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ABSTRACT Coprime arrays have been widely adopted for direction-of-arrival (DOA) estimation since it 
can achieve an increased number of degrees of freedom (DOF). To utilize all information received by the 
coprime array, array interpolation methods are developed, which construct a virtual uniform linear array 
(ULA) with the same aperture from the non-uniform coprime array. However, the conventional non-robust 
DOA estimation algorithms for coprime arrays, including the interpolation based methods, suffer from 
degraded performance or even failed operation when some sensors are miscalibrated. In this paper, a novel 
maximum correntropy criterion (MCC) based virtual array interpolation algorithm for robust DOA 
estimation is developed to address this problem. The proposed approach treats the miscalibrated sensor 
observations as outliers, and by exploiting the property of MCC, the interpolated virtual array covariance 
matrix is reconstructed via nuclear norm minimization (NNM) with less influence of these outliers. In this 
manner, the robust DOA estimation is enabled by the robustly reconstructed covariance matrix. Simulation 
results demonstrate that the proposed algorithm can effectively the mitigate effect of the miscalibrated 
sensors while maintaining the enhanced DOF offered by coprime arrays. 

INDEX TERMS Coprime array, calibration error, virtual array interpolation, maximum correntropy 
criterion (MCC), robust direction-of-arrival (DOA) estimation. 

I. INTRODUCTION 
Direction-of-arrival (DOA) estimation of energy-emitting 
sources is one of fundamental array signal processing 
technique which finds broad applications in radar, sonar, 
acoustic, navigation and wireless communication [1-3]. On 
the basis of the Nyquist sampling constraint, the uniform 
linear array (ULA) is the mostly adopted configuration. 
Nevertheless, using ULAs, classical DOA estimation 
algorithms can only resolve up to 1M   sources with M 
sensors [4, 5]. Recently, sparse linear arrays, such as coprime 
arrays and nested arrays, received considerable attentions duo 
to their abilities to break through this limitation. For instance, 
the coprime arrays can be used to resolve ( )MN  sources 
with only 1M N   physical sensors [6]. 

To exploit the enhanced degree of freedom (DOF) offered 
by coprime array, a preprocessing procedure is taken, which 
derives an augmented virtual array by computing the 
difference coarray. And then the corresponding virtual array 
signals are implemented for DOA retrieval [7]. Since the 

covariance matrix obtained from the virtual array signals is 
rank one, decorrelation operation has to be applied to restore 
the full matrix rank [8]. The most popular decorrelation 
method is the spatial smooth technique, which requires a 
ULA based signal model. Because the coprime array is partly 
augmented, there are holes in its derived coarray [9]. A 
common scheme is to extract the continuous segment for the 
spatial smooth processing, and then implement the subspace-
based DOA estimation algorithm, MUltiple Signals 
Classification (MUSIC). Thus, the SS-MUSIC (spatial 
smooth MUSIC) algorithm is yield. Apparently, the SS-
MUSIC algorithm suffers from performance loss since it 
discards the discontinuous virtual array sensors. Although 
compressive sensing (CS) based DOA estimation methods 
use entire information received by the array, they require 
discretization of parameter space into a dense grid which 
leads to high computational cost. In addition, they do not 
work well for off grid targets [6]. A different gridless 
approach to include full coarray information is to fill the 
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holes by interpolating the missing samples. Based on nuclear 
norm minimization (NNM), an interpolation algorithm for 
DOA estimation is proposed in [6], which reconstructs a low 
rank Toeplitz covariance matrix of signals received at the 
physical array. Similarly, the algorithms proposed in [10] and 
[11] interpolating the missing samples by minimizing the 
atomic norm of the second-order virtual signals. 

The excellent performance of abovementioned coarray 
based DOA estimation is depended heavily on the 
assumption that all sensors in the physical array are properly 
calibrated [12]. However, it is difficult to avoid the sensor 
error completely in practice, leading to degraded 
performance or even estimation failure. To address this 
problem, a lot of calibration methods or robust DOA 
estimation methods have been developed. Among them, the 
self-calibration methods jointly estimate the DOAs of signals 
and array error parameters under the assumption that the 
array calibration errors can be modeled as deterministic 
unknown quantities. For instances, several self-calibration 
methods [13-15] are developed based on the eigenstructure 
of signal covariance matrix. Nevertheless, these 
eigenstructure based methods exploit the orthogonality 
property between the signal subspace and noise subspace, so 
they cannot be applied for the coprime array with the 
expectation to find more sources than sensors. Based on 
compressive sensing, Liu et al. propose another joint 
estimation method, named Sparse Bayesian Array 
Calibration (SBAC), for array calibration [16] under the 
sparse Bayesian learning (SBL) framework. In [17], the 
SBAC method is applied for sparse array calibration with 
second order virtual signal model. The enhanced DOF 
offered by the sparse array can be exploited by the SBAC 
method, however it is computationally intensive and it works 
well only when the array perturbation is small. Except for the 
self-calibration methods, other robust methods that do not 
explicitly estimate the error parameters are also proposed for 
DOA estimation in the presence of miscalibrated sensors. 
With the assumption that few sensors in the sensor array are 
miscalibrated, Wang et al. introduced a CS based robust 
DOA estimation method in [18], which treats miscalibrated 
sensor observations as outliers and employs the maximum 
correntropy criterion (MCC) as a constraint function to 
suppress the influence of outliers while fusing the data 
observed at different sensors. In one of our previously 
published paper [19], we applied this MCC incorporated CS 
based DOA estimation method for the coprime array; 
meanwhile a grid refinement strategy is developed to 
alleviate the grid mismatch problem. 

In this paper, a novel interpolation based robust DOA 
estimation method is proposed for coprime array in the 
presence of miscalibrated sensors. Under the same 
assumption as in [18] about the miscalibrated sensors, we 
first model the interpolation process as a nuclear norm 
minimization (NNM) problem of the virtual signals 
belonging to the second-order statistics. Different from the 

NNM based methods in [6] and [8], the MCC is employed in 
our established NNM model as the constraint to suppress the 
perturbations caused by the outliers. Since the MCC 
embedded NNM problem is non-convex, an iterative 
algorithm, referred to as IMCC-NNM, is then derived to 
effectively solve it. After the convergence of the IMCC-
NNM, the subspace based DOA estimation method, such as 
MUSIC, can be directly used with the reconstructed 
covariance matrix. Thus, the robust DOA estimation is 
enabled with the enhanced DOF in a gridless manner. 
Simulation results demonstrate the superiorities of the 
proposed IMCC-NNM algorithm in terms of the robustness. 

The main contributions of this paper can be summarized as 
follow: 
 We introduce the MCC into the NNM based 

interpolation process, by using which the influence of 
the outliers can be effectively mitigated without a priori 
knowledge about the sensor miscalibrations.  

 We develop an iterative algorithm to effectively solve 
the optimization problem arising in the MCC embedded 
interpolation process and prove its convergence  

 We robustly reconstruct a Hermitian Toeplitz 
covariance matrix with all coarray information in a 
gridless manner, and provide the theoretical 
performance analyses. 

The rest of this paper is organized as follow. In Section II, 
the signal model of the coprime array with miscalibrated 
sensors is given. The theories of NNM interpolation method 
and MCC are reviewed in Section III. Then a robust virtual 
array interpolation based DOA estimator is proposed in 
Section IV for coprime array in the presence of miscalibrated 
sensors, where some performance analyses also presented. In 
Section V, a series of simulations are presented. Finally, 
some concluding remarks are drawn in Section VI. 

Notations: Throughout this paper, the lower-case boldface 
characters, upper-case boldface characters, and upper-case 
characters in blackboard boldface are used to denote vectors, 
matrices, and sets respectively. M N  denotes a complex 

matrix or vector (when N = 1). The superscripts T( ) , H( )  

and *( )  denote the transpose, conjugate transpose, and 

complex conjugation, respectively. 1( )  and ( )tr  

respectively denote the inverse and the trace of a matrix. 

  ,i j
A  indicates the (i, j)-th entry of a matrix A . The square 

bracket notation of a vector  ix  represents the i-th 

component of x . For n , the triangular bracket notation 

n
x  denotes the signal value at the support location n, 

where the detailed definition is given in [7]. The notation 

 E   denotes the statistical expectation. vec( )  stands for the 

vectorization operator that sequentially stacks each column 
of a matrix, and diag( )  represents a diagonal matrix with the 

corresponding elements on its diagonal. The symbols  ,   
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and   represent the Hadamard product, Khatri-Rao product 
and Kronecker product respectively. I  denotes the identity 
matrix with an appropriate dimension. Finally, the symbol j 

represents imaginary unit 1 .  

II.  PROBLEM FORMULATION 

A. SIGNAL MODEL OF COPRIME ARRAY 
In this work, the extended coprime array is employed, which 
is generated by the coprime integers pair  ,M N . An 

extended coprime array can be viewed as the union of two 
sparsely spaced uniform linear sub-arrays, and without loss 
of generality, assume that M < N. Then, as shown in Fig. 1, 
one of the subarrays consisting of 2M sensors has an inter-
element spacing of Nd, whereas the other one with N sensors 
has an inter-element spacing of Md. Here, the unit spacing d 
is a half-wavelength, i.e., / 2d  . Therefore, the coprime 
array contains 2 1M N    physical sensors, which 

have locations  1 2 2 1, ,..., M Nl l l d   �  , where   is an 

integer set given by 
    | 0 1 | 0 2 1Mn n N Nm m M      � , (1) 

and   denotes the cardinality of a set. Moreover, the 
aperture of the coprime array is (2 1)M Nd . 
 

1 2 3 ... 2M

1 2 3 ... N

NdNd

Md Md

 
(a) 

...

NdNd

Md Md

 
(b) 

FIGURE 1.  Illustration of an extended coprime array. (a) A coprime pair 
of sparse ULAs. (b) Coprime array configuration. 

 
Assuming K uncorrelated far-field narrowband sources 

impinging on the coprime array from directions 

 T

1 2, ,..., K  θ , the T snapshots received by the array can 

be modeled as  

  
1

( ) ( ) ( ) ( ) ( ) 1,2,...,
K

k k
k

t s t t t t t T


    x a n As n , (2) 

where       (2 1)
1 2, ,..., M N K

K        A a a a   is the 

coprime array steering matrix (or manifold matrix) with k-th 
column, 

    22
2

T
sinsin( ) 1, ,..., kk

j lj l

k e e



     
a   (3) 

representing the steering vector of the k-th source, 

 T

1 2( ) ( ), ( ),..., ( )Kt s t s t s ts  denotes the source signal vector, 

and 2( ) ( , )nt n 0 I   represents the independent and 

identical distributed (i.i.d) zero-mean addictive white 
Gaussian noise vector, and 2

n  denotes the noise power. 

The covariance matrix of the array output ( )tx  is  

    H 2

1

E ( ) ( )
K

H
k k k n

k

t t p   


     R x x a a I , (4) 

where kp  denotes the power of k-th source. Because of the 

fact that the theoretical R  is unavailable, it is usually 

replaced by its maximum likelihood (ML) estimation 

 H

1

1ˆ ( ) ( )
T

t

t t
T 

 R x x , (5) 

and R̂  will converge to R  as T   under the stationary 

and ergodicity assumption [20]. 

B. EFFECT OF MISCALBRATED SENSORS 
When there exists some miscalibrated sensors in the array, 
the observations received by them are affected by unknown 
gain and phase distortions. In this work, these distorted 
observations are treated as outliers of the array outputs. 
Denote   as the set of miscalibrated sensors, and assume 
that the number of miscalibrated sensors, dM , is less than 

the number of sensors in the coprime array, i.e. 
(2 1)dM M N   . If the m-th array sensor is 

miscalibrated, the distorted signals received from it can be 
modeled as 

 
1

( ) ( ) ( ) ( )
K

o
m m m k k m

k

x t a s t n t 


  . (6) 

where mj
m me    is an unknown complex factor, while m  

and m  stands for gain distortion and phase distortion 

respectively;  m ka   denotes the m-th entry of ( )ka . 

In this manner, the received snapshots in (2) are rewritten 
as 
 ( ) ( ) ( )o t t t x ΓAs n , (7) 
where Γ  is a diagonal matrix, in which the m-th diagonal 
entry can be expressed as 

 ,

,  

1,            

mj
m

m m m

e m

m


 

   





. (8) 

As shown in (7), in the presence of miscalibrated sensors, the 
actual manifold matrix becomes ΓA , which is different from 
the assumed original manifold matrix A. As a result, the 
DOA methods based on the unperturbed steering manifold 
will suffer from inaccuracy or even failure. Therefore, the 
objective of this paper is to mitigate the influence of the 
sensor miscalibrations and improve the DOA estimation 
accuracy without explicitly estimating gain-phase errors 
( m and m ). Meanwhile, the covariance matrix is distorted 

into oR , which is expressed by 
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 H H H 2( ) ( ) n
o t t  ΓAs s A Γ IR . (9) 

In practice, it is calculated as 

    H

1
ˆ 1/ ( ) ( )

To o o

t
T t t


 R x x . (10) 

III.  RELATED WORKS 

A. COARRAY INTERPOLATION VIA NNM 
With a coprime array, the increased number of DOF is 
achieved by operating the derived equivalent virtual signals. 
In distortionless cases, vectorizing the covariance matrix, the 
virtual array signals are obtained as 
 2vec( ) n  x R A p i   , (11) 

where 
2(2 1)M N K    A A A  , T

1 2[ , ,..., ]Kp p pp , 

and vec( )i I . As defined in [21], the A  corresponds to 

steering matrix of the coarray, whose sensors are located at 
d , where 

  , 0,1,..., 2 1m nl l m n M N     . (12) 

Removing the repeated elements in  , a subset u    

with distinct elements is obtained, and then the difference 
coarray is defined as ud . Accordingly, the virtual signals 

of the difference coarray is 
 2

n x A p i  , (13) 

where A  is the steering matrix of the difference coarray, i  

is a sub-vector selected from the corresponding positions of i. 
As a property of the coprime array, there are “holes” in its 

difference coarray [22]. Namely, some elements are missing, 
leading to a non-uniform virtual array geometry. In order to 
apply the subspace based DOA estimation methods like 
MUSIC, which require for ULA, and make full use of all the 
received information, the matrix interpolation methods are 
developed to fill the holes. In such way, the missing 
correlation information of difference coarray is recovered; 
meanwhile the corresponding reconstructed virtual ULA is 
defined as d�, where   is an integers set given by 

     | min maxm m     . (14) 

The covariance matrix of the reconstructed virtual ULA, 
denoted as R , is a low-rank Hermitian Toeplitz matrix. 

Exploiting its structural property, the recovery of R  can be 

formulated as a nuclear norm minimization problem as 
follow: 

 

1 2 1 2

*

*

H

,

arg min

s.t.      

          
n n n n

 










R

R R

R R

R x

 


 


 

 

 (15) 

where 
*
  denotes the nuclear norm of a matrix, 

 | , 0n n n      is the non-negative part of  . The 

second equality constraint holds true for all 

 1 2 1 2 1 2, | , ,n n n n n n    . The problem (15) can be 

efficiently solved by semidefinite programming since nuclear 
norm is a convex surrogate for matrix rank, and the optimal 
solution of this problem, *R , can be directly used for 

MUSIC to estimate the DOAs. Besides, the DOF offered by 

the coprime array increases to  1 / 2  instead of 

 1 / 2 . 

B. MCC THEORY 
Consider that the distorted observations appear in the nuclear 
norm minimization problem. Vectorizing the distorted 

covariance matrix ˆ oR , the affected virtual signal is given by 

   2ˆ=veco o o
n x R A p i   , (16) 

where    *
=oA ΓA ΓA . Therefore, when there are some 

outlier observations, the second equality constraint in (15) 
becomes 

 
1 2 1 2
,

o

n n n n
R x  . (17) 

Here, ox  is the virtual signal of the difference coarray 

distorted by the unknown matrix Γ . In particular, since the 
equality constraint condition is based on the assumption that 
all the correlation information is correct, the equality 
constraint (17) tremendously amplifies the contribution of 
outlier samples due to miscalibration and thus yields large 
DOA estimation errors. To address this problem, the 
maximum correntropy criterion is introduced in this work to 
replace the equality constraint condition. 

Correntropy is a generalized similarity measure between 
two random variables X and Y， defined by [23] 
 ( , ) E[ ( )]V X Y X Y   , (18) 

where 

 
2

2

1 ( )
( )= exp

22

X Y
X Y 

 
  

 
 (19) 

is the Gaussian kernel function,   is the kernel size. Usually, 
the kernel size   is a user-selected free parameter which 
controls the observation window. In practice, the joint 
probability distribution function of the random variables is 

unknown and only a finite of samples   
1

,
N

i i i
x y


 are 

available, so the computation of correntropy is reformed as 

 ,
1

1ˆ ( , ) ( )
N

N i i
i

V X Y x y
N 



  . (20) 

Since correntropy quantifies how different X is from Y in 
probability, it can be utilized as an error criterion for adaptive 
systems training. The larger correntropy indicates greater 
similarity between two random variables; therefore the 
maximum correntropy criterion is intuitively defined to 
ensure the fitting precision. Let θ  denote a set of adjustable 

parameters to be estimated and E X Y  . Then the MCC is 
defined as 
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 

 

 
,

max  E

max  ( , )

max  ( , )

XY

x y

Ee

X Y

x y f x y dxdy

e f x y de













  

 







θ

θ

θ


 

, (21) 

In practice, the MCC is computed by its sample estimator: 

 
 

 

1

1

1
max  

1
max  

N

i i
i

N

i
i

x y
N

e
N





















θ

θ


. (22) 

Correntropy is a local similarity measure whose value is 
primarily dictated by the kernel function along the x = y line, 
implying that the MCC is inherently insensitive to the 
outliers. Thus, the MCC outperforms the second equality 
constraint in (15) when some sensors are miscalibrated. 

IV. PROPOSED METHOD 

A. IMCC-NNM METHOD 
As introduced above, the interpolation results acquired from 
NNM are distorted when some sensors in the array are 
miscalibrated, leading to inaccurate DOA estimation. In this 
subsection, the MCC is applied to develop a robust NNM 
based interpolation method, which is used to alleviate the 
influence of the outliers and thus provide reliable DOA 
estimation. At first, the definitions of selection matrix S and 
baseline matrix B are given below: 

Definition 1. The selection matrix S is a binary matrix of 
size    , which distinguishes the known correlation 
information (elements set as one) and statistics to be 
interpolated (elements set as zero), i.e. 

   ,

1,      ,

0,  .i j

if i and j

otherwise

 
 


S
 

 (23) 

Definition 2. The baseline matrix B is a complex matrix of 
size    , which contains all known correlation 
information at corresponding locations, while other elements 
are set as zero, i.e. 

 ,
,

ˆ ,    ,  

0,  .

o

i j
i j

if and j

otherwise

   


R
B

  
 (24) 

Let 
 

E    be the residual error matrix, whose 
elements are then defined as 

    , , ,, i j i j i ji j
e     E R S B   , (25) 

where 1,2,...,i    and 1,2,...,j   . Therefore, we 
have 

    
2

2
, , ,

1 1 1 1
i j i j i j

i j i j

e

  

   

   R S B 




  

. (26) 

With the definition of ,i je , the MCC for the NNM 

problem is given in the form of sample estimator, as 

  ,2
1 1

1
max i j

i j

e
 

  


R




 


. (27) 

Since R  is a Hermitian Toeplitz matrix, all of the elements 

of this matrix can be defined by its first column. So, R  can 

be denoted as ( )z , where 
1 

z
  is the first column of 

R . With MCC, the NNM problem in (15) is reformulated 

in terms of Gaussian kernel function, expressed as 

 
 

*

cons ,2
1 1

min ( )

1
s.t. i j

i j

f e 
 

  

 

z
z


 





, (28) 

where  0,1   is a user-specific threshold parameter to 
restrict the fitting error. The optimization problem (28) 
equals to 

 
 

*

cons ,2
1 1

max ( )

1
s.t. i j

i j

f e 
 

  



 

z
z


 





. (29) 

Then, it can be alternatively reformed as 

  ,2*
1 1

1
max ( )

2 i j
i j

e
 

 

  

  
z

z 
 


 , (30) 

where   is a regularization parameter to balance the fitting 
error and the nuclear norm term. 

However, the optimization problem (30) is difficult to 

solve because  ,i je   is a nonlinear and nonconvex 

function. In order to efficiently solve this problem, the 
following proposition is introduced [22]: 

Proposition 1. For     2 2exp / 2e e    , there 

exists a convex conjugate function  , such that 

  
2

2
su

2
( )pe

e



  



 
  
 


 




, (31) 

and for a fixed e , the supremum is reached at  e    . 

Utilizing the results of Proposition 1, the objective 
function (30) is converted to an augmented objective 
function in an enlarged parameter space, 

    
2

,

, , *2 2
1 1

1ˆ , )
2

(
2

i j

i j i j
i j

e
F 


 

 

  

 
    
 
 

z Ω z
 


 ,(32) 

where Ω  is a     matrix storing the auxiliary 

variables with   ,, i ji j
Ω . Denoting the original objective 

function (30) as ˆ ( )G z , according to Proposition 1, the 

following equation holds 

 ˆ ˆ( ) sup ( , )G F
Ω

z z Ω . (33) 
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It follows that 

 
,

ˆ ˆmax ( ) max ( , )G F
Ωz z

z z Ω , (34) 

which indicates that maximizing the augmented function 
ˆ ( , )F z Ω  on the enlarged parameter space is equivalent to 

maximizing ˆ ( )G z . Exploiting the idea of alternate 
optimization approach, the value of augmented function in 
(34) can be maximized in an iterative way. Suppose that the 
local maximizer ( , )z Ω  at q-th iteration is obtained as ( )qz  
and ( )qΩ , the ( 1)qz  and ( 1)qΩ  can be calculated in 
following way: 

  ) ( )( 1
, ,i
q

i j
q
je     , (35) 

 

2

( 1) ( 1)
,

1
,

1
2

,( )
2

1

*

arg max ( )

1
                       ( )   

2

2

iq q
i j i

q

i j
j

je



 

 

 

  

 
  
 
 






z

z

z

 





.(36) 

Since the conjugate function ,( )i j  is a function of 

auxiliary parameter ,i j  and is independent of z in each 

iteration, the optimization problem (36) can be simplified to 

 
*

2

1

( ,( 1 1))
, 22

1 2

1
arg max ( )

2

i jq

i j

q
i j

e 


 







 

 
  
 
 


z

z z
 


 .(37) 

Obviously, the objective function in (37) is a concave 
function, so it can be solved efficiently by convex 
optimization method. The proposed iterative MCC embedded 
NNM interpolation method is referred to as IMCC-NNM, 
and for which, the following proposition is given: 

Proposition 2. Using IMCC-NNM, the objective function 
defined in (30) is not decreased and the iterative 
interpolation procedure is convergent. 

Proof: See Appendix A.                                                      
The relative error is used to examine the convergence. 

Specifically, the iterative process of IMCC-NNM is said to 
be converged if the following inequality holds 

 
   

 

( ) ( 1)

( 1)

ˆ ˆ, ,
ˆ ,

q q

cq

F F

F









z Ω z Ω

z Ω
 (38) 

for some small tolerance c . After the convergence of 

IMCC-NNM, the interpolation problem is solved, and thus 
the interpolated virtual ULA covariance matrix ˆ( )z  is 

reconstructed with Hermitian Toeplitz structure. The 
proposed optimization problem can be viewed as a dual 
objective optimization problem; by solving which, the effect 
of outliers are eliminated the through the correntropy term, 
while the unknown entries in ˆ( )z  are simultaneously 

recovered through the nuclear norm term. In addition, it is 

clear that, the absolute value of  , , | ,i j i j i j      is 

close to 1 if     , ,
ˆ ˆ( ) ( ) | ,

i j i j
i j  z z     corresponds 

to a calibrated sensor. Otherwise, absolute value of 

 , , | ,i j i j i j      should be close to 0 so as to 

suppress the effect of the miscalibrated outliers [18]. This 
intuitively explains how the proposed IMCC-NNM 
algorithm robustly reconstructs the covariance matrix R . 

Because the robustly reconstructed ˆ( )z  corresponds to a 
virtual ULA, whose achievable DOF is increased to 
 1 / 2 , it can be directly utilized for the subspace based 
DOA estimation methods such as MUSIC. The MUSIC 
spatial spectrum can be computed as 

  
   MUSIC H H

ˆ ˆ( ) ( )

1
 


z za N N a 

f , (39) 

where ˆ( )zN  denotes the noise subspace, and it is obtained 

by collecting the eigenvectors corresponding to the K   

smallest eigenvalues. Finally, the DOAs can be estimated 
with higher credibility by searching the peaks of  MUSIC f . 

The proposed robust DOA estimation algorithm for 
coprime array is summarized in Algorithm 1 and has 
following key advantages. First, all available information 
received by the coprime array is effectively utilized for 
outlier suppression. Second, the objective function of 
optimization problem in each iteration is convex, which can 
be effectively solved by the well-developed interior point 
method. Third, the proposed method reconstructs the 
covariance matrix in a gridless manner, where the basis 
mismatch problem is avoided. 

Algorithm 1: Robust DOA Estimation Algorithm for 
Coprime Array 
1. Input: Coprime array received signals 1{ ( )}T

tt x . 

2. Output: DOA Estimation ˆ , 1,2,...,k k K  . 

3. Initialization: Set the kernel size  , 
1(0)ˆ

 
z 0


, 

maximum number of iteration Q, and index of iteration 
1q  .  

4. Compute ˆ oR using equation (10);. 

5. Define the selection matrix S by (23) and the baseline 
matrix B by (24);  
6. Calculate ( )

,
q

i j using (25) and (35); 

7. Solve (37) with ( )
,
q

i j  to obtain ( )ˆ qz ; 

8. Let 1q q  . Repeat Step 6 and Step 7 until 

convergence is achieved or q exceeds Q; 
9. Calculate  MUSIC f  in (39) for DOA estimation. 

B. COMPUTATIONAL COMPLEXITY 
In this subsection, the computational complexity of the 
proposed IMCC-NNM algorithm is analyzed in terms of time 
complexity. The computational complexity for calculating 

the values of ,i j  in each iteration is  2 . The nuclear 
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norm of a matrix Y is defined as the sum of the singular 
values of this matrix, namely, 

      1/2T
1*

... r    Y Y Y tr Y Y  , (40) 

where    1, 2...,i i r Y  is the i-th largest singular value of 

Y, and r is the rank of Y. Therefore, the optimization 
problem in each iteration, as depicted in(37), can be viewed 
as quadratic programming problem. Utilizing the prime-dual 
interior point method to solve this problem, the 

computational complexity is   2ln 1 /  , where 2  is 

the convergence tolerance of the prime-dual interior point 
method. In a word, the computational complexity of the 
proposed algorithm can be roughly expressed as 

    2

2ln 1/Q     . (41) 

C. CRAMÉR-RAO BOUND 
Based on the stochastic Cramér-Rao Bound (CRB), which is 
the inverse of the Fisher information matrix (FIM), the DOA 
estimation performance of the proposed algorithm is 
analyzed. Since there is no additional information added 
during the interpolation procedure, the performance is 
determined by the physical coprime array. Thus, the FIM of 
the proposed algorithm is a function of the coprime array 
covariance matrix R , whose elements are expressed as 

   1 1

,i j
i j

T
 

 
  

     

R R
FIM tr R R 

  , (42) 

where i  and j  are the elements in the deterministic 

parameter vector ξ . 

However, when the coprime array is used to find more 
sources than sensors, the FIM defined in (42) is singular, 
which makes the CRB inapplicable. To address this issue, the 
vectorization process introduced in [25] is adopted, and the 
FIM is then transformed into a virtual array-based form as 

  
H

1T
T T

vec vecT
       

              

R R
FIM R R

ξ ξ
 

  , (43) 

which keeps nonsingular within a much broader range of 
conditions. 

In this paper, the deterministic parameter vector is defined 
by 

 
TT T T T 2, , , , n   ξ θ ρ p , (44) 

where 
T

1,...,    ρ   and 1,...,  
    are the gain 

distortion parameter vector and the phase distortion 
parameter vector respectively. Besides, denoting 

diag( )Ρ ρ  and diag( )Φ  , then the distortion parameter 

matrix Γ  can be expressed as Γ ΡΦ . Furthermore, the 
distorted manifold matrix ΡΦA  is denoted as 

1[ ,..., ]K ΡΦA H h h  (i.e., ih  is the i-th column of H ), 

and the vector    *
ΡΦA ΡΦA p  is denoted as 

    2

T
*

1,...,c c    
ΡΦA ΡΦA p 

. Accordingly, the FIM 

can be specified as 

  
H

1T
T T

o o

T
    

        

x x
FIM R R

ξ ξ
 

  , (45) 

where 
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 (46) 

with 
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 (47) 

Therefore, the CRB for the k-th source can be obtained as 

   1

,
CRB k k k

    FIM  (48) 

for 1 k K  . 

V.  SIMULATION 
In order to validate the robustness of the proposed algorithm, 
a series of computer simulations were performed. In these 
simulations, the pair of coprime integers M = 3 and N = 5 is 
chosen to deploy the coprime array, which yields an array 
with 2 1 10M N     physical sensors located at 

 0,3 ,5 ,6 ,9 ,10 ,12 ,15 ,20 ,25d d d d d d d d d . Assume that K = 

11 equal-power sources uniformly distributed in 

50.2 ,72.8  
   impinge on the array. For IMCC-NNM, the 

kernel size   is chosen as 10, the regularization parameter 
  is set as 0.5, the tolerance parameter c  is set as 510 , and 

the maximum iteration Q is selected as 50 empirically. The 
optimization problems are solved using the CVX [26]. 

In the first example, the convergence of IMCC-NNM is 
examined under different signal-to-noise ratios (SNRs). The 
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outliers are arbitrarily assumed to appear in the fourth and the 

eighth rows of the received signal vector   
1

T

t
t


x , i.e. 

 4,8� . The specific values of the complex gain and 

phase distortions of the miscalibrated sensors are 3exp( 4)j  

and 4exp( 3)j  respectively. It should be noted that both the 

positions and the distortions are unknown a priori for the 
tested algorithm. The number of snapshot is fixed at T = 
1000 when the SNR varies. 

 

 

FIGURE 2.  Convergence of IMCC-NNM algorithm under different SNR 
environments. 

 

Using the settings defined above, Fig. 2 plots the 
convergence behaviors of IMCC-NNM algorithm at SNR = 
10dB, 20dB and 30dB. Fig. 2 shows that, in the iteration 
process, the value of objective function remains non-
decreasing for different SNR, and under such environments, 
the IMCC-NNM algorithm will converge within fifteen 
iterations. It can be also found that, the IMCC-NNM always 
converges to a smaller objective function value with higher 
SNR. 

In following simulations, the proposed robust DOA 
estimation algorithm is compared to two non-robust DOA 
estimation algorithms utilizing coprime arrays, namely, the 
Spatial Smooth MUSIC algorithm (SS-MUSIC) [27] and the 
Nuclear Norm Minimization (NNM) algorithm [6]; it is also 
compared to three CS based robust DOA estimation 
algorithms, i.e., the Sparse Bayesian learning Array 
Calibration with physical array received signals (SBAC-1) 
algorithm [16], the Sparse Bayesian learning Array 
Calibration with second order virtual signals (SBAC-2) 
algorithm [17] and the Maximum Correntropy Criterion 
incorporated Compressive Sensing (CS-MCC) algorithm 
[18]. For the sake of computational complexity, the sampling 
interval of the pre-defined sampling grids is set as 0.5  for 
the SBAC-1 algorithm, the SBAC-2 algorithm and the CS-
MCC algorithm. The tolerance parameter c  and the 

maximum iteration Q of the SBAC-1 algorithm, the SBAC -
2 algorithm and the CS-MCC algorithm are set the same as 
that of the IMCC-NNM algorithm. The kernel size of the CS-

MCC algorithm is calculated using the Silverman’s rule [23, 
28]. 
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FIGURE 3.  Accuracy comparison of DOA estimation in terms of the 
normalized spatial spectrum with SNR = 30dB and the number of 
snapshots T = 1000. (a) SS-MUSIC algorithm. (b) NNM algorithm. (c) 
SBAC-1 algorithm. (d) SBAC-2 algorithm. (e) CS-MCC algorithm. (f) 
IMCC-NNM algorithm. 

 

In the second example, the DOA estimation accuracy of 
each algorithm in the presence of miscalibrated sensors is 
compared. Both the locations and the distortion parameters of 
the miscalibrated sensors are the same as in example 1. The 
SNRs of the sources are assumed to be 30dB, and the number 
of snapshots is selected as 1000. Fig. 3 depicts normalized 
spatial spectra estimated by all the algorithms, where the 
vertical dashed lines denote the actual directions of the 
incident sources. It is observed from Fig. 3(a) and Fig. 3(b) 
that the two non-robust DOA estimation algorithms (i.e. SS-
MUSIC and NNM) cannot correctly resolve all the sources, 
while their estimation results deviate from the actual source 
directions. As shown in Fig. 3(c) and Fig. 3(d), both the 
SBAC-1 algorithm and SBAC-2 fail to calibrate the gain and 
phase distortions in such a case. The number of peaks in the 
spatial spectrum of the SBAC-1 algorithm is less than the 
sources number K, while the number of peaks in the spatial 
spectrum of the SBAC-2 algorithm is more than the sources 
number K. At the same time, very few of their peaks are 
closed to corresponding positions of the actual source 
directions. Fig. 3(d) shows that although there are some low 
pseudo-peaks in its the spatial spectrum, the CS-MCC 
algorithm correctly resolved the sources. However, there are 
still some deviations in the estimation results of the CS-MCC 
algorithm duo to the grid mismatch. In contrast, the proposed 
IMCC-NNM algorithm shows better estimation accuracy in 
Fig. 3(e) since it is a gridless algorithm. 
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In the third example, the root mean square error (RMSE) 
of each algorithm is compared in Fig. 4. Here, the RMSE is 
defined as 

   
1 1

1 ˆRMSE
M

M

QK

k M k
k qM

q
KQ

 
 

   , (49) 

where  k̂ Mq  is the estimated DOA of the k-th source in 

the -thMq  Monte Carlo trial, MQ  is the number of Monte 

Carlo trials. It can be seen from example 2 that, under some 
conditions, some of algorithms cannot correctly distinguish 
the number of source. Therefore, for statistical convenience, 
the number of sources K is considered as known, and the 
angels corresponding to K highest peaks in spatial spectra are 
picked as estimated DOAs. The number of snapshots is fixed 
at T = 2000 when the SNR varies, whereas the SNR is fixed 
at 30 dB when the number of snapshots varies. The locations 
and the distortion parameters of the miscalibrated sensors are 
also set the same as in example 1. For each data point, 

500MQ   Monte Carlo trials are conducted to calculate the 

RMSE. The Cramér-Rao bound (CRB) (48) is also plotted 
 

 
(a) 

 
(b) 

FIGURE 4.  RMSE performance comparison with 11 incident sources. (a) 
RMSE versus SNR with the number of snapshots T = 2000. (b) RMSE 
versus the number of snapshots with SNR = 30dB. 

 

It can be seen in Fig. 4(a) that with the increase of SNR, 
there is no obvious change in the DOA estimation RMSE of 
the SS-MUSIC algorithm and the NNM algorithm because 
DOA estimation deviation of these algorithms is mainly 
cause by the outliers, and increasing SNR will not reduce the 
influence of outliers. Comparing with these two non-robust 
DOA estimation algorithms, the SBAC-1 algorithm does not 
show obvious calibration effect and the SBAC-2 algorithm 
shows even worse RMSE performance under such serious 
disturbance. The CS-MCC algorithm and the IMCC-NNM 
algorithm do not show better DOA estimation accuracy when 
the SNR is lower than 0dB. Nevertheless, it is demonstrated 
in Fig. 4(a) that the CS-MCC algorithm and the proposed 
algorithm can effectively mitigate the influence of the 
outliers when the SNR is higher than 5 dB. It is because that 
the difference between the outliers and the normal signals is 
not significant for MCC to distinguish the outlier when the 
SNR is lower than 0 dB. Besides, the RMSE of the IMCC-
NNM algorithm is smaller than that of the CS-MCC 
algorithm when the SNR is higher than 10 dB. The reason 
lies in that the sampling grids defined by the fixed sampling 
interval lead to a basis mismatch, limiting the estimation 
accuracy of the CS-MCC algorithm. Similar performance 
comparison can also be found in Fig. 4(b), where the number 
of snapshots is varied. As shown in Fig. 4(b), the RMSEs of 
the CS-MCC algorithm and the proposed algorithm are 
smaller than that of other algorithms even when the number 
of snapshot is small. Moreover, the RMSE of the IMCC-
NNM algorithm is significantly smaller than that of the CS-
MCC when the number of snapshots is larger than 50. 

In the fourth example, both the DOA estimation accuracy 
and the robustness of the tested algorithms are compared in 
the presence of miscalibrated sensors. Here the deviation 
distance of estimation (DDOE) of the -thMq  Monte Carlo 
trial is defined as 

    
1

ˆDDOE ( )M

K
q

k M k
k

q 


  . (50) 

 

 

FIGURE 5.  Box plots of DDOE for the tested algorithms when the 
distortion parameters are fixed and the locations of the miscalibrated 
sensors are randomly selected. 
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FIGURE 6.  Box plots of DDOE for the tested algorithms when the 
locations of the miscalibrated sensors are fixed and the distortion 
parameters are randomly selected. 

 

For the same reason as stated in example 2, the number of 
sources K is considered as known. The SNR and the number 
of snapshot in this example are set as 30dB and 2000 
respectively. Assume that there are two miscalibrated sensors 
in the array, whose locations are randomly selected among 
  in each Monte Carlo trial, while specific values of the 
distortion parameters of the them are fixed at 3exp( 4)j  and 

4exp( 3)j  respectively. Box plots of DDOE of the testing 

algorithms are shown in Fig. 5, where the statistical data is 
collected from 500 Monte Carlo trials for each algorithm. As 
can be seen from Fig. 5, the average value of the DDOEs 
obtained by the proposed IMCC-NNM algorithm is the 
smallest, and the box of IMCC-NNM has the lowest height 
with fewest outliers. Thus, the IMCC-NNM algorithm 
outperforms other algorithms in terms of both estimation 
accuracy and robustness in the presence of miscalibrated 
sensors. In turn, assume that the sensor miscalibrations occur 
fixedly on the fourth and eighth sensors in the array, i.e., 

 4,8� , while the gain distortion parameters  2

1m m



 are 

randomly chosen from the interval [2,4] and the phase 

distortion parameters  2

1m m



 are randomly chosen from the 

interval [1,3]. The box plots of DDOE of the testing 
algorithms shown in Fig. 6 also verify the superiority of the 
proposed algorithm. 

R
M

S
E

 (
de

g)

 

FIGURE 7.  RMSE performance comparison with different number of 
miscalibrated sensors. 

 

In the fifth example, the RMSE performance is compared 
with respect to the number of miscalibrated sensors in the 
case of SNR = 30dB and T = 2000. Since the proposed 
IMCC-NNM treats the information received by the 
miscalibrated sensors as outliers, the number of miscalibrated 
sensors is assumed to be less than fifty percent of the total 
number of sensors, i.e. the number of miscalibrated sensors is 
assumed to be less than 5. At each number of miscalibrated 
sensors, the locations of the miscalibrated sensors are 
randomly selected from  , the gain distortion parameters 

m  are randomly chosen from the interval [2,3] and the 
phase distortion parameters m  are randomly chosen from 
the interval [1,2]. For each data point, the RMSE is 
calculated from Q = 500 Monte Carlo trials. According to the 
comparison results shown in Fig. 7, when there is no 
miscalibrated sensor, the RMSE of IMCC-NNM is 
equivalent to those of the other subspace based DOA 
estimation algorithms (i.e. the SS-MUSIC algorithm and 
NNM algorithm); meanwhile the SBAC-2 algorithm has the 
largest RMSE in such a case. When the number of 
miscalibrated sensors varies from 1 to 4, the IMCC-NNM 
always has the smallest RMSE, but the estimation accuracy 
advantage of IMCC-NNM is reduced as the number of 
miscalibrated sensors is increased to 4. Therefore, Fig. 7 
demonstrates the better overall performance of IMCC-NNM 
over other DOA algorithms when there are miscalibrated 
sensors in the coprime array. 

VI. CONCLUSIONS 
In this paper, we address the problem of estimating DOA 
using a coprime array with miscalibrated sensors. A novel 
robust virtual array interpolation method, referred as to 
IMCC-NNM, was proposed to generate a virtual ULA while 
alleviate the influence of miscalibrated sensors, where all 
information of the coprime array received signals is included. 
Without a priori knowledge of the miscalibrated sensors, the 
information received by them is implicitly treated as outliers, 
and the correntropy is introduced as the robust similarity 
measurement. An optimization problem is formulated as 
minimizing the nuclear norm of a covariance matrix of the 
virtual signal under the maximum correntropy criterion in a 
gridless manner. To solve the optimization problem, an 
iterative convex optimization algorithm was developed and 
the convergence of this algorithm was proved. Utilizing the 
reconstructed Toeplitz covariance matrix, a more credible 
DOA estimation can be obtained with an increased number 
of DOFs. The robustness of the proposed algorithm is clearly 
verified through simulation comparisons with existing 
algorithms using coprime arrays. 

Appendix A  
PROOF OF PROPOSITION 2 
The difference between the results of any two adjacent 
iterations can be calculated as 
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. (51) 

Because the q-th iteration results  qz  and  qΩ  are 
obtained by solving the maximum problem of (31) and (32), 
the following inequalities hold true 

      ( ) ( ) ( 1) ( ) ( 1) ( 1)ˆ ˆ ˆ, , ,q q q q q qF F F   z Ω z Ω z Ω  (52) 

Therefore, ( ) ( 1)ˆ ˆ 0q qF F   and then the sequence 

 ( )

1,2,...

ˆ q

q
F


 is non-decreasing. In addition, both the 

correntropy and the nuclear norm term in (32) are upper 
bounded, i.e., 

 
 

 

,

*

1
0 ,

2

0.

i je 
 

 z

 (53) 

Consequently, it can be concluded that the proposed IMCC-
NNM algorithm is convergent.                                                
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