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Abstract: Correlation electromagnetic analysis (CEMA) is a method prevalent in side-channel
analysis of cryptographic devices. Its success mostly depends on the quality of electromagnetic
signals acquired from the devices. In the past, only one byte of the key was analyzed and other
bytes were regarded as noise. Apparently, other bytes’ useful information was wasted, which may
increase the difficulty of recovering the key. Multi-objective optimization is a good way to solve
the problem of a single byte of the key. In this work, we applied multi-objective optimization
to correlation electromagnetic analysis taking all bytes of the key into consideration. Combining
the advantages of multi-objective optimization and genetic algorithm, we put forward a novel
multi-objective electromagnetic analysis based on a genetic algorithm to take full advantage of
information when recovering the key. Experiments with an Advanced Encryption Standard (AES)
cryptographic algorithm on a Sakura-G board demonstrate the efficiency of our method in practice.
The experimental results show that our method reduces the number of traces required in correlation
electromagnetic analysis. It achieved approximately 42.72% improvement for the corresponding case
compared with CEMA.

Keywords: Advanced Encryption Standard (AES); correlation electromagnetic analysis; genetic
algorithm; multi-objective optimization

1. Introduction

With the development of Internet of Things (IoT) technology, ever more smart home devices are
appearing in people’s lives, such as mobile phones, smart door locks, smart televisions, sensor networks
and many other things. Their security issues are becoming increasingly prominent. Unintentional
physical leakage of these devices can be acquired by sensors. Side-channel analysis [1] exploits these
unintentional physical leakage to obtain sensitive information. Up to now, none of the smart home
devices are able to prevent the leakage of information through different side channels. Side-channel
analysis has attracted a great attention since timing attacks were introduced by Kocher in 1996 [2].
A variety of efficient approaches have proposed in the past 20 years, such as differential power analysis
(DPA) [3], correlation power analysis (CPA) [4], template analysis (TA) [5,6], fault analysis (FA) [7],
electromagnetic analysis (EMA) [8–12] and so on. For DPA, plenty of power traces are statistically
computed to reveal the power consumption difference caused by different intermediate values and
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then the difference is used to recover the key. For CPA, the Pearson correlation coefficient is used
to measure the relationship between the power traces and intermediate values’ hamming weight or
hamming distance model. There is a larger correlation coefficient than others when the right key occurs.
In template analysis [1], power traces are characterized by a multivariate normal distribution. This
usually consists of two steps: the first step is to create a template of a device’s operation using a copy
of the protected device and the second step is to apply the template to the attack traces to recover the
key. Fault analysis uses the faulty calculations of the cryptographic algorithms to recover the key [13].
EMA is similar to power analysis, but it uses electromagnetic traces to help recover the key. For EMA,
correlation electromagnetic analysis (CEMA) is a traditional and prevailing method. Its performance is
much better than other ways in traditional electromagnetic side-channel analysis.

In recent years, many artificial intelligence methods have emerged in side channel analysis. On the
one hand, to date most artificial intelligence methods are profiling attacks. Machine learning was first
applied to side-channel analysis by Hospodar et al. in [14] and they applied a least squares support
vector machine (LS-SVM) to classify intermediate values. In [15], the author used machine learning
techniques to deal with high-dimensional feature vectors in side-channel analysis. SVM was used
to classify arithmetic operations by electromagnetic leakage in [16]. In [17], the author found that
convolutional neural networks were more suitable for side-channel analysis scenarios than some other
machine-learning techniques without preprocessing. On the other hand, there are some new directions
different from the previous. Zhang et al. [18] employed simple genetic algorithm to turn the key
searching problem into a correlation coefficient optimization problem based on a non-profiling attack
which is called SGA-CPA. In [19], Ding et al. improved Zhang’s method and proposed the multiple
sieve method to overcome premature convergence.

In this paper, we proposed a novel multi-objective electromagnetic analysis based on genetic
algorithm to recover the key. Most machine-learning methods are profiling attacks so that they need a
copy of the protected device to obtain enough traces. Power analysis or fault analysis is an invasive
way to obtain sensitive information that will modify the protected device. Electromagnetic analysis is
a non-invasive way to obtain sensitive information. In this way, a malicious adversary neither needs
to have a copy of the protected device nor to modify the protected device, so it is more practical in
real-world situations.

The main contributions of the paper are as follows:

(1) We applied multi-objective optimization to correlation electromagnetic analysis to take full
advantage of information. A genetic algorithm is the most popular heuristic approach to
multi-objective optimization problems. So our method combines these two ways to recover the
key which has seldom been studied in side-channel analysis.

(2) In the past, traditional correlation electromagnetic analysis only focused on one byte of the key
which may lose information and efficiency, because other bytes also contains partial information
related to the secret key. So all bytes of the key are used in our method to take full advantage
of information.

(3) We also modify genetic algorithm to make our method more applicable in different scenarios.
We add two operators—sort and sieve—to a genetic algorithm. For sort operator, we add it after
selection, crossover and mutation. This operation will sort subkey candidates in descending
order so that better candidates in different groups can be combined together with greater
probability. For sieve operator, better key candidates selected in every generation will be sieved
and recombined to obtain the best key candidate.

We take AES-128 for instance to illustrate our method. First, all 128 bits of the key are initialized
as the genetic algorithm’s chromosome code; then, we compute the correlation between every byte and
electromagnetic traces; next, we use multi-objective optimization to optimize the correlation between
the entire key bits and traces. Finally, we get the max correlation coefficient corresponding to the right
key after many generations’ optimization.
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The remainder of the paper is organized as follows: in Section 2, we present related works and basic
knowledge about the cryptographic algorithm, genetic algorithm and multi-objective optimization
used in our experiment. In Section 3, we introduce a novel electromagnetic analysis method and the
experimental platform in detail. The performance of different methods on different trace sets is shown
in Section 4. Finally, we conclude the paper in Section 5.

2. Related Works and Preliminaries

2.1. Related Works

Multi-objective optimization has made great achievements in other fields. For example Li et al. [20]
proposed an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid
flow shop-scheduling problem with consideration of the setup energy consumptions. Through the
analysis of the experimental results, the EA-MOA algorithm was found to be more effective than
other efficient algorithms in literature. Maryam et al. [21] proposed a multi-objective Particle Swarm
Optimization(PSO)-based method named RFPSOFS (Ranked Feature PSO Feature Selection) that ranks
the features based on their frequencies in the archive set. RFPSOFS improve feature selection methods
using single objective optimization algorithm and obtained a remarkable performance. Du et al. [22]
employed multi-objective ant lion optimization to optimize the initial weights between layers and
thresholds of the Elman neutral network in the optimization module to overcome the drawbacks of
single-objective optimization algorithms. Their experimental results indicated that the average values
of the mean absolute percent errors were much lower than those of the comparison models.

Although there are multi-objective genetic algorithm related works in other fields, the combination
of side-channel analysis and a multi-objective genetic algorithm is seldom reported. Zhang et al. [18]
put forward a non-profiling power attack based on the phenomenon that the correlation coefficient
was related to the number of correct key bytes in a parallel implementation: the larger the number
of correct key bytes, the higher the coefficient. As a result, they applied a genetic algorithm to turn
the key searching problem into a Pearson correlation coefficient problem. They proposed a novel
leakage model based on the power consumption of multiple S-boxes and the number of traces needed
to recover was decreased. Ding et al. [19] found that Zhang’s method (SGA-CPA) was faced with
premature convergence challenges when there were plenty of large S-boxes, for example AES-128
cryptographic algorithm. Ding et al. studied the cause of premature convergence and put forward an
intelligent multiple sieve method which is called multiple sieve-CPA (MS-CPA) to solve the problem.
Their experimental results showed that the success rate of MS-CPA was much better than SGA-CPA.
However, none of them took multi-objective optimization into account.

In our past work, we confirmed that multi-byte electromagnetic analysis had better performance
than single byte electromagnetic analysis. Compared with just one correct key byte, the correlation
coefficient is higher when there are two or more correct key bytes. Our experiments also showed that
when correct key bytes were summed, the correlation coefficient was clearly distinguishable, but when
correct key bytes and incorrect key bytes were summed, the correlation coefficient was usually in mass.
It was difficult to distinguish right from wrong.

Multi-objective optimization is a good way to solve the problem of a single byte of the key. So in
this work, we will apply it to multi-byte electromagnetic analysis. A genetic algorithm is well suited
to solve multi-objective optimization problems because of its population-based approach, and it is
also used in our method. Eventually, we put forward a novel multi-objective electromagnetic analysis
method based on a genetic algorithm and obtained better performance.

2.2. Cryptographic Algorithm and Hamming Distance Model

The Advanced Encryption Standard (AES) [23,24] is a symmetric encryption algorithm which
can process data using cipher keys with 128, 192 or 256 bits. In our experiment, AES-128 encryption
algorithm is used for the analysis. AES-128 encryption algorithm consists of 10 rounds, acting on a
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128-bit block represented as a state consisting of 16 bytes. Every round is made up of 4 operations
except the last round which skips the MixColumns operation:

SubBytes: it is a non-linear byte substitution that operates independently on each byte of the
state using a substitution table;

ShiftRows: the bytes in every row of the State are cyclically shifted over different numbers of
bytes. The n-th row is cyclically shifted over n-1 bytes;

MixColumns: this operation treats each column as a 4-byte vector and multiplies it by a
constant matrix;

AddRoundKey: this operation adds a round key to the state by bitwise XOR operation.
The main process of AES-128 is presented in Figure 1:
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Figure 1. The main process of AES-128.

The plaintexts are masked with a 128 bits white key before the first round. At the end of every
round, a 128-bit round key is XORed with a 128-bit intermediate value.

We know that when the encryption algorithm is implemented on cryptographic devices, there are
some predictable relations between electromagnetic leakage and cryptographic operations. The hamming
distance (HD) model was firstly proposed by Eric Brier et al. in 2004 [4] where they assumed that
the leakage was dependent on the number of flipping bits. In a m-bit microprocessor, binary data is
coded X =

∑m−1
j=0 d j2 j, with the bit values d j = 0 or 1. So its hamming weight HW(X) =

∑m−1
j=0 d j. If X

contains m independent and uniformly distributed bits, the average hamming weight µHW = m
2 and

the variance σ2
HW = m

4 .
The hamming distance between two values X and Y can be calculated by the following equation:

HD(X, Y) = HW
(
X
⊕

Y
)

(1)

Hamming distance is the number of flipping bits to go from X to Y. It is similar to hamming
weight which assumes that Y = 0. So HW(X

⊕
Y) has the same mean m

2 and the variance m
4 . The

hamming distance model is more suitable to predict the relation, and we also applied it to our
electromagnetic analysis.
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From Figure 1, we can know that there are only three operations in the last round which is more
feasible to recover the key by analyzing the electromagnetic leakage. The hamming distance model
used in our method to estimate hypothetical electromagnetic leakage is:

L = α·HD(X, Y) + β = α·HW
(
X
⊕

Y
)
+ β (2)

where L is electromagnetic leakage, HW(X
⊕

Y) is the hamming distance between X and Y which is
known as the number of flipping bits between X and Y, HW is hamming weight, α is a scalar gain and
β is usually considered as noise.

In order to depict the correlation in detail, the Pearson correlation coefficient is applied to predict
the correlation between the hamming distance and the measured electromagnetic leakage.

ρL HW =
cov(L, HW)

σLσHW
(3)

where cov() is the covariance between L and HW, σ is the standard deviation.
The hamming distance model is a linear model, and we can predict the relationship between the

variances of different variables:
σ2

L = α2σ2
HW + σ2

β (4)

Under the uncorrelated noise assumption, the Pearson correlation coefficient is transformed to:

ρL HW =
α·σHW

σL
=

α·σHW√
α2σ2

HW + σ2
β

=
α
√

m√
mα2 + 4σ2

β

(5)

We can guess the unknown key bits and calculate ρ for every key candidate. The maximum |ρ| is
considered as the correct key.

In a real scenario, a set of N electromagnetic traces Ti and N associated random plaintexts, the
estimate correlation factor ρT HW is given by the following formula:

ρT HW =
N

∑
TiHWi −

∑
Ti

∑
HWi√

N
∑

T2
i − (

∑
Ti)

2
√

N
∑

HW2
i − (

∑
HWi)

2
(6)

where the summations are taken over the N samples (i = 1,···, N) at every time step within the
electromagnetic traces Ti(t).

In theory, it is difficult to compute the variance of ρT HW with the number of available samples N.
In practice, a few hundred experiments is enough to provide an approximate estimate of the correlation.
Further detailed information can be referred to [25] which shows the method can be regarded as a
maximum likelihood model fitting procedure.

2.3. Genetic Algorithm

Inspired by Darwin’s theory of natural selection and evolutionary biology, the genetic algorithm
(GA) [26,27] is a heuristic search method applied in optimization problems. GA employs a repeated
process of selection, crossover and mutation of potential solutions in search of the optimal one for
the problem.

There are some basic elements we need to know in a simple genetic algorithm:

- Individual. The potential key candidates to the optimization problem are regarded as individuals.
- Fitness. The objective function to evaluate the fitness of an individual is regarded as the

fitness function.
- Population. The population is a group of individuals initialized randomly.
- The simple genetic algorithm is mainly composed of three operations:
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- Selection. This operator selects individuals in the population for reproduction. The fitter the
individual, the more times it is likely to be selected.

- Crossover. This operator exchanges key bits between two individuals selected randomly with
the probability Pc to generate new individuals.

- Mutation. This operator randomly flips some bits in an individual with a lower probability Pm to
generate new individuals.

The mathematical basis of genetic algorithm is Holland’s schema theorem which describes that
a particular schema H receives more copies in the offspring by the operation of selection, crossover,
and mutation.

Schema theorem: Under the influence of selection, crossover and mutation operations,
short, low-order schemata with above-average fitness increase exponentially in frequency in
successive generations.

m(H, t + 1) = m(H, t)
f (H)

f
(7)

m(H, t + 1) ≥ m(H, t)
f (H)

f
[1−

Pc·δ(H)

m− 1
][ 1− o(H)Pm] (8)

where m(H,t) represents that there are m examples of a particular schema H contained within the
population at a given time step t; f (H) is the average fitness of the strings representing schema H at
time t; f is the average fitness of the strings representing all individuals at time t, o(H) is the order
of the schema H, δ(H) is the defining length of the schema H, Pc is the crossover rate, and Pm is the
mutation rate.

We can see that if f (H) is greater than f , then m(H,t+1) will be greater than m(H,t). In a nutshell, the
schema with above-average fitness will receive an increasing number of samples in the offspring while
the schema with below-average fitness will receive a decreasing number of samples in the offspring.

In [18], Zhang et al. put forward a method based on a phenomenon that the correlation coefficient
was related to the number of correct bytes of the key. Hence, they transformed this to find the optimal
correlation coefficients of key candidates instead of the problem of searching for the correct key. In a
simple genetic algorithm, the key candidates were defined as individuals and the Pearson correlation
coefficient is defined as fitness.

The main steps of a simple genetic algorithm in our experiment are shown in Algorithm 1:

Algorithm 1 Simple Genetic Algorithm

Input: max generation gen_max, size of population NIND, crossover rate Pc, mutation rate Pm

Output: the optimal solution
1: key_cand = Initialization(NIND);
2: Fitness(key_cand);
3: gen = 0;
4: key_right = 0;
5: while gen < gen_max and key_right = = 0 do
6: Selection(key_cand);
7: Crossover(key_cand,Pc);
8: Mutation(key_cand,Pm);
9: Fitness(key_cand);
10: key_optimal = MaxFitness(key_cand);
11: gen = gen + 1;
12: if Vertification(key_optimal) = true then
13: key_right = 1
14: end if
15: end while
16: return key_optimal
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2.4. Multi-Objective Optimization

Multi-objective optimization [28–30] is widely used in our daily life and most engineering
optimization problems. It is an optimization problem of vector functions. The comparison of vector
function values is more complicated than the comparison of scalar value. The optimal solution in
the single-objective optimization problem is often only a non-inferior solution in the multi-objective
optimization problem. In the ideal case, multi-objective optimization requires that each component
objective is optimal.

There are many ways to solve multi-objective optimization problems. The most important method
is to convert a multi-objective optimization solution into an appropriate one. It usually can be divided
into two parts: one is to reconstruct a new objective function to convert a multi-objective optimization
problem into a single-objective optimization problem; another is to transform the multi-objective
optimization problem into a series of single-objective problems.

V −max F(X) = [ f1(x1), f2(x2), . . . , fi(xn)]
T

X = [x1, x2, . . . , xn]

s.t. fi(xn) ∈ [−1, 1]
xi

n ∈ {0, 1}

(9)

where fi(x) is the Pearson correlation coefficient of the i-th byte of the key. We want to get the maximum
F(X) which also means every fi(x) is supposed to be as large as possible.

In this paper, we adopted the second one as the solution to CEMA. The genetic algorithm is
well suited to solve multi-objective optimization problems because of its population-based approach.
Combining the advantages of the genetic algorithm and multi-objective optimization, we applied a
multi-objective genetic algorithm to CEMA, which can be described as follows:

(1) All key candidates in the group are equally divided into sub-groups by the subkey
objective function;

(2) Every subkey objective function is computed independently in the corresponding sub-group;
(3) Individuals with high fitness in every sub-group are selected to form a new group;
(4) Crossover and mutation are performed in the new group;
(5) The sub-groups are recombined and the optimal one is found for multi-objective optimization.

The main procedure of multi-objective genetic algorithm to CEMA is shown in Figure 2:
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3. Multi-Objective Electromagnetic Analysis Based on Genetic Algorithm (MOGAEMA)

3.1. MOGAEMA

Our multi-objective electromagnetic analysis based on genetic algorithm (MOGAEMA) is used
as an alternative to CEMA using multi-bytes as the objective instead of one byte to recover the key.
The advantage of multi-objective electromagnetic analysis is that it takes full advantage of information
contained in all bytes of the key. In this part, we illustrate the multi-objective electromagnetic analysis
based on a genetic algorithm when recovering the key in detail.

In MOGAEMA, the multi-objective function F(X) is defined as the fitness, and the single objective
function fi(x) is defined as sub-fitness. The individuals are selected by fitness which is calculated by
all bytes of the key. Sort and sieve operators are added to find the optimal situation. The sort operator
will sort the sub-fitness in descending order, better subkey candidates in different groups will be
ranked in the front, so that better subkey candidates can be combined together with greater probability
to generate optimal key candidates. For the sieve operator, we have modified sieve operator in [19]
and applied it into our method to find the best key candidate when better key candidates in every
generation, which we called key optimal candidates, are selected. We select a key optimal candidate
as key_temp and every byte of the key optimal candidates will be replaced if they are different from
key_temp. The fitness of key_temp will be recomputed, if the fitness is larger than the previous one,
key_temp will be updated and maintained until the last one is compared. As a result, key_temp has
better fitness than others.

The main procedure of MOGAEMA is shown in Algorithm 2:

Algorithm 2 Multi-Objective Genetic Algorithm

Input: max generation gen_max, size of population NIND, crossover rate Pc, mutation rate Pm

Output: the optimal solution
1: key_cand = Initialization(NIND);
2: subkey_cand = Divide(key_cand)
3: SubFitness(subkey_cand);
4: gen = 0;
5: key_right = 0;
6: while gen < gen_max and key_right = = 0 do
7: Selection(subkey_cand);
8: Crossover(subkey_cand,Pc);
9: Mutation(subkey_cand,Pm);
10: SubFitness(subkey_cand);
11: Sort(subkey_cand)
12: Recombine(subkey_cand);
13: Fitness(key_cand);
14: Selection(key_cand);
15: key_optimal_cand = MaxFitness(key_cand)
16: gen = gen + 1;
17: if Vertification(key_optimal_cand) = true then
18: key_optimal = key_optimal_cand;
19: key_right=1;
20: endif
21: end while
22: if (key_right=0) then
23: key_optimal = Sieve(key_optimal_cand)
24: end if
25: return key_optimal
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3.2. MOGAEMA Experimental Platform

In this part, we introduce our experimental platform in detail. Our experiment with MOGAEMA
was performed on a Sakura-G board [31], and the board is a universal test device to standardize
the security evaluation methodology of cryptographic modules against side channel analysis.
The MOGAEMA experimental platform is shown in Figure 3. We encrypted random plaintexts
with a fixed key using AES-128 implemented on Sakura-G board. Original electromagnetic leakage
traces were acquired by a magnetoelectric sensor first and then transmitted to the oscilloscope while
AES was running on the Sakura-G board. A computer gave an automated setup for data collection and
communication. The Sakura-G board is powered by a direct current (DC) power supply to reduce
irrelevant influence.Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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4. Results

In this part, we show the efficiency of our method by different sets of traces. One electromagnetic
leakage trace acquired by the sensor is shown in Figure 4, where we can clearly recognize every round
of the AES-128 cryptographic algorithm. There are 12 peaks in the electromagnetic trace; the first peak
which is different from the others, is caused by the trigger signal. The second peak is the loading of
plaintext into the register of Sakura-G board and the following 10 peaks are 10 rounds of the AES-128
cryptographic algorithm.
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Correlation electromagnetic analysis (CEMA) is a more traditional and prevailing method in
side-channel analysis. Its performance is much better than other methods in traditional side-channel
analysis. In traditional CEMA, we only focus on one byte of the key to search for all possible subkey
candidates. When the right subkey occurs, the correlation coefficient is largest if there are enough
traces. We can obtain the correlation as shown in Figure 5. The picture shows that there is an obvious
peak that is higher than the others in 197. The largest correlation coefficient is approximately 0.056 and
most of others are lower than 0.03, so 197 is regarded as the right subkey.Sensors 2019, 19, x FOR PEER REVIEW 10 of 15 
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The most popular method to evaluate performance is the success rate of the independent traces
set. Consequently, we used success rate as a measure to test the performance of the MOGAEMA
method. Operators are important factors affecting the performance of MOGAEMA. We have tested
our MOGAEMA with different operators to verify which would be effective. Figure 6 shows the
performance with five different operations: CEMA, MOGAEMA, MOGAEMA without sort operator,
MOGAEMA without sieve operator, and MOGAEMA without sort and sieve operators.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 15 

 

 
Figure 5. The correlation of subkey by correlation electromagnetic analysis (CEMA). 

The most popular method to evaluate performance is the success rate of the independent traces 
set. Consequently, we used success rate as a measure to test the performance of the MOGAEMA 
method. Operators are important factors affecting the performance of MOGAEMA. We have tested 
our MOGAEMA with different operators to verify which would be effective. Figure 6 shows the 
performance with five different operations: CEMA, MOGAEMA, MOGAEMA without sort operator, 
MOGAEMA without sieve operator, and MOGAEMA without sort and sieve operators. 

0 1000 2000 3000 4000 5000 6000

0.0

0.2

0.4

0.6

0.8

1.0

s
u
c
c
e
s
s
 
ra
t
e

trace number

 CEMA
 MOGAEMA
 without sieve and sort
 without sieve
 without sort

 
Figure 6. The performance of MOGAEMA with different operations. 

The performance of MOGAEMA with sort and sieve operators is better than the others. Without 
the sieve operation, the performance is not stable during the process although it is better than CEMA. 
For the other two, their performance is worse than CEMA. We learn that the sieve operator makes 
the performance more stable in MOGAEMA and the sort operator plays an important role in 
recombining good subkey candidates to have good performance. Without the sort operator, subkey 
candidates are recombined randomly, and there is no relation between the key bytes. As a result, the 
fluctuation is larger than the others. So in the rest of the paper, we only consider MOGAEMA with 
sort and sieve operators. 

In order to show the advantage of MOGAEMA over the existing CEMA method in terms of 
recovering the key, we compared the electromagnetic trace number required for MOGAEMA with 

Figure 6. The performance of MOGAEMA with different operations.



Sensors 2019, 19, 5542 11 of 16

The performance of MOGAEMA with sort and sieve operators is better than the others. Without
the sieve operation, the performance is not stable during the process although it is better than CEMA.
For the other two, their performance is worse than CEMA. We learn that the sieve operator makes the
performance more stable in MOGAEMA and the sort operator plays an important role in recombining
good subkey candidates to have good performance. Without the sort operator, subkey candidates
are recombined randomly, and there is no relation between the key bytes. As a result, the fluctuation
is larger than the others. So in the rest of the paper, we only consider MOGAEMA with sort and
sieve operators.

In order to show the advantage of MOGAEMA over the existing CEMA method in terms of
recovering the key, we compared the electromagnetic trace number required for MOGAEMA with
traditional CEMA. Figure 7 shows the number of different methods when the key is recovered correctly.
We can see that traditional CEMA requires about 7000 traces to reach success rate 1 while our method
requires about 4000 traces.
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Besides this, we collected a large number of electromagnetic traces to verify our MOGAEMA
method’s efficiency. We repeated the MOGAEMA method 7 times on different sets of traces and every
set was selected at random. The minimum number of traces when we recovered the right key is
summarized in Figure 8. The experimental result shows that the MOGAEMA method achieved greater
improvement compared to CEMA in terms of success rate. According to a paired t-test, p value is
5.5× 10−4. With the same number of traces, the MOGAEMA method obtained a higher success rate
than CEMA. For example, the MOGAEMA method has recovered all bits of the key with 5000 traces
while CEMA still need more traces to recover. On average, CEMA needs 7357 ± 1282 traces while
MOGAEMA needs 4214 ± 488 traces. MOGAEMA achieved approximately 42.72% improvement for
the corresponding case compared with CEMA.
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We also applied our method to power trace analysis (which is called MOGAPA) to ensure efficiency.
The power analysis experimental environment is similar to electromagnetic analysis. We also encrypted
random plaintexts with a fixed key using the AES-128 cryptographic algorithm on the Sakura-G board.

The success rate under different numbers of traces is shown in Figure 9. All bytes of the key were
recovered with about 900 traces while traditional CPA still requires more than 300 traces.
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We also repeated our method on different sets of power traces selected at random. The minimum
number of power traces when recovering the right key is summarized in Figure 10. We learn that our
method is also suitable for power traces analysis. When recovering the key correctly, our method use
fewer traces than traditional CPA. From Figure 10, we can see that our method reduced 100~400 traces
in different experiments. According to the paired t-test, p value is 1.6× 10−3. On average, CPA needs
1014 ± 212 traces while MOGAPA needs 786 ± 122 traces.
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In order to ensure the reproducibility of our experiments, we used a publicly available power
traces dataset [32]. The NUEESS laboratory has implemented the unmasked AES on a Sasebo-GII
board [33] provided by RCIS [34]. This board has a mechanism to provide users with different ways
to access the reconfiguration function of FPGA. The performance of different experiments is shown
in Figures 11 and 12. We obtained the same conclusion as the previous experiments. Our method
has a better performance than CPA which confirms the efficiency of our method. According to the
paired t-test, p value is 1.6× 10−3. On average, CPA needs 2543 ± 513 traces while MOGAPA needs
2086 ± 652 traces.
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5. Conclusions and Future Work

CEMA is widely accepted to be an efficient method in side-channel analysis because of its
simplicity and efficiency. However, CEMA only uses a single byte of the key which results in loss of
information. In this paper, we put forward a novel multi-objective electromagnetic analysis method
based on a genetic algorithm. In this way, we can take full advantage of information to obtain the
key. As can be seen from the above sections, our method performed significantly better than the
widely used CEMA in electromagnetic side-channel analysis. According to a paired t-test, p value is
5.5× 10−4. In a MOGAEMA experimental environment, CEMA recovers the key with the trace number
of 7357 ± 1282 on average while our method needs 4214 ± 488 traces. The trace number is reduced by
approximately 42.72% for the corresponding case compared with CEMA on average.

However, there are also some imperfections while using multi-objective electromagnetic analysis
based on a genetic algorithm. First, compared with power analysis, there is more noise in
electromagnetic traces which causes a low signal-to-noise ratio, so we need more traces to recover
the key. Second, there are many parameters in a genetic algorithm which are optimal parameters for
different electromagnetic traces that still remain to be explored. Sometimes, premature convergence
may cause failure in recovering the key which will be studied in future work.

In the future, research should aim to solve imperfections. First, we will try some new filtering
works to improve the signal-to-noise ratio. Second, an adaptive parameters selection method of a
genetic algorithm should be studied to find optimal parameters. In addition, cryptographic algorithms
with countermeasures will be studied by our proposed method in the future.
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