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In order to solve the multiobjective optimization problems efficiently, this paper presents a hybrid multiobjective optimization
algorithm which originates from invasive weed optimization (IWO) and multiobjective evolutionary algorithm based on
decomposition (MOEA/D), a popular framework for multiobjective optimization. IWO is a simple but powerful numerical
stochastic optimization method inspired from colonizing weeds; it is very robust and well adapted to changes in the environment.
Based on the smart and distinct features of IWO andMOEA/D, we introducemultiobjective invasive weed optimization algorithm
based on decomposition, abbreviated as MOEA/D-IWO, and try to combine their excellent features in this hybrid algorithm. The
efficiency of the algorithmboth in convergence speed and optimality of results are comparedwithMOEA/D and some other popular
multiobjective optimization algorithms through a big set of experiments on benchmark functions. Experimental results show the
competitive performance of MOEA/D-IWO in solving these complicated multiobjective optimization problems.

1. Introduction

Multiobjective optimization problems (MOPs) widely exist
in applications [1], such as design [2], scheduling [3–5], path
planning [6], retrieval [7], and cloud computing [8]. These
problems usually have two or more objectives, which often
conflict with each other. Traditional mathematical methods
often cannot deal with them well. Evolutionary algorithms
present unique superiority in handling this type of problems.
Due to the wide application scenes of MOPs, research on
multiobjective evolutionary algorithms (MOEAs) remains
prosperous [9–11].

Multiobjective evolutionary algorithms that have been
proposed in literatures can be classified into three categories
[9, 12]: the dominance-based approach, the indicator-based
approach, and the decomposition-based approach.(1)Dominance-based approach: in this type of approach,
Pareto-dominance selection principle plays an important role
in convergence process, among which the Pareto-based non-
dominated sorting approach is the most popular, where solu-
tions having better Pareto ranks are selected. Besides, often
a diversity maintaining strategy is needed for achieving an

even distribution of the Pareto optimal solutions. Improved
strength Pareto EA (SPEA2) [13] and nondominated sorting
genetic algorithm II (NSGA-II) [14] are two representative
Pareto-basedMOEAs, which perform effectively in solving 2-
objective or 3-objective MOPs. However, when the number
of objectives becomes large, selection pressure will reduce
sharply and optimization process will become ineffective [15–
17]. (2) Indicator-based approach: i.n this type of approach,
a performance indicator such as hypervolume indicator or
R2 indicator is used to measure the fitness of solutions by
assessing their contributions. The used indicator needs the
capability of measuring both convergence and diversity of
an optimization algorithm. R2 indicator based evolutionary
algorithm (R2-IBEA) [18], hypervolume-based evolutionary
algorithm (HypE) [19], and hybrid Multiobjective Particle
Swarm Optimization Algorithm Based on R2 Indicator
(R2HMOPSO) [20] are three well-known indicator-based
optimization algorithms.(3) Decomposition-based approach: in this type of
approach, an MOP is transformed into a series of single-
objective optimization subproblems through decomposition

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 6943921, 18 pages
https://doi.org/10.1155/2019/6943921

https://orcid.org/0000-0001-5056-6019
https://orcid.org/0000-0001-7752-4097
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6943921


2 Mathematical Problems in Engineering

method, weighted sum approach, for example, and solves
these subproblems simultaneously in a single run by an
optimization algorithm. Decomposition-based method will
utilize aggregated fitness value of solutions in selection
process. Multiobjective genetic local search (MOGLS) [21],
cellular genetic algorithm formultiobjective optimization (C-
MOGA) [22], andMOEA/D [15] etc. are some of well famous
representative MOEAs based on decomposition.

MOEA/D first proposed in 2007 [15] is a milestone in the
development ofMOEAs; it is a classical decomposition-based
algorithm. MOEA/D defines a framework of multiobjective
optimization; its improved version has won first on CEC
2009 [23]. Since being proposed, MOEA/D and its variants
have solved many complex MOPs, which demonstrates that
MOEA/D has lower computation complexity and performs
better than NSGA-II in dealing with complex MOPs in a
sense [24–27]. Therefore, its research is worthy of attention.

Invasive WeedOptimization (IWO) [28] first proposed in
2006, is a derivative-free metaheuristic algorithm mimicking
the ecological behavior of colonizing weeds and distribution
and is able to efficiently handle general linear, nonlinear,
and multidimensional optimization problems [28, 29]. Since
its proposal, IWO has been successfully applied in many
practical optimization problems, such as developing a rec-
ommender system [30],many kinds of antenna configuration
optimization [2, 31], and DNA computing [32].

Kundu et al. [33] proposed multiobjective invasive weed
optimization (IWO) in 2011 and applied it on solving CEC
2009 MOPs. In their work, fuzzy dominance mechanism,
instead of nondominated sorting, was carried out to sort the
promising weeds in each iteration. Y. Liu et al. developed
multiobjective invasive weed optimization for synthesis of
phase-only reconfigurable linear arrays [2]. In addition,
as far as we know, there has not much research on the
multiobjective invasive weed optimization.Then in this work,
we extend the classical IWO algorithm and integrate it into
the framework of MOEA/D for well handling multiobjective
problems. Based on the smart and distinct features of IWO
and MOEA/D, we propose multiobjective invasive weed
optimization algorithm based on decomposition (MOEA/D-
IWO) and try to combine their excellent features in this
extended hybrid algorithm. MOEA/D-IWO decomposes an
MOP into a series of single-objective subproblmes and solves
them in parallel in each generation. The population consists
of the best solutions searched so far for each subproblem,
and each subproblem utilizes an extended IWO algorithm
for evolution in each generation. The performance of the
proposed MOEA/D-IWO in both convergence speed and
optimality of results are compared with those of NSGA-II,
MOEA/D, and some other multiobjective evolutionary algo-
rithms on a big set of MOPs. Comparison results indicate the
feasibility of IWO as a very hopeful metaheuristic candidate
in the domain of multiobjective optimization.

The remaining parts of this paper are organized as
follows. Section 2 formally describes the background knowl-
edge on multiobjective optimization, the basic framework
of MOEA/D, and an overview of IWO. Section 3 pro-
vides an adaptive modification of IWO and then integrates
it into MOEA/D deducing our proposed MOEA/D-IWO.

Experiments are carried out and discussed in Section 4.
Finally, Section 5 concludes this paper and prospects our
further research.

2. Background

2.1. Multiobjective Optimization Problem. Without loss of
generality, an unconstrained continuous multiobjective opti-
mization problem (MOP) can be formally described as:

minimize 𝐹 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑚 (𝑥))⊤
subject to 𝑥 ∈ Ω (1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ is variable vector, 𝑛 is the number
of variables,Ω is the variable (decision) space,𝐹 : Ω 󳨀→ 𝑅𝑚 is
composed of𝑚 real-valued objective functions, and 𝑅𝑚 is the
objective space [34, 35].We can define the attainable objective
set as {𝐹(𝑥) | 𝑥 ∈ Ω}.
Definition 1 ((domination) [35]). 𝑢 = (𝑢1, . . . , 𝑢𝑚)⊤, V =(V1, . . . , V𝑚)⊤ ∈ 𝑅𝑚 are two vectors, 𝑢 dominates V if 𝑢𝑗 ≤ V𝑗
for each 𝑗 ∈ {1, 2, . . . , 𝑚}, and there must exist at least one𝑖 ∈ {1, 2, . . . , 𝑚} satisfying 𝑢𝑖 < V𝑖, which can be expressed as𝑢 ≻ V.

Definition 2 ((Pareto optimal solution) [35]). A point 𝑥∗ ∈ Ω
is called a Pareto optimal to (1) if and only if there is no point𝑥 ∈ Ω satisfying 𝐹(𝑥) dominates 𝐹(𝑥∗).
Definition 3 ((Pareto optimal set (PS)) [35]). The Pareto
optimal set (PS) can be defined as PS = {𝑥∗ ∈ Ω | ¬∃𝑥 ∈Ω : 𝐹(𝑥) ≻ 𝐹(𝑥∗)}; it is the set of all Pareto optimal solutions.

Definition 4 ((Pareto front (PF)) [35]). Consisted with the
definition of PS, Pareto front (PF) can be defined as PF ={𝐹(𝑥) | 𝑥 ∈ PS}, indicating the set of all the Pareto optimal
solutions in the objective space.

There are three goals for MOEAs in handling an MOP:(1) good convergence, obtaining a set of approximations as
close as possible to the PF, (2) good diversity, obtaining a set
of evenly distributed approximations, and (3) good coverage,
which can cover the entire PF.

2.2. MOEA/D: an Overview. Multiobjective evolutionary
algorithm based on decomposition (MOEA/D) is a repre-
sentative of the decomposition-based method, proposed by
Zhang and Li in 2007 [15]. Large sets of experiments have
illustrated that MOEA/D and its improved versions show
superiority over other popularMOEAson solvingMOPswith
complicated Pareto set shapes [16, 36]. The basic idea behind
MOEA/D is to transform an MOP into a series of single-
objective optimization subproblems through decomposition
method and coevolve these subproblems in each generation.

The framework of MOEA/D is formally described in
Algorithm 1. Tchebycheff method is used for decomposing
an MOP into 𝑁 subproblems in this framework; 𝑔𝑡𝑒 is
the aggregated scalar function after decomposition. There
have been other decomposition methods, such as weighted
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input:𝑁: population size;𝑇: the number of neighbors for each weight vector, 0 < 𝑇 < 𝑁;𝜆1, . . . , 𝜆𝑁: a set of𝑁 evenly distributed weight vectors;
output: Pareto solutions on the objective space: {𝐹(𝑥1), . . . , 𝐹(𝑥𝑁)}

1 Initialization:
2 𝑥1, . . . , 𝑥𝑁 are randomly sampled from [𝑙, 𝑢], 𝐹𝑉𝑗 = 𝐹(𝑥𝑗);
3 foreach 𝑗 = 1 to𝑁 do 𝑛𝑒𝑏(𝑗) = {𝑎, 𝑏, . . . , 𝑡}; /∗ 𝜆𝑎, 𝜆𝑏, . . . , 𝜆𝑡 are the 𝑇 closest weight vectors to 𝜆𝑗 ∗/
4 reference point 𝑧 = (𝑧1, . . . , 𝑧𝑚)⊤. /∗ 𝑧𝑖 = min1≤𝑗≤𝑁𝑓𝑖(𝑥𝑗) ∗/
5 while stop criteria are not met do
6 for 𝑗 = 1 to𝑁 do
7 𝑦 ←󳨀 reproduce (𝑥𝑗, 𝑥𝑠, 𝑥𝑘); /∗ 𝑠 and 𝑘 are selected from 𝑛𝑒𝑏(𝑗) ∗/
8 𝑦 ←󳨀 mutate (𝑦);
9 if 𝑦 ∉ [𝑙, 𝑢] then
10 𝑦 ←󳨀 repair (𝑦);
11 end
12 foreach i = 1 to𝑚 do
13 if 𝑧𝑖 > 𝑓𝑖(𝑦) then
14 𝑧𝑖 = 𝑓𝑖(𝑦);
15 end
16 end
17 foreach 𝑖 ∈ 𝑛𝑒𝑏(𝑗) do
18 if 𝑔𝑡𝑒(𝑦 | 𝜆𝑖, 𝑧) < 𝑔𝑡𝑒(𝑥𝑖 | 𝜆𝑖, 𝑧) then
19 𝑥𝑖 = 𝑦;
20 𝐹𝑉𝑖 = 𝐹(𝑦);
21 end
22 end
23 end
24 end

Algorithm 1: MOEA/D.

sum (WS) and penalty-based boundary intersection (PBI)
and can be used for decomposing. Detailed descriptions of
these decomposition methods can refer to [15]. Just as the
optimal solution of each subproblem has been proved to be
Pareto optimal to the MOP under consideration, then the
solutions set of all subproblems can be considered as a good
approximation of PF.

Compared with other MOEAs, MOEA/D has the follow-
ing three important features.(1)MOEA/D transforms an MOP into a series of single-
objective optimization subproblems through decomposition
and solves these subproblems simultaneously; it does not
directly solve the MOP as a whole. Different decomposition
methods often have different effects on solving problems.
Furthermore, many kinds of optimization strategies used
in single-objective optimization algorithm can also be inte-
grated into MOEA/D.(2) MOEA/D implements the coevolution of subprob-
lems. With the solutions information of adjacent subprob-
lems,multiple subproblems can be optimized simultaneously.
Then the computational complexity of MOEA/D is lower
than that of NSGA-II.(3) MOEA/D can solve the MOPs with complicated
Pareto set shapes very well, which we often encounter in
practical engineering optimization, synthesis of phase-only
reconfigurable linear arrays for example [2]. In addition,
MOEA/D can solve the problem with multiple objects

(especially when the number of objects 𝑚 is greater than
four). When the number of objects is large, the performance
ofMOEA tends to decline, which requires a larger population
for optimization. However, the performance of MOEA/D
does not significantly decrease.

2.3. InvasiveWeed Optimization (IWO): an Overview. Weeds
are plants whose vigorous and invasive habits of growthmake
them very robust and adaptive to changes in environment.
Thus, capturing their properties and imitating their behaviors
would lead to a powerful optimization method. This is the
main idea behind IWO, which was originally proposed in
[28]; it is a simple but effective meta-heuristic algorithm. To
fulfill the IWO process, the following steps are needed.

Step 1 (initialization). A number of weeds are uniformly
generated in the feasible decision space, where each weed
represents a trial solution of the optimization problem under
consideration.

Step 2 (fitness evaluation and ranking). Each weed will grow
to a plant. Besides, fitness evaluation function will assign each
plant a fitness and rank these plants based on their fitness
values.

Step 3 (reproduction). Every plant produces seeds based on
its rank or assigned fitness value. In other words, the number
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of seeds each plant is permitted to produce, 𝑠𝑖, is decided
by its fitness or rank, 𝑓𝑖, and the permissible maximum and
minimum numbers of seeds 𝑠max and 𝑠min. 𝑠𝑖 is formulated as

𝑠𝑖 = 𝑓𝑙𝑜𝑜𝑟 ( 𝑓𝑖 − 𝑓min𝑓max − 𝑓min
(𝑠max − 𝑠min) + 𝑠min) (2)

where 𝑓max and 𝑓min are the highest and the lowest fitness
of the population. Generally speaking, high fitness or rank
will have the chance of producing more seeds. This step
also provides an important property that allows all plants to
participate in the reproduction contest; i.e., it gives all plants
the chance of surviving and reproducing based on their rank
or fitness.

Step 4 (spatial distribution). Theproduced seeds are designed
to randomly distribute on the search space by Gaussian
distribution with mean zero but varying variance. This step
can ensure that the produced seeds are generated around their
parent plant conducting a local search around each plant.
However, the standard deviation of the random function is
designed to decrease with iterations. At the current iteration
’𝑖𝑡𝑒𝑟’, the standard deviation is described as

𝜎iter = 𝜎final + (𝑖𝑡𝑒𝑟max − 𝑖𝑡𝑒𝑟𝑖𝑡𝑒𝑟max
)𝑝𝑜𝑤 ⋅ (𝜎initial − 𝜎final) (3)

where 𝑖𝑡𝑒𝑟max is the upper limit of iterations and 𝑝𝑜𝑤 is a
nonlinear regulatory factor. 𝜎initial and 𝜎final are presented
as the initial and final standard deviations, respectively. It
can be observed from (3) that the probability of dropping
a seed in a remote area reduces nonlinearly with iterations
leading to group fitter plants and elimination of inappropriate
plants. Therefore, this step can be considered as the selection
mechanism of IWO.

Step 5 (repeat and terminate). After the above steps carry out
for all of the plants, the process will be repeated at Step 2
until stop conditions are met. It should be noted that weeds
with lower fitness have a high probability of being eliminated
after all plants reproduce to the maximum number 𝑝𝑜𝑝𝑚𝑎𝑥 in
colony process.

3. Multiobjective Invasive Weed Optimization
Algorithm Based on Decomposition

In this part, we present a multiobjective invasive weed
optimization algorithm based on decomposition, abbreviated
as MOEA/D-IWO. We first adapt IWO for multiobjective
optimization and then integrate it into MOEA/D providing a
decomposition-based multiobjective optimization algorithm
with invasive weed colonies.

The main aspects of our motivation are as follows:
IWO is a population-based stochastic optimization technique
in solving continuous optimization problems. In case of
nonlinear multidimensional continuous optimization prob-
lems, IWO outperforms PSO, GA, memetic algorithms, and
shuffled frog leaping [28]. However, in conventional IWO,
fitness is used not only to compare two solutions but also in

the reproduction process unlike in PSO, GA, etc. Comparing
to other EAs, the fitness assignment of each solution in IWO
is more difficult in solving MOPs than that in single objective
optimization. Kundu et al. developed multiobjective invasive
weed optimization [33], where fuzzy dominance mechanism,
instead of nondominated sorting, is carried out to sort the
promisingweeds in each iteration. However, with the number
of objectives becoming large, selection pressure will reduce
sharply and optimization process becomes ineffective. To
avoid this difficulty, the framework of decomposition-based
multiobjective algorithm [15] can be considered as a reliable
candidate. The mentioned advantages and disadvantages of
IWO motivate us to propose a new hybrid version of IWO
with MOEA/D framework to solve MOPs.

3.1. Adaptive Modification of IWO. In IWO, only individuals
with high fitness values are permitted to reproduce offsprings,
and the number of offsprings is determined by the normal-
ized fitness value. Therefore, IWO is able to avoid wasting
time on searching the less feasible region in a constrained
optimization problem. However, as a local search algorithm,
IWO is sensitive to the initial values of the parameters and
easily gets trapped into local optima.

An adaptive modification of IWO in this study is for the
aim of acquiring the balance between effective exploration
and efficient exploitation utilizing neighborhood information
for multiobjective optimization. The original IWO leads to a
coarse-grained local search because the offsprings have the
same dispersal degree in all dimensions at a certain iteration.
In detail, it can be clearly seen from (3) that 𝜎iter decreases
with the increase of iterations; however, the value of 𝜎iter
for each parent seed in one iteration is the same, which
is not conducive to exploration and efficient exploitation.
Furthermore, we plan to integrate IWO into MOEA/D
for multiobjective optimization. MOEA/D decomposes an
MOP into a big set of scalar subproblems and coevolves
these subproblems through neighborhood relationship. In
the process of coevolution, we plan to utilize IWO fulfilling
optimization for each subproblem. However, the current best
solution and its neighbors have obviously different fitness for
each subproblem; then the same setting of 𝜎iter for them is not
proper. In other words, 𝜎iter influences the distance between
parents and their produced children weeds, though they are
under the same iteration.Different parent should have its own𝜎iter differing from those of other parent weeds. Thus, in this
study we improve IWO and propose an adaptive standard
deviation 𝑠𝑡𝑑iter, where the value of 𝜎iter varies not only with
the iteration but also with the rank of the individual’s fitness
in the subproblem, as described in

𝑠𝑡𝑑iter

=
{{{{{{{{{

(1 + 𝑄 𝑔𝑡𝑒 − 𝑔𝑡𝑒mean𝑔𝑡𝑒max − 𝑔𝑡𝑒mean
) ⋅ 𝜎iter if 𝑔𝑡𝑒 ≥ 𝑔𝑡𝑒mean

(1 − 𝑄 𝑔𝑡𝑒mean − 𝑔𝑡𝑒𝑔𝑡𝑒mean − 𝑔𝑡𝑒min
) ⋅ 𝜎iter otherwise

(4)

where 𝑔𝑡𝑒 is the aggregated scalar function value of the
weed (Tchebycheff method is used for example), 𝑔𝑡𝑒min, 𝑔𝑡𝑒max,
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Figure 1: Seed production procedure in a colony of weeds.

and 𝑔𝑡𝑒mean, respectively, represent the minimum, maximum,
and average scalar function value among all weeds (current
solution and its neighbors) in current iteration for each
subproblem, and 𝑄 is a regulatory factor of adjusting the
variation range of standard deviation; its value is generally set
from 0 to 0.5.

It can be found from (4) that 𝑠𝑡𝑑iter of weed consists
with its scalar function value; the lower the scalar function
value is, the smaller the standard deviation of the weed𝑠𝑡𝑑iter will be, which ensures the children seeds produced by
better parents distribute relatively near around their parents,
and the children seeds produced by worse parents distribute
relatively far away from their parents. Moreover, the variable
range of 𝑠𝑡𝑑iter is extended to [1−𝑄, 1+𝑄]𝜎iter strengthening
the diversity of the seeds, and the standard deviation of
producing weeds decreases with iterations on the whole.
This will accelerate the convergence rate and meanwhile
can escape from local optimum. Global and local search
capabilities can be well balanced through this mechanism.

On the other hand, the number of seeds produced by
parent plant is described as

𝑠num = 𝑓𝑙𝑜𝑜𝑟 ( 𝑔𝑡𝑒max − 𝑔𝑡𝑒𝑔𝑡𝑒max − 𝑔𝑡𝑒min
(𝑠max − 𝑠min) + 𝑠min) (5)

where 𝑠max and 𝑠min in (5) are the largest and smallest number
of seeds each parent is permitted to produce, respectively,𝑓𝑙𝑜𝑜𝑟(∗)means the floor function of ‘∗’. It is very evident that
better individual will produce more seeds. Figure 1 visually
illustrates the procedure.

Let 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)⊤ be the 𝑖-th current parent
individual, and each new seed produced by 𝑥𝑖 is 𝑦 =(𝑦1, 𝑦2, . . . , 𝑦𝑛)⊤, where each element 𝑦𝑗 is generated as
follows:

𝑦𝑗 = 𝑥𝑖𝑗 + 𝑁(0, 𝑠𝑡𝑑2iter) , 𝑗 = 1, 2, . . . , 𝑛. (6)

Finally, 𝑠num new solutions of 𝑦 are generated by (3)–(6)
and applied for updating the 𝑖-th subproblem.

The dispersal degree of offsprings in adaptive IWO
variant is determined by the estimation of the neighborhood
information around their parents based on the neighborhood
topology, which is more powerful in subproblem local search
compared with the original IWO.

3.2. MOEA/D-IWO-Algorithm Description. From the previ-
ous two sections we conclude that MOEA/D provide a good
framework for multiobjective optimization while adaptive
IWO novelly offers good exploration and diversity. In this
part, we combine the two algorithms and present a novel
algorithm: MOEA/D-IWO for handling multiobjective opti-
mization problems. Based on the smart and distinct features
of IWO and MOEA/D, we propose MOEA/D-IWO and try
to combine their excellent features in this extended hybrid
algorithm.

Under the framework of MOEA/D, MOEA/D-IWO
decomposes a multiobjective problem into a big set of scalar
optimization subproblems and solves them simultaneously.
In each subproblem, adaptive IWO is adopted for search,
where the objective is tominimize the aggregation function of
all the objects under consideration. Each subproblem has its
own aggregation weight vector constructing its aggregation
function, which is different from any of the others; i.e.,
all these aggregation weight vectors of the decomposed
subproblems differ with each other. At each generation, the
population is composed of the best solutions searched so far
for each subproblem; then the number of the decomposed
subproblems is also the population size. If the population size
is set to 𝑁, then, we need to optimize these 𝑁 subproblems
simultaneously.

An MOP can be transferred into a series of scalar opti-
mization subproblems through decomposition [34]. Tcheby-
cheff decomposition approach is mainly employed in our
experiments. Let 𝜆1, . . . , 𝜆𝑁 be a set of uniformly distributed
weight vectors, and 𝑧∗ = (𝑧∗1 , . . . , 𝑧∗𝑚)⊤, 𝑧∗𝑖 = min{𝑓𝑖(𝑥) |𝑥 ∈ [𝑙, 𝑢]}, 𝑖 = 1, . . . , 𝑚 is the reference point, with the
Tchebycheff decomposition method; the objective function
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Input: 𝑁: population size;𝑇: the number of neighbors for each weight vector, 0 < 𝑇 < 𝑁;𝜆1, . . . , 𝜆𝑁: a set of𝑁 evenly distributed weight vectors;
Output: Pareto solutions on the objective space: {𝐹(𝑥1), . . . , 𝐹(𝑥𝑁)}

1 Initialization:
2 𝑥1, . . . , 𝑥𝑁 are randomly sampled from [𝑙, 𝑢], 𝐹𝑉𝑗 = 𝐹(𝑥𝑗);
3 foreach 𝑗 = 1 to𝑁 do 𝑛𝑒𝑏(𝑗) = {𝑎, 𝑏, . . . , 𝑡}; /∗ 𝜆𝑎, 𝜆𝑏 , . . . , 𝜆𝑡 are the 𝑇 closest weight vectors to 𝜆𝑗 ∗/
4 reference point 𝑧 = (𝑧1, . . . , 𝑧𝑚)⊤. /∗ 𝑧𝑖 = min1≤𝑗≤𝑁𝑓𝑖(𝑥𝑗) ∗/
5 while stop criteria are not met do
6 for 𝑗 = 1 to𝑁 do
7 𝑈 ←󳨀 IWO (𝑥𝑗, 𝑠𝑡𝑑𝑗𝑖𝑡𝑒𝑟);
8 𝑉 ←󳨀 IWO (𝑥𝑘, 𝑠𝑡𝑑𝑘𝑖𝑡𝑒𝑟);
9 /∗ 𝑘 is selected from 𝑛𝑒𝑏(𝑗) ∗/
10 foreach 𝑦 ∈ 𝑈 ∪ 𝑉 do
11 if 𝑦 ∉ [𝑙, 𝑢] then
12 𝑦 ←󳨀 Repair (𝑦);
13 end
14 foreach 𝑖 = 1 to𝑚 do
15 if 𝑧𝑖 > 𝑓𝑖(𝑦) then
16 𝑧𝑖 = 𝑓𝑖(𝑦);
17 end
18 end
19 foreach 𝑖 ∈ 𝑛𝑒𝑏(𝑗) do
20 if 𝑔𝑡𝑒(𝑦 | 𝜆𝑖, 𝑧) < 𝑔𝑡𝑒(𝑥𝑖 | 𝜆𝑖, 𝑧) then
21 𝑥𝑖 = 𝑦;
22 𝐹𝑉𝑖 = 𝐹(𝑦);
23 end
24 end
25 end
26 end
27 end

Algorithm 2: MOEA/D-IWO.

of the 𝑖-th subproblem can be described as the following
[34]:

𝑔𝑡𝑒 (𝑥 | 𝜆𝑖, 𝑧∗) = max
1≤𝑗≤𝑚

{𝜆𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑥) − 𝑧∗𝑗 󵄨󵄨󵄨󵄨󵄨} (7)

where 𝜆𝑖 = (𝜆𝑖1, . . . , 𝜆𝑖𝑚)⊤, 𝑚 is the number of objects.
MOEA/D-IWO optimizes all those 𝑁 objective functions
simultaneously. Each subproblem is optimized by adaptive
IWO using information only from its neighbors. Neigh-
borhood relations among subproblems here are defined
based on the distance between their aggregation coefficient
vectors. Detailed description of MOEA/D-IWO is provided
in Algorithm 2.

In the line labeled 7 of the Algorithm 2, 𝑈 ←󳨀 IWO(𝑥𝑖, 𝑠𝑡𝑑𝑖iter) describes the procedure of 𝑥𝑖 producing seeds. 𝑈
consists of all children seeds produced by 𝑥𝑖. Suppose 𝑈 ={𝑦1, 𝑦2, . . . , 𝑦𝑘}; then 𝑘 is the total number of children seeds
produced by 𝑥𝑖, its value is determined by (5), where 𝑔𝑡𝑒, i.e.,𝑔𝑡𝑒(𝑥𝑖 | 𝜆𝑖, 𝑧∗), and 𝑔𝑡𝑒min, 𝑔𝑡𝑒max are obtained by the following
equations, respectively:

𝑔𝑡𝑒min = min {𝑔𝑡𝑒 (𝑥𝑘 | 𝜆𝑖, 𝑧∗) | 𝑥𝑘 ∈ 𝐵 (𝑖)} (8)

𝑔𝑡𝑒max = max {𝑔𝑡𝑒 (𝑥𝑘 | 𝜆𝑖, 𝑧∗) | 𝑥𝑘 ∈ 𝐵 (𝑖)} (9)

𝑠𝑡𝑑𝑖iter stands for the adaptive standard deviation of 𝑥𝑖; its
value can be got through (3) and (4), where𝑔𝑡𝑒mean is calculated
by

𝑔𝑡𝑒mean = ∑{𝑔𝑡𝑒 (𝑥𝑘 | 𝜆𝑖, 𝑧∗) | 𝑥𝑘 ∈ 𝐵 (𝑖)}
|𝐵 (𝑖)| (10)

where |𝐵(𝑖)| is the number of neighbors for subproblem 𝑖.
Likewise, the same computing model is applied on the

neighbors of 𝑥𝑖 in the line (labeled 8) of Algorithm 2.

4. Experiments

For illustrating the performance of MOEA/D-IWO in han-
dling MOPs, in this part MOEA/D-IWO is experimented on
a big set of benchmark test instances. Firstly, MOEA/D-IWO
is tested on nine problems with complex Pareto set shapes
chosen from [16] and compared with other two classical
algorithms: NSGA-II and MOEA/D on these problems. This
set of nine complex functions was proposed by professors
Zhang and Li [16]. Many experimental results have shown
that this kind of complicated PSs aswell as PFs could seriously
affect the performance of MOEAs [23].
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Table 1: IGD-metric comparison results of MOEA/D-IWO, NSGA-II, and MOEA/D on F1-F9.

Problems MOEA/D-IWO MOEA/D ss NSGA-II ss

F1
mean 0.0014 0.0015 + 0.0031 +
min 0.0014 0.0014 0.0029
std 1.0051E-05 3.4533E-05 1.0912E-04

F2
mean 0.0396 0.0596 + 0.0437 +
min 0.0107 0.0161 0.0341
std 0.0287 0.0462 0.0055

F3
mean 0.0343 0.0492 + 0.0434 +
min 0.0054 0.0073 0.0368
std 0.0221 0.0369 0.0037

F4
mean 0.0023 0.0215 + 0.0431 +
min 0.0021 0.0144 0.0357
std 1.4079E-04 0.0049 0.0042

F5
mean 0.0246 0.0327 + 0.0416 +
min 0.0025 0.0149 0.0356
std 0.0201 0.0217 0.0029

F6
mean 0.0270 0.0330 + 0.0750 +
min 0.0257 0.0303 0.0622
std 0.0011 0.0015 0.0061

F7
mean 0.0569 0.2407 + 0.4302 +
min 0.0025 0.1687 0.1942
std 0.0579 0.1703 0.0258

F8
mean 0.1441 0.2569 + 0.4184 +
min 0.0927 0.1479 0.3094
std 0.0414 0.0800 0.0397

F9
mean 0.0322 0.0440 + 0.0446 +
min 0.0127 0.0148 0.0346
std 0.0202 0.0291 0.0060

Besides, MOEA/D-IWO is also tested on ten of CEC 2009
problems UF1-UF10 in this part for further comparing with
other hybrid or outstanding algorithms including MOEA/D-
DE [16],MOEA/D-PSO, dMOPSO [37], I-MOEA/D [17], and
R2HMOPSO [20]. Among these ten problems UF1-UF10, the
first seven UF1-UF7 are problems with two objectives while
the last three UF8-UF10 are problems with three objectives.
Each of the test problems UF1-UF10 has a decision space
composed of 30 variables. Detailed descriptions of these ten
test problems can be found in [23].

All those nineteen test problems are for minimization of
the objectives.

4.1. Performance Metric. In multiobjective optimization,
there are two basic aims that all the multiobjective algorithms
pursue; i.e., the obtained solutions set must be as close
as possible to the Pareto front, while the diversity of the
solutions set needs to bemaintained. In order to evaluate and
compare the different algorithms quantitatively, we use the
following performance metrics in experiments.

(i) Inverted generational distance (IGD) [38]: suppose 𝑆∗
is a large set of uniformly distributed points along
the PF representing it well, and 𝑃 is the solutions
set obtained bymultiobjective algorithm. IGD (𝑆∗, 𝑃)

represents the average distance from 𝑆∗ to𝑃 described
as

IGD (𝑆∗, 𝑃) = ∑𝑢∈𝑆∗ 𝑑 (𝑢, 𝑃)|𝑆∗| (11)

where 𝑑(𝑢, 𝑃) is the minimum Euclidean distance
between𝑢 and the points in𝑃. If |𝑆∗| is large enough to
represent the PF very well, IGD(𝑆∗, 𝑃) could measure
both the diversity and convergence of 𝑃 in a sense. To
have a low value of IGD(𝑆∗, 𝑃), 𝑃 must be very close
to the PF and cannot miss any part of the whole PF.

(ii) Spacing (S): [39] proposed the spacing metric which
measures the variance of distance of each solution in𝑃 to its closest neighbour:

𝑆 (𝑃) = √ 1|𝑃| − 1 ∑𝑥∈𝑃 (𝑑 − 𝑑𝑥)
2

𝑑𝑥 = 𝑥∗∈𝑃min
𝑥∗ ̸=𝑥

{ 𝑚∑
𝑙=1

󵄨󵄨󵄨󵄨𝑓𝑙 (𝑥) − 𝑓𝑙 (𝑥∗)󵄨󵄨󵄨󵄨}
𝑑 = 1|𝑃| ∑𝑥∈𝑃𝑑𝑥

(12)
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Table 2: S-metric comparison results of MOEA/D-IWO, NSGA-II, and MOEA/D on F1-F9.

Problems MOEA/D-IWO MOEA/D ss NSGA-II ss

F1
mean 0.0026 0.0035 + 0.0017 -
min 0.0025 0.0033 0.0016
std 1.0811E-04 1.3405E-04 1.1012E-04

F2
mean 0.0017 0.0124 + 0.0058 +
min 9.5090E-04 0.0034 0.0043
std 4.8412E-04 0.0249 0.0021

F3
mean 0.0029 0.0081 + 0.0083 +
min 0.0024 0.0038 0.0037
std 0.0015 0.0061 0.0091

F4
mean 0.0028 0.0324 + 0.0059 +
min 0.0025 0.0056 0.0038
std 4.0495E-04 0.0210 0.0027

F5
mean 0.0025 0.0064 + 0.0049 +
min 0.0023 0.0037 0.0030
std 1.2618E-04 0.0048 0.0016

F6
mean 0.0275 0.0401 + 0.0698 +
min 0.0267 0.0323 0.0294
std 5.0778E-04 0.0082 0.0584

F7
mean 0.0111 0.0320 + 0.0124 +
min 0.0034 0.0031 0.0020
std 0.0057 0.0345 0.0069

F8
mean 0.0239 0.0263 + 0.0345 +
min 0.0052 5.7510E-04 7.1083E-04
std 0.0178 0.0256 0.0385

F9
mean 0.0029 0.0085 + 0.0108 +
min 0.0015 0.0030 0.0026
std 0.0010 0.0093 0.0128

A lower variance is preferred as this indicates a better
distribution of solutions in the Pareto set. The idea
value is 0 as this indicates that the distances from one
solution to its closest neighbour is the same for every
solution in the Pareto set which means a uniform
distribution of solutions in the Pareto set.

(iii) Hypervolume (HV) [40]: the hypervolume metric
measures the size of the region which is dominated by
the solutions in𝑃.Therefore a higher value of the HV-
metric is preferred. Mathematically, the HV-metric is
described as

𝐻𝑉(𝑃) = V𝑜𝑙(⋃
V∈𝑃

[𝑓1 (V) , 𝑧𝑟1] × . . . × [𝑓𝑚 (V) , 𝑧𝑟𝑚]) (13)

where V𝑜𝑙(⋅) is the Lebesgue measure, and 𝑧𝑟 =(𝑧𝑟1, . . . , 𝑧𝑟𝑚)⊤ is an antioptimal reference point in
the objective space that is dominated by all Pareto-
optimal objective vectors.

4.2. Parameter Setting. Experiments are implemented on a
personal computer (Intel (R) Core (TM) i7-6700 CPU @3.40
GHz, 16 GB of RAM). Programming language is Visual C++
6.0.

Parameters used in algorithms are set as follows.

(1) Population Size and Number of Evaluations

(i) For F1 - F9, population size𝑁 is set to 300 and 595 for
the problemswith two objectives and three objectives,
respectively, in all compared algorithms.Themaximal
number of generations is set to 250 for F1 - F9.

(ii) For UF1 - UF10, population size 𝑁 is set to 300 and
600 for the test instances with two objectives and
three objectives, respectively. The total number of
evaluations 𝐹𝐸𝐴𝑆 = 300000 for all UF1 - UF10.

(iii) Each algorithm runs 30 times independently on each
test instance F1 - F9 and UF1 - UF10. All those
algorithms stop running after getting a givenmaximal
number of function evaluations or generations.

(2) Parameters in Reproduction Operators

(i) 𝐹 = 0.5 and 𝐶𝑅 = 1.0 for DE operator;

(ii) 𝜂𝑐 = 20 and 𝑝𝑐 = 1 for SBX crossover;

(iii) 𝜂𝑚 = 20 and 𝑝𝑚 = 1/𝑛 for mutation operator.
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Table 3: HV-metric comparison results of MOEA/D-IWO, NSGA-II, and MOEA/D on F1-F9.

Problems MOEA/D-IWO MOEA/D ss NSGA-II ss

F1
mean 3.3355 3.3276 + 3.2934 +
min 3.335 3.3241 3.2883
std 4.06E-04 0.003 0.0039

F2
mean 3.8218 3.4647 + 2.6804 +
min 3.4908 3.0233 2.1773
std 0.4572 0.6302 0.1966

F3
mean 3.7243 3.3438 + 3.0782 +
min 3.4504 2.9318 2.9247
std 0.2889 0.3294 0.0937

F4
mean 5.1184 3.8813 + 3.3103 +
min 3.5836 3.4647 3.2994
std 0.8417 0.3691 0.0226

F5
mean 3.7202 3.318 + 3.125 +
min 3.4415 2.9702 2.9583
std 0.2503 0.3592 0.1128

F6
mean 15.6539 13.597 + 8.8261 +
min 10.9886 9.3974 8.8202
std 5.4213 3.6458 0.004

F7
mean 5.0462 4.6764 + 3.5387 +
min 2.8393 3.2214 3.0697
std 1.5641 1.9123 0.2888

F8
mean 6.3312 4.2083 + 3.8939 +
min 3.5082 2.6899 3.1358
std 2.0242 1.1118 0.8123

F9
mean 4.1681 3.9585 + 3.6627 +
min 3.7747 3.7037 3.3224
std 0.3954 0.3093 0.1091

(3) Other Control Parameters in MOEA/D, dMOPSO,
R2HMOPSO, and MOEA/D-IWO

(i) Neighborhood size: 𝑇 = 10 for F1 - F9 and 𝑇 = 20 for
UF1 - UF10;

(ii) 𝜂𝑟 = 2 for F1-F9, and 𝜂𝑟 = 0.01𝑁 for UF1-UF10;
(iii) 𝑇𝑎 = 2;
(iv) consist with [20],𝑤𝑠𝑡𝑎𝑟𝑡 = 0.9, 𝑤𝑒𝑛𝑑 = 0.4, 𝑐1𝑠𝑡𝑎𝑟𝑡 = 2.5,𝑐1𝑒𝑛𝑑 = 0.5, 𝑐2𝑠𝑡𝑎𝑟𝑡 = 0.5, 𝑐2𝑒𝑛𝑑 = 2.5 in R2HMOPSO;
(v) 𝜎𝑖𝑛𝑖 = 0.1, 𝜎𝑓𝑖𝑛𝑎𝑙 = 0.01, 𝑠max = 3, 𝑠min = 1, 𝑝𝑜𝑤 = 3,𝑄 = 0.5 in MOEA/D-IWO.

4.3. Experimental Analysis

4.3.1. MOEA/D-IWO Is Compared with NSGA-II [14] and
MOEA/D [16] on F1 - F9. MOEA/D-IWO is compared with
MOEA/D and NSGA-II in terms of performance metrics
values.The statistical results of performancemetrics obtained
by MOEA/D-IWO and the other two algorithms are sum-
marized in Tables 1–3. The three statistical results are based
on 30 independent runs for each test problem, including the
mean, the minimum, and the standard deviation (std) of the
performance metrics values. The best performance on the

same test problem is highlighted by bold font. Besides, in
the fifth and seventh columns of Tables 1–3, the statistical
significance (ss) of the advantage of MOEA/D-IWO in
the mean IGD-metric, S-metric, and HV-metric value is
reported. +/=/-, respectively, represents that MOEA/D-IWO
is statistically superior to, equal to, and inferior to MOEA/D
and NSGA-II in terms of mean performance metric value.

As listed in Table 1, for almost all the test problems, the
mean and the best IGD-metric values obtained byMOEA/D-
IWO are smaller than those obtained by MOEA/D and
NSGA-II, respectively, which demonstrates that MOEA/D-
IWObehaves better thanMOEA/D andNSGA-II in pursuing
PF on both the convergence and diversity.

The spacing-metric numerically describes the spread of
the solutions on the objective space. Table 2 clearly shows
that the spacing-metric values obtained by MOEA/D-IWO
are smaller than other two algorithms for almost all the
test problems, which indicates that the solutions obtained by
MOEA/D-IWO are spaced more evenly than those obtained
by MOEA/D and NSGA-II in general.

The HV-metric measures the size of the region which is
dominated by the obtained Pareto front, i.e., the region of
coverage of the obtained Pareto front. Therefore the higher
value of the HV-metric is preferred. As described in Table 3,
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Figure 2: Convergence curves of IGD metric values on F1 - F9.

for almost all the test problems MOEA/D-IWO has better
performance than MOEA/D and NSGA-II in terms of HV-
metric.

To verify the convergence trend of the proposed algo-
rithm, convergence graphs of the three algorithms on F1 - F9
are shown in Figure 2 plotting the evolution of the average
IGD-metric values. It can be clearly seen from Figure 2 that
MOEA/D-IWO converges much faster than NSGA-II and
MOEA/D inminimizing the IGD-metric values for almost all
the problems, which indicates that in most cases the adaptive
IWO is effective in accelerating the convergence, and the
proposed hybrid MOEA/D-IWO is feasible in improving the
accuracy of the Pareto solutions.

Figures 3–5 plot the distribution of the final population in
the objective space obtained by three algorithms on F1 - F9. It
can be observed from these three figures that MOEA/D-IWO
canobtain good approximations to F1, F3, F4 - F6. However, it
fails within the given number of generations, to approximate
the PFs of the problems F8 and F9 satisfactorily, perhaps
for the reason that incorporating IWO (using the random
Gaussian reproduction mechanism for optimization) into
an MOEA would, in some sense, spoil the diversity of the
algorithm, and the currentmechanism is not good enough for
well solving the concave or problems with many local Pareto
solutions. However, as evidenced fromTables 1–3 and Figures
2–5, in general MOEA/D-IWO performs well and preferably.
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Figure 3: Pareto fronts obtained by MOEA/D-IWO, MOEA/D, and NSGA-II on F1 - F3.

4.3.2. MOEA/D-IWO Is Compared with Some Other MOEAs
on UF1-UF10. In order to see whether MOEA/D-IWO pre-
vails superiority over other state-of-the-art algorithms or
other hybrid MOEA/D algorithms, a comprehensive com-
parison is executed on ten of the CEC 2009 problems
UF1 - UF10. Compared algorithms consist of six algorithms
including MOEA/D-IWO (MOEA/D hybrids with IWO),
MOEA/D-DE (MOEA/D hybrids with DE), MOEA/D-PSO
(MOEA/D hybrids with PSO), I-MOEA/D, dMOPSO, and
R2HMOPSO. Experimental results of I-MOEA/D, dMOPSO,
and R2HMOPSO are taken from the literatures [17, 20].
MOEA/D-DE and MOEA/D-PSO are run on PlatEMO V1.1
[41]. For fair comparisons, we run MOEA/D-IWO using the
same set of parameters and stop conditions.

Table 4 provides the mean and the standard deviation
(std) of the IGD performance metrics of all compared
algorithms, where the best performance on each problem is
highlighted by bold font. In order to validate the statistical
significance of the advantages of MOEA/D-IWO over other
algorithms, 𝑡-test is carried out on the obtained IGD perfor-
mance metric values and the results are shown in the rows
labeled ‘ss’. +/=/- shows that MOEA/D-IWO is superior to,
similar to, or inferior to the compared algorithm, respectively.
Total comparing results are summed up in the last row.

From Table 4 we can observe that MOEA/D-IWO per-
forms the best in all those six multiobjective algorithms.
Among those ten test problems UF1-UF10, MOEA/D-
IWO behaves better than MOEA/D-PSO on all of them;
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Figure 4: Pareto fronts obtained by MOEA/D-IWO, MOEA/D, and NSGA-II on F4 - F6.

MOEA/D-IWO behaves better than dMOPSO on nine prob-
lems; MOEA/D-IWO behaves better than MOEA/D-DE and
I-MOEA/D on eight problems and better than R2HMOPSO
on seven problems. All these results demonstrate the prefer-
able performance of MOEA/D-IWO.

Figure 6 visually plots the approximate Pareto fronts of
UF1 - UF10 searched by MOEA/D-IWO. It can be seen from
the figure that MOEA/D-IWO could find good approxima-
tions to UF1, UF2, UF3, and UF7. Its approximations to UF6,
UF8, andUF9 are acceptable. However, it fails to approximate
satisfactory PFs of UF4, UF5, and UF10 under the present
given stop conditions. For well solving these problems with
discontinuous or concave PFs, MOEA/D-IWO needs to be
further improved. Nevertheless, as evidenced from Tables

1–4, the hybrid of MOEA/D and IWO can generally improve
the performance of MOEA/D. Compared with other hybrid
MOEA/D algorithms, MOEA/D-IWO is efficient and com-
petitive.

In a word, through comparing with other popular
MOEAs we validate the great potential of MOEA/D-IWO
in dealing with this kind of complicated multiobjective
problems.

4.3.3. Additional Experimental Discuss. MOEA/D-IWO
decomposes an MOP into a big set of scalar subproblems
and coevolves these subproblems simultaneously. In the
process of coevolution, an adaptive IWO is proposed and
utilized for each subproblem. As described in Section 3.1,
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Figure 5: Pareto fronts obtained by MOEA/D-IWO, MOEA/D, and NSGA-II on F7 - F9.

𝑄 is an important regulatory factor in adaptive IWO for
balancing effective exploration and efficient exploitation.
Trial experiments observed that its value is properly set from
0 to 0.5. To investigate the impact of 𝑄 on the performance
of MOEA/D-IWO, different settings of𝑄 have been tested in
this part.

F7 and F8 are two complicated MOPs with many local
Pareto solutions; MOEA/D-IWO performs not well on them
in experiments. We choose the two problems as examples
to test the impact of 𝑄. Different settings of 𝑄 in the
implementation of MOEA/D-IWO for UF7 and UF8 have
been tested. All the other parameters settings are the same
as in Section 4.2 except the setting of 𝑄. For each setting

of 𝑄, MOEA/D-IWO runs 30 times independently. Figures
7(a) and 7(b) box plot the IGD-metric values of the obtained
solutions for UF7 and UF8 based on those 30 independent
runs, while Figure 7(c) depicts the variation trend of the
mean IGD-metric values under different𝑄. As clearly shown
in Figure 7, MOEA/D-IWO performs relatively stable with𝑄 from 0 to 0.5 on the two problems, and it will deteriorate
when𝑄 is greater than 0.5 onUF7. It is evident thatMOEA/D-
IWO is not very sensitive to the setting of 𝑄 under the range
considered [0, 0.5]. When 𝑄 is relatively large, the reason
for the poor performance of MOEA/D-IWO may be that
the search diversity of the algorithm is enhanced but the
exploration ability is weakened.
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Figure 7: Performance evaluation with different 𝑄 values.

5. Conclusion

IWO is a smart algorithm mimicking the ecological behavior
of colonizing weeds and distribution and is able to effi-
ciently handle general linear, nonlinear, and multidimen-
sional optimization problems. Since its proposal, IWO has
been successfully applied in many practical optimization
problems. However, to our knowledge, there has been little
research on IWO for multiobjective optimization. For well
solving the complex multiobjective problems, in this work,
we broaden the use of classical IWO and integrate it into the
frame of MOEA/D for handling MOPs. Based on the smart
and distinct features of IWO and MOEA/D, we introduce
MOEA/D-IWO and try to combine their excellent features in
this extended hybrid algorithm. MOEA/D-IWO decomposes
an MOP into a big set of single-objective subproblmes
and handles them simultaneously in each generation. The

population consists of the best solutions found so far for
each subproblem, and each subproblem adopts an adaptive
IWO for evolution in each generation. The performance of
the proposedMOEA/D-IWO in both convergence speed and
optimality of results are compared with those of NSGA-II,
MOEA/D, and some other MOEAs on a big set of MOPs.
Comparison results indicate the feasible and competitive
performance of MOEA/D-IWO in the field of multiobjective
optimization.

Actually, MOEA/D-IWO is still faced with some chal-
lenges in solving the MOPs with discontinuous or concave
PFs. Strengthening the performance of the algorithm remains
to be studied further. MOEA/D-IWO may be improved by
using better and newer variants of IWO in future.Meanwhile,
we also intend to study the ability of MOEA/D-IWO in solv-
ing high-dimensional multiobjective optimization problems
in the future.
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