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Abstract. The paper presents a Kalman filtering problem for discrete-time 
linear systems with parametric uncertainties. A stochastic model with 
multiplicative noise both in the state and in the output equations is used to 
represent the system with uncertain parameters. The solution of the filtering 
problem is a Kalman type filter which gain is determined by solving the H2 
optimization problem for the resulting system obtained by coupling the filter 
with the stochastic system. It is proved that the optimal gain of the filter may 
be computed by solving a trace minimization problem with constraints 
expressed in terms of a system of matrix inequalities. The proposed filtering 
approach is illustrated by a case study aiming to estimate the states of the 
pitch dynamics of a space launch vehicle in its center of mass. 

1 Introduction  
The signal filtering methods have been continuously developed during the last decades 

due to their wide area of applications. After the early formulations and results achieved by 
E. Hoph and M. Wiener in the 1940’s, a major progress is made two decades later by the 
famous Kalman filtering approach ([7, 8]). Its successful implementation in many domains, 
including aerospace, geophysics, signal processing, etc., has strongly stimulated the research 
in this area. A survey of Kalman type filtering methods may be found for instance in [14].  

An important aspect investigated over the last years is the influence of the plant modelling 
uncertainties over the filtering performance. It is a known fact that in the presence of 
modellings uncertainties, the filtering performances deteriorate. 

Robust filtering approaches in presence of modelling uncertainties may be found in [3], 
[9] and their references. A method to represent parametric uncertainties is based on stochastic 
models with multiplicative noises (see e.g. [5, 13]). In [15], a Kalman-type filtering method 
for discrete-time stochastic systems with multiplicative white noise is proposed. 

The aim of the present paper is to extend the results derived in [15] and to integrate them 
in a design methodology of a Kalman type filter for systems subject to parametric modelling 
uncertainties. The continuous-time counterpart of this problem may be found in [16]. 

The paper is organized as follows: the next section includes some definitions and some 
useful results. Section 3 presents the main result which states that the optimal filter gain may 
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be obtained solving a trace minimization problem with constraints expressed as a system of 
matrix inequalities. In Section 4 a case study for a launch vehicle is presented, in which the 
dynamics states in its center of mass are estimated using the measurements available in the 
upper stage of the vehicle. The paper end with some concluding remarks. 

2 Preliminaries and filtering problem formulation 

Throughout this paper, the following discrete-time stochastic model with multiplicative 
noise of the plant (which states are estimated) will be considered. 

𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴'𝑥𝑥 𝑡𝑡 + 𝐴𝐴(𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡
*

(+,

+ 𝐹𝐹𝐹𝐹 𝑡𝑡

𝑦𝑦 𝑡𝑡 = 𝐶𝐶'𝑥𝑥 𝑡𝑡 + 𝐶𝐶(𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡 + 𝐻𝐻𝐻𝐻 𝑡𝑡 , 𝑡𝑡 = 0,1, …
*

(+,

	 1  

where 𝑥𝑥 𝑡𝑡 ∈ ℝ9 is the state vector at moment t, 𝑦𝑦 𝑡𝑡 ∈ ℝ: denotes the measurement vector, 
𝜉𝜉( 𝑡𝑡 ∈ ℝ, 𝑖𝑖 = 1, … , 𝑟𝑟, 𝛽𝛽 𝑡𝑡 ∈ ℝ=, 𝜂𝜂 𝑡𝑡 	 ∈ ℝ* are independent random variables with zero 
mean and unit variances. 

A detailed motivation of considering form (1) for a model of the plant subject to 
modelling parametric uncertainties will be given in Section 4. 

Definition 1 The discrete-time stochastic system with multiplicative noise 

𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴'𝑥𝑥 𝑡𝑡 + 𝐴𝐴(𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡
*

(+,

, 𝑡𝑡 = 0,1, … (2) 

is called exponentially stable in mean square (ESMS) if there exists 𝛽𝛽 > 0 and 𝛼𝛼 ∈ (0,1) 
such that 𝐸𝐸 𝑥𝑥 𝑡𝑡 D ≤ 𝛽𝛽𝛼𝛼F 𝑥𝑥' D, for all 𝑡𝑡 ≥ 0 and for any initial condition 𝑥𝑥' ∈ ℝ9 at 𝑡𝑡 =
0, where E denotes the expectation and 𝑥𝑥 D = 𝑥𝑥H𝑥𝑥. 

The ESMS of a stochastic system with multiplicative noise is characterized by the 
following useful result (see e.g. [6] and its references). 

 
Proposition 1 The system (2) is ESMS if and only if there exists a symmetric matrix 𝑋𝑋 >

0 such that 𝑋𝑋 > 𝐴𝐴'H𝑋𝑋𝐴𝐴' + 𝐴𝐴(H𝑋𝑋𝐴𝐴(*
(+, . 

 
The following result extends the definition of the 𝐻𝐻D-norm in the case of stable 

deterministic systems to the stochastic framework ([2]). 
 

Proposition 2 Assume that the stochastic system with multiplicative noise denoted by G 

𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴'𝑥𝑥 𝑡𝑡 + 𝐴𝐴(𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡
*

(+,

+ 𝐹𝐹𝐹𝐹 𝑡𝑡 , (3) 

with the output quality 
𝑧𝑧 𝑡𝑡 = 𝐶𝐶'𝑥𝑥 𝑡𝑡 , 𝑡𝑡 = 0,1, … 4  

is ESMS. 
Then lim

P→R
𝐸𝐸 𝑧𝑧 𝑡𝑡 D  where 𝑧𝑧 𝑡𝑡 , 𝑡𝑡 = 0,1, … is the sequence determined by (3) with the 

null condition 𝑥𝑥 0  is well defined and by definition, the 𝐻𝐻D-type norm of G is 𝐺𝐺 D =

2
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be obtained solving a trace minimization problem with constraints expressed as a system of 
matrix inequalities. In Section 4 a case study for a launch vehicle is presented, in which the 
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upper stage of the vehicle. The paper end with some concluding remarks. 
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*

(+,
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The following result extends the definition of the 𝐻𝐻D-norm in the case of stable 

deterministic systems to the stochastic framework ([2]). 
 

Proposition 2 Assume that the stochastic system with multiplicative noise denoted by G 
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*

(+,

+ 𝐹𝐹𝐹𝐹 𝑡𝑡 , (3) 

with the output quality 
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P→R
𝐸𝐸 𝑧𝑧 𝑡𝑡 D  where 𝑧𝑧 𝑡𝑡 , 𝑡𝑡 = 0,1, … is the sequence determined by (3) with the 

null condition 𝑥𝑥 0  is well defined and by definition, the 𝐻𝐻D-type norm of G is 𝐺𝐺 D =

𝑇𝑇𝑇𝑇	
U
V 𝐶𝐶𝐶𝐶𝐶𝐶H , where 𝑇𝑇𝑇𝑇	(. ) denotes the trace of (. ) and P is the controllability Gramian of the 

stochastic system (3), (4) defined as the positive definite solution of the Lyapunov equation 

𝑃𝑃 = 𝐴𝐴'𝑃𝑃𝑃𝑃'H + 𝐴𝐴(𝑃𝑃𝑃𝑃(H
*

(+,

+ 𝐹𝐹𝐹𝐹H 5  

Remark 1 Using the monotonicity properties of the solution to the Lyapunov 
equation (5) with respect to the free term, the 𝐻𝐻D-norm of G may be also determined as the 
solution of the optimization problem min

[\]
𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶H  with the constraint 𝑃𝑃 > 𝐴𝐴'𝑃𝑃𝑃𝑃'H +

𝐴𝐴(𝑃𝑃𝑃𝑃(H*
(+, + 𝐹𝐹𝐹𝐹H. 

 

The filtering problem considered in this paper is stated as follows: given the ESMS 
discrete-time stochastic system with multiplicative noise of form (1), determine a 
Luenberger-type filter with the state space equation 

𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴'𝑥𝑥 𝑡𝑡 + 𝐿𝐿 𝑦𝑦 𝑡𝑡 − 𝐶𝐶'𝑥𝑥 𝑡𝑡 , 𝑡𝑡 = 0,1, . . 6  

such that 𝐴𝐴' − 𝐿𝐿𝐶𝐶' is stable in the discrete-time (namely its eigenvalues are inside the unit 

circle of the complex plane) and the 𝐻𝐻D-norm of the mapping 
𝛽𝛽 𝑡𝑡
𝜂𝜂 𝑡𝑡 → 𝑒𝑒 𝑡𝑡 ≔ 𝑥𝑥 𝑡𝑡 − 𝑥𝑥 𝑡𝑡  

is minimal. 
 

Remark 2 The fact that in both equations of the system (1), the same multiplicative 
noises 𝜉𝜉( 𝑡𝑡 ∈ ℝ, 𝑖𝑖 = 1, … , 𝑟𝑟 are considered is not a limitation. If the noises are different, one 
may consider a concatenated vector of noises including the noises from the state equation 
and the ones of the output equation and appropriately defining the matrix coefficients 𝐴𝐴(, 
𝐶𝐶(, 𝑖𝑖 = 1, … 𝑟𝑟. 

3 The solution of the filtering problem 
The main result proved in this section is the following theorem. 
 

Theorem 1 The optimal gain of the filter (6) is the solution of the minimization 
problem min 𝑇𝑇𝑇𝑇(𝑋𝑋)	 with respect to the constraints 𝑋𝑋 > 0 and 
 

−𝑋𝑋	 + 𝐹𝐹	𝐹𝐹	H ℒ' 𝑋𝑋, 𝐿𝐿 	 ℒ, 𝐿𝐿
ℒ' 𝑋𝑋, 𝐿𝐿 H −𝑋𝑋	 0
ℒ, 𝐿𝐿 H 0 −𝑌𝑌	e,

⋯
ℒ* 𝐿𝐿 𝐿𝐿𝐻𝐻
			0 									0
			0 									0

						⋮ ⋱ ⋮
				ℒ* 𝐿𝐿 H

𝐻𝐻H𝐿𝐿H
														00 									 0

0 ⋯ −𝑌𝑌	e,	 		0
0		 	−𝐼𝐼

< 0 7  

 
where ℒ' 𝑋𝑋, 𝐿𝐿 ≔ 𝐴𝐴' − 𝐿𝐿𝐶𝐶' 𝑋𝑋	 and ℒ( 𝐿𝐿 ≔ 𝐴𝐴( − 𝐿𝐿𝐶𝐶(, 𝑖𝑖 = 1, … , 𝑟𝑟, 
 

−𝑌𝑌	e, −𝑌𝑌	e,𝐴𝐴' 𝑌𝑌	e,𝐴𝐴,
𝐴𝐴'H𝑌𝑌	e, −𝑌𝑌	e, 0
𝐴𝐴,H𝑌𝑌	e, 0 −𝑌𝑌	e,

⋯
𝑌𝑌	e,𝐴𝐴* 𝑌𝑌	e,𝐹𝐹
0 0
0 0

⋮ ⋱ ⋮
𝐴𝐴*H𝑌𝑌	e,							 0											 0					
𝐹𝐹	H𝑌𝑌	e,						 0											 0				

⋯ −𝑌𝑌	e,					 0			
0					 −𝐼𝐼			

< 0 8  

3
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with Y>0. 
 

Proof    By coupling the systems (1) and (6), taking into account that 𝑒𝑒 𝑡𝑡 ≔ 𝑥𝑥 𝑡𝑡 − 𝑥𝑥 𝑡𝑡  
one directly obtains 

𝑒𝑒 𝑡𝑡 + 1
𝑥𝑥 𝑡𝑡 + 1 =

𝐴𝐴' − 𝐿𝐿𝐶𝐶' 0
0 𝐴𝐴'

𝑒𝑒 𝑡𝑡
𝑥𝑥 𝑡𝑡 + 0 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

0 𝐴𝐴(

*

(+,

𝑒𝑒 𝑡𝑡
𝑥𝑥 𝑡𝑡 𝜉𝜉, 𝑡𝑡

+ 𝐹𝐹 −𝐿𝐿𝐿𝐿
𝐹𝐹 0

𝛽𝛽 𝑡𝑡
𝜂𝜂 𝑡𝑡 	 9

 

with the quality output 

𝑒𝑒 𝑡𝑡 = 𝐼𝐼 0
𝑒𝑒 𝑡𝑡
𝑥𝑥 𝑡𝑡 10  

Using Proposition 2 and Remark 1, it follows that the 𝐻𝐻D-norm of the system (9), (10) is 
min
n\]

𝑇𝑇𝑇𝑇
U
V 𝑋𝑋  where 𝑋𝑋 ∈ ℝ9×= is the (1,1)-block of the 2𝑛𝑛×2𝑛𝑛 symmetric matrix 𝑃𝑃 =

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌  satisfying the condition 

𝐴𝐴' − 𝐿𝐿𝐶𝐶' 0
0 𝐴𝐴'

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌

𝐴𝐴' − 𝐿𝐿𝐶𝐶' 0
0 𝐴𝐴'

H
+ 0 𝐴𝐴(

0 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

*

(+,

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌

0 𝐴𝐴(
0 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

H
 

+ 𝐹𝐹𝐹𝐹H + 𝐿𝐿𝐿𝐿𝐻𝐻H𝐿𝐿H 𝐹𝐹𝐹𝐹H
𝐹𝐹𝐹𝐹H 𝐹𝐹𝐹𝐹H

− 𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌 < 0 11  

The block (1,1) of the left side of inequality (11) gives the condition 

𝑋𝑋 > 𝐴𝐴' − 𝐿𝐿𝐶𝐶' 𝑋𝑋 𝐴𝐴' − 𝐿𝐿𝐶𝐶' H

+ 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

*

(+,

𝑌𝑌 𝐴𝐴( − 𝐿𝐿𝐶𝐶( H + 𝐹𝐹𝐹𝐹H + 	𝐿𝐿𝐿𝐿𝐻𝐻H𝐿𝐿H 12
 

and the block (2,2) gives 

𝑌𝑌 > 𝐴𝐴(𝑌𝑌𝐴𝐴(H
*

(+,

+ 	𝐹𝐹𝐹𝐹H 13  

Based on Schur complements arguments one directly sees that (12) and (7) are equivalent. 
Further, multiplying (8) to the left and to the right by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑌𝑌, 𝐼𝐼, … , 𝐼𝐼), it follows, using again 
Schur complements, that (8) and (13) are equivalent. 

4 State estimation of a launch vehicle 

The pitch motion of a launch vehicle may be approximated by the following linearized 
continuous-time model [4] 

𝜃𝜃 𝑡𝑡
𝜃𝜃 𝑡𝑡
𝑧𝑧 𝑡𝑡

=

0 1 0
𝑎𝑎v 0

𝑎𝑎v
𝑉𝑉

−𝑎𝑎, 0 −𝑎𝑎D

𝜃𝜃 𝑡𝑡
𝜃𝜃 𝑡𝑡
𝑧𝑧 𝑡𝑡

+
0
−𝑘𝑘,
−𝑎𝑎y

𝛿𝛿 𝑡𝑡 14  

where 𝑥𝑥 = 𝜃𝜃 𝜃𝜃 𝑧𝑧 H denotes the state vector, 𝜃𝜃 is the pitch attitude, 𝜃𝜃 is the pitch rate and 
𝑧𝑧 stands for the drif velocity; the control 𝛿𝛿 is the gimbal deflection angle of the thrust 
vectoring control system. The parameters of the model (14) have the following nominal 
values: 𝑎𝑎, = 37.87, 𝑎𝑎D = 0.02737, 𝑎𝑎y = 25.54, 𝑎𝑎v = 3.2297, 𝑘𝑘, = 7.0738 and 𝑉𝑉 =
557	m/sec [4]. These nominal values correspond to the moment of maximum dynamic 

4
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V 𝑋𝑋  where 𝑋𝑋 ∈ ℝ9×= is the (1,1)-block of the 2𝑛𝑛×2𝑛𝑛 symmetric matrix 𝑃𝑃 =

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌  satisfying the condition 

𝐴𝐴' − 𝐿𝐿𝐶𝐶' 0
0 𝐴𝐴'

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌

𝐴𝐴' − 𝐿𝐿𝐶𝐶' 0
0 𝐴𝐴'

H
+ 0 𝐴𝐴(

0 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

*

(+,

𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌

0 𝐴𝐴(
0 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

H
 

+ 𝐹𝐹𝐹𝐹H + 𝐿𝐿𝐿𝐿𝐻𝐻H𝐿𝐿H 𝐹𝐹𝐹𝐹H
𝐹𝐹𝐹𝐹H 𝐹𝐹𝐹𝐹H

− 𝑋𝑋 𝑍𝑍
𝑍𝑍H 𝑌𝑌 < 0 11  

The block (1,1) of the left side of inequality (11) gives the condition 

𝑋𝑋 > 𝐴𝐴' − 𝐿𝐿𝐶𝐶' 𝑋𝑋 𝐴𝐴' − 𝐿𝐿𝐶𝐶' H

+ 𝐴𝐴( − 𝐿𝐿𝐶𝐶(

*

(+,

𝑌𝑌 𝐴𝐴( − 𝐿𝐿𝐶𝐶( H + 𝐹𝐹𝐹𝐹H + 	𝐿𝐿𝐿𝐿𝐻𝐻H𝐿𝐿H 12
 

and the block (2,2) gives 

𝑌𝑌 > 𝐴𝐴(𝑌𝑌𝐴𝐴(H
*

(+,

+ 	𝐹𝐹𝐹𝐹H 13  

Based on Schur complements arguments one directly sees that (12) and (7) are equivalent. 
Further, multiplying (8) to the left and to the right by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑌𝑌, 𝐼𝐼, … , 𝐼𝐼), it follows, using again 
Schur complements, that (8) and (13) are equivalent. 

4 State estimation of a launch vehicle 

The pitch motion of a launch vehicle may be approximated by the following linearized 
continuous-time model [4] 

𝜃𝜃 𝑡𝑡
𝜃𝜃 𝑡𝑡
𝑧𝑧 𝑡𝑡

=

0 1 0
𝑎𝑎v 0

𝑎𝑎v
𝑉𝑉

−𝑎𝑎, 0 −𝑎𝑎D

𝜃𝜃 𝑡𝑡
𝜃𝜃 𝑡𝑡
𝑧𝑧 𝑡𝑡

+
0
−𝑘𝑘,
−𝑎𝑎y

𝛿𝛿 𝑡𝑡 14  

where 𝑥𝑥 = 𝜃𝜃 𝜃𝜃 𝑧𝑧 H denotes the state vector, 𝜃𝜃 is the pitch attitude, 𝜃𝜃 is the pitch rate and 
𝑧𝑧 stands for the drif velocity; the control 𝛿𝛿 is the gimbal deflection angle of the thrust 
vectoring control system. The parameters of the model (14) have the following nominal 
values: 𝑎𝑎, = 37.87, 𝑎𝑎D = 0.02737, 𝑎𝑎y = 25.54, 𝑎𝑎v = 3.2297, 𝑘𝑘, = 7.0738 and 𝑉𝑉 =
557	m/sec [4]. These nominal values correspond to the moment of maximum dynamic 

pressure of the European Vega Launcher. The parameters 𝑎𝑎(, 𝑖𝑖 = 1, . .4 and 𝑘𝑘,are subject to 
modelling uncertainties inside given limits of variation. They may be represented as: 
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where 𝜉𝜉( 𝑡𝑡 , 𝑖𝑖 = 1, . . ,5 are independent Gaussian white noises. 
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with 𝜎𝜎~à

D, 𝑖𝑖 = 1, . . ,5 representing the variances of the white noises 𝜉𝜉( 𝑡𝑡 , 𝑖𝑖 = 1, . . ,5. 
Since the nominal dynamics (14) of the launcher is unstable, a stabilizing control law is 

required. In the present paper, the following control law has been considered: 𝛿𝛿 𝑡𝑡 =
−𝐾𝐾	𝑥𝑥 𝑡𝑡  with 𝐾𝐾 = 𝐾𝐾[ 𝐾𝐾ä 0 , for which the closed loop dynamics may be written as 

𝑥𝑥 𝑡𝑡 = 𝐴𝐴' + 𝐵𝐵'𝐾𝐾 𝑥𝑥 𝑡𝑡 + 𝐴𝐴( + 𝐵𝐵(𝐾𝐾 𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡
|

(+,

(18) 

In the following a discrete-time model of the system (16) will be derived. Denoting the 
sampling period h > 0, using the well-known formulae 𝐴𝐴ã = 𝑒𝑒åç and 	𝐵𝐵ã = 𝑒𝑒åé𝐵𝐵𝐵𝐵𝐵𝐵	ç

' , 
converting (A,B) of a continuous-time system to the discrete-time form (Ad,Bd), one obtains 

𝐴𝐴ã = 𝑒𝑒åç ≈ 𝐼𝐼 + 𝐴𝐴ℎ 

𝐵𝐵ã ≈ ℎ𝐼𝐼 + 𝐴𝐴
ℎD

2
𝐵𝐵 19  

Replacing the expression (17) into (19) and taking into account that the noises 𝜉𝜉( 𝑡𝑡 , 𝑖𝑖 =
1, . . ,5 are independent, one obtains 

𝐴𝐴'ã ≈ 𝐼𝐼y + 	𝐴𝐴'ℎ;	𝐴𝐴(ã = 𝐴𝐴(ℎ, 𝑖𝑖 = 1, . . ,5 20  
 

𝐵𝐵'ã ≈ ℎ𝐵𝐵' + 𝐴𝐴(

|

(+'

𝐵𝐵'
ℎD

2
;	𝐵𝐵(ã ≈ ℎ𝐵𝐵( + 𝐴𝐴F

|

F+'

𝐵𝐵(
ℎD

2
, 𝑖𝑖 = 1, … 5 21  

Therefore, the discrete form of (17) becomes 
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𝑥𝑥 𝑡𝑡 + 1 = 𝐴𝐴'ã + 𝐵𝐵'ã𝐾𝐾 𝑥𝑥 𝑡𝑡 + 𝐴𝐴(ã + 𝐾𝐾𝐾𝐾(ã 𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡 + 𝐹𝐹	𝛽𝛽 𝑡𝑡
|

(+,

	 22  

where the additive term 𝐹𝐹𝐹𝐹 𝑡𝑡  has been introduced in order to simulate a control noise. 
The available measurements are given by an Inertial Measurement Unit (IMU) located in 

the upper stage of the launcher, at the distance ℓ from its mass center. These measurements 
have the expression  

𝑦𝑦í 𝑡𝑡 = 𝜃𝜃 𝑡𝑡 + 𝜂𝜂, 𝑡𝑡  
𝑦𝑦í 𝑡𝑡 = 𝜃𝜃 𝑡𝑡 + 𝜂𝜂D 𝑡𝑡  

𝑦𝑦ì 𝑡𝑡 = 𝑧𝑧 𝑡𝑡 − ℓ𝜃𝜃 𝑡𝑡 + 𝜂𝜂y 𝑡𝑡 , 𝑡𝑡 = 0,1, … 23  
 
where 𝜂𝜂( 𝑡𝑡 , 𝑖𝑖 = 1,2,3 are white noises with zero mean and the known variances 𝜎𝜎îà

D, 𝑖𝑖 =
1,2,3. In the present case study, the following numerical values have been used: 𝐹𝐹 =
10eD𝐵𝐵'ã, ℓ = 15𝑚𝑚, 𝜎𝜎îà

D = 10eñ, 𝑖𝑖 = 1,2,3. 
Using the equations (14) and (23), direct computations show that the measurement vector 

𝑦𝑦 = 𝜃𝜃 𝜃𝜃 𝑧𝑧 H may be written as 

𝑦𝑦 𝑡𝑡 = 𝐶𝐶'𝑥𝑥 𝑡𝑡 + 𝐶𝐶(𝑥𝑥 𝑡𝑡 𝜉𝜉( 𝑡𝑡 + 𝐻𝐻𝐻𝐻 𝑡𝑡
|

(+,

, 𝑡𝑡 = 0,1, …	 24  

where 

𝐶𝐶' = 	
1 0 0
0 1 0

𝐶𝐶' 3,1 𝐶𝐶' 3,2 𝐶𝐶' 3,3
, 𝐶𝐶, = 𝜎𝜎~U

0 0 0
0 0 0
−1 0 0

, 𝐶𝐶D = 𝜎𝜎~V
0 0 0
0 0 0
0 0 −1

,	 

𝐶𝐶y = 𝜎𝜎~Ü
0 0 0
0 0 0
𝐾𝐾[ 𝐾𝐾ä 𝑢𝑢

, 𝐶𝐶v = 𝜎𝜎~Ñ

0 0 0
0 0 0

0 −ℓ −
ℓ
𝑉𝑉

, 𝐶𝐶| = 𝜎𝜎~á
0 0 0
0 0 0
0 𝐾𝐾ä 0

	 

 
and 𝐻𝐻 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎~U, 𝜎𝜎~V, 𝜎𝜎~Ü , 𝜂𝜂 = 𝜂𝜂, 𝜂𝜂D 𝜂𝜂y H, 𝐶𝐶' 3,1 = −𝑎𝑎, − ℓ𝑎𝑎v + 𝑎𝑎y𝐾𝐾[ −
ℓ𝑘𝑘,𝐾𝐾[, 𝐶𝐶' 3,2 = 𝑎𝑎y − ℓ𝑘𝑘, 𝐾𝐾ä, 𝐶𝐶' 3,3 = −𝑎𝑎D − ℓ òÑ

ô
. 

 
Based on the result stated in Theorem 1, a robust Kalman type filter have been developed for 
the discrete-time system (21), (23) with the sampling period ℎ = 0.04	sec and the state-
feedback gains 𝐾𝐾[ = −0.9132, 𝐾𝐾ä = −0.2541 and with the following intervals of 
uncertainty 𝑎𝑎, = 𝑎𝑎, 1 ± 0.1 , 𝑎𝑎D = 𝑎𝑎D 1 ± 0.08 ,	 𝑎𝑎y = 𝑎𝑎y 1 ± 0.1 , 𝑎𝑎v = 𝑎𝑎v 1 ± 0.08 ,
𝑘𝑘, = 𝑘𝑘, 1 ± 0.15 . 
The optimal gain obtained by solving the optimization problem from Theorem 1 is: 

𝐿𝐿 =
0.0348 0.0389 0
−0.0055 0.9725 −0.0022
−2.6048 3.5345 −0.0091

25  

 
Then, a classical Kalman filter with constant gain have been designed for the nominal values 
𝑎𝑎,, 𝑎𝑎D, 𝑎𝑎y, 𝑎𝑎v and 𝑘𝑘,, resulting 

𝐿𝐿öõ =
0.0308 0.0148 0.0013
0.0178 0.0207 0.0489
−0.8817 1.2978 0.1151

26  

 
By coupling this classical Kalman filter to the system (21), (23), the following time responses 
of the estimation errors presented in Figure 1 have been obtained. 
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Fig. 1. Time responses of the state estimation errors for the classical Kalman filter (blue – the case with 
uncertainties, red – the nominal case). 
 
One can see that for the nominal case (no uncertainty) the estimation errors are very small, 
as expected, but they become large, even unstable, in the presence of modelling uncertainties. 
Further, for the filter gain (25), the time responses of the estimation errors have been 
determined; they are presented on Fig. 2 below. 

 
Fig. 2. Time responses of the state estimation errors for the Kalman type filter with the gain 𝐿𝐿. (blue – 
the case with uncertainties, red – the nominal case). 
 
The above time responses indicate a good estimation performance even in the case when the 
plant parameters are uncertain.  

5 Conclusions  

The paper treats a Kalman filtering problem for discrete –time systems subject to 
parametric uncertainty. The uncertainties are represented using stochastic models with white 
noises with appropriate variances. The optimal constant gain of the Kalman type filter is 
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determined solving an 𝐻𝐻2 optimization problem for stochastic systems with multiplicative 
noise present both in the state and the output equations. 

The solution of this problem is expressed in terms of the feasibility of a trace 
minimization problem with matrix inequalities constraints. The developed theoretical results 
are illustrated by a case study in which the states of a launcher are estimated from the 
available measurements provided by the IMU placed in the upper stage of the vehicle. The 
numerical simulations show that the filtering performances of the proposed filter are robust 
with respect to the parametric uncertainties. 
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