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This paper is devoted to an investigation of an exact average symbol error probability (SEP) for amplify and forward (AF) relaying
in independent Nakagami-𝑚 fading environments with a nonnegative integer plus one-half𝑚, which covers many actual scenarios,
such as one-side Gaussian distribution (𝑚 = 0.5). Using moment generating function approach, the closed-form SEP is expressed
in the form of Lauricella multivariate hypergeometric function. Four modulation modes are considered: rectangular quadrature
amplitude modulation (QAM), 𝑀-ary phase shift keying (MPSK), 𝑀-ary differential phase shift keying (MDPSK), and 𝜋/4
differential quaternary phase shift keying (DQPSK). The result is very simple and general for a nonnegative integer plus one-half𝑚, which covers the same range as integer𝑚. The tightness of theoretical analysis is confirmed by computer simulation results.

1. Introduction

When the transceiver is far away, it is not a wise choice to
increase transmit power in green communications. Energy
efficiency is placed in a very important position in resource
optimization configuration. The relay technology is used as
one effective means to achieve diversity gain, reduce trans-
mission power, and improve energy efficiency. Therefore,
cooperative diversity technology has attracted considerable
benefits for enhancing the performance of wireless networks,
such as cell network and ad hoc network. SEP is considered to
be an important performancemeasure. Integral-free bit error
probability formulas were derived in [1, 2] for decode and
forward (DF) cooperative systems. An asymptotic bit error
probability formula was provided in [3–5] for all participate
and selective AF cooperation. A new approximation to the
symbol error rate was derived in [6]. Multiple input multiple
output (MIMO) technology was introduced in [7, 8], which
considered exact and asymptotic symbol error rate. Selection
combining was added in [9] with the same configuration as
that in [7]. Mobile to mobile communication scenario was
shown in [10], where asymptotic symbol error rate boundwas
provided. Signal space cooperationwas realized in [11] for full

rate transmission, where a tight bit error rate was obtained.
Error probabilities of AF multihop variable gain relaying
systems were analyzed in [12] by generalized hypergeometric
functions. While the two-hop scenario was investigated in
[13].

Although the error probability of the Nakagami-𝑚 relay
channel has been studied extensively, they mostly addressed
integer fading parameter𝑚.The error probability formula for
arbitrary 𝑚 must resort to infinite series expansion or rea-
sonable approximation in high signal to noise (SNR) region.
Some articles provided error probability just by simulation.
The actual situation often requires quickly grasping error
probability of wireless communication, so it is impossible
to carry out a large number of simulation experiments. The
importance and generalization of Nakagami-𝑚 channel have
not been fully exploited, which motivates our work from
another perspective.

In this paper, we calculate the exact average SEP formulas
in an AF relay system over Nakagami-𝑚 fading environment
when 𝑚 is a nonnegative integer plus one-half, while it
includes as a special case the one-sided Gaussian distribution
(𝑚 = 0.5). Such closed-form expressions are urgent because
they allow fast and efficient evaluation of system reliability.
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Note that this parameter 𝑚 covers the same quantity range
as the integer 𝑚 in most literature, according to basic
knowledge of number theory. Four prevailing modulations
are investigated: MQAM, MPSK, MDPSK, and DQPSK.
Using the properties of moment generating function, precise
expressions are a combination of a series of special functions.
Simulation results confirm the tightness compactness of the
theoretical analysis. For ease of reading and searching, see
Mathematical Notations.

2. System Model

Consider a cooperative system where a source node 𝑆 com-
municates with a destination node𝐷 via a relay node𝑅.There
is not direct link between 𝑆 and 𝑅 due to obstacles. Assume
that all links between transceivers are subject to independent
but different Nakagami-𝑚 fading. When 𝑚 is a nonnegative
integer plus one-half, the probability density function of the
end to end SNR 𝛾 at𝐷 is given by [14, eq. (7)]

𝑓𝛾 (𝑧) = √𝜋𝑒−(√𝛽𝑠+√𝛽𝑟)2𝑧Γ (𝑚𝑠) Γ (𝑚𝑟)
⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)!22𝑙
× (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!𝑧𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−𝑙−3/2𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)! × (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙 ,

(1)

where 𝑚 and 𝛽 are fading parameter and scale parameter,
respectively. The subscripts 𝑠 and 𝑟 represent 𝑆 → 𝑅 link

and 𝑅 → 𝐷 link, respectively. Using [15, eq. (3.381.4)], the
moment generating function of the SNR 𝛾 is given by

𝑀𝛾 (𝑠) = ∫∞
0
𝑒−𝑠𝑧𝑓𝛾 (𝑧) 𝑑𝑧

= √𝜋Γ (𝑚𝑠) Γ (𝑚𝑟)
⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)!
× 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟 (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!22𝑙𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)! × (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙
× (𝑠 + 𝛽𝑠 + 𝛽𝑟 + 2√𝛽𝑠𝛽𝑟)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟 × Γ (𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12) .

(2)

The abovemoment generating function is very useful in error
probability analysis.

3. Average SEP Analysis

The average SEP is an important measure of communication
reliability. Next, we prepare to study the SEP performances of
four modulations.

3.1. Rectangular QAM. The average SEP of coherent rectan-
gular𝑀𝐼 ×𝑀𝑄 QAM is given by

𝑃𝑒,QAM = ∫∞
0
[2(1 − 1𝑀𝐼)𝑄 (√𝑞1𝛾) + 2(1 − 1𝑀𝑄)

× 𝑄 (√𝑞2𝛾) − 4(1 − 1𝑀𝐼)
× (1 − 1𝑀𝑄)𝑄 (√𝑞1𝛾)𝑄 (√𝑞2𝛾)]𝑓𝛾 (𝛾) 𝑑𝛾,

(3)

where

𝑞1 = 6𝑀2𝐼 − 1 + (𝑀2𝑄 − 1) 𝑟2 , (4)

𝑞2 = 6𝑟2𝑀2𝐼 − 1 + (𝑀2𝑄 − 1) 𝑟2 . (5)

𝑟 is the decision distance ratio between constellations of
in phase and quadrature components. Based on moment
generating function approach, the error probability is written
as

𝑃𝑒,QAM = 2𝜋 (1 − 1𝑀𝐼)∫
𝜋/2

0
𝑀𝛾 ( 𝑞12 sin2𝜃) 𝑑𝜃 + 2𝜋 (1

− 1𝑀𝑄)∫
𝜋/2

0
𝑀𝛾 ( 𝑞22 sin2𝜃) 𝑑𝜃 − 2𝜋 (1 − 1𝑀𝐼)(1

− 1𝑀𝑄) × [∫
𝜋/2−arctan√𝑏/𝑎

0
𝑀𝛾 ( 𝑞12 sin2𝜃) 𝑑𝜃

+ ∫arctan√𝑏/𝑎

0
𝑀𝛾 ( 𝑞22 sin2𝜃) 𝑑𝜃] ,

(6)

where the first and second integrals correspond to the error
probability involving a single 𝑄 function and the third and
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fourth integrals correspond to the error probability involving
the product of two𝑄 functions. We first begin by the integral
containing one Gaussian𝑄 function. Taking the first integral
in (6) as an example, we encounter a kind of integral given
by

𝐽1 = ∫𝜋/2
0

( 𝑞12 sin2𝜃 + 𝛽𝑠 + 𝛽𝑟
+ 2√𝛽𝑠𝛽𝑟)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟 𝑑𝜃.

(7)

By change of the variable 𝑢 = cos2𝜃, after some manipula-
tions, 𝐽1 can be written as

𝐽1 = ∫1
0
( 𝑞12 (1 − 𝑢) + 𝛽𝑠 + 𝛽𝑟

+ 2√𝛽𝑠𝛽𝑟)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟 × 12√𝑢 (1 − 𝑢)𝑑𝑢.
(8)

Applying [15, eq. (9.100)], (8) can be expressed in closed form
in terms of Gauss hypergeometric function.

Next, we cope with the integral containing the product
of two Gaussian 𝑄 functions. Making change of the variable𝑢 = 1 − 𝑏2/𝑎2tan2𝜃, we obtain one kind of integral given by

𝐽2 = ∫1
0
𝑢𝑎−1 (1 − 𝑢)𝑐−𝑎−1 (1 − V𝑢)−𝑏1 (1 − ]𝑢)−𝑏2 𝑑𝑢. (9)

Using [16, eq. (11)], 𝐽2 can be expressed in closed form in
terms of Appell hypergeometric function. Finally, combining
the results in (8) and (9), the average SEP of rectangularQAM
is given by

𝑃𝑒,QAM = 1Γ (𝑚𝑠) Γ (𝑚𝑟)
⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)!
× 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟 (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!22𝑙𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)! × Γ (𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12) × (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙 × {{{(1
− 1𝑀𝐼) Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙)Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 1/2) × (𝑞12 + 𝛽𝑠 + 𝛽𝑟 + 2√𝛽𝑠𝛽𝑟)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟 × 2𝐹1(12,𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2
− 𝑙 − 12 ;𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 12 ; 2 (√𝛽𝑠 + √𝛽𝑟)22 (√𝛽𝑠 + √𝛽𝑟)2 + 𝑞1) + (1 − 1𝑀𝑄) Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙)Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 1/2) × (𝑞22
+ 𝛽𝑠 + 𝛽𝑟 + 2√𝛽𝑠𝛽𝑟)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟 × 2𝐹1(12,𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 − 12 ;𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙
+ 12 ; 2 (√𝛽𝑠 + √𝛽𝑟)22 (√𝛽𝑠 + √𝛽𝑟)2 + 𝑞2) − √𝑞1𝑞2 (1 − 1/𝑀𝐼) (1 − 1/𝑀𝑄)√𝜋 (𝑞1 + 𝑞2) (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙) (𝑞1 + 𝑞22 + (√𝛽𝑠 + √𝛽𝑟)2)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟

⋅ [[𝐹1(1,𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 −
12 , 1; 𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 1; 𝑞1 + 2 (√𝛽𝑠 + √𝛽𝑟)2𝑞1 + 𝑞2 + 2 (√𝛽𝑠 + √𝛽𝑟)2 ,

𝑞1𝑞1 + 𝑞2)
+ 𝐹1(1,𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 − 12 , 1; 𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 1; 𝑞2 + 2 (√𝛽𝑠 + √𝛽𝑟)2𝑞1 + 𝑞2 + 2 (√𝛽𝑠 + √𝛽𝑟)2 ,

𝑞2𝑞1 + 𝑞2)]]
}}} ,

(10)

where 2𝐹1(⋅, ⋅; ⋅; ⋅) and 𝐹1(⋅, ⋅, ⋅; ⋅; ⋅, ⋅) stands for the Gauss
hypergeometric function defined in [15, eq. (9.100)] and the
Appell hypergeometric function [17].

3.2. MPSK. Following similar steps in QAM, the average SEP
of coherent MPSK is given by

𝑃𝑒,MPSK = 1𝜋 ∫
𝜋−𝜋/𝑀

0
𝑀𝛾 [ sin2 (𝜋/𝑀)

sin2𝜃 ] 𝑑𝜃 = 1𝜋 ∫
𝜋/2

0
𝑀𝛾 [ sin2 (𝜋/𝑀)

sin2𝜃 ] 𝑑𝜃 + 1𝜋 ∫
𝜋−𝜋/𝑀

𝜋/2
𝑀𝛾 [ sin2 (𝜋/𝑀)

sin2𝜃 ] 𝑑𝜃
= 1Γ (𝑚𝑠) Γ (𝑚𝑟)

⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)! × 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟 (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!22𝑙𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)!
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× (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙 × Γ (𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12)
× ((√𝛽𝑠 + √𝛽𝑟)2 + sin2 ( 𝜋𝑀)1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟) × [[

Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙)2Γ (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 1/2)
× 2𝐹1(𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 − 12 , 12 ;𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 + 12 ; (√𝛽𝑠 + √𝛽𝑟)2(√𝛽𝑠 + √𝛽𝑟)2 + sin2 (𝜋/𝑀)) + cos (𝜋/𝑀)√𝜋
⋅ 𝐹1(12,𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 𝑙 − 12 , 1 + 𝑘1 + 𝑘2 + 𝑙 − 𝑚𝑠 − 𝑚𝑟; 32 ; cos2 (𝜋/𝑀) (√𝛽𝑠 + √𝛽𝑟)2(√𝛽𝑠 + √𝛽𝑟)2 + sin2 (𝜋/𝑀) , cos2 (

𝜋𝑀))]] .
(11)

3.3. MDPSK. With the aid of the common moment
generating function, the average SEP for MDPSK is given by

𝑃𝑒,MDPSK = 1𝜋 ∫
𝜋−𝜋/𝑀

0
𝑀𝛾 [ sin2 (𝜋/𝑀)1 + cos (𝜋/𝑀) cos 𝜃] 𝑑𝜃 = 2 cos (𝜋/2𝑀)√𝜋Γ (𝑚𝑠) Γ (𝑚𝑟)

⋅ ⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)! × 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟 (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!22𝑙𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)! × Γ (𝑚𝑠 + 𝑚𝑟
− 𝑘1 − 𝑘2 − 𝑙 − 12) × (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙 × (𝛽𝑠 + 𝛽𝑟 + 2√𝛽𝑠𝛽𝑟 + 2 sin2 ( 𝜋2𝑀))1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟
× 𝐹(3)𝐷 [[

12 ,𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12 , 12 + 𝑘1 + 𝑘2 + 𝑙 − 𝑚𝑠
− 𝑚𝑟, 12 ; 32 ; cos (𝜋/𝑀) (√𝛽𝑠 + √𝛽𝑟)2(√𝛽𝑠 + √𝛽𝑟)2 + 2 sin2 (𝜋/2𝑀) , cos(

𝜋𝑀) , cos2 ( 𝜋2𝑀)]] ,

(12)

where 𝐹(3)𝐷 is the Lauricella function [16, eq. (15)].
3.4. Noncoherent Detection of Equiprobable Correlated Binary
Signals and 𝜋/4DQPSK. The average SEP of equal energy,

equiprobable, and correlated binary signals with noncoherent
detection is given by

𝑃𝑒 = 12𝜋 ∫
𝜋

0
𝑀𝛾 [[

(𝑏2 − 𝑎2)22 (𝑎2 + 𝑏2) − 4𝑎𝑏 cos 𝜃]]𝑑𝜃
= √𝜋2Γ (𝑚𝑠) Γ (𝑚𝑟)

⌊𝑚𝑠⌋∑
𝑘1=0

⌊𝑚𝑟⌋∑
𝑘2=0

⌊(𝑚𝑠−𝑘1+𝑚𝑟−𝑘2)/2⌋∑
𝑙=0

(⌊𝑚𝑠⌋ + 𝑘1)! (⌊𝑚𝑟⌋ + 𝑘2)!𝛽𝑚𝑠/2−1/4−𝑘1/2𝑠4𝑘1+𝑘2𝑘1!𝑘2! (⌊𝑚𝑠⌋ − 𝑘1)! (⌊𝑚𝑟⌋ − 𝑘2)! × 𝛽𝑚𝑟/2−1/4−𝑘2/2𝑟 (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2)!22𝑙𝑙! (𝑚𝑠 − 𝑘1 + 𝑚𝑟 − 𝑘2 − 2𝑙)!
× Γ (𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12) × (−1)𝑙 (√𝛽𝑠 + √𝛽𝑟)𝑚𝑠−𝑘1+𝑚𝑟−𝑘2−2𝑙
× (𝛽𝑠 + 𝛽𝑟 + 2√𝛽𝑠𝛽𝑟 + (𝑏 − 𝑎)22 )1/2+𝑘1+𝑘2+𝑙−𝑚𝑠−𝑚𝑟

× 𝐹1 [[[
12 ,𝑚𝑠 + 𝑚𝑟 − 𝑘1 − 𝑘2 − 𝑙 − 12 , 12 + 𝑘1 + 𝑘2 + 𝑙 − 𝑚𝑠 − 𝑚𝑟; 1; 8𝑎𝑏 (√𝛽𝑠 + √𝛽𝑟)2

(𝑎 + 𝑏)2 (2 (√𝛽𝑠 + √𝛽𝑟)2 + (𝑏 − 𝑎)2) ,
4𝑎𝑏(𝑎 + 𝑏)2]]]

,

(13)
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Figure 1: Comparison of SEP for 8 × 4QAM.

where

𝑎 = √ 1 − √1 − 󵄨󵄨󵄨󵄨𝜌󵄨󵄨󵄨󵄨22 , (14)

𝑏 = √ 1 + √1 − 󵄨󵄨󵄨󵄨𝜌󵄨󵄨󵄨󵄨22 (15)

and 0 ≤ |𝜌| ≤ 1 is the magnitude of the cross correlation

coefficient between the two signals. When 𝑎 = √2 − √2 and
𝑏 = √2 + √2, (13) corresponds to 𝜋/4DQPSK with gray
coding.

4. Simulation Results

In this section, the simulation results of the error probability
for QAM, MPSK, MDPSK, and DQPSK are evaluated. The
average SNR per symbol is defined as 𝑃𝑠/𝑁0 = 𝑃𝑟/𝑁0, where𝑃𝑠 and𝑃𝑟 represent transmit power of the source and the relay,
respectively. 𝑁0 is the noise variances. The channel gain is
normalized to unit. The theoretical results highly agree with
the simulations for 8 × 4QAM and integer plus one-half 𝑚.
The same coincidence can be deduced for 8 PSK, 8DPSK, and
DQPSKmodulation constellations and fading parameters𝑚.
This demonstrates the accuracy and validity of the proposed
formula.

Figures 1–4 show that the diversity gain is an increasing
function of the fading parameter 𝑚. For example, when the
SEP of 8 PSK is 0.1, the diversity gain of the case of𝑚𝑠 = 0.5,𝑚𝑟 = 0.5 is achieved about 4 dB compared with the case of𝑚𝑠 = 0.5,𝑚𝑟 = 1.5. Moreover, the diversity gain increased to
about 10 dB when 𝑚𝑠 = 1.5, 𝑚𝑟 = 1.5. Similar observations
can be found in 8DPSKmodulation in Figure 3.The diversity
order is dominated by theworse link between 𝑆 → 𝑅 and𝑅 →
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Figure 2: Comparison of SEP for 8 PSK.
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Figure 3: Comparison of SEP for 8DPSK.

𝐷. For example, let us observe two cases of𝑚𝑠 = 0.5,𝑚𝑟 = 0.5
and 𝑚𝑠 = 0.5, 𝑚𝑟 = 1.5. From Figure 2, when 𝑚𝑠 = 𝑚𝑟 =0.5, in the high SNR region, the SEP is 0.089645629941062 at
average SNR = 28 dB and 0.070958408816342 at average SNR
= 30 dB. This implies that the diversity gain is

10 lg (0.089645629941062/0.070958408816342)30 − 28
= 0.5076 ≈ min (𝑚𝑠, 𝑚𝑟) .

(16)
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Figure 4: Comparison of SEP for 𝜋/4DQPSK.
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Figure 5: Comparison of SEP for MQAM.

While for𝑚𝑠 = 0.5, 𝑚𝑟 = 1.5, the SEP is 0.046485872872970
at 28 dB and 0.036583504432831 at 30 dB. The diversity gain
becomes

10 lg (0.046485872872970/0.036583504432831)30 − 28
= 0.5202 ≈ min (𝑚𝑠, 𝑚𝑟) .

(17)

Although the parameters 𝑚𝑟 = {0.5, 1.5} are different, the
results are the same. So they achieve the same diversity order.

Figures 5–7 show the average SEP of𝑀-ary modulation
schemes, where 𝑚𝑠 = 0.5, 𝑚𝑟 = 1.5. The average SEP
increases with the increase of 𝑀 because the minimum
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Figure 6: Comparison of SEP for MPSK.
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Figure 7: Comparison of SEP for MDPSK.

distance between symbols becomes smaller. But the slopes
of the SEP curves are nearly the same, implying the same
diversity gain. The influence of cross correlation coefficient
on SEP is drawn in Figure 8. When the correlation between
two signals is small, the SEP is relatively small.

5. Conclusion

In this paper, we study the SEP of QAM, MPSK, MDPSK,
and DQPSK modulation in cooperative AF system. Exact
closed-form expressions for average SEP are obtained over
independent Nakagami-𝑚 fading channels with integer plus
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Figure 8: Comparison of SEP for correlated binary signals with
noncoherent detection.

one-half𝑚. Simulation results agree well with the theoretical
analysis.

Mathematical Notations

𝑓𝛾(⋅): Probability density function of the variable 𝛾𝑀𝛾(⋅): Moment generating function of the variable 𝛾⌊⋅⌋: Floor function𝑄(⋅): Gaussian 𝑄 function
2𝐹1: Gauss hypergeometric function𝐹1: Appell hypergeometric function𝐹(𝑛)𝐷 : Lauricella function.
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