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ABSTRACT Models based on deep learning are prone to misjudging the results when faced with 

adversarial examples. In this paper, we propose an MCTS-T algorithm for generating adversarial examples 

of cross-site scripting (XSS) attacks based on Monte Carlo tree search (MCTS) algorithm. The MCTS 

algorithm enables the generation model to provide a reward value that reflects the probability of generative 

examples bypassing the detector. To guarantee the antagonism and feasibility of the generative adversarial 

examples, the bypassing rules are restricted. The experimental results indicate that the missed detection rate 

of adversarial examples is significantly improved after the MCTS-T generation algorithm. Additionally, we 

construct a generative adversarial network (GAN) to optimize the detector and improve the detection rate 

when dealing with adversarial examples. After several epochs of adversarial training, the accuracy of 

detecting adversarial examples is significantly improved. 

INDEX TERMS Network intrusion detection, generative adversarial network, Monte Carlo Tree, 

convolutional neural networks 

I. INTRODUCTION 

Deep learning methods, with their high-precision in 

classification and high-speed processing performance, are 

expected to complement or replace traditional intrusion 

detection technologies in the detection of intrusions under 

complex internet environments. Since being proposed by 

Hinton [1], deep learning has proven to have excellent 

performance in fields such as image classification [2][3] 

and data mining [4].  

However, deep learning technology tends to perform 

poorly when faced with adversarial examples. Adversarial 

examples can trick machine learning models with minor 

adjustments of the original samples, making machine 

learning models produce incorrect outputs [5]. Adversarial 

examples have been proven to have strong misleading 

effects in the field of image recognition [6]. Therefore, 

adversarial examples have become an unavoidable problem 

when developers apply deep learning models to practical 

issues, especially in the information security field. 

Defending against attacks caused by adversarial examples 

and minimizing the effectiveness of adversarial examples 

are important tasks for deep learning experts in the security 

field. 

Adversarial examples first appeared in the image 

classification field [8]. Adversarial examples take 

advantage of the highly nonlinear characteristic of the 

neural network to deceive the model through minor changes 

to the original samples, making machine learning models 

produce incorrect classification decisions. 

Assuming that function g is defined in sample space X 

and that g(x)>0 denotes that the classification result is true, 

the attacker’s goal is to design a sample x* that makes 

g(x*)>0. Therefore, the following optimal object can be 

defined as (1): 

    
* *

max
ˆarg max ( ),    . . ( , )xx g x s t d x x d        (1) 

Restrictions specify that the normal distance between the 

generated image and the original image must be no larger 

than a certain threshold, which means there can only be 

slight visual disturbances to the picture. The image can be 

misclassified with high confidence after this minor change 

that is hard to notice with human eyes. However, unlike 

image data, for XSS attack traffic data, a small local change 

to the original data can ruin the function of the traffic, so 

the changes can be done to XSS traffic are restricted in this 

paper. Since the bypassing rules of the generation model 
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are limited, we use a probabilistic simulation method rather 

than a gradient descent method to ensure feasibility; thus, 

we use a Monte Carlo tree search (MCTS) algorithm to 

generate adversarial traffic examples. 

Adversarial training is a training method that can be used 

to defend against adversarial examples. The idea is adding 

adversarial examples into datasets at the model training 

stage, using a mixture of adversarial examples and original 

samples as the training sets. Adversarial training can be 

integrated into a GAN model to dynamically generate 

adversarial examples. The GAN-based adversarial training 

method is an advancement of deep learning technology. By 

alternately training the generator and the discriminator, the 

discrimination model can detect an increasing number of 

generated adversarial examples and update itself to defend 

against them. Since the search scope of the generator is 

limited by bypassing rules, the discriminator can 

theoretically cover all adversarial situations. Using GAN, 

the discrimination model can avoid traversing all attack 

samples and accelerate convergence when defending 

against adversarial examples. 

In this paper, we proposed an improved MCTS algorithm 

to generate adversarial examples of XSS attack traffic data. 

The proposed MCTS algorithm guarantees the feasibility of 

the generated adversarial traffic examples and provides a 

reward for assessing the performance of each bypassing 

operation. Additionally, we built a GAN network to 

optimize the intrusion detection model to defend against 

adversarial attacks. The experimental results showed that 

our method can effectively obtain adversarial examples, 

and the GAN-optimized detection model can effectively 

defend against such adversarial examples. 

II. RELATED WORK 

Deep learning technology has been used in the field of 

information security. For intrusion detection, Nathan et al. 

proposed a nonsymmetric deep autoencoder (NDAE) based 

on a deep autoencoder (DAE). The proposed model 

cascades two NDAEs at the end of the network, and uses 

random forest as the classifier. It achieved an average 

accuracy of 97.85% on the KDD datasets [7]. Vartouni et al. 

studied HTTP traffic. They used an n-gram model to 

construct a feature vector from the original internet traffic 

using isolation forest (iForest) for classification [8]. The 

above experiments show that the application of deep 

learning techniques in intrusion detection can lead to high 

precision and great performance. 

Regarding models based on deep learning, adversarial 

examples are a serious threat that can be exploited by 

hackers. In [9], Grosse Kathrin et al. proposed an 

adversarial examples generation algorithm for malware 

detection, which allowed 63% of malware to successfully 

bypass detectors constructed by neural networks. Besides, 

Tang et al.’s ASG algorithm [10] for Android malware also 

bypasses the CNN-based Android malware detector without 

affecting the original malware functions. However, 

regarding the input data form of the network model, the 

above two algorithms both extract the features of the 

original malware samples and construct specific binary 

vectors to indicate whether a software contains a series of 

behaviors or introduces a specific library file. This method 

is ineffective for byte stream-oriented detection models or 

other feature extraction methods; therefore, its application 

scope is limited. In [11], Al-Dujaili Abdullah adopted a 

saddle point optimization method and added adversarial 

examples to the training of a detection network to improve 

the detection rate of adversarial examples and the 

robustness of the detection model. However, this method 

also extracts the feature vectors obtained from feature 

extraction, rather than using the original byte stream; 

therefore, the model is very vulnerable to the influence of 

the feature extraction algorithm. Such a method is also used 

in [12]. Kreuk Felix et al. used two methods called mid-file 

injection and end-of-file injection to restrict the adversarial 

examples to changing only the useless parts of malicious 

software. Using the fast gradient sign method (FGSM) 

algorithm, adversarial examples were generated under the 

premise that the function of malicious software was 

unchanged, which also effectively deceived the original 

detector. However, upgrading the detection model to cope 

with adversarial examples is not discussed. Compared with 

the aforementioned methods, we proposed an improved 

MCTS algorithm for generating adversarial examples that 

guarantees both antagonism and feasibility and is more 

effective than FGSM. 

The GAN-based adversarial training method is a useful way 

to improve the discrimination model to defend against 

adversarial examples. Jie Cao et al. used a GAN to build a 

pose-invariant model for human face recognition, which 

has effectively improved the recognition rate of the model 

[13]. Researchers at Carnegie Mellon University used a 

GAN to improve the target detection rates of occluded 

objects [14]. However, few studies have applied GANs to 

intrusion detection technologies.  

In this paper, we proposed a GAN-based adversarial 

training method named MCTS-T to defend against 

adversarial examples. To ensure the effectiveness of 

generated XSS adversarial samples, two factors of 

"modification position" and "modification action" are 

considered synthetically in the MCTS-T algorithm. 

Compared to the traditional Monte Carlo tree algorithm, the 

improvements in MCTS-T are as follows: 1)In the selection 

stage, an improved UCB method called UCB-T is proposed 

to select the best action sequence and the corresponding 

adversarial examples for XSS attacks. 2)In the expansion 

stage, a dropout strategy is applied to increase the 

generalization ability of the MCTS-T model. 3)In the 

simulation stage, feedback is obtained by the detection 

model proposed in Section 2.2.   

III. GENERATING XSS ADVERSARIAL EXAMPLES  

The XSS attack is one of the most common vulnerabilities 

in web applications. It induces users to execute malicious 

scripts by inserting HTML or JavaScript code into the 
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effective input area of a website stealing user information. 

Deep learning models have proved to be useful for 

defending against normal XSS attacks. However, few 

models are designed for adversarial examples. In this 

section, we proposed an MCTS-T algorithm to generate 

adversarial examples of XSS attacks. The proposed MCTS-

T generation algorithm is specifically designed as a black 

model, which means that the attackers do not need to know 

the internal configurations of the detectors to bypass an 

intrusion detector. Therefore, our generation algorithm can 

be easily applied in practice. 

A. XSS Bypassing Rule Sets 

Since we need to ensure the feasibility of our generated 

attacks, we cannot modify the original data at will. In this 

section, we summarized the following bypassing rules 

based on OpenAI Gym for XSS attacks: 

•Hexadecimal Encoding: After hexadecimal encoding, 

tag content can still be parsed by an escape browser. For 

example, the hexadecimal escape of letter s is “&#0x73” or 

“&#x73”. 

•Decimal Encoding: Similar to hexadecimal encoding, 

decimal encoding is available for bypassing. For example, 

the decimal escape of letter s is “&#115”. 

•URL Encoding: URL encoding is used by browsers for 

packaging from the input. It can take the form of “% + 

hexadecimal encoding”. For example, the corresponding 

URL encoding of letter s is %73. In addition, unlike 

hexadecimal encoding, URL encoding can be applied to 

any place on the submitting form, rather than being limited 

to the tag. 

•Inserting Invalid Characters: Inserting invalid characters 

such as space, “/0”, or enter in the middle of the tag content 

will not affect the browser’s normal parsing but can cut off 

keywords. 

•Case Mixture: HTML tags are not case sensitive. 

Changing the content case of the HTML tag will not affect 

the normal parsing of browsers. 

The proposed MCTS-T generation algorithm can modify 

only the original XSS attacks according to the 

aforementioned rules to ensure that the modified attacks are 

still valid. 

B. XSS Detection Mode 

To verify the validity of our algorithm for deep learning 

detection models, we build a deep learning anomaly 

detection model by referring to paper [15]. The model first 

converts hexadecimal traffic data into decimal data one by 

one. Because each data point is represented by double 

hexadecimal digits in the traffic, the maximum value of 

each data point is 255 in decimal and the range of the image 

pixel value is 0–255. During the preprocessing stage, the 

model converts the original traffic data flow into a two-

dimensional image structure. CNN is used to learn the 

spatial features of the traffic image. The multilayer CNN 

structure extracts high-dimensional features from the 

original traffic image, outputting them as a one-dimensional 

vector.  

The model adopts the default structure and 

hyperparameters of Alexnet, which contains eight hidden 

layers. Each of the first six hidden layers consists of a CNN 

layer and a pooling layer. The last two hidden layers are 

full connection layers that integrate the CNN outputs and 

send them to a SoftMax layer. Finally, the SoftMax layer 

predicts the result according to the feature vector and 

propagates loss backward by updating the parameters of 

CNN. 

The model is trained only by the original XSS attacks 

dataset. When the training of the model has completely 

converged, and its loss and accuracy no longer have 

obvious changes, we use the fully convergent detection 

model as our baseline to verify whether our generation 

algorithm can bypass it. Note that we also compared in-

depth learning models; details can be found in the 

experimental section. 

C. Generating Adversarial Examples Based on MCTS-T 

According to reinforcement learning theory, the variation 

operation of XSS traffic is called an action, and the traffic 

samples before and after the action are referred to as 

different states. As mentioned in Section 3.1, each bypass 

rule can be defined as an action. Therefore, generating 

adversarial examples involves determining the action 

sequence. We proposed an MCTS-based algorithm to find 

the optimum action sequence and generate the 

corresponding adversarial examples. 

MCTS is a common search algorithm in computer 

science. It constructs an incomplete search tree and 

estimates a globally optimal solution according to the 

simulation results of the partial state sequence. Therefore, 

the MCTS-based algorithm can provide a reward value for 

a black-box model. There are four main steps in the MCTS 

algorithm: 

Selection: Start traversing from the root node to a deeper 

node until reaching a subsequent state node that has not 

been visited. 

Expansion: Add a subsequent state node to the tree. 

Simulation: Start simulating from the new state, i.e., 

perform random operations according to the action set 

before reaching the maximum depth. 

Feedback: The loss of the final state propagates 

backward, updating parameters of the selected nodes in the 

tree 

Different from the traditional MCTS algorithms, we 

proposed an MCTS-T algorithm specifically designed for 

XSS attacks and applied to generate adversarial examples. 

Assuming that the current state of the sequence is Si (S0 

presents the original state of the sequence), there are two 

factors determining the next state Si+1, one is the 

modification position and the other is the action 

corresponding to each position. In the selection stage, we 

use the Upper Confidence Bounds (UCB) algorithm to 

choose the best path. The UCB algorithm is a classical 
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selection algorithm often used by MCTS. The advantage is 

that it can take into account the breadth and depth of search, 

and has a good global optimization ability. For each node, a 

UCB value determines whether we choose the current node. 

The traditional UCB is defined as (2): 

𝑈𝐶𝐵 =
𝑅𝑗

𝑁𝑗
+ √

𝐶×𝑙𝑛𝑁

𝑁𝑗
                             (2) 

Where 𝑅𝑗 represents the total reward of the jth child node, 

𝑁𝑗 is the number of times the jth child node is selected. N is 

the number of times the current node is selected. So the first 

part of this formula is the utilization of existing knowledge, 

and the second part is the exploration of inadequately 

simulated nodes. Parameter C controls the balance of two 

parts. However, such UCB formula is not suitable for XSS 

attacks. For the issue of verifying XSS attacks, we have two 

decision part. First is to choose the candidate modification 

scope; Second is to choose the bypassing action. Besides, 

we record the number of times each location has been 

selected. We define the reward of position k as 𝑅_𝑝𝑜𝑠𝑘 and 

the times as 𝑁_𝑝𝑜𝑠𝑘 . For each bypassing action, we also 

define the reward and times of action j as 𝑅_𝑎𝑐𝑡𝑗  and 

𝑁_𝑎𝑐𝑡𝑗 . Therefore, the improved UCB-T algorithm for 

MCTS-T is a Cartesian product of the candidate 

modification position and the bypassing action for each 

position. 

𝑈𝐶𝐵 − 𝑇 =
𝑅𝑝𝑜𝑠𝑘

×𝑅𝑎𝑐𝑡𝑗 

𝑁𝑝𝑜𝑠𝑘
×𝑁𝑎𝑐𝑡𝑗

+ √
𝐶1×𝑙𝑛𝑁𝑝𝑜𝑠

𝑁𝑝𝑜𝑠𝑘

+ √
𝐶2×𝑙𝑛𝑁𝑎𝑐𝑡

𝑁𝑎𝑐𝑡𝑗

    (3) 

Where 𝐶1 and 𝐶2 represent the factor of choosing a new 

position and a new act. When we find the position 𝑝𝑜𝑠𝑘  and 

action 𝑎𝑐𝑡𝑗  corresponding to the maximum UCB-T value, 

the next state Si+1 can be determined. 

In the expansion stage, a dropout method is used to 

choose the candidate modification position randomly. At 

the beginning of the stage, for each single data in the traffic, 

we stochastically ignore it with a certain probability p 

(p=0.5 usually). The ignored data will not be processed this 

time, which makes the generative samples more generalized. 

The words with gray backgrounds shown in Fig. 1 are the 

examples of the candidate modifications generated by the 

dropout method and will change randomly in each selection 

stage. All actions in the current state are traversed, and for 

each action aj, the sequence state 
,i T jS 

 obtained by the 

action is saved. We repeat the above action N times and 

obtain the final state 
,i N jS 

.  

In the simulation stage, for each final state 
,i N jS 

 of the 

sequence, it will be sent into the XSS detection model D 

described in Section 2.2 and obtain the SoftMax output as 

confidence∆𝑅𝑖+𝑁,𝑗 , which represents the traffic sequence 

classified as normal or attack.  

∆𝑅𝑖+𝑁,𝑗 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐷(�̃�𝑖+𝑁,𝑗))               (4) 

In the MCTS, for current state Si, the feedback of action 

aj is ∆𝑅𝑖,𝑗. It equals the weighted average value of ∆𝑅𝑖+1,𝑗, 

that is 

∆𝑅𝑖,𝑗 =
∑ 𝑤𝑗𝑗 ∙𝑅𝑖+1,𝑗

∑ 𝑤𝑗𝑗
                             (5) 

where wj represents a predefined weight associated with 

the probability of each action. It can be seen from (5),∆𝑅𝑖,𝑗  

is obtained by ∆𝑅𝑖+1,𝑗 , and the ∆𝑅𝑖+1,𝑗  is obtained by 

∆𝑅𝑖+2,𝑗, and so on. The ∆𝑅𝑖+𝑁,𝑗 is obtained by Formula (4). 

The reward is used as feedback in a sequential layer-based 

process until the ith layer is attached. After the reward value 

∆𝑅𝑖,𝑗 of each action aj is obtained, we update 𝑅_𝑎𝑐𝑡𝑖,𝑗 and 

𝑅_𝑝𝑜𝑠𝑖,𝑘 in UCB-T formula as (6) and (7): 

𝑅_𝑎𝑐𝑡𝑖,𝑗 = 𝑅_𝑎𝑐𝑡𝑖,𝑗 + ∆𝑅𝑖,𝑗        (6) 

𝑅_𝑝𝑜𝑠𝑖,𝑘 = 𝑅_𝑝𝑜𝑠𝑖,𝑘 + ∆𝑅𝑖,𝑗       (7) 

 Finally, when the search process is finished, the best 

sequence is determined according to the UCB-T formula, 

and the corresponding adversarial example can also be 

determined. 

IV. GAN-OPTIMIZED DETECTION MODEL 

Deep learning detectors often have difficulty detecting 

adversarial examples. To address this problem, we add 

adversarial examples into the discrimination model training 

set, labeling them as attacks and then retrain the model. The 

process of generating and training is repeated until the deep 

learning model can stably detect adversarial examples. 

After the deep learning network converges, the best 

structure for input interference resistance is achieved. 

The structure of the GAN adopted by this paper is shown 

in Fig. 2. The generator G gives a state transition 

probability decided by Q to maximize its expected end 

reward: 

 1,( ) ( | ) ( , )      (8)

  



 
j

G

i j i D i j

a A

J G s s Q s a
 

Where 0( , )
G

D jQ s a

  represents the action-value function 

of ja   obtained by the Monte Carlo search of 

discrimination net (in Section 2.3). Thus, a generator is 

more likely to generate adversarial examples that can 

effectively bypass the detector. 

Each round of updating the parameters of the 

discrimination model is the detection model’s learning 

process of the newly generative adversarial examples. For 

the discrimination net, the objective loss function is as (9): 

~ ~

~

min  [log ( )] [log(1 ( ))]

       [log(1 ( ))]   

normal attackY p Y p

Y G

D Y D Y

D Y


 




  

 
  (9) 
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FIGURE 1. Process of generating an adversarial example of XSS attacks using the MCTS-T algorithm 

 

where ~
normal

Y P  represents real normal traffic data, 

~ attackY P  represents real attack traffic data, and ~Y G   

represents generative XSS adversarial examples. 

The generation net and discrimination net carry out 

minimax two-player games, alternately updating parameters. 

The specific process is as follows: 

 

ALGORITHM 1 Training steps of XSS traffic generation net 

Require: Generator G


; Detector D


; Training samples 0S ; 

Randomly initialize parameters θ of G


, D


 

Pretrain D


 with original training samples 0S  

do 

empty adversarial set A  

for each step in g-steps do 

generate XSS adversarial example Ts  

for t=1:T do 

MCTS calculate action-value ( ),t jQ s a  

end 

Calculate loss according to value Q  and update generation 

net G
  by Eq. (6) 

end 

for each step in d-steps do 

Train net D  with original training samples and adversarial 

examples 

update net D  according to the loss by Eq. (7) 

end 

while D  converged 
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Detector
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Back 
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FIGURE 2. Structure of the GAN. 
 

 

FIGURE 3.  An example of the XSS attack traffic variant. 

V. EXPERIMENTAL RESULTS AND ANALYSIS  

In this paper, the generation algorithm of adversarial 

examples of XSS attacks is studied for the first time. Since 

no similar algorithm has been proposed, we perform 

ablation experiments to verify the effectiveness of our 

proposed algorithm. We use the deep learning framework 

Caffe to build the XSS intrusion detection model. The PC 

configuration in this experiment is a Core i5-7400 CPU, 

The Candidate modification 

scope selected by Dropout

<&#x73&#x63rip&#x74>alert

('&#x58&#x53S')</sc#x72ipt>1,1iS 

1

Hexadecimal

Enc
a :

oding

6 Case Mixa : ture

<SCripT>alert('xsS')</scRipt><SCripT>alert('xsS')</scRipt>
1,6iS 

a : URL Encodingj

1,i jS  %3cscript>alert('XSS')</script>%3cscript>alert('XSS')</script>

...
...

iS <script>alert('XSS')</script>

,0

,

,6

...

...

i N

i N j

i N

S

S

S







Detector

,i N jR ,i jR

,0iR

,6iR

Detector

Detector

max

,. . 6i je g R j 

1,6 1,6i iS S 

①

② ③

④

⑤



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2965184, IEEE Access

 

VOLUME XX, 2017 9 

GTX 1060 graphics card, 8G memory, and Ubuntu 16.04 

system. 

A. Datasets and Evaluation Metric 

To include the new type of XSS attack, an intrusion 

detection evaluation dataset called CICIDS2017[16] is used. 

This dataset contains benign and up-to-date common 

attacks based on real-world data (PCAPs). Labeled files 

based on timestamp, source and destination IPs, source and 

destination ports, protocol, and attack are provided in this 

dataset by the CICFlowMeter tool. The damn vulnerable 

web app (DVWA) is used to automate the attacks in XSS. 

For this experiment, we extract 4789 XSS attack traffic 

examples and 12000 normal traffic examples from the 

dataset. Table 1 shows the quantitative distribution of the 

training set and the validation set. 

 
TABLE I 

 Quantitative Distribution of Datasets 

Category Train Validation Total 

XSS 3592 1197 4789 

Normal 9000 3000 12000 

Total 12592 4197 16789 

 

The main evaluating indicators used in the experiment 

are recall rate (TPR) and precision: 

100%      (10) 


TP
TPR

TP FN
 

100%      (11) 


TP
precision

TP FP
 

where TP denotes the number of samples correctly 

identified as XSS attacks, FP denotes the number of normal 

samples incorrectly identified as XSS attacks, and FN 

denotes the number of XSS samples incorrectly identified 

as normal traffic. 

TPR represents the proportion of correctly identified 

XSS attacks in all XSS attacks, and it reflects the rate of 

false negatives, i.e., 1−TPR. Precision represents the 

proportion of real XSS attacks in all samples identified by 

the model as XSS, and it reflects the rate of false positives, 

i.e., 1−precision. 

B. Experimental Results 

First, we tested the performance of the original XSS attack 

detection model (i.e., the discrimination net used in GAN). 

XSS variants of XSS attacks in the validation set were 

generated through adversarial examples generating the 

method described in Section 2. To ensure the robustness of 

the results, ten variants were generated for the original XSS 

traffic, which means that the ratio of adversarial examples 

to the original examples was 10:1. Fig. 3 shows an example 

of an XSS attack traffic variant. 

In this experiment, we tested the original XSS detector 

with the original dataset and the adversarial dataset. We 

also compared the MCTS-T proposed in this paper with the 

traditional FGSM [17]. The experimental results are shown 

in Table 2. 
TABLE Ⅱ 

 Detection Results with Different Generation Algorithms 

Data Source TPR (%) Precision (%) 

Original  96.16 99.91 

D_ FGSM  90.14 99.83 

D_ MCTS-T 84.32 99.89 

 

Here, D_FGSM and D_MCTS-T means the dataset 

generated by FGSM and MCTS-T algorithm respectively. 

The purpose of an algorithm for generating adversarial 

examples is to confuse the detection models. The higher the 

false-negative rate (the lower the TPR) is, the better the 

algorithm. The table shows that the performance of the 

original detector is degraded by the adversarial examples 

and that the false-negative rate increases, which proves the 

effectiveness of the adversarial examples. Additionally, the 

MCTS-T algorithm is better than the traditional FGSM 

algorithm, increasing the false-negative rate of the detector 

by approximately 6%. The precision reflects the false alarm 

rate of the model. With a precision above 99%, the deep-

learning-based XSS detection model has a very low false-

positive rate. 

To further validate the effectiveness of our generated 

adversarial dataset, we applied the original dataset and the 

adversarial dataset to LSTM[18] and XGBoost[19]. The 

hyperparameters of the comparison classifiers are shown in 

Table 3. The experimental results are shown in Table 4.  
Table Ⅲ 

Structure of Comparison Classifiers 

classifier structure and settings 

LSTM  

Layers: 2 

Hidden units: 128 

Learning rate: 0.001 

Epoch: 100 

XGBoost 

n_estimators=50 

max_depth=3 

Learning_rate=0.1 

 
Table Ⅳ  

Experimental Results with Comparison Classifier 

Model+Data Source TPR (%) Precision (%) 

LSTM+Original  97.74% 98.29% 

LSTM+D_MCTS-T 81.23% 99.90% 

XGBoost+Original 98.87% 98.87% 

XGBoost+D_MCTS-T 39.41% 99.86% 

 

As mentioned above, the decline in TPR indicates the 

effectiveness of adversarial examples. As shown in Table 4, 

when using adversarial examples, the TPR of LSTM 

decreased by 16.51%, and the TPR of XGBoost decreases 

significantly by 59.46%. The experimental results prove the 

effectiveness of our adversarial examples. The slight 

increase in Precision is because the number of adversarial 

examples is higher than the number of original examples, 

leading to a larger TP value in formula (11). 
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FIGURE 5.  Convergence curve of the discrimination model in GAN. The blue curve shows the accuracy of the validation sets. The green and orange 
curves show the loss of the training set and the validation set, respectively. 

 

FIGURE 4.  Effects of MCTS-T depth on TPR and time consumption. 

 
Table Ⅴ 

Effects of MCTS-T Depth 

Depth of MCTS-T TPR (%) Time (s) 

T=1 89.36 1.676 

T=3 85.81 4.337 

T=5 84.32 6.055 

T=10 82.16 12.173 

 
Table Ⅵ 

Detection Rate of Adversarial Examples with Different GAN Iterative 
Epochs 

Iterative Epoch TPR (%) Precision (%) 

Epoch 0 80.12 99.85 

Epoch 1 68.24 99.73 

Epoch 3 87.91 99.81 

Epoch 5 94.59 99.72 

 

Second, we compare the effect of the MCTS-T’s search 

depth on the search time and effectiveness of adversarial 

examples. As shown in Table 5 and Fig. 4, with the 

increase in the search depth of MCTS-T, the detection rate 

of the detector for adversarial examples decreases 

significantly. However, an increase in tree depth also leads 

to an increase in the search time. To balance the 

effectiveness and generation time of adversarial examples, 

a search depth of T=5 is used. 

We observed the iterative process of GAN to find the 

change in the detection rate (TPR) for adversarial examples 

under different numbers of iterations. The results are shown 

in Table 6 and Fig. 5. For the detection model, the goal of 

optimization is to defend against adversarial examples; the 

lower the false-negative rate (the higher the TPR) is, the 

better the detection model. Table 4 shows that, with the 

increase in the number of iterations, TPR decreases first and 

then increases, while precision remains stable. After more 

than 5 iterations, the TPR and precision remain stable, and 

the model converges. Therefore, 5 iterations are performed. 

The experimental results show that the precision remains 

stable, indicating that the effectiveness of the detection 

model is not affected during the optimization of GAN. 

We also compared the performance of the GAN-

optimized model on the original dataset and the adversarial 

set generated by MCTS-T. Table 7 shows that the GAN 

network optimizes the original detection mode to make the 

model more effective for detecting XSS adversarial 

examples, with TPR increased by 8.24%. While ensuring 

that the false alarm rate does not increase, GAN greatly 

improves the ability of the model to detect adversarial 

examples. 

 
Table Ⅶ  

Performance of the GAN-Optimized Model 

Model Data Source TPR(%) Precision(%) 

Original  
original 96.16 99.91 

adversarial 86.35 99.88 

GAN-

optimized  

original 95.99 99.74 

adversarial 94.59 99.72 
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VI. CONCLUSION 

Deep-learning-based XSS attack detection models can detect 

attacks effectively, but they cannot to detect adversarial 

examples. This paper proposed an MCTS-T adversarial 

example generation algorithm for XSS attacks. The proposed 

algorithm can generate adversarial examples for any black-

box model because the MCTS-T can obtain the reward value 

by analyzing the statistical result of the model output. We 

optimize the XSS detection model with GAN to enhance its 

ability to defend against adversarial examples. By 

alternatively training the discrimination model and 

generating new adversarial examples, the convergent 

discriminant model can detect the adversarial examples to the 

greatest extent. The experiments show that the MCTS-T 

algorithm can generate effective adversarial examples to 

bypass deep-learning-based detectors. Moreover, the GAN-

optimized XSS detection model can defend against XSS 

attacks and its adversarial examples. The disadvantage of 

MCTS-T algorithm is that it can only generate adversarial 

examples of XSS traffic at present. In the future, we will pay 

efforts to study a general adversarial example generation 

algorithm.  
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