
i

5G European Validation platform for Extensive trials

Deliverable D5.2

Model-based testing framework

ii

Project Details

Call H2020-ICT-17-2018

Type of Action RIA

Project start date 01/07/2018

Duration 36 months

GA No 815074

Deliverable Details

Deliverable WP: WP5

Deliverable Task: Task T5.2

Deliverable Identifier: 5GEVE_D5.2

Deliverable Title: Model-based testing framework

Editor(s): Juan Rodriguez

Author(s): Lourdes Luque, Luis Miguel Contreras, Juan Rodriguez

(TID), Christos Ntogkas, Evangelos Kosmatos, Kostas

Trichias, Panagiotis Demestichas, Nelly Giannopoulou,

Orestis Zekai, Vera Stavroulaki, Vassilis Laskaridis

(WINGS), Matteo Pergolesi, Mauro Femminella, Paolo

Giaccone, Carla Fabiana Chiasserini, Claudio Casetti

(CNIT), Gino Carrozzo, Elian Kraja, Giada Landi,

Leonardo Agueci (NXW), Arturo Azcorra, Ginés

García, Jaime García, Carlos Guimaraes, Winnie

Nakimuli (UC3M), Marios Bougioukos (NOKIA-GR)

Reviewer(s): Jaime Ruiz (NOKIA-ES), Ramon Perez (TELC)

Contractual Date of Delivery: 31/12/2019

Submission Date: 20/12/2019

Dissemination Level: PU

Status: Final

Version: v1.00

File Name: 5GEVE_D5.2_v1.00

Disclaimer

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information contained therein.

iii

Deliverable History

Version Date Modification Modified by
ToC_v0.1 13/09/2019 ToC proposal Juan Rodriguez

ToC_v0.2 24/09/2019 ToC modifications and

sections assignments

Juan Rodriguez

ToC_v0.3 14/10/2019 Final sections assignment Juan Rodriguez

v0.1 25/10/2019 Initial contributions Juan Rodriguez

v0.2 19/11/2019 Integration of contributions

to sections 1, 2 and 3

Juan Rodriguez, from

partners contributions

v0.3 25/11/2019 Additional contributions to

all sections

Juan Rodriguez, from

partners contributions

v0.4 29/11/2019 Final contributions in all

sections; version for review

Juan Rodriguez, from

partners contributions

v0.9 16/12/2019 Integrated comments from

reviews; version for QA

Juan Rodriguez, from

reviewers comments

v0.91 17/12/2019 Full list of authors

completed

Juan Rodriguez

v0.92 18/12/2019 QA review Kostas Trichias

v1.00 20/12/2019 Final version Juan Rodriguez

iv

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS .. VI

LIST OF FIGURES ... VIII

LIST OF TABLES .. IX

EXECUTIVE SUMMARY .. 10

1 INTRODUCTION ... 13

1.1 INITIAL CONTEXT AND TERMINOLOGY ... 13
1.1.1 Terminology .. 14

1.2 TESTING-AS-A-SERVICE (TAAS) 5G EVE APPROACH .. 15
1.3 DOCUMENT OBJECTIVES .. 15
1.4 DOCUMENT STRUCTURE .. 16

2 MODEL-BASED TESTING AND VALIDATION FRAMEWORK .. 17

2.1 TEST AND VALIDATION METHODOLOGY .. 17
2.1.1 Test and validation framework architecture ... 18
2.1.2 Test and validation of Network KPIs .. 20

2.2 HIGH-LEVEL TESTING PROCEDURE .. 23
2.3 HIGH-LEVEL VALIDATION PROCEDURE .. 24
2.4 HIGH-LEVEL MONITORING PROCEDURE ... 25
2.5 KPI COLLECTION FRAMEWORK .. 26

2.5.1 Data Collection Manager ... 26
2.5.2 Data Shippers .. 26

3 TESTING AND VALIDATION FRAMEWORK WORKFLOWS AND APIS ... 28

3.1 EXPERIMENT DESIGN WORKFLOW AND APIS .. 28
3.1.1 Test Case Blueprint information model... 28
3.1.2 Metrics .. 29
3.1.3 KPI .. 30
3.1.4 Specific workflows ... 30

3.2 TEST PLAN TEMPLATES ... 34
3.2.1 Update on high-level test plan templates .. 34
3.2.2 Low-level test plan templates .. 37

3.3 EXPERIMENT PREPARATION WORKFLOW ... 39
3.4 EXPERIMENT EXECUTION WORKFLOW AND APIS .. 39

3.4.1 Experiment Execution workflow: testing, validation and monitoring ... 39
3.4.2 Experiment Lifecycle Manager (ELM) and Experiment Execution Manager (EEM) API 42
3.4.3 Experiment Execution Manager (EEM) and Runtime Configurator API .. 47

3.5 INTERNAL WORKFLOWS AND APIS .. 48

4 DESIGN OF THE TESTING AND VALIDATION FRAMEWORK COMPONENTS ... 50

4.1 EXPERIMENT EXECUTION MANAGER (EEM) ... 50
4.2 RESULTS ANALYSIS & VALIDATION (RAV) .. 52

4.2.1 Analysis & Validation ... 52
4.2.2 Reports .. 53

5 UPDATE OF TESTING AND VALIDATION RESULTS .. 55

5.1 APPLICATION IN THE ASTI USE CASE .. 55
5.2 APPLICATION IN THE SEGITTUR USE CASE ... 57
5.3 APPLICATION IN THE WINGS UTILITIES USE CASE .. 61

6 CONCLUSIONS AND NEXT STEPS ... 63

REFERENCES ... 65

ANNEX I: HIGH-LEVEL TEST PLAN TEMPLATES – AVAILABLE RESPONSES ... 66

ANNEX I.1: EXPERIMENT TEMPLATE FOR UTILITIES USE CASE (GREECE) .. 66

v

ANNEX I.2: EXPERIMENT TEMPLATE FOR INDUSTRY 4.0 USE CASE (SPAIN) .. 70
ANNEX I.3: EXPERIMENT TEMPLATE FOR MEDIA & ENTERTAINMENT USE CASE – VIRTUAL VISIT OVER 5G (FRANCE).. 73
ANNEX I.4: EXPERIMENT TEMPLATE FOR SMART TOURISM USE CASE (SPAIN) .. 77
ANNEX I.5: EXPERIMENT TEMPLATE FOR TRANSPORT USE CASE (SPAIN).. 80

ANNEX II: LOW-LEVEL TEST PLAN TEMPLATES – AVAILABLE RESPONSES ... 83

ANNEX II.1: EXPERIMENT TEMPLATE FOR INDUSTRY 4.0 USE CASE (SPAIN) ... 83

ANNEX III: EXPERIMENT EXECUTION WORKFLOW; TESTING, VALIDATION AND MONITORING

PROCEDURES ... 88

vi

List of Acronyms and Abbreviations

Acronym Description

ABR Adaptive Bit Rate

ACL Access List

AGV Automatic Guided Vehicle

API
Application Programming

Interface

ARP Address Resolution Protocol

AWS Amazon Web Services

BBU Base Band Unit

CB Context Blueprint

CCTV Closed Circuit Television

CD Context Descriptor

COTS Commercial Off-The-Shelf

CP Control Plane

CPU Central Processing Unit

DB Database

DCM Data Collection Manager

DHCP
Dynamic Host Configuration

Protocol

DL Downlink

E2E End-to-end

EEM Experiment Execution Manager

ELK
Elasticsearch, Logstash, Kibana

(Stack)

ELM Experiment Lifecycle Manager

eMBB Enhanced Mobile Broadband

eNB Enhanced Node B

EPC Evolved Packet Core

ExpB Experiment Blueprint

ExpD Experiment Descriptor

FoV Field of View

gNB Next Generation Node B

GOP Group Of Pictures (MPEG)

GPS Global Positioning System

GUI Graphical User Interface

HMD Head Mounted Display

HTTP Hypertext Transfer Protocol

I/O Input/Output

ICMP Internet Control Message Protocol

IP Internet Protocol

IT Information Technology

IWL Interworking Layer

KPI Key Performance Indicator

MAC Medium Access Control

MEC Multi-access Edge Computing

NFV Network Functions Virtualization

NFVO
Network Functions Virtualization

Orchestrator

NG-RAN
Next Generation Radio Access

Network

NR New Radio

NS Network Service

NSD Network Service Descriptor

NSI Network Service Instance

NSO Network Service Orchestrator

OTT One Trip Time

PLC Programmable Logic Controller

PNF Physical Network Function

PRT Power Restoration Time

QoE Quality of Experience

QoS Quality of Service

RAM Random-Access Memory

RAN Radio Access Network

RAV Results Analysis and Validation

RF Robot Framework

RRU Remote Radio Unit

RTT Round Trip Time

SDR Software Defined Radio

SIM Subscriber Identity Module

SSH Secure Shell

vii

TaaS Testing as a Service

TC

Test Case [also (Linux) Traffic

Control, normally in lower case:

tc]

TcB Test Case Blueprint

TcD Test Case Descriptor

TS Test Script

TtRF Time to Right Frame

UC Use Case

UE User Equipment

UL Uplink

UP User Plane

UPF User Plane Function

URI Uniform Resource Identifier

URL Uniform Resource Locator

URLLC
Ultra-Reliable Low-Latency

Communication

USB Universal Serial Bus

USRP
Universal Software Radio

Peripheral

vEPC Virtualized Evolved Packet Core

VM Virtual Machine

VNF Virtualized Network Function

VoD Video on Demand

VR Virtual Reality

VSB Vertical Service Blueprint

viii

List of Figures

Figure 1: 5G EVE Testing methodology in D5.1 .. 13

Figure 2: High-level architecture of D5.1 testing tools ... 14

Figure 3: 5G EVE model-based Test & Validation methodology ... 17

Figure 4: 5G EVE Test & Validation framework architecture .. 19

Figure 5: Control plane signalling during transition from Inactive to Active states ... 22

Figure 6: 5G EVE testing procedure ... 23

Figure 7: 5G EVE validation procedure .. 25

Figure 8: Main services and functionalities offered by Kafka .. 26

Figure 9: Beats information flow .. 27

Figure 10: Onboarding of Test Case Blueprint ... 31

Figure 11: High-level workflow for the definition of experiment details. .. 32

Figure 12: Selection of infrastructure metrics for the ExpB.. 32

Figure 13: Definition of KPIs for the ExpB .. 33

Figure 14: Selection of TcBs for the ExpB ... 33

Figure 15: 5G EVE Experiment Execution workflow – part 1 ... 40

Figure 16: 5G EVE Experiment Execution workflow – part 2 ... 40

Figure 17: 5G EVE Experiment Execution workflow – part 3 ... 41

Figure 18: North-bound interface of EEM (part1, base application) ... 43

Figure 19: North-bound interface of the EEM (part2, operations) .. 44

Figure 20: North-bound interface of the EEM (part3, notifications & subscriptions) 44

Figure 21: EEM Finite state Machine for an experiment execution .. 50

Figure 22: EEM high level design ... 51

Figure 23: Analysis and Validation module operation .. 52

Figure 24: Analysis and Validation functionalities workflow ... 53

Figure 25: Reporting.. 54

Figure 26: ASTI use case testbed .. 55

Figure 27: Guided error of the AGV for different extra delays ... 56

Figure 28: Guided error of the AGV for different packet losses ... 57

Figure 29: Viewport change speed expected distribution and obtained base results ... 58

Figure 30: TtRF expected distribution and obtained base results .. 58

Figure 31: Number of camera changes during playback – results over 4G ... 59

Figure 32: Average TtRF in ms – results over 4G .. 59

Figure 33: TtRF distribution – results over 4G ... 60

Figure 34: Average bitrate – results over 4G .. 60

Figure 35: Testbed for the latest Utilities results ... 61

Figure 36: Effect of delay on the Power Restoration Time ... 61

Figure 37: Effect of packet loss on Power Restoration Time .. 62

Figure 38: Experiment Execution; testing, validation and monitoring procedures ... 88

ix

List of Tables

Table 1: 5G EVE list of Network KPIs ... 20

Table 2: Test Case Blueprint fields with relevant description ... 28

Table 3: Metric fields with relevant description .. 29

Table 4: KPI fields with relevant description .. 30

Table 5: Test Plan Template versions history ... 34

Table 6: ExperimentExecutionRequest data type .. 46

Table 7: ExperimentExecutionResponse data type ... 46

Table 8: ExperimentExecutionSubscriptionRequest ... 46

Table 9: ExperimentExecutionSubscriptionResponse ... 46

Table 10: ExperimentExecutionNotification ... 47

Table 11: Runtime configurator/RAV data model for notifications service ... 47

Table 12: EEM – Runtime Configurator API .. 48

Table 13: RAV module’s configuration message fields .. 48

Table 14: 5G EVE testing and validation framework support of requirements .. 63

Table 15: Utilities UC experiment components .. 66

Table 16: Utilities UC meaningful KPIs ... 67

Table 17: Utilities UC test plan ... 68

Table 18: Industry 4.0 UC experiment components .. 70

Table 19: Industry 4.0 UC meaningful KPIs ... 71

Table 20: Industry 4.0 UC test plan ... 71

Table 21: Media & Entertainment UC experiment components ... 73

Table 22: Media & Entertainment UC meaningful KPIs .. 74

Table 23: Media & Entertainment UC test plan .. 75

Table 24: Smart Tourism UC experiment components ... 77

Table 25: Smart Tourism UC meaningful KPIs .. 78

Table 26: Smart Tourism UC test plan .. 78

Table 27: Transport UC experiment components .. 80

Table 28: Transport UC meaningful KPIs ... 81

Table 29: Transport UC test plan .. 82

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 10 / 88

Executive Summary

The 5G EVE Experimentation Portal is the main visible component available for experimenters willing to run

their experiments on top of 5G EVE infrastructure. All the direct interaction will be done through the Portal,

but the Portal is just the front-end of the Testing-as-a-Service environment that 5G EVE is creating. In particular,

the testing and validation procedures are not governed by the Portal, but by the WP5 modules conforming the

Testing and Validation framework to which this Deliverable is dedicated.

Along the initial section, the main objective of this framework, and therefore of this Deliverable, has been re-

written from that in the Description of Action. The final definition of such objective is the design of an “overall

framework enabling and supporting automated model-based testing and validation of 5G technologies,

components and services”. The reality is that the planned scope has not changed, but including both the

“validation”, the “automation” and the “services” concepts in the definition provided a more complete “mantra”

that could singlehandedly drive the whole design process.

The Deliverable continues with the description of the methodology and the architecture of the Testing and

Validation framework. Both were initially outlined in the previous D5.1 Deliverable, but the definition here

included is now finished, and fully aligned with WP1, throughout its four phases: test design, test preparation,

test execution & monitoring, and test performance evaluation and analysis. The four phases are very self-

explanatory, but still specific tasks have to be correctly allocated, like the creation of the blueprints or

descriptors, and their on-boarding onto the platform. These are finally part of the test design phase, leaving the

preparation phase for the customization of templates by experimenters, and for the agreement between

experimenters and site managers about the test schedule. It has to be noted, therefore, that WP5 has no activity

in this second phase of the methodology.

The main architectural modules of WP5 are the Experiment Execution Manager (EEM) and the Results

Analysis and Validation (RAV) module. The EEM drives the execution of tests, after they have been deployed

over the available infrastructure. In particular, the EEM triggers four main procedures:

➢ The day-2 configuration over the deployed components, towards the Runtime Configurator

➢ The execution of Test Cases, in order, based on scripts, again via the Runtime Configurator

➢ The validation of the test results, via the Results Analysis and Validation module

➢ The return to initial conditions, before a new Test Case is run (via Runtime Configurator)

The second step brings the opportunity to present the Test Scripts Repository module, storing the scripts

associated with the Test Cases, and providing them to the EEM on-demand. The third step, on the other hand,

means that the RAV module has to:

➢ Calculate KPIs from raw metrics when there is a relationship between them

➢ Validate the test results, applying a validation condition to the target KPIs

➢ Generate the final test report (pass/fail)

Following in the Deliverable is the description of the high-level procedures for testing, validation and

monitoring. The testing procedure has been updated from D5.1 mainly to incorporate more clearly the

benchmarking testing. It has to be reminded that in the previous Deliverable we only included latency and

bandwidth as part of the available benchmarking tests, which simplified things as there are very well known

procedures (and tools) to measure these. Now, the procedure includes both types of testing (benchmarking – or

“5G technologies and components” – and Vertical’s applications), so it is more complete. Simply put, however,

it can still be summarized as a loop in which the test is executed “N” times over a specific set of external

conditions, and then one testing variable changes and the test is executed again “N” times. All through the test,

different metrics are gathered for KPI calculation, test results validation and visualization.

The validation procedure is also quite straightforward, being the complexity in which type of validation

conditions are supported. The KPI can be formed by a single value (e.g. packet loss), or by a list of values (e.g.

experienced delay, measured every second). The validation condition will compare these values with a threshold

(or a range) and if all the values are correct, then the test will be passed; otherwise it will be declared as failed.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 11 / 88

This single occurrence determining a failed test is important for verticals, as a single occurrence event may have

very important impacts (e.g. an AGV deviating more than the expected from its guide can derive in a crash).

The validation conditions supported, at least initially, are the classic mathematic expressions like “equal to”,

“greater than”, etc.

Finally, the monitoring procedure is leveraging the available modules from other WPs, in particular the data

broker of the Data Collection Manager, from where the RAV module gets the required metrics, and to where it

can publish the calculated KPIs (so they are eventually visualized).

An initial, still to be improved, proposal for the test and validation of Network KPIs is also included in section

2.1.2, where we focus on those which have greater impact in the framework (from the whole list generated in

WP1).

Section 3 of the Deliverable focuses in workflows and API definitions. The organization follows that of the

methodology, so we have included workflows and APIs separated as defined by the four phases.

Regarding the Design phase, the information model of the Test Case blueprint (which is the one in which WP5

must collaborate for its creation) is presented, including the information about scripts and testing variables that

will later on drive the experiment execution. Also, it is defined how to “specify” metrics and KPIs, useful in

later phases for validation, monitoring, etc. The workflows included in this section have to do, mainly, with

how we make these items available to other WPs and to modules of the Testing and Validation framework.

Next, an update about the test plans is provided. The Deliverable builds on the latest version of the template to

comment on what lessons we have learned from the interaction with Verticals, and how these lessons have been

transferred into the templates. It has to be noted that, as of today, we already have five responses to these

templates, which appear to be key in the future interaction with ICT-19 projects. Also, the first example of how

these high-level templates translate into low-level templates is provided in the text, associated with the ASTI

use case.

As already stated, WP5 does not participate in the Preparation phase; still, a specific comment stating this has

been included in the text. Finally, and since they are very closely related, we have mixed the final two phases

in the Experiment execution section, providing a very detailed workflow on all the operations that happen from

the moment the experiment is deployed till the moment the test report is available for the experimenter. Items

like how we are managing the Kafka topics, how we are creating the day-2 configuration, how we are launching

the test scripts, how we do the monitoring, how the validation module is fed with metrics, etc. are all included

in section 3.4. This section also includes the two external APIs of WP5:

• The interface between the EEM and the Experiment Lifecycle Manager (ELM), used to trigger the

execution of experiments

• The interface between the EEM and the Runtime Configurator, which in fact has been defined by WP3,

so the text includes the appropriate references to understand how day-2 configuration and the running

of scripts is executed.

The objective of section 4 is to start commenting on the specific internal design of the two key WP5 modules.

Of course, none of these implementations has yet finished, so these internal schemes are susceptible of change.

Maybe a more stable information in this section is about the reporting functionality of the RAV. This reporting

process is also a phased procedure:

1. The RAV generates the Test Case Validation report, dealing exclusively with the target KPI

2. The EEM generates the Test Case report, more focused on the output of the different test stages, being

therefore more an operational report

3. The ELM generates the Experiment Report, which includes all the high-level parameters defining the

experiment as a whole

4. The Portal generates the Scheduling Report, finally incorporating data like the selected site, the time

frame of the experiment and so on.

Deliverable D5.1 also included some preliminary results based on the execution of experiments with the

provided Disjoint Tools. D5.2 now updates on some of these results, in particular for three Use Cases.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 12 / 88

In the ASTI and the Utilities use cases, a network impairment emulator has already been included in the test

scenario, so the internal communications can now suffer additional delay or packet loss. Graphs showing the

effect of both in the respective vertical KPIs (called “error of the guide” in ASTI and “power restoration time”

in WINGS) have been included. Potential next steps in these scenarios are automating all the tests execution,

being able to execute real validations, and also to include multiple effects at the same time.

In the Segittur use case, on the other hand, the main goal is to compare the performance of Virtual Reality video

applications in 4G and 5G. This Deliverable includes the first measurements over 4G scenarios, together with

some expectations about what to expect with 5G.

Finally, some conclusions end the document. The fact is that we have designed very much from scratch a testing

and validation framework that we expect will be able to host multitude of experiments in the coming months.

Obviously, there is no other next step as the complete implementation of all the features here defined. However,

and just as a very quick check (which is very interesting exercise to do after any design is made), we have given

ourselves scores on how we meet or not the nine main requirements which can be derived from the original

“mantra”. The full table is included in section 6; the summary is that, scoring from 0 to 3, our mark is above

2.5. Beyond stating that we are going in the right direction, it also helps to find where we need to improve.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 13 / 88

1 Introduction

Deliverable D5.2 – Model-based testing framework – represents the main outcome of Task 5.1 – Overall

methodology framework for model-based testing –, and specifies a testing and validation architecture capable

of providing the Testing-as-a-Service (TaaS) offer expected from the 5G EVE platform and site facilities.

1.1 Initial context and terminology

In D5.1 – Disjoint testing and validation tools – [1], several concepts related with experimentation and

validation were already outlined as part of a preliminary description effort. The objective was to explain how

those disjoint tools (as a whole) could be envisioned as an early effort to provide the most important features

around the Testing and Validation Framework, including a minor group of external functionalities (from WPs

3 and 4) on which this Framework relied. In other words, in [1] we were providing preliminary tools replicating

to some extent the desired behaviour for the final Testing and Validation Framework. Such tools have been

useful for experimenters in the first phase of the project, and have permitted a better understanding on what was

correctly designed and what required some revision.

From the description point of view, three topics were included in [1] that are the basis for this Deliverable.

First, an initial version of the model-based testing methodology was outlined, helping readers to correctly

position the proposed tools on the general testing and validation workflow. In this sense, and based on a joint

effort with WP1, four stages were identified, as depicted in Figure 1 below.

Figure 1: 5G EVE Testing methodology in D5.1

While the workflow phases are very self-explanatory in the high-level, this Deliverable elaborates a little bit

deeper in each one of the phases, describing the required actors, inputs and outputs, and each of the operations

required to successfully execute the workflow. This extension is the content of the methodology part of section

2.1, which in turn contributes to the low-level workflow definitions of section 3.

Secondly, [1] included a description of the test execution procedures, i.e., the processes that happen after an

experiment is instantiated and deployed. The heterogeneity of the potential experiments that could be executed

over the 5G EVE infrastructure has not changed from the time Deliverable 5.1 was delivered, so it is still

considered useless to define the specifics of every possible test. Instead, the obvious differences between

“technology benchmarking” and “vertical’s application testing”, and their impact in the test execution processes,

were used to draft two types of testing procedures.

In technology benchmarking, the most common objective is to characterize some infrastructure, in many

occasions independently of the application. On the other hand, normally the objective of vertical’s application

testing is to understand the relationship of a specific KPI of interest for the vertical with some external

conditions, like the delay, the available bandwidth, etc. This leads, as said, to different testing approaches that

will be extended from [1] in section 2.2 of the present document.

Additionally, this difference also affects other functionalities of interest for WP5, like the validation and the

monitoring procedures. In technology benchmarking, for example, if the specific application is not important,

it may become very difficult to define a validation condition that can be used to determine if a test has “passed”

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 14 / 88

or “failed”. This is totally opposite when a Vertical is testing an application, since the Vertical can perfectly

determine the conditions that will validate the test. In that sense, the validation and monitoring procedures had

only been very briefly tackled in the previous Deliverable, so the material in sections 2.3 and 2.4 of this

document are practically new compared to D5.1.

Thirdly, [1] provided a very high-level architectural description of the delivered tools as a whole.

Figure 2: High-level architecture of D5.1 testing tools1

As seen, the so called “Experiment Automation Framework” was capable of orchestrating the execution of

experiments, by interacting with the “Traffic Generation Tools” and the “Monitoring Tools”. These two

modules were capable of pushing results or measurements into the “Metrics Broker”, which in turn made these

available for the “Validation Tool” (pass/fail) and the “Visualization Tools” (graphical representation).

Some of these modules are not really components of WP5, like the Metrics Broker or the Visualization Tools.

In 5G EVE, the Broker is actually implemented by the Data Collection Manager of the Interworking Layer

(WP3), while the graphical representation will be made available via the Experimentation Portal, based on WP4

modules. Furthermore, between the WP5 framework and the nodes or tools at the local sites, there is yet another

module from the Interworking Layer: the Runtime Configurator, hiding the specifics of such local nodes and

tools and providing a unique northbound interface.

However, this helps to understand what was meant by “providing preliminary tools replicating to some extent

the desired behaviour for the final Testing and Validation Framework”, sentence that was included in the first

paragraph of this section. With the D5.1 tools, experimenters with an already deployed experiment were capable

of executing tests in an automated fashion, and receive results both in terms of graphs (relating the target KPI

with the desired external condition) and in terms of a final conclusion (pass/fail).

In section 2.1 of the present document, the final framework architecture will be presented, extending that of

D5.1 and now fully covering the interaction with the rest of the WPs. This alignment will also be shown in the

workflows of section 3 that involve external modules, like the experiment design or execution workflows.

1.1.1 Terminology

The following definitions were already included in Deliverable D5.1. We have brought them back to this

Deliverable because they are very commonly used throughout the text.

• KPIs: key performance indicators represent measurable scenario parameters which provide meaningful

performance information to the experimenter. KPIs can be of different types (network related or vertical

related, for example), and the type of information that they provide can be used for many different

purposes. Validation and monitoring are just two of these purposes.

1 The different colors of the modules in this figure relates only to their implementation in D5.1. Modules in green were provided as part

of one VM, while modules in blue were provided as part of another VM.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 15 / 88

• Validation parameters: KPIs used to determine the result (PASS, FAIL) of a determined experiment

will be called validation parameters. Together with a threshold, or range, validation parameters create

the validation conditions which validation tools will use for their analysis.

• Testing variables: these are the parameters that the experimenter will want to modify during the test

execution, so that (normally) a relationship between a testing variable and a validation parameter is

found.

Another important definition is to differentiate between application metric and infrastructure metric.

• Infrastructure metrics: these are measurements, logs, events, etc. that come from infrastructure

components like PNFs, 5G EVE internal VNFs, network devices, passive probes, servers, etc.

Typically, this will be used exclusively for monitoring, ensuring that the experiment runs under

appropriate conditions.

• Application metrics: these are measurements, logs, events, etc. that come either from the application

that is being tested (e.g. Vertical VNFs), or from traffic tools like generators, active probes, etc. These

can be monitored as well, but their main usage is as part of the results analysis and validation.

1.2 Testing-as-a-Service (TaaS) 5G EVE approach

The primary goal of 5G EVE with regards to experimentation is to offer a test environment for stakeholders

interested in 5G scenarios, technologies, components or applications. Those stakeholders may be:

a) Internal to 5G EVE, for example, site facility operators or contributors interested in functional testing

or benchmarking during the deployment of new 5G features, or internal Verticals providing Use Cases

to the project.

b) External to 5G EVE, for example third parties using the end-to-end facility for experimentation or

assessment of their own applications and services.

However, just offering a test environment is not the ultimate goal of 5G EVE. Instead, the ultimate goal of 5G

EVE is to allow for the automated execution and evaluation of test cases, based on high-level test plan

descriptions of the intended experiments, and according to model-based testing principals. This is the definition

of the Testing-as-a-Service (TaaS) capability that 5G EVE is planning to offer, definition where “automated” is

one of the keywords.

Another characteristic of the 5G EVE TaaS offer is its multi-site capability. Experiments will be able to run

intra- or inter-facility, depending on the stakeholder’s requirements. In addition, just executing experiments will

not be the only functionality. 5G EVE will also offer monitoring and test validation features, improving the

TaaS offer with essentially very little effort from the stakeholder (adaptation to a very common data broker).

Key for this TaaS approach is also the Experimentation Portal, single point of interaction with interested

experimenters, and from which they will be able to request the deployment of experiments, visualize different

metrics during the execution and get the final test reports.

1.3 Document objectives

The main objective of this document (and that of Task 5.1), as per the 5G EVE Description of Action, is the

design of an overall framework enabling and supporting model-based testing. Such framework will allow for

the thorough testing and evaluation of the involved 5G technologies and components.

During the first months of 5G EVE, we already realized that this objective was not complete if stated that way,

for two reasons.

A first reason is hinted in the Introduction to this section itself: it is said that the document specifies a testing

and validation architecture capable of providing TaaS. The key differences are about “validation”, which was

of course inherently considered in the original scope of 5G EVE, but not explicitly mentioned, and about

“automation”, which is a concept directly coupled with the concept of TaaS. It has to be noted that these two

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 16 / 88

processes (testing and validation) are also accompanied by the monitoring (both of the infrastructure and the

applications results). However, from a high-level point of view, the monitoring is in fact a procedure supporting

the validation: it may provide not only a visual validation of the test results, but also the validation of the

infrastructure where tests are run (i.e., that there are no failures, or impairments affecting the results).

Secondly, the evaluation of 5G technologies and components (benchmarking) is only a partial objective in 5G

EVE. It is also an objective to host 5G-based applications and services from third parties (typically Verticals).

The main implication of this statement for WP5 is that we need to implement the capability to work with KPIs

defined by Verticals (apart from the Network KPIs) and measured using their own tools, which broadens the

scope of the modules conforming the testing and validation framework.

Having said this, a better-expressed main objective of this document is the “design of an overall framework

enabling and supporting automated model-based testing and validation of 5G technologies, components and

services”.

It is important to mention that this document is a design document, not governed by potential limitations of the

technologies used for implementation. In other words, design specifications will be made as general and

inclusive as possible, even if relying on features not yet supported by the equipment deployed in sites. Later on,

during the implementation phase, strict focus will be placed on those features that are needed by the Verticals

experimenting at 5G EVE.

1.4 Document structure

Sections of Deliverable D5.2 following this Introduction are organized as follows:

• Section 2 includes the specification of the testing and validation framework: high-level methodology,

aligned with WP1, and architecture, extended from what was presented in D5.1. It also presents the

specific methods to validate Network KPIs, and the high-level definition for the three main procedures

in 5G EVE: testing, validation and monitoring, the latter based on the KPI collection framework (again,

aligned with WP1).

• In Section 3, we define all the workflows and APIs associated with the methodology. The description

has been structured following the four stages depicted in Figure 1, and we include in each phase all the

operations in which WP5 is involved. We also describe in this section the internal workflows and APIs

among the two main WP5 modules (three if we count the scripts repository): the Experiment Execution

Manager and the Results Analysis & Validation module.

As part of the Experiment Design phase, this section includes an update of the Test Plan templates: how

they have evolved from the delivery of D5.1 and what new answers we have received from Verticals.

• Some initial implementation details are given in Section 4 for these two components, which will be the

basis for the full development to be executed in Task 5.3.

• Section 5 updates on tests results from different use cases; initial results were provided in D5.1.

• Finally, section 6 includes the conclusions and next steps with regards to WP5 work.

Three annexes are also included in this document: Annex I for the most recent responses to the high-level test

plan templates, Annex II for the first low-level test plan template from the ASTI use case, and Annex II including

the complete experiment execution workflow described in section 3.4.1.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 17 / 88

2 Model-based testing and validation framework

This section includes the formal definition of the 5G EVE testing and validation framework. Apart from

extending the definition of the methodology that was outlined in previous WP5 Deliverables, it includes high-

level descriptions of the testing, validation and monitoring procedures. So far, only the first of these had been

briefly defined in this Work package.

The section also includes the KPI collection framework, worked in conjunction with WP1.

It is important to notice the lack of a State-of-the-Art analysis in this design document. To the best of our

knowledge, an automated model-based testing and validation framework for 5G technologies, components and

applications does not exist today. For example, in 5GinFIRE, also offering NFV-based testing infrastructure for

5G use cases, none of the experiment execution or results analysis were automated. Instead, experimenters had

remote access to their deployed experiments, and executed their test cases manually as if they were in their own

premises. Therefore, all the WP5 definitions included in this document have been developed from scratch in 5G

EVE.

2.1 Test and validation methodology

In Deliverable D5.1 [1], an initial version of the testing methodology was already outlined. This definition was

elaborated in conjunction with WP1 and has evolved very little since its initial publication2.

In particular, regarding the four phases of which it is composed, only the final stage has had a small change of

name, from “Test Evaluation and Results Analysis” (as depicted in Figure 1) to the new “Test Performance

Evaluation and Analysis” (Figure 3). This change was proposed to emphasize the fact that the evaluation and

analysis of results in 5G EVE is always done against some threshold value, which separates the correct or

incorrect performance areas of the devices under test. Apart from that, the scope of this last phase is equivalent

to the one that was previously defined.

Figure 3: 5G EVE model-based Test & Validation methodology

More recently, in D1.3 – 5G EVE end-to-end facility reference architecture for Vertical industries and core

applications – [2], to be published in December 2019, these four phases have been further detailed. That

description will not be included here to avoid duplications but, to ensure that this Deliverable is fully self-

contained, here follows a brief summary before presenting the framework architecture.

• Test Design: its main goal is to permit 5G EVE Experiment Developers understand the objectives of

the different experiments, how they can be executed and what KPIs are critical for the experimenters.

This phase is key, as the whole interaction between Vertical and Facility Provider will be influenced by

how good we are able to “understand” each other from the very beginning.

The main external input to this phase, as already mentioned in D5.1, is the Vertical test plan template

(also known as “high-level” test plan template), which Verticals use to transmit “in their own language”

2 It has to be noted that, in D5.1, the methodology was named as “Testing Methodology”. Although the title of D5.2 has not been changed

(“Model-based testing framework”), it is more complete to refer to it as “Test and Validation Methodology” or “Framework”, as

explained in section 1.3.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 18 / 88

what are their intentions. Based on that input, low-level test plan templates3 are generated, which

Experiment Developers use to translate the Vertical requirements into 5G EVE terminology and further

objects, like blueprints (Vertical Service/Context/Test Case/Experiment blueprints), descriptors, test

scripts, required VNFs/PNFs, etc.

Finally, it is also expected that VNF providers upload their packages into the Platform during this phase.

Mechanisms will be implemented to make these packages available automatically across the whole 5G

EVE facility once they are correctly approved and validated.

• Test Preparation: the objective of this phase is to get everything ready to run the desired experiment.

All experiments have some initial conditions that must be set up by experimenters, and most of them

have some variables and threshold values for validation that Verticals may want to particularize. This

customization enables the generation of the required descriptors from the blueprints.

From there, the interaction of experimenters and Site Managers is critical since, on the one hand, they

must agree on a schedule for the experiment, and on the other, Site Managers must make sure that the

testing environment is ready to host the experiment (e.g. for items outside of 5G EVE control, like the

provisioning of SIMs).

• Test Execution and Monitoring: once the entire infrastructure is ready, the virtual environment to run

the experiment is built (i.e., the experiment is instantiated under the control of the Multi-site NSO) and

configured. This is done automatically, and when ready, the experimenter can start executing the

different test cases. Both application and infrastructure metrics are gathered and made available both

for monitoring (visualization) and for validations purposes.

• Test Performance Evaluation and Analysis: finally, and based on the gathered results, it is checked

that the values of the KPIs are consistently inside the correct performance threshold; if so, the final test

report will indicate that the test has been passed; otherwise, it will have failed.

WP5 modules do not participate in all these phases. In particular, they do not participate in the Test Preparation.

For the Test Design, the process is covered in detail in section 3.1, while the execution, monitoring and

validation have been jointly addressed in 3.4.

2.1.1 Test and validation framework architecture

Two are the key modules that WP5 has defined as part of the 5G EVE Test and Validation framework. These

are the “Experiment Execution Manager” and the “Results Analysis and Validation” components. In fact, these

are just more generalized names for the “Experiment Automation Framework” and “Validation Tool” that

already appeared in D5.1 to describe the joint behaviour of the delivered disjoint testing tools.

Together with these two components, also a “Tests Scripts Inventory” has been included to store the different

scripts associated with different Test Cases. This approach has been selected, in opposition to include the full

scripts in the blueprints, to avoid the exchange of potentially huge blueprints in the most complex tests. This

way, the blueprints will just include a script ID, simplifying the communication, and permitting the evolution

of scripts without modification of the blueprints.

The WP5 modules and their relationship with the rest of the 5G EVE components involved in the test and

validation processes are depicted in Figure 4 below. WP3 modules appear in yellow colour, while those of WP4

appear in green and those of WP5 in red. The colours of the different arrows show the allocation of the module

that starts the communication.

3 In D5.1 we included the low-level templates as part of the Preparation phase. We believe now that they fit better in the Design phase,

mainly to split between a phase that generates “documents”, and the following one, which delivers “software code”. The later needs

to be stored, to be automatically accessible to components of 5G EVE, etc., and its modification is much more critical.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 19 / 88

Figure 4: 5G EVE Test & Validation framework architecture

The main role of the Experiment Execution Manager (EEM) is to drive the execution of all the tests that will

run on top of the 5G EVE infrastructure. Its activity starts after the experiment has been fully deployed, and

after it gets a request from the Experiment Lifecycle Manager (ELM). This is shown in Figure 4 by the “Execute

Test” arrow from the ELM to the EEM. The request from the ELM includes meaningful information like:

• Network Service Instance (NSI) related fields, like the IP addresses of the deployed VNFs

• The Test Case Blueprints, which define the required scripts, the required KPIs, and all the Data

Collection Manager topics that are needed for the specific experiment.

The EEM has four main functionalities:

➢ To trigger the day-2 configuration. After the ELM sends a request to the EEM, meaning that the

whole experiment is deployed on top of the infrastructure, the latter needs to make sure that all VNFs,

PNFs and the rest of the tools are correctly configured. This is done via the Runtime Configurator, to

hide the site implementation details to WP5. The “Configure VNFs/PNFs” arrow shows this operation.

➢ To trigger the execution of test cases. Once day-2 configuration is correctly in place, the EEM will

run each test case (in case there is more than one) in order, one at a time. For this, the EEM will get the

required scripts from the Test Scripts Inventory and will again lean on the Runtime Configurator for

the interaction with the site components: “Experiment Execution based on scripts”.

➢ To trigger the validation of test cases. Once each test case is finished, the EEM triggers on the Results

Analysis and Validation module the evaluation of the results (“Test validation based on ID”), and

receives back a “Test Report”, which distributes upwards to the ELM.

➢ To return to initial conditions. After every Test Case run on the infrastructure, the EEM will return

everything back to original state to make sure there is no impact in the next executed Test Case.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 20 / 88

The role of the Results Analysis and Validation (RAV) module is to determine the correctness of each

executed experiment. This correctness is evaluated in terms of obtained results, i.e., indicating whether a test

case is passed or failed, and not in terms of successfully running the test scripts.

The main features of the RAV module are:

• To calculate KPIs from raw metrics. In some cases, it may happen that we can calculate meaningful

KPIs from either the application or infrastructure metrics, or both. The RAV module receives from the

ELM the Kafka topics to which it has to subscribe to receive these metrics (“Topics Notification”).

Once these metrics are received, and KPIs are calculated, these are published back in the Data

Collection Manager so that they can be visualized in the Portal.

• To validate the test results. Once the RAV module has received or calculated all the required KPIs, it

will evaluate them using a threshold (or range) determined by a “correct performance” criteria. If all

KPIs are inside the expected values, the experiment will be determined as PASSED; otherwise, it will

have FAILED.

• To generate the test report. This passed or failed result, together with the obtained measurements,

metrics, KPIs, etc., will generate the test report associated with the experiment, which, as already

mentioned, will be sent upwards to the ELM.

The only functionality demanded from the Test Scripts Inventory is precisely to store the required scripts for

all the experiments, making them available on demand to the EEM.

The role of the rest of the components included in Figure 10 will be fully explained in section 3, as part of the

different internal and external workflows.

2.1.2 Test and validation of Network KPIs

In this section, we are providing a detailed description of the methodology (procedure and steps) followed for

the verification and validation process of the 5G-PPP network KPIs that 5G EVE project is supporting. Table 1

summarizes these KPIs along with the minimum requirements. We also identify software tools (if available;

this will be updated in future WP5 Deliverables) that can be used to provide the initial KPI measurements for

an end-to-end system or service in an automated way.

First Deliverable of WP5, D5.1 [1], provided a general methodology, tools and measurements for bandwidth

and latency metrics. The aim of this Deliverable is to analyse further the inter-categories of bandwidth and

latency metrics along with the other KPIs. The first approach was conducted within WP1 and the related

Deliverables (Table 1); however, our intention here is to focus on the specific KPIs that we have decided that

are having more impact in our verification procedure.

Table 1: 5G EVE list of Network KPIs

5G EVE KPIs ITU-R M.24010-0 (11/2017) Minimum requirements

Speed
DL User Experienced Data Rate (Mbps) 100 Mbps

UL User Experienced Data Rate (Mbps) 50 Mbps

Broadband

Connectivity

DL Peak Data Rate (Gbps) 20 Gbps

UL Peak Data Rate (Gbps) 10 Gbps

Capacity Area Traffic Capacity (Mbit/s/m2) 10 Mbit/s/m2

Latency
UP Latency (ms) 1ms (URLLC), 4ms (eMBB)

CP Latency (ms) <20ms

Device Density Connection Density (devices/km2) 1 M devices/ km2 (mMTC)

Mobility
Stationary (km/h) 0 km/h

Pedestrian (km/h) 0 km/h to 10 km/h

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 21 / 88

The KPIs in which we are focusing at this stage are:

1. Speed – Experienced user throughput (Mbps). Specified as bi-directional data throughput, Downlink

(DL) and Uplink (UL), which an end-user achieves on the user plane, preferably on MAC layer avoiding

the overhead of the upper layers. This KPI is one of the dominant measurements for the Quality of

Experience (QoE) level that a user experiences for an active application/service.

As also described in D1.4 – KPI collection Framework – [3], to measure this KPI the application/service

throughput across time must be measured and recorded.

For DL (user-) throughput, the measurement should be performed at UE level. As a result, UE should

have the capacity (logs, tools) to expose this metric. There are several open-source software tools that

can measure the current DL traffic when a service is active. These tools can be installed on the UE side

providing the required measurements. Another approach is to capture the ingress packets on UE (the

ones that finally arrive at the device) using Wireshark tool. Upon monitoring the incoming traffic, you

can easily extract the current DL throughput.

For the UL (user-) traffic, we are focusing on the packets/throughput that finally arrive at the application

server hosting the provided service. There are several software tools that can be used to capture the

ingress traffic on the interface/port/IP accommodating the functioning service/application. Wireshark

is one of them, as well.

In case simulation procedure is going to be followed, iPerf seems the more relevant tool. The client-

server model that illustrates to generate and handle the traffic suits better for monitoring (user-) DL

(downlink client side) and (user-) UL (downlink server side).

2. Broadband Connectivity – Peak Data Rate (Gbps). Specified as highest data rate provision that a

single user can reach during high traffic demand periods resembling in turn the peak data rate when

required. The methodology of measuring this KPI follows the same steps as in the Speed case. As a

result, same software tools can also be used for the validation of this KPI in a realistic or simulated way.

3. Capacity – Area Traffic Capacity (Mbit/s/m2). Specified as total traffic throughput served per

geographical area. The formula used to derive the result is the following:

Area traffic capacity (bps/m2) = site density (site/ m2) x bandwidth (Hz) x spectral efficiency (bps/Hz/site)

This KPI is also defined as Traffic Volume Density, describing the total user data volume transferred

to/from end-user devices during a predefined time span divided by the area size covered by the radio

nodes belonging to the RAN(s). For multi-hop solutions each user data is only counted once. In the

network, can be generally computed by the sum of traffic volumes each produced by an end-user device,

possibly differentiated between downlink and uplink direction, divided by the overall service area

covered by the corresponding radio nodes.

To compute this metric in a network level, RAN node(s) must provide the active/connected user within

a reporting period along with the data rate of each user in order to conclude on the total user data volume

(probably in average) within a pre-defined time span (time granularity). The traffic volume density is

then computed dividing this value (bits/sec) by the total area covered by the node(s) (m2).

The specific simulation method is still to be defined and implemented; however, related information

can be extracted from radio specification documents.

4. Latency – User Plane & Control Plane (ms). For user plane latency, we can consider two types of

metrics. End-to-end latency or one-trip time (OTT) latency is the first type. The other type is the round-

trip time (RTT) latency. Ideally, latency should be measured in the MAC layer, not accumulating any

processing time on higher layers given the used application. On the other hand, control plane latency is

defined by ITU as the transition time from a most “battery efficient” state (e.g. Idle state) to the start of

continuous data transfer (e.g. Active State). This requirement is defined for the purpose of evaluation

in the eMBB and URLLC usage scenarios. The minimum requirement for control plane latency is 20ms.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 22 / 88

Proponents are encouraged to consider lower control latency, e.g. 10 ms [4]. An illustration of control

plane signalling during transition from Inactive to Active states is shown in Figure 5.

Figure 5: Control plane signalling during transition from Inactive to Active states

In real networks would be more useful to measure the OTT time for user plane, i.e. the packet(s) (one-

way) time from source (user) to destination (application server). This time can be measured monitoring

a specific packet given its unique identification (Identification Field in IP header) using the Wireshark

tool. For sure, this metric will not be based on MAC layer but as a comparison between 4G and 5G

networks it is enough. For control plane latency, we have to be sure when user is under IDLE state.

Then time from requesting connectivity/service until the first uplink packet is our metric. Probably this

metric can be extracted from 3GPP specification for 5G NR.

In simulation mode, user plane latency could be measured monitoring the RTT time. Pinging a server

(ICMP messages) from UE is a way to measure this value exploiting Network Layer (Layer 3). For a

more accurate measurement, latency on MAC layer can be measured. NetScanTools gives the response

time (latency) of a device to an ARP packet i.e. on MAC layer.

The specific simulation method for the Control Plane is still to be defined and implemented; however,

related information can be derived from radio specification documents.

5. Device Density – Connection Density (devices/km2). Specified as the total number of simultaneous

active connections per square kilometres fulfilling a target QoS. Active means the devices are

exchanging data within the network. Number of connected/accessible devices are available in NG-RAN

node.

In real networks this metric can be derived gathering the number of active devices connected to a radio

node in a considered area. This area can also be specified given the covering capacity of the radio nodes

or the configured ones.

The specific simulation method is still to be defined and implemented; however, related information

can be derived from radio specification documents.

6. Mobility – Stationary / Pedestrian (km/h). Specified as the system’s ability to provide seamless

service experience to users that are moving. Two modes are considered in the frames of 5G-EVE

project. Stationary having a speed of 0 km/h and Pedestrian having a speed of 0 to 10 km/h. Seamless

service experience means that UE achieves QoS required by the service/application. Parameters to be

considered having impact on the performance evaluation of any mobility activity is the signalling

behaviour during a radio handover and the quality of the connectivity given the distance from the

interacting cells. Therefore, in this context, this KPI can then be translated as the system’s ability to

reach measurable Vertical / UC requirements of 5G-EVE KPIs i.e. Latency, Speed, Capacity and Device

Density to users that are moving.

In real networks, first we have to measure the speed of the user/device. This can be done with

tools/applications on the device or with probes (measuring the time) on the specified route the

user/device is following. During this move, with the already defined methodologies we are able to

validate the translated 5G-EVE KPIs experienced by the user.

The specific simulation method is still to be defined and implemented; however, simulation techniques

of the translated KPIs can be used.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 23 / 88

2.2 High-level testing procedure

As already stated in section 1.3, the objective of this document is the design of an overall framework enabling

and supporting automated model-based testing and validation of 5G technologies, components and services.

This objective brings back the discussion of D5.1 about different test procedures being required for technology

benchmarking or testing of Vertical applications.

As a reminder, in D5.1 we were defining the purpose of “technology benchmarking” as the characterization of

some 5G architecture, component, technology, etc., normally based on Network KPIs. On the contrary, the goal

of “Vertical applications testing” is to understand the behaviour of a specific application/service on top of a 5G

network, behaviour typically identified by Vertical KPIs.

In D5.1 we focused on bandwidth and delay evaluation for technology benchmarking, using tools like iperf and

ping, so a specific testing procedure was defined only for the testing of Vertical applications. In this Deliverable,

the main design criteria to add technology benchmarking into the procedure was to try to modify it as least as

possible, to avoid changes in the already developed code. The result is presented in Figure 6.

Figure 6: 5G EVE testing procedure

The testing procedure begins when the test case is fully deployed on top of the 5G EVE infrastructure. The first

step is the potential validation of the deployment scenario, ensuring that the network is working under the

appropriate conditions. For this, in D5.1 a quick initial test similar to what technology benchmarking could look

like was proposed. Therefore, it has been changed to optional in this Deliverable: if the test is a benchmarking

test, this preliminary review is not needed, and if the test is a Vertical application, in fact it is desirable but still

left as optional. It must be reminded that in the Test Preparation phase (Figure 3), one of the key responsibilities

of Site Managers is precisely to “make sure that the testing environment is ready to host the experiment”.

After this preliminary quality assurance review, the execution of the Test Case itself starts. The procedure

includes “N” runs of the Test Case under the same conditions, as a single test result may not be sufficient to

understand the experiment. A very simple example showing this is executing a single latency measurement, i.e.,

a single ping. This would generate a result inside the range determined by average delay plus jitter, but we

should not determine that the delay has a specific value only from that single measurement.

After we have run the Test Case “N” times under the same conditions, we can then move forward and change

one of the testing variables (“X”). The loop then continues by running again the Test Case “N” times, changing

a new testing variable (“Y”), and so on until all the scenarios are executed.

It has to be noted that this procedure is very tightly coupled with the other two included in this section: validation

and monitoring. Regarding the latter, throughout the whole duration of the experiment infrastructure metrics are

being generated and collected, from the different nodes composing the test scenario. In addition, application

metrics (mainly from the traffic generation tools or from the deployed VNFs/PNFs) are being continuously

gathered once the running of the test case starts. Both types of metrics feed on the one hand the Results Analysis

and Validation module, but on the other hand, the collection, storage and visualization modules of WP4, for

monitoring purposes.

Finally, in the figure, the Test Results Validation stage is put as optional. In this case, this accounts for those

benchmarking scenarios in which validation conditions are not defined, or validation parameters are not

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 24 / 88

measurable. It also accounts for those test cases in which Verticals are not able to provide their own KPI

measurements, or there is no way to establish a mathematical relationship between Network KPIs and Vertical

KPIs. In all these cases, the 5G EVE platform will only present (visualization) the obtained metrics versus the

testing variable, without determining the final result of the experiment (pass/fail).

New Test Cases will be able to run on top of the same infrastructure by just bringing it to initial conditions in

between tests.

2.3 High-level validation procedure

In 5G EVE, validation of a test case means to compare the obtained test results, in the form of KPIs, with a

certain range or threshold conforming a “correct performance” area.

The validation conditions can be very simple or very complex, depending on the test case. In 5G EVE, and since

the KPIs will normally be in numeric format, it has been decided to implement validation conditions based on

mathematical expressions like “is greater than”, “is lower than”, “is between a minimum and a maximum”, “is

equal to”, etc. This means that more complex validation conditions, for example of the form “X out of Y

measurements are <condition>”, will not be supported in the first phase.

Also, each KPI will be individually validated, excluding for example conditional validation conditions of the

type “if KPI “A” is <single_condition> then KPI “B” must be <single_condition>; otherwise…”.

Having said this, numeric KPIs can be formed of a single value, or a list of values. Examples of the former are

a QoE value for a specific video being transmitted and played at a remote device, under certain network

conditions, or even more simply, the percentage of packet loss throughout the entire experiment. A list-based

KPI could be the deviation error of an AGV from the guide, measured for example every millisecond, or the

roundtrip delay measured by ping every second.

In case the KPI is a single value, the validation condition will be applied of course over that value: QoE must

be greater than 4 to consider the test passed, or packet loss must be lower than 0.001%. For list-based KPIs, all

the values in the list will have to comply with the comparison condition. This might seem a very strict policy,

but in Vertical’s environments it is fully justified in most cases. Imagine an AGV that deviates more than the

threshold (for example, 5cm) only once, and goes 6cm in one direction; this might be sufficient in the production

environment to have the AGV hitting something and creating a huge impact.

Finally, validation could be executed both in real time or after the whole test is finished. Typically, for KPIs

that have a single value, we will have to wait until the test is finished, and this value is either generated or

calculated. However, in list-based KPIs, these will be typically produced along the whole experiment. We could

think about executing the validation on each value or storing the values and executing the validation at the end

over the whole list. The first mechanism would be more agile and would permit actions like stopping a long test

at the very beginning, if results are not OK from the start. However, the logic would be more complex, and

depending on how fast KPI values were generated, the processing power to do the comparison could be very

high. Therefore, the initial agreement in WP5 is to trigger the validation process once the whole Test Case has

been finished.

Figure 7 below covers these ideas: after the test case is finished, and the validation modules gather all the values

of the KPIs, a loop comparing each value with the validation condition is executed. For single-value KPIs this

will be executed just one; for list-based KPIs, the loop will be executed a number of times, equal to the number

of values in the list. After that, the result of the experiment will be declared as PASSED if all the values meet

the validation condition or FAILED even if only one value is outside the correct performance area.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 25 / 88

Figure 7: 5G EVE validation procedure

2.4 High-level monitoring procedure

Monitoring in 5G EVE is not an exclusive task of WP5. Even in Figure 6, where infrastructure and application

metrics are shown to be continuously gathered, to be able to generate KPIs:

• The generation of these metrics is not triggered by WP5 modules, but by the Runtime Configurator

(WP3)

• The distribution of these metrics is not done by WP5 modules, but by the Data Collection Manager

(WP3)

• And the visualization of these metrics is not done by WP5 modules, but by the Kibana component of

the Portal (WP4)

In other words, in WP5 we are consumers of two out of the three types of parameters that need monitoring: the

mentioned infrastructure and application metrics. The procedure to consume these metrics by the Results

Analysis and Validation (RAV) component is as follows:

1. As a pre-condition, the RAV must be subscribed to the signalling topics of the Data Collection Manager

(DCM). From these signalling topics it will receive (live) information about which test-related topics

are interesting for its activity, and therefore to which test-related topics it should subscribe

2. Each time a new experiment is being deployed, the Experiment Lifecycle Manager (ELM) generates

the topics associated with that experiment, publishes them in the signalling topic of the DCM, and the

RAV subscribes to that topic.

3. The RAV receives all the measurements published in the topics it is subscribed.

Nevertheless, in WP5 we also generate the KPIs, which is the third type of parameters considered for

monitoring. In this case, the procedure is as follows:

1. Again, the RAV must be subscribed to the signalling topics of the DCM as a pre-condition. In this case,

it will receive from the ELM the name it must place to the KPI-related topics of each experiment.

2. Once KPIs are calculated, or obtained by any means, the RAV publishes them in the DCM under the

appropriate topic.

3. The collection module at the Portal receives all the KPIs published by the RAV, as a prior step to their

storage and visualization.

As seen, the conclusion is that the monitoring procedure in WP5 is leveraging completely the mechanisms

provided by other WPs, avoiding the implementation of different modules at different Work Packages doing

the same (or very similar) functionalities.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 26 / 88

2.5 KPI Collection Framework

The KPI Collection Framework has been defined at a high level in the deliverable D1.4. The modules that

comprise it span different Work Packages, specifically WP3 and WP5. The two main building blocks of the

framework are:

• Data Collection Manager

• Data Shippers

2.5.1 Data Collection Manager

The Data Collection Manager is implemented in the context of WP3. The DCM software architecture is based

on Apache Kafka, which is a well-known publish-subscribe tool that acts as a bus, being able to manage and

send data to different applications connected to it. The main functionalities of Kafka can be seen in Figure 8.

Figure 8: Main services and functionalities offered by Kafka

Currently, the implementation of the DCM is a dockerized environment for testing the 5G EVE Monitoring &

Data Collection tools from WP4, which includes a specific Kafka container for performing the publish-subscribe

queue functionality. That environment is already available in the 5G EVE repository. The expected solution is

a clustered Apache Kafka environment, coordinated by a dedicated tool such as Apache ZooKeeper,

complemented with a management platform like Kafka Confluent. This complete architecture is expected to be

finalized for the deliverable D3.4. Examples of the various operations supported by this DCM has already been

described in detail in D3.3.

2.5.2 Data Shippers

Based on the proposed initial design and taking into account the parts of this architecture implemented in WP3,

the main focus of the KPI Collection Framework, pertaining to WP5, revolves around the information collection

agents responsible for gathering metrics and logs and shipping them to the DCM. For the implementation of

these agents to be robust and modular, the tool proposed for this task are the Beats by Elastic. They come in

various flavours based on the kind of data we need to send like log files, metrics, events, etc... They are also

simple to customize and can cover most of the needs required from the Collection Framework’s implementation.

Also worth noting is the fact that they do not require significant resources to operate. It is unclear yet, though,

how the metrics or logs created from physical instrumentation will be sent to the DCM. If the interfacing of

these tools with a terminal is viable then there is no problem. If no such interface is possible then another route

must be taken. The typical, but not mandatory, flow of information when using Beats as data-shipper can be

seen in Figure 9.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 27 / 88

Figure 9: Beats information flow

This flow is in accordance with the DCM from WP3 and Monitoring and Visualization tools from WP4.

Deploying Beats is very straightforward and simple both in physical and virtual nodes.

While they cover the part of shipping the information to the appropriate components, the other issue that needs

to be addressed is the producers of that information. In order the simplify the log shipping process the various

information producers should share one or more common log storing locations so as to minimize the diversity

in the configuration of the data shippers. Another issue the matter of logging format. It is a given that each tool,

in-house created software as well as Vertical software do not produce similar logs. As such, it would be of great

benefit to the implementation effort an adherence to some basic principles in the generated logs. A typical

example of such a format would be enriching the metrics, logs and other kind of messages with additional fields

in order to be able to easily identify and categorize these messages. A typical example of such fields would be

timestamps, the type of message, which node or software generated the message, what KPI it pertains to and so

on.

Since the metrics pertaining to the Network KPIs are valuable information for all use cases and experiments

alike, there are two options to tackle the issue of collecting those metrics. First option is that software

instrumentation be placed on all the nodes of the various VNFs so that network metrics are monitored by default

and logs are generated automatically. Second option is that these producers, be passed or activated as part of

Day-2 configuration of the VNFs. This task will be managed by the Runtime Configurator.

Regarding Vertical KPIs, in any case, it is necessary for the Verticals to produce the logs of their service which

can then be shipped to the DCM accordingly. So, while no additional producers are needed for the Vertical KPIs

some implementation is necessary either for parsing the data beforehand and then shipping them or parsing the

data at a separate component like the Analysis and Validation modules. For the latter additional input might be

need from the Verticals regarding the form of the produced messages and the specific analysis method they

desire.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 28 / 88

3 Testing and validation framework workflows and APIs

In this section, we detail the specific workflows, APIs and triggers of the 5G EVE testing and validation

framework. The description follows the stages of the overall experiment workflow, evolving from the initial

Experiment Design step in the 5G EVE portal down to Experiment Preparation, Experiment Execution and,

finally, Result Analysis and validation procedures are described in a way to highlight the most important

operations to be supported by the software modules implementing the 5G EVE portal. The APIs of the

Experiment Execution Manager are provided as this module is a core component of the Model-based testing

framework, responsible for coordinating all the actions related to experiment execution and validation for 5G

experiments instantiated in the 5G EVE portal.

3.1 Experiment Design workflow and APIs

The design and formal definition of experiments in 5G

EVE is facilitated by the introduction of high-level,

intent-based information models called blueprints. A

blueprint is a template that describes a piece of

information about the execution of an experiment in 5G EVE facilities. Being a template, it enables some

customization from Experimenters (final users of the 5G EVE platform). Blueprints are mapped or translated to

more detailed lower-level entities, which include all the details for the correct deployment, execution, and data

collection of the Experiment.

Many actors are involved in the Experiment Design workflow. A thorough description of the actors’ roles,

interaction workflows, and information models can be found in D4.1 [5].

In this section of this document, we are going to integrate some of the workflows defined in Section 3 of D4.1

and we are going to discuss more thoroughly the information models related to Test Case Blueprints, metrics,

and KPIs.

3.1.1 Test Case Blueprint information model

The Experiment Blueprint (ExpB) includes a list of Test Case Blueprints (TcB). A TcB is a customizable

template that describes the actions to be performed during the execution of the experiment. Actions are collected

in a script and user parameters and infrastructure variables can be used to customize the script execution. Table

2 reports the fields composing an ExpB with their short description.

Table 2: Test Case Blueprint fields with relevant description

Field Description

testcaseBlueprintId Unique Identifier for the Test Case Blueprint

Script Source code of the script to be executed

userParameters Mapping of script variables to user parameters for the test customization

infrastructureParameters Mapping of script variables to infrastructure parameters for the dynamic test

configuration based on the specific NS related to the experiment (e.g., IP

addresses)

“userParameters” and “infrastructureParameters” are used to make the TcB customizable, dynamic, and

reusable. “userParameters” are used to inject the value of some parameters into the test script to be executed.

As an example, we can consider a Test Case Blueprint associated to an experiment to evaluate the performance

of a network service under the effect of artificial background traffic. A trivial user parameter is the amount of

background traffic to apply during the experiment. The “userParameters” field will have a key-value pair to

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 29 / 88

map the parameter name to the variable name used in the “script” source code to control the amount of

background traffic.

The “infrastructureParameters” is used to make the TcB applicable to many network services. Considering again

the example used before, the application of artificial background traffic trivially needs two endpoints to be

applied, a source and a sink. The “infrastructureParameters” will then include the necessary key-value pairs to

inject in the test script the IP addresses to be used as source and sink for the background traffic.

3.1.2 Metrics

Vertical Service Blueprint (VSB), Context Blueprint (CB), and ExpB information models include a list of

metrics. This field is used to advertise what kind of monitoring data the service, context, or experiment can

provide once they are deployed. The formal representation of a metric is reported in Table 3.

The three types of data collection for metrics are the following:

• CUMULATIVE: Increasing over time (e.g., CPU time)

• DELTA: Changing over time (e.g., bandwidth)

• GAUGE: Discrete items and fluctuating values (e.g., disk I/O, CPU utilization in %)

Metrics are partitioned in two sets: application metrics and infrastructure metrics. As the names suggest, the

first set is composed of metrics related to the application or service domain, while the latest is composed of

metrics available on the computing and network infrastructure. Metrics should be explicitly selected in the

blueprints as the approach to collect all the available metrics is not sustainable in terms of data rates and data

volumes.

Table 3: Metric fields with relevant description

Field Description

metricId Unique Identifier for the metric

Name Name for the metric

metricCollectionType Can be one of the following: CUMULATIVE, DELTA, GAUGE

Unit The measurement unit of the metric (e.g., seconds)

interval The sampling interval of this metric
Topic

(application metric only)
Topic for publish/subscribe broker. Needed for collecting data

iMetricType

(infrastructure metric only)
The infrastructure metric type.

The “topic” field is needed for the data collection of application metrics. As many services can be deployed on

the 5G platform, it is needed to define a topic for the Data Collection Manager to properly store and retrieve

metric data.

The topic is not needed for Infrastructure Metrics, as they are statically defined in the platform and already

associated to dedicated topics. The available values for the “iMetricType” field are the following:

• LOST_PKT: lost packets count

• RECEIVED_PKT: received packets count

• SENT_PKT: sent packets count

• BANDWIDTH: network bandwidth

• LATENCY: network latency average

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 30 / 88

• JITTER: network latency jitter

• CPU_CONSUMPTION

• MEMORY_CONSUMPTION

3.1.3 KPI

The ExpB includes a list of Key Performance Indicators (KPIs). A KPI is used to evaluate the performance of

the experiment on one specific aspect. It can be constructed upon one simple metric or upon more metrics

combined in a mathematical formula. An objective (or goal, or threshold) can be defined to validate the KPI.

The latter is included in the Experiment Descriptor. Table 4 reports the fields composing an ExpB with their

short description.

Table 4: KPI fields with relevant description

Field Description

kpiId Unique Identifier for the KPI

name Name for the KPI

formula Mathematical formula built on one or more metrics

unit The measurement unit of the KPI (e.g., seconds)

metricIds List of metrics involved in this KPI

interval The sampling interval of this KPI

While the “metricIds” is a simple list of the metrics involved in the KPI construction, the “formula” specifies

how to mathematically combine the listed metrics to obtain the KPI value. As an example, we can consider the

percentage of lost packets by one of the components of a network service. This can be obtained by combining

the RECEIVED_PKT and LOST_PKT infrastructure metrics showed in the previous section.

3.1.4 Specific workflows

3.1.4.1 Definition and on-boarding of a Test Case Blueprint

The Test Case Blueprint includes information about tests to be executed in the experiment. The Experiment

Blueprint contains references to one or more Test Case Blueprints.

The definition and on-boarding of Test Case Blueprints requires the interaction between the Experiment

Developer, the portal catalogue, and the test script inventory. Figure 10 below shows the workflow for the

onboarding of a Test Case Blueprint and the relevant Test Scripts.

The Experiment Developer first defines the Test Script offline. The Experiment Developer sends an on-boarding

request to the Test Script inventory (Step 1). The latter generates an ID for the Test Script (Step 2) and stores

the content of the script (Step 3). Finally, it returns a notification to the Experiment Developer with the Test

Script ID attached (Step 4). The Experiment Developer can now define the TcB by including the ID of the Test

Script just onboarded. When ready, the Experiment Developer sends an on-boarding request to the Portal

Catalogue for the TcB (Step 5). The latter generates an ID for the TcB (Step 6) and it stores the TcB with

references to the just onboarded Test Scripts (Step 7). Finally, it returns a notification of the successful

onboarding to the Experiment Developer with the TcB ID attached (Step 8).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 31 / 88

Figure 10: Onboarding of Test Case Blueprint

3.1.4.2 Definition of Experiment Blueprint Details

This Section extends the workflow described in deliverable D4.1, Section 3.2.1.2, Figure 12, that shows the

Definition of Experiment details in a summary way. Part of the workflow is reported in Figure 11 below. We

are going to describe with more details the steps in each of the boxes between the dashed lines.

The definition of an Experiment Blueprint involves the Experiment Blueprint Builder component, that facilitates

the developer in the definition of the Experiment Blueprint and in the interactions with the Portal Catalogue for

the on-boarding. During the final steps of the ExpB definition, the Experiment Developer is asked to select and

configure metrics, KPIs, and TcBs.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 32 / 88

Figure 11: High-level workflow for the definition of experiment details.

3.1.4.3 Selection of infrastructure metrics

Figure 12 shows the workflow for the selection of infrastructure metrics to be collected during the experiment

execution.

Figure 12: Selection of infrastructure metrics for the ExpB

The Experiment Developer gets the list of available infrastructure metrics from the Experiment Blueprint

Builder (Step 1). The Experiment Developer selects the infrastructure metrics he wants to be collected during

the execution of the experiment and adds them to the ExpB (Step 2). The ExpB is updated (Step 3) and the new

version is shown to the Experiment Developer (Step 4).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 33 / 88

3.1.4.4 Definition of KPIs

Figure 13 shows the workflow for the definition of KPIs to be validated during the experiment.

Figure 13: Definition of KPIs for the ExpB

The KPI definition happens offline with the collection of information from the verticals and the formalization

into the model defined in Section 3.2.4. The Experiment Developer adds the KPIs to the ExpB he is building

(Step 2). The Experiment Builder takes care of updating the ExpB (Step 2) and show the results to the

Experiment Developer (Step 3).

3.1.4.5 Selection of TcBs

Figure 14 shows the workflow for the selection of TcBs, describing the execution of tests.

Figure 14: Selection of TcBs for the ExpB

The Experiment Blueprint Builder gets the list of available TcBs from the Portal Catalogue (Step 1) and shows

it to the Experiment Developer (Step 2). The Experiment Developer selects the desired TcBs and sends them to

the Experiment Blueprint Builder (Step 3). The Experiment Blueprint Builder updates the ExpB (Step 4) and

shows the final result to the Experiment Developer (Step 5).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 34 / 88

3.2 Test Plan templates

As already commented in D5.1, test plan templates are key tools generated in 5G EVE to gather the requirements

from Verticals in an understandable language, valid for non-technical (in 5G) application developers. The

completion of these test plans by all the participating experimenters is important for various reasons: the creation

of blueprints, the assurance of the capabilities to host the experiments in the required sites, the definition of

validation conditions and thresholds, etc. All these come from the low-level test plans that experiment

developers generate from the high-level test plans coming from Verticals.

In the previous Deliverable, a complete test plan for the ASTI use case was presented, just as an example on

how Verticals should fill in such templates. Since then, there has been ongoing work with the Verticals in order

to complete all the respective test plans pertaining to the corresponding use cases. Also, there has been ongoing

work to improve the template, as we realized from the interaction with Verticals that some concepts were not

clear or needed an extension. This is summarized in the following section. Later on, we will also provide the

first example of low-level test plan, again, coming from ASTI use case.

3.2.1 Update on high-level test plan templates

3.2.1.1 Update on the edition of the template

The template version that was included in D5.1, and first shared with Verticals, was the template version v0.2.

Currently, we are working with template version v0.4. All changes in versions v0.3 and v0.4 derive from lessons

learnt from the interaction with Verticals, as even mentioned in the template history (Table 5):

Table 5: Test Plan Template versions history

Version Date Modification Modified by
v0.1 09/01/2019 First draft

v0.2 17/01/2019 Inclusion of KPIs and sub-

cases

TID, based on global inputs

v0.3 22/03/2019 Improved explanation for

validation conditions

TID, based on input by

Verticals

v0.4 27/05/2019 Improved fields definition in

Test Plan

TID, based on Verticals

responses

As a reminder, the first section in the test plan is called “Experiment Description”. Here, experimenters fill in

the following items:

• Experiment description and expected capabilities (description)

• Experiment components (table)

• Experiment architecture (description)

• Meaningful KPIs (table)

A few changes have happened in this section from v0.2 to v0.4. In particular:

• The instructions in the “experiments components” part have been extended. We detected that Verticals

were including in the table the expected tools to execute the tests, even if they were not providing them.

For example, they were including traffic generators for data plane tests. The extension now clarifies

that this section is there to identify the additional hosting requirements for the destination sites (for

example, how much RAM is required for the Vertical VNFs), and that the required external tools are

already in place, being 5G EVE who will determine which are the most appropriate for each test case.

This also makes life a little bit easier for Verticals.

• Both the instructions and the table for the KPIs have been modified. We realized that, in the original

table, we were presenting the same questions (“Is it measurable?” “Can it be derived from network

parameters?”) for Network KPIs and Vertical KPIs. The fact is that these questions do not apply to

Network KPIs, since 5G EVE will be measuring them in any case. Therefore, we split them in a new

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 35 / 88

table format. Also, it was clarified that the relationship between Vertical KPIs and Network KPIs,

requested for those Vertical KPIs that could not be measured, had to be a mathematical relationship, to

be able to make calculations. We were receiving responses of the type: “if one increases, the other one

as well”, which although interesting, did not help at validating test cases.

The second section in the template is the test plan itself, with one table per test case. Here, the main changes

have to do with the instructions:

• The field “Target KPI”, defined initially as the KPI per test case that wanted to be measured, is now

defined as the KPI which will be used to validate the experiment, to avoid misunderstanding with the

Network KPIs, all of which are actually measured.

• It is also included that the relationship between variable parameter in each test case and target KPI (in

case this can be measured or mathematically derived) will be presented by default as part of the test

results, using the same figures as the ones produced by the visualization tool. This accounts for some

Verticals that were including essentially the same test case twice, one requesting information about the

variable, and the other about the KPI, so they could relate each other.

• Finally, it is also clarified that test reports will include the values of the variable at which the experiment

fails, if this is the case. This was considered from the beginning by 5G EVE but was explicitly requested

by Verticals since it was not correctly explained in the template.

We are not including as part of this document an empty template to compare with that of D5.1, but those

interested in checking the new look and feel can find the answers from Verticals in the Annex I.

3.2.1.2 Update on the responses to templates

Several new responses have been received from the moment D5.1 was delivered, mainly from those Verticals

that are being used as first examples, aiding in the initial development of 5G EVE modules. In particular, there

are four new responses, together with an update from ASTI (since they had initially responded over v0.2). All

five are included fully in Annex I.

In this section, and as a summary, the initial section of each response is included below, in the same order as

that of Annex I.

Utilities UC – Greek site

Experiment Description:

The experiment will test the performance of the Utility Platform in a 5G network infrastructure in two different

deployments. In first deployment the Utility Services are running on the Cloud, while on second deployment the

Utility Services are running on the MEC. The experiment will examine the performance of the

Platform/Infrastructure in case of power failures.

Expected Capabilities:

A high performance and mobile network connecting the Voltage/Current Sensors, the CCTV Cameras, the

Replay Nodes, the 5G Gateways with the Utilities Servers. A very fast power recovery is expected in cases of

power failures with low power restoration time thanks to the 5G infrastructure and MEC capabilities.

Industry 4.0 UC – Spanish site

Experiment Description:

The experiment will test the virtualization of the control algorithms of AGVs. In the current state of the art the

AGVs have an on-board PLC in charge of governing the internal control loop, which is collecting the

information of the guiding sensors, taking the appropriate control decisions and generating the necessary

signals to regulate the speed of the motors. During the experiment, this internal control loop will be relocated

out of the AGV thanks to the 5G communication technologies.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 36 / 88

Expected Capabilities:

A high performance and reliable mobile network connecting the AGVs to the platform with the virtual machines

is required. The most challenging requirements to ensure the deployment of the solution in the future factories

are the high reliability and the low latency and jitter.

Media & Entertainment UC – French site

Experiment Description:

The experiment will test the virtualization of some 5G components and especially the video 360° server. The

main video use-cases typically deport the video server in the cloud. The main question is how far it can be

deported especially when it corresponds to Virtual Reality (VR) contents. This is the main expected objective of

this experiment.

Expected Capabilities:

To prevent nausea when showing high quality VR video format, it is mandatory that the E2E transmission

provides low latency and jitter, the throughput coming in background for the user’s point of view (possibility to

adapt and degrade a little bit the video format). Also, the buffer state at the receiver has a great QoE impact on

the video transmission. So, the most challenging requirement to ensure the deployment of the solution and expect

the capabilities is the low latency. However, it is crucial to know exactly where (at what layer) the latency value

must be measured.

Smart Tourism UC – Spanish site

Experiment Description:

The experiment aims at evaluation what benefits 5G brings to applications that take advantage of VR technology

and real time 360-degree video to enhance the experience of participants in events or conventions. These

applications will be run on top of a 4G network first, and then on top of a 5G network to compare the

performance.

Expected Capabilities:

A test environment where tests can be executed over 4G or 5G environments as required. High bandwidth in

the 5G solution is a must, as is a high-speed Internet connection for transmission of video flows (4K/8K) from

AWS. It must also be possible to emulate additional delay in the network.

Transport UC – Italian site

Experiment Description:

The Transport vertical use cases can be tested applying for a tracking and recognition service experiment where

an end user, equipped with a 5G terminal, moves around a 5G covered area performing different transportation

modes (e.g. walking, biking, driving a vehicle or using public transportation means) and sending the collected

data from the mobile device sensors (mainly GPS, accelerometer, magnetometer and gyroscope) to a backend

platform where the real-time data are elaborated to estimate the end user transportation mode.

Expected Capabilities:

A high reliable and low-latency mobile network connecting the 5G terminal to the platform with the virtual

machines hosting the tracking and recognition services is required. The most challenging requirements to

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 37 / 88

ensure the deployment of the above described solution in the future smart cities are the high reliability and the

low latency.

In the next months, the template will also be shared with the Verticals coming from ICT-19 projects. Since these

are companies external to 5G EVE, the completion of the templates is even of higher importance since there is

no (or little) previous interaction between the incoming Verticals and the local experiment developers.

3.2.2 Low-level test plan templates

Low-level test plan templates, built by experiment developers, should contain all the meaningful information

describing the experiment with a 5G EVE terminology. It must be noted that several inputs are key from these

templates, like the desired infrastructure/application metrics, the meaningful KPIs (all required to build the test

case blueprints), the test procedures that will derive in the test scripts, or the validation conditions that the

Results Analysis & Validation module should execute.

The first version of the low-level test plan for the ASTI use case is included below (only the first Test Case, as

an example; the full test plan is included in Annex II.1). It must be noted that improvements are also expected

in this template, as happened with the high-level one. Of course, since low-level templates are built by 5G EVE

personnel, not by experimenters, these inputs will not come from the latter. Internal iterations will happen when

this template is distributed to new test developers for new test cases, until a final version is ready.

It has to be noted that some information is duplicated among test cases. The reason is that it is important that

each test case is fully self-contained, as they could be further analysed by different experiment developers, even

if all form a single test plan.

Industry 4.0 UC – Spanish site

Test Case 1

Test Name: Effect of latency in Navigation Level

Test Objective: Infrastructure metrics: “latency”

Application metrics: “navigation_level” (obtained from Vertical’s

components, not from traffic tools)

Target KPI: “navigation_level”

In this case, the KPI to be validated coincides with a metric that is provided by

an ASTI component. The latency is the variable parameter, so it is also

required to monitor this metric.

Test Prerequisites: The “navigation_level” is measured by the AGV, and sent to the Master PLC

as part of their communication. A mechanism will have to be implemented to

propagate this metric to the Kafka bus. Options:

a) Capture traffic between AGV and Master PLC, decode it, and publish

in Kafka (this would require an additional element not provided by

ASTI)

b) Check if Master PLC can publish these values in Kafta

The AGVs need specific space to deploy the circuit and associated components

(e.g. battery charger) → this limits the hosting sites to 5TONIC

Required Capabilities: In the hosting site we will need:

• Compute capacity at MEC to host the Master PLC, a Windows based

VM (requirements to be determined)

o Local compute resources should be controlled by the local

NFVO, so that instantiation can be triggered by the Multi-

site NSO

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 38 / 88

• A component emulating latency, under the control of the Runtime

Configurator

• Full 5G network: access + EPC

Sub-Case 1

Test Topology:

The AGV counts with a router to connect to the 5G network. The Master PLC

is deployed at MEC, so the latency emulator must be placed somewhere

between the AGV and the MEC.

Test Variables: The test variable is the latency. It must be noted that the additional latency

introduced by the latency emulator is not the latency E2E. It is not trivial to

measure this latency, since the Slave PLC at the AGV is not designed to do it.

Either we can connect an additional device to the same router, or we should

characterize the initial latency, and add it to the emulated one when results

are presented.

Test Procedure: Deployment: both the Master PLC and the latency emulator should be

deployed real time as part of this phase.

Procedure: after deployment, the AGV should start running (to be checked if

this can be done automatically)

Initial emulated “latency” = 0ms; “step” = 5ms

Loop*:

 run experiment for 3 minutes

 latency = latency + step

*The ideal would be to execute the loop until the target KPI passes the

validation threshold. However, since the validation cannot be done in real time

at this stage, the number of runs of the loop is something to be determined. We

might also provide a manual mechanism to stop the test, as it is evident to

experimenters when the AGV is working far beyond the correct performance

conditions.

Monitoring: it is mandatory to receive the “navigation level” from the AGV

continuously from the start of the experiment. This shall be visualized together

with the E2E latency.

Expected results: Once the loop is finished, all the “navigation level” values will be compared

with the specified threshold (still to be defined). If all the values are lower than

the threshold, the result will be PASS, if at least one value is higher, the result

will be FAIL.

The test report should include the graphics “navigation level” versus

“latency”, plus the final result (PASS/FAIL), and the latency value in which

the experiment fails, if this is the case.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 39 / 88

3.3 Experiment Preparation workflow

As already mentioned in the description of the 5G EVE

Test and Validation Methodology (section 2.1), no

automatic action is implemented during the Preparation

phase. The declared initial conditions that must be

configured before an experiment can start are human-driven actions which result from the interaction between

experimenters and Site Managers who agree on a schedule for the experiment and the preparatory configurations

of the testing environment (tools, devices, testers, etc.). There is no specific workflow to export in this case but

rather a set of best practices and procedures specific of the Site Manager organizations which will be involved

in the 5G EVE experiment execution. The section has been maintained for completeness, to avoid introducing

gaps in the narrative.

3.4 Experiment Execution workflow and APIs

In Deliverables from other Work Packages, and justified

by the appropriate understanding of the workflows there

presented, components from WP5 (either the Experiment

Execution Manager, or the Results Analysis and

Validation module, or both) have been included participating in experiment execution related activities. This

section covers the part of the experiment execution workflow specific to WP5, including also the operations

that will enable the validation and monitoring procedures of the methodology described in section 2.1.

3.4.1 Experiment Execution workflow: testing, validation and monitoring

Due to the length of this workflow, we have divided it in three parts in this section. The full workflow can be

found in Figure 38, in the Annex III.

The first part (Figure 15) relies mainly on the WP3/WP4 workflows for the instantiation of an experiment, and

extends it to show how the Kafka topics are notified to the Results Analysis and Validation module, and to the

Data Collection and Storage modules (WP4). The latter is included as it will ultimate end in the visualization

(monitoring) of metrics and KPIs.

When the Vertical triggers the execution of an experiment, from the GUI, a first request is sent to the ELM (1).

The initial part of the workflow can be found in detail in WP3 and WP4 Deliverables, but here suffice to say

that the ELM retrieves the required Experiment Descriptors from the Portal Catalogue, and triggers the Network

Service (NS) instantiation (2) towards the Multi-site Network Service Orchestrator (NSO). This module, in turn,

retrieves the NS Descriptor from the Multi-site Catalogue, and contacts the local orchestrator(s) for the

instantiation. Once it is finished, and the experiment is deployed, it responds to the ELM (2’) with the NS

Instance ID. The ELM then queries the Multi-site NSO again (3), to retrieve all the details related to the desired

NSI, information that is provided in (3’).

At this stage, ELM could trigger towards the EEM the execution of the experiment, had testing been the only

objective in 5G EVE. However, for the validation and monitoring procedures, ELM has yet to create the name

of the Kafka topics associated with this experiment, by concatenating the global name of metrics/KPIs with the

NSI ID. This will ensure that results are not mixed in the Data Collection Manager.

After generating the name of the topics, these are sent to the Data Collection Manager (4), and are automatically

redistributed to the Results Analysis & Validation (5) and the Data Collection & Storage (5bis) modules.

Although not depicted in the figure, for simplicity, this automatic redirection of topics is possible because both

modules had initially subscribed to the signalling topics of the Data Collection Manager. This subscription is a

strict requirement for these modules before any experimentation is to be run on top of 5G EVE.

(5’) and (5bis’) show the subscription of these validation and monitoring modules to the required topics in the

Kafka bus, typically metrics and/or KPIs, and from that moment on, they are ready to receive the target

measurements as soon as they are generated and published into the bus.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 40 / 88

Figure 15: 5G EVE Experiment Execution workflow – part 1

The second part of the workflow is depicted in Figure 16.

Figure 16: 5G EVE Experiment Execution workflow – part 2

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 41 / 88

Now the ELM is ready to trigger the execution of the experiment towards the EEM, providing information like

the NSI ID, all the deployment-related parameters of the NSI received from the Multi-site NSO, the test case

blueprints and the Kafka topics (6).

The EEM, as already mentioned, is the one in charge of governing the testing and validation procedures, but

before this, the deployed experiment must be correctly configured. This is done via the Runtime Configurator

(7), which executes a loop to configure (8) each site element (VNFs, PNFs, monitoring tools or traffic generation

tools). Strictly speaking, there is not a response to message (8), since the Runtime Configurator will be running

Ansible playbooks in the desired elements, and this does not produce any message back. The Runtime

Configurator itself will determine when this day-2 configuration process is finished (“All required elements are

ready” box in the figure), and will provide a response to the EEM (7’).

Part of this configuration to the site components, again, has to do with the validation and monitoring processes,

as the Runtime Configurator will be providing the topics for publication to the Beats modules in each

component. Once these components are configured, and metrics start to be available, then they automatically

publish the desired information in the Kafka bus. At this stage, since the specific tests have not yet started, it is

envisioned that only the infrastructure metrics from monitoring tools will be available, and these are the ones

that are published (9) and made available to the Data Collection & Storage module (for later visualization).

Although not explicitly included in the figure (for simplicity), the RAV module could also need, in some

experiments, the infrastructure metrics, so the Kafka bus could equivalently make them available for it. The

final part of the workflow is included in Figure 17:

Figure 17: 5G EVE Experiment Execution workflow – part 3

Once the experiment is correctly deployed and configured, testing activities can start. Since more than one Test

Case can be executed in the same experiment, the EEM will execute them in a loop, one at a time. Again, for

simplicity, this is not included in the figure, but the EEM first gets the scripts from the Test Scripts Repository,

and then triggers (10) the execution of the experiment at the Runtime Configurator.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 42 / 88

Via Ansible playbooks, the Runtime Configurator executes its own scripts over the experiment components

(11), typically over traffic tools like traffic generators or network impairments emulators. It can be expected at

this moment that more metrics, the application metrics, are now available, so VNFs and traffic tools will be

publishing them at the bus (12). In this case, the consumer will not only be the pre-visualization module, but

also the Results Analysis & Validation (RAV) component, which will obtain therefore important test results.

Similarly to step (8), there is not a specific response to the execution of the test playbooks (there is not a (11’)

message); therefore, when the Runtime Configurator considers the test finished, it sends a notification to the

EEM (10’). The validation procedure can the start.

EEM triggers this process at the RAV (13), which makes the required calculations to obtain KPIs. RAV then,

on the one side publishes the KPIs at the Kafka (14), so they can be eventually visualized (the Data Collection

& Storage components consume these KPIs from the bus), and on the other side, compares the KPIs with the

expected values, determining the result of the experiment (PASS/FAIL). Once this comparison is finished, it

sends back the test report to the EEM (13’), which considers the Test Case finished, triggers the return to initial

conditions message (15) and moves on to the next Test Case.

The last two messages in the workflow can be seen in the full version of Figure 38 (Annex III): they correspond

to (6’), where EEM declares to the ELM that the test is finished (and sends the full report with the results from

all Test Cases), and then (1’), which is the notification and report submission from the ELM to the Portal.

3.4.2 Experiment Lifecycle Manager (ELM) and Experiment Execution Manager

(EEM) API

In compliance with the workflows described in section 3.4.1, the EEM API is designed to allow external

components (and in particular the Experiment Lifecycle Manager, ELM) to configure executions and run Test

Cases of an experiments.

This API represents the north-bound interface of the EEM. It is consumed mainly by the Experiment Lifecycle

Manager according to the workflows described in Section 3.4.1, as result of the triggering of the experiment

execution from the Vertical user through the 5G EVE Portal. The API is structured in four sections as shown in

the following Figure 18, Figure 19 and Figure 20.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 43 / 88

Figure 18: North-bound interface of EEM (part1, base application)

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 44 / 88

Figure 19: North-bound interface of the EEM (part2, operations)

Figure 20: North-bound interface of the EEM (part3, notifications & subscriptions)

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 45 / 88

The groups of actions exposed via the EEM ReST API respond to a specific scope of the targeted resources and

actions:

• EEM Application: Allow the clients to identify the available versions of the application.

• EEM Operations: Groups all the methods related to the execution of the experiment.

• EEM Subscription: Groups all the methods related to the publish/subscribe paradigm used from the

clients to subscribe to their executed experiments.

• EEM Notifications: Groups all the methods related to the subscriptions of the EEM to the Runtime

Configurator and the Results Analysis and Validation (RAV). In this case, the EEM receives

notifications related to the state of the Day-2 configuration and the progress of the running execution

(in case the EEM subscribes to the Runtime Configurator for these resources), and related to the

validation state (if it subscribes to the RAV).

Through EEM Operations, a Vertical (or the ELM module on his/her behalf) can manage the execution of an

experiment.

Through the endpoint /experiment_executions the main core actions on EEM can be activated. The HTTP GET

method is used to return list of all the instances of experiment executions managed by EEM with related

experiments information. Through the POST method it is possible to create a new instance of an experiment

execution. Once the ELM receives the identifier, it can request the execution of the experiment. In this case, the

ELM performs a HTTP POST /experiment_execution/{id}/run providing all the information to the EEM that

will be used to retrieve the necessary information to get the network service and the test cases blueprints.

The EEM allows two different types of run:

• RUN_ALL: The experiment will be run without intermediate phases. Once started, the Vertical will not

have the possibility to interfere with the execution of the experiment, unless for the abort action.

• RUN_IN_STEPS: The experiment will be running as a pipeline and each stage need to be started by

the Vertical through the EVE Platform. The state of the experiment after each stage will be “PAUSED”.

The type of run is a query parameter named “runType”. The default value is “RUN_ALL”.

The subscribed clients receive notifications upon state changes related to the experiment.

An execution can be aborted in any moment through the HTTP POST /experiment_executions/{id}/abort

method. This action is irreversible and stops the running experiment by rolling back all the pending test cases

and statuses of the involved systems. For all the cases where the experiment execution is implemented as a

pipeline, an HTTP POST on the endpoints /experiment_executions/{id}/pause and

/experiment_executions/{id}/step allows to run the experiment execution in interactive mode. When the pause

action is triggered, the execution stops upon completion of the ongoing Test Case execution run; from that point

onwards, each step is explicitly activated through a step action.

The EEM can request the state of the execution of the experiment triggering the GET method on the endpoint

/experiment_executions/{id}.

If needed, a Vertical can remove the data related to the execution of an experiment by triggering the HTTP

DELETE method on the /experiment_executions/{id}.

The EEM Subscriptions section allows the Vertical to subscribe to experiment execution notifications. The

POST method on the /experiment_subscriptions allows to subscribe to a specific execution instance.

The info model related to the endpoints discussed above includes different datatypes reported in the following

tables (Table 6 to Table 10).

The ExperimentExecutionRequest data is expected to be provided by the ELM to the EEM when an experiment

execution starts (/experiment_executions/{id}/run).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 46 / 88

Table 6: ExperimentExecutionRequest data type

Name Type

executionId* String

experimentDescriptorId* String

nsInstanceId* String

testCaseDescriptorConfiguration Map<String, Map<String, String>>

* mandatory fields

The ExperimentExecutionResponse contains information related to the state of execution, and if available, the

URL where the report is stored. It contains also a map with the list of the test cases requested to be executed

and their result.

Table 7: ExperimentExecutionResponse data type

Name Type

eemSubscriptionId* string

executionId* string

Identifier of the executed experiment

reportUrl string

URL containing the report of the execution

state* Enum:

[INIT, CONFIGURING, RUNNING, RUNNING_STEP, PAUSED,

VALIDATING, COMPLETED, ABORTING, ABORTED, FAILED]

testCaseResult Map<String, ExecutionResult>

* mandatory fields

The EEM should provide an URI where the notification will be sent, and a subscription type.

Table 8: ExperimentExecutionSubscriptionRequest

Name Type

callbackURI* URI

executionId* Experiment execution identifier

subscriptionType* Enum:

[EXPERIMENT_EXECUTION_CHANGE_STATE]

* mandatory fields

As response, the EEM should send to the ELM the ExperimentExecutionSubscriptionResponse.

Table 9: ExperimentExecutionSubscriptionResponse

Name Type

id* string

callbackURI* URI

executionId* string

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 47 / 88

subscriptionType* Enum:

[EXPERIMENT_EXECUTION_CHANGE_STATE]

* mandatory fields

The EEM will notify the ELM over the callback URI each time the execution of the experiment change its state.

The Vertical can request the list of subscriptions or a single subscription using the GET method on the respective

endpoint: /experiment_subscriptions for all the subscriptions and /experiment_subscriptions/{subscriptionId}

for a single subscription, identified by the subscriptionId. The payload of the notification sent to the ELM, when

the state of the execution changes is described at the following table:

Table 10: ExperimentExecutionNotification

Name Type

subscriptionId* String

callbackURI* URI

state* Enum:

[INIT, CONFIGURING, RUNNING, RUNNING_STEP, PAUSED,

VALIDATING, COMPLETED, ABORTING, ABORTED, FAILED]

executionId* String

* mandatory fields

The EEM Notifications section offers an endpoint to the Runtime Configurator and RAV for the notifications

during the Day-2 configuration and validation phases. The Runtime Configurator/RAV should include as

payload of the POST request the following data model.

Table 11: Runtime configurator/RAV data model for notifications service

Name Type

configurationChangeState* Enum:

[CONFIGURING, CONFIGURED, CONFIGURATION_FAILED,

VALIDATING, VALIDATED, VALIDATION_ERROR]

executionId* String

notificationInfo* String

notificationError ErrorInfo

* mandatory fields

3.4.3 Experiment Execution Manager (EEM) and Runtime Configurator API

In 5G EVE, we have determined that the “server side” is the one responsible of defining the different APIs. In

this case, the EEM acts as a client of the Runtime Configurator, so the specification of this API has been led by

WP3. In that sense, the spec of the Runtime Configurator’s NBI was started in D3.2 – Interworking Reference

Model – [6], and updated in D3.3 – First implementation of the interworking reference model – [7].

All the details regarding this API can be found in those references, so only the most updated table will be

included here for completeness:

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 48 / 88

Table 12: EEM – Runtime Configurator API

Runtime Configurator NBI

Execution of templates for given steps of a test case

Description

Invocation of the templates related to a given operation in a test case, in order to

i) provide Day-2 configuration to the VNFs/PNFs referenced in the test case, or

ii) trigger the execution of a test step

Reference Standards OpenSSH protocol or REST API interface in case of incompatibilities.

Operations Exposed Information Exchanged Information Model

Execute a template for

providing configuration

operations

(execute_config_templates

operation)

• A list with the templates ID.

• The experiment execution ID.

It will return the result of the execution of the

commands included in the used templates.

In case of using OpenSSH, the input

information will be provided in a specific

script to be executed in the Runtime

Configurator server, which will include the

necessary logic to process it, obtain the IP

addressing configuration of the

components to be configured and apply the

templates to these components.

Execute a template for

providing test-related

operations

(execute_exec_templates

operation)

• A list with the templates ID.

• The experiment execution ID.

It will return the result of the execution of the

commands included in the used templates.

In case of using OpenSSH, the input

information will be provided in a specific

script to be executed in the Runtime

Configurator server, which will include the

necessary logic to process it, obtain the IP

addressing configuration of the

components to be configured and apply the

templates to these components.

3.5 Internal workflows and APIs

Two internal operations are the ones that need to be tackled in this section. Both relate to Figure 17 in section

3.4.1, where the last part of the experiment execution workflow was depicted.

In step (10) we had the EEM triggering the execution of the experiment at the Runtime Configurator. For

simplicity it did not appear in the workflow, but it was commented that, prior to that, the EEM got the required

scripts from the Test Scripts Repository. This repository has similar functions as those of the Multi-site

Catalogue in WP3, when the Multi-site NSO requests the needed descriptors. Therefore, a similar API may be

implemented, and it will not be included here since it can be found in Deliverables D3.2 [6] and D3.3 [7].

The other operation is depicted in step (13), when the EEM triggers the validation process at the RAV.

The RAV module exposes an API towards the other platform entities in order to provide them with operational

control. This API includes the data types for the EEM to execute the mentioned trigger, but it also contains other

data types. For example, during the experiment setup procedure, the ELM notifies the DCM about the topics

that will be used for publishing the metrics, and then the DCM notifies the RAV module about these topics and

the broker information. An example of the API provided to the RAV module can be seen in Table 13.

Table 13: RAV module’s configuration message fields

Field Description

brokerAddr IP address and port of the Broker

name The name of the topic to subscribe to for the specific KPI

kpi The specific KPI that will be monitored

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 49 / 88

analysis Analysis method for the published messages. Can have various functionalities (parsing,

normalizing, applying functions to the metrics, etc…)

conditions The conditions based on which the target KPI will be validated

The analysis field is a selection of functionalities that can be mapped to different combinations of parsing and

organizing the published raw or processed metrics. Outlier detection, message sanitization and enrichment of

the metrics with additional information related to some other process, like the Performance Diagnostics, are

only a few of the possible functionalities that can be implemented in the analysis process. Additional

configuration options for the module may be added depending on the requirements of the current and future Use

cases.

Finally, the RAV, to let the EEM know that the validation process has been finished, will generate an explicit

notification – step (13’) in Figure 17 – in which it will also provide the test report, normally in the form of an

URL.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 50 / 88

4 Design of the testing and validation framework components

4.1 Experiment Execution Manager (EEM)

The Experiment Execution Manager is a self-contained and stand-alone component written in Java, using

Spring-boot framework. It provides support to the 5G EVE Platform for the configuration and the execution of

the experiments.

In particular, the EEM component is able to configure and run a set of test cases for a given experiment through

the API described in section 3.4.2 and the workflow described in section 3.4.1.

When a request of a run is triggered (step 6 on the workflow described in section 3.4.1), the EEM contacts the

MSNO to retrieve the NSInfo, given the nsInstanceId and the Catalogue to retrieve the Experiment Descriptors

related to the execution.

Once all the information is available, the EEM starts the translation of the test cases descriptors to Robot

Framework files that are sent to the Runtime configurator, which is in charge of the day-2 configuration of the

VNFs and the execution of the tests.

The internal state machine related to an experiment execution is described in the following Figure 21.

Figure 21: EEM Finite state Machine for an experiment execution

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 51 / 88

Upon creation (POST /experiment_executions), a unique experiment execution identified is generated and the

execution transits in INIT state, ready to receive subscriptions for notifications or run triggers. Upon a run

command, the experiment transits into CONFIGURING state, where all the configurations on Runtime

Configurator (for VNFs and NS), on monitoring platform and RAV are implemented. In this state, the translation

of both the Test Case descriptors into Robot Framework files and Jenkins pipeline jobs is implemented. When

all the configurations are completed, the experiment transits into RUNNING or PAUSED depending of the run

type specified by the API client. In case of experiment execution in steps, the EEM controls the completion of

each TC execution and waits for the explicit trigger to progress via API (POST

/experiment_executions/{id}/step). In case of complete run (runType := RUN_ALL) all the TCs are executed

sequentially as specified in the experiment descriptor.

When all the TCs are completed or the last TC is completed, the experiment transits in VALIDATING, thus

interacting with the RAV to start the KPI analysis phase and the production of the reports.

In case of errors at any state of the experiment execution, the experiment transits into FAILED state. For explicit

requests to abort an experiment, the related states ABORTING and ABORTED are used to track the progress.

The high-level design of the EEM module under development is depicted in Figure 22.

Figure 22: EEM high level design

The EEM builds around the core functionality of an Experiment Execution Coordinator, which receives parsed

commands related to the managed experiment and executes the following sequence of operations:

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 52 / 88

1. validate experiment execution request in an Execution Validator

2. trigger translation of experiment execution descriptors (ExpD, CD, TcD, NSD) into Robot Framework

files and Jenkins configuration descriptors

3. dispatch the configuration files to RAV and Runtime Configurators via related plugins

4. write received records and configurations in persistent storage

5. run and evolve the EEM Finite State Machine depending on experiment configurations and EEM API

commands

6. dispatch experiment notifications to subscribed clients

4.2 Results Analysis & Validation (RAV)

The initial implementation of the RAV module for the disjoint testing and validations tools delivered with D5.1

was as a sub-functionality of the Robot Framework testing module. In order to enhance its capabilities and

enable the interfacing of the RAV module with other entities of the 5G EVE platform, such as the Data

Collection Manager (DCM), Experiment Lifecycle Manager (ELM) and so on, it has since moved to a

standalone module. Another benefit of its, now, standalone status is the ability to instantiate multiple instances

of the module.

The new functionalities implemented in this new version of the RAV module are:

• An API to configure and control its’ operation.

• Modular analysis and validation functionalities that allow for Use case / Test case specific analysis and

validation algorithms.

• Reporting functionality that ties in with the reporting components of other EVE platform elements in

order to generate a complete experiment report.

The module’s operation is shown in Figure 23.

Figure 23: Analysis and Validation module operation

The operation of the RAV module, and especially the Analysis functionality will create the base upon which

the Performance Diagnosis mechanism will be created later on in the project. Collecting the metrics, post-

processing and organizing them to proper structures, thus generating a pool of actionable data and relations will

feed the diagnosis procedure.

4.2.1 Analysis & Validation

In the current state of the module the analysis of the metrics, normalization and organizing in useful data

structures happens while the Test case is executed. After the Test case execution has finished, the validation

functionality is triggered. The previous agreement is that each Test Case is used to validate a single KPI. Having

the validation functionality take place after the execution has concluded means that by having the data for other

related metrics available as well, it is possible to reach meaningful conclusions about more complex KPIs,

possibly introduced by current or future Use cases in the next drops of the EVE platform.

The operation stages of the Analysis and the Validation functionalities are shown in Figure 24.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 53 / 88

Figure 24: Analysis and Validation functionalities workflow

So far, most of the KPIs that need to be validated require simple calculations and comparisons. As such, the

default operation of the Validation functionality is adequate. The modularity of the design, though, allows for

the importing of an external validation methodology by the corresponding vertical that requires it. It can also be

configured to use “black-box” validation mechanisms as long as those scripts or binaries are provided to the

platform.

4.2.2 Reports

The reporting of the experiment results happens in various stages of the experiment definition and execution

process. The final report generated for the vertical consists of 4 separate reports created by 4 entities of the EVE

Platform. These are:

• Test Case Validation report: generated by the RAV module. It pertains to the targeted KPI that the

Vertical wants to validate. It contains information regarding the behaviour of the KPI throughout the

test run as well as the final result of the validation process.

• Test Case report: generated by the EEM. It includes the reports produced by the Robot Framework (RF)

and it is an operational report more focused on the different stages of the test execution process and less

about the KPIs.

• Experiment report: generated by the ELM. This report contains all the information regarding the

requested parameters, technologies used, use case details and other details pertaining to the experiment

at a higher level.

• Scheduling report: generated by the Portal. The information produced by the Portal, as the name

suggests, are all related to scheduling the experiment execution like the time slot, the one or more

selected sites and so on.

The complete reporting workflow can be seen in Figure 25 below.

The generated reports, especially the Test Case Validation reports and the Test Case reports, except being useful

to the experimenter will also provide the necessary input for the Performance Diagnosis mechanism that will be

implemented in the next drops of the platform. Having the detailed reports of multiple test case runs available

beforehand can speed up the process and aid in increasing the accuracy of the performance diagnosis as well as

the impact of the performance improvement suggestions.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 54 / 88

Figure 25: Reporting

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 55 / 88

5 Update of testing and validation results

This section includes the main improvements achieved in the last months compared with the initial results of

some use cases already presented in section 3.4 of D5.1.

5.1 Application in the ASTI use case

Results of the most basic tests of the ASTI use case was already presented in D5.1, where an AGV was

controlled by a master PLC (Programmable Logic Controller) running as a virtual machine hosted by a server

attached to a MEC (Multi-Access Edge Computing). For this deliverable the testbed has been extended to

include a new component between the AGV and the master PLC to generate synthetic impairments, like delays

and packet losses. This testbed is shown in Figure 26, where this component is identified as “tc”, because it is

implemented using the traffic control (tc), which is a tool available in Linux, and more specifically using the

NetEm extension. This figure includes a box called Robot Framework, because it is planned to manage the “tc”

box using the Robot Framework tool, although at this stage the “tc” is managed manually.

Figure 26: ASTI use case testbed

Two types of tests were performed at this stage: delay and packet losses impairments. The main goal in all these

tests is to check how the guided error detected by the master PLC is affected by these changes configured at

the traffic control. The guided error is a value that is correlated with the degree of deviation of the AGV

compared with the optimal path. Of course, this value is affected by delays and packet losses, and the goal of

these tests is to get some maximum values for these impairments.

Regarding delays, Figure 27 shows the guided error of the AGV in one lap to the circuit for different values of

delays, starting from 0 and then adding extra round-trip delays of 100 ms. Because at 300 ms the AGV was not

properly controlled, exiting the path, it was decided to include intermediate delays. Results show that an extra

200 ms round-trip delay is acceptable for controlling the AGV, but above this value the AGV cannot be

controlled effectively (with 225 ms extra delay, the guided error is 0 at some points because the AGV losses its

path, so a local alarm stops it completely).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 56 / 88

Figure 27: Guided error of the AGV for different extra delays

Figure 28 shows the guided error for different synthetic percentage of packet losses, both in the uplink (sensors

information sent by the AGV) and downlink (control information sent by the master PLC to the AGV). These

losses are identified in the figure using the acronyms lu (losses at the uplink) and ld (losses at the downlink).

As it can be seen in the figure, the AGV does not lose the path during the lap, even with 30% of packet losses.

It is important to highlight that these packet losses are computed per packet, so it does not include bursts, which

could be also configured at the traffic control tool, although for these experiments this parameter was not

included. In future experiments we plan to include more tests, controlling all of them using Robot Framework.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 57 / 88

Figure 28: Guided error of the AGV for different packet losses

5.2 Application in the Segittur use case

As commented in section 3.2.1.2, where the updated responses to the high-level test plan templates are outlined,

the main goal of the Smart Tourism use case (in which Segittur is participating) is to understand how 5G can

improve the capabilities or performance of applications destined to transform the experience of participants in

events, conventions, etc. In that sense, part of the testing activities are focused on characterizing what the results

are on top of 4G networks, so later on these can be compared with those over 5G. This section reports on the

tests executed so far.

The first test case in which some results are available is the one trying to determine the impact of latency on VR

video content (Test Case 1 in Annex I.4). The main KPI of this test case is called “viewport changes”, or “Field

of View (FoV) changes”. The guidelines determining “correct behaviour” for this KPI look like the dotted

representation in Figure 29. For example, it can be determined that 50% of the viewports should have changed

within 200ms of the video buffer, while 99% should have changed within 500ms.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 58 / 88

Figure 29: Viewport change speed expected distribution and obtained base results

Another KPI in this test case is the Time to Right Frame (TtRF), governed by distributions like the dotted line

of Figure 30. In this case, the TtRF should be 500ms or less during all the playback or should be 200ms or less

for 95% of the playback.

Figure 30: TtRF expected distribution and obtained base results

Results available over today’s technologies (in other words, results in the production environment today) still

differ greatly from the expected distributions, as can be observed in the solid line of the previous figures. The

expectation in this use case is that 4G may even worsen the base case (latency may not be able to cope with the

short adaptation times required), but that 5G could provide significant improvements, even close to the ideal

scenario.

The second test case also considers the effect of latency, but in this scenario, the KPI is the number of camera

changes during playback. The expected result is that 5G outperforms 4G at least by a 50%, given the delta in

the expected latencies. So far, results for 4G have been already obtained, as shown in figures from Figure 31 to

Figure 33. As stated in the test plan in Annex I.4, all tests are executed over three delay scenarios, depending

on how much delay is incorporated to the experiment (none, 50ms or 150ms).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 59 / 88

Figure 31: Number of camera changes during playback – results over 4G

Figure 32: Average TtRF in ms – results over 4G

It has to be noted in the next figure (Figure 33) that results for values over 500ms of the video buffer need to be

revisited to ensure their correctness; these are preliminary results that will be reviewed (and updated if necessary

in future documents).

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 60 / 88

Figure 33: TtRF distribution – results over 4G

The last of the results already obtained has to do with Test Case 3, in which the downlink bit rate is evaluated.

The video source transmits an average bitrate of 50Mbps, and it can be seen that this bandwidth is correctly

received at the destination when using a 4G network, independently of the introduced additional delay (again,

zero, 50 or 150ms.).

Figure 34: Average bitrate – results over 4G

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 61 / 88

5.3 Application in the WINGS Utilities use case

Some initial results of the Utilities use case were also presented in D5.1. The experiment revolved around a

basic operation of the power grid restoration service. The setup used in that initial experiment included a remote

server handling the node monitoring and rerouting decision making, smart nodes consisting of power consumers

and power generators and telecom infrastructure in the form of an eNodeB and an EPC in order to connect the

smart nodes with the remote server. The testbed that generated the new results, shown in Figure 35, is the same

as the previous one expanded with an impairment node. The Robot Framework handles the preparation and

execution of the necessary functionalities on all the nodes. The impairment node is responsible for injecting

network impairments to the link between the smart nodes and the remote server, in this way simulating real

network conditions. The experiment is executed using the latest version of the testing tool, expanded since the

first disjoint version with additional analysis, validation capabilities.

Figure 35: Testbed for the latest Utilities results

The test executed focuses around two network impairments, delay and packet loss. The focus of these tests will

be the description of the effect these impairments have on one of the Vertical KPIs, the Power Restoration Time

(PRT). The PRT consists of four parts:

• Transmit time

• Server rerouting decision time

• Receive time

• Reconfiguration time

The transmit and receive times are directly affected by the impairments, in opposition to the server decision

time and the reconfiguration time, as these are platform intrinsic and node intrinsic respectively. The vertical

has set as a validation condition that the PRT should be below 1 ms. The experiment will show under what

conditions this requirement can be fulfilled. First, the impact of the increasing latency can be seen in Figure 36.

Figure 36: Effect of delay on the Power Restoration Time

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 62 / 88

As expected, additional delay increases the total PRT linearly. The various steps of the injected delay were

50ms, 100ms, 250ms, 400ms and 500ms. In order for the Vertical’s condition of operation, PRT less than 1

second, to be valid, the testing and validation tools demonstrated that the maximum acceptable delay is less than

400ms. More than 400ms delay, and consequently more than 1 second PRT can cause power loss and damages

to the nodes. Similarly, the impact of the increasing packet loss can be seen in Figure 37.

Figure 37: Effect of packet loss on Power Restoration Time

Packet loss up to 10% appears to have a reduced effect on the PRT. When that value reaches 20% and more,

the impact is significantly more disruptive to the operation of the node since multiple lost packets disrupt the

restoration process.

These two tests, while useful, show the impact of one network impairment on a selected Vertical KPI. The next

step is to expand the functionalities of the testing tools and the impairment node integration, so as to be able to

enable multiple impairment injection from the testing framework. In this way, more complex environments can

be simulated and more complex tests, as well as use cases, can be supported.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 63 / 88

6 Conclusions and next steps

When delivering an architecture definition document, only one should be the main conclusion, and only one

should be the next move. As for the conclusion: we have effectively designed a model-based testing (and

validation) architecture. As for the next steps: we are now in a position to develop such architecture.

Having stated this, which although obvious must still be highlighted, a good exercise is to evaluate how much

the designed architecture complies with the initial requirements.

The main objective, as stated in section 1.3, was the design of an overall framework enabling and supporting

automated model-based testing and validation of 5G technologies, components and services. Several

requirements can be extracted from here, which will be listed later on. Also, with regards to the Testing-as-a-

Service environment that the project is offering, its ultimate goal is to allow for the automated execution and

evaluation of test cases, based on high-level test plan descriptions of the intended experiments, and according

to model-based testing principals. These two definitions, plus the concepts of multi-site testing and monitoring,

make up an already interesting list of requirements against which the designed architecture can be confronted:

1. Automation

2. Model-based

3. Testing capability

4. Validation capability

5. Monitoring capability

6. Benchmarking testing

7. Vertical’s applications testing

8. High-level test plans

9. Multi-site testing

The following table reflects our evaluation on the designed architecture. Scores are given from 0 to 3, with the

following meaning.

• 0: requirement not met

• 1: requirement partially met

• 2: requirement met, but there is room for some improvement

• 3: requirement perfectly met

Table 14: 5G EVE testing and validation framework support of requirements

Requirement Score Justification

Automation 2

First versions of the framework will not be fully automated, but it can be

seen from the Deliverable’s workflows that all operations during the

Experiment Execution phase (which also includes the monitoring and the

validation) are planned to be automated. “3” is not given because there are

still many manual operations in the Experiment Design phase.

Model-based 3

All tests are based on blueprints that can be reused (or even combined) at

the experimenter’s will, trying to simplify the heterogeneous Verticals’

scenarios. Strictly speaking, with this approach this is not a WP5 feature,

but WP5 has adapted to blueprints, and will also produce test scripts (for

different Test Case blueprints) applying the same philosophy.

Testing capability 3

The Experiment Execution Manager (EEM) drives all the testing

capabilities and procedures, interfacing with WP3 modules (Runtime

Configurator) to interact with local components at sites.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 64 / 88

Validation

capability
2

The Results Analysis and Validation (RAV) module drives all the

validation capabilities and procedures, obtaining from the Data Collection

Manager the required metrics, and receiving the trigger for validation from

the EEM. “3” is not given because the validation conditions are still

somehow simple.

Monitoring

capability
3

WP5 has leveraged the powerful monitoring capabilities developed within

WP3 and WP4, and has just adapted to those schemes.

Benchmarking

testing
1

Tests with the objective of evaluating 5G technologies, architectures or

components are perfectly possible in 5G EVE. “3” is not given because we

are not yet in condition to validate all the required Network KPIs (see

section 2.1.2).

Vertical’s

applications testing
3

Tests with the objective of evaluating Verticals’ applications and services

are perfectly possible in 5G EVE. Validation and visualization of Verticals’

KPI are even possible if they can inject their own metrics in the same data

broker that is used for infrastructure monitoring.

High-level test

plans
3

Elaboration of Test Cases based on high-level test plans provided by the

incoming experimenters is a reality in 5G EVE, as demonstrated by the

templates responses that participating Verticals have provided. These tools

should be key to understand Verticals coming from ICT-19 projects.

Multi-site testing 3

Again, strictly speaking, the support of this requirement has not been fully

solved in WP5, but in WP4. The Multi-site NSO is capable of deploying

multi-site experiments; the Data Collection Manager can receive metrics

from components no matter their location; and the Runtime Configurator

can interact with all deployed elements. WP5 and WP4 have jointly defined

the required interfaces so that, for WP5, there is no difference between

multi-site or single-site testing.

As seen, we are getting very good (given by ourselves) grades at this stage of the project, where there is still a

lot of time to incorporate to the framework more capabilities concerning the evaluation of Netwok KPIs, (which

is where we also need to push in the next months). It also has to be noted, and the list of references is a good

proof of that, that most of the work done in this WP has been started from scratch, given the very few previous

initiatives of this type.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 65 / 88

References

[1] 5G EVE Deliverable D5.1 “Disjoint testing and validation tools” – ICT-17-2018 5G EVE Project –

03/05/2019

[2] 5G EVE Deliverable D1.3 “5G EVE end-to-end facility reference architecture for Vertical industries

and core applications” – ICT-17-2018 5G EVE Project – To be published in Dec. 2019

[3] 5G EVE Deliverable D1.4 “KPI collection framework” – ICT-17-2018 5G EVE Project – 28/06/2019

[4] Report ITU-R M.2410-0 (11/2017)

[5] 5G EVE Deliverable D4.1 “Experimentation Tools and VNF Repository” – ICT-17-2018 5G EVE

Project – 31/10/2019

[6] 5G EVE Deliverable D3.2 “Interworking Reference Model” – ICT-17-2018 5G EVE Project –

28/06/2019

[7] 5G EVE Deliverable D3.3 “First implementation of the interworking reference model” – ICT-17-2018

5G EVE Project – 31/10/2019

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 66 / 88

Annex I: High-level test plan templates – available responses

Annex I.1: Experiment template for Utilities use case (Greece)

The following has been extracted from the template response for the Utilities use case in the Greek site.

Experiment Description:

The experiment will test the performance of the Utility Platform in a 5G network infrastructure in two different

deployments. In first deployment the Utility Services are running on the Cloud, while on second deployment the

Utility Services are running on the MEC. The experiment will examine the performance of the

Platform/Infrastructure in case of power failures.

Expected Capabilities:

A high performance and mobile network connecting the Voltage/Current Sensors, the CCTV Cameras, the

Replay Nodes, the 5G Gateways with the Utilities Servers. A very fast power recovery is expected in cases of

power failures with low power restoration time thanks to the 5G infrastructure and MEC capabilities.

Table 15: Utilities UC experiment components

Component Name Description Deployment requirements

Voltage/Current

Sensor

Sensor measuring the values of voltage

and current

Deployed in the distributed power grid

infrastructure

CCTV Camera
Camera located in selected places of

the power grid infrastructure

Deployed in the distributed power grid

infrastructure

Relay Node

Node in the power grid infrastructure

capable of relaying current to other

nodes of the power grid infrastructure

Deployed in the distributed power grid

infrastructure

5G Gateway

Node close to the sensors/cameras

responsible to collect data from the

sensors/cameras or send data to relay

nodes. It communicates with the 5G

RAN (acting as 5G terminal).

Deployed close to sensors, relay nodes

and cameras to provide 5G

connectivity

Utilities ARTEMIS

platform

Cloud platform in which the Utilities

Services are deployed

Deployed in a centralized server as

Virtual Machine or in a distributed

manner in the cloud continuum

(edge/MEC, cloud)

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 67 / 88

Experiment architecture:

Architecture 1: Utility Services on the Cloud (main scenario)

Architecture 2: Utility Services on the MEC (scenario to be investigated)

Table 16: Utilities UC meaningful KPIs

5G related KPIs Comments

RTT Latency Target: 20 – 100 msec, especially for the downlink (configurations)

Bandwidth Target: 15Mbps-50Mbps, especially for the uplink

Vertical KPIs
Is it measurable during

experimentation?

Can it be mathematically derived

from 5G related KPIs?

Power Restoration

Time

Yes, it is measured in the 5G Gateway

node. Target: 1s

End-to-end latency plus an offset time

of relay node’s activation

Power Restoration

Decision Time

Yes, it is measured in the Power

Restoration service.
No

5G GatewayVoltage/Current
Sensors Relay

Energy management
devices

CCTV Cameras 5G Gateway

Monitoring
service

Status Analysis
service

Event Detection
service

Power Restoration
service

Power Optimization
service

Data Storage
service

Device Comm
service

Utilities Server (on the Cloud)

Sensor
Data

Device
Configurations

Data
Streams

*Device Configurations for energy management
devices comprise open or close the relay

gNb
Data Network
(N6 interface)

EPC (including
UPF)

5G GatewayVoltage/Current
Sensors Relay

Energy management
devices

CCTV Cameras

5G Gateway

Monitoring
service

Status Analysis
service

Event Detection
service

Power Restoration
service

Power Optimization
service

Data Storage
service

Device Comm
service

Utilities Server (on the MEC)

Device
Configurations

*Device Configurations for energy management
devices comprise open or close the relay

Sensor
Data

Data
Streams

gNb UPF

EPC

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 68 / 88

Table 17: Utilities UC test plan

Test Case 1

Test Name: Effect of Number of requests in RTT Latency

Target KPI: RTT Latency

Measurement Method: The RTT Latency will be measured by the 5G Gateway. It is the end-to-end latency

between a power failure request and the power restoration response.

Parameters: The number of requests will be set to 1, 5, 10, 20, 50, 100, 200, 500, 1000

Validation Conditions: RTT Latency between < 100 msec

Test Case 2

Test Name: Effect of Number of requests in Bandwidth

Target KPI: Bandwidth

Measurement Method: The Bandwidth will be measured by the 5G Gateway. It will be measured on the outgress

interface for the uplink and on the ingress interface for the downlink.

Parameters: The number of requests will be set to 1, 5, 10, 20, 50, 100, 200, 500, 1000

Validation Conditions: Bandwidth (both on downlink and uplink) > 15Mbps

Test Case 3

Test Name: Effect of Number of requests in Power Restoration Time

Target KPI: Power Restoration Time

Measurement Method: The Power Restoration Time will be measured by the 5G Gateway. It is the end-to-end

latency plus an offset time of relay node’s activation.

Parameters: The number of requests will be set to 1, 5, 10, 20, 50, 100, 200, 500, 1000

Validation Conditions: Power Restoration Time < 1s

Test Case 4

Test Name: Effect of Number of requests in Power Restoration Decision Time

Target KPI: Power Restoration Decision Time

Measurement Method: The Power Restoration Decision Time will be measured by the Power Restoration

service. It is the time between an arrival of a new request at the "Power Restoration

Service" and the completion of this request. The time is measured as the time between

the "request arrival ID" and "request completed ID" logs.

Parameters: The number of requests will be set to 1, 5, 10, 20, 50, 100, 200, 500, 1000

Validation Conditions: Power Restoration Decision Time < [VALUE STILL TO BE DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 69 / 88

Test Case 5

Test Name: Effect of Grid Complexity in RTT Latency

Target KPI: RTT Latency

Measurement Method: The RTT Latency will be measured by the 5G Gateway. It is the end-to-end latency

between a power failure request and the power restoration response.

Parameters: The number of power grid nodes generated (emulated) will be set to 5, 10, 20, 50, 100,

200, 500, 1000

Validation Conditions: RTT Latency between < 100 msec

Test Case 6

Test Name: Effect of Grid Complexity in Bandwidth

Target KPI: Bandwidth

Measurement Method: The Bandwidth will be measured by the 5G Gateway. It will be measured on the outgress

interface for the uplink and on the ingress interface for the downlink.

Parameters: The number of power grid nodes generated (emulated) will be set to 5, 10, 20, 50, 100,

200, 500, 1000

Validation Conditions: Bandwidth (both on downlink and uplink) > 15Mbps

Test Case 7

Test Name: Effect of Grid Complexity in Power Restoration Time

Target KPI: Power Restoration Time

Measurement Method: The Power Restoration Time will be measured by the 5G Gateway. It is the end-to-end

latency plus an offset time of relay node’s activation.

Parameters: The number of power grid nodes generated (emulated) will be set to 5, 10, 20, 50, 100,

200, 500, 1000

Validation Conditions: Power Restoration Time < 1s

Test Case 8

Test Name: Effect of Grid Complexity in Power Restoration Decision Time

Target KPI: Power Restoration Decision Time

Measurement Method: The Power Restoration Decision Time will be measured by the Power Restoration

service. It is the time between an arrival of a new request at the "Power Restoration

Service" and the completion of this request. The time is measured as the time between

the "request arrival ID" and "request completed ID" logs.

Parameters: The number of power grid nodes generated (emulated) will be set to 5, 10, 20, 50, 100,

200, 500, 1000

Validation Conditions: Power Restoration Decision Time < [VALUE STILL TO BE DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 70 / 88

Annex I.2: Experiment template for Industry 4.0 use case (Spain)

The following has been extracted from the template response for the Industry 4.0 use case in the Spanish site.

It must be noted that this is just an adapted (not updated) response from the one already included in D5.1, since

the latter was provided over an old version of the template.

Experiment Description:

The experiment will test the virtualization of the control algorithms of AGVs. In the current state of the art the

AGVs have an on-board PLC in charge of governing the internal control loop, which is collecting the

information of the guiding sensors, taking the appropriate control decisions and generating the necessary

signals to regulate the speed of the motors. During the experiment, this internal control loop will be relocated

out of the AGV thanks to the 5G communication technologies.

Expected Capabilities:

A high performance and reliable mobile network connecting the AGVs to the platform with the virtual machines

is required. The most challenging requirements to ensure the deployment of the solution in the future factories

are the high reliability and the low latency and jitter.

Table 18: Industry 4.0 UC experiment components

Component Name Description Deployment requirements

AGV AGV where the slave PLC is running

220V to power a charging station

220V to power a traffic station

Test zone of 9mx4m

Slave PLC PLC included in the AGV

Client device to connect to 5G

infrastructure. 24Vdc powered or with

some dc/dc converter (for example

24/5 if the client device is 5V powered.

Static IP

Master PLC
Virtual PLC embedded in a Virtual

Machine

Virtual machine to run Windows 7

(Service Pack 1 or higher) / 8 / 10

(32/64 Bit) + suitable PC hardware

for the corresponding Windows

platform

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 71 / 88

Experiment architecture:

The AGV will have a Slave PLC on board. This PLC will collect the information from the sensors and physical

inputs, this will be sent to the Virtual PLC. The Virtual PLC will process all this information, then it will take

the appropriate control decisions and it will generate the right signals to control the motors of the AGV. This

control signals will be sent by 5G communication to the Slave PLC, who will process them translating to real

physical signals to command the motors.

Table 19: Industry 4.0 UC meaningful KPIs

5G related KPIs Comments

Delay The delay will be the variable parameter in each of the test cases

Vertical KPIs
Is it measurable during

experimentation?

Can it be mathematically derived

from 5G related KPIs?

Navigation Level Yes, by the AGV No mathematical formula known

Consumption Yes, by the AGV No mathematical formula known

Time to lose the guide Yes, by the AGV No mathematical formula known

Table 20: Industry 4.0 UC test plan

Test Case 1

Test Name: Effect of delay in Navigation Level

Target KPI: Navigation Level

Measurement Method: The Navigation Level will be measured by the AGVs. AGVs operate smoothly until a

certain Navigation Level is reached

Parameters: No external traffic.

The delay will be fixed at 10ms, 15ms, 20ms… until the maximum acceptable delay. In

each delay value, the AGVs will run 10 cycles.

Validation Conditions: Delay will be considered acceptable until the Navigation Level goes beyond [VALUE

STILL TO BE DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 72 / 88

Test Case 2

Test Name: Maximum supported delay

Target KPI: Time to lose the guide

Measurement Method: When the delay is too high, the guides of the AGVs are lost, and they stop. A “guide

lost” log is also sent.

Parameters: No external traffic.

The delay is increased until one AGV loses the guide

Validation Conditions: Reception of “guide lost” log

Test Case 3

Test Name: Effect of delay in Consumption

Target KPI: Consumption

Measurement Method: The consumption will be measured by the AGVs. AGVs consumption is increased with

the delay

Parameters: No external traffic.

The delay will be fixed at 10ms, 15ms, 20ms… until the maximum acceptable delay. In

each delay value, the AGVs will run 10 cycles.

Validation Conditions: Consumption will be considered acceptable until it goes beyond [VALUE STILL TO BE

DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 73 / 88

Annex I.3: Experiment template for Media & Entertainment use case

– Virtual Visit over 5G (France)

The following has been extracted from the template response for the Media & Entertainment use case in the

French site.

Experiment Description:

The experiment will test the virtualization of some 5G components and especially the video 360° server. The

main video use-cases typically deport the video server in the cloud. The main question is how far it can be

deported especially when it corresponds to virtual Reality (VR) contents. This is the main expected objective of

this experiment.

Expected Capabilities:

To prevent nausea when showing high quality VR video format, it is mandatory that the E2E transmission

provides low latency and jitter, the throughput coming in background for the user’s point of view (possibility to

adapt and degrade a little bit the video format). Also, the buffer state at the receiver has a great QoE impact on

the video transmission. So, the most challenging requirement to ensure the deployment of the solution and expect

the capabilities is the low latency. However, it is crucial to know exactly where (at what layer) the latency value

must be measured.

Table 21: Media & Entertainment UC experiment components

Component Name Description Deployment requirements

HMD
Head Mounted Display: HTC Vive or

other type.

For autonomous HMD, USB3

connection to the 5G modem

For no autonomous HMD, WiFi

connection to the video PC

processing, the latter connected to 5G

modem by USB port

HTTP local 360°

video server

Video server for VR transmission. It

will be hosted in VM.

Based on linux Ubuntu 18.04 with

Nginx (HTTP server), Nodejs A-Frame

(three.js, dash.js).

220V power supply

Windows 10 server
Server used in no-autonomous HMD

for video processing

220V power supply if no-autonomous

HMD. USB3 connection from the 5G

modem and to the HMD.

Router/server

Server for virtual router and analytics.

Used to extract flows and measure

KPIs

Based on linux Ubuntu 18.04. Router

(DHCP server). Bitrate and latency

graph tools and wireshark …

220V power supply

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 74 / 88

Experiment architecture:

The experiment architecture is depicted below. As illustrated, the video server is put behind a router and can

be deported in the cloud or locally. The video server is embedded in a server that can be hosted in a VM (Linux

18.04). The video stream passed through the 5G network (based on EPC OAI) and the OAI RAN eNodeB that

performs the BBU processing before sampling via the software defined radio (SDR) equipment (USRP). Then,

the transmitted signal is received by the 5G modem (5G COTS equipment). When using no autonomous HMD,

the 5G modem is connected via USB3 to a PC that makes the video processing and then transmits the video

stream via USB3 to the HMD for the video scene restitution. In case of autonomous HMD, HMD is connected

in WiFi to the video server.

Table 22: Media & Entertainment UC meaningful KPIs

5G related KPIs Comments

Delay and throughput
The delay and throughput will be the variable parameters in each of the test

cases

Vertical KPIs
Is it measurable during

experimentation?

Can it be mathematically derived

from 5G related KPIs?

Nausea Level Yes, by the user carrying the HMD No mathematical formula known

Video stream loss:

buffer state

Yes, by probe implemented at the

HMD video player API
No mathematical formula known

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 75 / 88

Table 23: Media & Entertainment UC test plan

Test Case 1

Test Name: Effect of delay in Nausea Level

Target KPI: Max time of supporting the video scene (without nausea)

Measurement Method: The Nausea Level will be measured by the user (felt could be different for each user).

Video stream operates smoothly until a certain Nausea Level is reached

Parameters: Unique video traffic (identical scene) whatever the video server deport.

The delay will be measured and fixed at different values (to be defined regarding the

levels where it is measured) until the maximum acceptable delay. In each delay value, at

fixed throughput, the measurement will be made for different users.

Validation Conditions: Delay value will be considered acceptable until the Nausea Level goes below [VALUE

STILL TO BE DETERMINED]

Test Case 2

Test Name: Effect of throughput in Nausea Level

Target KPI: Min throughput for supporting VR video 360° (without nausea)

Measurement Method: The Nausea Level will be measured by the user (felt could be different for each user).

Video stream operates smoothly until a certain Nausea Level is reached

Parameters: Unique video traffic (identical scene) whatever the video server deport.

The throughput will be measured and fixed at different values (to be defined regarding

the levels where it is measured) until the maximum acceptable throughput. In each

throughput value, at fixed delay measured in test case1, the measurement will be made

for different users.

Validation Conditions: Throughput value will be considered acceptable until the Nausea Level goes below

[VALUE STILL TO BE DETERMINED]

Test Case 3

Test Name: Effect of delay in buffer state: QoE impact

Target KPI: Max time of supporting the video scene: saccade of images or black screen (video loss)

Measurement Method: The QoE Level (buffer occupancy) will be measured by the users acceptance about video

quality (felt could be different for each user). Video stream operates smoothly until a

certain acceptance Level is reached

Parameters: Unique video traffic (identical scene) whatever the video server deport.

The delay will be measured and fixed at different values (to be defined regarding the

levels where it is measured) until the maximum acceptable delay. In each delay value, at

fixed throughput, the buffer measurement will be made and the QoE evaluated for

different users.

Validation Conditions: Delay value will be considered acceptable until the buffer occupancy Level goes above

[VALUE STILL TO BE DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 76 / 88

Test Case 4

Test Name: Effect of throughput in buffer state: QoE impact

Target KPI: Minimum throughput of supporting the video scene: saccade of images or black screen

(video loss)

Measurement Method: The QoE Level (buffer occupancy) will be measured by the users acceptance about video

quality (felt could be different for each user). Video stream operates smoothly until a

certain acceptance Level is reached

Parameters: Unique video traffic (identical scene) whatever the video server deport.

The throughput will be measured and fixed at different values (to be defined regarding

the levels where it is measured) until the minimum acceptable throughput. For each

throughput value, at fixed delay, the buffer measurement will be made and the QoE

evaluated for different users.

Validation Conditions: Throughput value will be considered acceptable until the buffer occupancy Level goes

above [VALUE STILL TO BE DETERMINED]

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 77 / 88

Annex I.4: Experiment template for Smart Tourism use case (Spain)

The following has been extracted from the template response for the Smart Tourism use case in the Spanish

site.

Experiment Description:

The experiment aims at evaluation what benefits 5G brings to applications that take advantage of VR technology

and real time 360 degree video to enhance the experience of participants in events or conventions. These

applications will be run on top of a 4G network first, and then on top of a 5G network to compare the

performance.

Expected Capabilities:

A test environment where tests can be executed over 4G or 5G environments as required. High bandwidth in

the 5G solution is a must, as is a high-speed Internet connection for transmission of video flows (4K/8K) from

AWS. It must also be possible to emulate additional delay (to simulate congestion) in the network.

Table 24: Smart Tourism UC experiment components

Component Name Description Deployment requirements

YBVR VoD server

Video server:

• Extreme FoV adaptation with

extra short GOP (100ms) 60 fps

• Single bitrate to avoid influence

of ABR

To be provided by YBVR from AWS

VR handset Video client device To be provided by YBVR

Video feed
For local video ingestion in the uplink

test
To be provided by YBVR

Experiment architecture:

Architecture 1: Immersive experience, for live participation in events

AWS

User

5G provider

5G Uplink

Production
and Ingest

server

WiFi

IP

IP

IP

Cameras

5G Downlink

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 78 / 88

Architecture 2: Virtual tickets, for on-demand participation in events

Table 25: Smart Tourism UC meaningful KPIs

5G related KPIs Comments

Download bitrate At least, consistent 50Mbps are expected

Upload bitrate Target would be consistent 200Mbps

Vertical KPIs
Is it measurable during

experimentation?

Can it be mathematically derived

from 5G related KPIs?

Aggregated viewport

adaptation time
Yes No mathematical formula known

Aggregated time to

right frame (TtRF)
Yes

No mathematical formula known

Camera changes

during video playback
Yes

No mathematical formula known

Table 26: Smart Tourism UC test plan

Test Case 1

Test Name: Effect of delay in viewport changes

Target KPI: Aggregated viewport adaptation time, TtRF

Measurement Method: YBVR player simulate viewport changes and compare requested and reproduced

viewport timing

Parameters: The video source location will be exclusively in AWS.

The mobile network will change from 4G to 5G, for comparison.

Scenario of Architecture 2. Additional delay to be included (+50ms for congestion or

+150ms for severe congestion)

Validation Conditions: There exist specific guideline graphics. Examples:

Viewport change speed: 50% of viewports under 200ms delay; 90% under 350ms; 99%

under 500ms

TtRF: 500ms or less during the entire playback; 200ms or less for 95% of the playback

AWS

User

5G provider
WiFi

IP

5G Downlink

Video
catalogue

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 79 / 88

Test Case 2

Test Name: Effect of delay in instant camera changes

Target KPI: Camera changes, TtRF

Measurement Method: YBVR player simulate camera changes and compare requested and reproduced viewport

timing

Parameters: The video source location will be exclusively in AWS.

The mobile network will change from 4G to 5G, for comparison.

Scenario of Architecture 2. Additional delay to be included (+50ms for congestion or

+150ms for severe congestion)

Validation Conditions: 5G should get at least 50% more camera changes than 4G.

Test Case 3

Test Name: Downstream distribution

Target KPI: Download bitrate

Measurement Method: VoD content uses special encoding settings: High quality VR video (up to 50Mbps of

bitrate); two cameras: 360 degrees and 180 degrees; single bitrate.

YBVR player will meter regularly download bitrate

Parameters: The video source location will be exclusively in AWS.

The mobile network will change from 4G to 5G, for comparison.

Scenario of Architecture 2. Additional delay to be included (+50ms for congestion or

+150ms for severe congestion)

Validation Conditions: 5G should consistently hit the top bitrate mark of 50Mbps. The same could be achieved

in 4G, although some fluctuations could happen

Test Case 4

Test Name: Upstream distribution

Target KPI: Upload bitrate

Measurement Method: VoD content uses special encoding settings: High quality VR video (up to 50Mbps of

bitrate); two cameras: 360 degrees and 180 degrees; single bitrate.

YBVR player will meter regularly upload bitrate

Parameters: The YBVR platform will be exclusively in AWS.

The mobile network will change from 4G to 5G, for comparison.

Scenario of Architecture 1. Additional delay to be included (+50ms for congestion or

+150ms for severe congestion)

Validation Conditions: 5G should consistently hit the top bitrate mark of 200Mbps. The same could not be

achieved with 4G.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 80 / 88

Annex I.5: Experiment template for Transport use case (Spain)

The following has been extracted from the template response for the Transport use case in the Italian site.

Experiment Description:

The Transport vertical use cases can be tested applying for a tracking and recognition service experiment where

an end user, equipped with a 5G terminal, moves around a 5G covered area performing different transportation

modes (e.g. walking, biking, driving a vehicle or using public transportation means) and sending the collected

data from the mobile device sensors (mainly GPS, accelerometer, magnetometer and gyroscope) to a backend

platform where the real-time data are elaborated to estimate the end user transportation mode.

Expected Capabilities:

A high reliable and low-latency mobile network connecting the 5G terminal to the platform with the virtual

machines hosting the tracking and recognition services is required. The most challenging requirements to

ensure the deployment of the above described solution in the future smart cities are the high reliability and the

low latency.

Table 27: Transport UC experiment components

Component Name Description Deployment requirements

User Equipment (UE) User 5G terminal (smartphone) User terminal to connect to 5G

infrastructure.

Android App App collecting mobility data from

smartphone sensors.

User terminal equipped with mobility

sensors (e.g., GPS, magnetometer,

accelerometer, gyroscope, ...)

Backend Virtual machine hosting tracker backend

and recognition backend services.

Virtual machine to run Linux Ubuntu

+ required software to run the

service (e.g., php, python, anaconda)

Visualization tool Virtual machine hosting data

visualization tool.

Virtual machine to run Linux Ubuntu

+ ELK Stack.

Experiment architecture:

While end users feed the recognition service with real-time data, the experimenter visualizes the statistics and

related reports on the estimated transportations modes.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 81 / 88

Tracking service experiment architecture:

Recognition service experiment architecture:

Table 28: Transport UC meaningful KPIs

5G related KPIs Comments

Delay Network delay affects the transportation mode estimation

Availability 5G MEC IT resources availability affects the transportation mode estimation

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 82 / 88

Vertical KPIs
Is it measurable during

experimentation?

Can it be mathematically derived

from 5G related KPIs?

Tracking response

time
Yes, by visualization tool (Kibana) No mathematical formula known

Memory usage Yes, by visualization tool (Kibana) No mathematical formula known

Recognition delay4 Yes, by backend (Recognition service) Proportional to network delay

Table 29: Transport UC test plan

Test Case 1

Test Name: Effect of number of connected devices on tracking response time performed at MEC

Target KPI: Tracking response time

Measurement Method: The tracking response time will be measured by the Kibana visualization tool: it

measures the time spent to evaluate the selected amount of data and visualize them

Parameters: No external traffic.

Number of users: from 1 to hundreds

Validation Conditions: Tracking response time <= 200ms

Test Case 2

Test Name: Effect of number of connected devices on MEC memory usage

Target KPI: Memory usage

Measurement Method: The memory usage will be measured by the Kibana visualization tool: it measures the

percentage of used memory over the total available memory

Parameters: No external traffic.

Number of users: from 1 to hundreds

Validation Conditions: Memory usage < 90%

Test Case 3

Test Name: Effect of network delay and availability on transportation mode recognition capability

Target KPI: Recognition delay

Measurement Method: The recognition delay will be measured by the backend recognition service: it measures

the time needed to estimate the correct transportation mode, when a transportation mode

occurs

Parameters: No external traffic.

Number of users: from 1 to hundreds

Delay: 1ms, 10ms, 100ms, 1s

Validation Conditions: The impact of network delay is less than 10% of the recognition delay

4 This vertical KPI is still to be defined and implemented

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 83 / 88

Annex II: Low-level test plan templates – available responses

Annex II.1: Experiment template for Industry 4.0 use case (Spain)

The following has been extracted from the template response for the Industry 4.0 use case in the Spanish site.

Test Case 1

Test Name: Effect of latency in Navigation Level

Test Objective: Infrastructure metrics: “latency”

Application metrics: “navigation_level” (obtained from Vertical’s

components, not from traffic tools)

Target KPI: “navigation_level”

In this case, the KPI that wants to be validated coincides with a metric that is

provided by an ASTI component. The latency is the variable parameter, so it is

also required to monitor this metric.

Test Prerequisites: The “navigation_level” is measured by the AGV, and sent to the Master PLC

as part of their communication. A mechanism will have to be implemented to

propagate this metric to the Kafka bus. Options:

a) Capture traffic between AGV and Master PLC, decode it, and publish

in Kafka (this would require an additional element not provided by

ASTI)

b) Check if Master PLC can publish these values in Kafta

The AGVs need specific space to deploy the circuit and associated components

(e.g. battery charger) → this limits the hosting sites to 5TONIC

Required Capabilities: In the hosting site we will need:

• Compute capacity at MEC to host the Master PLC, a Windows based

VM (requirements to be determined)

o Local compute resources should be controlled by the local

NFVO, so that instantiation can be triggered by the Multi-

site NSO

• A component emulating latency, under the control of the Runtime

Configurator

• Full 5G network: access + EPC

Sub-Case 1

Test Topology:

The AGV counts with a router to connect to the 5G network. The Master PLC

is deployed at MEC, so the latency emulator must be placed somewhere

between the AGV and the MEC.

Test Variables: The test variable is the latency. It must be noted that the additional latency

introduced by the latency emulator is not the latency E2E. It is not trivial to

measure this latency, since the Slave PLC at the AGV is not designed to do it.

Either we can connect an additional device to the same router, or we should

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 84 / 88

characterize the initial latency, and add it to the emulated one when results

are presented.

Test Procedure: Deployment: both the Master PLC and the latency emulator should be

deployed real time as part of this phase.

Procedure: after deployment, the AGV should start running (to be checked if

this can be done automatically)

Initial emulated “latency” = 0ms; “step” = 5ms

Loop*:

 run experiment for 3 minutes

 latency = latency + step

*The ideal would be to execute the loop until the target KPI passes the

validation threshold. However, since the validation cannot be done in real time

at this stage, the number of runs of the loop is something to be determined. We

might also provide a manual mechanism to stop the test, as it is evident to

experimenters when the AGV is working far beyond the correct performance

conditions.

Monitoring: it is mandatory to receive the “navigation level” from the AGV

continuously from the start of the experiment. This shall be visualized together

with the E2E latency.

Expected results: Once the loop is finished, all the “navigation level” values will be compared

with the specified threshold (still to be defined). If all the values are lower than

the threshold, the result will be PASS, if at least one value is higher, the result

will be FAIL.

The test report should include the graphics “navigation level” versus

“latency”, plus the final result (PASS/FAIL), and the latency value in which

the experiment fails, if this is the case.

Test Case 2

Test Name: Maximum supported latency

Test Objective: Infrastructure metrics: “latency”

Application metrics: “guide_lost” (obtained from Vertical’s components, not

from traffic tools; it is a log that appears in the Master PLC)

Target KPI: “time_to_lose_the_guide”

The truth about the KPI that wants to be validated is that it is a “latency”

value. The name “time to lose the guide” means that only a specific latency

value is desired: the one at which the “guide lost” signal appears in the system

(which is also when the AGV stops). The latency is the variable parameter, so

it is also required to measure and store this metric.

Test Prerequisites: The “guide_lost” signal is sent to the Master PLC, where it appears as a log.

A mechanism will have to be implemented to announce the appearance of this

log to the Kafka bus. Options:

a) Capture traffic between AGV and Master PLC, decode it, and publish

in Kafka the message where the guide_lost signal is sent

b) Check if Master PLC can publish this message in Kafta

The AGVs need specific space to deploy the circuit and associated components

(e.g. battery charger) → this limits the hosting sites to 5TONIC

Required Capabilities: In the hosting site we will need:

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 85 / 88

• Compute capacity at MEC to host the Master PLC, a Windows based

VM (requirements to be determined)

o Local compute resources should be controlled by the local

NFVO, so that instantiation can be triggered by the Multi-

site NSO

• A component emulating latency, under the control of the Runtime

Configurator

• Full 5G network: access + EPC

Sub-Case 1

Test Topology:

The AGV counts with a router to connect to the 5G network. The Master PLC

is deployed at MEC, so the latency emulator must be placed somewhere

between the AGV and the MEC.

Capabilities and Topology in Test Cases 1 and 2 are totally the same, so the

same vertical blueprint can be used.

Test Variables: The test variable is the latency. It must be noted that the additional latency

introduced by the latency emulator is not the latency E2E. It is not trivial to

measure this latency, since the Slave PLC at the AGV is not designed to do it.

Either we can connect an additional device to the same router, or we should

characterize the initial latency, and add it to the emulated one when results

are presented.

Test Procedure: Deployment: both the Master PLC and the latency emulator should be

deployed real time as part of this phase.

Procedure: after deployment, the AGV should start running (to be checked if

this can be done automatically)

Initial emulated “latency” = 0ms; “step” = 5ms

Loop*:

 run experiment for 3 minutes

 latency = latency + step

*The ideal would be to execute the loop until the “guide_lost” signal appears.

However, since the validation cannot be done in real time at this stage, the

number of runs of the loop is something to be determined. We might also

provide a manual mechanism to stop the test, as it will be evident to

experimenters when the AGV stops completely.

Monitoring: the KPI is a specific latency value, the one experienced when the

application metric appears. Since this is a single occurrence event, it makes

little sense to visualize it. The latency could be presented, however: it will

provide zero real information to the experimenter, but it will help them realize

that the experiment is running (they will see changes in the latency).

Expected results: The result of the experiment will be a “time to lose the guide” value, which

will be the latency value experienced in the scenario when the “guide_lost”

signal is generated. There is not a comparison to be done in this scenario that

determines the PASS/FAIL condition.

The test report should include the “time to lose the guide” only, as in this case,

including a graphic with the latency will not be useful.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 86 / 88

Test Case 3

Test Name: Effect of latency in Consumption

Test Objective: Infrastructure metrics: “latency”

Application metrics: “consumption” (obtained from Vertical’s components,

not from traffic tools)

Target KPI: “consumption”

In this case, the KPI that wants to be validated coincides with a metric that is

provided by an ASTI component. The latency is the variable parameter, so it is

also required to monitor this metric.

Test Prerequisites: The “consumption” is measured by the AGV, and sent to the Master PLC as

part of their communication. A mechanism will have to be implemented to

propagate this metric to the Kafka bus. Options:

a) Capture traffic between AGV and Master PLC, decode it, and publish

in Kafka (this would require an additional element not provided by

ASTI)

b) Check if Master PLC can publish these values in Kafta

The AGVs need specific space to deploy the circuit and associated components

(e.g. battery charger) → this limits the hosting sites to 5TONIC

Required Capabilities: In the hosting site we will need:

• Compute capacity at MEC to host the Master PLC, a Windows based

VM (requirements to be determined)

o Local compute resources should be controlled by the local

NFVO, so that instantiation can be triggered by the Multi-

site NSO

• A component emulating latency, under the control of the Runtime

Configurator

• Full 5G network: access + EPC

Sub-Case 1

Test Topology:

The AGV counts with a router to connect to the 5G network. The Master PLC

is deployed at MEC, so the latency emulator must be placed somewhere

between the AGV and the MEC.

Capabilities and Topology in Test Cases 1 and 3 are totally the same, so the

same vertical blueprint can be used. In fact, the only difference between these

two scenarios is the target KPI.

Test Variables: The test variable is the latency. It must be noted that the additional latency

introduced by the latency emulator is not the latency E2E. It is not trivial to

measure this latency, since the Slave PLC at the AGV is not designed to do it.

Either we can connect an additional device to the same router, or we should

characterize the initial latency, and add it to the emulated one when results

are presented.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 87 / 88

Test Procedure: Deployment: both the Master PLC and the latency emulator should be

deployed real time as part of this phase.

Procedure: after deployment, the AGV should start running (to be checked if

this can be done automatically)

Initial emulated “latency” = 0ms; “step” = 5ms

Loop*:

 run experiment for 3 minutes

 latency = latency + step

*The ideal would be to execute the loop until the target KPI passes the

validation threshold. However, since the validation cannot be done in real time

at this stage, the number of runs of the loop is something to be determined. We

might also provide a manual mechanism to stop the test, as it is evident to

experimenters when the AGV is working far beyond the correct performance

conditions.

Monitoring: it is mandatory to receive the “consumption” from the AGV

continuously from the start of the experiment. This shall be visualized together

with the E2E latency.

Expected results: Once the loop is finished, all the “consumption” values will be compared with

the specified threshold (still to be defined). If all the values are lower than the

threshold, the result will be PASS, if at least one value is higher, the result will

be FAIL.

The test report should include the graphics “consumption” versus “latency”,

plus the final result (PASS/FAIL), and the latency value in which the

experiment fails, if this is the case.

5G EVE (H2020-ICT-17-2018)

Deliverable D5.2 Page 88 / 88

Annex III: Experiment Execution workflow; testing, validation

and monitoring procedures

Figure 38: Experiment Execution; testing, validation and monitoring procedures

