
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Adversarial Examples Detection for XSS
Attacks based on Generative Adversarial
Networks

Xueqin Zhang
1
, Yue Zhou

1
, Songwen Pei

 2
, Jingjing Zhuge

1
, Jiahao Chen

1

1 Department of Electronic and Communications Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, China
2 Department of Computer Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Corresponding author: Xueqin Zhang (e-mail: zxq@ecust.edu.cn), Songwen Pei (e-mail: swpei@usst.edu.cn).

ABSTRACT Models based on deep learning are prone to misjudging the results when faced with

adversarial examples. In this paper, we propose an MCTS-T algorithm for generating adversarial examples

of cross-site scripting (XSS) attacks based on Monte Carlo tree search (MCTS) algorithm. The MCTS

algorithm enables the generation model to provide a reward value that reflects the probability of generative

examples bypassing the detector. To guarantee the antagonism and feasibility of the generative adversarial

examples, the bypassing rules are restricted. The experimental results indicate that the missed detection rate

of adversarial examples is significantly improved after the MCTS-T generation algorithm. Additionally, we

construct a generative adversarial network (GAN) to optimize the detector and improve the detection rate

when dealing with adversarial examples. After several epochs of adversarial training, the accuracy of

detecting adversarial examples is significantly improved.

INDEX TERMS Network intrusion detection, generative adversarial network, Monte Carlo Tree,

convolutional neural networks

I. INTRODUCTION

Deep learning methods, with their high-precision in

classification and high-speed processing performance, are

expected to complement or replace traditional intrusion

detection technologies in the detection of intrusions under

complex internet environments. Since being proposed by

Hinton [1], deep learning has proven to have excellent

performance in fields such as image classification [2][3]

and data mining [4].

However, deep learning technology tends to perform

poorly when faced with adversarial examples. Adversarial

examples can trick machine learning models with minor

adjustments of the original samples, making machine

learning models produce incorrect outputs [5]. Adversarial

examples have been proven to have strong misleading

effects in the field of image recognition [6]. Therefore,

adversarial examples have become an unavoidable problem

when developers apply deep learning models to practical

issues, especially in the information security field.

Defending against attacks caused by adversarial examples

and minimizing the effectiveness of adversarial examples

are important tasks for deep learning experts in the security

field.

Adversarial examples first appeared in the image

classification field [8]. Adversarial examples take

advantage of the highly nonlinear characteristic of the

neural network to deceive the model through minor changes

to the original samples, making machine learning models

produce incorrect classification decisions.

Assuming that function g is defined in sample space X

and that g(x)>0 denotes that the classification result is true,

the attacker’s goal is to design a sample x* that makes

g(x*)>0. Therefore, the following optimal object can be

defined as (1):

* *

max
ˆarg max (), . . (,)xx g x s t d x x d (1)

Restrictions specify that the normal distance between the

generated image and the original image must be no larger

than a certain threshold, which means there can only be

slight visual disturbances to the picture. The image can be

misclassified with high confidence after this minor change

that is hard to notice with human eyes. However, unlike

image data, for XSS attack traffic data, a small local change

to the original data can ruin the function of the traffic, so

the changes can be done to XSS traffic are restricted in this

paper. Since the bypassing rules of the generation model

mailto:zxq@ecust.edu.cn

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

are limited, we use a probabilistic simulation method rather

than a gradient descent method to ensure feasibility; thus,

we use a Monte Carlo tree search (MCTS) algorithm to

generate adversarial traffic examples.

Adversarial training is a training method that can be used

to defend against adversarial examples. The idea is adding

adversarial examples into datasets at the model training

stage, using a mixture of adversarial examples and original

samples as the training sets. Adversarial training can be

integrated into a GAN model to dynamically generate

adversarial examples. The GAN-based adversarial training

method is an advancement of deep learning technology. By

alternately training the generator and the discriminator, the

discrimination model can detect an increasing number of

generated adversarial examples and update itself to defend

against them. Since the search scope of the generator is

limited by bypassing rules, the discriminator can

theoretically cover all adversarial situations. Using GAN,

the discrimination model can avoid traversing all attack

samples and accelerate convergence when defending

against adversarial examples.

In this paper, we proposed an improved MCTS algorithm

to generate adversarial examples of XSS attack traffic data.

The proposed MCTS algorithm guarantees the feasibility of

the generated adversarial traffic examples and provides a

reward for assessing the performance of each bypassing

operation. Additionally, we built a GAN network to

optimize the intrusion detection model to defend against

adversarial attacks. The experimental results showed that

our method can effectively obtain adversarial examples,

and the GAN-optimized detection model can effectively

defend against such adversarial examples.

II. RELATED WORK

Deep learning technology has been used in the field of

information security. For intrusion detection, Nathan et al.

proposed a nonsymmetric deep autoencoder (NDAE) based

on a deep autoencoder (DAE). The proposed model

cascades two NDAEs at the end of the network, and uses

random forest as the classifier. It achieved an average

accuracy of 97.85% on the KDD datasets [7]. Vartouni et al.

studied HTTP traffic. They used an n-gram model to

construct a feature vector from the original internet traffic

using isolation forest (iForest) for classification [8]. The

above experiments show that the application of deep

learning techniques in intrusion detection can lead to high

precision and great performance.

Regarding models based on deep learning, adversarial

examples are a serious threat that can be exploited by

hackers. In [9], Grosse Kathrin et al. proposed an

adversarial examples generation algorithm for malware

detection, which allowed 63% of malware to successfully

bypass detectors constructed by neural networks. Besides,

Tang et al.’s ASG algorithm [10] for Android malware also

bypasses the CNN-based Android malware detector without

affecting the original malware functions. However,

regarding the input data form of the network model, the

above two algorithms both extract the features of the

original malware samples and construct specific binary

vectors to indicate whether a software contains a series of

behaviors or introduces a specific library file. This method

is ineffective for byte stream-oriented detection models or

other feature extraction methods; therefore, its application

scope is limited. In [11], Al-Dujaili Abdullah adopted a

saddle point optimization method and added adversarial

examples to the training of a detection network to improve

the detection rate of adversarial examples and the

robustness of the detection model. However, this method

also extracts the feature vectors obtained from feature

extraction, rather than using the original byte stream;

therefore, the model is very vulnerable to the influence of

the feature extraction algorithm. Such a method is also used

in [12]. Kreuk Felix et al. used two methods called mid-file

injection and end-of-file injection to restrict the adversarial

examples to changing only the useless parts of malicious

software. Using the fast gradient sign method (FGSM)

algorithm, adversarial examples were generated under the

premise that the function of malicious software was

unchanged, which also effectively deceived the original

detector. However, upgrading the detection model to cope

with adversarial examples is not discussed. Compared with

the aforementioned methods, we proposed an improved

MCTS algorithm for generating adversarial examples that

guarantees both antagonism and feasibility and is more

effective than FGSM.

The GAN-based adversarial training method is a useful way

to improve the discrimination model to defend against

adversarial examples. Jie Cao et al. used a GAN to build a

pose-invariant model for human face recognition, which

has effectively improved the recognition rate of the model

[13]. Researchers at Carnegie Mellon University used a

GAN to improve the target detection rates of occluded

objects [14]. However, few studies have applied GANs to

intrusion detection technologies.

In this paper, we proposed a GAN-based adversarial

training method named MCTS-T to defend against

adversarial examples. To ensure the effectiveness of

generated XSS adversarial samples, two factors of

"modification position" and "modification action" are

considered synthetically in the MCTS-T algorithm.

Compared to the traditional Monte Carlo tree algorithm, the

improvements in MCTS-T are as follows: 1)In the selection

stage, an improved UCB method called UCB-T is proposed

to select the best action sequence and the corresponding

adversarial examples for XSS attacks. 2)In the expansion

stage, a dropout strategy is applied to increase the

generalization ability of the MCTS-T model. 3)In the

simulation stage, feedback is obtained by the detection

model proposed in Section 2.2.

III. GENERATING XSS ADVERSARIAL EXAMPLES

The XSS attack is one of the most common vulnerabilities

in web applications. It induces users to execute malicious

scripts by inserting HTML or JavaScript code into the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

effective input area of a website stealing user information.

Deep learning models have proved to be useful for

defending against normal XSS attacks. However, few

models are designed for adversarial examples. In this

section, we proposed an MCTS-T algorithm to generate

adversarial examples of XSS attacks. The proposed MCTS-

T generation algorithm is specifically designed as a black

model, which means that the attackers do not need to know

the internal configurations of the detectors to bypass an

intrusion detector. Therefore, our generation algorithm can

be easily applied in practice.

A. XSS Bypassing Rule Sets

Since we need to ensure the feasibility of our generated

attacks, we cannot modify the original data at will. In this

section, we summarized the following bypassing rules

based on OpenAI Gym for XSS attacks:

•Hexadecimal Encoding: After hexadecimal encoding,

tag content can still be parsed by an escape browser. For

example, the hexadecimal escape of letter s is “�x73” or

“s”.

•Decimal Encoding: Similar to hexadecimal encoding,

decimal encoding is available for bypassing. For example,

the decimal escape of letter s is “s”.

•URL Encoding: URL encoding is used by browsers for

packaging from the input. It can take the form of “% +

hexadecimal encoding”. For example, the corresponding

URL encoding of letter s is %73. In addition, unlike

hexadecimal encoding, URL encoding can be applied to

any place on the submitting form, rather than being limited

to the tag.

•Inserting Invalid Characters: Inserting invalid characters

such as space, “/0”, or enter in the middle of the tag content

will not affect the browser’s normal parsing but can cut off

keywords.

•Case Mixture: HTML tags are not case sensitive.

Changing the content case of the HTML tag will not affect

the normal parsing of browsers.

The proposed MCTS-T generation algorithm can modify

only the original XSS attacks according to the

aforementioned rules to ensure that the modified attacks are

still valid.

B. XSS Detection Mode

To verify the validity of our algorithm for deep learning

detection models, we build a deep learning anomaly

detection model by referring to paper [15]. The model first

converts hexadecimal traffic data into decimal data one by

one. Because each data point is represented by double

hexadecimal digits in the traffic, the maximum value of

each data point is 255 in decimal and the range of the image

pixel value is 0–255. During the preprocessing stage, the

model converts the original traffic data flow into a two-

dimensional image structure. CNN is used to learn the

spatial features of the traffic image. The multilayer CNN

structure extracts high-dimensional features from the

original traffic image, outputting them as a one-dimensional

vector.

The model adopts the default structure and

hyperparameters of Alexnet, which contains eight hidden

layers. Each of the first six hidden layers consists of a CNN

layer and a pooling layer. The last two hidden layers are

full connection layers that integrate the CNN outputs and

send them to a SoftMax layer. Finally, the SoftMax layer

predicts the result according to the feature vector and

propagates loss backward by updating the parameters of

CNN.

The model is trained only by the original XSS attacks

dataset. When the training of the model has completely

converged, and its loss and accuracy no longer have

obvious changes, we use the fully convergent detection

model as our baseline to verify whether our generation

algorithm can bypass it. Note that we also compared in-

depth learning models; details can be found in the

experimental section.

C. Generating Adversarial Examples Based on MCTS-T

According to reinforcement learning theory, the variation

operation of XSS traffic is called an action, and the traffic

samples before and after the action are referred to as

different states. As mentioned in Section 3.1, each bypass

rule can be defined as an action. Therefore, generating

adversarial examples involves determining the action

sequence. We proposed an MCTS-based algorithm to find

the optimum action sequence and generate the

corresponding adversarial examples.

MCTS is a common search algorithm in computer

science. It constructs an incomplete search tree and

estimates a globally optimal solution according to the

simulation results of the partial state sequence. Therefore,

the MCTS-based algorithm can provide a reward value for

a black-box model. There are four main steps in the MCTS

algorithm:

Selection: Start traversing from the root node to a deeper

node until reaching a subsequent state node that has not

been visited.

Expansion: Add a subsequent state node to the tree.

Simulation: Start simulating from the new state, i.e.,

perform random operations according to the action set

before reaching the maximum depth.

Feedback: The loss of the final state propagates

backward, updating parameters of the selected nodes in the

tree

Different from the traditional MCTS algorithms, we

proposed an MCTS-T algorithm specifically designed for

XSS attacks and applied to generate adversarial examples.

Assuming that the current state of the sequence is Si (S0

presents the original state of the sequence), there are two

factors determining the next state Si+1, one is the

modification position and the other is the action

corresponding to each position. In the selection stage, we

use the Upper Confidence Bounds (UCB) algorithm to

choose the best path. The UCB algorithm is a classical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

selection algorithm often used by MCTS. The advantage is

that it can take into account the breadth and depth of search,

and has a good global optimization ability. For each node, a

UCB value determines whether we choose the current node.

The traditional UCB is defined as (2):

𝑈𝐶𝐵 =
𝑅𝑗

𝑁𝑗
+ √

𝐶×𝑙𝑛𝑁

𝑁𝑗
 (2)

Where 𝑅𝑗 represents the total reward of the jth child node,

𝑁𝑗 is the number of times the jth child node is selected. N is

the number of times the current node is selected. So the first

part of this formula is the utilization of existing knowledge,

and the second part is the exploration of inadequately

simulated nodes. Parameter C controls the balance of two

parts. However, such UCB formula is not suitable for XSS

attacks. For the issue of verifying XSS attacks, we have two

decision part. First is to choose the candidate modification

scope; Second is to choose the bypassing action. Besides,

we record the number of times each location has been

selected. We define the reward of position k as 𝑅_𝑝𝑜𝑠𝑘 and

the times as 𝑁_𝑝𝑜𝑠𝑘 . For each bypassing action, we also

define the reward and times of action j as 𝑅_𝑎𝑐𝑡𝑗 and

𝑁_𝑎𝑐𝑡𝑗 . Therefore, the improved UCB-T algorithm for

MCTS-T is a Cartesian product of the candidate

modification position and the bypassing action for each

position.

𝑈𝐶𝐵 − 𝑇 =
𝑅𝑝𝑜𝑠𝑘

×𝑅𝑎𝑐𝑡𝑗

𝑁𝑝𝑜𝑠𝑘
×𝑁𝑎𝑐𝑡𝑗

+ √
𝐶1×𝑙𝑛𝑁𝑝𝑜𝑠

𝑁𝑝𝑜𝑠𝑘

+ √
𝐶2×𝑙𝑛𝑁𝑎𝑐𝑡

𝑁𝑎𝑐𝑡𝑗

 (3)

Where 𝐶1 and 𝐶2 represent the factor of choosing a new

position and a new act. When we find the position 𝑝𝑜𝑠𝑘 and

action 𝑎𝑐𝑡𝑗 corresponding to the maximum UCB-T value,

the next state Si+1 can be determined.

In the expansion stage, a dropout method is used to

choose the candidate modification position randomly. At

the beginning of the stage, for each single data in the traffic,

we stochastically ignore it with a certain probability p

(p=0.5 usually). The ignored data will not be processed this

time, which makes the generative samples more generalized.

The words with gray backgrounds shown in Fig. 1 are the

examples of the candidate modifications generated by the

dropout method and will change randomly in each selection

stage. All actions in the current state are traversed, and for

each action aj, the sequence state
,i T jS

 obtained by the

action is saved. We repeat the above action N times and

obtain the final state
,i N jS

.

In the simulation stage, for each final state
,i N jS

 of the

sequence, it will be sent into the XSS detection model D

described in Section 2.2 and obtain the SoftMax output as

confidence∆𝑅𝑖+𝑁,𝑗 , which represents the traffic sequence

classified as normal or attack.

∆𝑅𝑖+𝑁,𝑗 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐷(�̃�𝑖+𝑁,𝑗)) (4)

In the MCTS, for current state Si, the feedback of action

aj is ∆𝑅𝑖,𝑗. It equals the weighted average value of ∆𝑅𝑖+1,𝑗,

that is

∆𝑅𝑖,𝑗 =
∑ 𝑤𝑗𝑗 ∙𝑅𝑖+1,𝑗

∑ 𝑤𝑗𝑗
 (5)

where wj represents a predefined weight associated with

the probability of each action. It can be seen from (5),∆𝑅𝑖,𝑗

is obtained by ∆𝑅𝑖+1,𝑗 , and the ∆𝑅𝑖+1,𝑗 is obtained by

∆𝑅𝑖+2,𝑗, and so on. The ∆𝑅𝑖+𝑁,𝑗 is obtained by Formula (4).

The reward is used as feedback in a sequential layer-based

process until the ith layer is attached. After the reward value

∆𝑅𝑖,𝑗 of each action aj is obtained, we update 𝑅_𝑎𝑐𝑡𝑖,𝑗 and

𝑅_𝑝𝑜𝑠𝑖,𝑘 in UCB-T formula as (6) and (7):

𝑅_𝑎𝑐𝑡𝑖,𝑗 = 𝑅_𝑎𝑐𝑡𝑖,𝑗 + ∆𝑅𝑖,𝑗 (6)

𝑅_𝑝𝑜𝑠𝑖,𝑘 = 𝑅_𝑝𝑜𝑠𝑖,𝑘 + ∆𝑅𝑖,𝑗 (7)

 Finally, when the search process is finished, the best

sequence is determined according to the UCB-T formula,

and the corresponding adversarial example can also be

determined.

IV. GAN-OPTIMIZED DETECTION MODEL

Deep learning detectors often have difficulty detecting

adversarial examples. To address this problem, we add

adversarial examples into the discrimination model training

set, labeling them as attacks and then retrain the model. The

process of generating and training is repeated until the deep

learning model can stably detect adversarial examples.

After the deep learning network converges, the best

structure for input interference resistance is achieved.

The structure of the GAN adopted by this paper is shown

in Fig. 2. The generator G gives a state transition

probability decided by Q to maximize its expected end

reward:

 1,() (|) (,) (8)

j

G

i j i D i j

a A

J G s s Q s a

Where 0(,)
G

D jQ s a

 represents the action-value function

of ja obtained by the Monte Carlo search of

discrimination net (in Section 2.3). Thus, a generator is

more likely to generate adversarial examples that can

effectively bypass the detector.

Each round of updating the parameters of the

discrimination model is the detection model’s learning

process of the newly generative adversarial examples. For

the discrimination net, the objective loss function is as (9):

~ ~

~

min [log ()] [log(1 ())]

 [log(1 ())]

normal attackY p Y p

Y G

D Y D Y

D Y

 (9)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

FIGURE 1. Process of generating an adversarial example of XSS attacks using the MCTS-T algorithm

where ~
normal

Y P represents real normal traffic data,

~ attackY P represents real attack traffic data, and ~Y G

represents generative XSS adversarial examples.

The generation net and discrimination net carry out

minimax two-player games, alternately updating parameters.

The specific process is as follows:

ALGORITHM 1 Training steps of XSS traffic generation net

Require: Generator G

; Detector D

; Training samples 0S ;

Randomly initialize parameters θ of G

, D

Pretrain D

 with original training samples 0S

do

empty adversarial set A

for each step in g-steps do

generate XSS adversarial example Ts

for t=1:T do

MCTS calculate action-value (),t jQ s a

end

Calculate loss according to value Q and update generation

net G
 by Eq. (6)

end

for each step in d-steps do

Train net D with original training samples and adversarial

examples

update net D according to the loss by Eq. (7)

end

while D converged

Real

Samples

Noise

Generator

Detector
Loss

Update

Back

Propagation

Generate

the Samples

Reward

MCTS

Actions

StatesUpdate

FIGURE 2. Structure of the GAN.

FIGURE 3. An example of the XSS attack traffic variant.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, the generation algorithm of adversarial

examples of XSS attacks is studied for the first time. Since

no similar algorithm has been proposed, we perform

ablation experiments to verify the effectiveness of our

proposed algorithm. We use the deep learning framework

Caffe to build the XSS intrusion detection model. The PC

configuration in this experiment is a Core i5-7400 CPU,

The Candidate modification

scope selected by Dropout

<script>alert

('XSS')</sc#x72ipt>1,1iS

1

Hexadecimal

Enc
a :

oding

6 Case Mixa : ture

<SCripT>alert('xsS')</scRipt><SCripT>alert('xsS')</scRipt>
1,6iS

a : URL Encodingj

1,i jS %3cscript>alert('XSS')</script>%3cscript>alert('XSS')</script>

...
...

iS <script>alert('XSS')</script>

,0

,

,6

...

...

i N

i N j

i N

S

S

S

Detector

,i N jR ,i jR

,0iR

,6iR

Detector

Detector

max

,. . 6i je g R j

1,6 1,6i iS S

①

② ③

④

⑤

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

GTX 1060 graphics card, 8G memory, and Ubuntu 16.04

system.

A. Datasets and Evaluation Metric

To include the new type of XSS attack, an intrusion

detection evaluation dataset called CICIDS2017[16] is used.

This dataset contains benign and up-to-date common

attacks based on real-world data (PCAPs). Labeled files

based on timestamp, source and destination IPs, source and

destination ports, protocol, and attack are provided in this

dataset by the CICFlowMeter tool. The damn vulnerable

web app (DVWA) is used to automate the attacks in XSS.

For this experiment, we extract 4789 XSS attack traffic

examples and 12000 normal traffic examples from the

dataset. Table 1 shows the quantitative distribution of the

training set and the validation set.

TABLE I

 Quantitative Distribution of Datasets

Category Train Validation Total

XSS 3592 1197 4789

Normal 9000 3000 12000

Total 12592 4197 16789

The main evaluating indicators used in the experiment

are recall rate (TPR) and precision:

100% (10)

TP
TPR

TP FN

100% (11)

TP
precision

TP FP

where TP denotes the number of samples correctly

identified as XSS attacks, FP denotes the number of normal

samples incorrectly identified as XSS attacks, and FN

denotes the number of XSS samples incorrectly identified

as normal traffic.

TPR represents the proportion of correctly identified

XSS attacks in all XSS attacks, and it reflects the rate of

false negatives, i.e., 1−TPR. Precision represents the

proportion of real XSS attacks in all samples identified by

the model as XSS, and it reflects the rate of false positives,

i.e., 1−precision.

B. Experimental Results

First, we tested the performance of the original XSS attack

detection model (i.e., the discrimination net used in GAN).

XSS variants of XSS attacks in the validation set were

generated through adversarial examples generating the

method described in Section 2. To ensure the robustness of

the results, ten variants were generated for the original XSS

traffic, which means that the ratio of adversarial examples

to the original examples was 10:1. Fig. 3 shows an example

of an XSS attack traffic variant.

In this experiment, we tested the original XSS detector

with the original dataset and the adversarial dataset. We

also compared the MCTS-T proposed in this paper with the

traditional FGSM [17]. The experimental results are shown

in Table 2.
TABLE Ⅱ

 Detection Results with Different Generation Algorithms

Data Source TPR (%) Precision (%)

Original 96.16 99.91

D_ FGSM 90.14 99.83

D_ MCTS-T 84.32 99.89

Here, D_FGSM and D_MCTS-T means the dataset

generated by FGSM and MCTS-T algorithm respectively.

The purpose of an algorithm for generating adversarial

examples is to confuse the detection models. The higher the

false-negative rate (the lower the TPR) is, the better the

algorithm. The table shows that the performance of the

original detector is degraded by the adversarial examples

and that the false-negative rate increases, which proves the

effectiveness of the adversarial examples. Additionally, the

MCTS-T algorithm is better than the traditional FGSM

algorithm, increasing the false-negative rate of the detector

by approximately 6%. The precision reflects the false alarm

rate of the model. With a precision above 99%, the deep-

learning-based XSS detection model has a very low false-

positive rate.

To further validate the effectiveness of our generated

adversarial dataset, we applied the original dataset and the

adversarial dataset to LSTM[18] and XGBoost[19]. The

hyperparameters of the comparison classifiers are shown in

Table 3. The experimental results are shown in Table 4.
Table Ⅲ

Structure of Comparison Classifiers

classifier structure and settings

LSTM

Layers: 2

Hidden units: 128

Learning rate: 0.001

Epoch: 100

XGBoost

n_estimators=50

max_depth=3

Learning_rate=0.1

Table Ⅳ

Experimental Results with Comparison Classifier

Model+Data Source TPR (%) Precision (%)

LSTM+Original 97.74% 98.29%

LSTM+D_MCTS-T 81.23% 99.90%

XGBoost+Original 98.87% 98.87%

XGBoost+D_MCTS-T 39.41% 99.86%

As mentioned above, the decline in TPR indicates the

effectiveness of adversarial examples. As shown in Table 4,

when using adversarial examples, the TPR of LSTM

decreased by 16.51%, and the TPR of XGBoost decreases

significantly by 59.46%. The experimental results prove the

effectiveness of our adversarial examples. The slight

increase in Precision is because the number of adversarial

examples is higher than the number of original examples,

leading to a larger TP value in formula (11).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

FIGURE 5. Convergence curve of the discrimination model in GAN. The blue curve shows the accuracy of the validation sets. The green and orange
curves show the loss of the training set and the validation set, respectively.

FIGURE 4. Effects of MCTS-T depth on TPR and time consumption.

Table Ⅴ

Effects of MCTS-T Depth

Depth of MCTS-T TPR (%) Time (s)

T=1 89.36 1.676

T=3 85.81 4.337

T=5 84.32 6.055

T=10 82.16 12.173

Table Ⅵ

Detection Rate of Adversarial Examples with Different GAN Iterative
Epochs

Iterative Epoch TPR (%) Precision (%)

Epoch 0 80.12 99.85

Epoch 1 68.24 99.73

Epoch 3 87.91 99.81

Epoch 5 94.59 99.72

Second, we compare the effect of the MCTS-T’s search

depth on the search time and effectiveness of adversarial

examples. As shown in Table 5 and Fig. 4, with the

increase in the search depth of MCTS-T, the detection rate

of the detector for adversarial examples decreases

significantly. However, an increase in tree depth also leads

to an increase in the search time. To balance the

effectiveness and generation time of adversarial examples,

a search depth of T=5 is used.

We observed the iterative process of GAN to find the

change in the detection rate (TPR) for adversarial examples

under different numbers of iterations. The results are shown

in Table 6 and Fig. 5. For the detection model, the goal of

optimization is to defend against adversarial examples; the

lower the false-negative rate (the higher the TPR) is, the

better the detection model. Table 4 shows that, with the

increase in the number of iterations, TPR decreases first and

then increases, while precision remains stable. After more

than 5 iterations, the TPR and precision remain stable, and

the model converges. Therefore, 5 iterations are performed.

The experimental results show that the precision remains

stable, indicating that the effectiveness of the detection

model is not affected during the optimization of GAN.

We also compared the performance of the GAN-

optimized model on the original dataset and the adversarial

set generated by MCTS-T. Table 7 shows that the GAN

network optimizes the original detection mode to make the

model more effective for detecting XSS adversarial

examples, with TPR increased by 8.24%. While ensuring

that the false alarm rate does not increase, GAN greatly

improves the ability of the model to detect adversarial

examples.

Table Ⅶ

Performance of the GAN-Optimized Model

Model Data Source TPR(%) Precision(%)

Original
original 96.16 99.91

adversarial 86.35 99.88

GAN-

optimized

original 95.99 99.74

adversarial 94.59 99.72

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

VI. CONCLUSION

Deep-learning-based XSS attack detection models can detect

attacks effectively, but they cannot to detect adversarial

examples. This paper proposed an MCTS-T adversarial

example generation algorithm for XSS attacks. The proposed

algorithm can generate adversarial examples for any black-

box model because the MCTS-T can obtain the reward value

by analyzing the statistical result of the model output. We

optimize the XSS detection model with GAN to enhance its

ability to defend against adversarial examples. By

alternatively training the discrimination model and

generating new adversarial examples, the convergent

discriminant model can detect the adversarial examples to the

greatest extent. The experiments show that the MCTS-T

algorithm can generate effective adversarial examples to

bypass deep-learning-based detectors. Moreover, the GAN-

optimized XSS detection model can defend against XSS

attacks and its adversarial examples. The disadvantage of

MCTS-T algorithm is that it can only generate adversarial

examples of XSS traffic at present. In the future, we will pay

efforts to study a general adversarial example generation

algorithm.

ACKNOWLEDGMENTS

This work was partially supported by the Natural Science

Foundation of China (NNSFC No. 61472139).

REFERENCES

[1] Hinton G, Salakhutdinov Ｒ.: 'Reducing the

Dimensionality of Data with Neural Networks', Science,

2006, 313: 504-507

[2] Krizhevsky A, Sutskever I, Hinton G E. 'ImageNet

classification with deep convolutional neural networks'.

International Conference on Neural Information Processing

Systems. Curran Associates Inc. 2012:1097-1105.

[3] Szegedy C, Liu W, Jia Y, et al.: 'Going deeper with

convolutions', 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1-

9.

[4] Songwen Pei, Tianma Shen, Chunhua Gu, Zhong Ning,

Xiaochun Ye, Naixue Xiong, 3DACN: 3D Augmented

Convolutional Network for Time Series Data, Information

Science, 513(2020):17-29,2019.11

[5] Biggio B, Corona I, Maiorca D, et al.: 'Evasion Attacks

against Machine Learning at Test Time'. ECML PKDD

2013: Machine Learning and Knowledge Discovery in

Databases, 2013, 8190:387-402.

[6] Szegedy, Christian, et al.: 'Intriguing properties of

neural networks', 2013, arXiv preprint, arXiv:1312.6199.

[7] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi,: 'A Deep

Learning Approach to Network Intrusion Detection', IEEE

Transactions on Emerging Topics in Computational

Intelligence, , Feb. 2018, 2, 1, pp 41-50.

[8] A. M. Vartouni, S. S. Kashi and M. Teshnehlab,: 'An

anomaly detection method to detect web attacks using

Stacked Auto-Encoder', 2018 6th Iranian Joint Congress on

Fuzzy and Intelligent Systems (CFIS), Kerman, 2018, pp

131-134.

 [9] Grosse K , Papernot N , Manoharan P , et al.:

'Adversarial Examples for Malware Detection', European

Symposium on Research in Computer Security. Springer,

Cham, 2017, pp 62-79.

[10] Chuan T , Yi Z , Yuexiang Y , et al.: 'DroidGAN:

Android adversarial sample generation framework based on

DCGAN'. Journal on Communications, 2018, 39, (S1), pp

70-75.

[11] Al-Dujaili A , Huang A , Hemberg E , et al.:

'Adversarial Deep Learning for Robust Detection of Binary

Encoded Malware'. IEEE Security and Privacy Workshops,

2018, 1, pp 76-82

[12] Kreuk F , Barak A , Aviv-Reuven S , et al.: 'Deceiving

End-to-End Deep Learning Malware Detectors using

Adversarial Examples'. 2018, arXiv preprint,

arXiv:1802.04528

[13] Cao J, Hu Y, Zhang H, et al.: 'Learning a High Fidelity

Pose Invariant Model for High-resolution Face

Frontalization'. 2018, arXiv preprnt, arXiv:1806.08472

[14] Wang X, Shrivastava A, Gupta A.: 'A-Fast-RCNN:

Hard Positive Generation via Adversary for Object

Detection', 2017, arXiv preprint, arXiv:1704.03414

[15] W. Wang et al.: 'HAST-IDS: Learning Hierarchical

Spatial-Temporal Features Using Deep Neural Networks to

Improve Intrusion Detection', IEEE Access, 2018, 6, pp

1792-1806.

[16] Sharafaldin I, Lashkari A H, Ghorbani A A.: 'Toward

Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization'. 4th International Conference on

Information Systems Security and Privacy, 2018, pp 108-

116.

[17] Goodfellow I J, Shlens J, Szegedy C.: 'Explaining and

Harnessing Adversarial Examples', 2014, arXiv preprint,

arXiv:1412.6572.

[18] S. Althubiti, W. Nick, J. Mason, X. Yuan and A.

Esterline,: 'Applying Long Short-Term Memory Recurrent

Neural Network for Intrusion Detection'. SoutheastCon

2018, St. Petersburg, FL, 2018, pp 1-5.

[19] Sukhpreet Dhaliwal, Abdullah Nahid, Robert Abbas.:

'Effective Intrusion Detection System Using XGBoost'.

Information, 2018, 9(7), 149.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

VOLUME XX, 2017 9

Xueqin Zhang received the PhD degree in

Detection Technology and Automation Devices

from East China University of Science and

Technology (ECUST), Shanghai, China, in 2007.
Since 1998, she has been in the Electrical and

Communication Engineering Department,

ECUST, where she is currently an Associate
Professor. At 2006, she worked as a visiting

scholar in University of Wisconsin Madison. Her

research interests include information security,
pattern classification, and datamining etc.Corresponding author. Email:

zxq@ecust.edu.cn.

Yue Zhou received his BS degree in

microelectronics from the China JiLiang

University in 2017, and currently pursuing his MS

degree in communication and information

engineering in East China University of Science

and Technology. He has been involved in several

intrusion detection projects. His research interest

includes intrusion detection and machine learning.

Songwen Pei received the B.S. from National

University of Defence and Technology, Changsha,

China in 2003, and the Ph.D. from Fudan University,

Shanghai, China in 2009. He is currently an

associate professor at the University of Shanghai for

Science and Technology. He was a Guest

Researcher at the Institute of Computing

Technology, Chinese Academy of Sciences (2011-),

a Research Scientist at University of California,

Irvine (2013-2015) and Queensland University of Technology (2017). He

was a recipient of Pujiang Talent of Shanghai, Leading Talent of Suzhou,

and the Shanghai Science and Technology Progress Award. His research

interests include heterogeneous multicore system, cloud computing, and big

data, etc. He is a senior member of the IEEE, and CCF in China, and he is

also a board member of CCF-TCCET, and CCF-TCARCH respectively.

Jingjing Zhuge received his BS degree in

information engineering in 2016 from the East China

University of Science and Technology, where he is

currently pursuing an MS degree in signal and

information processing. He has been involved in

numerous network security projects. His current

research interests include intrusion detection,

machine learning, and neural networks.

Jiahao Chen received the BS degree in 2016

from East China University of Science and

Technology, where he is currently pursuing an

MS degree. He has been involved in numerous

network security projects. His current research

interests include intrusion detection, information

security and pattern recognition.

