
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Modified Maximal Divergence
Sequential Auto-Encoder And Time
Delay Neural Network Models For
Vulnerable Binary Codes Detection
MARWAN ALI ALBAHAR
Department of computer science - Leith, Umm Al-Qura University, Mecca, Saudi Arabia (e-mail: mabahar@uqu.edu.sa)

Corresponding author: Marwan Ali Albahar (e-mail: mabahar@uqu.edu.sa).

ABSTRACT Since the risks associated with software vulnerabilities are rapidly increasing, the
detection of vulnerabilities in binary code has become an important area of concern for the
software community. However, research studies associated with the detection of vulnerabilities
in binary code remain limited to the handcrafted features referenced by a specific group of
experts in the field. This paper considers other possibilities to add on the subject of detecting
vulnerabilities in binary code. Herein, we utilize recent studies conducted on the topic of deep
learning and specifically study a maximal divergence sequential auto-encoder (MDSAE) model
to propose a modified version (MDSAE-NR). We also propose an altered interpretation of
time-delay neural network (TDNN-NR) by incorporating a new regularization technique that
produced optimized results. Finally, both models achieved good predictive performance using
different evaluation metrics such as accuracy, recall, precision and F1 score compared to the
baseline results. Based on the results of our experiments, we observed a 2 to 2.5% average
improvement in each performance measure of interest.

INDEX TERMS Binary code vulnerability detection, Time delay neural network , Deep Learning
, NDSS18 binary dataset , New regularization technique

I. INTRODUCTION

Software becomes vulnerable if it contains flaws that
could create a backdoor in the software from which
a hacker can gain access to a system to conduct ma-
licious activities. These activities may include reveal-
ing or modifying critical information (e.g., Distorting,
damaging the network, overwhelming the program or
system) [1]. In this technological era, computer soft-
ware can be found everywhere, and, due to the variety
of development processes, a great deal of computers
software have vulnerabilities. As a result, the issue
of identifying software vulnerabilities has become a
global concern. Although considerable efforts have
been made by software security experts, the risk of
software vulnerability has only increased over time.
Numerous incidents have been identified over the
past two decades, where companies and individuals
were affected by harmful attacks due to software

susceptibility [2]. One example of such damage is the
vulnerability of a browser plugin that put the privacy
of internet users at risk (e.g., Oracle Java (US-CERT
2013) and Adobe Flash Player (US-CERT 2015; Adobe
Security Bulletin 2015)). Similarly, various companies
and customers have been at risk of exposure and
privacy breaches due to vulnerabilities found in open-
source software such as Shellshock (Symantec Security
Response 2014) and Heartbleed (Codenomicon 2014).

Software vulnerability detection (SVD) can be di-
vided into two parts: vulnerability detection in binary
code and source code. A wide range of studies have
been conducted on the subject of vulnerability de-
tection [3]–[8]. However, most previous studies were
related to detecting vulnerabilities in source code. In
particular, these studies were based on the handcrafted
features selected by a limited number of experts in the
domain.

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Regarding the mitigation of reliance on handcrafted
features, the utilization of automatic features in SVD
has recently been studied [8], [9], [11]. Specifically,
studies conducted in [9], [11], in which the authors
employed a recurrent neural network (RNN) trans-
formed code sequences into vector features. This was
then further fed into isolated classifiers. Moreover, the
authors in [8] integrated vector representation learning
and classifier training in a deep network. Also , the
authors in [10] studied different factors that impact the
effectiveness of deep learning-based approaches for
vulnerability detection. However, this study covered
only the detection of vulnerabilities related to API
function calls/library.

Nevertheless, vulnerability detection in binary code
is more difficult than vulnerability detection in source
code, since a lot of information relevant to syntax
and semantics gained from high-level programming
languages gets lost when the program compiles. With
the help of information relevant to syntax and se-
mantics, how data and inputs handle the execution
process can be easily deduced. Unfortunately, upon
analyzing code, the only item available is a binary file
that contains a binary code (without the permission to
access the source code) or embedded systems code.
Hence, the most important feature required by the
security community is the ability to detect vulnera-
bilities in a system from simple binary code without
accessing the source code. Some previous studies have
proposed methods for detecting vulnerabilities at the
binary code level when the access to source code is
not granted. In this context, such studies were based
on symbolic execution, fuzzing [12]–[14], techniques
that utilize handcrafted features derived from dynamic
analysis [15]–[17], or functions similarity which helps
in identifying known bugs in binaries [18].

On top of that, there were additional attempts to
identify bugs in binary code. Most of the methods
are either relied on the usage of semantic similarity
[19] [20], supported a single architecture [21], or dy-
namic analysis [22], Although, these methods yielded
good results, but they are inefficient due to the code
coverage and expensive computation. Therefore, the
attention shifted to automatic feature extraction for
binary code vulnerability detection.

To the best of our knowledge, [23] is the only work
has studied the use of automatically extracted features
for binary code vulnerability detection. While, differ-
ent studies have used automatic features combined
with deep learning methodologies to detect malware
[26], [27]. Despite this development, vulnerability de-
tection in binary code remains a completely different
task to malware detection. More specifically, the pur-
pose of binary code vulnerability detection is to detect
oversights and flaws in the binary code, whereas,
malware detection checks if the binary code is harmful

or not. The detection of vulnerabilities in binary code
is more complicated than malware detection due to
the slight differences between the vulnerable and non-
vulnerable binaries.

Additionally, the lack of sufficient dataset has re-
stricted research in binary code vulnerability detection.
In order to solve this problem, the authors of the recent
research in [23] has created a large binary dataset and
made it publicly available with the aim of finding
vulnerabilities in binary code. In addition, the same
study has laid the foundation for this research, and we
leverage recent advances in deep learning to derive a
discriminant classifier that can classify both vulnerable
and non-vulnerable binary functions with the highest
possible accuracy.

Regularization is a key component in the machine
learning field. The regularization is used during the
training to reduce the error by fitting a function appro-
priately so that it avoids overfitting. The regularization
techniques used regularly are L1 and L2. The L1 reg-
ularization puts absolute values of the magnitude of
weights (coefficients) to the loss function. While the L2
regularization adds a squared magnitude of weights
to the loss function [24]. Our object in this work is
to present a new form of regularization technique
which will add the standard deviation of the weights
to the loss function instead of absolute values and
squared magnitude values. The new regularization
technique is based on taking the standard deviation
of the weight matrix and multiplying that by λ to get
the regularization term.

The main contributions of our work as follows:

• We study the maximal divergence sequential auto-
encoder (MDSAE) model and propose a modified
version of the MDSAE model that leverages a
variational auto-encoder (VAE) and a new regu-
larization technique for binary code vulnerabil-
ity detection. The motivation behind using the
MDSAE model is to learn the unknown prior of
binary code alongside the classification of vul-
nerable and non-vulnerable code with the high-
est possible precision and accuracy. Furthermore,
we propose a new model based on a time-delay
neural network (TDNN-NR). The logic behind
using a TDNN-NR is to learn the previous code
relationship to determine whether the binary code
is vulnerable or non-vulnerable.

• We conducted extensive experiments on the
NDSS18 binary dataset. The experimental results
indicate that the two variants (MDSAE-NR and
TDNN-NR) outperform the baselines in all per-
formance measures of interest.

II. BACKGROUND

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. THE VARIATIONAL AUTO-ENCODER (VAE)
Variational auto-encoder (VAE) [28] is a type of en-
coder that not only reconstructs true samples but
also generalizes the samples generated through la-
tent space. The main aim behind this is to train a
probabilistic decoder pθ(x|z), z ∼ N(0, I) that imitates
the true samples x1, ..., xN drawn from an unknown
existing distribution pd(x). The lower bound of VAE
upon which it is developed is provided below.

log pθ(x) ≥ L(x; θ, φ)

= Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))
(1)

qφ(z|x) is known as the approximate posterior dis-
tribution. To maximize the log likelihood value, the
objective function takes the following form for each
training sample x.

max
θ,φ

Ex[Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) (2)

Where data sample x belongs to empirical data dis-
tribution. The reparametrization technique is used in
order to reduce variance when applying Monte Carlo
(MC) estimation for handling optimization problem
given above. To be more specific, the value qφ(z|x) =
N(z|µφ(x), diag(σφ(x))), we can apply reparameteriza-
tion as: z = µφ(x) + diag(σφ(x))

1/2ε randomness source
ε ∼ N(0, I) and µφ(z), σφ(z) represent the two neural
networks which estimate the mean and covariance
matrix of the Gaussain posterior.

The optimization function in equation 2 can be
written as:

max
φ,θ

Ex[Eε[log pθ(x|µφ(x) + diag(σφ(x))1/2ε]

−DKL(qφ(z|x)‖p(z))]
(3)

In equation 3, it can be seen that there are two
important terms. The first term is regarded as the
reconstruction while the second term is regularization.
Our aim is to minimize Ex[DKL(qφ(z|x)‖p(z))], for this
purpose, the latent codes z need to be compressed
and squashed for each true sample x such that the
difference between the samples of prior distribution
p(z) and true samples is minimized.

B. THE KULLBACK-LEIBLER DIVERGENCE AND L2
WASSERSTEIN DISTANCE
Let we have two distribution having probability den-
sity functions of p(z) and q(z) where z ∈ <d , the
Kullback-Leibler (KL) divergence between these two
distributions is given as:

DKL(q‖p) =

∫
q(z) log

q(z)

p(z)
dz (4)

Apart from KL divergence another divergence of great
importance is L2 Wasserstein (WS) distance having

cost function c(z1, z2) = ‖z1−z2‖22. The L2 WS distance
between two distributions is given as:

DWS(q‖p) = minπ∈
∏

(q,p)E(z1,z2)∼π[‖z1 − z2‖22] (5)

Here in equation 5 the term
∏

(q, p) shows the set
of all joint distributions over p, q which define p, q
as marginal probabilities. Let p, q are the Gaussian
distributions, i.e., p(z) = N(z|µ1,

∑
1) and q(z) =

N(z|µ2,
∑

2) then both L2 WS distance and KL diver-
gence can be calculated in close forms as:

DKL(q‖p) =
1

2
[log
|Σ1|
|Σ2|

− dtr(Σ−11 Σ2)

+(µ1 − µ2)TΣ−11 (µ1 − µ2)]

(6)

DWS(q‖p) = ‖µ1 − µ2‖22 + ‖Σ1/2
1 − Σ

1/2
2 ‖2F (7)

where the term ‖.‖F is the Frobenius norm and Σ1Σ2 =
Σ2Σ1.

III. PROPOSED MODELS
A. THE MODIFIED MAXIMUM DIVERGENCE
SEQUENTIAL AUTO-ENCODER (MDSAE) FOR BINARY
VULNERABILITY DETECTION
During classification, a classifier may get over-fitted
due to its high complexity. In order to reduce this
classifier nature to facilitate good performance on
unseen data, numerous methods are applied, such
as using dropout in a neural network or using L1
and L2 regularizations. Among these methods, reg-
ularization is prominent due to its specific nature.
Through regularization, we can put a penalty on loss
function to get large or diverse values. In this work,
we incorporated a new regularization technique based
on standard deviation to the MDSAE model proposed
by Le et. al [23] in order to derive a modified version.
The motivation behind adding this new regularization
is to add another penalty term to the existing KL
divergence regularization. The first step involves mak-
ing the classifier parameters more restricted through
the new regularization and then studying the classifi-
cation and distribution’s classifier learning behaviour
through new regularization. Let us assume x as the
sequence of machine code, i.e. x = [xi] for i = 1, ...,m
where each xi is a machine instruction. Our main aim
is to make the latent codes with maximum divergence
for different data classes (there are two classes in
our case) by encoding x to the latent code z. Let
p1(x) and p0(x) denote the distributions of vulnerable
and non-vulnerable classes, respectively. We propose
a modified maximum divergence auto-encoder that
uses a probabilistic decoder pθ(x|z) such as that for
z ∼ p0(z), x which belongs to the distribution p(x|z)
with similar behaviour to those taken from p0(x) and
for z ∼ p1(z), x taken from the distribution p(x|z)
with similar behaviour to those taken from p1(x). In

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

other words, we are required to learn the probabilistic
decoder p(x|z) satisfying:

p0(x) =

∫
pθ(x|z)p0(z)dz (8)

and

p1(x) =

∫
pθ(x|z)p1(z)dz (9)

For any approximate posterior qφ(z|x), we have the
following lower bounds: log pk(x) ≥ k(x; θ, φ) =
Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pk(z)), k = 0, 1 Fur-
ther, along with KL divergence, we also embedded the
new regularization. Hence, there are two regularizers
in one loss function. The mathematical description of
the new regularization is given below:

λ
k∑
i=1

σ(wi) (10)

where σ represent standard deviation as given below

σ(w) =

√√√√ 1

nk

{ nk∑
i=1

w2
i −

1

nk

(nk∑
i=1

wi

)2}
(11)

Where λ is a regularization parameter that imposes
a penalty on the regularization term to get diverse
values during the training process, and n depends
on the number of features in the data set. So, n is
the size of the weight vector. In other words, n is
the number of columns in a specific weight matrix.
Similarly, k is the number of rows in the weight matrix.
After embedding the new regularization, we get the
following loss function L that needs to be optimized.

L(θ, φ, ω) =

−E[log pφ(x|z)] +DKL(qθ(z|x)‖p(z)) + σ(w)
(12)

The KL divergence keeps the representation of z and
the parameters values of each data point sufficiently
diverse. While the new regularization keeps the pa-
rameter values restrict in a specific std deviation to
make the latent variables apart and avoid to mix them,
for both vulnerable and non-vulnerable classes (See
Figure 1).

To illustrate the effectiveness of the new regulariza-
tion, we designed a case that included two param-
eters. The first parameter is presented in blue dots
W1 = parameter 1 values up to 100 and the second pa-
rameter is presented in orange dots W2 = parameter 2
values up to 100. By employing the new regularization
technique, it is evident that the regularizer reduces the
higher values of W1 and W2. The aforementioned case
used only to demonstrate the functionality of the new
regularizer, and it can be considered as a preliminary
result.

FIGURE 1: Modified Maximum Divergence Sequential
Auto Encoder for binary vulnerability detection. The
new regularization is integrated in hidden layer in
order to make the latent code divergent and make the
classifier more discriminant. The new regularization
updates the weights values according to its standard
deviation to avoid taking higher values during train-
ing.

FIGURE 2: The results after applying the new regular-
ization technique in 2D i.e. W1 and W2

B. TIME DELAY NEURAL NETWORK (TDNN) WITH NEW
REGULARIZATION
Following the successful implementation of TDNN
in a number of practical applications including time
series prediction and speech recognition, we are inter-
ested in employing TDNN for binary SVD by iden-
tifying vulnerable and non-vulnerable classes from
the binary functions. The reason for using TDNN
in this work is to identify the relationship between
the previous binary code (e.g. previous byte/word)
in a function with the vulnerable and non-vulnerable

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

classes. TDNN works better for time series data; there-
fore, it is necessary to have time series data or convert
existing data to time series data. For this purpose,
we assumed that, in a block of code (binaries), the
previous instructions (based on the input unit of the
TDNN) are considered as the previous time stamp
data while the currently processing binaries are con-
sidered the current time stamp data. In other words,
for each current instruction, the previous instruction
acts as the previous time stamp t-1 data. As the data
is fed in a sequential manner therefore, for coming
instruction the prior instructions were considered as
the previous.

The binary functions are not just a word/byte, but
rather a sequence of words and bytes. This group
of words/bytes contribute to making a function ei-
ther vulnerable or non-vulnerable. In such a situation,
keeping the track of prior information is essential;
therefore, using TDNN is helpful because it considers
the previous time steps during training. Notably, the
mechanism of connections in TDNN is similar to a
feed-forward neural network. The incredible difference
between TDNN and neural networks is that the in-
put to any node i in TDNN can be the output of
previous nodes, not only in the current time step t
but also the output of some d previous time steps, i.e.
(t− 1, t− 2, ..., t− d). This mechanism is implemented
by adding tap delay lines. The activation function F
in such networks for node i at time step t is given by:

yti = F (

i−1∑
j=1

d∑
k=0

yt−kj wijk) (13)

Where yti is the output of node i at time t, wijk is the
connection strength to node i from the output of node
j at time t − k, and F is the activation function. As
these networks act like feed forward neural networks,
the only difference is that the input to any hidden
layer consist some previous time stamp information as
well. In order to avoid complexity of the TDNN, we
added the new regularization algorithm which defined
in equation 11. The motivation behind adding the new
regularization is to check the performance of classifier
by restricting parameter values in a certain standard
deviation (See Figure 3).

C. PARAMETERS SETTINGS
For training the models, 80% of data is used while
the remaining 20% is used for validation and testing
purposes. A dynamic RNN is used to handle varia-
tions in the number of machine instructions. For both
RNN baselines and the proposed models (TDNN-NR
and MDSAE models), the number of hidden units
was set to 512. For the proposed MDSAE model, the
size of the latent space is consistent with the previous
work (i.e. 4,096 units). Other parameter values are the

FIGURE 3: Time-delay neural network with a new
regularization is trained for 100 epochs. At each layer,
the new regularizer is integrated to make the TDNN
more discriminant. The only difference here is that
such network takes in account the previous time step
values which make it more easier to find the vulnera-
bility in the code as current byte/word is analyzed in
the context of previous one.

same for both, such as α and β being set to 10−3

and 3 × 10−5, respectively. An Adam optimizer was
incorporated, and the learning rate was initialized to
10−3. Minibatch size was set to 64 and the models
were trained for 100 epochs. The proposed methods
were implemented in Python using the TensorFlow
framework. We performed our experiments by using
Amazon Cloud Services, with an octa-core processor
of frequency 2.4 GHz and Transcend 128 GB RAM.

IV. EXPERIMENT
A. DATA PROCESSING AND EMBEDDING
For each machine instruction, we followed the same
process proposed in [23] with the Capstone2 binary
disassembly framework being incorporated to detect
entire machine instruction. Furthermore, redundant
prefixes were removed to obtain the essential parts
consisting of opcode and other significant information.
There are mainly two parts in a machine instruction:
the opcode and instruction information (i.e. operands,
registers, memory addresses, etc.). Opcode and in-
struction information were embedded into vectors and
then concatenated. To embed opcode, a vocabulary
of opcodes was created and then multiplied by the
one-hot vector of the opcode with a corresponding

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Vulnerable Non-Vulnerable Binaries
Windows 8,978 8,999 17,977

Linux 7,349 6,955 14, 304
Whole 16,327 15,954 32,281

TABLE 1: Dataset used for experimental purpose

embedding matrix. A vocabulary of over 256 hex-
bytes from 00 to FF was created to embed the in-
struction information and were then multiplied by the
corresponding embedding matrix. More precisely, the
output of the process is I = Iop‖Iii where Iop = one-
hot(op) ×Mop and Iii = freq(ii) ×M ii. Where op is
the opcode, ii is the instruction information and Mop

and M ii are the corresponding embedding matrices.

B. EXPERIMENTAL DATASET
To test our model, we used the dataset extracted by Le
et. al [23]. They used the NDSS18 dataset and extracted
functions from this source code. Furthermore, they
obtained approximately 13,000 identical functions, of
which 9,000 fixed functions were converted to bi-
nary using their automatic tool. Next, they dissected
the semantic and syntactical relationship using their
developed tool, Joern3, in the selected source code.
They compiled various vulnerable and non-vulnerable
functions for different platforms and obtained a total
of 32,281 binary functions, of which 17,977 binaries
compiled for Windows and 14,304 compiled for the
Linux platform.(see Table 1 for the detailed dataset).

C. EXPERIMENTAL RESULTS
We conducted experiments using our proposed mod-
els on a subset of Windows and Linux as well as
the entire set of binaries. Then, we compared our
proposed models with other state-of-the-art methods.
The experimental results are shown in Table 2, 3 and
4.

To compare MDSAE-NR and TDN-NR model, it is
clear that MDSAE-NR performed well in terms of ac-
curacy and precision. Accuracy is a biased term which
can be altered by tweaking the data, but on other
hand precision and recall are the generally accepted
measure. Precision measure detected true positives out
of all positives instances. The accuracy and precision of
the MDSAE-NR model are 1.2% higher than the TDN-
NR model. As far as F1 score is a concern, the results
for both models are almost the same as it depends
upon the two measures, precision and recall. Similarly,
AUC-ROC is an important measure to analyze the
performance of the classification model. ROC is a
curve drawn over different probabilities while AUC
is the area under the ROC curve which shows the
degree of separability of the model. In other words, the
higher the value of AUC-ROC, the better the model
is in distinguishing between different classes. In our

case, the AUC-ROC is almost the same and higher
than 85% which denotes that the separation ability
of our models is also higher. Based on these results,
it is evident that our proposed models outperform
the baselines in all performance measures of interest.
Specifically, in the field of computer security, recall
is a very important measure of completeness since a
higher recall value leads to fewer vulnerable functions
being incorrectly classified as non-vulnerable, which
can otherwise present an issue for code auditors due to
a large imbalance in the number of non-vulnerable and
vulnerable functions in real-world use. In addition,
since the resulting data representations of both models
work well with a linear classifier, this confirms that
our proposed models efficiently support the classifiers
to achieve good results. The main advantage of the
MDSAE-NR is that it first learns the distribution of
both vulnerable and non-vulnerable priors and makes
them separable from each other with higher accuracy,
as shown in Figures 7 and 8 due to the employment
of VAE, which learns the distribution of data. In
addition, MDSAE-NR attempts to make both of the
priors consistent and gradually more distant instead
of attempting to directly classify as per other existing
neural networks. Similarly, the TDNN-NR model also
has the advantage of keeping track of the previous
time stamp data based on the previous binaries, from
which it infers the results on whether binary data is
vulnerable or non-vulnerable. Overall, through exten-
sive experimentation, we observed similar changes to
[23]. Particularly, the vulnerable binary code and fixed
version of it differ by a very few machine instructions.
Since the models are required to pay attention to these
minute differences to reconstruct them, the ability to
reconstruct a vulnerable binary and its fixed version in
the latent space is crucial. Moreover, we also observed
that our proposed models make both priors more
distant than the previous work, as evident from the
experimental results.

Method Acc Rec Pre F1 AUC-ROC
MDSAE-NR 86.4 98.2 79.5 89.0 86.3
TDNN-NR 85.2 97.9 78.3 87.1 85.4
RNN-R [23] 54.1 92.6 52.6 67.0 53.8

Para2Vec [25] 55.5 93.5 53.4 68.0 55.0
MD-RKL [23] 80.8 86.9 77.6 82.0 80.7
MD-RWS [23] 80.6 91.3 75.5 82.6 80.6
RNN-C [23] 81.5 94.6 75.1 83.7 81.4

VulDeePeck [8] 82.5 94.4 76.5 84.5 82.4
SeqVAE-C [23] 80.8 91.4 75.7 82.8 80.7
MD-CKL [23] 83.2 97.7 75.8 85.4 83.0
MD-CWS [23] 84.5 97.2 77.7 86.4 84.4

TABLE 2: Experimental results for Windows platform
from NDSS18 binary dataset in percentage

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Method Acc Rec Pre F1 AUC-ROC
MDSAE-NR 88.6 99.1 84.4 90.2 87.7
TDNN-NR 87.3 98.9 84.1 89.3 87.4

RNN-R 55.3 93.5 53.3 67.9 54.9
Para2Vec 55.8 92.1 53.6 67.8 55.5
MD-RKL 82.7 81.3 83.9 82.6 82.7
MD-RWS 84.7 90.7 81.2 85.7 84.6
RNN-C 84.4 96.9 77.7 86.3 84.2

VulDeePeck 85.5 94.2 80.5 86.8 85.4
SeqVAE-C 83.0 93.7 77.5 84.8 82.9
MD-CKL 85.9 97.2 79.5 87.4 85.7
MD-CWS 86.9 97.8 80.6 88.3 86.8

TABLE 3: Experimental results for Linux platform
from NDSS18 binary dataset in percentage

Method Acc Rec Pre F1 AUC-ROC
MDSAE-NR 87.5 99.3 81.2 89.8 87.1
TDNN-NR 86.6 98.7 80.3 88.3 86.3

RNN-R 56.3 93.9 53.9 68.5 55.8
Para2Vec 54.9 94.3 53.1 67.7 54.4
MD-RKL 75.3 87.8 70.5 78.2 75.1
MD-RWS 83.7 94.3 78.0 85.4 83.5
RNN-C 83.4 94.1 77.8 85.2 83.3

VulDeePeck 83.5 91.0 79.5 84.8 83.4
SeqVAE-C 78.5 89.4 73.6 80.7 78.4
MD-CKL 82.3 98.0 74.8 84.8 82.1
MD-CWS 85.3 98.1 78.4 87.1 85.2

TABLE 4: Experimental results for whole dataset in
percentage

D. INSPECTION OF MODELS BEHAVIORS
1) Distances between Two Priors, Distributions of
Vulnerable, Non-vulnerable Classes During Training
During our experiment, we analyzed the following
measures for MDSAE-NR model:
• Euclidean Distance of two means of priors, that is
‖µ0 − µ1‖.

• WS Distance between two priors.
• Reconstruction Loss: As can be seen from Figure

4 a and b that the Euclidean distance and WS dis-
tance of the two prior increasing during training
process which sets the two distributions apart as
depicted in figure 6, 7 and 8. As both the distances
between the two prior increase, the discrimination
power of the classifier also increases and hence
classify both the vulnerable and non-vulnerable
classes with high precision and accuracy. From
Figure 4 c, it is clearly visible that the recon-
struction loss gradually decreasing and the latent
codes retain the necessary information in binaries
during training process.

For TDNN-NR, we studied the following measure:
• AUC-ROC Curve: The AUC-ROC Curve result of

applying TDNN-NR model for the entire dataset
is shown in Figure 5. It is apparent that the
performance of TDNN-NR is slightly lower than
the MDSAE-NR model. The reason behind this
is the absence of latent codes and time-delay
neural network learns the data representation and

the classification task simultaneously and tunes
the parameters accordingly, which is not much
efficient.

2) Visualization in the latent space of latent codes of two
classes

The dimension of latent space is set to 2 in order
to visualize the two classes’ latent codes after and
before training. Before training, the codes of both
classes were mixed and very difficult to separate. Since
the epochs (training process) go on to 50 and then
to 100, the codes were separated and can thus be
seen as separable and distinct. The visualization is
shown in Figures 6, 7 and 8. This separation of codes
demonstrates that the proposed model has learned
the data representation and classified the two classes
with high precision and accuracy. From Figure 8, it is
evident that the separation of the two codes is very
high, thereby leading to satisfactory results.

V. CONCLUSION

The detection of vulnerabilities in binary code is an
important issue to solve in the software industry and
in the field of computer security. In this paper, we
proposed two different models. The first model was
a modified version of Le et al.’s [23] model, while the
second model was based on TDNN. The dataset used
for the experiment was NDSS18, which contains differ-
ent binary vulnerable and non-vulnerable functions for
Windows and Linux platforms. A new regularizer is
integrated into these two models in order to make both
models more discriminant by making the parameter
values restricted in a specific standard deviation. The
results of both models were compared to the recent
study by Le et. al. [23]. For the first model, on average,
we achieved a 2% performance increase. For the time-
delay network, we achieved an approximately 1.4%
improvement in various performance measures, as
seen in Table 2, 3 and 4. The advantage of both of these
models is that, for a specific performance measure,
one can use only a single model. Therefore, there is
no need to use a different model for different higher
performance measures, unlike in the work of Le et al.
[23]. As such, using our trained models can provide
satisfactory results for all performance measures such
as precision, TPR and FPR, among others. The reason
behind this good performance is that the latent code
in MMDSAE-NR makes the prior maximally different
and maintains crucial information in data. Similarly,
the TDNN-NR keeps track of the information in pre-
vious data while leveraging the concept of restricting
the parameter values in a certain standard deviation,
as introduced by the new regularization.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Euclidean Distance (b) WS Distance (c) Reconstruction Loss

FIGURE 4: The measures used to inspect MDSAE-NR behavior

FIGURE 5: AUC-ROC Curve for whole dataset

FIGURE 6: 2D latent codes before training: The yellow
points are the average points of the codes

REFERENCES
[1] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security

Assessment: Identifying and Preventing Software Vulnerabilities.
Addison-Wesley Professional, 2006. ISBN 0321444426.

[2] S. M. Ghaffarian and H. R. Shahriari. Software vulnerability analysis
and discovery using machinelearning and data-mining techniques:
A survey. ACM Computing Surveys (CSUR), 50(4):56, 2017.

[3] Y. Shin, A. Meneely, L. Williams, and J A Osborne. Evaluating com-
plexity, code churn, and developer activity metrics as indicators of

FIGURE 7: 2D latent codes during training: The yellow
points are the average points of the codes

FIGURE 8: 2D latent codes after training: The yellow
points are the average points of the codes

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965726, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

software vulnerabilities. IEEE Transactions on Software Engineering,
37(6):772–787, 2011.

[4] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting
vulnerable software components. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS ’07,
pp. 529–540, 2007. ISBN 978-1-59593-703-2

[5] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability extrapolation:
assisted discovery of vulnerabilities using machine learning. In Pro-
ceedings of the 5th USENIX conference on Offensive technologies,
pp. 13–23, 2011.

[6] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. VulPecker: An auto-
mated vulnerability detection system based on code similarity anal-
ysis. In Proceedings of the 32nd Annual Conference on Computer
Security Applications, ACSAC ’16, pp. 201–213, 2016. ISBN 978-1-
4503-4771-6.

[7] S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY: A scalable approach
for vulnerable code clone discovery. In IEEE Symposium on Security
and Privacy, pp. 595–614. IEEE Computer Society, 2017.

[8] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong.
VulDeePecker: A deep learning-based system for vulnerability de-
tection. CoRR, abs/1801.01681, 2018.

[9] H. K. Dam, T. Tran, T. Pham, N. S. Wee, J. Grundy, and A. Ghose.
Automatic feature learning for vulnerability prediction. CoRR,
abs/1708.02368, 2017.

[10] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, A Comparative
Study of Deep Learning-Based Vulnerability Detection System, IEEE
Access, vol. 7, pp. 103184-103197, 2019.

[11] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Mon-
tague. Cross-project transfer representation learning for vulnerable
function discovery. In IEEE Transactions on Industrial Informatics,
2018.

[12] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

[13] A. Avancini and M. Ceccato. Comparison and integration of genetic
algorithms and dynamic symbolic execution for security testing of
cross-site scripting vulnerabilities. Information and Software Tech-
nology, 55(12):2209-2222, 2013.

[14] Q. Meng, S. Wen, B. Zhang, and C. Tang. Automatically discover
vulnerability through similar functions. In Progress in Electromag-
netic Research Symposium (PIERS), pp. 3657–3661. IEEE, 2016.

[15] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier.
Toward large-scale vulnerability discovery using machine learning.
In Proceedings of the Sixth ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY ’16, pp. 85–96, 2016. ISBN
978-1-4503-3935-3.

[16] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for data
structures. In OSDI, volume 8, pp.255–266, 2008.

[17] D. H. White and G. Luttgen. Identifying dynamic data structures
by learning evolving patterns in memory. In TACAS, pp. 354–369.
Springer, 2013.

[18] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, discovRE: Ef-
ficient Cross-Architecture Identification of Bugs in Binary Code, in
Proceedings 2016 Network and Distributed System Security Sympo-
sium, 2016.

[19] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross
Architecture Bug Search in Binary Executables. In Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P), 2015.

[20] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. Semantics-based
Obfuscation-resilient Binary Code Similarity Comparison with Ap-
plications to Software Plagiarism Detection. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2014.

[21] D. Gao, M. K. Reiter, , and D. Song. BinHunt: Automatically Finding
Semantic Differences in Binary Programs. In Proceedings of the 4th
International Conference on Information Systems Security, 2008.

[22] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket Execution:
Dynamic Similarity Testing for Program Binaries and Components.
In Proceedings of the 23rd USENIX Security Symposium, 2014.

[23] T. Le and T. Nguyen and T. Le and D. Phung and P. Mon-
tague and O. De Vel and L. Qu, Maximal Divergence Se-
quential Autoencoder for Binary Software Vulnerability Detec-
tion,International Conference on Learning Representations,2019,
https://openreview.net/forum?id=ByloIiCqYQ.

[24] P. Murugan, S. Durairaj , Regularization and Optimization Strate-
gies in Deep Convolutional Neural Network, arXiv Preprint 2017,
arXiv:1712.04711.

[25] V. Le and T. Mikolov. Distributed representations of sentences and
documents. In International on Machine Learning 2014, volume 32
of JMLR Workshop and Conference Proceedings, pp. 1188–1196.
JMLR.org, 2014.

[26] J. Saxe and K. Berlin. Deep neural network based malware detection
using two dimensional binary program features. In Malicious and
Unwanted Software (MALWARE), 2015 10th International Confer-
ence on, pp. 11-20. IEEE, 2015.

[27] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C.
Nicholas. Malware detection by eating a whole exe. arXiv preprint
arXiv:1710.09435, 2017.

[28] D. P. Kingma and M. Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

VOLUME 4, 2016 9

