard deviation implied that the novel 

model was robust and stable.  

Despite the performance improvement relative to the disease similarity 

is weak, the disease graph embedding representation has 3 obvious ad-

vantages. Firstly, compared with the similarity-based method, the graph-

based method has faster calculation speed and less resource occupation. 

Secondly, the similarity-based method needs to be manually adjusted the 

decay factor while graph-based method needs less parameters to be set. 

Thirdly, graph-based method needs to be recalculated when facing a new 

sample, but the graph-based method can be generated once for permanent 

use.  

3.3.3  As addition information to enhance the ability of disease rep-

resentation 

In this section, we choose miRNA-disease association prediction as a spe-

cific research subject to prove that our representation method of disease 

can be utilized as the additional information. Specifically, inspired by Guo 

et al. (Guo, et al., 2019), each miRNA and disease can be represented by 

2 kinds information including the behavior and the attribute feature. The 

behavior feature is the main information that is proposed by the idea of 

collaborative filtering or similarity theory. It is known that miRNAs with 

similar functions are often associated with similar diseases and vice versa. 

Then each miRNA and disease can be represented as a 64-dimensonal vec-

tor by known miRNA-disease associations through LINE method. The at-

tribute feature is the additional information including the RNA sequence, 

disease semantics, drug chemical structure and etc. The attribute feature 

of each node can be represented as a 64-dimensonal vector by miRNA 

sequence learned by k-mer and disease semantics learned by LINE. Then 

each miRNA and disease can be viewed as a 128-dimensonal vector by 

connecting behavior and attribute feature. Finally, each miRNA-disease 

association pair is a 256-dimensional vector by concatenating miRNA and 

disease. 5-fold cross validation was applied to evaluate the proposed 

method. Random Forest classifier is chosen to carry out the association 

prediction task. The details of the results can be seen in the following fig-

ure and table. 

Table 4. The performance of different feature under 5-fold cross 

validation on the miRNA-disease association prediction. 

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) 

Attribute 83.190.48 79.751.05 86.630.36 85.650.30 66.550.91 

Behavior 83.560.82 77.231.30 89.890.92 88.430.97 67.671.62 

Both 83.980.59 78.571.63 89.390.73 88.110.59 68.381.05 

 

 
Fig. 7. ROCs, AUCs, PRs and AUPRs achieved by different feature. 

The results demonstrated that the attribute feature (disease semantics 

graph embedding representation) can play an auxiliary role. The represen-

tation vector combined the two feature is easier to distinguish, which can 

improve the prediction performance of the computational model.  

Conclusion 

Obtaining distinguishable vectors as the input of the computational pre-

diction model has always been a hot topic of concern. Existing methods 

which manually define and measure similarity are limited considering the 

time and space complexity. In this paper, we constructed a MeSH heading 

relationship network and implemented 5 kinds of graph embedding algo-

rithms on it. Then the qualities of the vectors were evaluated based on the 

relationship network itself and the 2 benchmark datasets including drug-
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target interaction and miRNA-disease association. Obviously, the results 

of relationship prediction prove that the semantic representation of terms 

such as disease can not only be used as independent carrier for input, but 

also as additional information to enhance the distinguishability of vectors. 

Despite the limited performance of the upgrade, compared with the previ-

ous feature generation approach such as similarity-based or chemical 

structure method, the proposed method is a fully automatic and pure se-

mantic way, which will bring new enlightenment to relevant researchers. 

Predictably, MeSHHeading2vec can be viewed as a foundation to estab-

lish interesting connections between network and semantic in both com-

puter and life sciences. Briefly, our method will establish valuable insights 

in MeSH heading representation and disease-, drug- and etc.-related com-

putational prediction model, bring beneficial inspiration to relevant schol-

ars and expand the computational omics research paradigm. 
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