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Abstract: Wireless sensor networks (WSN) have deeply influenced the working and living styles of
human beings. Information security and privacy for WSN is particularly crucial. Cryptographic
algorithms are extensively exploited in WSN applications to ensure the security. They are usually
implemented in specific chips to achieve high data throughout with less computational resources.
Cryptographic hardware should be rigidly tested to guarantee the correctness of encryption operation.
Scan design improves significantly the test quality of chips and thus is widely used in semiconductor
industry. Nevertheless, scan design provides a backdoor for attackers to deduce the cipher key of
a cryptographic core. To protect the security of the cryptographic system we first present a secure
scan architecture, in which an automatic test control circuitry is inserted to isolate the cipher key
in test mode and clear the sensitive information at mode switching. Then, the weaknesses of this
architecture are analyzed and an enhanced scheme using concept of test authorization is proposed. If
the correct authorization key is applied within the specific time, the normal test can be performed.
Otherwise, only secure scan test can be performed. The enhanced scan scheme ensures the security of
cryptographic chips while remaining the advantages of scan design.

Keywords: cryptography; wireless sensor networks; hardware security; scan-based attack

1. Introduction

In recent years, wireless sensor networks (WSNs) have been widely used in smart communities
because of their potential advantages. They can supply the distributed communication platform for
various applications, such as intelligent transportation, smart home, industrial monitoring, logistics,
health care and so on [1,2]. Particularly, through the integration with Internet of Things (IoT), WSNs are
playing a more important role and will benefit mankind more significantly [3–9]. However, the rapid
deployment of WSNs through various networks results in different security and privacy concerns and
challenges [10–12]. Hence, security and privacy protection for WSNs becomes particularly important.
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In such a situation, cryptography is widely exploited to ensure the integrity and security of data
and information in WSN. Cryptographic algorithms are often applied in specific circuits to fulfill the
demand of high throughput in resource-constrained environments [13]. Unfortunately, integrated
circuits also face various security threats [14–16]. The scan-based side-channel attack is the most
common type of security threats. To guarantee the correctness of the data encrypted/decrypted,
the faulty crypto chips must not be used in a cryptography system. Hence, rigorous testing for crypto
chips is essential. Whereas, the increase in design complexity brings great challenge to integrated
circuit (IC) testing. In this background, design for testing (DFT) methodology has been proposed and
scan design is the most prevalent DFT technique, which replaces the original D flip-flops in the circuit
with scannable cells and connects them into one or multiple scan chains. Scanning-in/-out operation
of the scan chains endows the chip with full controllability and observability and thus scan design
significantly decreases the complexity of automatic test pattern generation (ATPG) and cuts down
the test cost. However, scan design also provides a side channel for attackers to steal the sensitive
information of cryptographic chips. Nowadays, scan-based attacks thread the security of cryptographic
chips seriously. In the past decades, scan-based attacks have been deeply studied by the researchers.
The scan be divided into two general categories as follows:

(1) Mode-switching attacks

Advanced Encryption Standard (AES) has become the most common cryptographic algorithm
due to its high security. Hitherto, no brute-force attack targeting it has been reported. Nevertheless,
the scan-based attacks conducted on the AES chip have been proposed to obtain the sensitive
information such as the cipher key [17]. The scan design gives attackers a side-channel to crack a
crypto chip. In a crypto chip, the encryption result generated after each round is stored in a state
register, which is included in scan chains. For AES with 128-bit key, the encryption result generated
after the tenth round has strong enough resistance to any mathematical attacks, but the intermediate
result obtained after the first round can be analyzed to deduce the secret key [18]. The attackers first
apply the crafted plaintext and execute AES for only one round of encryption. Then, they switch the
AES chip to test mode, and observe the intermediate round result by scanning out the values of scan
chains. This process is repeated by using pairs of plaintexts whose Hamming distance is 1. Once the
Hamming distance of the intermediate results of two paired plaintexts satisfies specified conditions,
one key byte can be determined by the adversaries. On average, 256 pairs of plaintexts are required to
crack a cipher key with the length of 128 bits.

Aside from the scan attack on AES chips, a scan-based differential attack on Elliptic Curve
Cryptography (ECC) chip is proposed in [19]. The key operation of ECC algorithm is the point
multiplication, which is executed iteratively using a different part of the cipher key at a time. With the
aid of scan chains, the adversary can obtain the results of intermediate multiplications and retrieve
the cipher key. Besides, the researchers have reported that scan-based noninvasive attacks can also
be performed on other cryptographic chips, e.g., Rivest-Shamir-Adleman (RSA) chips [20] and Data
Encryption Standard (DES) chips [21].

In addition, the authors of [22,23] enhanced the scan attacks and applied them to advanced DFT
architectures. In industry some advanced solutions, e.g., test stimulus decompressor [24] and test
response compactor [25], are usually deployed to reduce test data volumes. In the past, they were
considered as a natural protection mechanism of crypto chips, but the researches in these papers prove
that the differential scan attack can still be conducted on crypto-processors even with the insertion of
advanced DFT architectures.

(2) Test-mode-only attacks

The scan attacks above require the switching between the functional mode and test mode. Hence,
they can be easily overcome by countermeasures based on resetting the circuit at the time of mode
switching. Ali S.S. et al. [26] propose a novel scan-based attack on AES which can be carried out only
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in test mode. In this scan-based attack, the AES plaintexts are inputted through the boundary scan
chain. The encryption result of the first round is captured into scan chains at the capture phase of test
mode and then observed at scan output by the shifting operation of scan chains. The attack model is
developed to thwart the secure techniques based on mode switching reset. The authors also extend
their attack model to decompressor-based scan architectures [27].

In this paper, we aim to propose a secure and low-overhead scan methodology for resisting
scan-based attacks. The main motivation of our research work can be described as follows:

• The proposed secure scan methodology will achieve complete protection against all categories of
scan-based attacks. This can fully ensure the security for cryptographic chips in WSN applications.

• The advantages of scan design can be retained while improving the security of chips. In the
proposed technique, only secure scan tests can be performed by unauthorized users, i.e., the cipher
key is protected in test mode and the secret information is cleared when the circuit is switched
from the normal mode to test mode. Just like standard scan design, the proposed scheme will
provide full testability for the circuit under test (CUT) and make online testing executable for the
authorized users.

• Under the prerequisite of security and testability guaranteed, a very lightweight hardware
mechanism is proposed to extend the application range of the proposed scheme, especially for
resource-constrained environments such as WSN. Based on this consideration, the proposed
scheme designs a smart automatic test control unit and a small test authorization circuitry.

The rest of this manuscript is organized as follows: Section 1 introduces some preliminaries
including the standard scan design and the existing countermeasures thwarting scan attacks. In Section 2,
the proposed scheme for securing crypto chips against scan attacks is discussed in details. An improved
secure strategy is presented in Section 3. Section 4 presents performance analysis on the proposed
enhanced scheme. Finally, Section 5 concludes this manuscript.

2. Scan Design and Countermeasures Thwarting Scan Attacks

2.1. Scan Design

Initially, scan design was presented for improving the testability of sequential circuits. It modifies
the D flip-flop into a scan cell by inserting a multiplexer to its input port. As shown in Figure 1a,
with the control of a test control (Tc) signal, the 2-to-1 multiplexer selects either the data input (Di) or
the scan input (Si). Di is the original input of D flip-flop.

Figure 1. Scan design: (a) A standard scan cell (SC); (b) A full-scan circuit with single scan chain.

As shown in Figure 1b, a scan chain is constituted by successively connecting the output of a scan
cell to the Si of another scan cell. The Si of the head-most scan cell is tied to a scan input port (SI port)
while the Q output of the last scan cell is tied to a scan output port (SO port). Arbitrary values can be
loaded serially into the scan chain through SI port and the state of the scan chain can be shifted out
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through SO port. Hence, the initial state of the circuit is able to be set as required and the response
is also able to be observed by using of scan chains, and the high testability is achieved. In order to
decrease test time, multiple scan chains are often utilized to achieve the parallel loading of test data.

The system test control signal (labeled as TC) drives the Tc input of all the scan cells. When TC
is set to ‘0’, the circuit is running in the normal mode. If TC = 1, then the circuit enters into the test
mode. During this period, the test pattern is scanned bit-by-bit into scan chains while the values of
scan chains is scanned out. As long as the test pattern is completely delivered into the scan chains, TC
is set to ‘0’ for 1 (used in stuck-at fault testing) or 2 (used in launch-on-capture delay testing) clock
cycles. The current response of the circuit is captured into the scan cells via the data input Di at a
valid clock edge. The clock cycle(s) is (are) also referred as “capture mode”. As TC goes to ‘1’, the test
response stored in the scan chains is scanned out via SO port while the next test pattern is loaded into
the scan chains via SI port. The procedure is repeated until the CUT is fully tested.

2.2. Countermeasures Thwarting Scan Attacks

Because standard scan design brings serious threat to the security of cryptographic chips,
researchers have presented various secure DFT solutions in recent years. Initially, resetting the chip
when it is switched from normal mode to test mode was exploited to safeguard against scan attacks [28].
However, the attacker is able to conduct a test-mode-only attack on the protected chip as described
in [26]. The countermeasure in [17] divides the working mode of the circuit into the secure and insecure
mode. If the circuit enters the secure mode after a system reset, the encryption operation can be
normally performed. If the circuit first enters the insecure mode after a system reset, the circuit testing
can be launched but the cipher key is kept apart from the cryptographic module to avert being cracked.
The design can jump to the secure mode from the insecure mode, however, the opposite jump is
prohibited. In [29], the authors disable completely the switch between the test mode and normal mode
and protect the cipher key in test mode. This can be reshuffled only after the system reset. Another
countermeasure based on protection of cipher key is proposed in [30] for boundary scan design. These
countermeasures in [28–30] are resistant to test-mode-only attack, but they also cause that the faults on
the round key generation unit cannot be detected and thus reduce the reliability of cryptographic chips
that pass the testing.

Secure techniques based on restricted access to scan chains are proposed in [31–33]. The scheme
proposed in [31] inhibits the normal scan operation if the user is unauthorized. The technique proposed
in [32] manages access to scan architecture by specifying and verifying multilevel access permission
and restriction to instruments associated with the reconfigurable scan networks. Novak F. et al. [33]
modify the TAP (Test access port) controller to restrict access to scan chains. The modified TAP
controller has two states: locked and unlocked state. Only the user with correct password can unlock
the TAP controller and be granted the full access to scan chains.

Partial Scan Design is a quite attractive approach for protecting crypto chips since the state
registers involving the sensitive information are excluded from the scan chains and the intermediate
encryption results are no longer accessible from scan output [34,35]. However, this DFT methodology
compromises the controllability and observability of circuits and may result in some loss in fault
coverage. For this reason, the scheme proposed by Chen et al. provides the balance of security and
testability using configurable scan architecture [36].

The countermeasures based on data obfuscation modify the scan-in and/or scan-out data with an
unpredictable way [37–41]. Obfuscating the scan data can prevent or mislead the attackers to obtain
the correct cipher key. Atobe et al. [37] dynamically configure the connection of the sub-chains to
disturb the values observed at the scan output. Nevertheless, the authors of [42] have proven that
the sophisticated attackers are still able to perform the scan attack without knowing the order of
scan cells. In [38], an extra shift register, the states of which are exploited to control the work mode
of some selected scan cells, is inserted into CUT. If the user don’t load the correct key into the shift
register, the scan cells controlled by the incorrect bit of the key cannot enter the test mode during
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testing. As the shifting operation of test data is disturbed, the test patterns fed to scan chains and
test responses observed at SO port are obfuscated. Furthermore, the wrong key can make the added
shift register cyclically shifted during testing, so the scan cells remaining in the normal mode will
dynamically change. The dynamic obfuscation of scan data is achieved by this way. In order to further
improve security, Cui A. et al. expand this technique by using the Physical Unclonable Function
(PUF) [43] as the key in [40]. Wang et al. [41] insert some XOR gates between scan cells, which are
controlled by a Linear Feedback Shift Register (LFSR). Only the designers who know the state sequence
of LFSR and the position of XOR gates can apply the desired test patterns and restore the real test
responses from the observed values. However, these countermeasures usually incur comparatively
large hardware overhead.

Secure designs based on data encryption were developed in [44–47]. The technique presented
in [44] encrypts the test patterns, which are delivered to the IEEE 1500-compliant intellectual property
cores, with the Trivium stream cipher. Using a given seed, the stream cipher can generate a
pseudo-random keystream that will be XORed with the data to encrypt. The solution in [45]
uses the block cipher to encrypt the test data in scan chains. The block cipher encrypts a block of n-bit
data at a time with a fixed key stored in the device. If the user does not have the knowledge of block
ciphers, he can neither load desired test stimulus into the scan chains nor obtain original test responses
from SO port. The block cipher is implemented in different manners in [46] and [47]. Lightweight
block ciphers are preferred to achieve a perfect trade-off between security and area penalty. The main
drawback of these schemes is that they incur relatively large test time overhead to encrypt/decrypt the
test data.

The techniques proposed in [48,49] carry out the online detect of scan attacks by monitoring the
user behavior in real time. Once the user behavior is regarded as illegal, the circuit automatically
enters a protection mode. The detection method in [48] uses sequence filters arranged on the TAP
controller to manage the access to the test infrastructure. It prevents the illegal user from accessing
the protected instruments. The authors of [49] proposed a detection scheme using representative
sequences of instructions, which represent the illegal operations and are determined at design stage. If
the user behavior involves the representative sequences, it is considered as an attack. These techniques
are very secure and intelligent. However, they incur very large area penalty, which would limit
their application.

To overcome the limitations of the countermeasures described above, further research is still
needed and more practical secure solutions should be developed.

3. Secure Scan Scheme Based on Automatic Test Control Unit

In this section, we propose a secure scan design scheme based on automatic test control unit
(abbreviated to SSATCU design scheme below). The hardware framework is described in Figure 2.
The automatic test control unit has one input, i.e., the system test control signal TC, and two output
signals Sig_Isol and Sig_Clear. By setting Sig_Isol to the valid value (i.e., ‘1’), the automatic test control
unit can isolate the cipher key from the encryption module during scan testing. Besides, when the
circuit turns to the test mode, the automatic test control unit also clears the sensitive state stored in
scan chains by asserting Sig_Clear high.

At power-on, the system including the automatic test control unit is reset. Afterward, if TC = 0,
the chip runs in the normal mode. In this mode, the automatic test control unit makes both Sig_Isol and
Sig_Clear invalid. The cipher key can be loaded into the crypto module and the encryption operation
can be executed normally. When TC goes to ‘1’, the chip is switched to test mode from normal mode.
At this time, the automatic test control unit outputs ‘1’ for the signal Sig_Clear for one clock cycle.
The intermediate encryption results stored in the round register that is part of the scan chain, is cleared
by using the aided resetting logic. Since the chip enters into the test mode, Sig_Isol remains ‘1’ and the
encryption key is isolated by using the additional isolating logic. The additional automatic test control
unit guarantees the security of a scan test without exposing the information involving the secret key.
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The detailed description of the automatic test control unit, key isolating logic, and aided resetting logic
is given as follows:

Figure 2. Hardware framework of proposed secure scan test scheme.

(1) Automatic test control unit

The working (clock) cycles of the CUT can be divided into four types: the functional cycles,
the shift cycles, the first capture cycle and the second capture cycle. It should be noted that, for the
testing that only needs one capture cycle, there are only three types of working cycles (i.e., the second
capture cycle is excluded). In order to make the scheme applicable to all kinds of testing including
launch-on-capture delay testing, we consider the second capture cycle. The behavior of the automatic
test control unit is different in each type of working cycle. Therefore, the automatic test control unit also
has four working states, which correspond to the four types of working cycles respectively. The state
diagram of the automatic test control unit is shown in Figure 3. The four working states are named as
“functional”, “shift”, “first-capture” and “second-capture”. The arrow indicates the direction of the
state transition under the specified input condition (i.e., TC = 0 or 1) which is given before the symbol
‘/’. The values of the output signals Sig_Isol and Sig_Clear are given after the symbol ‘/’, which are
determined by the current state and TC.

Figure 3. State diagram of automatic test control unit.

When the automatic test control unit is in “functional” state and TC is ‘0’, Sig_Isol = 0, Sig_Clear = 0
and the next state of the automatic test control unit is still “functional” state. When the automatic test
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control unit is in “functional” state and TC is ‘1’, Sig_Isol = 1 and Sig_Clear = 1. The content of scan
chains is flushed away immediately and the cipher key will be isolated in the following test mode.
Under this situation, the next state of the automatic test control unit is “shift” state. If TC remains ‘1’ in
“shift” state, Sig_Isol remains ‘1’, Sig_Clear returns to ‘0’, and the next state is still “shift” state. If TC
goes to ‘0’ later, the capture operation is first considered. Hence, Sig_Isol and Sig_Clear remains ‘1’ and
‘0’, respectively. The next state is “first-capture” state. If TC remains ‘0’ in the following clock cycle,
the automatic test control unit enters into “second-capture” state. If TC returns to ‘1’ in “first-capture”
state or “second-capture” state, the automatic test control unit returns to “shift” state and the cipher
key keep isolated. When TC is ‘0’ for more than three cycles, it is considered that the CUT enters into
the normal mode. At this time, Sig_Isol becomes ‘0’ and thus the mask of the cipher key is removed.
The automatic test control unit returns to the initial “functional” state.

By using the theories of digit circuit design, the automatic test control unit is designed as shown
in Figure 4 according to the state diagram in Figure 3. The hardware implementation of automatic test
control unit is low-cost, which is only comprised of two D flip-flops and a few logic gates. The actual
state diagram corresponding to the hardware implementation of the automatic test control unit is
shown in Figure 5. As shown in the figure, the state diagram is as same as the one described in Figure 3.
States “00”, “01”, “10” and “11” correspond to the previous “Functional”, “Shift”, “First-capture” and
“Second-capture”, respectively.

(2) Aided resetting logic

Figure 4. Architecture of the automatic test control unit.

Figure 5. The actual state diagram.
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As illustrated in Figure 6, the aided resetting logic includes only an OR gate. The reset port of
each scan flip-flop is controlled by the system reset signal System_reset ORed with Sig_Clear. When
performing the system reset (i.e., System_reset = 1), the scan chain can be reset immediately regardless
of the value of Sig_Clear. At same time, the content of the scan chain can also be cleared by reset
operation as long as Sig_Clear is ‘1’.

Figure 6. Aided resetting logic.

(3) Isolating logic

The logic circuitry to isolate the key is illustrated in Figure 7. As can be seen from the figure, the
secret key bits can be shielded by two ways: using an AND gate and using an OR gate. Part of bits
of the secret key are transmitted via an OR gate and then loaded into the crypto module. The other
input of the two-input OR gate is driven by Sig_Isol that is produced by the automatic test control unit.
The rest of bits of the secret key are transmitted via an AND gate whose other input is fed by logical
NOT of Sig_Isol. These two types of isolating logic can be selected randomly. In normal mode, Sig_Isol
will be ‘0’ and the extra logic gates are transparent, so every bit of the secret key (i.e., Key0, Key1, . . . ,
Key126, Key127) can be propagated to the crypto module. Otherwise, if the chip is running in test mode,
Sig_Isol will be ‘1’and every bit of the secret key will be prevented from passing to the encryption
module. Under this situation, the additional AND gates and OR gates output logic ‘0‘ and ‘1’ for the
crypto module, respectively. The actual secret key is replaced by the dummy key that will be delivered
to the crypto core as encryption key. The chip designer can arbitrarily configure the dummy key by
selecting different combination of isolating way for each secret key bit.

Figure 7. Isolating logic.

The proposed SSATCU design scheme performs the secure scan test, resulting in high security.
Even if the attacker performs the encryption operation for one round or one clock cycle in the normal
mode and makes the encrypted results stored in the scan chain, he cannot observe the intermediate
results at scan output port. This is because that, the SSATCU design scheme clears the state of scan
chains when the mode switching occurs. Hence, it can thwart scan attacks based on mode switching.
The proposed scheme also isolates the secret key during the whole test process, so test-mode-only scan
attacks can be overcome as well.

However, the SSATCU scheme compromises the testablity of CUT. Firstly, it inhibits the online
testing since the state obtained in function operation is protected. Performing online testing can
contribute to decrease the test time and meanwhile allow faults that won’t obstruct the functional
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operation to avoid being detected. Hence, online testing is very important and widely used in
semiconductor industry [50]. Secondly, because the dummy key, instead of the real secret key, is
propagated to the key generation unit in test mode, some faults in the key generation unit that will
obstruct the functional operation cannot be detected. It is not inadvisable to sacrifice the testablity for
security. To give consideration to both testablity and security, we propose an improved secure scan
design scheme based on automatic test control unit in the next section.

4. Improved Secure Scan Scheme Based on Automatic Test Control Unit

In the improved secure scan design scheme based on automatic test control unit (abbreviated to
ISSATCU design scheme below), we unlock the test protection described in Section 2 for the authorized
users, and only perform the secure scan test for the unauthorized users.

The test authorization mechanism is shown in Figure 8. In order to reduce the hardware overhead,
instead of using an extra shift register, part of the scan chain is selected to store the test authorization
key. Assume that, L scan cells near scan input pin are selected. At the beginning of testing, the test
authorization key should be loaded into the selected part of the scan chain through SI port. The test
authorization key is used to generate an unlock signal to disable the automatic test control unit,
as shown in Figure 9. Either the complementary output Q or the output Q of each selected scan cell is
fed to a multiple-input AND gate labeled as G1 in Figure 8. If a test key bit is ‘1’, then the output Q of
the corresponding scan cell is connected to G1. Otherwise, the complementary output Q is connected
to G1. When loading the correct test authorization key into the scan chain, the output of G1 is ‘1’.
The output of G1 will be ‘0’ if at least one bit of the test authorization key is mismatched. The value of
G1 will be latched into a D flip-flop labeled as DFF1 when the test authorization key is completely
delivered. It should be noted that, unlike other flip-flops, DFF1 is a falling-edge triggered D flip-flop. A
k-bit (k = b log2(L + 1)c + 1) counter CNT1 is employed to record the clock cycles during loading the test
key. CNT1 starts counting from all zeros when the CUT enters into the test mode (i.e., TC = 1). After L
clock cycles of CLK, the test authorization key is completely loaded. At the following falling edge of
CLK, the output of G1 determined by the authorization key will be stored into DFF1. At (L + 1)st clock
cycle, the state of CNT1 becomes L + 1 (i.e., the binary sequence QkQk-1 . . . Q2Q1 denotes the decimal
number L + 1). The inputs of the AND gate G3 should be elaborately designed to make that the output
of G3 is ‘1’ when the state of CNT1 is L + 1. For example, let’s assume that L = 5. The appropriate value
of k is 3. Since 6 = (110)2, Q3, Q2 and Q1 are fed to the input pins of G3. When CNT1 reaches the state
“110”, the output Reach_L_1 of G3 becomes ‘1’. The Reach_L_1 remains ‘0’ before CNT1 reaches “110”.

Figure 8. Test authorization mechanism.
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Figure 9. Architecture of improved automatic test control unit.

When Reach_L_1 turns to ‘1’, the clock clk0 of DFF1 that is driven by the system clock CLK ORed
with Reach_L_1, is disabled. At this time, the output of the AND gate G4 driven by TC and the logical
NOT of Reach_L_1, is ‘0’. Hence, the enable input EN fed by G4 is ‘0’ and the CNT1 is disabled. From
the (L + 1)st clock cycle, the CNT1 remains its state (i.e., L + 1), Reach_L_1 remains ‘1’ and the clock clk0

keeps inactive. The logical AND of the test key bits will be latched in DFF1 until the system is reset. If
the correct test key is applied, the signal Match will remain ‘1’. From the (L + 1)st clock cycle, the signal
unlock driven by the logical AND of Match and Reach_L_1 will be ‘1’. If the incorrect test key is loaded,
the signal Match will remain ‘0’ and the signal unlock is always ‘0’.

As shown in Figure 9, the unlock signal controls the two output of the automatic test control unit
via a NOT gate and an AND gate. When unlock = 1, both Sig_Isol and Sig_Clear will be zero regardless
of the state of the automatic test control unit. When unlock = 0, the automatic test control unit will be
enabled and can determine the values of both Sig_Isol and Sig_Clear as described in Section 2.

Once a system reset is performed, the CUT, the CNT1 and the automatic test control unit are all
reset. After a system reset, if the circuit first enter into the test mode (i.e., TC = 1), the test authorization
key must be loaded before implementing the testing. If the circuit first enter into the normal mode (i.e.,
TC = 0) after a system reset, the CNT1 is disabled due to the zero value of EN and remains all-zero
state. Reach_L_1 = 0 and unlock = 0, which enables the automatic test control unit. When the circuit is
switched from the normal mode to test mode, the scan chain will be cleared. At the same time, the test
authorization key should be loaded. The test key only needs (also is only allowed) to be applied once
after a system reset. Once the correct test key is loaded at the beginning of testing, the standard test
can be conducted on CUT in the following time. The scan chain will not be reset when switching mode
and the cipher key will not be isolated in test mode. On the contrary, if the test key is incorrect, only
the secure scan test can be performed.

5. Performance Analysis

The performance analysis of the proposed scheme consists of three aspects: testability, security
and overhead.

5.1. Testability Analysis

In the proposed ISSATCU design scheme, the additional protection logic including the automatic
test control unit and test authorization mechanism is independent of the original cryptographic module.
Once the correct test authorization key is applied by the tester, the testing for the cryptographic
module can be carried out normally. All types of test sets such as stuck-at fault test set and
launch-on-shift/launch-on-capture based delay fault test set, can be used without any modifying.
Furthermore, the detection efficiency of these test sets won’t be decreased. For the authorized users,
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the protection to the cipher key is removed and thus the online testing can also be performed. Therefore,
the testability of the original crypto chip is not compromised by the proposed test scheme. However,
faults in the introduced protection logic cannot be detected by the original test patterns. This issue can
be resolved by using a built-in self-test (BIST) to test the small additional logic. As a widely utilized
DFT methodology besides scan design, BIST can generate test patterns and analyze the test responses
on chip. As a matter of fact, it is not essential to take into account the testing of the additional protection
logic. If some defects exist in the additional protection logic, the test responses of some test patterns
will mismatch with the expected values even though the original crypto module is fault-free and the
right test key is applied. Under this situation, the CUT can be identified as faulty chip. In this sense, it
won’t bring bad impact on the testability of CUT to ignore the testing of the additional protection logic.

5.2. Security Analysis

The security performance of the proposed ISSATCU scheme will be discussed under typical
scan attacks:

(1) Brute force attack

For the attackers without any knowledge of the additional protection logic, the probability of
hitting the L-bit test authorization key by chance is 1/2L. If a 128-bit authorization key is used,
the probability of guessing the correct authorization key is as low as 2.94 × 10−39. Even though L = 64,
this probability is only 5.42 × 10−20. Hence, brute force attacks that attempt the test authorization key
using the exhaustive search method is not feasible in theory. In specific application, the length of test
authorization key ought to be set on the basis of acceptable area penalty and brute force probability.

(2) Mode switching attack

If the attackers fail to crack the test authorization key, they can only perform the secure scan test
as described in Section 2. The circuit will be reset when switching from normal mode to test mode, so
the attackers are not able to shift out and observe the intermediate encryption results generated in the
normal mode. Consequently, the attacks based on mode switching can be overcome.

(3) Test-mode-only attack

When the circuit is running in test mode, the cipher key is masked from encryption module.
In this way, the states of scan chains are not associated with the cipher key. The attackers can observe
the content of scan chains by performing scan shift, but they cannot deduce the cipher key based on
the observed data. Hence, the test-mode-only attacks cannot be carried out as well. The proposed
technique eliminates any opportunity for scan-based non-intrusive attacks and has strong ability to
protect the security of cryptographic chips.

5.3. Overhead Analysis

To evaluate the area penalty, the presented ISSATCU scheme is performed on pipelined and
iterative AES designs with encryption key scheduling [38]. First, we synthesize the original AES cores
by using Synopsys Design Compiler and gain their netlists. Then, the standard scan design is obtained
by inserting scan chains into netlists with Synopsys Test Compiler. Finally, we insert the ISSATCU
scheme into the scan design netlists and synthesize them by Synopsys Design Compiler. The results
of the experiments are given in Table 1. The areas in the table are expressed with the number of
equivalent 2-input NAND gates. The proposed ISSATCU scheme exploits five different lengths of test
authorization key: 64, 80, 96, 112 and 128 bits.
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Table 1. Areas of original circuit, standard scan design and proposed ISSATCU.

AES Circuit

Area: The Number of Equivalent 2-Input NAND Gates

Original Circuit Standard Scan Design
ISSATCU

L = 64 L = 80 L = 96 L = 112 L = 128

pipelined 205,934 212,280 212,551 212,567 212,571 212,575 212,587
iterative 25,052 25,512 25,783 25,799 25,803 25,807 25,819

For each length of test authorization key, the area overhead incurred by ISSATCU is described in
Table 2. The last column presents the area penalty in percentage compared with standard scan design.
In order to visually display the relation between the area penalty and the length of test authorization
key (L), the percentage penalties in Table 2 are illustrated with Figure 10. As can be seen from Figure 10,
for either pipelined or iterative AES circuit, the area penalty incurred by ISSATCU increases very
slowly with the increase of L.

Table 2. Percentage area penalty of proposed ISSATCU.

AES Circuit ISSATCU Area Penalty ∆Area Percentage

pipelined

L = 64 271 0.128%

L = 80 287 0.135%
L = 96 291 0.137%
L = 112 295 0.139%
L = 128 307 0.145%

iterative

L = 64 271 1.06%
L = 80 287 1.12%
L = 96 291 1.14%
L = 112 295 1.16%
L = 128 307 1.20%

Figure 10. Relationship curve between the area penalty and the length of test authorization key.

The presented technique is as well compared with other scheme protecting cryptographic chips
against scan-based attacks, such as MKR [28], mode switching reset [27], secure DFT method [29],
SOSD-128 [38], DOSD-128 [38], DOS [41], SIE [45], and FTSL-128 [40]. The comparison results are
given in Table 3. MKR refers to the secure scan design based on mirror key register [28]. SOSD-128
and DOSD-128 represent the countermeasures based on the static and dynamic obfuscations of scan
data in [38] with 128-bit obfuscation key, respectively. DOS refers to the dynamically obfuscated scan
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technique in which XOR gates are inserted behind some selected scan cells and the values of these scan
cells are XORed with the state of an LFSR [41]. SIE represents scan interface encryption technique [45].
FTSL-128 represents the field test scan lock solution using PUF in [40] with 128-bit test key.

Table 3. Comparison of different security schemes.

Secure Schemes
Area Penalty (%) Security

Impact on Test Time Limit on Test Application
Pipelined Iterative Vulnerability Brute Force

Probability

ISSATCU with 128-bit
authori-zation key 0.15 1.20 None 2−128 less than or equal to

128 clock cycles
All types of tests are

applicable
Secure DFT

[29] 0.11 0.96 None inapplicable No extra clock cycles Online testing is
inapplicable

MKR
[28] 0.15 1.32 None inapplicable No extra clock cycles Online testing is

inapplicable
Mode switching reset

[27] ≈10 – Test-mode-
only attacks inapplicable No extra clock cycles Online testing is

inapplicable
SOSD-128

[38] 0.34 2.81 Test-mode-
only attacks 2−128 128 clock cycles before

testing
LOC Delay testing is

inapplicable
DOSD-128

[38] 0.47 3.91 None 2−128 128 clock cycles before
testing

LOC Delay testing is
inapplicable

DOS [41] 2.01 – Memory
attack 2−kλ * No extra clock cycles All types of tests are

applicable

SIE [45] 2.52 – Memory
attack 2−m ** multiple clock cycles

for vector decryption
All types of tests are

applicable
FTSL-128

[40] 3.80 31.66 None 2−128 128 clock cycles before
testing

LOC Delay testing is not
applicable

* k and λ denote the number and the length of scan chains. ** m denotes the key length of block cipher.

Compared with other protection strategies, the area overhead of ISSATCU is relatively low and
completely acceptable. The proposed ISSATCU scheme provides high security for crypto chips because
it can thwart all known scan-based non-intrusive attacks. It does not hurt the testability of chips as
well. The only drawback is that the extra test time is required to input test authorization key before
testing. If the scan cells storing the authorization key lie in a same scan chain, the test time overhead is
128 clock cycles for ISSATCU with 128-bit authorization key. If the authorization key are distributed
into multiple scan chains, the test time overhead will be less than 128 clock cycles. The secure DFT [29]
and MKR [28] incur very low area overhead and no test time overhead, and make brute force attack
useless. Nevertheless, they restrict the online testing. Since the lines loading the encryption key
from non-volatile memory to round key register cannot be tested, the testability of chips is hurt too.
The mode switching reset technique [27] possesses the similar advantages and disadvantages with
secure DFT [29] and MKR [28] except for large area overhead. The DOSD countermeasure [38] has
high security with the test time overhead of 128 clock cycles. The shortcoming is that, LOC delay
testing cannot be implemented on circuits protected by DOSD. SOSD countermeasure [38] incurs less
area overhead than DOSD countermeasure, but has relatively weak security as it’s not resistant to
test-mode-only attack. The DOS countermeasure [41] results in large area penalty and it’s not resistant
to the memory attack. The SIE methodology [45] maintains the testability of CUT with large hardware
overhead. The brute force probability of the SIE depends upon the key length of block cipher. The SIE
is vulnerable to the memory attack and needs multiple clock cycles to decrypt test data during testing.
The security of FTSL design is high, but it incurs very large area penalty [40]. Furthermore, it limits the
application of the LOC delay testing. We can see from Table 3 that the proposed ISSATCU surpasses the
existing schemes in one or more attributes. In general, the ISSATCU can provide effective protection
for crypto chips with low area and test time overhead without compromising the testability of chips.
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6. Conclusions

Adversaries can employ the side channel offered by scan design to deduce the secret key based on
intermediate results of the encryption operation. In this paper, we present a secure strategy based on
test authorization and intelligent test control. This strategy gives the authorized users the privilege
to perform the normal test. For an unauthorized user, the intelligent test control unit is activated
to manage the behaviors of the crypto chip. When the chip runs in normal mode, the encryption
operation can be implemented normally. Once the chip is switched from normal mode to test mode,
the intelligent test control unit will reset the system to clear the sensitive data stored in scan chains.
When the chip enters the test mode, the intelligent test control unit isolates the cipher key from crypto
module to prevent the leakage of the secret information. The proposed countermeasure is resistant to
existing noninvasive scan attacks while it does not decrease testability of original scan design. All types
of tests including the test of stuck-at fault and transition-delay fault are still applicable. Experimental
results also show a small overhead of area and test time. The presented countermeasure outperforms
all existing secure designs in most of characteristics. It is especially applicable to protect cryptographic
chips in resource-constrained environments such as WSN.
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