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1.Introduction 
Sarcasm is an intended mockery that inverts the 

literal meaning of an utterance. The Oxford online 

dictionary defines sarcasm as “The use of irony to 

mock or convey contempt” [1]. Sarcasm transforms 

the sentiment of utterance into its opposite. It is used 

to harass or to express contempt to someone. Sarcasm 

detection is a difficult task. It must detect whether a 

positive utterance is having negative sentiment or 

vice versa.  

 

Word is part of language that doesn‟t occur arbitrary. 

It has a relation with other words that occur together, 

for example, semantic relationship [2]. This relation 

is formed by the frequency of words that frequently 

appear together [3], thus, pairs of words used in 

general and normal situation will have high similarity 

scores. 

 

Sarcasm can be detected through context incongruity 

[2, 4]. This feature can be detected by observing the 

similarity between the words in the sentence. Words 

that frequently appear together tend to be in the same 

context. Therefore, words in sarcasm text tend to 

have uneven distribution of word similarity score.  

 

 
*Author for correspondence 

In this research, word similarity is introduced as a 

feature in sarcasm detection process. This feature is 

used as an augmented feature in the deep learning 

model. Deep learning has made impressive advances 

in computer vision field. Following the trend, many 

NLP researchers use deep learning as the classifier 

[5−7]. 

  

Traditional NLP techniques require features to be 

defined first, such as POS tags, term frequency, and 

TF-IDF. In contrast, deep learning will automatically 

detect patterns as features, enabling multilevel feature 

representation learning. The use of deep learning 

enables the classifier to find patterns that cannot be 

manually defined. 

 

Word is a discrete unit of characters combination. 

Traditional NLP techniques use features extracted 

from the word, such as morphological feature, 

syntactic feature, and semantic feature. Those 

features are not numerical features; they cannot be 

directly used as the input in the deep learning model. 

There are several techniques to transform words into 

numerical features, such as co-occurrence matrix, but 

this method is inefficient and is too slow when the 

size of the corpus is getting larger [8]. Another 

technique that can be used is word embedding. Word 

embedding or distributed word representation [3] is a 
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technique to transform the word into the vector of 

real number   . The vector is formed using a neural 

network, trained by windowing the words, it captures 

the relationship between words that appear closer 

together. The relationship between words explains 

the normality of phrases. 

 

1.1Background 

The role of context incongruity in sarcasm processing 

has been studied in [9]. The effect of context 

incongruity on human interpretation and the 

processing of verbal irony by observing the 

participant‟s reaction and reading time have been 

discussed [9]. It concludes that literal statements are 

perceived to be more sarcasm when there is a 

disparity or contrast between contexts in a statement 

[9]. The greater the disparity or contrast between the 

context and the statement, the greater it led to be 

perceived as irony or sarcasm. 

 

Words in similar contexts tend to have similar 

meanings [2] and are expected to appear closely 

together [10, 11]. In the context of NLP, words that 

appear in similar context can be estimated by word 

embedding technique. One of the most popular 

technique is Word2Vec [3]. This technique 

transforms words into the distributed vector 

representation and preserves syntactic and semantic 

word relationship. The general idea of this technique 

is to train a classifier model to classify context words 

given a target word by moving the windows through 

words as seen in Figure 1.  

 

 
Figure 1 Illustration of sliding window in Word2Vec 

 

The green window is the target word and the yellow 

windows are the context words. In this way, the 

disparity of context can be observed in the text by 

observing the similarity of each word in it.  

 

Sarcasm can be detected in several ways. The most 

prominent way to detect sarcasm is by detecting 

context disparity [2]. Context disparity can be 

observed by evaluating the relation of words in a text. 

This relation can be observed by scoring each word 

for their similarity. Word similarity has been 

exploited as a feature to increase sarcasm detection 

performance in [4, 12]. It utilises similarity score as 

one of the features through the WordNet similarity 

score, which utilises is-a and has-part relation 

between words [4]. In [12], word similarity is used to 

detect context incongruity. They use the maximum 

and minimum score of the most similar and 

dissimilar word pair as the features of context 

incongruity. They also tried distance-weighted score 

of those features. Support vector machine (SVM) 

model was used in [12]. Augmented feature boosts at 

most 5% in the f-measure score. 

 

Deep learning has been exploited as the classifier in a 

sarcasm detection task. In [5] CNN model has been 

used as the classifier. Several features are introduced 

to detect sarcasm, they are sentiment, emotion, and 

personality features. All features are concatenated 

together to form a final feature vector. They also 

incorporate SVM into the CNN model as the part of 

the classifier model. The model achieves impressive 

average accuracy of 95.27% when tested with 3 

different datasets. 

 

There are only a few researches of sarcasm detection 

conducted in the Indonesian language. [12] is the 

only paper we can find in the internet repositories. 

This mainly happens because the lack of dataset 

availability. In [12], sentiment analysis is done before 

the sarcasm detection takes part. The sarcasm 

detection task is done only on data with positive 

sentiment polarity. 

 

1.2Contribution 

In this research, we propose a sarcasm detection 

model that uses a common feature of sarcasm. The 

CNN deep learning model is used as the 

classification model and word similarity score is 

introduced as an augmented feature in the model. 

Several ways to augment the word similarity score is 

observed and the results are observed. This research 

is conducted in Indonesian Language. 

 

2.Materials and methods  
2.1Data materials 

Twitter is a popular social media platform with more 

than 400 million active users [13]. It lets user posts 

message up to 140 characters length. Apart from 
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alphanumeric characters, user can use @ (at) to refer 

the tweet to another user, and # (hashtag) to identify 

the topic or to signify the context of the tweet. An 

example of a tweet is as follows: “@username I 

watched the #tv and suddenly I want to eat #hungry”. 

 

Twitter API is used to collect tweet that contains 

hashtags. We relied on hashtags that twitter provides 

for users to use to signify their tweets. In our 

observation, users usually don‟t tweet sarcasm tweets 

and use #sarcasm tag in their tweets. Therefore, 

searching for sarcasm tweets by using only #sarcasm 

hashtag is not effective. We use other hashtags that 

often being used together in sarcasm tweets, such as 

#eh and #lah to obtain potential sarcasm tweets. 

Manual review is then performed on collected tweets 

by labelling the tweet as sarcasm or not sarcasm. 

These tweets then will be pre-processed. The pre-

processing steps are described in section 2.5. 

 

2.2Similarity as feature vector 

Word2Vec is one of word embedding techniques [3]. 

Word embedding is a technique to compute 

distributed representation of words in the form of 

continuous vectors. Word vector from word 

embedding technique can capture semantic 

relationship between words. In this way, similarity 

between words can be estimated by calculating 

cosine similarity between word vectors. Cosine 

similarity is calculated using Equation 1. 

   ( )  
   

‖ ‖‖ ‖
     (1) 

 

where         are vectors. The    ( ) will be 0 if 

the angle between vector   and   is orthogonal, 

which means those vectors are linearly independent. 

The more    ( ) close to 1, the more of both vectors 

are dependent or similar with each other. 

 

Semantic similarity in word2vec is estimated by how 

closely words appear together and how many times 

these the words appear together. In normal situation, 

words that are occurring appear together form a 

sentence. This combination of words will have high 

similarity if the combination appears frequently. 

Similarity semantic similarity also concludes whether 

the words are considered to appear in the same 

context, as if words don‟t appear close together in 

normal situation, each of those words might have a 

different context of use. 

 

Sarcasm is a way of mockery formed using words 

that don‟t occur appear together and closely in 

normal situation. In this way, if Word2Vec is trained 

with formal and daily conversation corpus such as 

Wikipedia or news corpus, some words in sarcasm 

text will have a low value in its word pair‟s similarity 

score calculation results shown in Table 1. 

 

 

Table 1 Similarity score chart 

 Saking Pintar Tidak_Lulus 

Saking 1 0.278477 0.081239 

Pintar 0.278477 1 0.191633 

Tidak_Lulus 0.081239 0.191633 1 

 

The pair of “Pintar” or “Smart with “Tidak_Lulus” or 

“Didn‟t Pass” has a low similarity score. This 

happens because these two words are rarely 

appearing together in normal context. In a normal 

context, “Smart” relates to “Pass the test”. This value 

shows that there is a context incongruity between 

words in the tweet.  

 

In this research, word similarity scores are used as 

feature vectors. All of the word similarity scores are 

concatenated together, as in (2), forming a vector. We 

call it similarity score vector. 

        (       )       (       ) (2) 

 

Where sim denotes similarity function. Words from 

pre-processed tweet are limited to 25 words. 

Similarity score vector will be padded with 0 for 

tweet that has been pre-processed with lower than 25 

words. 

 

To validate our intuition, a fully connected neural 

network with 256 hidden neurons is built and 

similarity score vector is used as the input, not as 

augmented feature. K-fold validation with k=5 is 

used as the validation method. The result is shown in 

Table 2. 

 

Table 2 Performance of word similarity score used as 

input 

 Percentage 

Average Accuracy 80.080% 

Recall 80.868% 

Precision 78.917% 

F-measure 79.828% 

Similarity score as the input has been tested by Joshi 
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et al. [11]. The highest F-Measure they got was 

69.49%, and it was concluded that their proposed 

similarity score cannot be used alone as the input. In 

our case, with f-measure of 79.828%, our proposed 

similarity score vector is sufficient to use as the input 

alone and validates that similarity score vector is a 

useful feature to use for sarcasm detection.  

 

2.3Deep learning setup 

Deep learning is defined as a model consists of many 

layers that can learn complicated concepts [14]. In 

this research, the CNN deep learning model is used. 

Each convolutional layer consists of convolution 

operation and pooling operation. Max-pooling is used 

in pooling layer, while Leaky ReLU function is used 

in convolutional layer. Sigmoid function is used in the 

output layer, yielding a binary output for the 

classification task. The formula can be seen in 

Equation 3,4 and 5 respectively. 

 

 ( )        ( )          (3) 

 ( )  {
         
       

         (4) 

 ( )   
 

     
          (5) 

Word is a combination of alphanumeric characters. 

Traditional NLP techniques usually represent words 

as indices of vocabulary. Words need to be converted 

into a representation that deep learning model can use 

as its input, which is a vector of real numbers   . 

This task is accomplished by using the word 

embedding technique. In this research, words are 

transformed into vectors using Word2Vec. 

Word2Vec model is trained on a Wikipedia Bahasa 

Indonesia corpus. Each word will be converted into a 

vector with 300 dimensions. Each of the resulting 

word vectors is concatenated together, forming a 

vector. A tweet having n words is represented as 

follows in (6): 

                          (6) 

 

As the n is limited to 25 words, pre-processed tweets 

that have words lower than 25 words will be padded 

with 0. 

 

The architecture of the deep learning model used in 

this research can be seen in Table 3. 

 

 

Table 3 Architecture of CNN model 

 Neuron count Kernel size Kernel count Padding Stride 

Input Layer 300×25 - - - - 

1st Conv - 11 300 VALID 1 

Pooling Layer - 2 - VALID 2 

2nd Conv - 11 200 VALID 1 

Pooling Layer - 2 - VALID 2 

3rd Conv - 10 100 VALID 1 

Pooling Layer - 2 - VALID 2 

4th Conv - 10 100 VALID 1 

Pooling Layer - 2 - VALID 2 

Dense Layer 100 - - - - 

Output Layer 1 - - - - 

 

2.4Feature augmentation 

Augmentation in the machine learning model has 

been widely used in computer vision and speech 

recognition [15−17]. Augmentation can be applied to 

the dataset or in the feature space. Augmentation on 

dataset is done by creating a new instance of data by 

transforming the original data or by adding noise to 

the original data. Researches refer this method as data 

augmentation [17]. This method is used in a 

condition where the required labelled dataset is not 

available in large quantity. Synthetic data is formed 

with features that are not so different from the 

original dataset. Augmentation in the feature space is 

done in the feature space produced by the classifier 

model, for example, the deep feature of CNN [18]. 

With this scheme, external features can be 

incorporated with the main classifier, increasing the 

ability of the model to classify better. 

 

In this paper, similarity score vector is used as 

augmented feature. At the forward pass, Word2Vec 

model takes in one-hot vector of each word. The 

representational vector of each word is used as the 

distributed representation of word and is used as the 

input by the CNN. Those vectors are then used to 

calculate the similarity of each word, concatenated 

together, forming the similarity score vector. 

Augmenting the similarity score vector is the original 

aspect of this research. The similarity score vector 

will be augmented in the feature space. There are 

several possible ways of augmenting the similarity 

score vector in the feature space. The optimality of 
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the feature augmentation methods is unknown in this 

context. Through this research, the most optimal 

methods of augmenting the similarity score vector 

will be obtained. Three ways of augmenting 

similarity vector with deep learning model are 

observed. They are described in the following sub-

sections. 
2.4.1Word similarity score vector augmented with the 

deep feature 

In this scheme, similarity score vector is augmented 

through concatenating the vector with deep feature 

vector, as seen in Figure 2. Deep feature is the flatten 

output vector of the last convolution layer in the deep 

learning model, before the fully connected layer. This 

method is commonly used by researchers to 

incorporate features from more than one model, as 

seen in [15, 18]. The concatenated vector will be the 

input of the fully connected layer. After the 

augmentation, the dimension of the deep feature will 

be 256 + (25×25). 
2.4.2Word similarity score vector augmented as a 

channel in the input layer 

In computer vision task, deep learning model takes 

colour image with more than one channel as the 

input. The image will commonly have 3 channels that 

consist of red, green, and blue channels. In NLP 

tasks, deep learning usually will only take one 

channel of input, which is the sparse d dimension 

encoding of words (d is the number of concatenated 

words dimension). In this case, d will be the word 

embedding vectors. In this scheme, similarity score 

vector is embedded as the second channel in the input 

layer. The input layer is now having 2 channels, as 

seen in Figure 3. It consists of word embedding 

vector as the first layer and the similarity score vector 

as the second channel.  

 

The second channel needs to have the same 

dimension with the first channel. Linear interpolation 

is used to resize the second channel. The similarity 

score vector will be processed together, in parallel, 

with the word embedding vector by the convolutional 

layers. 
2.4.3Word similarity score vector augmented with the 

input vector 

In this scheme, similarity score vector is 

concatenated with the input vector, which is a word 

embedding vector, as seen in Figure 4. The input 

vector will have dimensions of (300×25) + (25×25). 

 

 

 

 
Figure 2 Illustration of similarity score vector augmented with the deep feature 

 
Figure 3 Illustration of similarity score vector augmented as the second channel 
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Figure 4 Illustration of similarity score vector augmented with the input vector 

 

2.5Data pre-processing 

Tweets collected from twitter are noisy and need to 

be cleaned [19]. Users usually don‟t use standard 

language in twitter. Constrained by character 

limitation, twitter users are usually abbreviating word 

such as “b4”, “brb”, and “lol”. Smiley is popular too 

among the twitter users. Its short and expressive 

nature makes it popular in character count limited 

social media like the twitter. These kinds of paradigm 

make the processing becomes ineffective. They need 

to be normalised first. 

 

Pre-processing takes the role in this phase. It will 

normalise the tweet, so it can be processed by the 

classifier. There are several processes in this step; 

each of them will be described as follows. 

RT Filter: Retweeted tweets are considered not 

useful, as they have the same content with the 

original tweets. Retweeted tweets can be detected by 

character “RT” at the beginning of the tweets. We 

remove tweets that started with “RT” characters. 

URL Removal: User can type anything in their 

tweet, including URL. URL is considered not useful, 

as it doesn‟t convey any meaningful feature unless 

we follow, open the URL, and process the 

information from the referred URL. URL is discarded 

from the tweet by using regular expression to detect 

the URL. 

Twitter Special Tags Removal: Twitter uses some 

tags as special tags, such as “@” to mention other 

user, and “#” to signify or to show the context of 

tweet. These characters need to be eliminated as they 

are considered not a feature. 

Tokenization: Tokenization is a process of chunking 

words into a collection of single word. In this 

process, some words are filtered and tokenised as a 

concatenate bigram. Words such as “Tidak suka” has 

the opposite meaning with “Suka”. It will be 

tokenised as “tidak_suka”, so it will not lose its 

negation feature. 

Abbreviation Expansion: As described before, users 

in twitter tend to abbreviate word. Those words need 

to be expanded before they are used as input for the 

classification task. Abbreviations are expanded by 

using dictionary we build from our observation on 

the collected tweets. 

Duplicated Letter Normalization: Twitter users 

usually exaggerate message by duplicating letters in 

the word, such as „woooow‟ and „waahhh‟. „Waw‟ 

and „waaaaw‟ words are not standard. “Waw” and 

“waaawww” have the same meaning and intention, 

they should be treated in the same way. These kinds 

of words need to be normalised, so the model will 

process them as the same words. These kinds of 

words are normalised by removing duplicated 

consecutive letters in the word. In this way, word 

such as “waaaww” will be transformed to “waw” and 

will be treated as the same word. 

Reversed Word Normalization: Slang words are 

used extensively in twitter. Reversing letter order in 

word is popular in Indonesia. For example, “Yuk” 

means “Come on” in English, and twitter users 

sometime reverse the letter order to “Kuy”. These 

kinds of word need to be normalised. Normalising is 

accomplished by using dictionary we built from our 

observation on collected tweets. 

Reduplicated Word Normalization: Word like 

“hahahaha” will be normalised by removing 

duplicated word and leave only 2 repetitions. In this 

way, “hahahahaha” will be transformed to “haha”. 

Reduplicated words will be treated in the same way. 

Unused Punctuation Removal: Punctuation is 

considered as feature in Natural Language 

Processing. Punctuation can be used to intensify the 

semantic meaning, such as “!” and “?”. There are 

some punctuations that are not used or don‟t have 

contribution in forming word‟s semantic meaning. In 

this step, unused punctuations are eliminated, such as 

braces, “;”, “*”, and some more unused punctuations. 
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Stemming: In this step, words are normalised into 

their dictionary form. Modified enhanced confix 

stripping [20] is used as stemming algorithm. 

Stopword Removal: Stopword is considered 

unimportant in text mining [21]. Therefore, it is usual 

to remove stopwords from corpus before further 

analysis. Stopword dictionary developed by Tala [22] 

is used in this step. 

 

The output of these steps above is a collection of 

classification-ready word tokens. These tokens are 

transformed into vectors with Word2Vec. These 

vectors are concatenated together, forming a 

classification-ready vector.  

 

2.6Experimental setup 

Accuracy, precision, recall, and f-measure are used as 

the metric and 5-folds cross validation is used for 

evaluating the models. The vanilla CNN model has 

the same architecture as described in Table 3. SVM 

model is built with RBF kernel and penalty term or C 

value is 1. Vanilla CNN and SVM models use the 

same dataset, but with no augmented feature. The 

models will do binary classification on the dataset. 

The dataset consists of 4000 tweet samples with 2 

labels, sarcasm and not sarcasm. The polarity 

distribution in the dataset is balanced, means the 

dataset consists of 2000 sarcasm samples (positive) 

and 2000 non-sarcasm samples (negative). Training 

runs for 50 epochs in each CNN model. For the SVM 

model, training runs with the stopping criterion of 

    . 

 

3.Experimental results 

The results of the experiments are shown in this 

section. To measure the potential of our method, we 

consider the method proposed by Joshi et al. [11] as 

our baseline. In addition, result from Lunando and 

Purwarianti [12] has also included a comparison of 

sarcasm detection in Indonesian language. Model 1, 

2, and 3 are CNN models with augmented similarity 

score vector, described in section 2.4 respectively. 

For comparison purpose, vanilla CNN model and 

SVM model are also built. The vanilla CNN model is 

shown as model 4, SVM with no augmented 

similarity score vector is shown as model 4, SVM 

without augmented similarity score vector is shown 

as model 5, SVM with augmented feature is shown as 

model 6, SVM model by Joshi et al. [11] is shown as 

model 7, and result from Lunando and Purwarianti 

[12] is shown as model 8. The detail of each model is 

shown in Table 4. 

 

 

Table 4 Table of model description 

Model Model description 

1 CNN with word similarity score vector augmented with the deep feature. 

2 CNN with word similarity score vector augmented as a channel in the input layer. 

3 CNN with word similarity score vector augmented with the input vector 

4 Vanilla CNN without augmented feature. 

5 SVM without augmented feature. 

6 SVM with augmented feature 

7 SVM by Joshi et al. [11] 

8 Lunando and Purwarianti [12] 

 

3.1Accuracy results 

All models are trained and tested with setup as 

described in section 2.6. The classification accuracy 

results are presented in Table 5. 

 

Results show that in general, deep learning CNN 

models with augmented similarity score vector have 

better accuracy than the vanilla CNN model, though 

it only gains 2% accuracy from the vanilla CNN 

model. The vanilla CNN model achieves 81.950% 

average accuracy, while model 1 achieves 83.950% 

average accuracy.  

 

The interesting thing is that the SVM models in our 

experiment outperform the accuracy of vanilla CNN 

by 0.825%. In our experiments, we concluded that 

this happens because of the dataset size and the 

structure of the CNN models. The SVM constructs 

decision boundary between the data, it relies on 

support vectors that divides the label on the data in 

the dataset. Dataset with a small number of labels 

such as a binary labelled dataset is assumed to have 

linearly separated data, thus, SVM perform better 

than deep learning methods. SVM will underperform 

deep learning models when the data in the dataset is 

scattered and has many labels. This can be observed 

by the accuracy of deep learning models and SVM 

model between binary labelled and 3 class labelled 

dataset in [23], the accuracy gap is getting smaller as 

the dataset has more labels. The word similarity 

vectors clearly boost the accuracy of CNN model. 

Compared with vanilla CNN model, augmenting 
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word similarity vectors into the CNN model boost the 

accuracy by 2% at its best. The accuracy of CNN 

models with augmented feature is also better than the 

accuracy of SVM model. For better understanding, 

other metrics are calculated; they are shown in the 

next section. 

 

 

Table 5 Classification accuracy of each model 

Model Min Max Avg. Std. Dev. 

1 82.375% 85.625% 83.950% 1.171% 

2 79.250% 85.625% 82.775% 2.665% 

3 82.38% 85.13% 83.78% 1.04% 

4 79.625% 83.250% 81.950% 1.449% 

5 79.250% 85.625% 82.775% 2.665% 

6 79.950% 86.840% 83.210% 2.205% 

7 79.250% 85.625% 82.775% 2.665% 

8 - - 54.1% - 

 

3.2Precision, recall, and F-measure 

Precision, recall, and f-measure of each model as 

described in section 2.6 are shown in Table 6. 

 

Vanilla CNN achieves an impressive 93.250% recall 

score, but it also has the minimum precision score 

among other CNN models, which affect the usability 

of the model. Despite the SVM models achieved 

good average accuracy as shown Table 5, they have 

the lowest precision scores. 

 

 

Table 6 Precision, recall, and f-measure of each model 

Model Precision Recall F-Measure 

1 81.299% 88.800% 84.884% 

2 78.19% 91.60% 84.37% 

3 79.732% 90.650% 84.841% 

4 76.187% 93.250% 83.859% 

5 64.897% 90.176% 75.461% 

6 67.082% 89.500% 76.684% 

7 65.784% 90.500% 76.179% 

8 - - - 

 

4. Discussion 
Recent researches in NLP show that deep learning 

methods are performing better than machine learning 

models in NLP tasks. Researchers in [6] explored 

deep learning model in twitter sentiment analysis 

task. They use a CNN model to analyse tweet 

sentiment using Semeval-15 datasets. The model 

achieves accuracy that could rank in the first two 

positions in Semeval-15 tasks. 

 

In the context of using word similarity score as the 

feature of sarcasm detection task, experiments have 

been conducted in [12]. In [12], similarity score is 

used as augmented features by calculating four 

scores, the maximum score of most similar and 

dissimilar word pair and the minimum score of 

similar and dissimilar score. They also add weights to 

the scores by measuring the distance between each 

word pair. SVM model was used in [12]. Results 

show that augmenting these features boost the 

performance of classification models, although it 

decreases the performance in some of the 

experimental models. The analysis shows that 

contextual sarcasm can‟t be captured with features 

used in [12] as they only use score of similar and 

dissimilar word pair. This problem is solved by using 

the whole word similarity score as the feature, as it 

contains all similarity scores of word pair in the 

phrase. By incorporating not only the most similar 

and dissimilar word similarity score, it captures the 

complete context of the conversation. 

 

In our experiment, SVM model scores better than 

vanilla CNN. This occurrence also happens in [23]. 

The performance of deep learning methods and 

machine learning methods in the twitter sentiment 

analysis are evaluated in [23]. They used CNN and 

Elman RNN as deep learning models and SVM 

model as machine learning model. The SVM model 

uses unigram, bigram, and a combination of them as 

term frequency features, while word vector 

representation is used as the feature of the deep 

learning models. The models are evaluated with 

binary and 3 class classification tasks. All of the 
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SVM model variants perform better than deep 

learning model variants in the classification task. The 

average performance gap between SVM and deep 

learning models is 11.65% of binary classification 

tasks. The average performance gap is getting smaller 

in 3 class classification tasks, it decreases to 8.52%. 

We conclude that this happens because of the size of 

the dataset and the number of dataset‟s labels as 

described in section 3.1. 

 

Model 2 and 3 have the augmented feature 

augmented with input vector, while the model 1 has it 

augmented with the deep feature vector. The 

dimension of augmented feature is 625 and is a 

ready-to-be classified feature, as we have concluded 

in section 2.2. The augmented feature in model 2 and 

3 is sampled down by the convolution process in 

CNN model, thus, diminish the similarity score 

information. While the convolution process will 

extract important features from given input, the 

results show that the similarity score vector is better 

when augmented with the deep feature rather than 

with the input vector. Given the finding in section 

2.2, this concludes that the similarity score vector is 

better when it is classified directly with a fully 

connected neural network, as in the model 1. We 

want to investigate more on how to utilise the 

similarity score feature in future research. 

 

5.Conclusion 

By experimenting different scheme of augmentation, 

we have 2 conclusions. First, augmenting word 

similarity score as a whole with deep learning model 

gives the model additional knowledge to classify 

sarcasm better, thus, increasing its accuracy. Second, 

augmenting similarity score vector with the deep 

features in CNN gives the best result. This scheme 

also creates a model with balanced precision and 

recall over other augmenting schemes. In the future, 

we plan to evaluate RNN deep learning model 

augmented with word similarity score. We also want 

to gather more Indonesian language data and publish 

it online. Future work will also focus on how to 

extract and utilise word similarity associated with 

other features, such as word intensifier, punctuations, 

and deep learning hyper parameter optimization. 
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