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Abstract: As one of the most reliable biometric identification techniques, iris recognition has focused
on the differences in iris textures without considering the similarities. In this work, we investigate
the correlation between the left and right irises of an individual using a VGG16 convolutional neural
network. Experimental results with two independent iris datasets show that a remarkably high
classification accuracy of larger than 94% can be achieved when identifying if two irises (left and right)
are from the same or different individuals. This exciting finding suggests that the similarities between
genetically identical irises that are indistinguishable using traditional Daugman’s approaches can be
detected by deep learning. We expect this work will shed light on further studies on the correlation
between irises and/or other biometric identifiers of genetically identical or related individuals,
which would find potential applications in criminal investigations.
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1. Introduction

There has been increasing interest in reliable, rapid, and unintrusive approaches for automatically
recognizing the identity of persons. Because each eye’s iris has a highly detailed, unique and stable
texture feature, the iris was suggested originally by ophthalmologists to be used as an effective
biometric identifier [1]. Compared with other biometric features, the iris combines many desirable
attributes. For example, the iris is well protected from the environment and keeps stable over time,
and it is convenient to localize and isolate the iris of distinctive annular shape from a face image taken
at distances of up to 1 m [2].

It was estimated that the probability that two irises could produce exactly the same pattern is
approximately 1 in 1078 (as a reference, the population of the earth is around 1010). Therefore, it has
been widely accepted that no two irises are alike, even for the irises of twins, or for the left and right
irises of the same individual [3]. Taking advantage of the clear distinctiveness of the iris patterns,
automated iris biometrics systems based on Daugman’s algorithms for encoding and recognizing [1]
can distinguish individuals, even twin siblings [4]. This is the reason why the iris has been used to
recognize personal identity [5].

Over the years, the communities have focused on the differences in iris textures for biometric
identification applications. However, little research has addressed the question of whether genetically
identical or related irises are sufficiently similar in some sense to correctly determine their relationship [3,4].
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These similarities are not only interesting in fundamental research, but also useful in practical applications
such as criminal investigation. Although the formation of the complex pattern of the iris is non-regular and
is greatly influenced by the chaotic morphogenetic processes during the embryonic development [2], it was
shown that the overall statistical measurement of iris texture is correlated with genetics [6]. Therefore,
great efforts have been put on the genetic correlation of the iris [7–11].

Recently, many algorithms such as machine learning techniques [12] have been developed for iris
recognition besides the early algorithms developed by Daugman. Due to tremendous success of deep
learning in computer vision problems, there has been a lot of interest in applying features learned
by convolutional neural networks (CNN) on general image recognition to other tasks, including iris
recognition [13].

In this work, we investigate the correlation between the left and right irises of an individual
using a deep neural network, more specifically, VGG16 proposed by Simonyan and Zisserman [14].
We adopted two independent iris datasets, and classified whether two irises (left and right) are from
the same or different individuals. The remainder of this paper is organized as follows. Section 2
summarizes the related research on the iris recognition and on the genetically related classification
using CNN techniques. Section 3 describes the modified VGG16 architecture used in this work.
Section 4 details the data acquisition, image preprocessing, and left–right irises’ classification
experiments. Classification results using other networks and the traditional Daugman’s approach will
also be discussed. Our major findings and conclusions will be summarized in Section 5.

2. Related Work

Qiu et al. [7] showed that the iris texture is race related, and its genetic information is illustrated
in coarse scale texture features, rather than preserved in the minute local features of state-of-the-art
iris recognition algorithms. They thus proposed a novel ethnic classification method based on the
global texture information of iris images and classified iris images into two race categories, Asian and
non-Asian, with an encouraging correct classification rate of 85.95%.

Thomas et al. [15] employed machine learning techniques to develop models that predict gender
with accuracies close to 80% based on the iris texture features. Tapia et al. [16] further showed that,
from the same binary iris code used for recognition, gender can be predicted with 89% accuracy.

Lagree and Bowyer [17] showed that not only the ethnicity but also the gender can be classified
using the iris textures, the accuracy of predicting (Asian, Caucasian) ethnicity using person-disjoint
10-fold cross-validation exceeds 90%, and the accuracy of predicting gender using person-disjoint
10-fold cross-validation is close to 62%.

Sun et al. [11] proposed a general framework for iris image classification based on texture analysis.
By using the proposed racial iris image classification method called a hierachical visual codebook, they
can discriminate iris images of Asian and non-Asian subjects with an extremely high accuracy (>97%).

These above-mentioned studies on race classification demonstrate the genotypic nature of iris
textures. More specifically, the success of race classification based on iris images indicates that an iris
image is not only a phenotypic biological signature but also a genotypic biometric pattern [11].

Hollingsworth et al. [3,4] showed that, by using the standard iris biometric algorithm,
i.e., the Daugman’s algorithm, the left and right irises of the same person are as different as irises
of unrelated individuals, and the eyes of twins are as different as irises of unrelated individuals.
However, in their experiments in which humans viewed pairs of iris images and then evaluated how
likely these images are from the same person, twins or unrelated individuals, the accuracy was found
to be greater than 75%. This suggests that the similarities in the iris images from genetically identical
or related individuals can be detected from image comparison.

Quite recently, a number of deep CNN based methods have been proposed for iris recognition or
classification. Liu et al. [18] proposed DeepIris, a deep learning based framework for heterogeneous iris
verification, which learns relational features to measure the similarity between pairs of iris images based
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on CNN. Experimental results showed that the proposed method achieves promising performance for
both cross-resolution and cross-sensor iris verification.

Gangwar et al. [19] proposed a deep learning based method named DeepIrisNet for
iris representation. Experimental analysis revealed that proposed DeepIrisNet can model the
micro-structures of iris very effectively and provide robust and discriminative iris representation
with state-of-the-art accuracy.

Nguyen et al. [20] further showed that the CNN features originally trained for classifying generic
objects are also extremely good for the iris recognition.

Bobeldyk and Ross [21] demonstrated that it is possible to use simple texture descriptors, such as
binarized statistical image features and local binary patterns, to extract gender and race attributes from
a near-infrared ocular image that is used in a typical iris recognition system. The proposed method
can predict gender and race from a single iris image with an accuracy of 86% and 90%, respectively.

3. Deep Learning Architecture

Figure 1 illustrates the architecture of VGG16 adopted in this work, which has been proven to be
a powerful and accurate CNN for classification of image datasets [22,23]. During training, the input is
a Red-Green-Blue (RGB) image of fixed-size 512 × 32 pixels. Compared with the conventional VGG16
architecture, where images of 224 × 224 pixels are used as the input, here we adopted 512 × 32 pixels
so that we do not need to resize the normalized iris images.

Figure 1. Architecture of VGG16 used in our left–right irises’ classification experiments.

The network contains a stack of 13 conventional layers and three fully-connected layers. The first
two fully-connected layers have 4096 channels each; the third layer performs two-way classification.
There are five pooling layers and each carries out spatial pooling and follows two or three conventional
layers. The final layer is the softmax layer. More details about the VGG16 architecture can be found
in [14,24,25].

The network is initialized using zero biases and random weights with zero mean. The model
learns the features from the data and calculates the weights by reverse propagation after each
batch. In order to reduce overfitting, we employed thee dropout method, which is placed on the
fully-connected layers and sets the output of each hidden unit to zeros with a probability of 50% [26].

4. Experimental Results and Analysis

4.1. Dataset

In order to carry out experiments on the classification of genetically identical left–right irises
using the above VGG16 architecture, two independent datasets were used. The iris images of the
first dataset were collected by the authors using a home-developed hand-held iris capture device in
near-infrared illumination. This dataset, referred to as the CAS-SIAT-Iris dataset (here “CAS-SIAT”
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stands for Chinese Academy of Sciences’ Shenzhen Institutes of Advanced Technology), contains
3365 pairs of left and right iris images taken from 3365 subjects. These images went through quality
assessment and careful screening before saving in 8-bit greyscale BMP format at 640 × 480 pixels
resolution, as shown in Figure 2. The other is the CASIA-Iris-Interval dataset (here “CASIA” stands
for Chinese Academy of Sciences’ Institute of Automation) [27], which contains 2655 iris images in
8-bit grayscale JPEG format of 320 × 280 pixels taken from 249 subjects, as illustrated by Figure 3. We
note that there is more than one image taken from the same iris for the CASIA-Iris-Interval dataset.

Figure 2. Sample images from the (Chinese Academy of Sciences’ Shenzhen Institutes of Advanced
Technology) CAS-SIAT-Iris dataset.

Figure 3. Sample images from the (Chinese Academy of Sciences’ Institute of Automation)
CASIA-Iris-Interval dataset.

4.2. Data Preprocessing

In order to extract the iris texture feature, an iris image as illustrated by Figure 4a needs to be
preprocessed. The iris texture region outlined by the red inner and green outer circles is first segmented
from the iris image. This process is known as the iris localization. The annular region of the iris is
then unwrapped into an isolated rectangular image of fixed 512 × 32 pixels, as shown by Figure 4b.
This process known as iris normalization is performed based on Daugman’s rubber-sheet model [4].
Finally, the contrast of the normalized iris image is further enhanced by histogram equalization so as
to improve the clarity of the iris texture, as shown by Figure 4c.

( a )

( b )

( c )
Figure 4. Preprocessing of iris image: (a) localization; (b) normalization; and (c) contrast enhancement.

To classify whether two irises (left and right) are from the same or different individuals using the
as-modified VGG16 model, we carried out feature fusion of a left and a right greyscale irises so as to form
an RGB image as the model input. We combined left and right iris images and a blank image (all pixels
have a value of zero), all of which are 8-bit greyscale, into an RGB24 image, as illustrated in Figure 5.
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Figure 5. Illustration for the generation of a CNN (convolutional neural network) input image from
two iris images (left and right).

In order to examine the robustness and versatility of the model, we performed classification
experiments using both the CAS-SIAT-Iris and the CASIA-Iris-Interval datasets as well as cross datasets,
in both the person-disjoint and non-person-disjoint manners, and with and without image augmentation.
Here, the person-disjoint manner means that there is no overlap of the subjects in the training, validation
and test sets. In other words, if an iris image of a subject is used in the training set, any iris image of that
subject will no longer be used in the validation set or the test set. For the non-person-disjoint manner,
however, although there are no repeated iris images in the training, validation and test sets, there are
overlapped subjects. The image augmentation is performed by image translations, horizontal reflections
and zooms, so as to enlarge the database for achieving better performance.

We first performed experiments by training the network using the CAS-SIAT-Iris dataset.
We constructed 3365 positive samples, each corresponds to a subject, and 2500 negative samples, which
are randomly selected. Here, a positive or negative sample indicates that the input two irises (left and
right) are from the same or different individuals. Both the positive and negative samples were partitioned
in a person-disjoint manner into the training, validation and test sets with an approximate ratio of 7:2:1.
Moreover, we further tested the as-trained network using the CASIA-Iris-Interval dataset, from which 215
positive samples and 200 negative samples were constructed. The numbers of partitioned samples are
shown in Table 1.

Table 1. Data distribution in a person-disjoint manner for the network trained with CAS-SIAT-Iris
dataset and tested with both datasets.

Positive Samples Negative Samples

CAS-SIAT training set 2223 1725
CAS-SIAT validation set 742 575
CAS-SIAT test set 400 200
CASIA test set 215 200

We also performed similar experiments by first training the network with the CASIA-Iris-Interval
dataset, and then testing with both datasets. Since the CASIA-Iris-Interval dataset containing only
2655 iris images from 249 subjects is relatively small, we artificially enlarged the database using
label-preserving transformations to improve the model accuracy and to keep from over-fitting.
In this way, we constructed 4075 positive samples and 4115 negative samples, which were partitioned
in a non-person-disjoint manner into the training, validation and test sets with approximate ratios
of 85.6%, 7.1% and 7.3%, respectively. Moreover, the as-trained network was further tested using
the CAS-SIAT-Iris dataset, from which the 600 positive and 400 negative samples were constructed.
The numbers of samples are shown in Table 2.



Electronics 2019, 8, 1109 6 of 10

Table 2. Data distribution in a non-person-disjoint manner for the network trained with
CASIA-Iris-Interval dataset and tested with both datasets.

Positive Samples Negative Samples

CASIA training set 3480 3531
CASIA validation set 290 289
CASIA test set 305 295
CAS-SIAT test set 600 400

4.3. Results and Discussion

The as-modified VGG16 model was implemented using the Keras library. A learning rate of
0.0001, a batch-size of 128, the SGD optimizer, the categorical_crossentropy loss, and a strategy of
50 epochs per round until convergence were adopted for the training. Classification experiments were
carried out on a high-performance computer with two Intel® Xeon® E5-2699 V4 processors (2.20 GHz),
256 GB RAM and a NVIDIA® Quadro GP100 GPU.

Figure 6 shows that the training and validation loss curves keep decreasing while the accuracy
curves approach 100%. These model learning curves indicate that high accuracy and relatively fast
convergence can be achieved within 100 epochs.
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Figure 6. Model learning curves of fine-tuning for the network initialized with random weights of zero
mean using the CAS-SIAT-Iris dataset: (left) training and validation loss curves, and (right) training
and validation accuracy curves.

The confusion matrices for the networks trained by the CAS-SIAT-Iris dataset and by the
CASIA-Iris-Interval dataset are summarized in Tables 3 and 4, respectively. By using these confusion
matrices, metrics of the classification, such as precision, recall and accuracy, can be calculated,
as summarized in Tables 5 and 6. Table 5 shows that, by using the network trained with the
CAS-SIAT-Iris dataset, the classification precision reaches 97.67%, recall is 94.25%, and accuracy reaches
94.25% for the CAS-SIAT-Iris test set, and these metrics are 94.71%, 91.63% and 93.01%, respectively,
for the CASIA-Iris-Interval test set. By using the network trained with the CASIA-Iris-Interval dataset,
Table 6 shows that the classification precision reaches 94.28%, recall is 87.83%, and accuracy reaches
89.50% for positive samples, 95.59% for the CAS-SIAT-Iris test set, and these metrics are 95.67%, 94.10%
and 94.83%, respectively, for the CASIA-Iris-Interval test set.

Note that for these two datasets we further examined other CNN architectures such as the VGG19
and DeepIris models, which were also initialized with zero biases and random weights with zero
mean, and in which dropout is placed on the full-connected layers to reduce overfitting. The results
summarized in Table 7 show that the accuracy is up to 94% for the VGG16 model but is only about
63–69% for both the VGG19 and DeepIris models. In other words, the VGG16 model exhibits the best
performance in terms of the classification accuracy.
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We also tried to make use of the conventional VGG16 architecture, which was initialized
using pre-trained weights taken from a model in ImageNet [28]. In that model, the input image
is of 224 × 224 pixels, thus we further performed image cutting, splicing, and resizing so that the
preprocessed iris images are now of 224 × 224 pixels. Note that the dropout method has been used in
that model. Our experimental results in Figure 7 showed that the conventional VGG16 architecture
with pre-trained weights, which was widely used for general image classification, is not suitable for
the classification of the left–right iris images.

Table 3. Confusion matrix for the network trained with the CAS-SIAT-Iris dataset and and tested with
both datasets.

Actual
CAS-SIAT Predicted CASIA Predicted

Positive Negative Total Positive Negative Total

Positive 377 23 400 197 18 215
Negative 9 191 200 11 189 200

Table 4. Confusion matrix for the network trained with the CASIA-Iris-Interval dataset and tested with
both datasets.

Actual
CAS-SIAT Predicted CASIA Predicted

Positive Negative Total Positive Negative Total

Positive 527 73 600 278 18 305
Negative 32 368 400 13 282 295

Table 5. Classification report for the network trained with the CAS-SIAT-Iris dataset and tested with
both datasets.

Precision Recall Accuracy

CAS-SIAT test set 97.67% 94.25% 94.67%
CASIA test set 94.71% 91.63% 93.01%

Table 6. Classification report for the network trained with the CASIA-Iris-Interval dataset and tested
with both datasets.

Precision Recall Accuracy

CAS-SIAT test set 94.28% 87.83% 89.50%
CASIA test set 95.67% 94.10% 94.83%

Table 7. Comparison of classification accuracy for different CNN architectures. The training and test of
these networks were performed with the same dataset (cross datasets were not considered).

VGG16 VGG19 DeepIris

CAS-SIAT dataset 94.67% 68.21% 63.58%
CASIA dataset 94.83% 69.71% 66.97%

We note that, by using the traditional Daugman’s approach, it is impossible to distinguish whether
two irises (left and right) are from the same or different individuals. Figure 8 shows that comparisons
between left and right irises from the same person (blue solid curve) yield similar Hamming distances
as comparisons between left and right irises from two individuals (red dashed curve). In other words,
from an iris recognition perspective, each iris is so distinct that even the left and right irises from an
individual are distinguishable. These results obtained from the CAS-SIAT-Iris dataset are similar to those
from the CASIA-Iris-Interval dataset (not shown for clarity), and are consistent with the literature [3].
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Figure 7. Model training and validation loss curves for the network initialized with pre-trained weights
using the CAS-SIAT-Iris dataset.

Figure 8. The distribution of iris biometric scores between left and right eyes of the same subject
is statistically indistinguishable from the distribution of scores from left and right eyes of different
subjects. The results were obtained using the CAS-SIAT-Iris dataset, and are consistent with [3].

5. Conclusions

In conclusion, we have studied the correlation between the left and right irises. Experimental
results have shown that, by using the VGG16 convolutional neural network, two irises (left and right)
from the same or different individuals can be classified with a high accuracy of larger than 94% for
both the CAS-SIAT-Iris dataset and the CASIA-Iris-Interval dataset. This strikingly high accuracy
suggests that, by making use of deep learning, it is possible to distinguish whether a pair of left and
right iris images belongs to the same individual or not, which is indistinguishable using the traditional
approach. We believe that this classification accuracy can be further improved by collecting more
samples, i.e., more iris images from more individuals. We expect this work will inspire further studies
on the correlation among multiple biometric features such as face, iris, fingerprint, palmprint, hand vein,
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retina, speech, and hand geometry for genetically related individuals. The discovered similarities
between different biometric identifiers would greatly advance effective criminal investigations.
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