
 DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2) 2018, pp. 1-10

*Corresponding author. Tel.: +919885837535

Email address: omkrish29@gmail.com (N.M.Krishna)

Double blind peer review under responsibility of DJ Publications

https://dx.doi.org/10.18831/djece.org/2018021001

2455-3980 © 2018 DJ Publications by Dedicated Juncture Researcher’s Association. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1

RESEARCH ARTICLE

FPGA Implementation of On-Chip Network

*
N Murali Krishna

1

1
Department of ECE Sreyas Institute of Engineering &Technology, Hyderabad, India.

Received- 20 February 2018, Revised- 17 April 2018, Accepted- 23 April 2018, Published- 27 April 2018

ABSTRACT

 This paper presents the design of 32 bit UART (Universal Asynchronous Receiver

Transmitter) RISC (Reduced Instruction Set Computing) processor with dynamic power management

system to minimize power consumption and transmission cost. Coarse grained architecture is

suggested due to its innumerable advantages over fine grained architecture. Coarse Grained Arrays

(CGAs) with run-time re-configurability play a challenging task to design Network on-Chip (NoC)

communication systems satisfying the power and area of embedded system. The proposed architecture

is implemented on FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware

Description Language), and the obtained comparison power graph signifies that it consumes less

power when compared to BETA RISC processor.

Keywords: Coarse grained architecture, RISC processor, UART, Network on-chip, FPGA

implementation.

1. INTRODUCTION

Reconfigurable computing architecture

plays a significant role in embedded and high

performance computing system. When

compared to Application Specific Integrated

Circuits (ASIC’s) and microprocessor,

reconfigurable architecture is commonly

employed because of its advantages such as

high throughput, low cost etc. Most of the

architectures face limitations based on

placement, routing and granularities which are

overcome by dynamic compilation [1-4]. Fine

grained architecture provides the advantage of

high flexibility but is not used because of its

inefficiency applications. Coarse grained

reconfigurable system consists of elementary

blocks to provide efficient application without

providing gate level mapping. Several dynamic

setup schemes are also incorporated in coarse

grained array to overcome such limitations.

Due to certain advantages such as improved

performance, logic density and power

efficiency, FPGA is widely employed in digital

applications. Initially, optimizing

programmable logic and routing architecture

provides significant improvements in FPGA.

Nowadays, the coarse grained elements

including memories, processor, etc. are

incorporated into fine grained programmable

logic to provide better performance and high

efficiency [5].

 Coarse Grained Reconfigurable Array

(CGRA) architecture accelerates the

computation of algorithms in several scientific

domains by reducing energy consumption.

CGRA consists of number of interconnected

reconfigurable processing units to perform

arithmetic functions and logic and conditional

operations, etc. [6]. Parallel processing adds

advantage to coarse grained array, which

operates the computational resources in

parallel hence suitable for processing multiple

parallel streams. These reconfigurable parallel

architecture contains number of parts to

execute the processing element concurrently,

but drawbacks arises while realizing these

http://www.djece.org/
http://www.djece.org/
http://www.djece.org/
http://www.djece.org/

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

2

dependencies at compiling time which limits

the exploitation parallelism. Hence network

on-chip models are devised to develop scalable

and reusable applications. CGRA operates with

RISC processor to benefit general and special

purpose processing. The processor minimizes

the resource utilization and dissipated power

by satisfying all the requirements of FPGA

device [7, 8].

2. LITERATURE SURVEY

32-bit processor based on the open-

source RISC-V (RV32I) ISA (Instruction Set

Architecture) is proposed to target low cost

embedded devices. The processor core is

divided into logical modules such as fetch,

decode and control logic responsible for

fetching the instruction from memory,

decoding and resolving jump and target

address accordingly. The advanced version of

this processor and software paves way for the

application in future embedded systems [9].

SHA-3 Instruction Set Extension (ISE) is

proposed to improve the performance of 32-bit

MIPS processor. Two ISE approaches are

proposed such as native data path and

coprocessor-based ISE in which the utilization

factor tends to increase with high execution

speed [10]. A 32 bit re-configurable RISC

processor is designed based on BETA ISA.

Introduction of matrix multiplier enables the

processor to be used in digital signal and image

processing. This processer is considered as a

prominent one due to its fault tolerant ability

but it suffers from power consumption problem

[11].

[12] has proposed an embedded RISC

processor (RISC 32-bit) with dynamic power

management capability which is designed

based on Direct Memory Access (DMA),

UART and timer and memory controllers. It

operates at a maximum speed of 401.881 MHz

with power usage of 1440 mW resulting in

improved performance. Epiphany RISC array

processor offers high computational energy-

efficiency and parallel scalability. In spite of

these advantages, it faces challenges due to

parallel programming model. To overcome

this, Message Passing Interface (MPI) standard

is proposed, which supports larger problem

size greater than the available local memory.

The cost associated with this standard prevents

the use of large buffers in the global memory

[13].

RISC soft-core called low RISC is

proposed based on RISC-V ISA to estimate the

reliability of this processor. Several fault errors

usually occur in this processor. Therefore

modification has to be done in processor

design to improve its fault tolerant system

thereby mitigating single event upset [14].

BTWC (Better Than Worst Case) RISC

processor is designed to avoid worst case extra

delay in critical path without providing

significant improvement in performance. The

results can be obtained by integrating latency-

insensitive design and Variable-Latency (VL)

unit. If error correction or two cycle execution

is infrequent, then BTWC possesses high

execution speed [15]. Due to large size bit

stream and inherent complexity, dynamic

reconfiguration of FPGA device becomes a

non-feasible approach. CGRA offers a

solution, however it has difficulties in

implementation. Thus scalable CGRA is

proposed to ease the implementation of

algorithms on FPGA platforms. This proposed

method is advantageous with respect to FPGA

technology and standard CGRA [16].

[17] has proposed an integration phase

of Memory Management Unit (MMU) to

COFFEE (Core For FREE) RISC processor

and has provided virtual memory to run

operating system without degradation in

operating frequency. COFFEE processor finds

suitable application in embedded and system-

on-chip due to its important characteristics

such as reusability and configurability. It has

the capability to execute 66 instructions in 6-

stage pipeline. [18] has discussed an

OpenSHMEM implementation of Adapteva

Epiphany RISC array processor, that provides

excellent one-sided communication routines.

The OpenSHMEM routines enable compact

implementation thereby saving memory

resources. One-sided communication and

weaker synchronization requirements

minimize the code size of an application when

compared to MPI routines.

3. COARSE GRAINED

ARCHITECTURE

Depending on granularity i.e. number

of bits manipulated by the programmer,

reconfigurable architecture is classified as fine

grained and coarse grained whereas fine

grained architecture that is commonly

employed in FPGA allow data manipulation in

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

3

bit level consisting of processing elements with

least number of significant input and output.

Coarse grained architecture overcomes the

limitations of fine grained structure, and hence

suitable for all related applications by

providing operator level functional blocks,

efficient routing switches etc. These

advantages experience reduction in

configuration time and memory as well as

placement allocation and routing. Table 1

shows the properties exhibited by fine and

coarse grained architecture based on

granularity [19].

Table 1.Fine and coarse grained based on

granularity

Properties Granularity

Fine grained Coarse grained

Operation Bit level Word level

Reconfiguration

information

High less

Performance Medium High

Flexibility High Medium/High

Configuration

time

Long Short

Due to several advantages, coarse

grained offer better performance when

compared to fine grained hence commonly

employed in many applications. The

architecture of coarse grained structure shown

in figure 1 consists of a RISC processor, DMA

controller, external memory block and

reconfigurable computing module

interconnected through data bus [20].

Figure1.Coarse grained architecture

 The function of coarse grained

architecture relies mainly on RISC processor,

which controls the other components during

execution. It supports single cycle operation

with maximum memory speed [21]. RISC

processor increases the speed of computer and

reduces the time needed to accomplish each

operation. Also this processor consists of a

flexible architecture thus minimizing dynamic

power consumption. Direct Memory Access

controller is used between Reconfigurable

Computing module (RCM) and main memory

to provide efficient communication [22]. DMA

controller acts as co-processor to handle the

data managed by RISC processor. It is

important to use this controller to perform data

movement task.

RCM plays a vital role in accelerating

data intensive code blocks depending on

application. This module operates faster when

compared to accessing the context from

external memory. It consists of elements such

as configuration control unit, execution

controller, data memory controller, data

memory, Processing Element (PE) array and

configuration memory. The configuration

control unit controls the configuration memory

whereas data memory controller controls the

data memory. Execution controller supervises

the overall action of RCM [23]. Data memory

stores the instruction of the application unit.

Configuration memory is an important block of

RCM, providing data flow diagram codes

(DFM) based on applications. The codes will

be loaded in the hardware to configure the

specific application and it also specifies

interconnected gates as well as programming

element to be used. Configuration memory

also provides hardware mapping to its

application [24]. PEs are the processing blocks

said to be homogenous. Based on the designer

requirement, the number of processing element

used is decided. Each element is associated

with corresponding row and column identified

by index number, which addresses the element

while data transferring. It is a small processor

without instruction fetch and branch units. PE

is configured by configuration memory and

configuration control unit. Figure 2 shows the

interconnected topology in PE array.

Figure 2.Topology interconnection in PE array

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

4

The topology to interconnect cells in

PE array is different. There are different types

of topology used based on the application

requirements. Figure 3 shows the examples of

interconnections and topology used in the

processing element [25].

Figure 3.Various interconnections and topology

(a) Grid topology (b) Hexagonal (c) Octal

Global buses to connect I/O ports (e) Cluster

topology

(f) Grid topology using crossbars

4. NETWORK ON-CHIP

In order to meet the requirements of

low power and high performance, the

resources used in single chip has automatically

increased. Interconnection between the

resources plays a challenging task [26]. Shared

interconnection bus topology is commonly

employed in most of the system on-chip

applications but it faces limitations due to its

scalability. Only one master can use the bus at

a time and other should wait until the process

gets completed. In the situation when the bus

request and required bandwidth is large, this

cannot be considered. Hence NoC architecture

is designed. NoC provides a methodology to

connect hundreds of IP cores used for general

purpose processors, application specific

processors, digital signal processors and so on.

Figure 4 shows the structure of NoC [27].

Figure 4.Structure of NoC

NoC is composed of three main

components such as network adapter, routing

node and link. The network adapter provides

interface between processing core and

communication network. Router executes the

routing mechanism and provides the

information through channels or links. Its

performance depends on throughput and

latency. This authorizes the parallel

communication which results in high

bandwidth. The reconfiguration time must be

smaller than the computational blocks.

5. RISC PROCESSOR
The design block of 32-bit RISC

processor incorporates Arithmetic Logic Unit

(ALU), Accumulator, Program Counter (PC),

Instruction Register (IR), memory, Control

Unit (CU) and additional logic to handle 32 bit

data, 28 bit address and uses fixed instruction

format of length 32 bit. Size of opcode is of 4

bit which can handle 15 instructions with a 256

memory locations. Figure A1 presents the

architecture of RISC processor [28]. ALU

takes input either from memory, register bank

or immediate data and perform arithmetic and

logic operations. In addition to that, it also

performs some bit operations like rotate or

shift [29]. PC administers the fetched

instruction counter. PC is a latch which

contains the memory address from which the

processor fetches the instructions. PC is the

largest sub-block, and second to control unit

based on complexity. It consists of 6-bit

pointer to specify the instruction memory and

additionally uses a 6-bit pointer to indicate the

data memory, which is used only when a

load/store instruction is executed. Instruction

execution flow and logical operation flow of

processor is controlled by PC. Generally it

executes incrementing and loading operation.

Conventional adder circuit is equipped in PC

to perform increment operation.

Instruction fetch unit fetches

instruction from instruction memory using the

current value of PC and increments the PC

value for the next instruction. The logic

elements used in instruction fetch unit are 8-bit

PC register, an adder to increment PC by four,

instruction memory, a multiplexor, and an

AND gate to select the value of the next PC.

Depending on memory address pointed by

program counter, the instruction is fetched and

placed in data bus which is called as called as

instruction fetch cycle. From the data bus, the

data is loaded into instruction register which is

known to be instruction load. In this cycle, 4

MSB of the instruction are separated and

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

5

placed in the opcode register which are

finally loaded to control unit and ALU. The

remaining bits are sent out [30].

MUX connects the output of

instruction memory and PC. During negative

cycle, instruction register output is enabled

while during positive cycle, PC output is

enabled. The important function of instruction

decode unit is to acquire the register data

values from the instruction fetch. The logic

elements included in decode unit are

multiplexors and the register file [31]. Register

file consists of eight general purpose registers

of 32-bits capacity each, which are used while

executing the arithmetic and data-centric

instructions. The load instruction loads the

value into the register file and store instruction

retrieves the files back to memory. Control unit

checks whether the entire processor operates

correctly. It also generates various signals and

co-ordinates the overall modules structure [32].

Data memory unit uses the load and store

instructions. The load instruction asserts the

MemRead signal and the obtained read output

is written into register file. A store instruction

asserts the MemWrite signal and writes the

data to processor.

6. UART

UART consists of transmitter and

receiver blocks. The transmitter converts the

input data byte into bits and sends one by one

serially while the receiver receives the serial

bit data and converts them to data byte. Figure

5 shows the block diagram of UART [33].

 Figure 5.Block diagram of UART

UART transmits an individual bit in

sequential fashion hence called as serially

based device. Certain timing parameters should

be followed by sender and receiver, and special

bits are added to each word in order to

synchronize the units. Asserting a "start bit" in

UART initiates data transmission and also

informs the receiver, that data byte is about to

send. Each bit of data byte is sent serially and

equal amount of time is needed for each bit

transmission. After receiving the bits, the

receiver samples the logic depending on the

period assigned to it. The transmitter may add

“parity bit” indicating the receiver to perform

simple error checking. When data is

transmitted, the transmitter sends “stop bit”

pointing the completion of data transmission.

For each byte of data, similar process is carried

out by the transmitter. Since RISC processor

processes parallel input, the serial output of

UART is converted into parallel using SIPO

(Serial In Parallel Out) register, thus producing

parallel output. Since serial interface has

several advantages over parallel interface with

respect to long cable length, simple wiring etc.,

the RISC parallel output is converted to serial

using PISO register [34].

7. LOW POWER TECHNIQUE

The traditional RISC processor

consumes more power. Reduction of power is

done at fabrication step, which is a complex

process. Power reduction technique used in

this method is clock gating, in which it

prevents the clock signal from reaching various

modules and hence the input to the circuit

remains unchanged resulting in no switching

activity. Leakage power i.e. quiescent power

cannot be reduced but reduces the dynamic

power consumption. This system is wireless

and thus can be more acceptable and cost

effective [35].

8. IMPLEMENTATION ON NoC

Coarse grained 32 bit RISC processor,

with UART is implemented on NoC as shown

in figure 6. [17] NoC system consists of RISC

processor, memory, UART, network interfaces

and routers. RISC consists of separate memory

management units (MMUs) for instruction and

data memory. Several low power design of

RISC processor has certain limitations on NoC

such as (i) linear increase in battery capacity

(ii) need of expansive cooling system (iii) co-

dependent voltage and frequency etc. These

limitations degrade the system performance.

Hence dynamic power management technique

is introduced in RISC processor to adjust the

power consumption by activating small

number of devices to attain better performance.

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

6

RISC consists of relatively few instructions,

addressing modes and formats. Due to these

reductions advantages, designer can fit large

number of CPU registers into chip thereby

enhancing the throughput of the processor.

UART model used in this system is 16550

UART [36].

Figure 6.Implementation on NoC

Flash memory used in this system is

Intel’s smart voltage 28F016S2 flash with a

capacity of 2MB.WISHBONE is a bus

protocol standard used to interconnect IP cores

using various interconnection schemes. NI is

used to convert the wishbone signals from the

IP cores to packets.

9. RESULTS AND DISCUSSION

32 bit UART RISC processor designed

with dynamic power management is

implemented on FPGA based NoC.

Figure 7.Simulated waveform of proposed

architecture

FPGA, a dominant reconfigurable

fabric well known by their flexibility finds

applications in specific architecture like

memory, processor etc. This technology

promises to reshape the architecture by

providing the best hardware resources which is

implemented in VHDL and simulated using

Xilinx ISE 12.3 [37]. Simulated waveform of

the proposed architecture is shown in figure 7.

9.1 RTL schematic

After obtaining simulation results,

RTL schematic representation is generated.

RTL schematic refers to the representation of

design on the basis of symbols. The symbol

includes logic gates, counters, adders etc.

Figure 8 shows the RTL schematic of this

proposed scheme. In RTL view, clk is the input

of NoC to synchronize the processor and

peripheral devices. Reset is the input to

synchronize the processor with clk and is used

to reset the memory contents and all other

system components.

Figure 8.RTL schematic of proposed RISC

processor.

9.2 Technology schematic

The internal design of the RTL is

generated by technology schematic which is

shown in figure 9.

Figure 9.Technology schematic

Power consumption of proposed

design is obtained using Xilinx XPower

analyser, and performance comparison based

on power is shown in figure 10. Existing

method based on BETA RISC processor

consumes 93.09 mW of power whereas this

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

7

proposed architecture consumes only 2.706

mW, thus resulting in better performance.

Figure 10.Power comparison between existing and

proposed method

10. CONCLUSION

 This paper presents the design and

implementation of a 32 bit UART RISC

processor intended for computer architecture.

The proposed architecture is implemented in

VHDL and simulated using Xilinx software.

The simulated power graph result indicates that

this method consumes less power when

compared to existing method and hence finds

application in certain area where power is

considered as a main criterion.

REFERENCES

[1] Ricardo S.Ferreira, Alex Damiany,

Julio Vendramini and Tiago Teixeira,

Fast Placement and Routing by

Extending Coarse-Grained

Reconfigurable Arrays with Omega

Networks, Journal of Systems

Architecture, Vol. 57, No. 8, 2011, pp.

761-777,

https://dx.doi.org/10.1016/j.sysarc.201

1.03.006.

[2] Seamas McGettrick and C.J.Bleakley,

Rapid Functional Modelling and

Simulation of Coarse Grained

Reconfigurable Array Architectures,

Journal of Systems Architecture, Vol.

57, No. 4, 2011, pp. 383-391.

[3] Giovanni Ansaloni, Paolo Bonzini and

Laura Pozzi, EGRA: A Coarse

Grained Reconfigurable Architectural

Template, IEEE Transactions on Very

Large Scale Integration (VLSI)

Systems, Vol. 19, No. 6, 2011.

[4] A.K.Parvathi, A Network Architecture

using Super Base Station for

Communication in Energy-Efficient

Fifth-Generation, DJ Journal of

Advances in Electronics and

Communication Engineering, Vol. 1,

No. 2, 2015, pp. 1-11,

http://dx.doi.org/10.18831/djece.org/2

015021001.
[5] Chi Wai Yu, Julien Lamoureux,

Steven J.E.Wilton, Philip H.W.Leong

and Wayne Luk, The Coarse-

Grained/Fine-Grained Logic Interface

in FPGAs with Embedded Floating-

Point Arithmetic Units, Southern

Conference on Programmable logic,

2008.

[6] Grigorios Dimitroulakos, Stavros

Georgiopoulos, Michalis D.Galanis

and Costas E.Goutis, Resource Aware

Mapping on Coarse Grained

Reconfigurable Arrays,

Microprocessors and Microsystems,

Vol. 33, No. 2, 2009, pp. 91-105,

https://dx.doi.org/10.1016/j.micpro.20

08.07.002.

[7] Sajjad Nouri, Waqar Hussain and Jari

Nurmi, Implementation of IEEE-

802.11a/g Receiver Blocks on a

Coarse-Grained Reconfigurable Array,

Design and Architectures for Signal

and Image Processing (DASIP),

Poland, 2015.

[8] Zain-ul-Abdin and Bertil Svensson,

Evolution in Architectures and

Programming Methodologies of

Coarse-Grained Reconfigurable

Computing, Vol. 33, No. 3, 2009, pp.

161-178,

https://doi.org/10.1016/j.micpro.2008.

10.003.

[9] Don Kurian Dennis, Ayushi Priyam,

Sukhpreet Singh Virk, Sajal Agrawal,

Tanuj Sharma and Arijit Mondal,

Single Cycle RISC-V Micro

Architecture Processor and its FPGA

Prototype, International Symposium

on Embedded Computing and System

Design, India, 2017.

[10] Ahmed S.Eissa, Mahmoud A.Elmohr,

Mostafa A.Saleh, Khaled E.Ahmed

and Mohammed M.Faraq, SHA-3

Instruction Set Extension for a 32-bit

RISC Processor Architecture, IEEE

International Conference on

Application-Specific Systems,

0

50

100

BETA

RISC

processor

UART

RISC

processor

Power (mW)

Power (mW)

https://dx.doi.org/10.1016/j.sysarc.2011.03.006
https://dx.doi.org/10.1016/j.sysarc.2011.03.006
http://dx.doi.org/10.18831/djece.org/2015021001
http://dx.doi.org/10.18831/djece.org/2015021001
https://dx.doi.org/10.1016/j.micpro.2008.07.002
https://dx.doi.org/10.1016/j.micpro.2008.07.002
https://doi.org/10.1016/j.micpro.2008.10.003
https://doi.org/10.1016/j.micpro.2008.10.003

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

8

Architectures and Processors, UK,

2016.

[11] Raj Prakash Singh, Ankit

K.Vashishtha and R.Krishna, 32 Bit

Re-configurable RISC Processor

Design and Implementation for BETA

ISA with Inbuilt Matrix Multiplier,

International Symposium on

Embedded Computing and System

Design, India, 2016.

[12] Narender Kumar and Munish Rattan,

Implementation of Embedded RISC

Processor with Dynamic Power

Management for Low-Power

Embedded System on SOC,

International Conference, India.

[13] James A.Ross, David A.Richie, Song

J.Park and Dale R.Shires, Parallel

Programming Model for the Epiphany

Many-Core coprocessor using

Threaded MPI, Microprocessors and

Microsystems, Vol. 43, 2016, pp. 95-

103,

https://dx.doi.org/10.1016/j.micpro.20

16.02.006.

[14] Alexis Ramos Juan and Antonio

Maestro Pedro Reviriego,

Characterizing a RISC-V SRAM-

based FPGA Implementation Against

Single Event Upsets using Fault

Injection, Microelectronics Reliability,

Vol. 78, 2017, pp. 205-211

https://dx.doi.org/10.1016/j.microrel.2

017.09.007.

[15] Mario R.Casu and Paolo Mantovani, A

Synchronous Latency-Insensitive

RISC for Better than Worst-Case

Design, Integration, The VLSI Journal,

Vol. 48, 2015, pp. 72-82,

https://dx.doi.org/10.1016/j.vlsi.2014.0

1.003.

[16] Claudio Brunelli, Fabio Garzia,

Davide Rossi and Jari Nurmi, A

Coarse-Grain Reconfigurable

Architecture for Multimedia

Applications Supporting Subword and

Floating-Point Calculations, Journal of

Systems Architecture, Vol. 56, No. 1,

2010, pp. 38-47,

https://dx.doi.org/10.1016/j.sysarc.200

9.11.003.

[17] Farid Shamani, Vida Fakour, Sevom

Tapani and Ahonen Jari Nurmi,

Integration Issues of a Run-Time

Configurable Mmanagement Unit to a

RISC processor on FPGA,

Microprocessors and Microsystems,

Vol. 49, 2017, pp. 179-191,

https://dx.doi.org/10.1016/j.micpro.20

16.12.001.

[18] James A.Ross and David A.Richie,

Implementing OpenSHMEM for the

Adapteva Epiphany RISC Array

Processor, Procedia Computer

Science, Vol. 80, 2016, pp. 2353-2356,

https://dx.doi.org/10.1016/j.procs.2016

.05.439.

[19] Rahul K.Hiware and Dinesh

Padole,Configuration Memory Based

Dynamic Coarse Grained

Reconfigurable Multicore Architecture

for 8 Point FFT, International

Conference on Emerging Trends in

Engineering and Technology, Japan,

2015.

[20] Manhwee Jo, Dongwook Lee,

Kyuseung Han and KiyoungChoi,

Design of a Coarse-Grained

Reconfigurable Architecture with

Floating-Point Support and

Comparative Study, Integration, The

VLSI Journal, Vol. 47, No. 2, 2014,

pp. 232-241,

https://dx.doi.org/10.1016/j.vlsi.2013.0

8.003.

[21] Samiappa Sakthikumaran,

S.Salivahanan and V.S.Kanchana

Bhaaskaran, 16-Bit RISC Processor

Design for Convolution Application,

International Conference on Recent

Trends in Information Technology,

India, 2011.

[22] Priyanka Trivedi and Rajan Prasad

Tripathi, Design & Analysis of 16 bit

RISC Processor using Low Power

Pipelining, International Conference

on Computing, Communication &

Automation, India, 2015.

[23] Yinhui Wang, Teng Wang, Pan Zhou

and Xinan Wang, Design and

Implementation of a Flexible DMA

Controller in Video Codec System,

International Conference on Digital

Signal Processing (DSP), China, 2014.

[24] Dinesh Padole and Rahul Hiware,

Configuration Memory Based

Dynamic Coarse Grained

Reconfigurable Multicore

https://dx.doi.org/10.1016/j.micpro.2016.02.006
https://dx.doi.org/10.1016/j.micpro.2016.02.006
https://dx.doi.org/10.1016/j.microrel.2017.09.007
https://dx.doi.org/10.1016/j.microrel.2017.09.007
https://dx.doi.org/10.1016/j.vlsi.2014.01.003
https://dx.doi.org/10.1016/j.vlsi.2014.01.003
https://dx.doi.org/10.1016/j.sysarc.2009.11.003
https://dx.doi.org/10.1016/j.sysarc.2009.11.003
https://dx.doi.org/10.1016/j.micpro.2016.12.001
https://dx.doi.org/10.1016/j.micpro.2016.12.001
https://dx.doi.org/10.1016/j.procs.2016.05.439
https://dx.doi.org/10.1016/j.procs.2016.05.439
https://dx.doi.org/10.1016/j.vlsi.2013.08.003
https://dx.doi.org/10.1016/j.vlsi.2013.08.003

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

9

Architecture, IEEE Region 10

Conference TENCON, China, 2013.

[25] Vinicius Montenegro Silva, Ricardo

S.Ferreira and Alisson Garcia, Mesh

Mapping Exploration for Coarse-

Grained Reconfigurable Array

Architectures, IEEE International

Conference on Reconfigurable

Computing and FPGA's, Mexico,

2006.

[26] Yalavarthi Ramakrishna

Paramahamsa, An Efficient

Implementation of Power and Area

Optimized On-Chip Network Coarse-

Grained Processor, International

Journal of Engineering Research and

Science & Technology, Vol. 4, No. 2,

2015.

[27] V.Veera Prathap, N.Nagaraja and

M.Z.Kurian, Network on Chip Design

and Implementation on FPGA with

Advanced Hardware and Networking

Functionalities, International

Conference on Computing,

Communications and Networking

Technologies, India, 2013.

[28] Suyog V.Pande and Prashant

D.Bhirange, An Efficient High Speed

RISC Processor for Convolution, IEEE

International Conference on Intelligent

Systems and Control, India, 2015.

[29] B.Rajesh Kumar, Ravisaketh and

Santha Kumar, Implimentation of a

16-bit RISC Processor for Convolution

Application, Advance in Electronic

and Electric Engineering, Vol. 4, No.

5, 2014, pp. 441-446.

[30] Sangeetha Palwkar and Nitin

Narkhede, 32-Bit RISC Processor with

Floating Point Unit for DSP

Applications, IEEE International

Conference on Recent Trends in

Electronics, Information &

Communication Technology, India,

2016.

[31] Neenu Joseph, S.Sabarinath and

K.Sankarapandiammal, FPGA Based

Implementation of High Performance

Architectural Level Low Power 32-bit

RISC Core, International Conference

on Advances in Recent Technologies

in Communication and Computing,

India, 2009, pp. 53-57.

[32] Byreddy Swetha and Fazal Noor

Basha, A Low Power Controlling

Processor Implementing in SOC,

International Journal of Engineering

Trends and Technology, Vol. 4, No. 7,

2013.

[33] Liakot Ali, Roslina Sidek, Ishak Aris,

Alauddin Mohd.Ali and Bambang

Sunaryo Suparjo, Design of a Micro-

UART for SoC Application,

Computers & Electrical Engineering

Vol. 30, No. 4, 2004, pp. 257-268,

https://dx.doi.org/10.1016/j.compelece

ng.2003.01.002.

[34] S.P.Singh, S.Bhoj,

D.Balasubramanian, T.Nagda,

D.Bhatia and P.Balsara, Network

interface for NoC based architectures,

International Journal of Electronics,

Vol. 94, No. 5, 2007, 531–547,

https://dx.doi.org/10.1080/0020721070

1306462.

[35] Surendra Bajia, Power and Delay

Optimization of Customized 16-Bit

Low Power RISC Processor Using

VHDL, International Journal of Latest

Technology in Engineering,

Management & Applied Science, Vol.

2, No. 10, 2013, pp. 53-60.

[36] Vinayak Pai, Swapnil S.Lotlikar and

Deepthi Dasari, NoC Based

Interconnection of Open RISC

Processors, pp. 1-8.

[37] Konstantin Berestizshevsky, Guy Even

Yaniv Fais and Jonatan Ostrometzky,

Software Defined Network on a Chip,

Microprocessors and Microsystems,

Vol. 50, 2017, pp. 138-153,

https://dx.doi.org/10.1016/j.micpro.20

17.03.005.

https://dx.doi.org/10.1016/j.compeleceng.2003.01.002
https://dx.doi.org/10.1016/j.compeleceng.2003.01.002
https://dx.doi.org/10.1080/00207210701306462
https://dx.doi.org/10.1080/00207210701306462
https://dx.doi.org/10.1016/j.micpro.2017.03.005
https://dx.doi.org/10.1016/j.micpro.2017.03.005

N.M.Krishna./DJ Journal of Advances in Electronics and Communication Engineering, Vol. 4(2), 2018 pp. 1-10

10

APPENDIX

Figure A1.RISC processor architecture

