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ABSTRACT 

 This paper presents the design of 32 bit UART (Universal Asynchronous Receiver 

Transmitter) RISC (Reduced Instruction Set Computing) processor with dynamic power management 

system to minimize power consumption and transmission cost. Coarse grained architecture is 

suggested due to its innumerable advantages over fine grained architecture. Coarse Grained Arrays 

(CGAs) with run-time re-configurability play a challenging task to design Network on-Chip (NoC) 

communication systems satisfying the power and area of embedded system. The proposed architecture 

is implemented on FPGA (Field Programmable Gate Array) using VHDL (VHSIC Hardware 

Description Language), and the obtained comparison power graph signifies that it consumes less 

power when compared to BETA RISC processor. 

Keywords: Coarse grained architecture, RISC processor, UART, Network on-chip, FPGA                      

implementation. 

 

 

1. INTRODUCTION 

Reconfigurable computing architecture 

plays a significant role in embedded and high 

performance computing system. When 

compared to Application Specific Integrated 

Circuits (ASIC’s) and microprocessor, 

reconfigurable architecture is commonly 

employed because of its advantages such as 

high throughput, low cost etc. Most of the 

architectures face limitations based on 

placement, routing and granularities which are 

overcome by dynamic compilation [1-4]. Fine 

grained architecture provides the advantage of 

high flexibility but is not used because of its 

inefficiency applications. Coarse grained 

reconfigurable system consists of elementary 

blocks to provide efficient application without 

providing gate level mapping. Several dynamic 

setup schemes are also incorporated in coarse 

grained array to overcome such limitations. 

Due to certain advantages such as improved 

performance, logic density and power 

efficiency, FPGA is widely employed in digital 

applications. Initially, optimizing 

programmable logic and routing architecture 

provides significant improvements in FPGA. 

Nowadays, the coarse grained elements 

including memories, processor, etc. are 

incorporated into fine grained programmable 

logic to provide better performance and high 

efficiency [5].                             

               Coarse Grained Reconfigurable Array 

(CGRA) architecture accelerates the 

computation of algorithms in several scientific 

domains by reducing energy consumption. 

CGRA consists of number of interconnected 

reconfigurable processing units to perform 

arithmetic functions and logic and conditional 

operations, etc. [6]. Parallel processing adds 

advantage to coarse grained array, which 

operates the computational resources in 

parallel hence suitable for processing multiple 

parallel streams. These reconfigurable parallel 

architecture contains number of parts to 

execute the processing element concurrently, 

but drawbacks arises while realizing these 
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dependencies at compiling time which limits 

the exploitation parallelism. Hence network 

on-chip models are devised to develop scalable 

and reusable applications. CGRA operates with 

RISC processor to benefit general and special 

purpose processing. The processor minimizes 

the resource utilization and dissipated power 

by satisfying all the requirements of FPGA 

device [7, 8]. 

 

2. LITERATURE SURVEY  

32-bit processor based on the open-

source RISC-V (RV32I) ISA (Instruction Set 

Architecture) is proposed to target low cost 

embedded devices. The processor core is 

divided into logical modules such as fetch, 

decode and control logic responsible for 

fetching the instruction from memory, 

decoding and resolving jump and target 

address accordingly. The advanced version of 

this processor and software paves way for the 

application in future embedded systems [9]. 

SHA-3 Instruction Set Extension (ISE) is 

proposed to improve the performance of 32-bit 

MIPS processor. Two ISE approaches are 

proposed such as native data path and 

coprocessor-based ISE in which the utilization 

factor tends to increase with high execution 

speed [10]. A 32 bit re-configurable RISC 

processor is designed based on BETA ISA. 

Introduction of matrix multiplier enables the 

processor to be used in digital signal and image 

processing. This processer is considered as a 

prominent one due to its fault tolerant ability 

but it suffers from power consumption problem 

[11]. 

[12] has proposed an embedded RISC 

processor (RISC 32-bit) with dynamic power 

management capability which is designed 

based on Direct Memory Access (DMA), 

UART and timer and memory controllers. It 

operates at a maximum speed of 401.881 MHz 

with power usage of 1440 mW resulting in 

improved performance. Epiphany RISC array 

processor offers high computational energy-

efficiency and parallel scalability. In spite of 

these advantages, it faces challenges due to 

parallel programming model. To overcome 

this, Message Passing Interface (MPI) standard 

is proposed, which supports larger problem 

size greater than the available local memory. 

The cost associated with this standard prevents 

the use of large buffers in the global memory 

[13].   

RISC soft-core called low RISC is 

proposed based on RISC-V ISA to estimate the 

reliability of this processor. Several fault errors 

usually occur in this processor. Therefore 

modification has to be done in processor 

design to improve its fault tolerant system 

thereby mitigating single event upset [14].             

BTWC (Better Than Worst Case) RISC 

processor is designed to avoid worst case extra 

delay in critical path without providing 

significant improvement in performance. The 

results can be obtained by integrating latency-

insensitive design and Variable-Latency (VL) 

unit. If error correction or two cycle execution 

is infrequent, then BTWC possesses high 

execution speed [15]. Due to large size bit 

stream and inherent complexity, dynamic 

reconfiguration of FPGA device becomes a 

non-feasible approach.  CGRA offers a 

solution, however it has difficulties in 

implementation. Thus scalable CGRA is 

proposed to ease the implementation of 

algorithms on FPGA platforms. This proposed 

method is advantageous with respect to FPGA 

technology and standard CGRA [16].  

[17] has proposed an integration phase 

of Memory Management Unit (MMU) to 

COFFEE (Core For FREE) RISC processor 

and has provided virtual memory to run 

operating system without degradation in 

operating frequency. COFFEE processor finds 

suitable application in embedded and system-

on-chip due to its important characteristics 

such as reusability and configurability. It has 

the capability to execute 66 instructions in 6-

stage pipeline. [18] has discussed an 

OpenSHMEM implementation of Adapteva 

Epiphany RISC array processor, that provides 

excellent one-sided communication routines.  

The OpenSHMEM routines enable compact 

implementation thereby saving memory 

resources. One-sided communication and 

weaker synchronization requirements 

minimize the code size of an application when 

compared to MPI routines. 

 

3. COARSE GRAINED          

ARCHITECTURE 

Depending on granularity i.e. number 

of bits manipulated by the programmer, 

reconfigurable architecture is classified as fine 

grained and coarse grained whereas fine 

grained architecture that is commonly 

employed in FPGA allow data manipulation in 
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bit level consisting of processing elements with 

least number of significant input and output. 

Coarse grained architecture overcomes the 

limitations of fine grained structure, and hence 

suitable for all related applications by 

providing operator level functional blocks, 

efficient routing switches etc. These 

advantages experience reduction in 

configuration time and memory as well as 

placement allocation and routing. Table 1 

shows the properties exhibited by fine and 

coarse grained architecture based on 

granularity [19].  

 
Table 1.Fine and coarse grained based on 

granularity 

Properties Granularity 

Fine grained Coarse grained 

Operation Bit level Word level 

Reconfiguration 

information 

High less 

Performance Medium  High 

Flexibility High Medium/High 

Configuration 

time 

Long Short 

  

Due to several advantages, coarse 

grained offer better performance when 

compared to fine grained hence commonly 

employed in many applications. The 

architecture of coarse grained structure shown 

in figure 1 consists of a RISC processor, DMA 

controller, external memory block and 

reconfigurable computing module 

interconnected through data bus [20]. 

 

 
Figure1.Coarse grained architecture 

 

 The function of coarse grained 

architecture relies mainly on RISC processor, 

which controls the other components during 

execution.  It supports single cycle operation 

with maximum memory speed [21]. RISC 

processor increases the speed of computer and 

reduces the time needed to accomplish each 

operation. Also this processor consists of a 

flexible architecture thus minimizing dynamic 

power consumption. Direct Memory Access 

controller is used between Reconfigurable 

Computing module (RCM) and main memory 

to provide efficient communication [22]. DMA 

controller acts as co-processor to handle the 

data managed by RISC processor. It is 

important to use this controller to perform data 

movement task.  

RCM plays a vital role in accelerating 

data intensive code blocks depending on 

application. This module operates faster when 

compared to accessing the context from 

external memory. It consists of elements such 

as configuration control unit, execution 

controller, data memory controller, data 

memory, Processing Element (PE) array and 

configuration memory. The configuration 

control unit controls the configuration memory 

whereas data memory controller controls the 

data memory. Execution controller supervises 

the overall action of RCM [23]. Data memory 

stores the instruction of the application unit. 

Configuration memory is an important block of 

RCM, providing data flow diagram codes 

(DFM) based on applications. The codes will 

be loaded in the hardware to configure the 

specific application and it also specifies 

interconnected gates as well as programming 

element to be used. Configuration memory 

also provides hardware mapping to its 

application [24]. PEs are the processing blocks 

said to be homogenous. Based on the designer 

requirement, the number of processing element 

used is decided. Each element is associated 

with corresponding row and column identified 

by index number, which addresses the element 

while data transferring. It is a small processor 

without instruction fetch and branch units. PE 

is configured by configuration memory and 

configuration control unit. Figure 2 shows the 

interconnected topology in PE array. 

  

 
Figure 2.Topology interconnection in PE array 
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The topology to interconnect cells in 

PE array is different. There are different types 

of topology used based on the application 

requirements. Figure 3 shows the examples of 

interconnections and topology used in the 

processing element [25]. 

 

 
Figure 3.Various interconnections and topology 

(a) Grid topology (b) Hexagonal (c) Octal 

Global buses to connect I/O ports (e) Cluster 

topology 

(f) Grid topology using crossbars 

 

4. NETWORK ON-CHIP 

In order to meet the requirements of 

low power and high performance, the 

resources used in single chip has automatically 

increased. Interconnection between the 

resources plays a challenging task [26]. Shared 

interconnection bus topology is commonly 

employed in most of the system on-chip 

applications but it faces limitations due to its 

scalability. Only one master can use the bus at 

a time and other should wait until the process 

gets completed. In the situation when the bus 

request and required bandwidth is large, this 

cannot be considered. Hence NoC architecture 

is designed. NoC provides a methodology to 

connect hundreds of IP cores used for general 

purpose processors, application specific 

processors, digital signal processors and so on. 

Figure 4 shows the structure of NoC [27]. 

 

 
Figure 4.Structure of NoC 

 

NoC is composed of three main 

components such as network adapter, routing 

node and link. The network adapter provides 

interface between processing core and 

communication network. Router executes the 

routing mechanism and provides the 

information through channels or links. Its 

performance depends on throughput and 

latency. This authorizes the parallel 

communication which results in high 

bandwidth. The reconfiguration time must be 

smaller than the computational blocks.   

 

5. RISC PROCESSOR 
The design block of 32-bit RISC 

processor incorporates Arithmetic Logic Unit 

(ALU), Accumulator, Program Counter (PC), 

Instruction Register (IR), memory, Control 

Unit (CU) and additional logic to handle 32 bit 

data, 28 bit address and uses fixed instruction 

format of length 32 bit. Size of opcode is of 4 

bit which can handle 15 instructions with a 256 

memory locations. Figure A1 presents the 

architecture of RISC processor [28]. ALU 

takes input either from memory, register bank 

or immediate data and perform arithmetic and 

logic operations. In addition to that, it also 

performs some bit operations like rotate or 

shift [29]. PC administers the fetched 

instruction counter. PC is a latch which 

contains the memory address from which the 

processor fetches the instructions. PC is the 

largest sub-block, and second to control unit 

based on complexity. It consists of 6-bit 

pointer to specify the instruction memory and 

additionally uses a 6-bit pointer to indicate the 

data memory, which is used only when a 

load/store instruction is executed. Instruction 

execution flow and logical operation flow of 

processor is controlled by PC. Generally it 

executes incrementing and loading operation. 

Conventional adder circuit is equipped in PC 

to perform increment operation. 

Instruction fetch unit fetches 

instruction from instruction memory using the 

current value of PC and increments the PC 

value for the next instruction. The logic 

elements used in instruction fetch unit are 8-bit 

PC register, an adder to increment PC by four, 

instruction memory, a multiplexor, and an 

AND gate to select the value of the next PC. 

Depending on memory address pointed by 

program counter, the instruction is fetched and 

placed in data bus which is called as called as 

instruction fetch cycle. From the data bus, the 

data is loaded into instruction register which is 

known to be instruction load. In this cycle,  4  

MSB  of  the  instruction  are  separated  and  
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placed  in  the opcode register which are 

finally loaded to control unit and ALU. The 

remaining bits are sent out [30].  

MUX connects the output of 

instruction memory and PC. During negative 

cycle, instruction register output is enabled 

while during positive cycle, PC output is 

enabled. The important function of instruction 

decode unit is to acquire the register data 

values from the instruction fetch. The logic 

elements included in decode unit are 

multiplexors and the register file [31]. Register 

file consists of eight general purpose registers 

of 32-bits capacity each, which are used while 

executing the arithmetic and data-centric 

instructions.  The load instruction loads the 

value into the register file and store instruction 

retrieves the files back to memory. Control unit 

checks whether the entire processor operates 

correctly. It also generates various signals and 

co-ordinates the overall modules structure [32]. 

Data memory unit uses the load and store 

instructions. The load instruction asserts the 

MemRead signal and the obtained read output 

is written into register file. A store instruction 

asserts the MemWrite signal and writes the 

data to processor. 

 

6. UART 

UART consists of transmitter and 

receiver blocks. The transmitter converts the 

input data byte into bits and sends one by one 

serially while the receiver receives the serial 

bit data and converts them to data byte. Figure 

5 shows the block diagram of UART [33]. 

 

 
                 Figure 5.Block diagram of UART 

 

UART transmits an individual bit in 

sequential fashion hence called as serially 

based device. Certain timing parameters should 

be followed by sender and receiver, and special 

bits are added to each word in order to 

synchronize the units. Asserting a "start bit" in 

UART initiates data transmission and also 

informs the receiver, that data byte is about to 

send. Each bit of data byte is sent serially and 

equal amount of time is needed for each bit 

transmission. After receiving the bits, the 

receiver samples the logic depending on the 

period assigned to it. The transmitter may add 

“parity bit” indicating the receiver to perform 

simple error checking. When data is 

transmitted, the transmitter sends “stop bit” 

pointing the completion of data transmission. 

For each byte of data, similar process is carried 

out by the transmitter. Since RISC processor 

processes parallel input, the serial output of 

UART is converted into parallel using SIPO 

(Serial In Parallel Out) register, thus producing 

parallel output. Since serial interface has 

several advantages over parallel interface with 

respect to long cable length, simple wiring etc., 

the RISC parallel output is converted to serial 

using PISO register [34]. 

 

7. LOW POWER TECHNIQUE 

The traditional RISC processor 

consumes more power. Reduction of power is 

done at fabrication step, which is a complex 

process. Power reduction technique used in 

this method is clock gating, in which it 

prevents the clock signal from reaching various 

modules and hence the input to the circuit 

remains unchanged resulting in no switching 

activity. Leakage power i.e. quiescent power 

cannot be reduced but reduces the dynamic 

power consumption. This system is wireless 

and thus can be more acceptable and cost 

effective [35]. 

  

8.  IMPLEMENTATION ON NoC 

Coarse grained 32 bit RISC processor, 

with UART is implemented on NoC as shown 

in figure 6. [17] NoC system consists of RISC 

processor, memory, UART, network interfaces 

and routers. RISC consists of separate memory 

management units (MMUs) for instruction and 

data memory. Several low power design of 

RISC processor has certain limitations on NoC 

such as (i) linear increase in battery capacity 

(ii) need of expansive cooling system (iii) co-

dependent voltage and frequency etc. These 

limitations degrade the system performance. 

Hence dynamic power management technique 

is introduced in RISC processor to adjust the 

power consumption by activating small 

number of devices to attain better performance. 
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RISC consists of relatively few instructions, 

addressing modes and formats. Due to these 

reductions advantages, designer can fit large 

number of CPU registers into chip thereby 

enhancing the throughput of the processor. 

UART model used in this system is 16550 

UART [36]. 

 

 
Figure 6.Implementation on NoC 

 

Flash memory used in this system is 

Intel’s smart voltage 28F016S2 flash with a 

capacity of 2MB.WISHBONE is a bus 

protocol standard used to interconnect IP cores 

using various interconnection schemes. NI is 

used to convert the wishbone signals from the 

IP cores to packets.  

                      

9. RESULTS AND DISCUSSION 

32 bit UART RISC processor designed 

with dynamic power management is 

implemented on FPGA based NoC. 

 

 
Figure 7.Simulated waveform of proposed 

architecture 

 

FPGA, a dominant reconfigurable 

fabric well known by their flexibility finds 

applications in specific architecture like 

memory, processor etc. This technology 

promises to reshape the architecture by 

providing the best hardware resources which is 

implemented in VHDL and simulated using 

Xilinx ISE 12.3 [37]. Simulated waveform of 

the proposed architecture is shown in figure 7. 

9.1 RTL schematic 

After obtaining simulation results, 

RTL schematic representation is generated. 

RTL schematic refers to the representation of 

design on the basis of symbols. The symbol 

includes logic gates, counters, adders etc. 

Figure 8 shows the RTL schematic of this 

proposed scheme. In RTL view, clk is the input 

of NoC to synchronize the processor and 

peripheral devices. Reset is the input to 

synchronize the processor with clk and is used 

to reset the memory contents and all other 

system components. 

 
Figure 8.RTL schematic of proposed RISC 

processor. 

9.2 Technology schematic 

The internal design of the RTL is 

generated by technology schematic which is 

shown in figure 9. 

 

 
Figure 9.Technology schematic 

 

Power consumption of proposed 

design is obtained using Xilinx XPower 

analyser, and performance comparison based 

on power is shown in figure 10. Existing 

method based on BETA RISC processor 

consumes 93.09 mW of power whereas this 
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proposed architecture consumes only 2.706 

mW, thus resulting in better performance. 

 

 
Figure 10.Power comparison between existing and 

proposed method 

 

10. CONCLUSION 

         This paper presents the design and 

implementation of a 32 bit UART RISC 

processor intended for computer architecture. 

The proposed architecture is implemented in 

VHDL and simulated using Xilinx software. 

The simulated power graph result indicates that 

this method consumes less power when 

compared to existing method and hence finds 

application in certain area where power is 

considered as a main criterion.   
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Figure A1.RISC processor architecture 

 

 

 

 

 


