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ABSTRACT Content-adaptive steganography intends to hide data in the complex texture content of
the image. Recently, some secure steganography methods have been proposed to identify the textural
complexity of an image. However, most of the techniques do not take into account the information of
pixel variation around the central pixel in all possible directions and therefore they are unable to accurately
analyse the texture complexity. This work offers a quality-enhanced and secure method of content-adaptive
image steganography. The proposed method is divided into three sequential steps: image segmentation,
pixel complexity identification, and data embedding. An input cover image is initially divided into small
local regions and the pixel-complexity is identified based on the proposed Complex Block Prior (CBP)
criterion. In a local block, a high pass filter (HPF) bank is applied and eight residual responses are
obtained. Following the CBP criterion, a complexity level out of nine levels is assigned to an individualized
pixel block. The pixels are then arranged in the priority of complexity from highest to lowest. Data
embedding for the corresponding complexity level then takes place using the proposed adaptive embedding
algorithm. Experimental results verify the preservation of visual quality of stego images produced by the
proposed method. Three image datasets: Standard test images, BOWS2 and BOSS-base are used for the
experimentation and comparison with prior state-of-art methods. Highest values of the IQ (image quality)
parameters e.g., SSIM and WPSNR show the effectiveness of the proposed method.

INDEX TERMS Noisy texture, Content adaptive, Pixel selection, Data embedding, Complex block,
Complexiy estimation

I. INTRODUCTION

With the advancement in networking technology, the dig-
itization and use of high-speed communication links have
given rise to immense possibilities [1] [2] [3]. As a result,
the data communicated over the internet is increasing day by
day. The communication over insecure network links is vul-
nerable to attacks from eavesdroppers. These attacks include
illegally copying, modifying and misusing the information
in felonious activities [4] [5] [6] [7]. Consider the follow-
ing application areas: Password transmission in a client-

server environment, personal document sharing, biometric
data transfer, medical record storage, bank account details
storage, social media content sharing, TV broadcast, storage
of data in cloud platforms, etc. With the aim of confidential
communication over an insecure network, significant amount
of efforts has been made under the field of security systems
[8] [9]. A generic security system aims to achieve two goals:
information access control and data integrity [10]. The classi-
fication of the field of security systems is as follows: 1) Infor-
mation encryption and 2) Information hiding. Cryptography
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is an information encryption technique and is the process of
altering secret data such that the data is not meaningful [11].
There is no separate cover medium to carry the secret data.
Although the information is uninterpretable, this unintelli-
gent representation raises suspicion and therefore is prone
to cryptanalysis attacks. In contrast, information hiding tech-
niques such as watermarking and steganography uses a cover
medium to embed secret data and therefore, the existence
of the message is hidden behind the cover. In the context
of this work, information hiding has one of two definitions.
It is defined as: “imperceptibly embedding in a cover” e.g.,
watermarking or “making the existence of data secret” e.g.,
steganography. Watermarking is defined as “the process of
altering a cover medium to embed message about the cover”.
The aim of a watermark is to protect the copyright (own-
ership) information of the marked signal and may be made
visible to claim the ownership. Steganography, on the other
hand, is defined as “the process of altering a cover medium
to embed a secret message”. The aim of steganography is to
keep the existence of message secret other than the intended
person. Therefore, the objective behind the embedding of
secret data differentiates watermarking and steganography.
A generic image steganographic system is shown in Fig. 1.
It consists of following basic components.

1) Medium/carrier
2) Secret message
3) Embedding algorithm
4) Steganographic key
5) Extraction algorithm

In digital steganography, a digital object/medium is used for
hiding data e.g. text, audio, image, video and data packets,
etc. A good carrier signal must have two necessary qualities.
1) presence and usage in abundance so that it is difficult to
select the signal for detection of message. And 2) redun-
dancy in data representation. Currently, the most secure and
efficient medium of steganography is the image. Images are
widely communicated over the internet and have the psycho-
visual redundancy [12] which is used to conceal the secret
information without losing visual quality. A steganographic
algorithm is used to embed secret payload in the digital
object. The object before embedding is known as cover and
after embedding the object is called stego. At the extraction
side, a known key is used by a person which specifies the
locations in which data is hidden. The key is either hidden
inside the image or is shared through some other means.
Image steganography can be carried out in both spatial and
transform domain [13] [14]. Spatial domain steganographic
algorithm directly embeds in the pixels of the cover image.
Transform domain steganography consists of transforming
the spatial representation of an image in frequency domain
and then using the coefficients for data embedding. Spatial
domain steganography provides more capacity of embedding
while transform domain techniques perform better in security
analysis. The performance of an embedding algorithm is ana-
lyzed based on the following three factors: payload capacity,
visual quality, and undetectability.

FIGURE1: A generic image steganographic system represent-
ing the basic components of image steganography.

Embedding payload is the maximum capacity that can be
embedded in an image. An image’s visual quality is defined
as the perceived distortion or visual artifacts which are gen-
erated when the image pixels are modified. Generally,

the more the embedding capacity the more is the visual
distortion introduced in the image and the poor is the visual
quality. Another parameter that plays a significant role in
determining a steganographic algorithm’s performance is the
undetectability of a stego image in steganalysis domain.
Steganalysis is the counterpart of steganography. It tries to
detect the presence of hidden data in a given image. The most
successful steganalysis in today’s literature is carried through
the statistical detection methods implemented using machine
learning [15]. The state of the art steganalysis methods are
based on the estimation of local pixels. It is easy for a detector
to predict local pixels which lie in a smoothly varying region.
Hence, the pixels in such areas if used for embedding are
vulnerable. The highly varying regions of the image are safe
for embedding since the detectors are unable to accurately
predict the pixel value. Following the idea, the concept of
content-adaptive steganography is developed which selec-
tively embeds into high texture content of the image.
In order to understand the content-adaptive approach of
image steganography, we first discuss a non-adaptive ap-
proach e.g., the simple LSB substitution (LSBS) method.
A pseudorandom number generator selects the embeddable
pixels equally from the smooth and textured regions for data
embedding [16]. The LSB of chosen pixels is then replaced
with the message bit. LSBS degrades the visual quality of
the cover image since the embedded pixels in the smooth
region become prominent and appear as a visual artifact.
LSBS also introduces a structural asymmetry in the cover
image. When the LSB of an even pixel is replaced with
a message bit, the number of even and odd pixels in the
cover image are unbalanced and the structure of the cover
image is disturbed. The structural steganalysis attacks such as
weighted stego, RS analysis and sample pair analysis exploit
this structural asymmetry and easily detect the existence of
distortion caused by data embedding [15]. The statistical
steganalysis attacks (SPAM and SRM) on the other hand
use the information of the smoothness of the image and can
predict the pixels especially in the smooth areas of the image.
The security of simple LSBS based methods can be improved
when the structural asymmetry is reduced and embedding
changes are restricted to the complex texture areas of the
image. These two approaches when combined provides high
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visual quality as well as high security.
An edge-adaptive scheme based on LSB Matching Revisited
(EA-LSBMR) is presented in [17]. LSBMR achieves reduced
modification rate as compared to simple LSBS. LSBMR
embeds two bits of data in a pixel pair in such a way
that first data bit is embedded in the first pixel and next
bit is embedded in even-odd relation of the pixel pair. The
modification rate is reduced to 0.375 bits/pixel compared to
0.5 bits/pixel in LSBS. The edge adaptivity is introduced
in the steganographic scheme. A 1x2 high pass filter (HPF)
is utilized to measure the business of the pixel pair and a
difference threshold is used to select only the busiest pixel
pairs. The threshold is adaptively changed according to the
size of secret data. An improved edge detection method is
presented in [18]. The edge adaptive image steganography
(EIS) scheme uses a canny edge detector to locate embed-
ding pixel locations and adopts a 2-bit LSBS method for
data embedding. High-security performance is achieved as
compared to HUGO, EA-LSBMR, PVD, and HBC while
comparable security is achieved compared to S-UNIWARD.
Another improved edge detection method is presented in
[19]. A modified median edge detector (MMED) is used to
exploit the edges in two directions (horizontal and vertical).
The highest edge value is used for further processing and
thus only the sharper edge is chosen. The MMED operator
is applied for every pixel and an MMED matrix is formed
which is then divided into three groups based on the edge
intensity. The threshold levels for the division of the edge
intensity matrix is determined adaptively based on message
length. The first group which contains the sharpest edges
is used for 3bit LSBS while the second and third groups
are used for 2 and 1-bit LSBS respectively. A pixel value
difference (PVD) based technique in combination with LSBS
is proposed in [20]. The scheme partitions an image into non-
overlapped 3x3 blocks and uses the nine pixels in each block
for data embedding. For each pixel in a block, six higher bit
planes or the ”quotient value" (in decimal terms) is utilized
for PVD embedding while two lower bit planes are utilized
for LSBS. In the case of PVD embedding, the difference of
center pixel quotient value is evaluated in eight directions.
The difference values are updated with the decimal value
of a set of message bits and the number of message bits
are determined based on pre-defined capacity values. The
embedded differences are transformed to the corresponding
stego quotients and a mean center quotient is obtained from
the eight stego quotients. The neighboring quotients are also
updated according to the mean center quotient. In parallel to
PVD embedding, LSBS embedding is performed in the two
lower bit planes. If the falloff boundary (FOBP) occurs as a
result of data embedding then the whole embedding process
is undone and a simple 4-bit LSBS embedding is performed
on the lower bit planes. The presented scheme achieves a
very high capacity of 4.5 bpp while resisting RS and PDH
steganalysis.
The aim of this paper is to present a quality-enhanced and
secure methodology of image steganography. This requires

accurate identification of the local texture complexity. To
analyze the texture, the underlying assumption is: the more
the neighborhood pixels of the targeted region are included
in the texture analysis, the accurately is the texture ana-
lyzed. Therefore, we propose a method of the computation
of complexity of a local block for adaptive pixel-selection.
Following are the contributions of the paper.

1) The presented algorithm achieves more embeddable
pixels by partitioning the image into small blocks of
variable size depending on the neighbors of the central
pixel. Moreover, with the use of overlapping blocks the
texture complexity estimation is now achieved for every
pixel.

2) High capacity of embedding is achieved in terms of the
multibit embedding and the quality enhanced result of
steganographic algorithm.

3) We use an eight directional high pass filter bank to
compute the eight difference values of the pixel block.
The filter is designed to calculate the difference between
the central pixel and each of its eight neighbors.

4) We define a novel complex block prior (CBP) criterion
which defines nine complexity levels. Following the cri-
terion, a threshold/difference range classifies the eight
differences into two groups. Based on the number of
differences in a group, a complexity level is assigned
to the pixel block.

5) We use a method of combining the eight difference
responses in the CBP criterion and use the single value
to arrange the pixel blocks in the order of complexity
from highest to lowest.

6) We derive an expression to combine eight difference
values into a single value and use the value to estimate
the number of bits to be embedded per pixel.

7) An adaptive setting is devised which selects the embed-
ding algorithm based on single or multibit embedding.

Remaining contents of the paper are organized as follows.
Sect. II reviews methodology of important related tech-
niques, Sect. III discusses the proposed method of content-
adaptive image steganography, Sect. IV presents a numerical
example for embedding and extraction, Sect. V details the
experimental setup , while Sect. VI concludes the paper.

II. RELATED WORK
A method to limit the steganographic distortion by utilizing
an adjustable data hiding algorithm is presented in [21]. The
method starts by dividing the image into 2x2 overlapping
blocks. Each block is expanded to a 3x3 block and the
empty pixels are interpolated using the four corner pixels.
Once the whole cover image is interpolated, this expanded
image is considered for data embedding. The cover image is
again divided into 2x2 sized and this time non-overlapping
blocks. A 2x2 pixel patch consists of a corner pixel and three
embeddable pixels. The difference between the embeddable
pixels and a corner pixel is calculated and three difference
values are obtained. A secret payload size is determined
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for each pixel by taking the binary logarithm of respective
differences. To limit the distortion to an acceptable level, the
secret bits are taken to be no more than a maximum value
n. The message size and the parameter n are embedded in
the cover image as side information after the secret message
is embedded. This side information is required to extract
the hidden information at the receiver’s side. When stego
image is received at the other end, the interpolated values
are recalculated. The decimal equivalent of secret bits is
extracted by taking the difference between interpolated and
embedded pixels. The number of secret bits embedded per
pixel is determined using the parameter n and the hidden data
is retrieved by calculating the binary equivalent values. The
bits are concatenated to form the secret message stream. The
steps are repeated until the whole secret message is extracted.
One limitation to the above method is that the pixel variation
is not analyzed in all possible ways. The pixel difference
should have been considered in all three directions, since the
interpolated values are known at the receiver’s end.
An adaptive steganography method is presented in [22]
which is based on block complexity estimation and matrix
embedding. An input cover image is considered to be com-
posed of small non-overlapping segments of size 2x4. Each
local segment is then converted to a 1D representation to
obtain seven overlapping pixel pairs. The pixel difference
computation is performed for each pixel pair and difference
outcomes are obtained for an individualized segment. A total
of eight complexity levels are defined, and an embedding
strategy is set for each level based on the payload length.
Consequently, only the higher complexity levels are utilized
if the payload length is small. A secret payload is estimated
for each level by solving an optimization problem. Efficient
data hiding method such as matrix embedding is then utilized
in the data embedding step. One limitation of the above
scheme is that, in a 1D local segment, the difference of non-
corner pixels is computed in two directions while the corner
pixel’s difference is computed in a single direction.
An efficient edge-adaptive embedding algorithm is presented
in [23] which is based on XOR coding. The edge detection
method allows for preserving the edge intensity map before
and after embedding. Initially, an image is partitioned into
3x3 non-overlapping blocks, and the pixel difference is ex-
ploited in three directions e.g., horizontal, vertical and diago-
nal using only the corner pixels. A maximum edge score from
the four computed edges is assigned to the block. After the
assignment of edge scores, the blocks are then arranged in the
order of the edge score from highest to lowest. A threshold is
selected adaptively based on the payload length which deter-
mines the number of blocks that are used for data embedding.
The four pixels (other than corner pixels) are used for data
embedding. The four pixels are paired in an adjacent manner
such that three pairs are formed. XOR operation is performed
between the LSBs of pixels in each pair and three binary
results are achieved. The three binary outcomes are compared
to three message bits using XOR operation. A mapping table
containing eight combinational possibilities of matching is

used to switch the LSB of pixels such that it represents the
message bits. The XOR embedding scheme is also extended
to edge adaptive version where the mean edge intensity of
the block determines the number of data bits to be embedded
in a single pixel. Noticeably, the scheme utilizes only four
pixels in the edge intensity calculation however the central
pixel can also be included in the calculation. Therefore, the
scheme does not provide an accurate identification of texture
complexity. Moreover, only the four pixels are utilized in
embedding of data and the fifth pixel is left unembedded
therefore wasting the embedding capacity. The use of mean
edge intensity is not appropriate way to determine the bits
per pixel since two blocks having same average difference
may have different complexity levels. The above arguments
are validated in the experimental results section.
An adaptive steganography technique based on Tree-Based
Parity Check (TBPC) is proposed in [24]. In a cover image,
every two adjacent pixels are paired to form 1x2 sized non-
overlapping blocks. The absolute pixel difference in an indi-
vidualized block is then computed. Six kinds of blocks are
defined and each block is evaluated to qualify for one out
of six complexity levels. Data embedding is then performed
on the respective blocks using TBPC embedding algorithm.
Noticeably, the use of non-overlapping blocks in the edge-
detection step limits the hiding capacity of the scheme.

A content-adaptive image steganography method for color
images is presented in [25] which analyses the texture of a
3x3 block of image by means of an energy measuring func-
tion based on the Ising spin glass model. The energy function
calculates energy of a pixel centered in a 3x3 window in a
similar way as applying a point detection kernel on an image
segment. The image is masked to represent the 4 higher
bit planes before energy calculation so that the data can be
accurately recovered in the extraction stage. The authors have
achieved embedding capacity of 4bpp and their scheme can
withstand the first-order statistical test (dual statistics test and
stirmark analysis). However, the design of energy function
does not consider the individual pixel correlation with respect
to the central pixel. Instead, the energy of a pixel depends
on the sum of difference between the eight neighborhood
pixels and the central pixel. Thus, the energy outcome may
be biased by a high difference value in a single direction.

To summarize, the above techniques are designed for
content-adaptive image steganography. However, most of the
techniques do not take into account the information of pixel
variation around the central pixel in all possible directions
and therefore they are unable to accurately analyse the texture
complexity. In the light of above discussion, in this paper,
an accurate methodology of texture analysis is proposed
that provides high embedding capacity, visual quality and
security.

III. PROPOSED METHOD
The proposed method starts by dividing the cover image
into small overlapping blocks. A complexity identification
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FIGURE2: The flow diagram of the proposed texture complexity estimation method.

FIGURE3: An 11x11 image representing the three types of
pixel blocks. The pixel blocks are classified based on the
number of neighbors of the central pixel. The central pixel
is represented by a blue dot.

method is then applied on an individualized pixel block. A
multi-directional HPF bank is utilized to calculate the pixel
variation among the central pixel and all neighboring pixels.
A Complex Block Prior (CBP) criterion evaluates the pixel
differences and assigns one out of nine complexity levels to
a pixel block. The blocks are arranged in descending order
of the complexity level and the same level pixel blocks are
rearranged in the order of the maximum difference. Data is
embedded in the central pixel using a new adaptive algorithm
depending on either single or multi-bit embedding. The num-
ber of secret bits per pixel is estimated based on the maxi-
mum of the pixel differences in a pixel block. The proposed
method follows the road map in Fig 2. The details of the
presented embedding algorithm are discussed as follows.

A. IMAGE SEGMENTATION
Given an input cover, proceed horizontally to partition the
image into small overlapping blocks. Three types of pixel
blocks are obtained based on the number of neighboring
pixels. The pixels on the periphery of the image are the corner
pixels and non-corner pixels. The corner pixels have three
neighbors, therefore they form a block of size 2x2 (type 1).

The periphery pixels other than the corner pixels have five
neighbors, therefore they form a block of size 2x3 (type 2)
on the horizontal edge and block of size 3x2 (type 2) on the
vertical edge. The non-periphery pixels have eight neighbors,
therefore a block of size 3x3 (type 3)is formed. Fig. 3 shows
the three types of pixel blocks. The pixel with a blue dot
represents the central pixel. Please note that the image is
partitioned into overlapping blocks so that each pixel can
take part in embedding and the embedding capacity can be
improved. Given a pixel block, the next step is to identify
the texture complexity or the pixel variation occupied by the
central pixel.

B. TEXTURE COMPLEXITY ESTIMATION
To identify the degree of complexity occupied by a central
pixel in a local region, the underlying assumption is: In a
local region, the central pixel must vary (to a certain degree)
in all directions. The desirable variation improves the visual
quality of stego image and reduces the probability of the
pixel to be estimated by statistical steganalysis attacks [26].
In the light of the above assumption, the proposed method
aims to calculate the pixel variation with respect to all
neighbors. A 3x3 block of pixels is shown in Fig. 4. The
difference of central pixel pc is calculated with respect to
its eight neighbors (pi, i = {1, · · · 8}). The eight central
differences (dcis) are grouped under a difference set D as
shown in (1). This set plays a significant role in determining
the complexity of a pixel block. For the type 1 and 2 blocks,
the central differences are also taken to be eight in number.
The differences for the neighbors that do not exist in the two
types of blocks are taken as zero. The methodology of the

FIGURE4: A 3x3 pixel block representing central (solid border)
and neighboring (dashed borders) pixels.

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2968217, IEEE Access

Author et al.:

FIGURE5: High pass filter bank (a) the theoretical eight high
pass filters required to compute pixel difference in eight
directions (b) the original four high pass filters to compute
pixel difference in eight directions.

computation of the pixel variation in multiple directions is
represented in the proceeding sub-section.

D = [dc1, dc2, dc3, · · · dc8]. (1)

1) Generate Residual Responses
Before discussing the methodology, it is important to mention
that the computation of pixel variation is performed only
on the higher bit planes of the cover image. In this way,
the texture complexity remains invariant before and after
embedding and data can be accurately extracted based on the
complexity of the region. The number of higher bit planes
for texture complexity computation is calculated based on a
parameter ε which defines the maximum number of secret
bits embedded per pixel. Since in our case the total number
of bit planes is eight, therefore given a value of ε then the
number of higher bit planes h for the calculation of residual
responses is calculated as:

h = 8− ε (2)

Now, for every pixel block, the central pixel variation is
exploited in all possible directions using a high pass filter
(HPF) bank. Fig. 5(a) presents the eight 3x3 sized high pass
filters which are built as first-order linear filters. The central
pixel pc at which a filter is evaluated is marked with a dot
and paired with a symbol representing the neighboring pixel.
Since in a 3x3 block, there are eight neighboring pixels
therefore, a total of eight filters are formed. The integer (-
1) accompanying the dot represents the order of the filter.
This is a theoretical representation of the HPFs to compute
the pixel difference in eight directions. However, for efficient
filtering only four HPFs with smaller size are required to
generate the eight residual responses. The sliding property
of a filter allows each filter to compute pixel difference along
two directions as shown later in (1). These four HPFs are
presented under the set c4h,v,d in Fig.5(b). The notation for
the HPF bank is FnDs, where F specifies the central pixel
e.g., central (c). n represents the number of filters in the filter

bank. For example, there are eight filters in the c8h,v,d and
four filters in the c4h,v,d filter bank. The notation D specifies
the direction in which the pixel difference is calculated. For
example, c4h,v,d computes central pixel difference in three
directions e.g., horizontal (h), vertical (v) and diagonal (d).
The additional notation s in the sub-filters of c4h,v,d denotes
the size of filter e.g., in c4h,12 the filter size is 1x2 and in
c4d,2 the filter is a square matrix so a single 2 represents the
size 2x2. The application of HPF bank on a cover image I is
represented mathematically as follows:

M1 = |I ~Hc4h,12| for i = {4, 5}.
M2 = |I ~Hc4v,21| for i = {2, 7}.
M3 =

∣∣I ~Hc4d,2(1)

∣∣ for i = {1, 8}.
M4 =

∣∣I ~Hc4d,2(2)

∣∣ for i = {3, 6}.

(3)

Where ~ denotes the convolution operation and Hx repre-
sents a sub-filter x belonging to set c4h,v,d. Equation (3)
results in four residual matrices Mns, each providing two
difference values (dci) between the central pixel and the ith
neighboring pixel in the block. Next, we prioritize the blocks
for embedding by assigning complexity levels based on a sign
function and arranging the blocks in each level by analyzing
the residual responses. This is performed by our proposed
Complex Block Prior (CBP) criterion as described in next
section.

2) Complex Block Prior (CBP) Criterion
By the definition, if the pixels in a block have high local
variation then a high complexity level is assigned to the
block. On the contrary, if the pixel variation is less, a low
complexity level is assigned to the block. The CBP criterion
uses a threshold th1 to divide the eight residual responses into
two groups. The number of residual responses in a group then
determines the complexity level of the pixel block. Consider
a vector D containing the eight residual responses. Then the
complexity level γ is calculated as defined in (4) .

γ =
8∑

i=1

f(dci − th1). (4)

Where f(.) is a sign function and is defined as follows.

f(x) =

{
0 x < 0

1 x ≥ 0
(5)

As an example, suppose D = [15, 10, 12, 4, 2, 21 22,
23] and th1 = 10 then the complexity level γ = 1 + 1 + 1
+ 0 + 0 + 1 + 1 + 1 = 6. Here, the threshold th1 plays the
role of an adjustment scale. By changing th1 the complexity
level of a block is changed. If th1 increases, more and more
pixel blocks jump from higher complexity levels to lower
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FIGURE6: Three blocks with complexity level 7, 6 and 0,
respectively.

levels. On the other hand, if th1 decreases, more and more
pixels jump from lower complexity levels to higher levels.
Therefore, for better accuracy, we keep the value of th1
moderate e.g., between 8 and 12, not too high and not too
low. From (4), if all eight residual responses are greater than
or equal to th1 then a complexity level of 8 is assigned to the
pixel block. Similarly, a complexity level of 0 is assigned to
the block whose all responses are less than th1. Therefore,
there are a total of nine complexity levels.

Fig. 6 shows three example pixel blocks, each represent-
ing a different complexity level. After the complexity level
assignment, the blocks are arranged in the order of γ form
level 8 to level 0. This is to prioritize the higher-level blocks
for embedding since embedding in the highly complex blocks
provides good visual quality of stego image along with the
high-security performance in feature steganalysis. For better
insight, consider embedding in the pixels of a specific com-
plexity level (γ). Fig. 7 shows the visual quality (measured in
terms of WPSNR) analyzed on five standard images e.g., Bar-
bara, Cameraman, Boat, Car and Elaine when embedding a
fixed payload into pixels of each γ separately. Noticeably, the
visual quality reduces as the γ of the pixel blocks decreases.
Therefore, we prefer the higher-level blocks for embedding.

8 7 6 5 4 3 2 1 0
60

65

70

75

80

85

90

95

100

105

110

115

120

W
PS

N
R 

(d
B)

Complexity Level

 Barbara
 Cameraman
 Boat
 Car
 Elaine

FIGURE7: The visual quality (measured in terms of WPSNR)
analyzed on five standard images e.g., Barbara, Cameraman,
Boat, Car, and Elaine, embedding a fixed payload into pixels
of each γ separately.

TABLE1: Comparison of visual quality of stego images pro-
duced with sorted blocks vs unsorted blocks

Images WPSNR (dB)

Sorted Pixels Unsorted
Pixels

Difference

Barbara 61.70 60 1.7

Cameraman 65.92 99.10 1.92

Boat 66.78 65.7 1.08

Car 65.51 64.19 1.32

Elaine 65.44 63.79 1.65

Average 65.05 63.53 1.51

Another step which needs to be taken for the better visual
quality of the stego image is to rearrange the pixel blocks
belonging to the same complexity level in descending order
of the maximum residual response. This is to prioritize the
same-level pixel blocks with the highest pixel variation for
embedding. The maximum residual responseDmax of a pixel
block is calculated as follows.

Dmax = max(dc1, dc2, dc3, · · · dc8) (6)

Where max (.) is a maximum operator. Here it is important to
mention that the sorting of same-level blocks is not required
for all the levels. The selection of a complex level for such
sorting depends on the size of secret message. If all pixels as-
sociated with a complex level are not utilized for embedding,
then we sort the pixel blocks to prefer the highest variation
blocks for embedding. Hence, the method is efficient in
application as well. Table 1 presents the comparison of the
visual quality of stego images produced with sorted blocks vs
unsorted blocks. Noticeably, the visual quality results using
the sorted blocks are better than the ones produced using the
unsorted blocks.

Next step is the data embedding step.

3) Data Embedding
This section presents a new adaptive data embedding algo-
rithm which is designed to select a hiding scheme based on
either single or multibit embedding and a capacity limiting
parameter ε. The flow diagram of the adaptive algorithm
is presented in Fig. 8. The input to this algorithm is a set
of sorted pixel blocks generated form the proposed CBP
algorithm along with the maximum residual response Dmax

of each block. The embedding procedure starts as follows:

1) The blocks are processed in sequence from top to bot-
tom and we estimate the number of bits to be embedded
per pixel. This is done by taking log-base 2 of the
Dmax. The bits per pixel a estimation is expressed
mathematically as follows.

a = blog2Dmaxc (7)
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FIGURE8: The flow diagram of the embedding and extraction procedure.

Where b x c outputs the biggest integer no larger than
x e.g., floor. It is important to mention that the mean of
the residuals as used previously in [5] is not appropriate
for estimation of bits per pixel since two blocks having
same average difference intensity may carry different
pixel complexity. It is worthwhile mentioning here that
this observation has not been discussed before in related
techniques.

2) The parameter ε is introduced in the equation which acts
as a capacity limiter and is used to set an upper bound
on a. Thus Eq. 2 is modified as:

a = min(blog2Dmaxc, ε) (8)

Where min(.) is a minimum operator. The parameter ε
can take any value between 1 and 8. Since we have used
an 8-bit image representation therefore, a maximum of
eight bits and minimum of one bit can be embedded
in a single pixel. The visual quality of stego image is
maximum at ε = 1 and it reduces as the ε is increased.
One can increase the visual quality at the expense of
smaller embedding capacity.

FIGURE9: The mapping table of XOR embedding defining the
embedding strategy.

3) Once the number of secret bits per pixel a is estimated
for all the blocks, we now divide the central pixels into
ε number of sets. For example, if ε = 3 then the pixels
are divided into three sets. Each set contains the pixels
with the same a.

4) Given a set, gather the secret bits from the secret bit
stream. Replace the least significant bits LSBs of the
central pixel using highly efficient embedding scheme.
Since the visual quality of a stego image also depends
on the modification rate of the embedding algorithm,
therefore we present two efficient embedding schemes
which provide a low modification rate for single and
multibit embedding. Although the use of efficient em-
bedding further improves the visual quality of the stego
image. However, in section 4, we demonstrate the effec-
tiveness of our proposed texture complexity estimation
method by using simple LSB replacement embedding
which does not provide a reduced modification rate. The
adaptive embedding proceeds as follows.

For the set with a = 1, the embedding is performed
in the using the subtractive relation of a pixel pair. For
this, arrange the pixels of set 1 and onwards in adjacent
pairs. In each pair, the first secret bit is embedded in the
first pixel and the second secret bit is embedded in the
subtractive relation of the two pixels. Suppose m1 and
m2 are the two secret bits and q1 and q2 are the LSBs
of the two cover pixels x1 and x2 . Then the subtractive
relation X of the two pixels is taken as follows:

X =

{
b
∣∣x1

2 − x2
∣∣c ifx1 ≥ 2x2

d
∣∣x1

2 − x2
∣∣e ifx1 < 2x2

(9)

The LSB of the subtractive relation X is q = LSB[X].
The embedding is followed as:
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FIGURE10: Example of four pixel blocks (a) original pixel blocks, (b) Bit planes (c) Pixel intensities for ε = 1 and (d) Pixel
intensities for ε = 2 .

Case 1:
if q1 = m1 and q = m2 no change in cover pixels
required.
Case 2:
if q1 = m1 and q 6= m2, change x2 as x

′

2 = x2 ± 1

Case 3: if q1 6= m1 and q = m2

change x1 as

x
′

1 =

{
x1 + 1 if x1 is even or zero
x1 − 1 if x1 is odd

Case 4: if q1 6= m1 and q = m2, change x1 as

x
′

1 =


x1 + 1 if x1 is odd
x1 + 2 if x1 is zero
x1 − 1 if x1 is even

Embedding in this manner reduces the average modi-
fication form 5/4 bits of LSBR to 3/4 bits. Therefore,
further improvement in visual quality is achieved. The
embedding continues until the end of secret bits or until
all the pixels in set 1 have been utilized.

For the sets with a > 1, the multibit embedding
scheme using the XOR coding is utilized for data hiding.
First, the condition of ε is checked. If ε = 2 then the
pixels of set 2 and onwards are utilized for 2-bit embed-
ding. If ε = 3 then the pixels of set 2 are utilized for
2-bit embedding and the pixels of set 3 and onwards are
utilized for 3-bit embedding and so on. Multibit XOR
embedding uses four cover pixels to embed three secret
bits in each of the bit planes. We arrange the pixels in
set 2 and onwards in a group of four. The four cover

pixels in each group are arranged in three pairs and XOR
operation is performed between the bits of each of three-
pixel pairs using the following equations.

k1p = q1p ~ q2p.

k2p = q3p ~ q4p.

k3p = q1p ~ q3p.

(10)

Where, p represents the bit plane from which the bits are
considered. The resulting bits k1p, k2p and k1p for the
pth bit plane are compared with the three secret bitsm1,
m2 andm3. A mapping table is used to decide the cover
bit modification. The mapping table is shown in Fig. 9.
XOR embedding is applied to each group until the end
of secret bits or until all the groups have been utilized for
embedding. The average modification is reduced form
1.5 bits of LSBR to 1.25 bits.
In order to enable the receiver to correctly extract the
secret bits, the size of secret bit stream M, the limiting
parameter ε and the threshold th1 is sent alongside the
stego image. This side information synchronization can
be achieved by embedding four bytes concatenated at
the start of the secret message using four pixels.

4) Extraction Stage
The extraction of secret data is simpler and more efficient
than the embedding process. The proposed algorithm allows
the extraction of data without the need for an original cover
image. Fig. 7 represents the flow diagram of the data extrac-
tion process. Given the stego image Is which results from
the embedding algorithm described earlier, the algorithm
starts by dividing the image into overlapping blocks in the
same fashion and manner as described in the embedding
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TABLE2: Embedding capacity comparison of the proposed method with the technique [21]

Images Embedding Capacity (EC)

n = 3 n = 2 n = 1

Proposed [21] Proposed [21] Proposed [21]

Lena 582,920 207,567 384,024 174,205 258,988 110,000

Peppers 363,670 204,636 277,098 174,110 205,842 113,027

Baboon 609,980 400,798 379,092 306,337 256,282 168,666

Couple 610,120 277,856 383,214 228,960 257,794 137,598

Boat 614,210 273,615 383,862 222,253 258,222 132,309

Plane 484,480 201,671 356,514 163,837 254,484 101,943

Barbara 577,980 266,801 378,276 217,799 256,488 131,985

Average 549,051 261,849 363,154 212,500 249,729 127,933

TABLE3: PSNR comparison of the proposed method with the technique [21]

Images PSNR (dB)

n = 3 n = 2 n = 1

Proposed [21] Proposed [21] Proposed [21]

Lena 45 39.37 49.72 44.36 57.26 51.90

Peppers 45.31 39.70 49.74 44.52 57.11 50.19

Baboon 42.10 35.28 47.25 41.26 55.39 49.98

Couple 43.73 37.80 48.50 42.92 56.28 50.04

Boat 43.81 37.68 48.55 43.01 56.45 51.45

Plane 45.21 39.07 50.05 44.55 57.56 51.10

Barbara 43.94 37.87 48.73 43.18 53.56 52.23

Average 44.15 38.11 48.93 43.40 56.23 50.98

Difference 6.05 5.54 5.25

step. The message length, the value of parameter ε and the
threshold th1 is retrieved from the four starting pixel blocks.
The number of higher bit planes of the stego image are then
calculated using (2) as h = 8 − ε. After masking the lower
bit planes of the stego image, the texture complexity of each
block is estimated using the proposed texture complexity
estimation method. The HPF bank c4h,v,d as shown in fig
3(b) is applied on the masked image and the residual matrices
are generated as follows.

M1 = |I ~Hc4h,12| for i = {4, 5}.
M2 = |I ~Hc4v,21| for i = {2, 7}.
M3 =

∣∣I ~Hc4d,2(1)

∣∣ for i = {1, 8}.
M4 =

∣∣I ~Hc4d,2(2)

∣∣ for i = {3, 6}.

(11)

The four residual matrices Mcns, each providing two dif-
ference values (dci) between the central pixel and the ith
neighboring pixel in the block. A complexity level out of nine
levels is assigned to each of the pixel blocks using (4).
The CBP algorithm assigns the same complexity level to each
pixel block as was assigned previously in the embedding
step. Therefore, the texture complexity of all the pixel blocks
remains exactly invariant after data embedding. The CBP
algorithm arranges the pixel blocks in the order of complexity
level from highest to lowest and the same level pixels are

sorted according to their maximum residual difference Dmax.
We know the secret message size therefore, only the pixels
of the complexity level for which the secret message ends
amid will be considered for sorting. Now, the data extraction
proceeds as follows:

1) The blocks from the complexity identification step are
processed in a sequence starting from top to bottom and
the number of secret bits per pixel for each block is
estimated based on its Dmax.

2) The central pixels are divided into ε number of sets
where ε is obtained from the previous parameter recov-
ery stage. Each set contains pixels with the same number
of secret bits per pixel a.

For the set with a = 1, arrange the pixels of set 1 and
onwards in adjacent pairs. In each pair, the first secret
bit is retrieved from the first pixel and the second secret
bit is retrieved from the subtractive relation of the two
pixels. The extraction continues until all the secret bits
in set 1 have been extracted.

For the sets with a > 1, the condition of ε is
checked. If ε = 2 then the 2-bits are extracted from
the pixels of set 2 and onwards. If ε = 3 then the 2-
bits are extracted from the pixels of set 2 and 3-bits
are extracted from the pixels of set 3 and onwards and
so on. We arrange the pixels in set 2 and onwards in a
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group of four. The four cover pixels in each group are
arranged in three pairs. The three secret bits are retrieved
by performing XOR operation between the bits of pth

bit plane of each of three-pixel pairs as followed by the
following equations.

m1 = q1p ~ q2p.

m2 = q3p ~ q4p.

m3 = q1p ~ q3p.

(12)

XOR embedding is applied to each group until the end
of secret bits.

3) Concatenate the secret bits extracted from the sets in the
following sequence.
(bits from set 1) || (bits from set 2) || (bits form set 3) · · ·

IV. NUMERICAL EXAMPLE OF EMBEDDING AND
EXTRACTION
Consider an example for the illustration of the proposed
content-adaptive embedding scheme. Suppose a cover image
is partitioned into overlapping blocks as shown in Fig. 10(a).
For convenience only type 1 pixel blocks are considered. The
pixel intensities of the four blocks are presented in binary
form in Fig 10(b). As discussed earlier, the residual responses
are generated by using only the (8 - ε) higher bit planes. Here,
two embedding cases are presented e.g., for ε = 1 and ε = 2.
The pixel blocks for the two cases are presented in Fig 10(c)
and (d), respectively. Please note that the embedding scenario
is presented for the same complexity-level γ when th1 = 8 and
is verified in the proceeding section.

A. SINGLE-BIT EMBEDDING WITH ε = 1
When ε = 1, the first seven higher bit planes are used for the
calculation of residual responses. The residual resposes for
the four cover blocks are calculated using (3). The difference
vector Dn for nth block is thus D1 = {14, 40, 132, 22, 58,
4, 22, 42}, D2 = {14, 14, 14, 10, 2, 22, 24, 100}, D3 = {8,
10, 4, 8, 100, 32, 30, 14} and D4 ={30, 20, 10, 0, 10, 12,
12, 20}, respectively. The complexity level γn when th1 =
8 for nth block can then be computed using (4). Hence γ1
= 1+1+1+1+1+0+1+1 = 7, γ2 = 1+1+1+1+0+1+1+1 = 7, γ3
= 1+1+0+1+1+1+1+1 = 7, and γ4 = 1+1+1+0+1+1+1+1 =
7, for n ={1,2,3,4}. Now, we obtain the maximum residual
difference for nth block as: Dmax,1 = 132, Dmax,2 = 100,
Dmax,3 = 100 and Dmax,4 = 30. The pixel blocks are ar-
ranged in the order of maximum residual difference Dmax.
Next step is to calculate the bits per pixel a using (8) as
follows:

a1 = min(blog2 132c, 1) = 1

a2 = min(blog2 100c, 1) = 1

a3 = min(blog2 100c, 1) = 1

and
a4 = min(blog2 30c, 1) = 1

Following the flow diagram of Fig. 8(a), since all blocks
have same a, the pixel blocks are kept in set 1 and arranged
in adjacent pairs . Now the embedding procedure starts as
follows: Given a message sequence M = {1 0 0 0 1 0}.
Now, consider the first pair of central pixels (x1, x2) = (158,
158). Thus, q1 = 0. The subtractive relation X is calculated as
follows:

X =
⌈ ∣∣∣∣1582 − 158

∣∣∣∣ ⌉ = 77

Here q = LSB[77] = 1. Comparing the cover bits with
message bits it is concluded that q1 6= m1 6= 1 and q 6= m2 6=
0. Therefore, case 4 is followed and x

′

1 = x1 - 1 = 158 - 1 =
157. Therefore, embedding of two bits require modification
of single cover pixel. Similarly embedding is performed for
next pixel pair as follows. Given the second pixel pair (x1,
x2) = (166, 200). Thus, q1 = 0. The subtractive relation X is
calculated as follows:

X =
⌈ ∣∣∣∣1662 − 200

∣∣∣∣ ⌉ = 117

Here q = LSB[117] = 1. Comparing the cover bits with
message bits it is concluded that q1 = m1 = 0 and q = m2 6= 1.
Therefore, case 2 is followed and x

′

2 = x2 - 1 = 200 - 1 = 199.
At the data extraction stage, since only the higher bit planes
are used for residual responses therefore, the complexity
level remains invariant and the blocks are arranged in similar
manner as at the trasmitters end. The blocks for set 1 are
arranged in pairs and the message bits are recovered from
the subtractive relation of pixels.

B. MULTI-BIT EMBEDDING WITH ε = 2
In the case with ε = 2, the maximum allowable embedding
bits per pixel is 2. Therefore, 2-bit embedding is performed.
The residual responses are calculated using the first 8 - 2 = 6
bit planes. The pixel blocks for residual responses are shown
in Fig. 10(d). The difference vector Dn for nth block is thus
D1 = {16, 40, 132, 20, 60, 4, 20, 44}, D2 = {16, 16, 16, 12, 4,
20, 24, 100}, D3 = {8, 12, 4, 8, 100, 32, 28, 12} and D4 ={32,
20, 12, 0, 8, 12, 12, 20}, respectively. The complexity level
γn and th1 = 8 is same as in first case. Similarly, the Dmax is
also same as in case 1 and thus the arrangement of pixels is
also same. Next step is to calculate the bits per pixel a using
(8) as follows:

a1 = min(blog2 132c, 2) = 2

a2 = min(blog2 100c, 2) = 2

a3 = min(blog2 100c, 2) = 2

and
a4 = min(blog2 30c, 2) = 2

Following the flow diagram of Fig. 8(a), since all blocks have
same a, the pixel blocks are kept in set 2 and arranged in
a group. Given the message sequence M = {1 0 0 0 1 0},
the embedding procedure starts as follows: The capacity for
each central pixel is 2 bits therefore, 2-bit XOR embedding is
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TABLE4: WPSNR comparison of the proposed method with the technique [21]

Images WPSNR (dB)

n = 3 n = 2 n = 1

Proposed [21] Proposed [21] Proposed [21]

Lena 61.70 61.79 69.51 64.61 73.76 71.28

Peppers 65.92 60.45 69.29 64.74 71.38 70.72

Baboon 66.78 54.53 75.23 59.75 81.93 67.75

Couple 65.51 59.53 74.93 64.87 80.86 71.05

Boat 65.44 57.63 75.68 62.07 79.21 69.21

Plane 58.52 58.83 63.12 65.05 67.55 74.22

Barbara 63.28 56.40 71.77 61.08 76.38 68.56

Average 63.88 58.45 71.36 63.16 75.87 70.39

Difference 5 8 5
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FIGURE11: The WPSNR performance analysis for the proposed and adaptive LSBS method over (a) n = 1, (b) n = 2 and (c) n =
3.

used. The procedure of embedding presented in sub-section 4
is followed as follows: Given the four cover pixels x1 = 156,
x2 = 156, x3 = 164 and x4 = 200. The two bits from the lower
bit planes thus are: q11 = 0, q12 = 1, q21 = 0, q22 = 1, q31 = 0,
q32 = 1, q41 = 0 and q42 = 0. Now, perform XOR operation
among the bits of cover pixels in the first bit plane (p = 1).

k11 = q11 ~ q21 = 0~ 0 = 0

k21 = q31 ~ q41 = 0~ 0 = 0

k31 = q11 ~ q31 = 0~ 0 = 0

Similarly, the XOR operation among bits of second bit plane
(p = 2) is performed as:

k12 = q12 ~ q22 = 1~ 1 = 0

k22 = q32 ~ q42 = 1~ 1 = 0

k32 = q12 ~ q32 = 1~ 1 = 0

The resulting six bits are compared with the message bits and
the mapping table of Fig. 9 is used to decide for cover bit
modification. From the comparison for p = 1, it is concluded
that k11 = m1 = 0, k21 = m2 = 0 and k31 = m3 = 0. Which
leads us to compliment q21. Therefore, q

′

21 = 1. Similarly,

for p = 2 k12 = m4 = 0, k22 6= m5 6= 1 and k32 = m6 = 0.
This leads us to compliment q42 thus q

′

42 = 0. At the data
extraction stage, since only the higher bit planes have used
for residual responses therefore, the complexity level remains
invariant and the blocks are arranged in similar manner as at
the transmitterâĂŹs end. The blocks for set 2 are arranged
in group of four and the message bits are recovered from the
XOR relation of pixels as follows.

m1 = q11 ~ q
′

21 = 0~ 1 = 1

m2 = q31 ~ q41 = 0~ 0 = 0

m3 = q11 ~ q31 = 0~ 0 = 0

m4 = q12 ~ q22 = 1~ 1 = 0

m5 = q32 ~ q
′

42 = 1~ 0 = 1

m6 = q12 ~ q32 = 1~ 1 = 0

Thus, the extracted message sequence is M ={1 0 0 0 1 0}

V. EXPERIMENTAL SETUP AND RESULTS
This section provides a description of the effectiveness of
the proposed method in terms of providing high embedding
capacity, high image quality and the ability of the proposed
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FIGURE12: Subjective analysis of visual quality of stego im-
ages of the proposed content-adaptive image steganography.
.

method to resist the statistical attacks. In the experimental
setup, we take three image datasets. The first image dataset
contains a set of standard images from the SIPI dataset and
other online sources [27]. These eight standard grayscale
images include the Lena, Cameraman and Barbara image.
The size of each image is 512x512. The other two datasets are
the BOWS2 [28] and BOSSbase dataset [29]. Both datasets
contain 10,000 grayscale natural images of size 512x512.
The example images from the three datasets are shown in
figure 10. The proposed algorithm is implemented in Matlab.
A pseudo-random number generator is used to generate a
bitstream of secret message. A comprehensive comparison
with the latest related techniques [21] is given. In addition we
also present the description of effectiveness of the proposed
complexity estimation method. The security analysis of the
proposed method with related techniques is also presented.

A. EMBEDDING CAPACITY AND IMAGE QUALITY
ASSESSMENT
Embedding capacity (EC) is the total number of secret bits
embedded in the cover image. EC is an essential unit of
measurement since it gives an idea of how the proposed
method helps to hide more and more data in the cover
image. Table 2 presents the embedding capacity achieved by
the proposed method in comparison with [21]. The EC is
estimated for seven standard images over varying-parameter
n. The proposed method provides highest EC for all values of
n. In terms of the percentage increase, the EC of the proposed
algorithm is on average 46.46%, 28.73%, and 36.51% higher

than [21] for n = 1,2 and 3 respectively. There are two
reasons behind such an improved payload capacity: 1) the
use of separate bit planes for complexity computation and
embedding allows to preserve the pixel differences before
and after embedding thereby allowing all the pixels to take
part in embedding. 2) The use of variable pixel block size
for the periphery pixels further adds 1024 pixels to be used
in the embedding process. On the contrary the technique of
[21] uses only three out of four pixels for embedding in every
2x2 block. Consequently only 75% of the image is available
for embedding and remaining 15% is used for calculation of
the number of bits per pixel.
The image quality (IQ) parameters such as PSNR, Weighted
PSNR (WPSNR) and SSIM are used to quantify the mod-
ification in the stego image with reference to the cover
image. The mathematical expression of PSNR is expressed
as follows:

PSNR = 10 log10
2552

E
. (13)

Where E is the mean square error and is defined as follows.

E =

∑H
h=1

∑W
w=1(C(h,w)− S(h,w))2

H ×W
. (14)

The PSNR is measured in dB. For a perfectly distortion less
image PSNR is infinity. The weighted PSNR is a modified
version of simple PSNR. The WPSNR takes into account
the texture content of the image as perceived by the human
visual system (HVS) and thus measures the visual quality of
the image by considering the relationship of the pixels among
each other in a local region. There are many models presented
in literature that are designed to measure perceptibility of
an image as perceived by HVS. In the presented work, we
pursue one of the existing models known as “noise visibility
function (NVF)” [16]. The WPSNR is presented in the
following equation.

WPSNR =

= 10 log10
2552 ×H ×W∑H

h=1

∑W
w=1(C(h,w)− S(h,w))2 × n2

.

(15)

Where HxW represents the size of the image and NVF n is
calculated on the cover image as follows.

n(C(h,w)) =
1

1− σ2
h,w

(16)

It is clear from the expression of NVF that for a local region
centered around pixel (h,w), a high texture content will yield
an NVF close to 0 while the smooth texture content will
represent an NVF of approximately 1.
Another IQ metric is the Structural SIMilarity index SSIM
[30]. It is a measure of the perceptual structure of a stego
image with reference to cover image. Low order moments
such as mean, variance and correlation coefficient are used
to compute structure similarity between an original and
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TABLE5: SSIM comparison of the proposed method with the technique [21]

Images SSIM

n = 3 n = 2 n = 1

Proposed [21] Proposed [21] Proposed [21]

Lena 0.9987 0.9943 0.9996 0.9976 0.9999 0.9953

Peppers 0.9998 0.9998 0.9998 0.9975 0.9999 0.9993

Baboon 0.9987 0.9995 0.9995 0.9981 0.9999 0.9998

Couple 0.9993 0.9910 0.9996 0.9967 0.9999 0.9994

Boat 0.9993 0.9917 0.9996 0.9973 0.9999 0.9995

Plane 0.9995 0.9958 0.9996 0.9982 0.9999 0.9994

Barbara 0.9990 0.9847 0.9997 0.9975 0.9999 0.9995

Average 0.9992 0.9921 0.9996 0.9975 0.9999 0.9994

Difference 0.0071 0.0021 0.0005

distorted image. The underlying assumption is that HVS
perceives an image by extracting its structural information.
Structure information includes luminance, contrast, and cor-
relation. Luminance is estimated by quantifying the mean of
an image. Contrast is estimated by the standard deviation and
correlation among the two signals is quantified by using the
covariance or the correlation coefficient expression. The fol-
lowing notations are used for the above low order moments
e.g. mean as m, standard deviation as std and correlation as
corr and are mathematically represented as follows:
The luminance similarity among the cover and stego image
can then be represented as:

lum(C, S) =
2mcms + c1
m2

c +m2
s + c1

. (17)

The contrast is represented as:

std =

(∑N
i=1(Ci −mc)

2

N − 1

)1/2

. (18)

The contrast similarity expression is then represented as
follows:

cont(C, S) =
2stdcstds + c2
std2c + std2s + c2

. (19)

Similarly, the variation similarity is expressed by the follow-
ing relation:

vari(C, S) =
stdcs + c3

stdc + stds + c3
. (20)

Where, stdCS is given as:

stdcs =
1

N − 1

N∑
i=1

(Ci −mc)(Si −ms). (21)

The constants c1, c2, and c3 are equal to (k1xL)2, (k2xL)2,
and (k3xL)2, where L is the dynamic range of pixels and k1,
k2, and k3 « 1. SSIM index is now calculated as:

SSIM(C, S) = lum× cont× vari. (22)

SSIM is calculated in a smaller window of size 8x8 for each
pixel in the image. Once the SSIM map is obtained, a mean
value of the map is calculated. SSIM ranges between [-1 1],
a value of 1 represents the ideal similarity while a value of 0
represents no similarity.

Table 3, 4 and 5 respectively represent the PSNR, WPSNR
and SSIM values of the proposed algorithm in comparison
with the technique [21]. The performance of the proposed
method is evaluated using the EC for [21] given in Table
2. Referring to Table 3, it can be seen that the proposed
algorithm achieves a higher value of PSNR in comparison
with [21] for all n. An average increase of 5.25 dB, 5.54
dB and 6.05 dB is achieved over [21] for n = 1, 2 and 3
respectively. For n = 1 the proposed embedding algorithm
embeds in the cover pixels with a reduced modification rate
and therefore further limits the embedding distortion. This
setting allows generating a high-quality image as reflected
by the highest average PSNR value over [21]. Similarly, for
n>1 the proposed embedding algorithm provides the highest
average PSNR values over [21].
Table 4 presents the WPSNR metric comparison with the
technique [21] over varying n. From the table, it can be
seen that the proposed algorithm achieves a higher value
of WPSNR in comparison with [21] for all n. An average
increase of 5 dB, 8 dB and 5 dB is achieved over [21] for
n = 1, 2 and 3 respectively. The high-performance margin of
WPSNR is achieved since the proposed embedding algorithm
adaptively embeds in the highest complex pixels. Moreover
the proposed method accurately estimates the embedding
capacity per pixel by calculating pixel difference in eight
directions and then using the highest difference value for each
complexity level while the technique of [21] estimates the
embedding capacity by calculating pixel difference in only a
single direction. The highest average WPSNR value over [21]
displays the effectiveness of the proposed complexity estima-
tion method as well as the reduced modification embedding
provided by the embedding step. In order to present the
description of the performance of the proposed complexity
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TABLE6: PSNR, WPSNR and SSIM comparison of proposed method with three techniques [24], [31] and [32]

Techniques PVD
[31]

TBPC
[32]

ATBPC
[24]

Proposed PVD
[31]

TBPC
[32]

ATBPC
[24]

Proposed

Images EC (%) 30% 50%

PSNR 54.25 57.42 57.28 58.72 52.51 55.34 55.35 56.49

Lena WPSNR 68.47 69.02 75.53 77.7 67.41 67.45 68 72.47

SSIM 0.9994 0.9991 0.9994 0.9999 0.9982 0.9987 0.9988 0.9999

PSNR 55.53 57.39 57.12 58.67 52.23 55.30 55.13 56.49

Baboon WPSNR 94.85 81.93 92.12 106.14 86.58 79.55 81.07 84.82

SSIM 0.9998 0.9997 0.9998 0.9999 0.9993 0.9995 0.9995 0.9999

PSNR 54.68 57.39 57.41 58.71 53.03 55.31 55.31 56.47

Cameraman WPSNR 69.28 62.45 65.76 92.64 66.90 65.32 66.01 63.92

SSIM 0.9998 0.9987 0.9991 0.9999 0.9978 0.9983 0.9984 0.9999

PSNR 54.24 57.42 57.33 64.01 52.49 55.39 55.38 56.51

Peppers WPSNR 72.75 70.25 73.13 74.29 67.63 68.49 68.84 70.65

SSIM 0.9992 0.9983 0.9994 0.9999 0.9984 0.9988 0.9988 0.9999

PSNR 54.43 57.38 57.14 58.73 52.42 55.35 55.38 55.22

Peppers WPSNR 68.86 70.31 83.72 106.53 66.82 68.42 69.31 76.54

SSIM 0.9994 0.9995 0.9996 0.9999 0.9989 0.9991 0.9992 0.9999

estimation step alone, we present the WPSNR comparison of
the adaptive n-LSBS with the proposed method. The adaptive
n-LSBS uses the proposed complexity identification method
to compute the pixel complexity. The only difference lies
in the embedding method in the data embedding step which
is the simple LSB substitution method. Fig. 11 displays the
comparison results over a variety of embedding capacity for
n = [1, 2, 3]. The results are averaged for the same seven
standard test images as mentioned in Table 2. It is clear from
the figure that the WPSNR value is reduced with a difference
of less than 2.5 dB for n = 1 as compared to the proposed
algorithm. A difference of less than 1 dB is noticed for n = 2
and 3. The slight difference in the WPSNR value of the two
algorithms is due to the embedding method used in the data
embedding step. The embedding methods of the proposed
algorithm provide a high embedding efficiency, therefore, the
WPSNR of the proposed method is high while the method
used by the n-LSBS algorithm does provide any embedding
efficiency and therefore the WPSNR value is reduced. In
terms of the percentage modification rate, the proposed algo-
rithm for n = 1 introduces 9% fewer modifications than LSBS
while the modifications for n > 1 are 6% less than n-LSBS.
The overall performance of both algorithms is still higher
than the technique [21] which highlights the significance of
the role played by the proposed complexity identification step
in providing the high visual quality of the stego image.
Finally, the visual quality of the stego image as generated by
the proposed data hiding algorithm is measured in terms of
SSIM. The SSIM values over varying n are presented in Table
5. From the table it can be seen that the proposed algorithm
achieves a higher value of SSIM in comparison with [21] for
all n. An average increase of 0.0005 , 0.0021 and 0.0071 is
achieved over [21] for n = 1, 2 and 3 respectively. An example
of cover and stego images (Barbara and Cameraman) is

TABLE7: The classification results in terms of the OOBE in the
SPAM steganalysis domain

Payload OOBE

MPBDH
[35]

EA-
LSBMR
[17]

Proposed Improvement

10 0.3100 0.366 0.4743 21.66

20 0.236 0.338 0.3800 8.40

30 0.192 0.280 0.250 -6

40 0.111 0.216 0.240 0.9981

presented in Fig. ??. The embedding is performed in the
cover images using ε = 1. From the figure it is observed that
both the cover and stego segments are visually similar and
HVS cannot detect the embedding distortion.
For a comprehensive comparison, Table 6 presents the high
visual quality performance of the proposed algorithm with
respect to three techniques e.g., PVD (Pixel Value Differ-
ence) [31], TBPC (Tree-Based Parity Check) [?] and ATBPC
(Adaptive TBPC) [24]. Each given image is evaluated with
respect to the PSNR, WPSNRthe and SSIM at the embedding
capacity EC of 30% and 50% for 1bpp case. It can be
observed that a similar PSNR is achieved for the methods
TBPC and ATBPC. Since both the techniques use a sim-
ilar embedding approach of Tree-based parity check. The
method ATBPC results in a higher WPSNR and SSIM as it
is a content-adaptive approach. While the content-adaptive
approach of the proposed technique performs better than
ATBPC by achieving the highest WPSNR and SSIM at the
given embedding capacity.
Fig. 12 shows the PSNR and WPSNR performance of the
proposed method for multibit embedding on BOWS2 dataset.
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The comparison is made between three techniques e.g., adap-
tive PVD [33] , Tri-PVD (TPVD) [34] and Edge-XOR em-
bedding [23] for a variable embedding capacity of 10-70%.
The performance of the proposed method is evaluated using
the parameter n = 3 which employs the nbpp embedding upto
3 bits per pixel. It is clear from the figure that the proposed
embedding algorithm produces highest quality stego images
in comparison with the previous methods. The PSNR results
in Fig. 8a shows that the proposed method is efficient in
embedding by achieving PSNR value almost equal to that
of Edge-XOR embedding method. On the other hand, the
WPSNR results show that the proposed method achieves the
highest visual quality by achieving highest WPSNR value
for all embedding capacity. The reason for such high mar-
gin is that unlike previous approaches the proposed method
utilizes the pixel difference in all directions and employs the
most suitable difference for the calculation of embedding
capacity per pixel. On the other hand, the technique of
Edge-XOR embedding calculates pixel difference in limited
directions and then uses the average of the differences for
the calculation of embedding capacity per pixel. The average
of differences is not an appropriate way of calculating the
data capacity per pixel since two blocks carrying varying
intensity may have same average difference. In conclusion
the results on BOWS2 dataset shows that the accuracy of
the proposed complexity estimation method produces highest
quality stego images by utilizing the highest complex pixels
for embedding.

B. UNDETECTABILITY IN SPAM STEGANALYSIS
DOMAIN
The subtractive pixel adjacency model is chosen for the mea-
surement of detectability of the steganographic distortion.
SPAM features reflect the pixel correlation in eight directions
using a high pass filter in a small window and these noise
residuals are then modeled as a higher-order Markov Chain.
The resulting matrix of transition probabilities is utilized as a
feature vector for the classifier. The steganographic distortion
forces the cover properties to deviate from the SPAM model
and thus the pixels where the correlation is high will be easily
detected by this method. Given the cover and respective
stego images from the BOSSbase image dataset, the 2nd
order SPAM features of dimensions 686 are calculated and
fed to an ensemble classifier. The data set is split into
half training and the remaining half for testing dataset. The
ensemble classifier consists of a batch of classifiers to which
the feature set is randomly and equally distributed. A final
decision is made based on the results from all the classifiers
using majority voting. An out of bag error (OOBE) is the
probability of false detection and is expected to be a high
value for a secure steganographic method.

Table 7 shows the classification results as a measure of
OOBE of the proposed method in comparison with the tech-
niques EA-LSBMR [17] and MPBDH [35]. From the table, it
can be seen that the proposed technique performs better than

the two techniques. This shows that the proposed method
accurately identifies the high texture regions in the cover
image and the SPAM steganalysis thus lacks in predicting the
embedding locations. The technique of MPBDH identifies
the randomness in the bit plane of the cover image and uses
the block data hiding for embedding into each bit plane.
However, the technique is not secure since the randomness in
the bit plane of a cover image does not translate to a highly
complex texture in the spatial domain. The edge adaptive
technique [17] identifies the unidirectional edges and uses the
LSB matching revisited technique for embedding, therefore
the security performance is better as compared to MPBDH.
The proposed technique, however, uses an eight directional
approach for the texture identification of a region and there-
fore performs best among the two approaches.

VI. CONCLUSION
A content-adaptive steganography method is presented which
aims to identify the complexity of the texture content of
the image for data hiding. The complexity of the content is
analyzed based on a high pass filter bank which computes
pixel correlation in eight directions. In a local region, a high
pass filter (HPF) bank is applied and eight residual responses
are obtained. Following the proposed CBP criterion, a com-
plexity level out of nine levels is assigned to an individualized
pixel block. The pixels are then arranged in the priority
of complexity from highest to lowest. Data embedding for
the corresponding complexity level then takes place using
proposed adaptive embedding algorithm. Experiments are
performed for the analysis of embedding capacity, image
quality and security on three datasets. Highest values of the
IQ (image quality) parameters e.g., SSIM and WPSNR show
the effectiveness of the proposed method.
In future the aim is to exploit the pixel variation to an
increased pixel block size to further improve the texture
analysis of the proposed method. We also aim to perform
the security analysis of the proposed method using latest rich
steganalysis models.
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