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In this paper, the anti-synchronization of fractional-order chaotic circuit with memristor (FCCM) is investigated via a periodic 
intermittent control scheme. Based on the principle of periodic intermittent control and the Lyapunov stability theory, a novel 
criterion is adopted to realize the anti-synchronization of FCCM. Finally, some examples of numerical simulations are exploited to 
verify the feasibility of theoretical analysis.

1. Introduction

Fractional calculus has a history of more than 300 years. It is 
worth pointing out that fractional-order system has provided 
in�nite memory and more accurately describes natural phe-
nomena than other integer order systems [1]. In recent dec-
ades, fractional di�erential equations due to its potential 
applications in many �elds such as �uid mechanics [2], physics 
[3], encryption [4], and control processing [5]. Especially, the 
dynamical behavior of fractional order systems exhibits chaos, 
such as fractional-order Chen system, fractional-order Chua 
system, fractional-order Lorenz system, and fractional-order 
Lü system, etc., [6].

�e memristor was �rstly raised by Chua [7], but it had 
not aroused any attention until 2008 when the invention of 
the memristor had been published by the researchers in 
Hewlett–Packard lab [8, 9]. �e memristor could “remember” 
its state when the voltage is turned o�. Because of the charac-
teristics of memristor, the potential applications of the chaotic 
system with memristor have been discovered in quite a few 
�elds such as cryptography, �lter, image encryption, etc., 
[10–15]. �erefore, the behaviors and properties of memristor 
have attracted the attention of many researchers attention.

Meanwhile, many scholars investigate the synchronization 
problems [16–18], especially the synchronization of fraction-
al-order chaotic systems such as lag-synchronization [19], 
projective synchronization [20], impulsive synchronization 

[21], and anti-synchronization [22]. Examples of synchroni-
zation occur in di�erent �elds of engineering and science like 
coupled cardiac, circuits in electronics and respiratory systems 
in physiology, and coupled laser systems in nonlinear optics. 
Many synchronization methods have been put forward for 
chaotic systems, such as sliding mode control method [23, 24], 
impulsive control method [25, 26], active control method [27], 
periodic intermittent control method [28, 29], etc.

Intermittent control, which was �rst introduced to control 
linear econometric models in [30], has been widely used in 
engineering �elds such as manufacturing, transportation, and 
communication for its practical and easy implementation in 
engineering control. Intermittent control is a discontinuous 
control method, its control input is activated during certain 
nonzero time intervals and closed during other time intervals 
[31]. �erefore, compared with the continuous control meth-
ods, intermittent control is more economical and e£cient 
[32]. Recently, much e�ort has been devoted to study the issue 
of stabilization and synchronization of chaotic systems and 
dynamical networks by using intermittent control, and many 
important and interesting results have been obtained [33–38]. 
In [33], pinning synchronization for directed networks with 
node balance via adaptive intermittent control was researched. 
Zhang et al. [34] studied the lag synchronization for fraction-
al-order memristive neural networks via periodic intermit-
tent control. References [35, 36] proposed the �nite-time 
synchronization via periodic intermittent control. Liu et al. 
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[37] considered the cluster synchronization for delayed com-
plex networks via periodically intermittent pinning control. 
�e exponential synchronization of complex delayed dynam-
ical networks via pinning periodically intermittent control 
was investigated in reference [38]. To the best of our knowl-
edge, there is no study on the anti-synchronization of FCCM 
via a periodic intermittent control method. In real applica-
tions, the anti-synchronization of FCCM has great value in 
many areas, such as image encryption, cryptography, and 
chaotic radar.

Motivated by the above discussions, we propose a peri-
odic intermittent control method for the anti-synchroniza-
tion of FCCM in this paper. Based on the lyapunov stability 
theory, a novel and useful criterion of periodic intermittent 
control is developed by using the di�erential inequality 
method. Finally, we have illustrated the e�ectiveness and 
feasibility of the proposed approaches by numerical 
simulations.

�is paper is arranged as follows: Section 2 describes some 
fundamental de�nitions, the lemmas and the model formula-
tion. �e anti-synchronization of FCCM via periodic inter-
mittent control is discussed in Section 3. In Section 4, some 
numerical examples are provided to illustrate the e�ectiveness 
of the theoretical approach. �e conclusions are put forward 
in the last section.

2. Preliminaries

In this paper, let �� denote the n-dimensional Euclidean space, � = (�1, �2, �3, �4)� ∈ �4, � = (�1, �2, �3, �4)� ∈ �4. In this 
section, some fundamental de�nitions and lemmas are 
recalled. In addition, we introduce fractional-order generali-
zation form of the chaotic circuit with memristor.

De nition 1 [39]. �e caputo’s fractional derivative for a 
function �(�) : [0, +∞) → � is de�ned by

where � ≥ 0, � is fractional-order, � ∈ �+, � − 1 < � < �, and Γ(⋅) is the gamma function.
Particularly, when 0 < � < 1,

De nition 2 [39]. �e Mittag–Le¨er function of � is de�ned 
as

where � > 0 and � ∈ �.
Lemma 1 [40]. Suppose �(�) ∈ �� is a di�erentiable function 
and continuous. For � ∈ (0, 1), the following inequality  
holds

(1)�
0��� �(�) = 1Γ(� − �)∫

�

0

��(�)
(� − �)�−�+1 ��,

(2)�
0��� �(�) = 1Γ(1 − �)∫

�

0

��(�)
(� − �)� ��.

(3)��(�) =
∞∑
�=0

��
Γ(�� + 1) ,

Lemma 2 [41]. For � ∈ (0, 1), � ∈ �, and � > 0, ��(�) is a 
monotone increasing function.

Lemma 3 [39]. Let �(�) be a continuous function on [�0, +∞)
and satis es

where 0 < � < 1 and � is a constant, then

Lemma 4 [42]. Let 0 < � < 1, � > 0, and � ≥ 0, the following 
inequality holds

Moreover, ��(0) = 1.
According to the chaotic circuit with memristor [43] as 

shown in Figure 1, the �ux-controlled memristor is de�ned 
by

where � is the �ux, �(�) is the memductance, and � and � are 
constants.

Similar to [43], let �1 = �1, �2 = �2, �3 = �3, �4 = �, � = 1/�1, � = 1/�1, � = �, � = �/�, � = 1, and �2 = 1, then the mathe-
matical model of the chaotic circuit with memristor as  
follows

Refer to the above model, the fractional-order generalization 
according to (9) is described as

(4)
1
2 �0��� ��(�)�(�) ≤ ��(�)�0��� �(�).

(5)�
�0����(�) ≤ ��(�),

(6)�(�) ≤ �(�0)��(�(� − �0)�).

(7)
0 ≤ ��(−���) ≤ 1.

(8)
�(�) = �� + ��3,
�(�) = ��(�)�� = � + 3��2,

(9)

�̇1 = �(��1 − �1 + �2 −�(�4)�1),�̇2 = �1 − �2 + �3,�̇3 = −��2 − ��3,�̇4 = �1.
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Figure 1: �e chaotic circuit with memristor.
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Usually, in order to obtain the chaotic phenomena, the param-
eters are selected as � = 0.985, � = 10, � = 100/7, � = 9/7, � = 0.1, � = 1/7, � = 2/7, and the initial value (0,0.01,0,0)T to 
system (10). �e simulation results are shown in Figure 2.      

Let � = [�1, �2, �3, �4]�, the system (10) can be described 
by

where

and �, �, �, �, �, � are positive constants.
To investigate the anti-synchronization of FCCM, the 

drive system can be rewritten as

Similarly, the response system with the controller can be 
described as

where �(�) is the intermittent periodical controller which is 
proposed by

(10)

�
0��� �1 = �(��1 − �1 + �2 −�(�4)�1),
�
0��� �2 = �1 − �2 + �3,
�
0��� �3 = −��2 − ��3,
�
0��� �4 = �1.

(11)
�
0��� � = �� + �(�),

(12)

� = [[
[

�(� − 1) � 0 01 −1 1 00 −� −� 01 0 0 0
]]
]
, �(�) = [[

[

−��(�4)�1000
]]
]
,

(13)�
0��� �(�) = ��(�) + �(�(�)).

(14)�
0��� �(�) = ��(�) + �(�(�)) + �(�),

here � > 0 is a positive constant, � > 0 is the control period, 0 < � < � is called the control width, and � = 0, 1, 2, ⋅ ⋅ ⋅.
Let �(�) = �(�) + �(�) be the synchronization error between 

system (13) and system (14), the error system can be obtained 
by

where

3. Main Result

In this section, the anti-synchronization problem of FCCM 
via periodic intermittent control is investigated. First of all, 
we propose the following assumption.

Assumption 1. It can be seen from Figure (2) that system (10) 
is a chaotic system with bounders, we assume �1 and �2 are 
positive constants, such that

(15)�(�) = −�(�(�) + �(�)), �� ≤ � < �� + �,0, �� + � ≤ � < (� + 1)�,

(16)

�
0��� �(�) = ��(�) + �(�(�)) − ��(�), �� ≤ � ≤ �� + �,
�
0��� �(�) = ��(�) + �(�(�)), �� + � < � < (� + 1)�,

(17)

�(�(�)) = �(�(�)) + �(�(�))
= [−��(�4(�))�1(�) − ��(�4(�))�1(�), 0, 0, 0]�.

(18)
�����1(�)���� ≤ �1, �����4(�)���� ≤ �2.
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Figure 2: �e chaotic attractor of FCCM, (a) �1(�), �2(�); (b) �2(�), �3(�); (c) �2(�), �4(�); (d) �1(�), �4(�).
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where �� is the largest eigenvalue of �, �1, and �2 are nonneg-
ative constants.

Proof. Construct the following Lyapunov function.

Taking the time derivative of �(�) along the solution �(�)
of the system (22). From Lemma 1, when �� ≤ � ≤ �� + �, � = 0, 1, 2, . . ., we have

(21)��(−�1��)��(�2(� − �)�) < 1,

(22)�(�) = 12��(�)�(�).

�en, we derive the anti-synchronization criteria for the 
FCCM according to periodic intermittent control scheme and 
Assumption 1  in the �eorem 1.

Theorem 1. Suppose Assumption 1 holds. �e systems 
(13) and (14) can be anti-synchronized under the periodic 
intermittent controller (15) if the following conditions are 
satis ed:

(19)2(�� + 3���1�2 − �) + �1 ≤ 0,

(20)2(�� + 3���1�2) − �2 ≤ 0,
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Figure 3: Dynamical behaviors of the drive system (13) and the response system (14) without periodic intermittent controller (15), where � = 0.985, (a) �1(�), �1(�); (b) �2(�), �2(�); (c) �3(�), �3(�); (d) �4(�), �4(�).
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According to condition (20), we have

From Lemma 3, when �� + � < � < (� + 1)�, we have

From inequality (25) and (28), we summarize that:
When 0 ≤ � ≤ �, we have

When � < � < �, we obtain

(26)

�
��+�����(�) ≤ ��(�) ���+���� �(�)

= ��(�)(��(�) + �(�(�)))
= (�� + 3���1�2)��(�)�(�).

(27)�
��+�����(�) ≤ �2�(�).

(28)�(�) ≤ �(�� + �)��(�2(� − �� − �)�).

(29)�(�) ≤ �(0)��(−�1��).

According to the condition (19), we have

By Lemma 3, when �� ≤ � ≤ �� + �, we have

Similarly, when �� + � < � < �� + �, � = 0, 1, 2, . . . we have

(23)

�
������(�) ≤ ��(�) ������ �(�)

= ��(�)(��(�) + �(�(�)) − ��(�))
= ��(�)��(�) + ��(�)�(�(�)) − ���(�)�(�)
= ��(�)��(�) − �[��21(�) + 3�(
24(�)
1(�) + 
24(�)	1(�)
	24(�)	1(�) − 
24(�)	1(�))�1(�)] − ���(�)�(�)

≤ ����(�)�(�) + 3���1�2��(�)�(�) − ���(�)�(�)
= (�� + 3���1�2 − �)��(�)�(�).

(24)
�
������(�) ≤ −�1�(�).

(25)�(�) ≤ �(��)��(−�1(� − ��)�).
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Figure 4: Dynamical behaviors of the drive system (13) and the response system (14) with periodic intermittent controller (15), where � = 0.985, �1 = 30, �2 = 34, � = 33, � = 1, and � = 0.8, (a) �1(�),�1(�); (b) �2(�),�2(�); (c) �3(�),�3(�); (d) �4(�),�4(�).
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�erefore, from inequality (34) and (35), we have

According to condition (21), since � →∞ when � → ∞, we 
can obtain that

Hence, ‖�(�)‖ → 0 as � → ∞. It follows that the error system 
(16) is global stable. It means that system (14) is anti- 
synchronized with system (13). �is completes the proof.  ☐

Remark 1. Because �, �, �1, and �2 are nonnegative constants, 
we can get 0 ≤ ��(−�1��) ≤ 1, ��(0) = 1 based on Lemma 4. 
According to Lemma 2, when � > �, ��(�2(� − �)�) ≥ 1 is a 
monotone increasing function. �erefore, there are suitable 
constants �, �, �1, and �2, which makes the condition (21) of 
�eorem 1 hold.

4. Numerical Simulations

In this section, some numerical simulations are given to illus-
trate the theoretical analysis.

Based on Figure 2 and Assumption 1, when �1 = 1.5, �2 = 1 are selected, �� + 3���1�2 = 16.892 is obtained. 
According to condition (20) of �eorem 1, we can obtain �2 ≥ 33.784. Moreover we set � = 0.985, �2 = 34, � = 1, and � = 0.8, by condition (21) of �eorem 1, we get

(36)

�(�) ≤

�(0)(��(−�1��)��(�2(� − �)�))
�,

�� ≤ � ≤ �� + �,
�(0)(��(−�1��)��(�2(� − �)�))

���(�2(� − �� − �)�),
�� + � < � < (� + 1)�.

(37)�(�) → 0.

When � ≤ � ≤ � + �, we have

When � + � < � < 2�, we obtain

By induction, when �� ≤ � ≤ �� + �, we have

From Lemma 4, we obtain

when �� + � < � < (� + 1)�, we have

(30)
�(�) ≤ �(�)��(�2(� − �)�)
≤ �(0)��(−�1��)��(�2(� − �)�).

(31)
�(�) ≤ �(�)��(−�1(� − �)�)
≤ �(0)��(−�1��)��(�2(� − �)�)��(−�1(� − �)�).

(32)

�(�) ≤ �(� + �)��(�2(� − � − �)�)
≤ �(0)��(−�1��)��(�2(� − �)�)��(−�1(� + � − �)�)
��(�2(� − � − �)�)
≤ �(0)��(−�1��)

2��(�2(� − �)�)��(�2(� − � − �)�).

(33)

�(�) ≤ �(��)��(−�1(� − ��)�)
≤ �(0)��(−�1��)

���(�2(� − �)�)
���(−�1(� − ��)�).

(34)�(�) ≤ �(0)(��(−�1��)��(�2(� − �)�))�.

(35)

�(�) ≤ �(�� + �)��(�2(� − �� − �)�)
≤ �(0)��(−�1��)

���(�2(� − �)�)
�

��(−�1��)��(�2(� − �� − �)�).
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