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By introducing a �ux-controlled memristor model with absolute value function, a 5D multistable four-wing memristive
hyperchaotic system (FWMHS) with linear equilibrium points is proposed in this paper.�e dynamic characteristics of the system
are studied in terms of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits,
and spectral entropy.�is system is of the group of systems that have coexisting attractors. In addition, the circuit implementation
scheme is also proposed.�en, a secure communication scheme based on the proposed 5Dmultistable FWMHS with disturbance
inputs is designed. Based on parametric modulation theory and Lyapunov stability theory, synchronization and secure com-
munication between the transmitter and receiver are realized and two message signals are recovered by a convenient robust high-
order sliding mode adaptive controller. �rough the proposed adaptive controller, the unknown parameters can be identi�ed
accurately, the gain of the receiver system can be adjusted continuously, and the disturbance inputs of the transmitter and receiver
can be suppressed e�ectively.�ereafter, the convergence of the proposed scheme is proven by means of an appropriate Lyapunov
functional and the e�ectiveness of the theoretical results is testi�ed via numerical simulations.

1. Introduction

Chaotic signals are naturally invisible because of their non-
periodic continuous bandwidth spectrum, similar noise, and
extreme sensitivity to initial values. �erefore, in the past
decade, chaos has attracted more and more scientists’ interest
and research in the �elds of complex networks [1–3], electronic
circuits [4–6], image encryption [7–9], synchronization
[10–11], random number generator [12, 13], and secure
communications [14–16]. In chaotic communication systems,
how to generate chaotic signals suitable for modulation and
spread spectrum has become an issue of concern [17, 18].
Several methods for generating complex chaotic signals are
proposed, among which the generations of four-wing [19–21],
multiwing [22–24], and multiscroll [25–29] chaotic attractors
are the important achievements in recent years. Compared

with chaotic systems, hyperchaotic systems have two or more
positive Lyapunov exponents, and their motion orbits are
separated in many directions, showing more complex dynamic
behavior [30–34]. Complex hyperchaotic signals can improve
the security of chaotic secure communication and chaotic
information encryption, so hyperchaos will have a very broad
application prospect in the �eld of information engineering.

Memristor has the advantages of nanometer size, au-
tomatic memory, and nonlinear characteristics. Compared
with the traditional chaotic circuit system, a memristor
chaotic circuit has more complex chaotic characteristics
because the system is sensitive to circuit parameters and
depends on the initial value of the memristor [35–39].
Chaotic signals generated by memristor chaotic systems
have stronger pseudorandomness, which makes them have a
broader application prospect in traditional chaotic applications.
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*erefore, it is of great practical significance to design a chaotic
system and circuit based on a memristor by combining the
memristor with a nonlinear chaotic system. *e generation of
new multiwing hyperchaotic attractors based on memristors
has become a research hotspot, and many such hyperchaotic
systems have been introduced in recent years. In [39], by
introducing a flux-controlled memristor into a multiwing
system, no equilibrium hyperchaotic multiwing attractors are
observed in the memristive system. A flux-controlled mem-
ristor with linearmemductance is proposed in [40]; then, a new
hyperchaotic system is presented by adding the proposed
memristor into the Lorenz system, and the memristive system
exhibits complex dynamic characteristics such as four-wing
hyperchaotic attractors.

Multistability is one of the most important phenomena
in dynamic systems [41–50], which occurs in many fields
such as physics, biology, chemistry, economics, and elec-
tronics. Multistability allows flexibility of system perfor-
mance without changing parameters, and appropriate
control strategies can be used to induce switching behavior
between different coexisting states [41]. For chaotic systems,
hidden attractors [42–46] and infinite attractors [47–50] can
exhibit multistability. For example, complex dynamic be-
haviors of coexisting attractors [51], transient chaos [52],
and limit cycle [53] can be observed from hidden attractors.
Recently, various multistable memristive hyperchaotic sys-
tems have been proposed in many literatures. In [52], by
introducing a flux-controlled memristor model into an
existing 5D hyperchaotic autonomous system, a 6D
hyperchaotic autonomous system with hidden extreme
multistability is proposed. Some attractive dynamics are
observed like transient chaos, bursting, and offset boosting
phenomenon. In [53], by utilizing a memristor to substitute
a coupling resistor in the realization circuit of a 3D chaotic
system having one saddle and two stable node-foci, a novel
memristive hyperchaotic system with coexisting infinite
hidden attractors is presented. *e memristive system does
not show any equilibrium but can exhibit hyperchaos, chaos,
periodic dynamics, and transient hyperchaos.

With the application of network information technology,
people attach great importance to the security and confi-
dentiality of information [54–66]. Researchers are constantly
looking for new methods of confidentiality [54–66]. Secure
communication and chaotic encryption based on chaotic
synchronization have become one of the research hotspots in
the field of information security in recent years. In recent
years, the secure communication scheme based on chaotic
synchronization control has attracted extensive attention.
People have made a thorough study on it and proposed
various effective chaotic control methods, such as adaptive
control [67–68], active control [69], linear feedback control
[70, 71], and sliding mode control [72, 73]. In [69], the
synchronization of 3D chaotic systems with the same structure
is realized by using active control and adaptive control law. In
the developed secure communication system, information
signal sent over noisy channel is successfully retrieved at the
receiver. In [72], a secure communication mechanism based
on a four-wing 4D chaotic system is designed. Using high-
order sliding mode control synchronization technology,

parameter modulationmethod, and Lyapunov stability theory,
two useful signals are encrypted and recovered and the ex-
ternal interference is suppressed.

Based on the above studies, a 5D multistable FWMHS is
proposed based on the flux-controlled memristor model
with absolute value function, from which the coexisting
phenomenon of many hidden attractors are observed.
Hyperchaos is exhibited with a line of equilibria. After that,
circuitry implementation of the proposed system is in-
vestigated.*en, an adaptive asymptotic method is proposed
to identify the 5D multistable FWMHS with several un-
known parameters and to apply chaotic parameter modu-
lation in secure communication. By this method, chaotic
synchronization can be realized, unknown parameters can
be identified, message signals can be recovered, and dis-
turbance inputs can be suppressed simultaneously via a
high-order sliding mode adaptive controller, whose adaptive
parameters are adjusted according to the proposed adaptive
algorithm. By using Lyapunov functional and Barbalat’s
lemma, the convergence of the proposed scheme is analyzed.
Finally, two triangular wave signals are taken as examples for
numerical simulation. *e results show the effectiveness and
feasibility of the proposed secure communication scheme.

2. New 5D Multistable FWMHS and
Its Dynamics

2.1. System Description. A simple 5D chaotic oscillator with
five parameters and five nonlinearities is proposed, and a
flux-controlled memristor model with absolute value
function is introduced to establish the mathematical model
of the system:

_x1 � − ax1 + x2x3,

_x2 � bx2 − x1x3,

_x3 � x1x2 − cx3 + dx4W x5( 􏼁,

_x4 � x1x2 − ex4,

_x5 � − x3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b, c, d, and e are the parameters of the system and
x1, x2, x3, x4, andx5 are state variables. *e memductance
function W(ψ) � 1 − β|ψ| [52], ψ and β being its flux variable
and positive constant parameter, respectively. It is easy to see
that system (1) is invariant under the transformation
(x1, x2, x3, x4, x5)⟶ (±x1,∓x2, x3, x4, x5). *us, if
(x1, x2, x3, x4, x5) is a solution for a specific set of parameters,
then (±x1,∓x2, x3, x4, x5) is also a solution for the same
parameters set. So, the appearances of multiple coexisting
symmetric attractors are expected in the new system.

When the parameters are chosen as a � 10, b � 12,

c � 30, d � 2, e � 3, and β � 0.2, the Lyapunov exponents of
system (1) are calculated as LE1 � 3.5610, LE2 � 0.3092,

LE3 � 0, LE4 � − 2.0660, and LE5 � − 23.4708. It can be seen
that there are two positive Lyapunov exponents which
means system (1) can exhibit hyperchaotic dynamics. A
typical four-wing hyperchaotic attractor from system (1) is
shown in Figure 1, while the initial conditions are selected as
[0.1, 0.1, 0.1, 0.1, 0.1].
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2.2. Dissipativity. *e volume contraction rate of system (1)
is given by the following Lie derivatives:

∇V �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
+

z _x4

zx4
+

z _x5

zx5
� − a + b − c − e. (2)

Equation (2) shows that divergence is negative when
− a + b − c − e< 0. In this case, the set of system trajectories is
ultimately limited to a specific zero volume limit set and the
asymptotic motion of the new four-wing hyperchaotic
system (1) falls on the attractor.

2.3. Equilibrium Points and Stability. Equilibrium points
play an important role in the study of nonlinear systems
because they allow the system response to be characterized as
self-excited oscillation or hidden oscillation. *ese oscilla-
tions originate around the equilibrium point obtained from
system (1), by setting the left-hand side to zero as follows:

0 � − ax1 + x2x3,

0 � bx2 − x1x3,

0 � x1x2 − cx3 + dx4W x5( 􏼁,

0 � x1x2 − ex4,

0 � − x3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

It can be seen that the equilibrium states of system (3)
only depends on x1, x2, x3, and x4, but independent of x5.
System (3) has the abnormal characteristics of linear
equilibrium in (0, 0, 0, 0, x5). Since x5 in equilibrium can be
any constant, assuming that l is a real constant, the equi-
librium of system (3) can be described as follows:

O � x1, x2, x3, x4, x5( 􏼁
􏼌􏼌􏼌􏼌 x1 � x2 � x3 � x4 � 0, x5 � l􏽮 􏽯.

(4)

*e Jacobian matrix of system (3) at this line equilibrium
is

JO �

− a 0 0 0 0

0 b 0 0 0

0 0 − c d(1 − β|l|) 0

0 0 0 − e 0

0 0 0 − 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

According to Jacobian matrix (5), the characteristic
equation of system (1) can be expressed as follows:

λ(λ + e)(λ + a)(λ − b)(λ + c) � 0. (6)
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Figure 1: A typical four-wing hyperchaotic attractor of the 5D FWMHS (1) and perpetual points (red) in the (a) x1 − x2 plane, (b) x1 − x3
plane, (c) x2 − x3 plane, and (d) x3 − x4 plane.
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Five eigenvalues of system (1) can be obtained from
equation (6): λ1 � 0, λ2 � − e, λ3 � − a, λ4 � b, and λ5 � − c.

When a � 10, b � 12, c � 30, and e � 3, it is obvious that
there are λ1 � 0, λ2,3,5 < 0, and λ4 > 0.*erefore, regardless of
the parameter values, when system (1) has a line equilibrium,
there is one zero eigenvalue, one positive eigenvalue, and
three negative eigenvalues, so system (1) has unstable saddle
points.

2.4. Perpetual Points. In this paper, we study the new kind of
critical points proposed by Prasad in [74], which are called
perpetual points. *ey are defined as points where the ac-
celeration of the system becomes zero and the velocity re-
mains nonzero. According to the number of zero derivatives,
permanent points can belong to any regular point set
except R0. *e various interesting properties and uses of
these points can be found in [74–76]. According to the
definition of perpetual points in [74], system (1) possesses
two permanent points: PP1 � (

����������
bce/(e + d)

􏽰
,

���������
ace/(e + d)

􏽰
,��

ab
√

, c(
��
ab

√
/(e + d)), 0) and PP2 � (−

����������
bce/(e + d)

􏽰
,

−
���������
ace/(e + d)

􏽰
, −

��
ab

√
, − c(

��
ab

√
/(e + d)), 0). When a � 10,

b � 12, c � 30, d � 2, and e � 3, the two permanent points
are (±14.697, ±13.416, ±10.954, ±65.727, 0), which are
shown in Figure 1, while perpetual points are denoted by red
dots. We can see that the trajectories of the attractors pass
through the perpetual points, so coexistence attractors can
also be located using perpetual points.

2.5. Bifurcation Diagram and Lyapunov Exponent Spectrum.
Bifurcation diagram and Lyapunov exponent spectrum are
suitable tools for visualizing different scenes to chaos/
hyperchaos in dynamic systems. When the system pa-
rameters change, this is achieved by the expression of the
local maximum or minimum of the state variables. In
order to study the dynamic behavior of the 5D FWMHS
with parameters, we discuss the bifurcation diagram and
Lyapunov exponent spectrum of the system with in-
creasing parameter d by using Wolf’s algorithm and
maximum method, respectively. Figures 2 and 3 show the
bifurcation diagram of the state |X| and the corresponding
Lyapunov exponents’ spectrum with the range of the
parameter d taken as [0, 15], respectively, under the initial
conditions of [0.1, 0.1, 0.1, 0.1, 0.1]. It can be seen that the
bifurcation diagram is in good agreement with the Lya-
punov exponent spectrum. When 0≤ d≤ 7.52, the system
has two positive Lyapunov exponents and the system is in
the hyperchaotic state; when 7.52<d≤ 10.1, the system is
in the periodic state; when 10.1<d≤ 15, the system has one
positive Lyapunov exponent, so the system is in the chaotic
state.

2.6. 2e Complexity of Spectral Entropy. *e complexity of
spectral entropy reflects the disorder in the Fourier do-
main. We usually measure the complexity of a system by
calculating its spectral entropy. *e larger the spectral
entropy is, the higher the complexity is, and vice versa

[77–79]. In this part, the complexity of chaotic system (1)
in the parameter range is analyzed by using spectral
entropy complexity algorithm. Figure 4 is the complexity
curve of the parameter d ∈ [0, 12], which is very consistent
with the Lyapunov exponents spectrum of system (1).
When the parameter d ∈ [0, 7.52], the Lyapunov expo-
nents show that the system is hyperchaos. Similarly,
Figure 4 also shows that the waveform changes steeply in
this region, which means that the more complex the
spectrum, the higher the complexity. When
d ∈ (7.52, 10.1], the waveform changes gently, so the
spectrum is simple and the complexity is low; when
d ∈ (10.1, 12], the system is in the chaos state, and the
spectral entropy complexity curve of the system changes
greatly, so the complexity is very high.

2.7. Multistability Analysis. Multistability, the result of co-
existence of many kinds of nonlinear attractors, is the in-
herent property of many nonlinear dynamic systems. In
recent years, it has become a very important research topic
and has attracted much attention [41–50]. Multistability is
rich in the diversity of stable states of nonlinear dynamic
systems, which makes the system flexible. In particular,
when the number of coexisting attractors from a dynamic
system tends to infinite, the coexistence of infinite attractors
depending on the initial conditions of a state variable is
called extreme multistability [80].

In order to investigate the possible multistability in this
5D FWMHS, we first consider random initial conditions
while all the parameters are fixed. *ese coexisting attractors
exist in different values of all parameters, and Figure 5 shows
some symmetric coexisting attractors in state space of system
(1) for different values of the parameter d. Figure 6 shows
some coexisting multiwing attractors in state space of system
(1) for different values of the parameter dwith different initial
conditions. As can be seen in Figure 6, the occurrence of
chaos/hyperchaos, period, and quasi-period attractors coexist
with each other for selected initial conditions.

3. Circuit Design

*e above conclusions can be verified by the analog circuit.
*e analog circuit is a method that can really present the
chaotic motion state, which is more convincing than
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Figure 2: Bifurcation diagram for increasing parameter d.
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Figure 3: Lyapunov exponents’ spectrum for increasing parameter d (the fifth LE is out of plot).
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Figure 4: *e complexity of spectral entropy for increasing parameter d.
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[− 0.1, 0.1, 0.1, 0.1, 0.1], [0.1, − 0.1, 0.1, 0.1, 0.1] and [0.1, 0.1, 0.1, 0.1, 0.1] (blue, red, and green).
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Figure 6: Coexisting multiwing attractors for parameters: (a) d � 9 and the initial conditions are [0.1, − 0.1, 0.1, 0.1, 0.1] and [20, 1, 1, 2, 2]
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[2, 1, 1, 2, 2] (red and blue), and (f) d � 13 and the initial conditions are [0.1, 1, 0.1, 0.1, 0.1] and [2, 1, 1, 2, 2] (red and blue).

6 Complexity



numerical simulation. *e operational amplifiers and
multipliers are LF347 and AD633JN, respectively. Diode
uses 1N1199C when all active components are powered
with ±15V. *e schematic diagram of the circuit is
designed with Multisim 14.0 software platform, as shown
in Figure 7.

*e simulation circuit designed according to the
mathematical equation of each state of equation (1) is

shown in Figure 7. In the simulation circuit, capacitors,
resistors, analog multipliers, and integrated operational
amplifiers are used (the memristor model has been split
into two parts). According to the characteristics of the
nonlinear circuit and the basic theory of the circuit, the
mathematical equations of the states in the simulation
circuit shown in Figure 7 are obtained as shown in the
following equation:

dx1

dt
�

1
R1C1

x1 −
1

10R2C1
x2x3,

dx2

dt
�

1
R3C2

x2 −
1

10R4C2
x1x3,

dx3

dt
�

1
10R5C3

x1x2 −
1

R6C3
x3 +

1
R7C3

1 −
R12

R13
x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡x4,

dx4

dt
� −

1
R8C4

x4 +
1

10R9C4
x1x2,

dx5

dt
� −

1
R10C5

x2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

According to the given parameters, the resistance value
in (7) can be calculated as follows:
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–
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Figure 7: Hardware circuit implementation of the four-wing memristive hyperchaotic system (1).
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R

R1
� 10, R1 � 10 kΩ,

R

10R2
� 1, R2 � 10 kΩ,

R

R3
� 12, R3 � 8.33 kΩ,

R

10R4
� 1, R4 � 10 kΩ,

R

10R5
� 1, R5 � 10 kΩ,

R

R6
� 30, R6 � 3.33 kΩ,

R

R7
� 2, R7 � 50 kΩ,

R

R8
� 3, R8 � 33.33 kΩ,

R

10R9
� 1, R9 � 10 kΩ,

R

R10
� 1, R10 � 100 kΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

*e other parameters of each component in the circuit
are set as follows: R � 100 kΩ and
C1 � C2 � C3 � C4 � 0.01 μF. Under the above parameters
setting conditions, the hyperchaotic phase portraits are
obtained, as shown in Figure 8(a)–8(d), respectively. From
these diagrams, it can be seen that the circuit imple-
mentation results are basically consistent with the numerical
simulation results.

4. Secure Communication Scheme Based on the
New 5D Multistable FWMHS

In this section, based on the proposed 5Dmultistable FWMHS,
a chaotic secure communication scheme with two inputs and
two outputs is proposed. By using high-order sliding mode
control synchronization technology, parameter modulation
method, and Lyapunov stability theory, the encryption and
recovery of two message signals are realized, the gain of the
receiver can be continuously adjusted, the unknown parameters
can be accurately identified, and the disturbance inputs can be
suppressed simultaneously.

4.1. Higher-Order Sliding Mode Control 2eory. *e sliding
order r of the traditional sliding mode (r refers to the
number of continuous full derivatives of the sliding mode
variable s which are zero on the sliding mode surface
s � 0) is 1. Because s � 0 on the sliding mode surface, s is
discontinuous, the traditional sliding mode is also called
the first-order sliding mode. Traditional sliding mode
control is essentially a discontinuous control input acting
on the first derivative of the sliding mode, which makes
the traditional sliding mode control have discontinuous
and serious chattering problems. In order to restrain such
problems, the theory of high-order sliding mode control
is proposed. In the sense of Filippov, high-order sliding
mode is actually a kind of motion on a special type of
integral manifold of a discontinuous dynamic system
[81]. It can be characterized by the convergence of
switching function s(x) and derivatives up to a certain
order to zero. *e order sliding set of sliding surface s � 0
is described as follows:

s � _s � €s � · · · � s
(r− 1)

� 0. (9)

When the r-order sliding set (9) is nonempty and
assumes that it is a local integral set in the sense of
Filippov, the related motion satisfying the above formula
is called “r-order sliding mode,” with respect to the
sliding surface s � 0. At present, there is a popular design
method for high-order sliding mode variable structure
control, i.e., gain-adjustable switching control. Its
structure is as follows:

u � ksgn(s(x))s
r
(x), (10)

where the constant k is the control gain and can be adjusted.
It can be seen that the high-order sliding mode control is to
apply discontinuous control inputs to the high-order de-
rivatives of the sliding mode, which can not only greatly
weaken the chattering during system switching but also
realize the high-order dynamic characteristics of the system
[82]. *erefore, the high-order sliding mode maintains the
advantages of the traditional sliding mode, suppresses the
chattering, eliminates the restriction of relative order, and
improves the control accuracy.

4.2. SomeDefinitionsandAssumptions. Definition 1. Consider
the following form of smooth nonlinear chaotic systems:

_X � f(X, Q),

_Y � h(X),
(11)

where X � (x1, x2, . . . , xn)T ⊂ Rn is the state variable, Y �

(x1, x2, . . . , xm)T ⊂ Rm is the output state variable, and
m≤ n. f(∘) and h(∘) are smooth nonlinear functions and
Q ⊂ Rl are state vectors satisfying l≤ n. Let α(j) be the re-
ciprocal of j times of vector α. If X can be uniquely expressed
by equation (12), we think that the state variable X can be
observed by the algebraic method:
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X � ψ α, α(1)
, . . . , α(j)

􏼐 􏼑
T
, (12)

where j is an integer and ψ is a smooth function.

Definition 2. Under the same conditions as Definition 1,
when Q satisfies the following relationship:

φ1 α, α(1)
, . . . , α(j)

􏼐 􏼑 � φ2 α, α(1)
, . . . , α(j)

􏼐 􏼑Q, (13)

where φ1(∘) and φ2(∘) are smooth matrices of n × 1 and
n × n, respectively, Q is considered to be observable with the
algebraic method for output vector matrix α.

Assumption 1. *e 5D multistable FWMHS (1) proposed
above is selected as the transceiver system of the commu-
nication scheme. It is clear from Figures 1 and 2 that the five
state variables of the system oscillate within a certain range.
In fact, for most of the initial conditions and system pa-
rameters, the five state variables of system (1) are bounded in
most cases.

Assumption 2. It is assumed that both transmitter and re-
ceiver systems of secure communication mechanism are
subject to disturbance inputs of d1i, i � 1, 2, 3, 4, 5 and
d2i, i � 1, 2, 3, 4, 5, respectively, and are bounded and satisfy
|d1i|≤ ρ1i, i � 1, 2, 3, 4, 5 and |d2i|≤ ρ2i, i � 1, 2, 3, 4, 5, of
which ρ2i, ρ1i are known positive constants and satisfy
ρ2i ≥ ρ1i.

Now, we rewrite the second difference equation of
system (1) as follows:

x3 �
bx2 − _x2

x1
, (14)

then equation (14) is substituted into the first equation of
system (1) to obtain

x1 _x1 + x2 _x2 � bx
2
2 − ax

2
1. (15)

According to Definitions 1 and 2, it is obvious that
system (1) is observable by the algebraic method with respect
to two outputs x1 and x2. According to equation (15), it is
further shown that the state parameter vector Q � [a, b]T of
system (1) can be observed algebraically with respect to the
two outputs x1 and x2. *erefore, invalid states
x3, x4, andx5 and parameter vector Q can be recovered by
the two output variables at the same time.

4.3.TransceiverDesign. At the transmitter, we choose the 5D
multistable FWMHS (1) as the drive system. *e algebraic
equation with some uncertain parameters and disturbance
inputs is described as follows:

_x1 � − a(t)x1 + x2x3 + d11,

_x2 � b(t)x2 − x1x3 + d12,

_x3 � x1x2 − 30x3 + 2x4 1 − 0.2 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d13,

_x4 � x1x2 − 3x4 + d14,

_x5 � − x3 + d15,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

(a) (b)

(c) (d)

Figure 8: Four-wing memristive hyperchaotic phase portraits obtained by Multisim simulations in the (a) x1 − x2 plane, (b) x1 − x3 plane,
(c) x2 − x3 plane, and (d) x3 − x4 plane.
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where x1, x2, x3, x4, andx5 are the state variables of the 5D
multistable FWMHS, and the uncertain parameters are
defined as follows:

a(t) � a + sa(t), b(t) � b + sb(t), (17)

where sa(t) and sb(t) are two useful message signals, and the
state parameter vector is Q � [a, b]T. d1i, i � 1, 2, 3, 4, 5, are
disturbance inputs and satisfy Assumption 2.

At the receiver, we define the 5D multistable FWMHS (1)
with partial uncertainties and disturbance inputs as a response
system.*e response system has two effective output variables
x1 and x2, whose algebraic equation is described as follows:

_x6 � − 􏽢a(t)x1 + x2x8 + d21 + u1,

_x7 � 􏽢b(t)x2 − x1x8 + d22 + u2,

_x8 � x1x2 − 30x8 + 2x9 1 − 0.2 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d23 + u3,

_x9 � x1x2 − 3x9 + d24 + u4,

_x10 � − x8 + d25 + u5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where x6, x7, x8, x9, andx10 are the state variables of the
system, and the uncertain parameters are defined as
follows:

􏽢a(t) � 􏽢a + 􏽢sa(t), 􏽢b(t) � 􏽢b + 􏽢sb(t), (19)

where 􏽢sa(t) and 􏽢sb(t) are two useful message signals after
decryption. d2i, i � 1, 2, 3, 4, 5, are disturbance inputs
and satisfy Assumption 2, U � [u1, u2, u3, u4, u5]

T are
controllers, and 􏽢Q � [􏽢a, 􏽢b]T. Figure 9 shows the
proposed secure communication scheme based on two-
input two-output with partial uncertainties and distur-
bance inputs.

4.4. Error Dynamics System Design. By subtracting system
(16) from system (18), the following error dynamics system
is obtained:

_e �

_e1

_e2

_e3

_e4

_e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 􏽥ax1 − 􏽥sa(t)x1 + x2e3 + d11 − d21 − u1

􏽥bx2 + 􏽥sb(t)x2 − x1e3 + d12 − d22 − u2

− 30e3 + 2e4 − 0.4 x4 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x9 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + d13 − d23 − u3

− 3ew + d14 − d24 − u4

− e3 + d15 − d25 − u5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

e �

e1
e2
e3
e4
e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x1 − x6
x2 − x7
x3 − x8
x4 − x9
x5 − x10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q �
a

b
􏼢 􏼣,

􏽥Q �
􏽥a
􏽥b

􏼢 􏼣 �
a − 􏽢a

b − 􏽢b
􏼢 􏼣,

s(t) �
sa(t)

sb(t)
􏼢 􏼣,

􏽥s(t) �
􏽥sa(t)

􏽥sb(t)
􏼢 􏼣 �

sa(t) − 􏽢sa(t)

sb(t) − 􏽢sb(t)
􏼢 􏼣.

(21)

It can be seen that the synchronization between system
(16) and system (18) can be achieved as long as the ap-
propriate controller U � [u1, u2, u3, u4, u5]

T and the corre-
sponding parameter identification law are designed to make
the error system approach zero gradually.

4.5. High-Order Sliding Mode Controller Design. Based on
the idea of high-order sliding mode control proposed in the
previous section, we present the following corresponding
theory.

Theorem 1. If the following high-order sliding mode adap-
tive controller is designed,

U �

u1

u2

u3

u4

u5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

k1sign e1( 􏼁eλ1 + ρ11sign e1( 􏼁 − ρ21sign e1( 􏼁

k2sign e2( 􏼁eλ2 + ρ12sign e2( 􏼁 − ρ22sign e2( 􏼁

x2e1 − x1e2 − 30e3 − 0.4 x4 x5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − x9 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + ρ13sign e3( 􏼁 − ρ23sign e3( 􏼁

2e3 − 3e4 + ρ14sign e4( 􏼁 − ρ24sign e4( 􏼁

− e3 + ρ15sign e5( 􏼁 − ρ25sign e5( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)
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where k � [k1, k2]
T is the controller gain, λ ∈ Z+, λ> 1, and

sign(∘) is symbolic function. 2e adaptive parameter iden-
tification law and the useful message signal law are designed
as follows:

_􏽢Q �
_􏽢a

_􏽢b
⎡⎣ ⎤⎦ �

− x1e1

x2e2
􏼢 􏼣,

_􏽢s(t) �
_􏽢sa(t)

_􏽢sb(t)
⎡⎣ ⎤⎦ �

− x1e1

x2e2
􏼢 􏼣,

(23)

where _􏽢a and _􏽢b are the estimates of unknown parameters and
a and b are useful message signals for decryption.2e response
system (18) and the drive system (16) can be synchronized

globally and asymptotically with disturbance inputs, any
normal number k1 and k2, and any positive integer λ. By
modulation laws (17), (19), and (22), the receiver system (18)
can accurately recover useful message signals sa(t) and sb(t),
respectively.

Proof. Consider the following Lyapunov function:

V(t) �
1
2

e
T

e + 􏽥Q
T 􏽥Q + 􏽥s(t)

T
􏽥s(t)􏼔 􏼕. (24)

By calculating the derivative of V(t) along the trajec-
tories of the error system (19) and using equations (21) and
(22), we can obtain

_V(t) � e1 _e1 + e2 _e2 + e3 _e3 + e4 _e4 + e5 _e5 + 􏽥a _􏽥a + 􏽥b
_􏽥b + 􏽥sa(t)_􏽥sa(t) + 􏽥sb(t)_􏽥sb(t)

� − e1􏽥ax1 − e1􏽥sa(t)x1 + e1x2e3 + e1d11 − e1d21 − e1k1sign e1( 􏼁e
λ
1 − ρ11e1sign e1( 􏼁

+ ρ21e1sign e1( 􏼁 + ρ21e1sign e1( 􏼁 + e2
􏽥bx2 + e2􏽥sb(t)x2 − e2x1e3 + e2d12 − e2d22 − e2k2sign e2( 􏼁e

λ
2

− p12e2sign e2( 􏼁 + p22e2sign e2( 􏼁 − 30e
2
3 + 2e3e4 − 0.4e4 x4 x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x9 x10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + e3d13 − e3d13 − e3d23

− e3x2e1 + x1e3e2 + 30e
2
3 + 0.4e4 x4 x5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − x9 x10

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 − p13e3sign e3( 􏼁 + p23e3sign e3( 􏼁 + p23e3sign e3( 􏼁 − 3e

2
4

+ e4d14 − e4d24 − 2e4e3 + 3e
2
3 − p14e4sign e4( 􏼁 + p24e4sign e4( 􏼁 − e3e5 + e5d15 − e5d25 + e3e5

− p15e5sign e5( 􏼁 + p25e5sign e5( 􏼁 + 􏽥ax1e1 − 􏽥bx2e2 + x1e1􏽥sa(t) − x2e2􏽥sb(t)

� − k1e1sign e1( 􏼁e
λ
1 − k2e2sign e2( 􏼁e

λ
2 + e1d11 − p11e1sign e1( 􏼁 − e1d21 − p21e1sign e1( 􏼁􏼂 􏼃

+ e2d12 − p12e2sign e2( 􏼁 − e2d22 − p22e2sign e2( 􏼁􏼂 􏼃 + e3d13 − p13e3sign e3( 􏼁 − e3d23 − p23e3sign e3( 􏼁􏼂 􏼃

+ e4d14 − p14e4sign e4( 􏼁 − e4d24 − p24e4sign e4( 􏼁􏼂 􏼃 + e5d15 − p15e5sign e5( 􏼁

− e5d25 − p25e5sign e5( 􏼁􏼂 􏼃.

(25)

Transmitter

x1

x2

x3

x6
x7

x8

x9
x10

x4
x5

.
X1 = f (X1, Q)

Q = [a, b]T

a b

Sa(t) Sb(t)

Drive system

Disturbance inputs

Receiver

Response system

d11d12d13d14d15 d21 d22 d23 d24 d25

U (X1, X2)
.
X2 = f (X2, Q, U)

Q = [a, b]T





a

b Sb(t)

Sa(t)

Figure 9: Secure communication scheme based on two-input and two-output with partial uncertainty parameters and disturbance inputs.
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When
ψ1i � eid1i − ρ1ieisign ei( 􏼁,

ψ2i � eid2i − ρ2ieisign ei( 􏼁,
􏼨 (26)

where ψ1i,ψ2i, (i � 1, 2, 3, 4, 5) ∈ R are the compensators for
eliminating disturbance inputs. According to the definitions
and assumptions of d1i and d2i and ρ1i and ρ2i, ψ1i ≤ψ2i can
be guaranteed, so (24) can be changed to

_V(t) � − k1e1sign e1( 􏼁e
λ
1 + k2e2sign e2( 􏼁e

λ
2􏽨 􏽩 + 􏽘

4

i�1
ψ1i − ψ2i( 􏼁

≤ − k1e2sign e2( 􏼁e
λ
2 + k2e2sign e2( 􏼁e

λ
2􏽨 􏽩

� − k1 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌e
λ
1 + k2 e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌e
λ
2􏼐 􏼑.

(27)

So, _V(t) is negative definite. In fact, because of _V(t)< 0,
there are e1, e2 ∈ L¥. *e error equation (19) shows that
_e1, _e2 ∈ L¥. Integrating both sides of equation (27), it can be
obtain:

􏽚
t

0
k1 e1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 e

λ
1(t) + k2 e2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 e

λ
2(t)􏼐 􏼑dt≤V(0). (28)

According to Barbalat’s lemma, when t⟶ ¥, there are
_e⟶ ¥. *erefore, the response system (18) with

disturbance inputs and the drive system (16) with distur-
bance inputs achieve global asymptotic synchronization.

As shown in Figure 2, the state variables x1 and x2 os-
cillate aperiodically around the zero. From the above dis-
cussion, we can conclude that _e is bounded, which means that
e is continuous. According to Barbalat’s lemma, when
t⟶ ¥, there are _e⟶ ¥. By differentiating equation (19), we
also get that €es is bounded, and when t⟶ ¥, there is
€e⟶ ¥. Since when t⟶ ¥,V(t) is convergent, it is obtained
that when t⟶ ¥, two uncertain parameter errors 􏽥Q and two
useful message signal errors 􏽥s(t) are convergent. From
equation (22), when t⟶ ¥, _􏽥Qs and _􏽥s(t) converge to zero.
*erefore, the uncertain parameters a(t) and b(t) at the
receiver can be identified and the useful message signals sa(t)

and sb(t) can be accurately recovered at the same time.

4.6. Numerical Simulations. In this section, the fourth-order
Runge–Kutta method is used to simulate and verify the
theoretical analysis with the step size 0.001. At the trans-
mitter, the uncertain parameters of the system are selected as
a � 10 and b � 12 and the initial conditions of the system
are set to x1(0) � 1, x2(0) � 2, x3(0) � 3, x4(0) � 4, andx5
(0) � 5. At the receiver side, the initial conditions of the system
are set to x6(0) � 6, x7(0) � 7, x8(0) � 8, x9(0) � 9, and
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Figure 10: *e trajectories of the synchronization errors e1, e2, e3, e4, and e5.
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x10(0) � 10.*e initial conditions of uncertain parameters and
useful message signals are set to 􏽢Q(0) � [􏽢a(0), 􏽢b(0)]T �

[0.1, 0.1]T and 􏽢s(0) � [􏽢sa(0),􏽢sb (0)]T � [0.1, 0.1]T, re-
spectively. *e disturbance inputs are set as follows:

d11, d12, d13, d14, d15􏼂 􏼃
T

� [− 0.3 cos(20t), 0.2 sin(10t), 0.2 sin(10t), 0.2 cos(20t), 0.2 cos(20t)]T,

d21, d22, d23, d24, d25􏼂 􏼃
T

� [4 sin(20t), − 3 cos(10t), 3 sin(20t), 2 sin(10t), 2 sin(10t)]T.

⎧⎨

⎩ (29)

Assuming that the useful message signals sa(t) and sb(t)

are triangular function signals, and the frequencies of both
triangular function signals are 90Hz, we have

sa(t) � 0.6 sin(180πt),

sb(t) � 0.5 cos(180πt).
􏼨 (30)

At the same time, the gains of the receiver system are
chosen as k � [k1, k2]

T � [0.6, 0.8]T and sliding order λ � 4.
Figure 10 shows the synchronization error of the response
system (18) and the drive system (16), indicating that the error
tends to zero rapidly and gradually with time. Figures 11(a)
and 11(b) show that when t⟶ ¥, the estimated values of
unknown parameters 􏽢a(t) and 􏽢b(t) gradually tend to a � 10
and b � 12 over time, respectively. As shown in Figures 11(c)
and 11(d), it is easy to see that both useful message signals
sa(t) and sb(t) are accurately recovered.

5. Conclusion

In this work, a new 5D four-wing hyperchaotic system
having a flux-controlled memristor model with absolute

value function is introduced. Dynamical analysis is
performed in terms of equilibrium point, perpetual
point, phase portraits, Lyapunov exponents, bi-
furcations, and spectral entropy. In particular, the
phenomenon of extreme multistability with hidden os-
cillation is revealed and the coexistence of infinite hidden
attractors is observed. *en, the 5D multistable FWMHS
circuit is designed. Finally, a secure chaotic communi-
cation scheme of the 5D multistable FWMHS with dis-
turbance inputs based on parametric modulation theory
and Lyapunov stability theory is implemented by a
convenient robust high-order sliding mode adaptive
controller. *e proposed adaptive controller can accu-
rately identify unknown parameters, continuously adjust
the gain of the receiver system, and effectively suppress
the disturbance inputs of the transmitter and receiver.
Numerical simulations are given to demonstrate the
validity of the theories and the chaotic secure commu-
nication scheme. Our future work is to apply the system
to image encryption, random number generator, and
other fields.
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Figure 11: Estimation of uncertain parameters (a) and (b) and the recovered signal errors (c) and (d).
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system: dynamical analysis, electronic circuit design, active
control synchronization and chaotic masking communication
application,” Optik, vol. 127, no. 8, pp. 4024–4030, 2016.

[70] J. M. V. Grzybowski, M. Rafikov, and J. M. Balthazar,
“Synchronization of the unified chaotic system and applica-
tion in secure communication,” Communications in Non-
linear Science and Numerical Simulation, vol. 14, no. 6,
pp. 2793–2806, 2009.

[71] J. He and J. Cai, “Parameter modulation for secure com-
munication via the synchronization of Chen hyperchaotic
systems,” Systems Science & Control Engineering, vol. 2, no. 1,
pp. 718–726, 2014.

[72] F. Yu and C. Wang, “Secure communication based on a four-
wing chaotic system subject to disturbance inputs,” Optik,
vol. 125, no. 20, pp. 5920–5925, 2014.

[73] J. L. Mata-Machuca, R. Mart́ınez-Guerra, R. Aguilar-López,
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