
International Journal of Advanced Computer Research, Vol 8(39)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2018.839002

354

Word similarity score as augmented feature in sarcasm detection using deep

learning

Joseph Tarigan
*
 and Abba Suganda Girsang

Computer Science Department, BINUS Graduate Program-Master of Computer Science, Bina Nusantara University,

Jakarta, Indonesia

Received: 31-August-2018; Revised: 09-November-2018; Accepted: 14-November-2018

©2018 ACCENTS

1.Introduction
Sarcasm is an intended mockery that inverts the

literal meaning of an utterance. The Oxford online

dictionary defines sarcasm as “The use of irony to

mock or convey contempt” [1]. Sarcasm transforms

the sentiment of utterance into its opposite. It is used

to harass or to express contempt to someone. Sarcasm

detection is a difficult task. It must detect whether a

positive utterance is having negative sentiment or

vice versa.

Word is part of language that doesn‟t occur arbitrary.

It has a relation with other words that occur together,

for example, semantic relationship [2]. This relation

is formed by the frequency of words that frequently

appear together [3], thus, pairs of words used in

general and normal situation will have high similarity

scores.

Sarcasm can be detected through context incongruity

[2, 4]. This feature can be detected by observing the

similarity between the words in the sentence. Words

that frequently appear together tend to be in the same

context. Therefore, words in sarcasm text tend to

have uneven distribution of word similarity score.

*Author for correspondence

In this research, word similarity is introduced as a

feature in sarcasm detection process. This feature is

used as an augmented feature in the deep learning

model. Deep learning has made impressive advances

in computer vision field. Following the trend, many

NLP researchers use deep learning as the classifier

[5−7].

Traditional NLP techniques require features to be

defined first, such as POS tags, term frequency, and

TF-IDF. In contrast, deep learning will automatically

detect patterns as features, enabling multilevel feature

representation learning. The use of deep learning

enables the classifier to find patterns that cannot be

manually defined.

Word is a discrete unit of characters combination.

Traditional NLP techniques use features extracted

from the word, such as morphological feature,

syntactic feature, and semantic feature. Those

features are not numerical features; they cannot be

directly used as the input in the deep learning model.

There are several techniques to transform words into

numerical features, such as co-occurrence matrix, but

this method is inefficient and is too slow when the

size of the corpus is getting larger [8]. Another

technique that can be used is word embedding. Word

embedding or distributed word representation [3] is a

Research Article

Abstract
Sarcasm detection is an important task in natural language processing (NLP). Sarcasm flips the polarity of a sentence

and will affect the accuracy of sentiment analysis task. Recent researches incorporate machine learning and deep

learning methods to detect sarcasm. Sarcasm can be detected by the occurrence of context disparity. This feature can be

detected by observing the similarity score of each word in the sentence. Word embedding vector is used to calculate word

similarity score. In this work, the word similarity score is incorporated as an augmented feature in the deep learning

model. Three augmenting schemes in deep learning models are observed. Results show that in general, a word similarity

score boosts the performance of the classifier. The accuracy of 85.625% with F-Measure of 84.884% was achieved at its

best.

Keywords
Sarcasm detection, Word incongruity, Deep learning, Augmented feature.

International Journal of Advanced Computer Research, Vol 8(39)

355

technique to transform the word into the vector of

real number . The vector is formed using a neural

network, trained by windowing the words, it captures

the relationship between words that appear closer

together. The relationship between words explains

the normality of phrases.

1.1Background

The role of context incongruity in sarcasm processing

has been studied in [9]. The effect of context

incongruity on human interpretation and the

processing of verbal irony by observing the

participant‟s reaction and reading time have been

discussed [9]. It concludes that literal statements are

perceived to be more sarcasm when there is a

disparity or contrast between contexts in a statement

[9]. The greater the disparity or contrast between the

context and the statement, the greater it led to be

perceived as irony or sarcasm.

Words in similar contexts tend to have similar

meanings [2] and are expected to appear closely

together [10, 11]. In the context of NLP, words that

appear in similar context can be estimated by word

embedding technique. One of the most popular

technique is Word2Vec [3]. This technique

transforms words into the distributed vector

representation and preserves syntactic and semantic

word relationship. The general idea of this technique

is to train a classifier model to classify context words

given a target word by moving the windows through

words as seen in Figure 1.

Figure 1 Illustration of sliding window in Word2Vec

The green window is the target word and the yellow

windows are the context words. In this way, the

disparity of context can be observed in the text by

observing the similarity of each word in it.

Sarcasm can be detected in several ways. The most

prominent way to detect sarcasm is by detecting

context disparity [2]. Context disparity can be

observed by evaluating the relation of words in a text.

This relation can be observed by scoring each word

for their similarity. Word similarity has been

exploited as a feature to increase sarcasm detection

performance in [4, 12]. It utilises similarity score as

one of the features through the WordNet similarity

score, which utilises is-a and has-part relation

between words [4]. In [12], word similarity is used to

detect context incongruity. They use the maximum

and minimum score of the most similar and

dissimilar word pair as the features of context

incongruity. They also tried distance-weighted score

of those features. Support vector machine (SVM)

model was used in [12]. Augmented feature boosts at

most 5% in the f-measure score.

Deep learning has been exploited as the classifier in a

sarcasm detection task. In [5] CNN model has been

used as the classifier. Several features are introduced

to detect sarcasm, they are sentiment, emotion, and

personality features. All features are concatenated

together to form a final feature vector. They also

incorporate SVM into the CNN model as the part of

the classifier model. The model achieves impressive

average accuracy of 95.27% when tested with 3

different datasets.

There are only a few researches of sarcasm detection

conducted in the Indonesian language. [12] is the

only paper we can find in the internet repositories.

This mainly happens because the lack of dataset

availability. In [12], sentiment analysis is done before

the sarcasm detection takes part. The sarcasm

detection task is done only on data with positive

sentiment polarity.

1.2Contribution

In this research, we propose a sarcasm detection

model that uses a common feature of sarcasm. The

CNN deep learning model is used as the

classification model and word similarity score is

introduced as an augmented feature in the model.

Several ways to augment the word similarity score is

observed and the results are observed. This research

is conducted in Indonesian Language.

2.Materials and methods
2.1Data materials

Twitter is a popular social media platform with more

than 400 million active users [13]. It lets user posts

message up to 140 characters length. Apart from

Tarigan and Girsang

356

alphanumeric characters, user can use @ (at) to refer

the tweet to another user, and # (hashtag) to identify

the topic or to signify the context of the tweet. An

example of a tweet is as follows: “@username I

watched the #tv and suddenly I want to eat #hungry”.

Twitter API is used to collect tweet that contains

hashtags. We relied on hashtags that twitter provides

for users to use to signify their tweets. In our

observation, users usually don‟t tweet sarcasm tweets

and use #sarcasm tag in their tweets. Therefore,

searching for sarcasm tweets by using only #sarcasm

hashtag is not effective. We use other hashtags that

often being used together in sarcasm tweets, such as

#eh and #lah to obtain potential sarcasm tweets.

Manual review is then performed on collected tweets

by labelling the tweet as sarcasm or not sarcasm.

These tweets then will be pre-processed. The pre-

processing steps are described in section 2.5.

2.2Similarity as feature vector

Word2Vec is one of word embedding techniques [3].

Word embedding is a technique to compute

distributed representation of words in the form of

continuous vectors. Word vector from word

embedding technique can capture semantic

relationship between words. In this way, similarity

between words can be estimated by calculating

cosine similarity between word vectors. Cosine

similarity is calculated using Equation 1.

 ()

‖ ‖‖ ‖
 (1)

where are vectors. The () will be 0 if

the angle between vector and is orthogonal,

which means those vectors are linearly independent.

The more () close to 1, the more of both vectors

are dependent or similar with each other.

Semantic similarity in word2vec is estimated by how

closely words appear together and how many times

these the words appear together. In normal situation,

words that are occurring appear together form a

sentence. This combination of words will have high

similarity if the combination appears frequently.

Similarity semantic similarity also concludes whether

the words are considered to appear in the same

context, as if words don‟t appear close together in

normal situation, each of those words might have a

different context of use.

Sarcasm is a way of mockery formed using words

that don‟t occur appear together and closely in

normal situation. In this way, if Word2Vec is trained

with formal and daily conversation corpus such as

Wikipedia or news corpus, some words in sarcasm

text will have a low value in its word pair‟s similarity

score calculation results shown in Table 1.

Table 1 Similarity score chart

 Saking Pintar Tidak_Lulus

Saking 1 0.278477 0.081239

Pintar 0.278477 1 0.191633

Tidak_Lulus 0.081239 0.191633 1

The pair of “Pintar” or “Smart with “Tidak_Lulus” or

“Didn‟t Pass” has a low similarity score. This

happens because these two words are rarely

appearing together in normal context. In a normal

context, “Smart” relates to “Pass the test”. This value

shows that there is a context incongruity between

words in the tweet.

In this research, word similarity scores are used as

feature vectors. All of the word similarity scores are

concatenated together, as in (2), forming a vector. We

call it similarity score vector.

 () () (2)

Where sim denotes similarity function. Words from

pre-processed tweet are limited to 25 words.

Similarity score vector will be padded with 0 for

tweet that has been pre-processed with lower than 25

words.

To validate our intuition, a fully connected neural

network with 256 hidden neurons is built and

similarity score vector is used as the input, not as

augmented feature. K-fold validation with k=5 is

used as the validation method. The result is shown in

Table 2.

Table 2 Performance of word similarity score used as

input

 Percentage

Average Accuracy 80.080%

Recall 80.868%

Precision 78.917%

F-measure 79.828%

Similarity score as the input has been tested by Joshi

International Journal of Advanced Computer Research, Vol 8(39)

357

et al. [11]. The highest F-Measure they got was

69.49%, and it was concluded that their proposed

similarity score cannot be used alone as the input. In

our case, with f-measure of 79.828%, our proposed

similarity score vector is sufficient to use as the input

alone and validates that similarity score vector is a

useful feature to use for sarcasm detection.

2.3Deep learning setup

Deep learning is defined as a model consists of many

layers that can learn complicated concepts [14]. In

this research, the CNN deep learning model is used.

Each convolutional layer consists of convolution

operation and pooling operation. Max-pooling is used

in pooling layer, while Leaky ReLU function is used

in convolutional layer. Sigmoid function is used in the

output layer, yielding a binary output for the

classification task. The formula can be seen in

Equation 3,4 and 5 respectively.

 () () (3)

 () {

 (4)

 ()

 (5)

Word is a combination of alphanumeric characters.

Traditional NLP techniques usually represent words

as indices of vocabulary. Words need to be converted

into a representation that deep learning model can use

as its input, which is a vector of real numbers .

This task is accomplished by using the word

embedding technique. In this research, words are

transformed into vectors using Word2Vec.

Word2Vec model is trained on a Wikipedia Bahasa

Indonesia corpus. Each word will be converted into a

vector with 300 dimensions. Each of the resulting

word vectors is concatenated together, forming a

vector. A tweet having n words is represented as

follows in (6):

 (6)

As the n is limited to 25 words, pre-processed tweets

that have words lower than 25 words will be padded

with 0.

The architecture of the deep learning model used in

this research can be seen in Table 3.

Table 3 Architecture of CNN model

 Neuron count Kernel size Kernel count Padding Stride

Input Layer 300×25 - - - -

1st Conv - 11 300 VALID 1

Pooling Layer - 2 - VALID 2

2nd Conv - 11 200 VALID 1

Pooling Layer - 2 - VALID 2

3rd Conv - 10 100 VALID 1

Pooling Layer - 2 - VALID 2

4th Conv - 10 100 VALID 1

Pooling Layer - 2 - VALID 2

Dense Layer 100 - - - -

Output Layer 1 - - - -

2.4Feature augmentation

Augmentation in the machine learning model has

been widely used in computer vision and speech

recognition [15−17]. Augmentation can be applied to

the dataset or in the feature space. Augmentation on

dataset is done by creating a new instance of data by

transforming the original data or by adding noise to

the original data. Researches refer this method as data

augmentation [17]. This method is used in a

condition where the required labelled dataset is not

available in large quantity. Synthetic data is formed

with features that are not so different from the

original dataset. Augmentation in the feature space is

done in the feature space produced by the classifier

model, for example, the deep feature of CNN [18].

With this scheme, external features can be

incorporated with the main classifier, increasing the

ability of the model to classify better.

In this paper, similarity score vector is used as

augmented feature. At the forward pass, Word2Vec

model takes in one-hot vector of each word. The

representational vector of each word is used as the

distributed representation of word and is used as the

input by the CNN. Those vectors are then used to

calculate the similarity of each word, concatenated

together, forming the similarity score vector.

Augmenting the similarity score vector is the original

aspect of this research. The similarity score vector

will be augmented in the feature space. There are

several possible ways of augmenting the similarity

score vector in the feature space. The optimality of

Tarigan and Girsang

358

the feature augmentation methods is unknown in this

context. Through this research, the most optimal

methods of augmenting the similarity score vector

will be obtained. Three ways of augmenting

similarity vector with deep learning model are

observed. They are described in the following sub-

sections.
2.4.1Word similarity score vector augmented with the

deep feature

In this scheme, similarity score vector is augmented

through concatenating the vector with deep feature

vector, as seen in Figure 2. Deep feature is the flatten

output vector of the last convolution layer in the deep

learning model, before the fully connected layer. This

method is commonly used by researchers to

incorporate features from more than one model, as

seen in [15, 18]. The concatenated vector will be the

input of the fully connected layer. After the

augmentation, the dimension of the deep feature will

be 256 + (25×25).
2.4.2Word similarity score vector augmented as a

channel in the input layer

In computer vision task, deep learning model takes

colour image with more than one channel as the

input. The image will commonly have 3 channels that

consist of red, green, and blue channels. In NLP

tasks, deep learning usually will only take one

channel of input, which is the sparse d dimension

encoding of words (d is the number of concatenated

words dimension). In this case, d will be the word

embedding vectors. In this scheme, similarity score

vector is embedded as the second channel in the input

layer. The input layer is now having 2 channels, as

seen in Figure 3. It consists of word embedding

vector as the first layer and the similarity score vector

as the second channel.

The second channel needs to have the same

dimension with the first channel. Linear interpolation

is used to resize the second channel. The similarity

score vector will be processed together, in parallel,

with the word embedding vector by the convolutional

layers.
2.4.3Word similarity score vector augmented with the

input vector

In this scheme, similarity score vector is

concatenated with the input vector, which is a word

embedding vector, as seen in Figure 4. The input

vector will have dimensions of (300×25) + (25×25).

Figure 2 Illustration of similarity score vector augmented with the deep feature

Figure 3 Illustration of similarity score vector augmented as the second channel

International Journal of Advanced Computer Research, Vol 8(39)

359

Figure 4 Illustration of similarity score vector augmented with the input vector

2.5Data pre-processing

Tweets collected from twitter are noisy and need to

be cleaned [19]. Users usually don‟t use standard

language in twitter. Constrained by character

limitation, twitter users are usually abbreviating word

such as “b4”, “brb”, and “lol”. Smiley is popular too

among the twitter users. Its short and expressive

nature makes it popular in character count limited

social media like the twitter. These kinds of paradigm

make the processing becomes ineffective. They need

to be normalised first.

Pre-processing takes the role in this phase. It will

normalise the tweet, so it can be processed by the

classifier. There are several processes in this step;

each of them will be described as follows.

RT Filter: Retweeted tweets are considered not

useful, as they have the same content with the

original tweets. Retweeted tweets can be detected by

character “RT” at the beginning of the tweets. We

remove tweets that started with “RT” characters.

URL Removal: User can type anything in their

tweet, including URL. URL is considered not useful,

as it doesn‟t convey any meaningful feature unless

we follow, open the URL, and process the

information from the referred URL. URL is discarded

from the tweet by using regular expression to detect

the URL.

Twitter Special Tags Removal: Twitter uses some

tags as special tags, such as “@” to mention other

user, and “#” to signify or to show the context of

tweet. These characters need to be eliminated as they

are considered not a feature.

Tokenization: Tokenization is a process of chunking

words into a collection of single word. In this

process, some words are filtered and tokenised as a

concatenate bigram. Words such as “Tidak suka” has

the opposite meaning with “Suka”. It will be

tokenised as “tidak_suka”, so it will not lose its

negation feature.

Abbreviation Expansion: As described before, users

in twitter tend to abbreviate word. Those words need

to be expanded before they are used as input for the

classification task. Abbreviations are expanded by

using dictionary we build from our observation on

the collected tweets.

Duplicated Letter Normalization: Twitter users

usually exaggerate message by duplicating letters in

the word, such as „woooow‟ and „waahhh‟. „Waw‟

and „waaaaw‟ words are not standard. “Waw” and

“waaawww” have the same meaning and intention,

they should be treated in the same way. These kinds

of words need to be normalised, so the model will

process them as the same words. These kinds of

words are normalised by removing duplicated

consecutive letters in the word. In this way, word

such as “waaaww” will be transformed to “waw” and

will be treated as the same word.

Reversed Word Normalization: Slang words are

used extensively in twitter. Reversing letter order in

word is popular in Indonesia. For example, “Yuk”

means “Come on” in English, and twitter users

sometime reverse the letter order to “Kuy”. These

kinds of word need to be normalised. Normalising is

accomplished by using dictionary we built from our

observation on collected tweets.

Reduplicated Word Normalization: Word like

“hahahaha” will be normalised by removing

duplicated word and leave only 2 repetitions. In this

way, “hahahahaha” will be transformed to “haha”.

Reduplicated words will be treated in the same way.

Unused Punctuation Removal: Punctuation is

considered as feature in Natural Language

Processing. Punctuation can be used to intensify the

semantic meaning, such as “!” and “?”. There are

some punctuations that are not used or don‟t have

contribution in forming word‟s semantic meaning. In

this step, unused punctuations are eliminated, such as

braces, “;”, “*”, and some more unused punctuations.

Tarigan and Girsang

360

Stemming: In this step, words are normalised into

their dictionary form. Modified enhanced confix

stripping [20] is used as stemming algorithm.

Stopword Removal: Stopword is considered

unimportant in text mining [21]. Therefore, it is usual

to remove stopwords from corpus before further

analysis. Stopword dictionary developed by Tala [22]

is used in this step.

The output of these steps above is a collection of

classification-ready word tokens. These tokens are

transformed into vectors with Word2Vec. These

vectors are concatenated together, forming a

classification-ready vector.

2.6Experimental setup

Accuracy, precision, recall, and f-measure are used as

the metric and 5-folds cross validation is used for

evaluating the models. The vanilla CNN model has

the same architecture as described in Table 3. SVM

model is built with RBF kernel and penalty term or C

value is 1. Vanilla CNN and SVM models use the

same dataset, but with no augmented feature. The

models will do binary classification on the dataset.

The dataset consists of 4000 tweet samples with 2

labels, sarcasm and not sarcasm. The polarity

distribution in the dataset is balanced, means the

dataset consists of 2000 sarcasm samples (positive)

and 2000 non-sarcasm samples (negative). Training

runs for 50 epochs in each CNN model. For the SVM

model, training runs with the stopping criterion of

 .

3.Experimental results

The results of the experiments are shown in this

section. To measure the potential of our method, we

consider the method proposed by Joshi et al. [11] as

our baseline. In addition, result from Lunando and

Purwarianti [12] has also included a comparison of

sarcasm detection in Indonesian language. Model 1,

2, and 3 are CNN models with augmented similarity

score vector, described in section 2.4 respectively.

For comparison purpose, vanilla CNN model and

SVM model are also built. The vanilla CNN model is

shown as model 4, SVM with no augmented

similarity score vector is shown as model 4, SVM

without augmented similarity score vector is shown

as model 5, SVM with augmented feature is shown as

model 6, SVM model by Joshi et al. [11] is shown as

model 7, and result from Lunando and Purwarianti

[12] is shown as model 8. The detail of each model is

shown in Table 4.

Table 4 Table of model description

Model Model description

1 CNN with word similarity score vector augmented with the deep feature.

2 CNN with word similarity score vector augmented as a channel in the input layer.

3 CNN with word similarity score vector augmented with the input vector

4 Vanilla CNN without augmented feature.

5 SVM without augmented feature.

6 SVM with augmented feature

7 SVM by Joshi et al. [11]

8 Lunando and Purwarianti [12]

3.1Accuracy results

All models are trained and tested with setup as

described in section 2.6. The classification accuracy

results are presented in Table 5.

Results show that in general, deep learning CNN

models with augmented similarity score vector have

better accuracy than the vanilla CNN model, though

it only gains 2% accuracy from the vanilla CNN

model. The vanilla CNN model achieves 81.950%

average accuracy, while model 1 achieves 83.950%

average accuracy.

The interesting thing is that the SVM models in our

experiment outperform the accuracy of vanilla CNN

by 0.825%. In our experiments, we concluded that

this happens because of the dataset size and the

structure of the CNN models. The SVM constructs

decision boundary between the data, it relies on

support vectors that divides the label on the data in

the dataset. Dataset with a small number of labels

such as a binary labelled dataset is assumed to have

linearly separated data, thus, SVM perform better

than deep learning methods. SVM will underperform

deep learning models when the data in the dataset is

scattered and has many labels. This can be observed

by the accuracy of deep learning models and SVM

model between binary labelled and 3 class labelled

dataset in [23], the accuracy gap is getting smaller as

the dataset has more labels. The word similarity

vectors clearly boost the accuracy of CNN model.

Compared with vanilla CNN model, augmenting

International Journal of Advanced Computer Research, Vol 8(39)

361

word similarity vectors into the CNN model boost the

accuracy by 2% at its best. The accuracy of CNN

models with augmented feature is also better than the

accuracy of SVM model. For better understanding,

other metrics are calculated; they are shown in the

next section.

Table 5 Classification accuracy of each model

Model Min Max Avg. Std. Dev.

1 82.375% 85.625% 83.950% 1.171%

2 79.250% 85.625% 82.775% 2.665%

3 82.38% 85.13% 83.78% 1.04%

4 79.625% 83.250% 81.950% 1.449%

5 79.250% 85.625% 82.775% 2.665%

6 79.950% 86.840% 83.210% 2.205%

7 79.250% 85.625% 82.775% 2.665%

8 - - 54.1% -

3.2Precision, recall, and F-measure

Precision, recall, and f-measure of each model as

described in section 2.6 are shown in Table 6.

Vanilla CNN achieves an impressive 93.250% recall

score, but it also has the minimum precision score

among other CNN models, which affect the usability

of the model. Despite the SVM models achieved

good average accuracy as shown Table 5, they have

the lowest precision scores.

Table 6 Precision, recall, and f-measure of each model

Model Precision Recall F-Measure

1 81.299% 88.800% 84.884%

2 78.19% 91.60% 84.37%

3 79.732% 90.650% 84.841%

4 76.187% 93.250% 83.859%

5 64.897% 90.176% 75.461%

6 67.082% 89.500% 76.684%

7 65.784% 90.500% 76.179%

8 - - -

4. Discussion
Recent researches in NLP show that deep learning

methods are performing better than machine learning

models in NLP tasks. Researchers in [6] explored

deep learning model in twitter sentiment analysis

task. They use a CNN model to analyse tweet

sentiment using Semeval-15 datasets. The model

achieves accuracy that could rank in the first two

positions in Semeval-15 tasks.

In the context of using word similarity score as the

feature of sarcasm detection task, experiments have

been conducted in [12]. In [12], similarity score is

used as augmented features by calculating four

scores, the maximum score of most similar and

dissimilar word pair and the minimum score of

similar and dissimilar score. They also add weights to

the scores by measuring the distance between each

word pair. SVM model was used in [12]. Results

show that augmenting these features boost the

performance of classification models, although it

decreases the performance in some of the

experimental models. The analysis shows that

contextual sarcasm can‟t be captured with features

used in [12] as they only use score of similar and

dissimilar word pair. This problem is solved by using

the whole word similarity score as the feature, as it

contains all similarity scores of word pair in the

phrase. By incorporating not only the most similar

and dissimilar word similarity score, it captures the

complete context of the conversation.

In our experiment, SVM model scores better than

vanilla CNN. This occurrence also happens in [23].

The performance of deep learning methods and

machine learning methods in the twitter sentiment

analysis are evaluated in [23]. They used CNN and

Elman RNN as deep learning models and SVM

model as machine learning model. The SVM model

uses unigram, bigram, and a combination of them as

term frequency features, while word vector

representation is used as the feature of the deep

learning models. The models are evaluated with

binary and 3 class classification tasks. All of the

Tarigan and Girsang

362

SVM model variants perform better than deep

learning model variants in the classification task. The

average performance gap between SVM and deep

learning models is 11.65% of binary classification

tasks. The average performance gap is getting smaller

in 3 class classification tasks, it decreases to 8.52%.

We conclude that this happens because of the size of

the dataset and the number of dataset‟s labels as

described in section 3.1.

Model 2 and 3 have the augmented feature

augmented with input vector, while the model 1 has it

augmented with the deep feature vector. The

dimension of augmented feature is 625 and is a

ready-to-be classified feature, as we have concluded

in section 2.2. The augmented feature in model 2 and

3 is sampled down by the convolution process in

CNN model, thus, diminish the similarity score

information. While the convolution process will

extract important features from given input, the

results show that the similarity score vector is better

when augmented with the deep feature rather than

with the input vector. Given the finding in section

2.2, this concludes that the similarity score vector is

better when it is classified directly with a fully

connected neural network, as in the model 1. We

want to investigate more on how to utilise the

similarity score feature in future research.

5.Conclusion

By experimenting different scheme of augmentation,

we have 2 conclusions. First, augmenting word

similarity score as a whole with deep learning model

gives the model additional knowledge to classify

sarcasm better, thus, increasing its accuracy. Second,

augmenting similarity score vector with the deep

features in CNN gives the best result. This scheme

also creates a model with balanced precision and

recall over other augmenting schemes. In the future,

we plan to evaluate RNN deep learning model

augmented with word similarity score. We also want

to gather more Indonesian language data and publish

it online. Future work will also focus on how to

extract and utilise word similarity associated with

other features, such as word intensifier, punctuations,

and deep learning hyper parameter optimization.

Acknowledgment
We thank you Binus University AI Research Center for the

computing facility.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Oxford Online Dictionaries.

https://en.oxforddictionaries.com/definition/sarcasm.

Accessed 9 October 2018.

[2] Harris ZS. Distributional structure. Word. 1954; 10(2-

3):146-62.

[3] Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J.

Distributed representations of words and phrases and

their compositionality. In advances in neural

information processing systems 2013 (pp. 3111-9).

[4] Joshi A, Sharma V, Bhattacharyya P. Harnessing

context incongruity for sarcasm detection. In

proceedings of the 53rd annual meeting of the

association for computational linguistics and the 7th

international joint conference on natural language

processing 2015 (pp. 757-62). Association for

Computational Linguistics.

[5] Poria S, Cambria E, Hazarika D, Vij P. A deeper look

into sarcastic tweets using deep convolutional neural

networks. In proceedings of international conference

on computational linguistics 2016 (pp. 1601-12). The

COLING.

[6] Severyn A, Moschitti A. Twitter sentiment analysis

with deep convolutional neural networks. In

proceedings of the international ACM SIGIR

conference on research and development in

information retrieval 2015 (pp. 959-62). ACM.

[7] Majumder N, Poria S, Gelbukh A, Cambria E. Deep

learning-based document modeling for personality

detection from text. IEEE Intelligent Systems. 2017;

32(2):74-9.

[8] Lin J. Scalable language processing algorithms for the

masses: a case study in computing word co-occurrence

matrices with MapReduce. In proceedings of the

conference on empirical methods in natural language

processing 2008 (pp. 419-28). Association for

Computational Linguistics.

[9] Ivanko SL, Pexman PM. Context incongruity and

irony processing. Discourse Processes. 2003;

35(3):241-79.

[10] Mikolov T, Chen K, Corrado G, Dean J. Efficient

estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781. 2013.

[11] Joshi A, Tripathi V, Patel K, Bhattacharyya P, Carman

M. Are word embedding-based features useful for

sarcasm detection?. arXiv preprint arXiv:1610.00883.

2016.

[12] Lunando E, Purwarianti A. Indonesian social media

sentiment analysis with sarcasm detection. In

international conference on advanced computer

science and information systems 2013 (pp. 195-8).

IEEE.

[13] Allcott H, Gentzkow M. Social media and fake news

in the 2016 election. Journal of Economic

Perspectives. 2017; 31(2):211-36.

[14] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.

2015; 521:436-44.

[15] Liu B, Wang X, Dixit M, Kwitt R, Vasconcelos N.

Feature space transfer for data augmentation. In

https://en.oxforddictionaries.com/definition/sarcasm.%20Accessed%209%20October%202018
https://en.oxforddictionaries.com/definition/sarcasm.%20Accessed%209%20October%202018

International Journal of Advanced Computer Research, Vol 8(39)

363

proceedings of the conference on computer vision and

pattern recognition 2018 (pp. 9090-8). IEEE.

[16] Volpi R, Morerio P, Savarese S, Murino V.

Adversarial feature augmentation for unsupervised

domain adaptation. In proceedings of the conference

on computer vision and pattern recognition 2018 (pp.

5495-504). IEEE.

[17] Salamon J, Bello JP. Deep convolutional neural

networks and data augmentation for environmental

sound classification. IEEE Signal Processing Letters.

2017; 24(3):279-83.

[18] Valkonen M, Kartasalo K, Liimatainen K, Nykter M,

Latonen L, Ruusuvuori P. Dual structured

convolutional neural network with feature

augmentation for quantitative characterization of

tissue histology. In proceedings of the conference on

computer vision and pattern recognition 2017(pp. 27-

35). IEEE.

[19] Han B, Baldwin T. Lexical normalisation of short text

messages: Makn sens a# twitter. In proceedings of the

annual meeting of the association for computational

linguistics: human language technologies (pp. 368-

78). Association for Computational Linguistics.

[20] Tahitoe AD, Purwitasari D. Implementation of

modified enhanced confix stripping stemmer for

Indonesian language using corpus based stemming

method. Institut Teknologi Sepuluh (ITS). 2010.

[21] Meyer D, Hornik K, Feinerer I. Text mining

infrastructure in R. Journal of Statistical Software.

2008; 25(5):1-54.

[22] Tala FZ. A study of stemming effects on information

retrieval in bahasa Indonesia. Institute for Logic,

Language and Computation, Universiteit van

Amsterdam, The Netherlands. 2003.

[23] Lu Y, Sakamoto K, Shibuki H, Mori T. Are deep

learning methods better for twitter sentiment

analysis?. In proceedings of the 23rd annual meeting

of natural language processing (Japan) (pp. 787-90).

Joseph Tarigan was born on June 11th

1990. He completed his undergraduate

study at Binus University, Jakarta,

Indonesia, majoring Computer Science

and continued Master Degree in

Information Engineering at Binus

University, Jakarta Indonesia. He is

currently a Software Engineer in

Jakarta, Indonesia. His research interests are Artificial

Neural Network, Computer Vision, and Information

Engineering.

Email: joseph.tarigan@binus.ac.id

Abba Suganda Girsang is currently a

lecturer at Master in Computer Science,

Bina Nusantara University, Jakarta,

Indonesia Since 2015. He got Ph.D.

degree in 2015 at the Institute of

Computer and Communication

Engineering, Department of Electrical

Engineering, National Cheng Kung

University, Tainan, Taiwan. He graduated bachelor from

the Department of Electrical Engineering, Gadjah Mada

University (UGM), Yogyakarta, Indonesia, in 2000. He

then continued his masters degree in the Department of

Computer Science at the same university in 2006–2008. He

was a staff consultant programmer in Bethesda Hospital,

Yogyakarta, in 2001 and also worked as a web developer in

2002–2003. He then joined the faculty of the Department of

Informatics Engineering in Janabadra University as a

lecturer in 2003-2015. His research interests include

Swarm, Intelligence, Combinatorial Optimization, and

Decision Support System.

Email: agirsang@binus.edu

mailto:joseph.tarigan@binus.ac.id

